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Abstract

In this study, low molecular weight nanocomposites of l-lactic acid were synthesized 

with Commercial, Nanoactive®, and Nanoactive Magnesium Oxide Plus®, each of which differs 

in both surface area and shape.  Synthesis of the composites was carried out by refluxing the 

nanoparticles in a solvent suspension.  Both methanol and 1-propanol were used during this 

work.  Reflux was necessary in order to achieve adequate dispersion of the particles before 

adding l-lactic acid.  Upon addition of the lactic acid monomer, the reactants were refluxed for a 

total of 3 hours, followed by evaporation of the excess solvent.  

The products were characterized via DSC, TGA, FTIR, 1H and 13C NMR, UV-Vis, XRD, 

and TEM.  Additionally, titrations were performed with the reactants to ensure the particles were 

not being consumed by the acid regardless of their size.  The results of this study indicate that 

condensation reactions are the primary polymerization route of lactic acid and polymerization

appears to initiate on the surface of the magnesium oxide particles, the result of which are 

physically unique composites of lactic acid and magnesium oxide.
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CHAPTER 1 - Introduction

Petroleum, perhaps the most important commodity in the world, is the basis for the fuels 

and plastics we are all accustomed to and have come to rely on.  However, in recent years, 

concerns regarding the renewability and rising costs of petroleum have become more insistent 

and as a result, bio-based fuels and plastics are receiving a great deal of attention, by both the 

media and the scientific community.  Great strides have been made in the development of bio-

fuels, as evidenced by the presence of E10 unleaded at most fueling stations.  While the advances 

in the fuel industry are vital to our way of life, bio-plastics and biopolymers are also an important 

part of our everyday lives and as such, deserve an equal amount of attention.

Biopolymers are appealing for several reasons, one of which is that they are synthesized 

from oils obtained from renewable resources such as corn, sugar beets, and soybeans.  

Additionally, these crops are readily available, as 800 billion pounds are produced annually in 

the United States alone, only half of which is spoken for as food and feedstock, leaving nearly 

400 billion pounds of grain available for harvesting the oils used in the production of 

biopolymers.1 In addition, many bioplastics are biodegradable, making them ideal for disposable 

items such as plastic dishware, waste sacks, disposable gloves, mulching films, packaging 

materials, drug delivery aids, and suturing materials.2  The final and most media-friendly 

advantage of biopolymers and plastics is the price; in the past, bio-based materials were more 

expensive to produce due to compatibility reasons, but as processing technology has advanced 

and both the monetary and environmental prices associated with the use of petroleum continue to 

rise, the appeal of bio-based materials will rise accordingly.
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The advantages associated with the use of bio-based polymers and plastics are numerous, 

but it is important to note that there are still a few obstacles associated with biopolymers that 

must be overcome before bioplastics can compete with their petroleum-based counterparts.  

According to Wool et al, durability, compatibility, affordability, and sustainability are the 

primary concerns that must be addressed.1 Sustainability seems to be a “no-brainer” as it was 

established previously that the starting materials used in biopolymer production are renewable, 

but this is only true as long as there is land available to grow them.  Thus, sustainability is 

dependent upon the optimization of land use by the agricultural community.  Chemists can play

no role in this issue.  However, in addressing the remaining issues of affordability, compatibility, 

and durability, chemists play and will continue to play a very important role.

1.1  Introduction to Nanoparticles

For many years, the addition of inorganic fillers has been the most widely used technique to 

address durability issues associated with not only bio-based materials, but also common 

polymers such as polypropylene and polyethylene.  However, more recently, the addition of 

inorganic nanomaterials has become a promising technique in the quest for stronger polymers 

and plastics.

Perhaps it is best to begin by explaining why nanoparticles are different from their bulk 

materials.  The size of a nanoparticle can be anywhere between 1-100 nm and in order for a 

material to be classified as “nano”, it must have at least one dimension on the nanometer scale.  

Additionally, a nanoparticle can contain anywhere from 100 - 1 million atoms and can take on 

many different shapes including, but not limited to sheets, fibers, plates, discs, and needles, to 

name a few.  The small sizes of these nanomaterials lead to vastly increased surface areas, which 

when combined with the various shapes and edges on the surface of the materials, leads to 
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properties that are very different from the properties of the bulk material.  In addition, when the 

particles are consolidated into materials on the macroscale, unique properties are often the 

result.3,4

The prospect of creating new materials with unique properties is exciting and is an excellent 

advantage of using nanomaterials as polymer fillers.  However, there is also another important 

advantage; because of the high surface areas and increased reactivity observed in nanomaterials, 

lower loadings of additives are necessary in order to observe the same enhancements seen in 

polymers with five times as much bulk-scale fillers.5,6  Thus, the use of nanomaterials rather than 

the typical inorganic fillers leads not only to the production of a reinforced polymer which 

exhibits exceptional properties, but the lower loading percentages required also lead to lower 

production costs, as less filler material is used. 

Many nanoparticles are currently available commercially, including metal oxide powders of 

titania (TiO2), silica (SiO2), magnesium oxide (MgO), and alumina (Al2O3), to name a few.  

Additionally, silver and gold nanoparticles, as well as several semiconductor particles can also 

be synthesized in the lab using various well-known techniques.  Perhaps the most widely-known 

class of nanomaterial used in the polymer industry, however, are the nanoclays, which includes 

hydrotalcite, octasilicate, mica fluoride, and the most common, montmorillonite.4

1.2 Nanoclays as additives to polymers

Nanoclays are a popular choice for polymer fillers because they are inexpensive and readily 

available, chemically inert, stable, and transparent.4,7 In addition, the sheet-like shape of most 

nanoclays provides a high aspect ratio, which maximizes the surface interaction between the clay 

and the given polymer.  Many polymer-nanoclay composites have been synthesized with positive 

results, including polypropylene8, polyethylene9, polystyrene, polyimide10, and polyacrylate11-



4

clay nanocomposites.  Each showed increases in both strength and modulus, when compared 

with the original polymers.  In addition to enhancing the strength of the polymers, the 

transparency of the final products, which is an important characteristic in plastics, was not 

affected by the addition of the clay.

While the advantages of using nanoclays are obvious, unfortunately there are drawbacks as 

well.  Nanoclays are very difficult to disperse in a polymer matrix, as a result of their 

hydrophilicity; therefore it is necessary to modify the surface of the clays before they are 

incorporated into the polymer.4 These treatments take time and often the effort to overcome the 

incompatibilities between the inorganic and organic surfaces far outweigh the enhancements that 

are achieved by using the clay in the first place.

1.3 Our Research

Supply and demand is a universal law of economics and it has become painfully clear that as 

the supply of petroleum dwindles, the price will consequently soar and as a result, the 

attainability of petroleum to the masses, whether in the form of fuel or plastic commodities, will 

be severely tested.  In addition, the environmental effects of petroleum-use are becoming a hot 

issue and people are looking for ways to be environmentally friendly.  It is for these reasons that 

the production of bio-based materials has gained so much attention in recent years.  Numerous 

laboratory experiments have shown that additives are necessary in order for these materials to 

compete in today’s market.  In the past, nanoclays have been used extensively as additives in 

both petroleum and bio-based polymers and improvements in strength and modulus have been 

achieved in all cases.  However, there are compatibility issues between the inorganic clay 

surfaces and the organic polymers in question.  In our work, we intend to focus on the use of 

metal oxide nanoparticles as additives to the bio-based polymer, polylactic acid.
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1.3.1 Introduction to polylactic acid

Polylactic acid (PLA) is a biodegradable thermoplastic which consists of aliphatic 

polyester units.  PLA is typically synthesized via the ring opening polymerization (ROP) of 

lactide, shown schematically in Figure 1.1.  This technique employs a tin catalyst, such as tin (II) 

chloride in order to achieve high molecular weight PLA.  Polymers synthesized using this 

method typically exhibit glass transition temperatures between 50-80°C and melting 

temperatures between 173-178°C.1

Figure 1.1 Ring Opening Polymerization reaction of lactide to synthesize PLA
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While ROP may be the most accepted method, direct condensation of the lactic acid 

monomer, C3H6O3, is also possible.  Direct condensation involves heat treating the monomer 

under vacuum to form a prepolymer, which is then treated with the tin catalyst, referred to above, 

and then further heating is applied to produce high molecular weight PLA.  The typical 

polymerization process is shown schematically in Figure 1.2.
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Figure 1.2 Procedure for direct condensation synthesis of PLA

Direct condensation produces high molecular weight PLA with the same melting and glass 

transition characteristics, as long as the reaction is conducted under good vacuum conditions.  

