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1. INTRODUCTION

1.1 Purpose and Scope of Investigation

Particle size distribution is a very significant textural
property of clastic sediments because it may shed light on the
genesis of sediments.

Though it is widely known that the particle size distribution
of a substance obtained from mechanical disintegration follows either
the lognormal law or the Rosin's law, sedimentary processes, trans=
porting modes, and multiple sources cause the particle size of sedi-
ments to deviate from any known probability distribution.

This report essentially summarizes several published
articles dealing with the use of particle size statistics for dis-
crimination among sedimentary environments. Theoretical consideration
of particle size distributions is followed by the discussion of pro=
blems concerning their application to sediments. A comparison of the
graphic and moment methods for the estimation of the population moments
of the particle size distribution is also presented. The description
of particle size statistiecs in discriminating sedimentary environments
is emphasized. Finally, the multivariate method of linear discriminant
analysis is introduced and used to differentiate sedimentary environments
for a set of real observed data. A discussion on tests of hypotheses
of means and covariance matrices between two multivariate normal popula=-

tions is also included. Discriminatory power and probability of



misclassification are briefly described as well.

1.2 Definition of Individual Particle and Working Units

The American Society for Testing Materials (ASTM), defines
"individual particle' as " a minute unit of matter whose size and shape
depends on the forces of cohesion'". Tt is normally only a single
crystal or a particle of regular shape with a specific gravity approximating
that of a single crystal. '"Working units" and "ultimate particles"
are terms for the actual discrete units which may be individual par-
ticles or.aggregates; they do not change their state of dispersion
with time nor by the addition of peptizing agents throughout the

determination procedure.

1.3 Principles of Particle Size Classification

The principles for the classification of particle sizes

and the corresponding methods (Herdan, 1953, p. 35) are:

.Principles : Methods
Geometrical Similarity Sieving, Microscopic Examination
Similarity in Hydrodynamic Sedimentation, Elutriation

Behavior
Similarity in Optical Density Light Extinction
Similarity in Surface Properties Permeability, Adsorption Methods

of Particle Aggregates

According to the principle of geometrical similarity, particles

whose two dimensional images or whose three dimensional forms have



the same nominal diameter or nominal sectional diameter, respectively,
are said to be of one size. Nominal diameter is the diameter of a
sphere of the same volume as the particle. Nominal sectional diameter
is the diameter of a circle of the same area as the projected image
of the particle on its largest face. According to the principle of
similarity in hydrodynamical behavior, particle size is calculated
from Stokes' law; and particles with the same settling velocity in
a fluid medium are considered to be of one size. These two principles
and the corresponding methods of measurement are used by geologists

to determine the particle size of sediments and sedimentary rocks.



2. PARTICLE SIZE DISTRIBUTIONS

2.1 Normal Distribution for Describing Particle Size

The probability law most popular in nature is the Gaussian
(normal) law. One might be inclined to think that nature, though
obeying very nicely the Gaussian law in the region of the very large
objects and Maxwell's law in that of the small, has not learned its
lesson too well in the intermediate region. Particle sizes of
materials rarely show a normal distribution. As stated by Herdan (1953),
normal distributions of particle size are found chiefly among the
particulate substances produced by chemical processes such as conden-
sation and precipitation.

The normal distribution of particle size is given by

2
£(x) =(oNTm) " exp (-~

X
2g
where f(x) is the probability density, x the diameter of a particle,

M the true arithmetic mean of particle diameter, and ¢ the true

standard deviation of particle diameter.

2.2 Lognormal Distribution of Particle Size

Ifrthe logarithm of x 1s normally distributed, the
distribution of x is gaid to be lognormal. The lognormal distribution
is a more realistic representation of particle size of a substance
than the normal distribution because large variations in particle

size of substance are not uncommon. The logarithmic transformation



of observations of particle diameter would increase the accuracy and
scope of estimating results.

According to the discussion of Kottler (1950a), the lognormal
law can be derived from Galton's (1879) law of growth, dx/dt = kx,
where dx/dt is the rate of gfowth of crystal size in diameter, t is
time and k is the velocity constant. Because the scale of time has
an arbitrary zero, we may assign t = - @ to the initial stage of
crystallizationandt = + @ to the end of the crystallization process.

Integration of the above differential equation yields
t = 1/k logx ~1/k C, where C is the integration

constant. If we assume t is a unit normal variable, i.e. logx ™~
N(C,kz), the probability density of the lognormal distribution of

X is
' _ -1 2, 2
£(x) = (xA2n k) exp (=1/2(logx -C)°/k°) x>0

If the law of growth is replaced by the law of décay, dx/dt = -kx,
the lognormal distribution of size of particles byrbreakage from
large fragments of substance can be derived in the same way. The
law of decay can be deduced by assuming the relative rate of change
dx/x is independent of x, if the time interval dt is kept constant.
In other words, one assumgzjghe relative rate of decay in breakage
is independent of the absolute quantity of material present.
Another advantage of the lognormal distribution over the

normal distribution in describing particle size distribution is as

follows:



It is often possible to measure size in terms of either diameter or
volume of small objects of the same shape. If the distribution of
the diameter is normal, then the distribution of volume will neces=-
sarily be asymmetrical. The normal law cannot be true in both
cases. However, if the logarithms of the diameter are distributed
normally with standard deviation, ), the logarithms of the volume
will be distributed normally with standard deviation 3).

Pulverized quartz, granite, calcite, limestone, soda, ash,

sodium bicarbonate, alumina, and clay have size distributions which

can be fitted satisfactorily by the lognormal law (Herdan, 1953).

2.3 Krumbein's Phi (@) Normal Distribution

The disparity between the extreme sizes is enormous in
sediments; hence, particle sizes of sediments have to be measured
on some type of geometric or logarithmic scale. Udden (1898) intro-
duced a geometric scale based on a center of 1 mm and multiplier or
divisor of 2. The names proposed by Udden to describe the size
grades were modified by Wentworth (1922) to form the commonly used
Udden-Wentworth grade scale.

