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Abstract 

 The onset of skeletal muscle contractions induces rapid and robust increases in metabolic 

rate (V̇O2) and blood flow (Q̇) in order to supply the energetic demands of the muscle. In young 

healthy populations, these variables increase proportionally to maintain oxygen flux into the 

myocyte for both sexes. However, while the resultant changes in V̇O2 and Q̇ conflate to establish 

adequate driving pressures of oxygen (PO2), it appears that the underlying control processes 

express distinct sexual dimorphism. Estrogen is crucial for cardiovascular control for young 

women through its relationship with nitric oxide (NO) and results in lower blood pressure and 

risk of cardiovascular disease for women. However, in post-menopausal women and some 

disease states, such as heart failure (HF), these protections are lost due to reductions in estrogen 

and NO bioavailability which causes women to catch and surpass men in rates of hypertension 

and cardiovascular disease. The purpose of this dissertation is to explore the mechanisms 

responsible for establishing the oxygen delivery-to-utilization matching (Q̇O2/V̇O2) necessary for 

skeletal muscle contractions in health and disease.  

 In the first investigation (Chapter 1), we explored the effect of altered NO bioavailability 

on spinotrapezius muscle interstitial space PO2 (PO2is; determined by Q̇O2/V̇O2) of healthy male 

and female rats. We show that both sexes regulate PO2is to similar levels at rest and during 

skeletal muscle contractions. However, modulating NO bioavailability exposes sex differences in 

this regulation with females having greater reliance on basal NO bioavailability and males 

having greater responsiveness to exogenous NO. In the second investigation (Chapter 2), we 

sought to determine whether measures of central and peripheral function in HF rats predicted 

exercise tolerance (as critical speed (CS)). We showed for the first time, that CS can be resolved 

in HF animals and that decrements in central cardiac (echocardiography) and peripheral skeletal 

muscle function (PO2is) predicted CS. Building upon these findings, the third investigation 

(Chapter 3) aimed to determine if the sex differences in the control of PO2is seen in healthy rats 

translated to greater deficits in HF for females. Furthermore, this investigation sought to 

determine if five days of dietary nitrate supplementation (an exogenous NO source) would raise 

PO2is in HF rats, with a greater effect seen in females. We revealed that HF reduces PO2is at rest 

and during skeletal muscle contractions and this negative effect is exacerbated for females. 

However, elevating NO bioavailability with dietary nitrate increases resting PO2is and alters the 



  

dynamic response during contractions with females potentially being more responsive than 

males. 

The results herein reveal the importance of NO in the control of Q̇O2/V̇O2 in health. The 

onset of HF results in deleterious declines in exercise tolerance, which are mediated through 

reductions in central and peripheral function, due, in part, to attenuated NO bioavailability. This 

creates intensified Q̇O2/V̇O2 dysfunction in females with HF; however, this can potentially be 

countered with dietary supplementation of inorganic nitrate. Altogether, the present dissertation 

suggests that targeting NO bioavailability, particularly in female HF patients, could be a 

beneficial non-pharmaceutical therapeutic strategy.  
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muscle function (PO2is) predicted CS. Building upon these findings, the third investigation 
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determine if five days of dietary nitrate supplementation (an exogenous NO source) would raise 
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and during skeletal muscle contractions and this negative effect is exacerbated for females. 
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dynamic response during contractions with females potentially being more responsive than 

males. 

The results herein reveal the importance of NO in the control of Q̇O2/V̇O2 in health. The 

onset of HF results in deleterious declines in exercise tolerance, which are mediated through 

reductions in central and peripheral function, due, in part, to attenuated NO bioavailability. This 

creates intensified Q̇O2/V̇O2 dysfunction in females with HF; however, this can potentially be 

countered with dietary supplementation of inorganic nitrate. Altogether, the present dissertation 

suggests that targeting NO bioavailability, particularly in female HF patients, could be a 

beneficial non-pharmaceutical therapeutic strategy.  
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 Summary 

Pre-menopausal women express reduced blood pressure and risk of cardiovascular disease 

relative to age-matched men. This purportedly relates to elevated estrogen levels increasing nitric 

oxide synthase (NOS) activity and NO-mediated vasorelaxation. We tested the hypotheses that 

female rat skeletal muscle would: 1) evince a higher O2 delivery-to-utilization ratio (Q̇O2/V̇O2) 

during contractions; and 2) express greater modulation of Q̇O2/V̇O2 with changes to NO 

bioavailability, compared to males. The spinotrapezius muscle of Sprague-Dawley rats (females 

= 8, males = 8) was surgically exposed and electrically-stimulated (180 s, 1 Hz, ~6 V). The 

Oxyphor G4 was injected into the muscle and phosphorescence quenching employed to 

determine the temporal profile of interstitial PO2 (PO2is, determined by Q̇O2/V̇O2).  This was 

performed under three conditions: control (CON), 300 µM sodium nitroprusside (SNP; NO 

donor), and 1.5 mM L-arginine methyl ester (L-NAME; NOS blockade) superfusion. No sex 

differences were found for the PO2is kinetics parameters in CON or L-NAME (P > 0.05), but 

females elicited a lower baseline following SNP (males: 42 ± 3 vs females: 36 ± 2 mmHg, P < 

0.05). Females had a lower ΔPO2is during contractions following SNP (males: 22 ± 3 vs females: 

17 ± 2 mmHg, P < 0.05), but there were no sex differences for the temporal response to 

contractions (P > 0.05). The total NO effect (SNP minus L-NAME) on PO2is was not different 

between sexes. However, the spread across both conditions was shifted to a lower absolute range 

for females (reduced SNP baseline and greater reduction following L-NAME). These data 

support that females have a greater reliance on basal NO bioavailability and males have a greater 

responsiveness to exogenous NO and less responsiveness to reduced endogenous NO. 
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 Introduction 