Water is formed as a byproduct of the reaction between the carboxylic and hydroxyl end groups, 

which can potentially result in hydrolysis of the newly formed ester connections, thus the 

vacuum treatment is necessary in order to remove the water before it can react with the newly 

formed polymer.

PLA is receiving a lot of attention from the plastics industry not only because it is an 

inherently biodegradable polymer, but also because it exhibits other desirable properties, such as 
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a clear and glossy surface, much like polypropylene, a significant resistance to both grease and 

moisture, as well as being an excellent barrier to both flavors and odors.1 These characteristics 

are in high demand from bottling companies such as Pepsi® and Coca Cola®.  However, PLA 

tends to lose its stiffness when it is heated above its glass transition temperature, thus the thermal 

stability of the polymer is lacking for these types of applications.  Nevertheless, PLA has found 

numerous applications in the medical industry, including sutures, stints, and drug delivery 

devices.12

The overall focus of our work is to preserve the favorable properties of PLA, while 

increasing its thermal stability and durability by the addition of metal oxide nanoparticles.  

Magnesium oxide nanoparticles were chosen because they are environmentally friendly, well-

characterized materials that due to their basicity, should not exhibit the compatibility issues 

associated with the use of nanoclays.

1.3.2 Magnesium oxide nanoparticles as additives to lactic acid

Magnesium oxide nanoparticles, as well as many of their potential applications, have been 

well characterized.3 There are three different forms of magnesium oxide that can potentially be 

used as additives in the synthesis of stronger, more durable biopolymers: Commercial 

Magnesium Oxide (CM-MgO), Nanoactive® Magnesium Oxide (NA-MgO), and Nanoactive 

Magnesium Oxide Plus® (NA-MgO Plus) all of which are available commercially.  In addition, 

magnesium oxide nanorods are also available via laboratory synthesis, but were not a focus of 

this study.13

Each of the three types of magnesium oxide used in our research differs in both surface area 

as well as morphology; CM-MgO has a cubic morphology and only 30 m2/g surface area, while 

NA-MgO exhibits hexagonal morphology and a surface area of 250 m2/g, and NA-MgO Plus 
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displays the highest surface area of the three with 750 m2/g and a very unique fibrous 

morphology.  Figure 1.3 summarizes the different shapes and sizes observed in magnesium 

oxide. 

Figure 1.3 Magnesium oxide surface areas and morphologies

1.3.3 Possible Chemistry: Acid + MgO nanoparticles

As chemists, our primary goal is to identify how the different surface areas and morphologies 

of the MgO particles affect the polymerization and physical properties of the lactic acid 

polymers.  In order to do this, each of the three MgO particles will be used as an additive in the 

direct condensation polymerization of lactic acid.  Several possible pathways have been 

proposed for the reaction between lactic acid and magnesium oxide nanoparticles.  The 

possibilities are as follows:

Commercial Magnesium Oxide 
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Nanoactive MgO Plus®
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Acid-Base Reaction:

A likely reaction is that of an acid-base reaction, the product of which would be primarily 

unreacted lactic acid, as well as a small amount of magnesium lactate salt.

Polymerization Reaction (1):

Another possibility is that the acid functional groups of two lactic acid monomers react 

with each other to form an anhydride and then further polymerization is possible between 

other lactic acid monomers and the remaining hydroxyl functional groups.  In this pathway, 

MgO could act either as a catalyst for the dehydration reaction or may merely be present as a 

filler material for the resulting polymer.

Polymerization Reaction (2):

This pathway involves two or more monomers reacting together to remove water and 

form straight-chain PLA.  This is the most typical pathway for lactic acid to take when 
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polymerizing.  In this case, MgO could again act as either a catalyst for further 

polymerization or may fill empty space in the matrix, resulting in a reinforced polymer.

Polymerization Reaction (3):

In this reaction, the presence of MgO would catalyze the production of acrylic acid, 

followed by the addition of a lactic acid monomer across the double bond to form a 

polyester.  The scheme below shows the addition of the monomer via the carboxylic acid 

protons, but the polymerization could also occur through the hydroxyl proton, which would 

produce a completely different polyester.
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Polymerization Reaction (4):

It is also possible, that rather than acting as a catalyst or merely just a filler for the 

aforementioned polymerization reactions, the hydroxyl groups on the surface of the 

magnesium oxide particles may also chemically react with the lactic acid such that several 

different growing sites may be located on a given particle, as shown in Figure 1.4.  If this is 

the case, the morphologies of the particles will play a significant role in the polymerization of 

the polymer.  
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1.3.4 Methods of Analysis

In order to determine through which of these pathways the polymerization occurs, pre-

polymer composites were synthesized and the structural differences were analyzed using FTIR, 

UV-Vis, 1H and 13C NMR, and TEM14.  In addition, lactic acid titrations with each of the three 

types of magnesium oxide were performed in order to determine the effect of surface area on the 

observed equivalence points.  Finally, the affect of the nanoparticles on the thermal and 

mechanical properties of the resulting polymer composites were studied using DSC and TGA.
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CHAPTER 2 - Experimental Methods

2.1 Establishing a synthetic method

2.1.1 Initial synthesis of LA – MgO nanocomposites

Materials

A 90% aqueous solution of L(+)-Lactic Acid from Acros Organics, ACS grade 

magnesium oxide from Sigma Aldich as well as Nanoactive® and Nanoactive Plus® magnesium 

oxides from NanoScale Corporation were all used without further purification.

Synthesis

As very little work had been performed in this particular area of research in the past, it 

was necessary to make some preliminary observations regarding the nature of the reaction 

between lactic acid and each of the magnesium oxide materials.  In order to do this, the two 

materials were mixed together in equimolar amounts with vigorous stirring.  Each of the MgO 

materials formed a white, wax-like precipitate with the lactic acid monomer.

The effect of decreasing the amount of MgO material was also examined using this 

rudimentary synthetic method.  The amount of MgO was cut by half and then mixed with the 

lactic acid monomer.  In this case, a white precipitate formed as before, but the consistency of 

the product was more viscous than that of the previous samples.

TEM analysis of the samples indicated agglomeration of the particles was occurring, 

which resulted in poor mixing.  In addition, polymerization is typically catalyzed by the 

application of heat, thus the room temperature environment in which the reaction took place 
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appeared to be hindering the polymerization of lactic acid.  As a result, it became obvious that a 

high boiling point solvent was required in order to disperse the particles and provide the 

increased reaction temperature necessary to see polymerization.  

2.1.2 Identifying an appropriate solvent

The choice of solvent was difficult as there were a number of stipulations that had to be 

met before a solvent could be chosen.  The solubility of lactic acid and the dispersibility of the 

MgO particles in the solvent were the primary concerns, but it was also necessary to consider 

whether or not the solvent would participate in the reaction.  THF, methanol, and ethanol were 

all identified as potential solvents, as lactic acid was highly soluble in all three.  However, 

reactions between alcohols and carboxylic acids to produce ester functionalities are very 

common and as a result, THF was the frontrunner as it was the least likely to participate in the 

reaction.  Unfortunately, magnesium oxide did not disperse well in the solvent, leaving the 

alcohols as the primary options.  Ultimately, the best dispersion of magnesium oxide was 

achieved in methanol.

The amount of solvent was also important as the primary concern associated with the use 

of solvent is that it must be removed at the end of the reaction.  In order to identify the best 

reaction conditions, the MgO particles were stirred in 50 mL and 100 mL aliquots of methanol 

and lactic acid was added after 30 minutes.  The two were allowed to react for 2 hours and then 

the solvent was evaporated using a rotaevaporator.  TEM images (Figures 1.5, 1.6, 1.7, and 1.8) 

were taken of the two products to analyze how the amount of solvent affected the dispersion of 

the particles within the polymer matrix.  Additionally, the exact same reactions conditions were 

used to synthesize the products, with one exception; the solvent was heated to its boiling point, 

~60°C, and the reaction was carried out at elevated temperatures.  TEM images (Figures 1.5, 1.6, 
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1.7, and 1.8) were taken to identify how temperature affected the dispersion of the particles and 

polymerization of lactic acid.

2.1.3 Titrimetric analysis of MgO particle consumption by lactic acid

As was mentioned in the introduction, the most obvious reaction that might occur 

between lactic acid and magnesium oxide is that of an acid-base neutralization where the lactic 

acid consumes the particles rather than reacting with the surface.  Once an appropriate solvent 

had been determined, an acid-base titration was performed in hopes of determining how the 

reaction differs with the three diverse particles; if the particles are being consumed in an acid-

base reaction, the equivalence points should be the same, while if the surface area and/or shapes 

of the different particles have an effect on the reaction pathway, the equivalence points should 

differ.