In constructing histograms, we usually use equal width
intervals in defining the classes. The wide range of size among
sediments makes it generally impossible to use equal intervals
without introducing an indefinitely large number of very small
classes. As pointed out by Krumbein (1936), in most mechanical size
analyses the data are assembled in classes according to the Udden~-

Wentworth grade scale., Thus, the class 1/2 - 1/4 mm is followed



on the right by the class 1/4 = 1/8 mm, an interval half its size.

I1f the grade scale is plotted on ordinary arithmetic graph paper,

the grades rapidly decrease in width as the scale is followed to the
right due to the convention of plotting the coarser grades at the ieft.
Similarly, a histogram or frequency curve plotted on such a scale

will be quite asymmetrical, with much of the material assembled at

one end or the other. However, when the logarithms of the diameters
are used, the intervals become equal and the resulting frequency

curve increases much in symmetry.

If logarithms to either base 10 or e are used, the class
limits are non-integral. Thus, Krumbein (1936) suggested that logs
to the base 2 be used. Then log, 2 = +1, log, 1 = 0, log2 1/2 = =1
etc. As a result of this procedure, negative values apply to diameters
smaller than 1 mm. There probably are more fine-grained sediments
(sands, silts, clays) than there are gravels in nature so that most
analyses will lie in the range below 1 mm. This suggests that
negative logs be used to avoid negative numbers in this important
range and also to convert the grade scale to one which increases to
the right as most ordinary scales do. The symbol ¢ (phi) is called
the Wentworth Exponent by Krumbein (1936) and defined to be «logg‘ﬁ?,
wher%ﬁr is the numerical value of the grain diameter in mm. Accordingly,
if --log2 X is normally distributed, the random wvariable X is said-to
be phi normally distributed. As a matter of fact, phi normal distribution

is equivalent to the lognormal distribution because



1ogeX = logEX/logge = -1/1ogae(-log2X) = K(-logEX);
where K is a constant.

2.4 Rosin and Rammler Distribution of Particle Size

A distribution function was proposed and applied to broken
coal by Rosin and Rammler (1933). Rosin's distribution was later
proposed to be applicable not only to coal but to cement, gypsum,
magnesite, clay, dye-stuff, quartz, flint, glass, and ores. The

mathematical expression of the law is as follows:
R = 100 exp (-bx") 0 K < @evrnnenennn (1)

where R is the cumulative percentage of particle sizes

larger than x (mean projected diameter), and b and n are distribution
constants. Bennett (1936) defined b = (l/i)n to make the exponent

a dimensionless number, where X is the absolute size constant which

is the size for which the residue is 100 exp - ( % ) = 36.78.

Thus, Rosin's equation becomes
—. N
R = 100 exp =~(x/X) +uevu.. . TRy T (2)

Based upon the assumption that rock material is isotropic and that
the probability of fracture of any grain in any particular place or
direction is equal to the probability of fracture elsewhere, the
Rosin's equation was derived theoretically by Bennett (1936). He
also provided abundant experimental evidence to verify the wvalidity

of Rosin's law as applied to run-~of-mine coal and the products of



subsequent washing and handling, etc. He cﬁncluded that Rosin's
law safely can be applied to sizes from one five-hundredth of an inch
up to three inches.

Dividing both sides of equation (2) by 100 and inverting,

one obtains
100/R = exp (x/;)n.......................... (3)

If thg logarithm of both sides of equation (3) be taken twice, one obtains
loglog 100/R = N(LOEK=TOEK) ¢t vvarrrnaneennnns )

log x and n are constant for any particular distribution, so eaquation

(4) may be written
Toglog 100/R = € F . FOEEwwwn v+ 3 vt 5 0 5 warses (5)

where C is a constant.
It is possible to comstruct graph paper.graduated logarith-
mically in accordance with the lingar form of Rosin's equaﬁion (3
but calibrated with values of x (grain size) on the abscissa and
values of R on the ordinate. Then data obtained from a population
of particles whose sizes are distributed according to Rosin's law
will lie on a straight line when plotted on the special graph paper.
This graph paper was used by Kittleman (1964) to demonstrate hypothetical;
artificial, and natural size frequency distributions. It forms the

basis of a statistical test for goodness of fit to Rosin's distribution.
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2.5 Discussion of Particle Size Distribution of Sediments

The sample statistics: mean, standard deviation, skewness
and kurtosis are extensively used by geologists to describe and compare
particle size distributions. As pointed out by Krumbein (1938),
symmetrical phi size frequency curves are not uncommon among certain
‘types of sediments, but curves having values of kurtosis close to .

3.0 are comparatively rare among samples of sediments.

Folk and Ward (1957) stated "Non-normal kurtosis and skewness
values are held to be the identifying characteristics of bimodal sediments
even where such modes are not evident in the frequency curves." They
are saying that non-normal skewness and kurtosis values are probably
indications of two populations of grain sizes each of which is
lognormally distributed.

After having examined some 260 grain size analyses from the
Mississippi ﬁelta, Spencer (1963) found that all sediments in the
Mississippi Delta may be adequately described by two lognormal grain
size populéﬁions either mixed together in different proportions or
kept separate. The two popu;ations are sand and clay. Thus, Spencer
(1963), hypothesized that all clastic sediments are essentially mix-
tures of three or less fundamental populations of lognormal grain size
distributions. These three populations are "gravel”, "sand", and
"clay". Accordingly, deviation from lognormality (phi normality) may
be well-explained as a result of mixing two or more size populations,
according to those authors.

Roger and Schubert (1963), on the other hand, proposed that

populations of different sized material have different types of size



11

distribution because they are produced by different abrasional and

fracturing mechanisms. References to experimental evidences and

natural sediments were cited by them to support the following
statements:

“"Pebble- or gravel-sized material formed by
single=-stage crushing without extensive transport
should theoretically obey Rosin's size distribution.
Pebble~ and sand-sized material that have undergone
extensive repeated abrasion should follow a log-
normal size distribution. The fine-grained silt and
clay that are produced by chipping from large grains
are presumed to have a normal size distribution."