 Women have lower incidence of hypertension and cardiovascular disease up to the onset 

of menopause, at which point they catch up to, or surpass, that of age-matched men (104).  This 

phenomena has been attributed to the protective effect of estrogen on the cardiovascular system 

(91), which is linked to lower muscle sympathetic nerve activity (93, 103, 129), increased 

expression of endothelial (75, 156) and neuronal (43) nitric oxide synthases, and thus lower 

blood pressure (23, 73, 91). The functional effects of estrogen on cardiovascular and metabolic 

regulation in young, healthy subjects are less clear. While differences in blood pressure are 

commonly found between men and women (23, 73), whether this results in contrasting patterns 

of blood flow (Q̇) distribution to skeletal muscle remains equivocal, with some investigations 

finding differences between the sexes (69, 110) and others not (51, 81, 87, 140). Rogers and 

Sheriff (125) showed that estrogen plays a critical role in the regulation of terminal aortic Q̇ (i.e., 

bulk Q̇ to the hindlimb) during low- to moderate-intensity treadmill exercise in rats, but this 

effect was not necessarily linked to a sex difference. Fadel et al., (43) found that estrogen 

replacement in healthy, ovariectomized rats attenuated the ovariectomy-induced reduction in 

femoral artery Q̇ and vascular conductance during electrically-induced contractions with the 

effect being principally mediated through nitric oxide (NO) pathways. Work from our laboratory 

has recently found no differences in respiratory muscle Q̇ between male and female rats during 

moderate- and near maximal-intensity treadmill exercise (133).  

  

 An important consideration when investigating sex differences is metabolic (i.e., V̇O2) 

control, since Q̇ is tightly related to V̇O2 across a range of exercise intensities (2). Males show 

greater maximal oxygen uptake (V̇O2max) compared to their female counterparts which is 

largely attributed to greater muscle mass, hemoglobin volume, and maximal cardiac output. 

Normal female hormonal fluctuations (i.e., menstrual cycle) do not affect submaximal or 

maximal V̇O2 (32, 68), but oral contraceptive-induced supra-physiological levels of female sex 

hormones may reduce V̇O2max (19, 78). Measurements of Q̇ and V̇O2 are often taken at set time 

points or during steady-state exercise and may overlook potential sex differences in the transition 

from rest to exercise (i.e., the dynamic response). Attempts to quantify and compare the 

dynamics of Q̇ and V̇O2 following the onset of exercise in healthy women and men are limited 
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 The measurement of the partial pressure of oxygen (PO2) within skeletal muscles is a 

powerful tool that assesses Q̇O-to-V̇O2 matching close to the site of O2 usage with excellent 

spatial and temporal fidelity, particularly during the transition from rest to skeletal muscle 

contractions in healthy (22, 24, 58) and diseased (45, 56, 65) rats. Therefore, the purpose of the 

present investigation was to determine the role of sex and NO bioavailability on skeletal muscle 

Q̇O-to-V̇O2 matching at rest and following the onset of submaximal muscle contractions. 

Specifically, we tested the hypotheses that female rats would: 1) elicit an elevated muscle O2 

delivery-to-utilization ratio (and thus higher interstitial PO2) during contractions; and 2) 

demonstrate a greater responsiveness to altered NO bioavailability. 
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 Materials and Methods 

 Sixteen young adult (~3-4 mo. old) age-matched Sprague-Dawley rats (Charles River 

Laboratories, Wilmington, MA) including 8 male (body wt: 384 ± 19 g) and 8 female (body wt: 

283 ± 9 g) rats were maintained in accredited animal facilities at Kansas State University on a 

12-h light-dark cycle with food and water provided ad libitum in isolated cages. All procedures 

were approved by the Institutional Animal Care and Use Committee of Kansas State University 

and conducted according to the National Research Council Guide for the Care and Use of 

Laboratory Animals. All experiments were conducted between 1-3 weeks of the animals’ arrival 

to the facilities. This allowed sufficient time for the animals to acclimate to their new settings 

and ensured the groups remained age-matched. 

 

Surgical Preparation 

 On the day of the experiment, rats were initially anesthetized with a 5% isoflurane-O2 

mixture and subsequently maintained on 2-3% isoflurane-O2. Following the isolation of the 

carotid artery, a catheter (PE-10 connected to PE-50, Intra-Medic polyethylene tubing, Clay 

Adams Brand, Becton, Dickinson and Company, Sparks, MD) was inserted into the carotid 

artery for measurement of mean arterial pressure (MAP) and heart rate (HR). A second catheter 

was introduced into the caudal artery for the administration of pentobarbital sodium anesthesia 

and arterial blood sampling. Upon closing the incisions for the carotid and caudal catheters, rats 

were progressively transitioned to pentobarbital sodium anesthesia. Depth of anesthesia was 

continuously monitored via the toe pinch and blink reflexes; with additional anesthesia 

administered as necessary. Rats were placed on a heating pad to maintain a core temperature of 

~38 ˚C (measured via rectal probe). Incisions were then made to expose the left spinotrapezius 

muscle with overlying skin and fascia reflected such that the integrity of the neural and vascular 

supply was maintained (4). Using 6-0 silk sutures, platinum iridium wire electrodes were secured 

to the rostral (cathode) and caudal (anode) regions of the muscle to facilitate electrically induced 

contractions. Surrounding exposed tissue was covered with Saran wrap (Dow Brands, 

Indianapolis, IN) to minimize the exposure of superfused solutions to bordering tissues and 

reduce tissue dehydration. Exposed muscle was superfused frequently with warmed (38 ˚C) 

Krebs-Henseleit bicarbonate buffered solution equilibrated with 5% CO2-95% N2. The 

spinotrapezius muscle was selected based on its mixed muscle fiber-type composition and citrate 
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synthase activity, which resembles the quadriceps muscle in humans (33, 79) and convenience 

with respect to minimally invasive exposure (4). 