The titrations were carried out by first dissolving 2 grams (0.02 mol) lactic acid in 100 

mL methanol.  One gram of each of the three types of magnesium oxide was added gradually to 

the vigorously stirring lactic acid/methanol solution.  pH measurements were recorded after each 

addition and a titration curve was created for each sample (Figure 3.6).  An equivalence point of 

0.45g (0.01 mol) was expected, but instead, a steady increase in the equivalence points with 

increasing surface area of MgO material was observed.  The equivalence points for each sample 

were as follows: LA w/ CM-MgO, 0.360g; LA w/ NA-MgO, 0.455g; LA w/ NA-MgO Plus, 

0.499g.
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2.2 Synthesis and characterization of LA – MgO nanocomposites in methanol

2.2.1 Synthesis of Lactic Acid – MgO nanocomposites in methanol

Materials

A 90% aqueous solution of L(+)-Lactic Acid from Acros Organics, ACS grade 

magnesium oxide from Sigma Aldich as well as Nanoactive® and Nanoactive Plus® magnesium 

oxides from Nanoscale Materials, and ACS grade methanol from Fisher Scientific, were all used 

without further purification.  

Synthesis

Lactic acid – magnesium oxide composites were synthesized in methanol with 18%, 

10%, 5%, and 1% by weight loadings of each of the three magnesium oxide materials mentioned 

above.  To begin, the appropriate mass [18% loading: 0.45g (11mmol), 10% loading: 0.22g 

(5.5mmol), 5% loading: 0.11g (2.7mmol), 1% loading: 0.03g (0.7mmol)] of MgO particles were 

suspended in 100 mL of methanol.  The mixture was allowed to reflux, with vigorous stirring for 

30 minutes at approximately 65°C, in order to achieve adequate dispersion of the particles.  

Approximately two grams (22 mmol) of lactic acid were added and allowed to react with the 

suspended particles for 2½ hours.  A white precipitate formed upon the addition of lactic acid to 

each of the three types of MgO.  The precipitate formed immediately with commercial MgO and 

more gradually with the nanoactive samples.  Upon completion of the reaction, excess methanol 

was removed using a rotoevaporator.  The product was heat treated at 60°C (Ramp time: 1 hour, 

Soak time: 2 hours) under vacuum and then left under vacuum overnight in order to remove any 

trace amounts of solvent from the final product.  After drying, the products were collected as 
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solids in the cases with higher loadings and semi-solids in the cases with the lowest loading 

(1%).

2.2.2 Thermal analysis of composites

In order to assess the amount of solvent remaining after the heat treatment under vacuum, 

thermogravimetric analysis was performed using a Shimadzu TGA-50 on the samples before and 

after drying under vacuum.  Approximately 15 mg of each sample was heated under a steady 

flow of helium from room temperature to 500°C at 10°C/min in a platinum pan.  TA-60 software 

was used to analyze the weight loss data.

Weight losses of between 50-60% were observed upon heating from room temperature to 

200°C, indicating the presence of an immense amount of solvent in the samples before being 

placed under vacuum.  Additionally, methyl esters, formed via the side reaction of lactic acid and 

methanol may also have contributed to the weight loss observed in this temperature range.  

Upon heating under vacuum at 60°C, a significant decrease in the weight lost below 

200°C was observed, as weight losses between 10-15% were observed.  This indicates that the 

majority of solvent was removed by the heat treatment under vacuum, which was also confirmed 

via visual inspection of the samples.  Any lingering solvent was not expected to interfere with 

further analysis of the samples.  The remaining percentage of weight lost is likely due to the 

presence of the methyl ester groups mentioned previously.

2.2.3 Structural characterization via infrared analysis

Approximately 2 mg of each of the final products (after heat treatment at 60°C) were 

ground together with potassium bromide until a fine powder was achieved.  The powder was 

formed into a pellet and analyzed using a Nexus 670 FTIR spectrophotometer.  In the samples 

where the consistency of the final product was more like a semi-solid, a KBr pellet was prepared 
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as above and then a thin layer of the product was applied to the pellet for analysis.  The peaks 

observed for each sample, along with their relative intensities are summarized in Table 2.1.

According to Silverstein et al14, the following peak assignments can be made from the data: 

Broad peaks at ~3000 cm-1 are likely a combination of the hydroxyl functional groups of the 

lactic acid polymer as well as the surface hydroxyl groups of the magnesium oxide particles.  

Additionally, trace amounts of water may also be present as a bi-product of the condensation 

process.  The peaks between 1730-1740 cm-1 can be attributed to remaining carboxylic acid 

functionalities from the lactic acid monomers or from newly formed ester functional groups, both 

of which may be present in the samples.  The presence of carboxylate ions result in the peaks 

between 1600-1615 cm-1 and 1430 cm-1.  Finally, further evidence of polymerization is provided 

by the ester peaks at 1200 and 1120 cm-1.

Table 1.1: Summary of infrared peaks for LA-MgO composites prepared in MeOH

Sample Peak frequency (cm-1)

LA : CM-MgO, 18% loading
3200(s, broad), 1740(m), 1613(s), 1432(m), 

1282(m), 1121(s)

LA : NA-MgO, 18% loading 3360(s, broad), 1603(s), 1429(m), 1282(m), 1121(s)

LA : NA-MgO Plus, 18% loading
3377(s, broad), 1733(m), 1617(s), 1419(m), 

1278(m), 1124(m)

LA : CM-MgO, 10% loading
3360(s, broad), 1742(m), 1683(s), 1431(m), 

1281(m), 1122(s)

LA : NA-MgO, 10% loading
3349(s, broad), 1743(w), 1683(s), 1431(m), 

1281(m), 1122(s)

LA : NA-MgO Plus, 10% loading
3342(s, broad), 1733(w), 1650(s), 1431(m), 

1278(m), 1122(s)
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Table 1.1, cont’d

LA : CM-MgO, 5% loading
3358(s, broad), 1739(m), 1626(s), 1431(m), 

1281(m), 1122(s)

LA : NA-MgO, 5% loading
3356(s, broad), 1739(m), 1626(s), 1431(m), 

1281(m), 1122(s)

LA : NA-MgO Plus, 5% loading
3142(s, broad), 1739(m), 1615(s), 1430(m), 

1280(m), 1122(s)

LA : CM-MgO, 1% loading
2984(m, broad), 1719(s), 1626(w), 1454(m), 

1373(m), 1205(s), 1123(s)

LA : NA-MgO, 1% loading
2984(m, broad), 1719(s), 1626(w), 1454(m), 

1373(m), 1205(s), 1123(s)

LA : NA-MgO Plus, 1% loading
2984(m, broad), 1719(s), 1626(w), 1454(w), 

1369(w), 1213(s), 1127(s)

2.2.4 Transmission Electron Microscopy analysis

A vital component of this research is identifying the differences that occur as a result of 

adding magnesium oxide nanoparticles with different shapes and sizes to the biopolymer, 

(poly)lactic acid.  A transmission electron microscope was employed in hopes of viewing the 

differences in the physical structures of the resulting nanocomposites.

Preparing the samples for TEM analysis involved sonicating each sample in ethanol for 

three minutes, the result of which was a complete suspension of the product in the solvent.  The 

product was allowed to settle for approximately 30 minutes and then a drop of the dilute 

suspension was placed onto a carbon-coated copper grid.  Solvent was evaporated from the grid, 

leaving a thin-layer of product on each grid.
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TEM analysis was performed using a Philips CM 100 Transmission Electron Microscope 

(Biology Department, Kansas State University).  Liquid nitrogen cooling was necessary to 

prevent decomposition of the samples under the high vacuum and electron beam environment of 

the TEM.  TEM analysis was conducted on each of the following samples: LA w/ CM-MgO, LA 

w/ NA-MgO, and LA w/ NA-MgO Plus at 18%, 10%, 5%, and 1% loadings of magnesium 

oxide.  Initial results indicated that the samples with lower loadings were more promising than 

those with higher loadings.  

2.3 Synthesis and characterization of LA – MgO nanocomposites in propanol

2.3.1 Synthesis of Lactic Acid – MgO nanocomposites in propanol

Materials

A 90% aqueous solution of the monomer, L(+)-Lactic Acid from Acros Organics, ACS

grade magnesium oxide from Sigma Aldich as well as Nanoactive® and Nanoactive Plus®

magnesium oxides from Nanoscale Materials, and ACS grade propanol from Fisher Scientific, 

were all used without further purification.  