Middleton (1962) comments on size distribution and moment
measures of geologic samples as follows:

"In attempting to define a natural probability
distribution, one may proceed in one of two ways:
inductively or deductively. The inductive approach
is to msasure either the entire distribution or a
sufficiently large part of it, and then to fit a
curve either by method of least squares or some
other method. The deductive way, is to deduce the
distribution law by making certain initial assump-=-
tions about the mechanism which controls the
natural processes."

As discussed in the proceeding chapter, Kottler (1950a and 1950b)
deduced the lognormal distribution of particle sizes in photographic
emulsions and Bennett (1936) deduced Rosin's distribution of broken
coal.

A hypothesis based on deduction from principles should not
be readily discarded simply because of a few exceptions. However,
the hypothesis of a lognormal distribution of particle size of sediments
based purely on convenience and general experience may be rejected

if departure of observations from theory can be demonstrated.

With regard to the method of moments, Middleton (1962)
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pointed out two drawbacks. First, it is possible to obtain different
probability functions which have the same moments (even 1f one considers
more than the first four moments). Second, for many distributions
(e.g. highly skewed distributions), the sample moments are relatively
inefficient estimators of the population moments.

In general, spot samples, such as used in Friedman's (1962)
study, are collected for the size analysis of sediments. ﬁowever,
a spot sample is far from a random sample. Thus, no valid inference
can be drawn from the size distribution of the spot sample about the

size distribution of the whole population.



1.3

3. STATISTICAL ANALYSTS OF PARTICLE SIZE OF SEDIMENTS

3.1 Computation of Sample Moments of Size Analysis Data

In mathematical statistics, we may describe the properties

of a set of data under study in terms of population moments. The

w

kth moment of a distribution is defined as n, = xk f(x) dx,

-

where f(x) is the density function of a continuous variate.

In practice, the density function f(x) is usually unknown.
Thus, it is customary to take a sample of size N and classify the data
by dividing sample space of x into equal class intervals in a manner
similar to that used in constructing a histogram. The sample moment
measures are then obtained by summing the individual moments for each
class interval. A measure obtained in this manner is referred to
as the sample moment and is defined as
= 1/N

[t =

i=1

where X, is the value of the midpoint of the ith class interval, fi
is the class frequency, and h is the number of classes. If both N

and h are very large, the sample moments approach the value of the

corresponding theoretical moments. Sample moments about the mean

are defined as
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where M = nl is the arithmetic mean.

3.2 Distribution of a Percentile

ansider a sample of size N drawn from a one=dimensional
continuous distributioﬁ with the cumulative distribution function
F(x) and the frequency function £(x). Let kp denote the percentile
of order p of the distribution; that is, F(Kp) = p, where 0 <p < 1.

We also assume that in some neighborhood of x = kp’ the frequency
function is continuous and has a continuous derivative f'(x).

Let @ = ¢p, a random variable, denote the corresponding
sample percentile and u = [Np] represents the largest integer smaller
than Np if Np is not an integer. We define the probaBility that Qp
will lie in the infinitesmal region between x and x+dx to be g(x)dx,
which is identical with the probability that, among the N sample wvalues,
u = [Np] are < x and N-u-l are > x+dx, while the‘remaining value falls
between x and x+dx. This is the sample distribution of a percentile

which Cramér (1946, p. 368) expresses as follows:
N N~u-1
g(x)dx = () (N-u) (FC)) (L=F(x)) " £(x)dx,

where g(x) is the density of the random variable of order statistic
(N). The distribution of @ = ¢ , the sample percentile, is
‘g utl P
asymptotically normally distributed with Kp and variance (p(l-p)/N(f(kp))ej
(see Cramér , 1946, p. 368-369). For a phi normal distribution with
the parameters Mﬁ and O the median is M@ and we have f(Mﬁ) =

2,1/2

1/(2ﬂ0¢) Thus, the median 91/2(¢50) of a sample of N from the
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distribution is asymptotically normal (Mﬁ,dgﬁ/BN).

3.3 Approximate Graphic Analogues to Moment Measures Based on
Percentile

Statistical parameters such as standard deviation, skewness
etc. obtained from moments may be the most relevant numerical descrip=-
tions of size frequency distributions because they are based on stan-~
dard statistical relations and take into considgration the entire
sediment distribution. The dependence of moment measures on the
entire distribution is a limitation to their practical application
to particle size analysis of sediments since mechanical analyses of
sediments frequently result in open-ended curves, andrdo not give the
coarse and fine limits of the distribution; In fact, the very fine-
grained fractions of some sediments are technically unmeasurable by
conventional sedimentation methods. Another disadvantage of the
moment measurés is the complex and time=-consuming procedure required
to compute them. However, this ié now a less serious drawback con-
sidering the availability of high-speed computers.

Graphic moment measures were first introduced by Trask (1932).
He defined the sorting coefficient and the skewness coefficient as

1/2

" - 2
S, = Q/Q)7"%, (@3 >Q;) and 5, =Q, Q,/Md

» respectively, where

Qi and Q3 are the diameters in millimeters corresponding to the 25th
and 75th percentiles respectively of a cumulative percent curve and Md
is the median diameter. The Trask's quartile's measures and their
equivalent in phi notation are easy to compute and hence have received

rather wide usage. However, quartile measures are limited in wvalue
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because they are based on the central 50 percent of the sediment
distribution and have no particular significance in the geometry of
a normal curve.

The 16th and 84th percentiles of a normal cumulative
frequency curve of particle éize represent diameters one standard
deviation either side of the mean and the 2 1/2th and 97 1/2th per-
centiles represent diameters two standard deviations éither side of
the mean. As many sediment distributions approximate a phi normal
distribution or one of the family of curves derived from it, the
use of percentiles based upon standard deviations seems more mean=
ingful for the description of size frequency distribution than those
based on quartiles used by Trask (1932).

As discussed in the last section, the sample percentile is
asyﬁptotically normaliy distributed with mean kp,and variance

p(l—p)/N(f(xp))g. Exrors of sampling are minimum at the median (50
percentile) and increase symmetrically away from the medium toward the
higher and lower percentile for this normal distribution because
f(kp) is maximum at kp =K1/2' This theoretical result was confirmed
by plotting the range in phi units for various percentiles from the
cumulative curves of repeated analyses of each of several sediments
(Figure 1).