 

Experimental Protocol 

 Three separate contraction bouts were performed under control (CON), sodium 

nitroprusside (SNP; NO donor, 300 μM), and Nω nitro-L-arginine methyl ester (L-NAME; 

nonselective NO synthase (NOS) inhibitor, 1.5 mM) conditions. The initial two conditions 

(either CON or SNP) were randomly determined, while the final condition was always L-

NAME. This was necessary due to the long half-life of L-NAME. The drugs were administered 

via superfusion (3 ml total volume) on the spinotrapezius over 180 s of continuous interstitial 

PO2 (PO2is) recording. The recording was extended for an additional 180 s to confirm that 

baseline PO2is had stabilized prior to the onset of muscle contractions and for 180 s of muscle 

contractions. Contractions were evoked via electrical stimulation (1 Hz, 6-7 V, 2 ms pulse 

duration) with a Grass S88 Stimulator (Quincy, MA, USA). This contraction protocol increases 

spinotrapezius muscle blood flow four- to five-fold and metabolic rate six- to seven-fold without 

altering blood pH and is consistent with moderate intensity exercise (10, 58). Between 

contraction bouts, rats were given 20-30 min of recovery with regular superfusion of Krebs-

Henseleit solution. Our laboratory has previously shown this duration of recovery elicits 

reproducible microvascular PO2 (PO2mv) (24, 56) responses. Upon completion of the protocol, 

rats were euthanized with intra-arterial potassium chloride overdose (1 ml/kg of 4M KCl). 

 

Spinotrapezius Interstitial PO2 Measurement  

 Phosphorescence quenching was used to measure PO2is in the spinotrapezius at rest and 

during contractions using a frequency domain phosphorometer (PMOD 5000; Oxygen 

Enterprises, Philadelphia, PA, USA) as previously described (60). Briefly, the Oxyphor G4 (Pd-

meso-tetra-(3,5-dicarboxyphenyl)-tetrabenzo-porphyrin) was injected locally (3-4 10 μL 

injections at 10 μM concentration) using a 29G needle with care taken to avoid damaging any 

visible vasculature. After injection, the spinotrapezius was covered with Saran wrap and given at 

least 20 min to allow the G4 to diffuse throughout the interstitial space. This Oxyphor is well-

suited for use in biological tissues due to its inability to cross membranes and stability across 

physiological pH ranges (41); it is however, temperature sensitive and therefore spinotrapezius 
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temperature was measured using a non-contact infrared thermometer. Mean spinotrapezius 

temperature was 32.4 ± 0.2 °C, with no differences between sexes or change during contractions. 

  

 Phosphorescence quenching applies the Stern-Volmer relationship (41, 126), which 

describes the quantitative O2 dependence of the phosphorescent probe G4 via the equation: 

 PO2is = [(τ0/ τ) – 1]/(kQ · τ0) 

where kQ is the quenching constant and τ and τ0 are the phosphorescence lifetimes at the ambient 

O2 concentration and in the absence of O2, respectively. For G4 in tissue at 32.5 °C, kQ is 258 

mmHg
-1

·s
-1

 and τ0 is 226 μs (41). Since muscle temperature does not appreciably change over the 

duration of the contraction protocol used herein, the phosphorescence lifetime is determined 

exclusively by the O2 partial pressure. After injection of G4, the common end of the bifurcated 

light guide was positioned 3-4 mm above the dorsal surface of the exposed spinotrapezius. The 

phosphorometer modulates sinusoidal excitation frequencies between 100 Hz and 20 kHz and 

allows phosphorescence lifetime measurements from 10 μs to ~2.5 ms. PO2is was measured 

continuously and recorded at 2 s intervals throughout the duration of the experimental protocol.  

 

Analysis of Spinotrapezius Interstitial PO2 Kinetics 

 The kinetics analyses of the PO2is responses were conducted using 30 s of resting data 

and the 180 s contraction bout using a mono-exponential plus time delay model: 

 PO2 (t) = PO2(BL) – Δ1PO2 (1- e 
–(t – TD)/τ

) 

or a mono-exponential plus time delay with a secondary component when necessary: 

 PO2 (t) = PO2(BL) – Δ1PO2 (1- e 
–(t – TD)/τ

) + Δ2PO2 (1- e 
–(t – TD2)/τ2) 

where PO2 (t) represents the PO2is at any point in time, PO2(BL) is the baseline before the onset of 

contractions, Δ1PO2 and Δ2PO2 are the primary and secondary amplitudes, TD and TD2 are the 

time delays before the drop and secondary rise in PO2, and τ and τ2 are the time constants (i.e., 

the time required to reach 63% of the amplitude) for the primary and secondary amplitudes. The 

mean response time (MRT) was calculated as the sum of the model derived TD and τ. When the 

secondary component model was necessary, the primary amplitude was constrained to not 

exceed the nadir value to maximize the accuracy of the primary response kinetics (see Figure 1 

for example). The goodness of model fit was determined using the criteria: 1) the coefficient of 

determination; 2) sum of the squared residuals; 3) visual inspection and analysis of the model fits 
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to the data and the residuals; and 4) manual calculation of the time taken to reach 63% of the 

primary response (T63) compared to the model-derived MRT. Since Δ2PO2 (i.e., undershoot of 

PO2) was often non-exponential in nature, Δ2PO2 was determined manually, when necessary, by 

calculating the difference between the steady-state PO2 at the end of contractions minus the nadir 

value of PO2 during contractions.  