Synthesis

From the TEM and IR analysis of the samples prepared in methanol, it became obvious that 

lower loadings of magnesium oxide and higher reaction temperatures were required in order for 

polymerization to occur, thus the composites were synthesized in propanol with 1% by weight 

loadings of each of the three types of magnesium oxide.  Additionally, it became obvious that a 

scale-up of the synthesis was necessary in order to produce enough sample for the various 

measurements required to adequately characterize the composites.  
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A 5X scale-up was achieved by using 10 grams (110 mmol) of lactic acid and ~0.15 grams 

(3.7 mmol) MgO in 150 mL of propanol.  The particles were suspended in propanol and the 

mixture was allowed to reflux, with vigorous stirring for 30 minutes at ~110°C, in order to 

achieve adequate dispersion of the particles.  The lactic acid was added and allowed to react with 

the suspended particles for 2½ hours.  A white precipitate formed upon the addition of lactic acid 

to each of the three types of MgO.  After the reaction was complete, excess propanol was 

decanted and then the remaining propanol was removed using a rotoevaporator.  The product 

was then placed under vacuum overnight and a heat treatment of 100°C (Ramp time: 2 hours, 

Soak time: 2 hours) was applied in order to remove excess solvent from the final product.  After 

drying, the products were collected in the form of semi-solids.

A prepolymer control was also synthesized using the same procedure; propanol was 

refluxed for 30 minutes (without MgO) and then 10 grams lactic acid was added and allowed to 

react for 2½ hours.  Excess solvent was decanted as before and remaining solvent was removed 

using a rotaevaporator.  The sample was dried under vacuum with a 100°C heat treatment for 2 

hours.  Finally, the sample was left under vacuum overnight to remove as much propanol as 

possible.  The final product was collected as a clear liquid.

2.3.2 Structural characterization via IR analysis

Potassium bromide was ground into a fine powder and transparent pellets were prepared 

using a pellet press.  A thin layer of the final products was applied to the pellets and analysis was 

conducted using a Nexus 670 FTIR spectrophotometer.  The peaks observed for each sample, 

along with their intensities are summarized in Table 2.2.
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Table 2.2 Summary of infrared peaks for LA-MgO composites prepared in propanol

Sample Peak frequency (cm-1)

LA pre-polymer
3300(m, broad), 1735(s), 1454(m), 

1212(m), 1127(s)

LA : CM-MgO, 

1% loading

3300(s, broad), 1735(s), 1591(s), 1462(w), 

1279(m), 1116(s)

LA : NA-MgO, 

1% loading

3300(s, broad), 1731(s), 1475(w), 1373(w), 

1209(s), 1123(s)

LA : NA-MgO Plus, 

1% loading

3300(s, broad), 1723(s), 1454(w), 1365(w), 

1205(m), 1116(s)

Many of the peaks in the samples prepared in propanol are similar to those observed in the 

samples prepared in methanol.  The broad peaks at 3300 cm-1 are due primarily to the hydroxyl 

groups of the polymer as well as hydroxyl groups on the surface of the magnesium oxide 

particles.  As before, water may also play a slight role in the broadness of this peak.  The peaks 

at ~1730, 1200, and 1120 cm-1 are due to ester functionalities, indicating polymerization has 

occurred.  Finally, the peaks at 1591 and between 1450-1462 cm-1 are due to the presence of 

carboxylate ions.

2.3.3 Structural characterization via NMR analysis
1H and 13C NMR in d6-DMSO were performed on each of the products synthesized in 

propanol using a Varian Unity 400MHz NMR.  Spectra were reported in ppm and the composite 

spectra are shown in Figures 3.14 and 3.15.
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2.2.4 Structural characterization via TEM

Each of the four samples prepared in propanol were sonicated in ethanol for three 

minutes, the result of which was a complete suspension of the product in the solvent.  The 

product was allowed to settle for approximately 30 minutes and then a drop of the dilute 

suspension was placed onto a carbon-coated copper grid.  The solvent was allowed to evaporate 

from the grid, leaving a thin-layer of each of the products on the grid.

TEM analysis was performed using a Philips CM 100 Transmission Electron Microscope 

(Biology Department, Kansas State University).  Liquid nitrogen was utilized to prevent 

decomposition of the samples as a result of the high vacuum and electron beam environment.  

TEM analysis was conducted on each of the following samples: LA w/ CM-MgO, LA w/ NA-

MgO, and LA w/ NA-MgO Plus, all with 1% loadings of magnesium oxide.  Unfortunately, an 

adequate picture of the prepolymer control was not acquired, as the sample consistency was not 

conducive to TEM imaging.  

2.3.5  UV-Vis analysis of composites

Each of the composites, along with the prepolymer control and the lactic acid monomer 

starting material were analyzed via UV-Vis spectroscopy.  A Varian UV-Vis-NIR 

spectrophotometer was employed for the analysis.  Each of the samples was dissolved in DMSO 

and a scan from 200-800 nm was performed.  Origin software was used to prepare a plot of the 

resulting data (Figure 3.19)

The plot shows a slight change in the absorption maximum in each of the samples.  The 

LA monomer shows a λmax of ~290 nm, while λmax values for the composites are as follows: the 

CM-MgO sample shows a red shifted peak with an additional shoulder (λmax = 255 nm, shoulder 
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@ 290 nm), a red shifted, broadened peak for the NA-MgO sample (λmax = 260 nm), and a 

slightly red shifted, symmetrical peak for the NA-MgO Plus sample (λmax = 280 nm).

2.3.6 Thermal analysis of composites via TGA and DSC analysis

2.3.6.1  Melting Properties

Differential scanning calorimetry (DSC) was used to characterize the melting properties, 

including melting temperature, melting enthalpy, and glass transition temperatures for each of 

the aforementioned nanocomposites.  A Perkin-Elmer Pyris 1 calorimeter was used in the 

analysis.  The DSC was calibrated with an indium standard and all experiments were performed 

under a constant flow of nitrogen.  

For the sample analysis, approximately 3-4 mg of dried sample was sealed in an 

aluminum DSC pan for analysis.  After holding for 1.0 minute at 30°C, the sample was heated to 

170°C at a rate of 10°C/min and then held at this temperature for three minutes in order to 

eliminate any previous thermal history.  The sample was then cooled to -20°C at -100°C/min and 

held at -100°C for three minutes.  Finally, the sample was heated to 170°C at 10°C/min again.  

Both the first and second heat scans were recorded.  Peak temperatures were used to identify 

both melting and cold crystallization temperatures and peak areas were to calculate melting 

enthalpies for each of the samples.  The results of this study are summarized in Figure 3.20 in 

Chapter 3.

2.3.6.2 Thermal Stability

The thermal stability of each of the composites was evaluated using a Shimadzu TGA-50.  

A constant flow of nitrogen was applied while heating the samples from 50-800°C at a rate of 

10°C/min.  Commerical, Nanoactive®, and Nanoactive Mgo Plus® were also measured as 
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controls.  The results of the thermal stability study are summarized in Table 3.1 and Figure 3.21

both of which can be found in Chapter 3.
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CHAPTER 3 - Results and Discussion

(Poly)lactic acid is a very important industrial commodity in its own right, as it has found 

numerous applications in the medical field.1 However, producers of PLA hope to market the 

polymer to the plastics industry, as PLA exhibits many properties that are desirable in plastics, 

such as a clear and glossy surface and a strong resistance to both moisture and odors.  

Unfortunately, PLA is unable to compete with popular polymers like polypropylene and 

polyethylene due to its lack of durability when heated above its glass transition temperature.  Our 

research focuses on increasing the thermal stability and durability of PLA through the addition of 

metal oxide nanoparticles.  

3.1 Establishing a synthetic method

Initially, several preliminary investigations were carried out in order to characterize how 

magnesium oxide nanoparticles would react with the monomer, lactic acid.  At the outset, lactic 

acid and magnesium oxide (CM, NA, NA-Plus) were mixed in equimolar amounts, the result of 

which was a white, wax-like precipitate.  No heat evolution was observed during the reaction, 

indicating that the acid-base reaction discussed in the introduction was not the primary reaction 

between the two.  Additionally, it appeared that the amount of MgO added hindered the 

dispersion of the solid throughout the monomer, thus the amount was decreased and the product 

re-examined.



27

Decreasing the amount of MgO by half appeared to aid in mixing, as a more uniform semi-

solid was produced.  The product was much more viscous than the previous sample, but still 

showed small clumps of aggregated solid.  In order to get a better picture of the interactions 

between the two, each of the samples was studied under the TEM (Figure 1.4).