Inspection of Figure 1 indicates that percentiles one stan-
dard deviation either side of the median (616 and ¢84) can be determined
with almost the same accuracy as the median, and that there is appreciably
greater inaccuracy in percentile measurements two standard deviations
and @

either side of the median (9, However, the errors

2 1/2 97 1/2)'
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in measuring the 5th and 95th percentiles are appreciably less than
those for the 2 1/2th and 97 1/2th percentiles. In general, it
would be extremely difficult to obtain the 97 1/2 percent diameter
in analysis of fine-grained sediments. For these two reasons, the
5th and 95th percentile diameter, obtained from cumulative frequency
curve is used by Inman (1952) as a working approximation to two
standard deviations. The considerations discussed above led him to
select five parameters to describe the frequency distribution of
sediments (Table 1).

Because sample moments of distributions are more variable
than theoretical measures, Inman (1952) decided to compare the
approximate graphic measures with theoretical moment measures of known
distributions. 1Inman's graphic parameters(Mbs Oﬁ’ aﬁ, aeﬁ’ and ﬁb)
of the Pearson Type T and Type II, Gram=-Charlier Series and chi
square curves were computed and compared with the corresponding
theoretical moment measures. The reasons for selecting these four
distributions are related to their frequent application to sediments.
For each distribution, Imman (1952) varied the parameter of skewness
and noted the effect on the phi deviation (Ua). He observed in every
example that the ratio of the phi deviation to the standard deviation
decreases as the absolute value of skewness increases. In other words,
the degree of correlation of the graphic parameters to the corresponding
moment measures decreases as the distribution becomes more skew.
However, Inman (1952)lsaid "For a fairly wide range of distributions,
the first three moment measures can be ascertained from the graphic

parameters with about the same degree of accuracy as is obtained by
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computing rough moment measures'.

Because sample percentiles are asymptotically normally
distributed, a similar relation exists for a graphic mesasure which
is a linear combination of percentiles. By assuming that the grain
gize is lognormally distributed, McCammon (1962) calculated the
statistical efficiency of the graphic measures of mean and standard
deviation. The statistical efficiency of a graphic measure is the
ratio of the variance of the distribution of the corresponding
efficient estimate {(minimum variance unbiased estimate) and the
variance of the limiting distribution of the graphic measure. The
latter is discussed by Mosteller (1946, p. 377-408) in detail. The
efficiencies of graphic mean and sorting proposed by Inman (1952),
Folk and Ward (1957) and others are compared with those proposed by

McCammon (1962) in Table 2.
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Table 2, Efficiencies of Graphic Measures

Graphic Measures Efficiency Graphic Measures Efficiency
by McCammon by others
MEAN SIZE
(g + B5 + Ogq) /3 & By + 9g,)/2 s

(819 + P30 + 855 + 8

* P90y /5 9 @5 + 8750 /2 81
B + 85+ by + B35 + 0,
thys *+ Bgs + By * Pgs
+ By5) /10 97 (B1p + Bsy + B30 /3 88
SORTING
(Bgs + By = B = B,5)/5.4 79 (8,5 - 6,5)/1.35 37
(Br * Bgq + B + Bg; = by
-~ By = Oop = ) /9.1 87 (Bgy - B1)/2 54
(095 - (55) 133 64
(Bgy, = 1) /4 + By

1

=

w
-
)
o

.
L=
~J
pie)
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Despite the higher efficiencies, McCammon's (1962) scheme has not
been widely used by geologists. Some of the reasons could be as
follows:

(1) Comparatively more percentiles are involved in the
computation of graphic measures.
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(2) His method for computing efficiency is valid only
for phi normal distributions.

(3) The schemes of Inman (1952) and Folk and Ward (1957)
have already been widely accepted and adopted in the
geologic literature

Folk and Ward (1957) modify Inman's @ deviation measure by

including in their parameters the 5th and 95th percentiles. Their

measure is defined by the equation (see Table 1)

o = By, = By /b = By - 6)/6.6

Friedman (1962) did empirical correlation studies between three graphic
sorting measures (Trask's, Inman's, and Folk and Ward's) and the
standard deviation computed by the sample moment method. Correlation
diagrams show that both the Trask coefficient and the Inman sorting
measure approximate the standard deviation and that a high correla=
tion exists between the standard deviation and sorting measure of

Folk and Ward (1957).
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4, PARTICIE SIZE STATISTICS AND
SEDIMENTARY ENVIRONMENTS

4.1 Application of Particle Size Statistics to Differentiate
Sedimentary Environments

A distinction between beach, dune, and river sands was shown
numerically by Friedman (1961) by computing the moments. In terms
of phi units, the skewness of beach sand is generally negative and

those of dune and river sands are generally positive. A plot of

mean grain size against skewness results in an almos; complete
separation of the fields representing dune sands and beach sands.
The mineralogical composition of the sands does not affect the sign
of skewness. In addition, dune sands tend to have smaller standard
deviations than river sands. A plot of skewness and standard devia=
tion also results in a good separation of the fields representing
beach sands and river sands (Figure 2).

The upper size range of grains carried in suspension or by
saltation dgping the transportation of river sands is governed by
the competency of the transporting medium. But fine particles in
transport are not affected by such a limitation. Accordingly, the
lack of a "tail" at the coarse-grained end of the frequency distribu=-
tion curve results in positive skewness of river éands. In beach
sands, the fine~grained particles of sands are winnowed away by wave
actions and coarse-grained particles are left behind. Thus, the
distribution of beach sand appears to have a "chopped off'" tail at
the fine-grained end; that is, it resembles a truncated normal curve,

with negative skewness. Tn the Fformation of dunes, the wind leaves
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coarser sand grains behind because its streﬁgth is generally too
low to move them. The truncation of the coarse tail results in a
positive skewness of distribution of the dune sands. One would
expect the dune sands and beach sands to be better sorted than river
sands because of winnowing effect of wind and wave.