 

Central Hemodynamics and Blood Samples 

 MAP and HR were measured during the experiment via the right carotid artery catheter 

connected to a pressure transducer and Digi-med Blood Pressure Analyzer (model 400; Micro-

Med, Louisville, KY). Approximately 0.4 ml of blood was sampled from the caudal artery 

catheter at the end of the experiment for the determination of arterial blood lactate concentration 

([La
-
]), pH, PCO2, %O2 saturation, and hematocrit (Nova Stat Profile M; Nova Biomedical, 

Waltham, MA). 

 

Statistical Analysis 

 All curve fitting and statistical analyses were performed using a commercially available 

software package (SigmaPlot 12.5, Systat Software, San Jose, CA, USA). Sex differences for rat 

descriptive variables, blood gases, and effects of superfusion on resting variables (i.e., ΔMAP, 

ΔHR, and ΔPO2(BL)) were compared using unpaired Student’s t-tests. PO2is kinetics parameters 

were compared among conditions using 2-way repeated measures ANOVA (sex x superfusion) 

with Tukey’s post hoc tests as necessary. Goodness of model fit (i.e., fitting-derived MRT vs 

model-independent T63) was compared using paired Student’s t-tests with both sexes represented 

in each group. Pearson’s product-moment correlations and linear regressions were used to 

determine relationships among variables. Data are presented as means ± standard deviation 

unless otherwise noted. Significance was accepted at p < 0.05. 
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 Results 

 Male rats were heavier than their age-matched female counterparts (384 ± 55 vs 283 ± 25 

g; p < 0.001) and spinotrapezius mass paralleled these differences (0.38 ± 0.04 vs 0.26 ± 0.03 g; 

p < 0.001). The spinotrapezius mass to body mass ratio was not different between sexes (p = 

0.61). No sex differences were found for arterial [La
-
] (1.7 ± 0.4 vs 1.2 ± 0.4 mM, p = 0.12), 

%O2 saturation (94 ± 3 vs 92 ± 4 %; p = 0.25), or hematocrit (34 ± 3 vs 34 ± 3 %; p = 0.86) for 

males and females, respectively. Males had lower arterial PCO2 (34 ± 6 vs 44 ± 6 mmHg; p = 

0.01) and higher pH (7.42 ± 0.04 vs 7.36 ± 0.02; p < 0.01), indicative of moderate 

hyperventilation. There were no sex differences for resting MAP (106 ± 12 vs 99 ± 14 mmHg; p 

= 0.23) or HR (371 ± 31 vs 365 ± 25 beats/min; p = 0.76) for males and females, respectively. 

  

 A representative PO2is profile is presented in Figure 1-1 to highlight the modeling fit and 

signal-to-noise of the PO2is  measurement. Both sexes showed an exponential drop in PO2is 

following the onset of contractions that led to a PO2is ‘undershoot’ before reaching a steady-state 

PO2is of 15.8 ± 2.8 and 13.1 ± 3.6 mmHg (p = 0.22) for males and females, respectively. There 

were no sex differences for PO2is before or during contractions in the control condition (Figure 

1-2, Table 1-1). The model-independent estimation of T63 did not differ from the model-derived 

MRT (16.5 ± 5.0 vs 16.5 ± 5.5 s; p = 0.92) supporting the robustness of the model fitting 

procedures. 

  

 The effects of SNP superfusion on resting PO2is are shown in Figure 1-3 (left panel). 

Following SNP superfusion, both sexes demonstrated an increase of PO2is but this was of lesser 

magnitude for the female rats (p < 0.01). There was no between-sex difference for ΔHR (p = 

0.95; Table 1-2) although females showed a greater drop in MAP (p = 0.04; Table 1-2). Females 

expressed a lower post-superfusion baseline PO2is than males (p = 0.04) and a smaller primary 

amplitude of PO2is decrease during contractions (p = 0.03; Figure 1-4, Table 1-1). The PO2is 

undershoot during contractions was reduced in both sexes compared to control and L-NAME (all 

p < 0.001; Figure 1-5) and was not different between the sexes (p = 0.47). SNP slowed PO2is 

kinetics as evidenced by the increased MRT (driven by an increased τ) compared to control and 

L-NAME for both sexes (all p < 0.05) and was not different between the sexes (p = 0.96). The 

steady-state PO2is at the end of contractions was increased following SNP compared to control 
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and L-NAME (all p < 0.02) and was not different between males and females (20.8 ± 4.7 vs 20.7 

± 4.2 mmHg; p = 0.93). The model-independent estimation of T63 was not different from the 

model-derived MRT (24.6 ± 12.6 vs 25.4 ± 14.1 s; p = 0.34). 

  

 L-NAME superfusion decreased resting PO2is to a greater extent in females when 

compared to males (p = 0.04, Figure 1-3, right panel). The ΔMAP following L-NAME 

superfusion was not different between males and females (p = 0.96), but females showed a 

greater reduction in HR (p = 0.04; Table 1-2). Similar to the control condition, no differences 

between the sexes for PO2is on-kinetics were found during contractions following L-NAME 

(Figure 1-4, Table 1-1) with a steady-state PO2is of 13.1 ± 3.1 and 12.8 ± 6.1 mmHg (p = 0.93), 

for males and females, respectively. The model-independent estimation of T63 was not different 

from the model-derived MRT (13.3 ± 2.8 vs 13.5 ± 2.3 s; p = 0.61). 
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 Discussion 

 The primary original findings of the present investigation show that skeletal muscle PO2is 

(determined by the matching of Q̇O-to-V̇O2) does not differ between females and males during 

muscle contractions under CON conditions; however, alterations in NO bioavailability (via SNP 

and L-NAME) expose differences in PO2is regulation at rest and during contractions. 