Figure 1.4 Product of mixing lactic acid and magnesium oxide (18% loading)

It appears that a small degree of polymerization may have occurred in the samples with 

CM and NA-MgO Plus, as there is evidence of strand-like materials in both samples.  However, 

agglomeration of the MgO particles appears to be a problem in all three samples, but especially 

 LA w/ CM-MgO     LA w/ NA-MgO

    LA w/ NA-MgO Plus

-------
2 microns

-------
2 microns

-------
2 microns
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in the sample with NA-MgO.  Very little polymer was observed in this sample; rather clumps of 

particles covered the majority of the grid.  It appears from this analysis that very poor mixing 

was achieved by mixing the two starting materials directly.  The poor mixing of the reactants 

results not only in agglomeration of the products, but also poor polymerization of the monomer.  

As a result, the need for a solvent was identified; dispersing the particles in solvent before 

mixing with the lactic acid would bring about better mixing and the high temperature 

environment would initiate polymerization of the monomer.

3.2 How does the amount of solvent and the reaction temperature affect the 

composite? 

Methanol was identified as an appropriate solvent as lactic acid showed high solubility 

and the MgO particles dispersed well in the environment.  However, the amount of solvent to use 

was still in question.  In order to solve this dilemma, the composites were synthesized in 50mL 

and 100mL aliquots of methanol, with and without the application of heat.  Excess solvent was 

evaporated using a rotoevaporator and then TEM images (Figures 1.5 and 1.6) were taken of 

each sample in order to identify how the amount of solvent and the application of heat affected 

the outcome of the final products.  

From the TEM images of the composites with CM-MgO, it was obvious that 50mL of 

methanol was not enough to achieve adequate dispersion of the MgO particles, as the existing 

materials appear very dark, with very few interesting features.  In contrast, the products 

synthesized in 100mL methanol have more contrast under the microscope.  In addition, it was 

obvious that temperature had an affect on the reaction, but it was still unclear if the application of 

heat was favorable, thus the remaining composites were synthesized in 100mL methanol with 
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and without the application of heat and TEM imaging was conducted in order to better 

understand the influence of temperature on the reaction (Figures 1.7 and 1.8).

Figure 1.5 Products of LA with CM-MgO in 50mL MeOH, with and 

without the application of heat

Figure 1.6 Products of LA with CM-MgO in 100mL MeOH, 

with and without the application of heat
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   In 100mL MeOH + heat



30

Figure 1.7 Product of LA w/ NA-MgO in 100mL MeOH with and 

without the application of heat

Figure 1.8 Product of LA w/ NA-MgO Plus in 100mL MeOH with and 

without the application of heat
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The TEM images indicate that higher reaction temperatures are conducive to better 

dispersion of nanoparticles throughout the polymer matrix, as well as an increased rate of 

polymerization.  In figures 1.7 and 1.8, significant agglomeration of the particles is shown in the 

products synthesized without heat, while in contrast, the products synthesized at higher 

temperatures show evidence of polymerization and a lack of particle accumulation.  Therefore, 

the standard synthetic method was established: disperse particles in refluxing methanol for 

approximately 30 minutes to attain maximum dispersion of the nanoparticles, followed by the 

addition of lactic acid.  In order to synthesize a mid-molecular weight prepolymer, optimum 

reaction time was determined to be 2½ hours.  Excess solvent will be removed via decanting and 

evaporation under vacuum.

3.3 Is lactic acid consuming the MgO particles?

It is vital to our research that either the size and/or the shape differences in the three types 

of magnesium oxide have an effect on the physical and chemical characteristics of the resulting 

PLA composite, thus we were very interested in establishing whether or not lactic acid merely 

consumed the particles upon addition or if the monomer was reacting with the unique surfaces of 

the different particles.  In order to ascertain this information, titrations were performed assuming 

that if the particles were being consumed by lactic acid, the equivalence points of each titration 

would be identical, as surface area and/or shape would not have any effect if this was the case.  

In contrast, if lactic acid reacts with the surface of the particles, the surface areas will 

significantly alter the observed equivalence points.

Titrations were performed by dissolving lactic acid in methanol and then measuring the 

pH as each of the three MgO materials was added.  Titration curves were created using Origin 

software (Figure 1.9).  A steady increase in the equivalence points was observed as the surface 
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area of the MgO particles increased indicating that surface area is a factor in the reaction 

between lactic acid and the Nanoactive® magnesium oxides.  

From the equivalence point masses and the known amount of lactic acid in the sample, it 

was possible to back-calculate the amount of lactic acid neutralized by each sample of 

magnesium oxide: CM-MgO:2.26 mol, NA-MgO:2 mol, NA-MgO Plus: 1.79 mol.  These values 

illustrate that the commercial sample neutralized the most lactic acid with the least amount of  

MgO, indicating that the primary reaction between lactic acid and CM-MgO is an acid-base 

neutralization, whereas with the nanoactive samples, more material was required to reach the 

equivalence point and less lactic acid was neutralized, confirming that while the reaction exhibits 

some acid-base characteristics, surface reactions are occurring as well.  It can be concluded that 

the larger, less reactive CM-MgO particles reacted more by acid-base neutralization and less by 

nanoparticles induced polymerization.
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Figure 1.9 Titration curves for lactic acid with CM, NA, and NA-Plus MgO
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3.4 Characterization of LA-MgO nanocomposites prepared in methanol

3.4.1 Infrared analysis of composites

Infrared analysis was performed on each of the following: LA w/ CM-MgO, LA w/ NA-

MgO, and LA w/ NA-MgO Plus, each with 18%, 10%, 5%, and 1% by weight loadings of 

magnesium oxide.  The primary peaks observed were: strong, broad peaks around 3000 cm-1, 

attributed to the presence of the hydroxyl functional groups of the lactic acid polymer as well as 

a small contribution from the water produced as a bi-product of the condensation reaction;   

sharp peaks around 1730 cm-1 were also observed, indicating the presence of acid or ester 

functionalities from the lactic acid monomer or the newly formed ester linkages of the growing 

polymer; strong signals at 1615 and 1430 cm-1 established that carboxylate ions were a 

significant product of the reaction; and finally, peaks were observed between 1200-1100 cm-1, 

confirming the presence of ester functionalities.  Table 1.1 summarizes the peaks observed for 

each sample.14

All of the peaks mentioned above are present in each of the samples, regardless of the 

MgO loading.  However, an interesting trend developed as the amount of MgO was decreased in 

the samples; the carboxylate signals at 1615 and 1430 cm-1 decreased in intensity, while the ester 

signals between 1200-1100 cm-1 increased in intensity, indicating that lower loadings of 

magnesium oxide led to improved polymerization.  Additionally, in the products with 1% 

loadings of MgO, surface area appeared to have an affect on the polymerization of lactic acid, as 

the samples with Nanoactive® MgO showed weaker carboxylate signals than the samples with 

commercial MgO (Figures 1.10, 1.11, and 1.12), indicating the primary product in the 

nanocomposites was a polymer with multiple ester linkages, rather than a carboxylate salt, which 

appears to be the primary product of the reaction with the commercial sample.
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Figure 1.10 Infrared spectra of LA w/ CM-MgO (1% loading of MgO)
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Figure 1.11 Infrared spectra of LA w/ NA-MgO (1% loading of MgO)
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Figure 1.12  Infrared spectra of LA w/ NA-MgO Plus (1% loading of MgO)
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3.4.2 TEM analysis of composites

Infrared analysis showed that there were slight differences in the chemistry of the three 

composites, but it was still unclear how these chemical differences affected the physical 

structures of the products, as their consistencies were very similar.  In hopes of identifying 

further differences in the three composites, each was examined under a transmission electron 

microscope.  Very little detail was observed in the samples with higher loadings, as most of the 

solids were clustered together much like the materials shown in figures 1.5, 1.6, and 1.7.  

However, the samples with 1% loadings of MgO turned out to be very interesting.  Figures 1.13

and 1.14 show that the small chemical differences indicated in the infrared analysis led to 

immense structural differences.

Very little polymerization occurred in the reaction between lactic acid and commercial 

MgO, as only short, thick structures were observed under the microscope, which appears to 

confirm the results of the infrared study and the titration results.  Therefore, the primary reaction 

between lactic acid and commercial MgO is an acid-base neutralization, the product of which is a 

carboxylate salt.  However, some degree of polymerization does occur as polymer material was 

observed under the microscope and ester signals were evident in the infrared analysis, indicating 

that while commercial MgO does not catalyze polymerization, it does not hinder it either.  

Instead, magnesium oxide neutralizes the available lactic acid and then the remaining acid is 

polymerized via the application of heat.  Polymerization is stunted however, as evidenced by the 

numerous, short polymer units, which indicates that polymerization was initiated and terminated 

many times. 