Moiola and Weiser (1968) analyzed textural parameters
(mean diameter, standard deviation, skewness, kurtosis) calculated
from a total 120 samples of modern beach, coast dune, inland dune,
and river sands. These parameters were caléulated by using the
graphic method following formulae of Folk and Ward (1957) (Table 1).
Plots of combinations of textural parameters were presented to
demonstrate how effective they are in differentiating between
samples from two different environments. The conclusions given
by them are:

(1) The combination of mean diameter vs. skewness is

most effective in differentiating between beach
and inland dune sands and coastal dune sands.

(2) The combination of mean diameter vs. standard
deviation is most effective in differentiating
between beach and river sands, and between
river and coastal dune sands.

(3) Skewness vs. kurtosis is never the most effective
combination of parameters in discriminating
environments.

Visher (1969) wrote on grain size distributions and

depositional processes. The cumulative frequency percentage expressed
as probability is plotted against the phi grain size of sands. The

resulting plot usually exhibits two or three straight line segments

(Figure 3). Visher (1969) stated that such segments represent
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separate lognormal populations. Each population is truncated and
jointed with the next population to form a single distribution.

This means that a grain size distribution is composed of several
lognormal populations each with a different mean and standard
deviation. He also shows thét this interpretation can be well
substantiated by fluid mechanics concepts and observations. Trans-
portation preocesses such as surface creep, saltation, and suspension
may be reflected in a separate lognormal subpopulation within a single
grain size distribution (Figure 3). Therefore, the sorting, size
range, degree of mixing, and the points of truncation of these sub=-
populations may provide information on provenance, currents, waves,
and rates of deposition. Using 1500 samples, these parameters were
found by Visher (1969) to vary in a predictable and systematic manner
and to have significance in terms of transport and deposition. He
also claims that the ancient sands and séndstones can be compared
with the modern sands of known environments of deposition (beach,
river, channel, dune etc.) on the basis of similarity in curve shapes.
The consistency of curve shapes from sample to saﬁple produced by
similar processes and that between ancient and modern analogues enable
us to obtain an independent determination of the processes of forma-
tion of ancient sands.

It is known that the loads of fine-‘and coarse~grained
sediments are largely independent of each other in such rivers as the
Mississippi and Enoree. Thus, Passega (1957, 1964) stated that
parameters such as the coefficients of sorting and skewness which measure

attributes of the total sediment (the combination of coarse and fine
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fractions), being apt to be a function of independent variables, cannot
be chosen to express the character of the deposition. Therefore, he
proposed two parameters C and M. The parameter C is defined as the
diameter in microns corresponding to one percent of cumulative size
frequency curve and is used as an approximation of the maximum grain
size (a measure of "'competency' of transporting medium). The para-
meter M is the median in microns or the 50 percentile and represents
the average coarseness of the sediment. The C-M pattern (Figure &)
is very useful in determining the depositional environments of
sediments.

By assuming the amount of sediment in each size class is
a unique attribute of a particular sediment sample; that is, that
there are as many variables as class intervals, Klovan (1966)
applied factor analysis on the size analysis data of sixty-nine
recent sediment samples collected from Barataria Bay, Louisiana.
Three factors, which were interpreted as wind-wave energy, current
energy, and gravitational energy, adequately described the grain size
variations in these samples.

This technique offers several advantages over the method of
plotting statistical (textural) parameters to determine sedimentary
envirconments, namely,

(1) It makes use of the entire spectrum of grain size
distribution.

(2) It is more objective.
(3) A priori knowledge of the environmental and geographic

locations of the sediment samples is not required for
classifying them into environmentally distinct facies.
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4.2 Applicability of Grain Size Statistics in Determining
Environments of Ancient Sediments

The main purpose of the study of modern sediments is to use
information from known environments in classifying environments of
ancient sediments. But the original size distribution of consolidated
ancient sedimentary rocks can hardly be obtained, especially in the
clay and silt size range, because of the problems of disaggregation,
flocculation, dispersion, crushing, recrystallization, cleavage, etc.
For example, disaggregation of lithified sands tends to break soft
grains, producing spurious contributions to "fines'. One advantage
of the Passega's (1957, 1964) scheme, as discussed in the last sec-
tion, is that it makes use mainly of the coarse and medium sizes,
both of which may be fairly accurately estimated in lithified sand-
stones. As most ancient sandstones are more or less lithified,
Passega's scheme may be better applied in the stﬁdy of sedimentary
environments of ancient sandstones.

Nearly cne~thousand size distribution curves of ancient
sediment samples have been studied by Visher (1969). He found that
the major difference observed between ancient and modern grain size
distribution is the amount of particles less than 44 wmicrons in size.
Some reasons suggested for this are:

(1)‘ Diagenetic addition of clays

(2) Post~depositional mixing

(3) Sediment settling downward through the pores

(4) Possible transportation by interstitial fluids



By ignoring fines, Visher (1969) is still able to match ancient
sediments with modern analogues deposited by similar processes on

the basis of comparisons of their general grain-size distribution

curves.
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5. LINEAR DISCRIMINANT FUNCTION AND ITS APPLICATION
TO DIFFERENTTATLNG SEDIMENTARY ENVIRONMENTS

5.1 Introduction

A linear discriminant function was introduced by Fisher
(1936) as one solution for the problem of classifying an observa=
tion into one of several populations. In the case of two populations,
an experimeter has an chservation that he knows is from either popu-
lation 1 or population 2, and measures p characteristics of the single
sample. On the basis of these p measures, he decides from which
population it probably was drawn. The diseriminant function which
serves for this purpose is obtained from two sets of data from known
populations.