Specifically, SNP elicited a smaller effect on PO2is (i.e., smaller increase) in female rats at rest 

and during contractions compared to males; while L-NAME showed a greater impact (i.e., larger 

reduction) in females at rest compared to males. These results provide partial support for our 

hypothesis that females would exhibit a greater responsiveness to alterations in NO 

bioavailability and suggest that females might rely more on NO to maintain skeletal muscle Q̇O-

to-V̇O2 matching at rest as evidenced by the greater transient reduction in PO2is expressed by 

females following L-NAME superfusion. Females may also have a lower ‘capacity’ to augment 

PO2is in response to a NO donor due to a greater bioavailability (and thus role in basal 

regulation) of endogenous NO compared to males. Another explanation for the reduced 

responsiveness to SNP in females could relate to a ceiling effect caused by some anatomical 

difference in the vasculature or muscle. The total NO effect (SNP minus L-NAME; see Figure 3) 

was not different between the sexes, however, the relationship was shifted to a lower PO2is range 

in the females. An understanding of these effects of NO bioavailability on PO2is is important 

because this carrier-free space is considered to represent a substantial barrier to oxygen flux from 

the blood to the mitochondria (153) with PO2is and alteration thereof potentially impacting 

metabolic control.  

 

Female and Male PO2is Similarities for Control 

 Revealing the (dis)similarities between females and males for O2 delivery-to-utilization 

matching at the level of the skeletal muscle interstitial space is a potentially powerful means to 

inform and help resolve the conflicting findings of sex differences in Q̇ and V̇O2. The present 

investigation revealed that during the CON condition male and female rats both regulated PO2is 

at a similar level at rest and during contractions. This commonality of regulation between male 

(59) and female (13) rats is also apparent in the upstream PO2mv compartment, despite a differing 

temporal response (i.e., TD, τ, MRT) and qualitative shape (i.e., undershoot amplitude) 

compared to the PO2is compartment. 
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 Controversy exists with respect to potential sex differences in the individual components 

of PO2is (i.e., Q̇O2 and V̇O2), particularly with regard to the regulation of active muscle Q̇ (and 

Q̇O2) during exercise. Some studies have found that females have a greater exercising 

vasodilator response (and thus, higher Q̇) than males (69, 110), others have found no differences 

(51, 81, 87, 124, 133, 140) across a range of exercise intensities and modalities. Males may elicit 

higher absolute muscle Q̇ values during exercise, but those differences are abolished when Q̇ is 

expressed relative to workload. The second determining variable of the PO2is, V̇O2, is less 

contentious. The maximal V̇O2 in females is typically lower, in absolute terms, owing mainly to 

less lean muscle and lower achievable workloads. Examined at submaximal intensities, there 

does not appear to be any appreciable sex difference for pulmonary or limb V̇O2 (124, 139) when 

related to workload. Taken together, the aforementioned studies and this present investigation 

suggest that the cardiorespiratory system and metabolic apparatus are tuned to regulate muscle 

Q̇O and V̇O2 during normal operating conditions regardless of sex; however, the specific nature 

of that control might differ between the sexes (see Female and Male (Dis)similarities Following 

SNP and L-NAME below). The present investigation advances this understanding by directly 

measuring PO2 at the site where the cardiorespiratory system and metabolic apparatus interact, in 

close proximity to the site of O2 utilization. 

  

 Interestingly, a prominent undershoot in PO2is was observed which approximated 60% of 

the primary amplitude in both sexes (undershoot observed in 100% of rats). This undershoot has 

been attributed to, and is exacerbated by, mismatched Q̇O and V̇O2 due to aging (11, 89), disease 

(12, 46, 65), and changes in NO availability (47, 58) seen in the upstream microvascular space 

(i.e., PO2mv). This study is the first to observe the undershoot phenomenon consistently in the 

muscle interstitial space in both healthy male and female rats. These data suggest that this 

undershoot phenomena is a normal response in the interstitial space. The interstitial space may 

exhibit unique PO2 profiles because of the compartment’s proximity to both the microvascular Q̇ 

and intracellular myoglobin/mitochondria. The present investigation, and previous work from 

our laboratory (60), revealed a PO2is that is substantially higher than the myoglobin PO2 (2-5 

mmHg (121)) and expected mitochondrial PO2 (0-2 mmHg) during contractions. In this context, 

the PO2is undershoot seen during contractions may be crucial for reestablishing the gradient 
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needed for O2 flux into the intracellular compartment. That SNP attenuated and L-NAME 

augmented the undershoot (see Female and Male (Dis)similarities Following SNP and L-NAME 

below), supports that NO plays an important role for the establishment of adequate O2 flux into 

the myocyte during contractions. 

 

Female and Male PO2is (Dis)similarities Following SNP and L-NAME 

 NO signaling is important within many physiological systems in the body and has the 

ability to modulate both components of PO2 (i.e., Q̇O and V̇O2). As a powerful vasodilatory 

agent, NO can increase Q̇ via relaxation of smooth muscle which increases vascular conductance 

(134). NO also modulates oxidative respiration within the mitochondria (17) which serves to 

reduce V̇O2. Increased NO bioavailability (SNP) should then increase Q̇ and/or decrease V̇O2 

while decreased NO bioavailability (L-NAME) would induce the converse. The expected 

outcome of SNP superfusion would be an increased PO2 while L-NAME superfusion would 

decrease PO2 (as seen in PO2mv studies (47, 58)).  