In contrast, the size and/or shape of Nanoactive® MgO seems to be conducive to the 

polymerization of lactic acid, as a very unique structure featuring long, interconnected polymer 
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strands that exhibit a large degree of crosslinking was observed under the microscope for the 

sample containing NA-MgO.  The unique structure along with the evidence for further 

esterification provided by the IR analysis points toward the fact that either surface area or the 

difference in shape or maybe even both, effects the polymerization of lactic acid. 

Figure 1.13 TEM images of LA with CM and NA-MgO (1% loadings)

Further evidence of the affect of surface area and/or shape is provided by the image of 

lactic acid with NA-MgO Plus (Figure 1.14).  Long, 

interconnected strands were not observed in this 

sample, instead a nearly flower-like structure was 

observed.  It is difficult to analyze exactly how lactic 

acid reacts with the surface of these materials, but it is 

obvious that surface reactions are occurring and they 

have an affect on both the chemical and physical 

characteristics of the resulting polymer.                             Figure 1.14 LA w/ NA-MgO Plus 
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In addition to providing the evidence necessary to show the differences created by the 

addition of highly reactive, large surface area magnesium oxide materials, the IR and TEM 

analysis also showed that lower loadings of magnesium oxide produced optimum results, 

therefore 1% loadings were used in all future studies.  Additionally, temperature was shown to 

have an affect on polymerization in section 3.1.1, thus in hopes of further enhancing the 

polymerization of the composites, methanol was replaced with propanol, as it is a higher boiling 

point solvent and has similar chemical properties. 

3.5 Characterization of LA-MgO composites prepared in propanol

3.5.1 Infrared analysis of composites

Infrared analysis was performed on each of the following: LA w/ CM-MgO, LA w/ NA-

MgO, and LA w/ NA-MgO Plus, each with 1% by weight loadings of magnesium oxide (Figures 

1.16, 1.17, and 1.18).  In addition, infrared analysis was also performed on a lactic acid 

prepolymer, which contained no magnesium oxide, but otherwise was synthesized under the 

same reaction conditions (Figure 1.15).  

Several similar peaks were observed in each of the samples, including: strong, broad 

peaks around 3300 cm-1, which are attributed mainly to the hydroxyl functional groups of the 

lactic acid polymer, as well as excess propanol remaining after the drying step under vacuum; 

sharp peaks around 1730 cm-1 were also observed, indicating the presence of acid or ester 

functionalities from the lactic acid monomer or newly formed ester linkages of a growing 

polymer, respectively; peaks were also observed between 1200-1100 cm-1, confirming the 

presence of ester functionalities.  An interesting addition to the spectra for the sample containing 
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commercial MgO, was that of a strong carboxylate ion signal at 1591 cm-1. Table 1.2

summarizes the peaks observed for each sample.14
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Figure 1.15 Infrared spectra of lactic acid pre-polymer (prepared in propanol)
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Figure 1.16 Infrared spectra of LA w/ CM-MgO (1% MgO loading, prepared in propanol)
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Figure 1.17 Infrared spectra of LA w/ NA-MgO (1% MgO loading, prepared in propanol)
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Figure 1.18 Infrared spectra of LA w/ NA-MgO Plus (1% MgO loading, prepared in propanol)
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These results indicate that polymerization is catalyzed by the higher temperature reaction 

conditions achieved by using propanol in place of methanol, as the samples containing 

Nanoactive® MgO showed strong ester signals and no evidence that carboxylate ion was formed 

as a product of their reaction with lactic acid, whereas in methanol, infrared analysis indicated 

that while weak, evidence for the presence of carboxylate ion was present.  Interestingly, higher 

reaction temperatures did not appear to have an affect on the reaction between lactic acid and 

commercial MgO, as a strong carboxylate peak was observed in both the methanol and propanol 

reaction conditions, which is further confirmation that the size and/or the shape of the 

Nanoactive® materials influences the pathway that is taken in the reaction between lactic acid 

and MgO.   

3.5.2 NMR analysis of composites
1H and 13C NMR were performed on each of the composites.  Additionally, the lactic acid 

pre-polymer, which contained no magnesium oxide, was also analyzed via NMR.  The 1H NMR 

spectra were particularly useful in identifying differences between the three composites, in 

addition to providing evidence that the addition of magnesium oxide, in whatever form, does

have an affect on the polymerization of lactic acid (Figure 1.19 and 1.20).

Figure 1.19 shows the combined spectra of all four samples, while figure 1.20 show 

expanded sections of the original.  The spectra appear in order from bottom to top as follows: 

lactic acid pre-polymer, lactic acid w/ CM-MgO, lactic acid w/ NA-MgO, and finally, LA w/ 

NA-MgO Plus.  Initially, only minor differences were observed between the four spectra: the 

triplet located at 3.3 ppm in the pre-polymer spectra completely disappears in the composite 

samples and the intensities of the peaks vary in each of the four spectra.  Closer inspection 

revealed that these “minor” differences, actually confirm that the surface area and/or shape of the 
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MgO additive had a definite affect on the polymerization pathway of lactic acid.  Further 

examination of the spectra was necessary in order to determine exactly how polymerization was 

affected by the addition of magnesium oxide nanoparticles, thus a thorough analysis of each of 

the spectra follows.

3.5.2.1  NMR analysis of lactic acid pre-polymer

In Figure 1.19, a very intense multiplet is present at ~0.86 ppm, but upon expansion 

(Figure 1.20), a clear doublet (0.87 ppm and 0.82 ppm) of 1:2:1 triplets emerges.  These triplets 

are likely due to –CH3 groups connected to –CH2 methyl functionalities, as is common in propyl 

groups.  The fact that there are two separate methyl peaks indicates there are two similar, but still 

unique methyl environments.  As these are triplets, it is unlikely that these methyl groups are a 

part of the polymer, thus they confirm the presence of free propanol and perhaps a propyl ester.  

The presence of propanol was expected as it was difficult to completely remove all of the 

solvent from the product.  Further evidence for the presence of free propanol was provided by 

the multiplet at 1.58 ppm (-OCH2CH2CH3) and the triplet at 3.3 ppm (-OCH2CH2CH3).  The

propyl ester on the other hand, was a question mark for awhile, but upon further study, the 

formation of a propyl ester is a likely side reaction, as alcohols and acids commonly react to 

form ester functionalities.  It is our belief that after polymerization of lactic acid is exhausted, 

propyl ester groups are formed from the reaction of the remaining acid functionalities and free 

propanol, thus termination of the polymerization reaction is achieved by the formation of propyl 

ester end groups.  Further evidence for these groups shows up at 1.6 ppm (-COOCH2CH2CH3)

and the triplet at 4.0 ppm (-COOCH2CH2CH3).

Evidence for the presence of the polymer is provided by the overlapping peaks between 

1.2 and 1.3 ppm.  Several overlapping 1:1 doublets are present in this section of the spectra, 
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indicating the presence of several similar methyl environments.  The doublets indicate that these 

methyl groups are in close proximity to a -CH group, which is expected as the methyl groups in 

lactic acid are directly connected to a -CH functionality.  The varied chemical shifts of the 

methyl groups indicate that there were several different polymer environments present in the

final product, indicating that perhaps polymerization was stunted by the propanol environment.  

If this was the case, oligomers could form in many varied sizes, which would change the 

chemical shifts of the methyl groups slightly.  From the expanded spectra (Figure 1.20), it 

appears that there are four overlapping doublets, indicating the presence of four different 

polymeric methyl groups.  A 1:2:2:1 quartet is also present at ~ 4.0 ppm (overlapping with triplet 

of propy ester), which confirms the presence of the methyne proton in the lactic acid polymer.  In 

addition to these peaks, there are also several lower intensity peaks in the spectra at ~4.1 and 5.0 

ppm which are due to the presence of unreacted lactic acid.  

3.5.2.2 NMR analysis of LA with CM-MgO

Upon initial examination of the spectra, it is immediately obvious that very little 

propanol or propyl ester was present in this sample.  The intense peaks between 0.8 and 0.9 ppm 

are barely visible and the same goes for the multiplet at 1.58 ppm.  Additionally, the multiplet 

centered at 4.0 ppm in the pre-polymer is a clear quartet in this sample, indicating that the 

methyne proton of lactic acid is still present, but very little if any propyl ester is present.  The 

infrared spectra indicated that carboxylate ion was a primary product of the reaction between 

lactic acid and commercial MgO, thus it appears that the remaining acid groups were neutralized 

by the MgO before they could react with propanol to form propyl esters.