The discriminant function has been used fairly often by
geclogists. Emery and Griffiths (1954), and Griffiths (1957), used
the method to distinguish oil-bearing and ore-~bearing sediments from
barren bnes. McIntyre (1961) discriminated among'three sedimentary
environments by using heavy minerals. Porter et al. (1963) dis~-
criminated between marine and fresh-water argillaceous sediments
by use of trace elements. Mellon (1964) distinguished between calcite
and silica cement in sandstone by the use of six measured properties
of the rock. Tien (l968) applied the discriminant function to
differentiate.among Pleistocene deposits of Kansas based on the rela-
tive abundance of three kinds of clay minerals. Sahu (1964) showed
that sand from several environments can be distinguished on the basis

of the four sample moments of particle size distribution by
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discriminant analysis.

5.2 The Technique of Discrimination

Let EipoFipo e N be p-dimensional observation vectors
population 1
fromﬁnl and 5915522, ...... EENE be p-dimensional observation vectors
from population 17,, and let x be an observation vector of unknown

2

classification but from either ™ or Ty Assume that the two
populations are multivariate normally distributed with known means

" and EE and a common covariance matrix ¥. As discussed in Anderson

—

(1958, p. 133-134), the density of population i is

1
_ a1
P, (x) =(2ﬂ)p/2!zl1/2 exp[-l/E(g-Hi) z (g-Ei)j ....... (1)

The ratio of densities for ™ and Ty is

PO exel-1/20ep) s )
Py exp[~1/2(x-p) BT () ]

I

exp{~1/2[ (x-p;) "’ 3'1(3:_-}_11) = (g-gg ' 3:_'1(3:_-32) Tlsvess 2)
The region of classification into ™ is the set of x's for which

(2) is larger than, or equal to, a suitably chosen K according to a
lemma by Neyman and Pearson (1933). Because the logarithmic function

is monotonic increasing, the inequality can be written in terms of the

logarithm of (2) as

~1/2[(x~p;) 'Z‘;l(gs-ﬂl) - (xm) 'Eﬂl(;g-tb)] > log Kiveverunn. (3)
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The left side of equation (3) can be expanded as
- S | . | ¢ o=l | -1
LM’ x - 2'2 'y "pT 24 By - XDk x'T Ty,
e -y ]

By rearranging the termg, we obtain
' - ) - 1RG + w) T N - )
EL M\ T S -

The first term is the discriminant function which is a linear function
of the components of the observation vector. The decision rule is

to classify x into population ™ if

ﬁﬂg-l(kh ") = L2yt Ee).§~1(gl - i) = log Koo, (4)

Otherwise, classify it into population W

Asgume that a priori pirobabilities h and 1-h are known such that a
unit randomly chosen from the pooled pbpulation has a probability h
of belonging to population m and a probability of l«h of belonging
to population My andﬁﬂ(i;j) is the loss from classifying an observa-
tion from the jth popﬁlation as one from the ith. Then, K is given
by K = (1-)f(1;2)/nf(2;1). Thus, the classification rule states
that the vector x should be assigned to population ™ % 3

5t 11 (1 - mha;ze
2 (Y ") - 1/2(_L£1 +}:_‘L2) ¥ oy <y = log = hﬁ)(2§1))

In the particular case, if h = l/2,£(1;2) = 2 (2;1)

log[(1-h) £ (1;2)/nf (251)] = log 1 = 0
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The equation (5) becomes

z:.'g'l(ul = Wy = L/2(y, + ug)'éul(ul W) 20

for classifying x into s otherwise, into Mo

If gl and gé are the sample mean vectors for the two groups

and § is the pooled estimate of §, we wish to determine the linear

combination of the responses a'x which produces the largest critical

te-ratio.

L B
Py = (276 - ITHN/W, +N)

a'Sa
where
N N
- 1 1 - 1 2
x = P ZasEanE ¥ X
T N1 i=1 1i° =2 N2 {=1 =21
N, _ _ 1;2 _ _
2= - - 1 - . T
8= Wy mED@yy mx) T Ty - 2p) Gy - Xp)
i=1 i=1
Nl + N2 -2

As pointed out by Morrison (1967, p. 130), the coefficient vector a

is given by the homogeneous system of equations

—— _ — — - — "L
Nl + N2 =5

where ) can be shown to be the maximum tg(g) or merely the sample

Hotelling's TE. Only one solution exists because the rank of the

coefficient matrix is (p-1). The solution is a = g"lfgl - Eé)
which maximizes te(a and thus = x'S_l(z -x) = +e X ... X
e 2) yEEe Wy T E) T ey TeRTe 0%,

is the linear discriminant function.

The decision rule is as follows:
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If an observation vector x is such that

LG -5y - U2 + 525G, - F (L= f1:2)
'S T(xy - xy) - L2z tx)'8 T(x; - %)) = log he(2;0)
classify it into nl; otherwise into My

5.3 Test of Equality of Covariance Matrices

Since the equality of covariance matrices among populations
is presumed for the aforementioned discriminant function, it may be
necessary to test this assumption prior to the discriminant analysis.
Test procedures are discussed in Morrison (1967, p. 152-153).

Let §1’ 5, be sample covariance matrices of MVNp(“’Ei)

based upon n, degrees of freedom where i = 1,2.

To test HO: El & 22 =%

lversus HI: El * zé

Let E = nlii * n2§2 be the pooled estimate of ¥ when H  is true.

n1 + n2

MC is approximately distributed as a chi-square

The test statistic u

variate with 1/2p(p + 1) degrees of freedom as n, tends to infinity,

where
M= (n; +n,) log|s |- (n; lvg I-S—]J " log|§2[)

2

C-l.—_.l_w;}:)_ (l +_]:. - ___L_M)
6(p + 1) ny n, (nl + ne)

Reject H0 if the test statistic

“ >XL[O¢;1/2p(P + 1) 7]
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5.4 Test of Equality of Means

It may be desirable to test the hypothesis that two vector
means between two populations are equal. If they are in fact equal
or nearly equal, then a discriminant function based on these attributes

probably will not be successful.

Let X112 Eqporeeeer §1N1 be a random sample of size Nl from
MVNP(HI’E?’ and HypsEppeeeees EQNé be a random sample of size N2

from MVNP(E2,Z?.