  

 SNP increased the baseline PO2is in both females and males to twice that of the pre-

superfusion baselines with females achieving a post-superfusion PO2is ~15% lower than the 

males (PO2(BL), Table 1-1) . Neither the absolute values or Δ for PO2 were correlated with MAP 

or HR in either sex following SNP superfusion (data not shown, r
2
: 0.05-0.2), suggesting that the 

differential response to SNP was not driven by differences in driving pressure or HR. Instead, 

these differences appear to be the result of direct effects of SNP on the peripheral vasculature 

and/or skeletal muscle. Previous work investigating the vascular reactivity response to SNP in 

humans found no sex differences in some studies (136, 154), but, in contrast, Kneale et al., (76) 

reported that females exhibited a reduced increase in forearm Q̇ compared to males across a 

range of SNP doses. Unfortunately, those studies were not equipped to measure the metabolic 

consequences of SNP or the potential interaction it may have with the increased Q̇. The results 

herein, when taken in consideration with Kneale et al., (76) and PO2mv studies (47, 58), suggest 

that the smaller increase in PO2is seen in the females at rest was driven by a attenuated increase 

in Q̇ rather than a modulation of V̇O2 (due to the low metabolic rate of resting skeletal muscle).  
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 The female PO2is primary amplitude (Δ1PO2) with contractions was smaller than the 

males under SNP. However, the relative rate of change for PO2is (represented by Δ1PO2/τ) was 

not different between females and males following SNP; which was also not different from CON 

or L-NAME for either sex. These results support that the muscle metabolic rate (i.e., V̇O2) was 

not different between the sexes, if the rate of decrease in PO2is is primarily driven by the 

intracellular metabolic apparatus and resulting O2 flux into the cell. Although not unequivocal, 

V̇O2 kinetics have been shown to be independent of augmented Q̇ in both healthy humans (54) 

and isolated muscle (53). Furthermore, since the model and muscle contractions used herein have 

supported this view (13), we argue for like metabolic profiles herein.  

  

 SNP reduced the incidence and amplitude of the PO2is undershoot for both sexes 

compared to CON and L-NAME (Table 1-1 and Figure 1-5). The augmented Q̇ induced by SNP 

increased the nadir PO2is during contractions to values greater than the steady-state PO2is 

achieved in CON and L-NAME, likely reflecting a Q̇ in excess of the metabolic demand. Thus, 

the undershoot which may have been necessary to preserve the PO2 gradient and O2 flux in the 

CON condition was not observed following SNP. Another potential explanation for the reduction 

in the undershoot occurrence is that the excess Q̇ mitigated any delay in the Q̇O2 matching to 

V̇O2. Whatever the case, observation of these data in Figure 5 suggests there may be a ‘threshold’ 

type effect in the interplay between the nadir and undershoot amplitudes. The undershoot 

amplitudes were reduced to zero once the nadir PO2is was greater than ~15 mmHg. Further work 

is necessary to determine if this observation has physiological underpinnings or is a product of 

the experimental protocol. This novel observation supports the hypothesis that a functional 

barrier to O2 flux exists between the interstitial and intracellular spaces (see Female and Male 

Similarities for Control above).  

 

 Inhibition of NOS reveals that NO plays an important role in the control of resting 

skeletal muscle Q̇ in both animals (88, 108, 117, 127, 150) and humans (84, 119, 128, 136, 151). 

It has also been shown that pre-menopausal women, and post-menopausal women treated with 

estrogen, exhibit a greater vasoconstrictor response to NOS inhibition compared to age-matched 

males (76, 84, 136) and post-menopausal women without estrogen treatment (84). In the present 

investigation, L-NAME superfusion reduced resting PO2is to a greater extent in females versus 
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males (Figure 3, right panel), supporting the notion that the increased NOS-generated NO in 

females (43, 75, 156) leads to different regulation of Q̇O-to-V̇O2 matching across sexes. 

However, at the onset of contractions (i.e., PO2(BL)), neither sex evinced a lower PO2is compared 

to the CON condition. The lack of an effect on resting PO2is with NOS inhibition could be 

explained by the substantial microvascular to interstitial PO2 gradient (60), which may serve to 

‘buffer’ the reduction of PO2is in the face of reduced PO2mv (47). Similarly, there exists 

redundancy in the pathways that regulate Q̇ (for review see (67)), which could act to offset the 

attenuation of PO2is imposed by L-NAME. Despite the lack of an effect on the baseline PO2 or 

the other parameters of the kinetics response, L-NAME increased the undershoot as a proportion 

of the primary amplitude. The undershoot in PO2is that was observed to approximate 60% of the 

primary amplitude in CON was increased to approximately 84% by L-NAME, supporting the 

role of NO in establishing the PO2 gradient necessary for facilitating myocyte O2 flux. 

 

Experimental Considerations 

 The estrus cycle of the female rats was not controlled for in the present study leaving the 

possibility that sex differences in the primary measurements were obfuscated by varying levels 

of estrogen present. However, had this indeed been the case, we would have expected greater 

variance within the female rat group compared to the males, but this scenario was not found in 

any of the primary measurements. Additionally, the proestrus phase occupies ~10 h of the typical 

rat 4-5 day cycle (149), which reduces the chances these rats were currently in the high estrogen 

phase. Future studies aiming to maximize the potential for sex hormone driven differences in 

PO2is should target the ovulation/proestrus phase. Linear regression analyses were performed to 

explore the notion that the differences in body weight between the female and male rats could 

somehow have accounted for some of the (dis)similarities seen in the present investigation. 

However, body mass and spinotrapezius mass were not related to the primary variables. The 

most likely instance of this confounding effect is with the depth of anesthesia and resultant 

ventilatory pattern of the rats (reflected in arterial PCO2 and pH). With regard to the differences 

in pH, we cannot exclude the potential effect this could have on the vasoreactivity of the 

microvessels (90). 
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 Conclusions 

The primary novel finding of the present investigation is that female and male rats 

regulate skeletal muscle interstitial space O2 delivery-to-utilization matching (reflected as PO2is) 

at a similar level under CON conditions. The ratio of Q̇O-to-V̇O2 can be modulated by altering 

NO bioavailability, with SNP (NO donor) increasing and L-NAME (NOS blockade) decreasing 

the ratio. Interestingly, the relationship between resting PO2is and NO bioavailability was altered 

based on the sex of the animal with females exhibiting a lower PO2is range across the availability 

of NO while males evince a higher range. Shown herein for the first time in the interstitial space 

was the presence of a substantial PO2 undershoot during CON that was expressed in all rats 