As in the pre-polymer spectra, several doublet peaks were observed between 1.2 and 1.3 

ppm, indicating the presence of varying polymeric methyl environments, thus it appears that 
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some degree of polymerization occurred and as before, it appears that several different sizes 

were produced in the reaction.

3.5.2.3 NMR analysis of LA with NA-MgO and NA-MgO Plus

The spectra for lactic acid with the Nanoactive and Nanoactive Plus samples are slightly 

different from that of the sample with commercial MgO.  The primary difference is that the 

aforementioned propyl signals (free propanol and propyl ester), while not as intense as those of 

the pre-polymer, are visible in both spectra, confirming that a decreased number of terminating 

propyl ester functionalities were formed in the products.  The decreased number of terminating 

groups seems to indicate that polymerization was catalyzed by the addition of the Nanoactive

and Nanoactive Plus MgO particles and as a result, longer chain oligomers were formed.

As in the previous samples, several different polymeric methyl environments were 

identified, but in these cases, the observed doublets exhibited more complicated structure, which 

shows that the resulting products were very different than the products discussed previously, as 

clear doublets were observed in both of the previous cases.  Perhaps this is a sign that 

polymerization has occurred on the surface of the particles.  After all, if polymerization did occur 

on the surface of the MgO, the methyl environments would be changed as they would be in close 

proximity to other polymer chains on the surface of the nanomaterials.  It is difficult to say 

exactly how each of these samples differs, but it is obvious that the addition of magnesium oxide, 

whether in the commercial form or in the nanosized form, has a direct affect on the 

polymerization of lactic acid.
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Figure 1.19 NMR spectra of lactic acid – MgO composites
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Figure 1.20 Expanded NMR spectra (0.7 – 1.7 ppm) of LA – MgO composites
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3.5.3 TEM analysis of composites

Infrared and NMR analysis were very useful in this research as both methods provided a 

means of confirming which functional groups were present in the products and identifying any 

obvious differences in the chemical environments of the three composites.  However, more 

information regarding the nature of the reaction as well as the physical changes that occurred by 

adding MgO to the lactic acid matrix were necessary in order to gain insight into how surface 

area and shape really affect the polymerization of lactic acid.  Therefore, the composites were 

also examined under a TEM in order to get a better idea of how the chemical differences were 

manifested on a physical level. 

3.5.3.1 TEM analysis: LA with CM-MgO

As with the samples prepared in methanol, very little polymerization was observed, as 

only short remnants of polymer material are observed.  However, the polymeric material appears 

to be in higher concentration in the samples prepared in propanol than in the previous samples, 

prepared in methanol (Figure 1.21).  Therefore, it can be deduced that while the primary reaction 

between lactic acid and commercial MgO is an acid-base neutralization reaction, at higher 

reaction temperatures, polymerization is enhanced, resulting in the observation of more 

polymeric material on the TEM grid.  As before, lactic acid reacts with the available MgO in a 

neutralization reaction and then the remaining lactic acid is polymerized via the application of 

heat.  In this case, polymerization was initiated at numerous sites due to the higher reaction 

temperature, which results in the vast number of polymer units observed under the microscope.
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Figure 1.21. TEM images of LA w/ CM-MgO (1% loadings)

3.5.3.2 TEM analysis of LA w/ NA-MgO

In methanol, Nanoactive® MgO performed very well, as long-chain, interconnected 

polymer strands were observed, indicating that the presence of the nanomaterial catalyzed 

polymerization of the monomer.  At higher temperatures (in propanol), the effect of adding NA-

MgO was even greater, as 1.22 shows.  Long-chain, highly interconnected and crosslinked 

materials can be seen in the image, indicating that polymerization was further catalyzed by the 

higher reaction temperature.  Additionally, by comparing Figure 1.21 with Figure 1.22, it is easy 

to see that the products physically, are very unique and this uniqueness must be due to the 

differences in surface area and/or shape of the magnesium oxide additive.  If our hypothesis is 

correct, initiation of polymerization occurs at the surface of the particles, which would produce 
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several strands on the surface of a particle, which could then interconnect and crosslink, much 

like that which is observed in the TEM image.

Figure 1.22 TEM images of LA w/ NA-MgO (1% loadings)

3.5.3.3 TEM analysis of LA w/ NA-MgO Plus

Further evidence of the affect of surface area and/or shape is provided by the image of 

lactic acid with NA-MgO Plus (Figure 1.23).  As in the sample prepared in methanol long, 

interconnected strands were not observed, instead unique structures were formed.  In propanol, 

star-shaped materials were observed, whereas in methanol, flower-like materials were the norm.  

Both of these materials have voids in the center and as a result, it is difficult to analyze exactly 

how lactic acid reacts with the surface of these materials, as NA-MgO Plus is a fibrous material, 

as shown in Figure 1.3.  It is possible that during reflux, the nanoparticles interact with each 

other to form a circular structure, which the lactic acid then reacts with.  In this case, 

polymerization still initiates on the surface of the material and then continues until termination 
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occurs.  Again, it is obvious that surface reactions are occurring and they absolutely have an 

affect on the physical characteristics of the resulting polymer.   

Figure 1.23 TEM images of LA w/ NA-MgO Plus (1% loadings)

3.5.4 UV-Vis analysis of composites

Each of the composites, along with the prepolymer control and the lactic acid monomer 

starting material were analyzed via UV-Vis spectroscopy.  Figure 1.24 shows that addition of 

magnesium oxide shifts the absorption maximum from ~290 nm to 255 nm.  An additional 

shoulder is also evident in the composite containing CM-MgO, indicating the presence of more 

than one product.  As discussed previously, commercial MgO is likely to react with lactic acid to 

form a lactate salt, however, polymerization of lactic acid is also expected, the result of which is 

two products.  The peak at ~290 nm is likely due to unreacted lactic acid, as the absorption 

maximum of the pure monomer is near 290 nm as well.  The red-shifted portion of the spectra 
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which appears upon the addition of magnesium oxide is therefore a result of the formation of a 

lactic acid – magnesium oxide composite.   

The UV-Vis data provides further evidence that the addition of a Nanoactive form of 

MgO changes the nature of the resulting composite even more so than commercial MgO.  With 

the addition of NA-MgO, a broadened, single peak is observed, the maximum of which is 

slightly red-shifted.  This indicates that the surface area and/or the difference in shape of the 

nanocrystals has catalyzed the formation of the polymer composite.  However, the broadness of 

the peak points to the presence of several different sizes of polymer.  The TEM images of the 

material seemed to indicate this as well, with numerous highly branched and interconnected 

polymer strands visible under the microscope.

In contrast, the composite containing NA-MgO Plus produces a symmetrical peak with a 

maximum absorption at ~280 nm.  The symmetric nature of the peak and the location of the 

absorption peak value indicates not only that NA-MgO Plus catalyzes polymer formation, but 

also that the products of the reaction are uniform in size.  The TEM images of these materials 

confirm these results, as a myriad of similarly sized, star-shaped materials were observed when 

examining these composites under the microscope.

The UV-Vis data summarized above offers further confirmation that the addition of 

nanomaterials to a biomolecule like lactic acid does in fact catalyze polymerization and it 

appears from these data that the surface area and reactivity of the nanomaterials,affects catalysis 

the most.  It also confirms the TEM results indicating that the materials formed are the most 

uniform when NA-MgO Plus is added.
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Figure 1.24 Plot of UV-Vis data for lactic acid and LA-MgO composites

300 400 500 600
0.0

0.1

0.2

0.3

0.4

0.5 UV-Vis Data for Lactic Acid

A
b

so
rp

ti
o

n

Wavelength(nm)

Lactic Acid

LA w/ NA-MgO Plus

LA w/ NA-MgO

LA w/ CM-MgO



58

3.5.5 Thermal Analysis via TGA and DSC Analysis

3.5.5.1 Melting and Crystallization Properties

All of the lactic acid – magnesium oxide composites showed melting temperatures in the 

first heat-scanning (Figure 1.25).  The prepolymer composite with NA-MgO Plus had the

sharpest melting peak while the composite with CM-MgO presented two broad melting peaks.

In between the two extremes, the composite containing NA-MgO produced a single, slightly 

broadened melting peak.  The second heating scan produced very different results.  Figure 1.25

shows that a melting peak, while slightly lower than in the first heating scan, was observed for 

the NA-MgO Plus composite, while no melting temperatures could be derived for the remaining 

composites. These phenomena suggest that lamellae were formed due to rearrangement of the 

prepolymer macromolecular chains.  The weakening or disappearance of the melting peaks for 

the composites with CM-MgO and NA-MgO could be caused by pyrolysis of the prepolymer 

chains.  The sharpness of the melting peaks also indicates that the lamellae formed in the 

prepolymers with NA-MgO Plus and NA-MgO were more uniform in molecular weight than that 

of the composites with CM-MgO.