Let's define the notations as follows:

p = P b
1 1
211 o1
1 ]
o o0
S0 I 0 I
x! x;
21N = oy
e 1
%11 *o1
X %
7% : Ho = 2o
X X
1
L Plp x 1 .EPJpxl

Obtain the pooled estimate S5 of ¥ as follows:

1
A =}E'(I. -= J )X
1 1 *NI Nl “Nl 1
A =X (I s B g ) X
Rg o SgoeR. T N, TN, TR

NS
na
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. an trices wi .
where QNI and iﬁg are N1 % Nl and NE % Ng matrices with elements of

unity respectively, 1 and LN are identity matrices of order Nl

—Hy 2
and NE'
A+ A
s=_ °
Nl -+ N2 - 2
- z - 3 - -
. [y _— h P o iy £
Since % MVNp(Hl Nl) geun.MVWp(EE,NE),(El §2)vw MVNP
1 3 N +N2
(B = oo =+ 2) SWE G - oy D
Nl N2 12

. . i - =
To test Ho(ﬂ)-i (Hl HQ) 0
Hy@:a'(yy - ) §0
They are equiyalent to test HO:EI = H2 vs. Hl:Hl:+ EE

because the original multivariate hypothesis is true if and only if
Ho(g) holds for all nonnull a.

The test statistic is

t(a) =

as a
The acceptance region is of course
2

B/?:(Nl + N2 - 2)

te(g) < t

The multivariate acceptance region is the intersection of all the

univariate acceptance regions or

> >
it (@ =t B2, + N, - 2) ¥
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The above intersection is equivalent to

2 2
M.g'..x ‘ (§> = tB/Qa(Nl Ny = 2)

2
Rao's (1965, p. 48) theorem states as follows:

"Let A be a positive definite p x p matrix and

EEEP’ that is u is an p vector. Then Sup

(') */eax = w'a™

N. N
e 12 e
t(_é_l)“"‘N + N [(xl-x)'aj
1 2
- 252
where ) (§1 52)
=2
A=3
Thué,

N.N
Sup to(a) = Max to(a)= =12

= =l =2
N, BT RS m T

2
where T 1is called the two-sample Hotelling's T2 statistic.

(Nl + N2 -p = 1)
When the null hypothesis is true, the quantity M. 7N -9 T
L " Ra P

has F distribution with degrees of freedom p and N1 + N2 -p =1

(Morrison, 1967, p. 126).

Reject the Ho:Hl = oo if and only if

2 2
T zTa,p,N1+N2-p~1

(Nl 3 N2 - 2)p
& (Nl T NQ = o D) Ex;p,Nl + N2 -p -1

The ellipsoidal confidence region of 100(l - Q)% confidence is specified

by those vectorcjisatisfying the inequality

—



39

% £ o m ) e M T et PRy s L
R o 1 2
1Mo

where

100(1 - )% simultaneous confidence intervals about all linear com=-

bination of § say a'\ for any choice of a are a'(x, = x.) - a'Sa(l~ +_1—9
B SETe BN, "B PRIE TH,

- = 1 1
. - - ] 1 - 1 Frce B . - -
T PN, + N, -p -1 sg_g =a'(x - x) +/f3 §§_(N1 + NE) T, PN, + N, - p -1

Simultaneous confidence intervals may show us which of p variables
have contributed to the significan; TE, provided the null hypothesis
is rejected. Thus, simultaneous confidence intervals may provide
information for the purpose of deleting those insignificant variables
employed in a discriminant function if it is necessary. But they also

are quite conservative because they maintain the @ for all decisions.

5.5 Test for Discriminatory Power

After a discrimination procedure has been established, it
is of cénsiderable interest to determine whether the discriminator
is really useful. As discussed in Press (1972, p. 381-382), confusion
matrices, which were defined by Massey (1965) as a table of correct
and incorrect classifications, are used for this purpose. The con-
fusion matrix has entries Nij which are the numbers of observations

known to belong to population A but were classified into population ﬂj.
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co| 11
Nop Fap
where N + N = N

Let N = N11 + N22 be the number of correct classification and N = ng +

N21 be the number of misclassifications. Classifying observations by

chance, we expect to have N1 o N2 correctly classified and Nl + N2
2 2
misclassified. Compute
2 2
N, + N N, + N
1 2 v 1 2 2
WD A ————. + y,  Ep——————, -
rxgz(u =) (N 5 )=(N1+N2 2N)
N1+N2 N1+N2
2
Test HO:Hits took place at random
H1:The discrimination procedure did better than just chance

Reject Ho iff 9’_2 > ?(o:, 1

5.6 Probability of Misclassification

Under the assumption of multivariate normality, the probability

of misclassifying x when Hio b and ¥, are known and used to calculate

the discriminant function, is @(-D/E ) where @ is the distribution
function of a normal random variable with zero mean and unit wvariance

and

2 s
DUy )yt )

which is known as the Mahalanobis distance between two populations.
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2 . —_— : pa=l — -
For large samples, D~ can be estimated by (51 3 2) S (51 52)
By assuming equal loss and h = 1/2, the estimated probabilities of
misclassification are as follows: The probability of misclassifying

an observation from population M, into population m is P(z < - D/2)
and the probability of misclassifying an observation from us into Ty

is P(2 = DI2 ).

5.7 Differentiation of Sedimentary Environments by Linear
Discriminant Analysis of Particle Size

Moiola and Weiser (1969) indicated that the application of
the disériminant function is a reliable and effective way to discriminate
among size distributions of sands collected from several different
environments. The basic goal of this technique is to use two sets
of data whose origins are known to seek that linear combination of
p measured characteristics that provides criteria to correctly predict
the origin of any future observation. Moiola and Weiser (1969) claim
that application of discriminant analysis to whole @ grain size data
is even more effective in differentiating between modern beach, coast
dune, inland dune, and river sands than textural parameters calculated
from quarter $ data. This technique is also effective in determining
depositional environments of ancient sandstone bodies.

Fourteen sand samples, half of which are river sands and half
are dune sands, collected at Hunters Island and vicinity, Riley County,
Kansas, were used to run the discriminant analysis for demonstration
purposes. The resultsrof sieve analyses performed by graduate students,

Department of Geology, Kansas State University are shown in Table 3.
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The original quarter $# data are regrouped into whole @ data in this
Table. The exact sample localities are in Husain (1964).