(regardless of sex), which suggests that the interstitial site is important for controlling blood-

myocyte O2 flux. The occurrence and amplitude of this PO2is undershoot was shown to be 

reduced by a NO donor. 
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Table 1-1 Interstitial PO2 Kinetics Parameters of the Spinotrapezius at Rest and During 180 s of Contractions Following 

Control, SNP, and L-NAME Superfusion 

  

 

 Control SNP L-NAME 

 Male Female Male Female Male Female 

PO2(BL) (mmHg) 20.4 ± 2.5 18.2 ± 4.9     41.9 ± 9.5 *†ǂ   35.8 ± 6.6 †ǂ 15.9 ± 4.4 14.4 ± 4.6 

Δ1PO2 (mmHg) 11.6 ± 2.2 12.0 ± 4.4     21.6 ± 7.1 *†ǂ   16.6 ± 4.2 †ǂ 10.4 ± 3.5   9.5 ± 2.8 

τ (s)   9.2 ± 2.8 10.5 ± 4.0     23.5 ± 16.0 †ǂ   20.2 ± 15.5 ǂ   9.8 ± 2.5   9.9 ± 2.3 

TD (s)   6.7 ± 3.0    6.4 ± 3.4      2.0 ± 1.7 *† 5.1 ± 3.9      3.3 ± 1.1 †   3.9 ± 1.6 

MRT (s) 16.0 ± 4.2 17.0 ± 6.9     25.5 ± 15.5 †ǂ   25.3 ± 13.6 ǂ 13.1 ± 2.5 13.8 ± 2.1 

Δ2PO2 (mmHg)   7.0 ± 2.9   7.0 ± 2.1    0.6 ± 1.6†ǂ     1.5 ± 3.1 †ǂ   7.6 ± 2.2   7.9 ± 3.5 

Δ1PO2/τ (mmHg/s)   1.4 ± 0.8   1.2 ± 0.5 1.1 ± 0.5 1.1 ± 0.5   1.1 ± 0.6   1.0 ± 0.5 

PO2(BL), baseline interstitial PO2; Δ1PO2, PO2 primary amplitude; τ, time constant; TD, time delay; MRT, mean response time; Δ2PO2, 

PO2 undershoot during contractions. Values are means ± SD. *, p < 0.05 vs female within superfusion. †, p < 0.05 vs control within 

sex. ǂ, p < 0.05 vs L-NAME within sex. 
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Table 1-2 Effect of SNP and L-NAME Superfusion on Resting Central Hemodynamics 

 

 SNP L-NAME 

 Male Female Male Female 

ΔMAP (mmHg)   -1 ± 1      -6 ± 2 *  2 ± 3 1 ± 2 

ΔHR (bpm)  26 ± 5   25 ± 4  3 ± 5    -9 ± 3 * 

Values are means ± SD. *, p < 0.05 vs male within superfusion. 
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Figure 1-1 A representative interstitial PO2 profile (closed circles) during 180 s of muscle 

contractions 

 

 

The solid line overlaid on the data represents the fit determined by the modeling procedure. 

Modeling was performed such that emphasis was put on the primary response of the PO2 profile 

(see text for details). The bolded solid line below represents the residuals of the fit. Inset text 

reports kinetics parameters determined by this procedure. 
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Figure 1-2 Control condition group average spinotrapezius interstitial PO2 temporal 

response during 180 s of muscle contractions 

 

No differences were found between males (closed circles; n = 8) and females (open circles; n = 

8) at rest or during contractions. Data are means ± SE. 
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Figure 1-3 Absolute change for resting spinotrapezius interstitial PO2 following superfusion 

of sodium nitroprusside (SNP, 300 μM) and N
ω
 nitro-L-arginine methyl ester (L-NAME, 

1.5 mM) for male (closed bars) and female (open bars) rats 

 

Δ PO2 was calculated as the difference between 30 s of baseline PO2 before superfusion and 30 s 

of PO2 following the superfusion and stabilization period. Data are means ± SE. * significantly 

different from males (p < 0.05). All plots represent 8 animals per condition, except for male L-

NAME which is 7 animals. 
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Figure 1-4 Group average spinotrapezius interstitial PO2 temporal response during 180 s of muscle contractions for the SNP 

and L-NAME conditions 

 

 Left: SNP condition group average spinotrapezius interstitial PO2 temporal response during 180 s of muscle contractions. Males 

(closed circles, n = 8) had a significantly greater baseline PO2 than females (open circles, n = 8) following SNP superfusion. The Δ 

PO2 during contractions was also greater in males (see text for details). Data are means ± SE. Right: L-NAME condition group 

average spinotrapezius interstitial PO2 temporal response during 180 s of muscle contractions. No differences were found between 

males (closed circles; n = 7) and females (open circles; n = 8) at rest or during contractions, although the Δ PO2 in response to L-

NAME superfusion was greater in females (see Fig. 2). Data are means ± SE. 
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Figure 1-5 Female and male rat individual interstitial PO2 (PO2is) undershoots as a function of the PO2is nadirs achieved 

during spinotrapezius contractions 

 

Left: Female rat individual interstitial PO2 (PO2is) undershoots as a function of the PO2is nadirs achieved during spinotrapezius 

contractions. Right: Male rat individual PO2is data. In both groups, SNP superfusion (triangles; n = 8 for both) significantly increased 

the PO2is nadir and reduced the PO2is undershoot compared to the control condition (circles; n = 8 for both) and L-NAME (inverted 

triangles; n = 8 for females, n = 7 for males). Linear regression revealed significant relationships for both female (r
2
 = 0.42, p < 0.01) 

and male (r
2
 = 0.64, p < 0.01) rats. Visual inspection of the data reveals that there may be a ‘threshold’ effect in the nadir PO2is (see 

text for details).  
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 Summary 