Perhaps the most interesting data however, is the actual melting temperatures, 

summarized in Table 1.3.  The highest melting point was observed in the prepolymer composite

with NA-MgO Plus, which suggests that the the star-shaped lamellae observed in the TEM are

more uniform and thermally stable than the other two composites. In addition, the composite 

containing NA-MgO Plus showed the largest melting enthalpy, while the prepolymer with CM-

MgO had the smallest melting enthalpy indicating that the percentage lamellae formed in the 

prepolymer with NA-MgO Plus was higher than that in the prepolymer with CM-MgO.
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Table 1.3 DSC analysis of lactic acid – MgO composites

Sample Tc (°C) Tm (°C) ΔHm (J/g)
150.7

First heating scan 60.6
162.3

14.08
LA w/ CM-MgO

Second heating scan 30.1 153.1 8.38

First heating scan --- 158.8 31.04
LA w/ NA-MgO

Second heating scan --- --- ---

First heating scan --- 162.6 40.24
LA w/ NA-MgO Plus

Second heating scan 34.4 158.5 31.04

In addition to the melting properties, Table 1.3 also shows cold crystallization 

temperatures for the three composites.  A small cold crystallization peak for the prepolymer with 

CM-MgO was observed in the first heating scan, which suggests that its crystallization rate was 

the lowest of the three.  A cold crystallization peak was also observed for the prepolymer with 

NA-MgO Plus in the second heating scan, suggesting that the material crystallized readily upon

heating. No cold crystallization peak was observed for the prepolymer with NA-MgO, implying 

that the composite could not crystallize as a result of serious pyrolysis of the prepolymer chains. 



60

0 20 40 60 80 100 120 140 160

 CM-MgO-prepolym
 NA-MgO-plus-prepolym
 NA-MgO-prepolym

E
n

do

Temperature / C

First heating scan

Second heating scan

Figure 1.25 DSC curves for Lactic acid – MgO composites

3.5.5.2 Thermal Stability

TGA analysis of the three composites strongly suggests that thermally stable complexes 

were in fact formed when nanoparticles of magnesium oxide were reacted with lactic acid. 

Figure 1.26 shows that complexes were formed with both NA-MgO and NA-MgO Plus and the 

complexes formed exhibited very high decomposition temperatures ranging from 400 to 520°C 

(Table 1.4).  The composite decomposition temperatures were separated from the dehydration of 

pure MgO particles via comparison.  As shown in Figure 1.26, each of the three MgO particles 

decomposed slightly between the temperatures of 255°C and 400°C, which suggests that the 

decomposition occurring around 500C is due to the new complex formed between lactic acid and 

the MgO particles.   Interestingly, it appears that a greater amount of composite was formed in 
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the reaction between NA-MgO and lactic acid, as a higher weight loss was observed within this 

temperature range, 78.5%, compared with the NA-MgO Plus and CM-MgO, with 70.5% and 

22.8% weight losses, respectively.

The decomposition of the MgO composites follows a three step pattern and while some 

of the observed weight losses at lower temperatures may be attributed to the pyrolosis of the 

hydroxyl groups on the surface of the nanocrystals, the first step at low temperature (~90°C –

290°C) is most prominently due to the decomposition of unreacted lactic acid, which both the 

NMR and IR results indicate is present.  Unfortunately, thermal analysis via TGA cannot be 

performed on pure lactic acid, as it is in liquid form, so it was not possible to compare patterns.  

However, unreacted lactic acid is the most probable to decompose in this temperature range as 

the boiling point of the liquid is ~122°C. 

The second step, between 330°C and ~400°C, may be attributed to the decomposition of 

one form of the lactic acid-MgO composite produced in the reaction. As shown in the TEM 

images of these materials, each composite took on a different shape and probably very different 

molecular weights, thus several different sizes of polymer were likely formed.  Therefore, this 

step is likely due to the decomposition of the lower molecular weight portions of the composite.

The third and final step of the decomposition of these composites occurs at very high 

temperatures and might be ascribed to the decomposition of the polymers with a higher degree of 

crosslinking, which would explain why a higher a weight loss was observed with the composite 

containing NA-MgO.  Additionally, the decomposition rate of the prepolymer with NA-MgO is 

much faster than that with NA-MgO Plus, which confirms the stability results observed in the 

DSC.
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Table 1.4 TGA analysis of lactic acid – MgO composites

Step 1 Step 2 Step 3
Sample

Tonset (°C) Tend (°C) Wloss (%) Tonset (°C) Tend (°C) Wloss (%) Tonset (°C) Tend (°C) Wloss (%)

CM-MgO 255 355 4.2

NA-MgO 262.1 367.3 13.3

NA-MgO 
Plus

285.7 390.9 22.9

LA 
Prepolymer

52.4 354.0 92.7

NO DATA

CM-MgO 
Prepolymer

92.9 275.4 34.0 362.8 387.3 33.9 403.0 493.6 22.8

NA-MgO 
Prepolymer

91.7 290.5 62.4 348.0 397.5 63.4 439.2 520.8 78.5

NA-MgO 
Plus 

Prepolymer

91.1 287.5 42.0 334.7 392.1 50.2 439.2 520.8 70.5
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CHAPTER 4 - Conclusions and Future Work

The areas of biopolymers and nanotechnology are interesting and unique in and of 

themselves, but the combination of the two is revolutionary.  Several papers have been published 

regarding the use of nanoclays in petroleum-based polymers and plastics4,7-11 but the use of metal 

oxide nanoparticles in biopolymers is very new and exciting.

Our research focused on the use of magnesium oxide as an additive to the biopolymer, 

lactic acid.  Of particular interest was the chemistry that occurred between the two.  NMR, FTIR, 

UV-Vis, and TEM were all used to characterize the chemical differences resulting from the 

addition of Commercial, Nanoactive®, or Nanoactive Plus® magnesium oxide.  

Titrations of lactic acid were performed with each of the three types of MgO in addition 

to the testing listed above.  The results of the titrations indicated that the surface area and 

reactivity of the different materials had an affect on the reaction pathway.  For example, 

commercial MgO neutralized the most lactic acid with the least amount of material indicating 

that the primary reaction between lactic acid and commercial MgO is a neutralization reaction.  

In contrast, more material was required to reach an equivalence point with the nanoactive 

samples, confirming that while a neutralization reaction still occurs, there are also competing 

surface reactions between the lactic acid and the surface –OH groups.  These surface reactions 

appear to be the points of initiation for polymerization of lactic acid on the surface of the MgO 

nanoparticles.

With this in mind, NMR and IR analysis were performed on each of the different 

composites in order to confirm these results.  At high temperatures, a strong carboxylate peak in 

the sample containing commercial MgO was obvious, but very little evidence of carboxylates 
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was observed in the composites with the nanoactive MgO samples, confirming that an acid-base 

reaction was not the primary pathway in the reaction between lactic acid and the MgO 

nanoparticles.  Additionally, NMR analysis showed very complex methyl environments in the 

nanocomposites, indicating that substantially different materials were produced with each 

material.

TEM provided perhaps the most interesting piece of the puzzle.  The images indicate that 

not only does the surface area of the additive affect the chemical properties of the resulting 

composites, but also the physical properties.  The images show that the composites with 

nanoparticles produced materials with high polymer content, as expected from the previous 

results.  However, the initiation of polymerization appears to be different with each material, as 

long, interconnected strands were observed in the composites containing NA-MgO, and circular, 

star-shaped materials were observed with NA-MgO Plus.  This indicates that in addition to 

surface area, the shape of the nanoparticles also affects the resulting physical and chemical 

properties of the composites.

Thermal stability was also an important part of this study, as one of the issues with the 

use of lactic acid is its stability when heated above its glass transition temperature.  TGA and 

DSC analysis were performed in order to examine how the addition of nanoparticles affects this 

stability.  The results indicate that thermally stable materials, with decomposition temperatures 

above 400°C were produced in this study.  Unfortunately, time constraints did not allow us to 

compare the results achieved with the nanocomposites with that of PLA, which is of course the 

end goal.  

The future of this project lies primarily in furthering the polymerization of the 

prepolymer nanocomposites made in this study to form PLA.  The chemical, physical, thermal, 
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and rheological properties of the full polymers could then be compared with that of commercial 

PLA.  Additionally, other inert metal oxide nanoparticles, such as titania, have potential as 

additives to biopolymers.  This work is still in its infancy, but has definite potential to both 

change and improve the nature and use of bioplastics.
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