We assume:

(1) The weight percentage in the seven @} size classes
has a multivariate normal distribution with dif-
ferent mean vectors and a common covariance
matrix between river sand and dune sand.

(2) All sample observations are independent.

(3) A randomly chosen unit from the pooled population
has a probability of 1/2 of belonging to river sand

or dune sand.

(4) The loss functions, when we classify an object to be
river or dune sand, are equal.

The discriminant function calculated by using the APL computing pro-

cedure on the data in Table 3 is

y = 15.43x + 28.23x + 39.29%

(<~1) (~1-0) - 4.28x

(0-1) (1-2)

+ 0.12x - 7.11% + 10.02x

(2-3) (3=4) (>4)

¢ ol Pl =, - = .-l
LEy =28 "0y - xp) = 120G + 2978 (

g; x,) = 914.27,

we classify it as river sand, otherwise dune sand, where x is a vector

of observation, g; and g& are the sample mean vector of ryiver sand

and dune sand respectively, and S is the pooled sample covariance

matrix. The result shows that all the fourteen sand samples of known
origin can be correctly classified into the right group by using the
discriminant function. By applying Mahalanobis' D2 method, the estimated
probability of misclassifying a river sand or a dune sand into the wrong

population is P(z > 23.12) = P(z < ~-23.12) = 0 where 2z is unit normal

variate.



Advantages of this method over the statistical parameters

method in differentiating sedimentary environments are as follows:

(L)

(@)

(3)

This technique is much more effective because it seeks
to accomplish for p measured variables what is
accomplished in two variables by plotting a scatter
diagram and drawing lines on the diagram that best
separate the different groups.

The discriminant function based upon whole @ data
is more reliable and effective in differentiating
sedimentary environments than textural parameters
computed from quarter @ (Moiola and Weiser, 1969).
Thus, it would save time in size analysis to use

this method.

As pointed out by Visher (1969), the main difference
observed between modern and ancient grain size dis-
tributions is the amount of fine of less than 44
microns in size. By ignoring the fine fractions,
the discriminant function probably can effectively
differentiate the sedimentary environments as well,
Whereas, we may not be able to calculate the
required moment measures (statistical parameters)
if the fine fractions are igunored. Hence, a
discriminant function is an effective technique for
ancient environment discrimination.



6. CONCLUSLONS

Lognormal and Rosin's distributions were found to be
applicable to distributions of particle size in naturally occurring
aggregates. Sedimentary materials that have not been transported
theoretically follow Rosin's size distribution law. Transported
sediments are generally believed to have an approximate lognormal
distribution, even though very few samples show a very close
approximation to the ideal distribution. Many authors interpret all
observed size distributions in terms of mixtures of lognormal dis-
tributions. A fully satisfactory mathematical model for the origin
of the lognormal distribution in sediments has neot yet been proposed.

Sample moments and their graphic equivalents were widely
used to describe and compare observed size distributions of sediments.
Plotting a scatter diagram of two of the four sample moments and
drawing lines on the diagram that best separate the different environ-
ment groups of sands effectively separate modern sand groups of
distinct oriéin as claimed by many authors. The discriminant function,
which is based upon p observed wvariables, is wuch more powerful and
effective than the two dimensional scatter diagram in discriminating
sedimentary environments by particle size. Another advantage of
discriminant énalysis of particle size is its effectiveness in differ-
entiating ancient sediments of different origin.

With the availability of high speed modern computers, the
discriminant analysis is going to replace the scatter diagram plotting

in differentiating sedimentary environments in the future. As pointed



4o

out by Blatt, Middleton and Murray (1972), the size characteristic

of sands on the continental shelf and in offshore bar environments

has not been carefully studied yet. More research on size characteristic
of modern offshore sands and ancient analogues is expected and dis-r
criminant function should play an important role in solving the

classification problem.
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Probability distributions of particle size and their applica=-
tion to differentiate sedimentary enviromments of sediments are
examined. A lognormal distribution of particle size can be deduced
theoretically from the law of growth. Rosin's distribution function
of particle size has been derived by assuming that the sediment is
“isotropic and that the probability of fracture of any grain in any
particular place or direction is equal to the probability of fracture
elsewhere. Particle size of sediments is generally believed to have
a lognormal distribution to the first approximation, even though few
samples show a very close approximation to the ideal distributionm.

Some authors think that populations of different sized sediment have
different types of size distribution because the populations are produced
by different abrasional and fracturing mechanisms. Other authors
claim that all clastic sediments are essentially mixtures of several
fundamental populations of lognormal grain size distribution due

to different  transporting processes for different sized sediments,
or to multiple sources. Another problem is that it is not possible
to collect a random sample from a sedimentary population (e.g. a
beach). Therefore, no valid inference can be drawn from the size
distribution of nonrandom samples about the size distribution of the
population as a whole.

Sample moments and their graphic equivalents calculated
from size analysis data are widely accepted by geologists for describing
and comparing observed particle size distributions of sediments. If

we assume that the particle size distribution of sediments is lognormal,



efficiency of different graphic moment measures can be computed.
However, sample moments cannot provide a complete summary of the data
contained in the distribution. It is possible to have distributions
that have exactly the same four moment measures but differ significantly
in some respect.

Plotting observed values of two sample moments in a two
dimensional scatter diagram and drawing lines that best separate
the sand groups of different origin have been used by many authors
to discriminate among modern sand environments. The application of
discriminant functions is much more effective for differentiating
among size distributions of samples of sand collected from several
different enviromnments because discriminant functions are based on
p observed variables instead of two. Another advantage of discriminant
analysis of particle size is its applicability to effective discrimina-
tion among differenﬁ environments of ancient sediments.

Size analysis data of dume sands and river sands collected
at Hunters Isiand, Riley County, Kansas, were used to illustrate the
discriminant analysis. All samples of known origin can be correctly

classified into the right group by the computed discriminant function.