A primary symptom of heart failure (HF) is exercise intolerance; however, the contribution of 

central and peripheral factors to this intolerance is unknown. The hyperbolic relationship 

between exercise intensity and time-to-exhaustion (speed-duration relationship) defines exercise 

tolerance but has been underutilized in HF. We tested the hypotheses that critical speed (CS), but 

not D′, would be reduced in HF; and that both central and peripheral functional measurements 

would correlate directly with CS. Multiple treadmill constant-speed runs-to-exhaustion were 

used to describe CS and D′ in control and HF rats. Central (left ventricular (LV)) function was 

determined via Doppler echocardiography (fractional shortening (FS)) and micromanometer-

tipped catheters (LV end-diastolic pressure (LVEDP)). Peripheral O2 delivery-to-utilization 

matching was determined via phosphorescence quenching (interstitial PO2, PO2is) in the soleus 

and white gastrocnemius during electrically-induced twitch contractions (1 Hz, 8 V). CS was 

lower in HF compared to control (38.3 ± 1.0 vs 44.1 ± 0.6 m/min, p < 0.001) but D′ was not 

different (HF: 70 ± 11, control: 62 ± 14 m; p = 0.67). HF reduced FS (23 ± 2 vs 48 ± 3%, p < 

0.001) and increased LVEDP (16 ± 2 vs 6 ± 1 mmHg, p < 0.001) compared to control. HF 

reduced soleus PO2is at rest and during contractions (both p < 0.01) but had no effect on white 

gastrocnemius PO2is (p > 0.05). CS was correlated with FS (r = 0.9, p < 0.001) and soleus end-

contraction PO2is (r = 0.75, p = 0.02). We show in this model of moderate HF, decrements in 

central cardiac function and peripheral skeletal muscle vascular function correlate directly with 

impaired exercise tolerance (i.e., CS). This compromised exercise tolerance is likely due to 

reduced perfusive and diffusive O2 delivery to oxidative muscles.  
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 Introduction 

 The hyperbolic relationship between the power requirement and time to exhaustion for 

high intensity exercise defines exercise tolerance. This power- or speed-duration relationship is 

robust across a multitude of species in health and disease (for review see (113)). This 

relationship is defined by two parameters, the critical power (CP or critical speed, CS) and the 

curvature constant (W′ for power or D′ for speed). CP/CS represents the highest work output (or 

more appropriately metabolic rate (8)) which can be sustained primarily with aerobic energy 

production for a considerable duration. At work rates below CP/CS, steady-state values are 

obtained for pulmonary oxygen uptake (V̇O2) as well as blood and muscle lactate, pH, and 

phosphocreatine (116, 143). When the demands of the activity exceed CP/CS, these variables 

rapidly change to reach peak or nadir values that occur in close synchrony with exhaustion and 

the cessation of activity (116, 144). W′/D′ is mechanistically less well understood but represents 

a constant amount of work that can be performed above CP or CS. The size of W′ or D′ has been 

associated with concentrations of intramuscular lactate and phosphocreatine (143), the V̇O2 slow 

component amplitude (97, 145), the cross sectional area of the primary active muscle (94), and 

the accrual of peripheral fatigue (18). The parameters and predictions of exercise tolerance 

generated from this relationship hold across the spectrum of physical capacities, from sedentary 

and diseased populations to elite athletic performance.  

 A cardinal symptom of heart failure (HF) is exercise intolerance (114); however, the use 

of the speed-duration relationship remains underutilized in this population. To date, only one 

investigation has described CP in HF patients (92). These authors found that CP was reduced in 

HF compared to age-matched healthy controls and that V̇O2 and blood lactate attained steady-

states below CP (92), in agreement with the findings in other populations (105, 106). However, 

this study was not designed to define the mechanistic determinants of the speed-duration 

relationship in HF (92). Although HF develops because of an initial insult to the heart, the 

disease is more appropriately described as a syndrome that coalesces to negative maladaptations 

across multiple physiological systems (for review see (115)). These maladaptations lead to 

reductions in perfusive oxygen delivery, reflected as reduced blood flow to active skeletal 

muscle (42, 102), occurring, in part, due to reduced cardiac output and dysfunctional vasocontrol 

in arterioles (35, 146). These perfusive O2 delivery impairments appear to have the greatest 
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impact on the more oxidative fibers in HF (12, 25, 102). Importantly, this reduction in perfusive 

O2 delivery occurs concomitantly with diffusive O2 delivery decrements (42). The most 

compelling evidence for this diffusive limitation was the direct observation of skeletal muscle 

capillaries in HF rats, which revealed a reduction in the proportion of capillaries supporting 

continuous flow compared to control rats (74, 123). The speed-duration relationship can be used 

to examine the contribution of central and peripheral mechanisms to exercise intolerance in HF, 

which would provide important insight into the treatment options and outcomes for HF patients.  

 Therefore, the purpose of the present investigation was two-fold: 1) to establish the 

speed-duration relationship in an animal model of HF which is free from confounding 

prescription therapeutics; and 2) determine the central and peripheral mechanisms of the speed-

duration relationship using a combination of non-invasive and invasive techniques not ethically 

or functionally available in human HF patients. We tested the following hypotheses: 1) CS (but 

not D′ as muscle morphology (34) and high energy phosphate (3) are typically unchanged in 

moderate HF) would be reduced in HF; 2) central and peripheral function measurements would 

express strong correlations with CS; and 3) the greatest peripheral dysfunction in HF would be 

found in highly oxidative muscle (soleus) compared to low-oxidative muscle (white 

gastrocnemius) and would be, at least in part, nitric oxide-mediated.  
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 Materials and Methods 

Ethical approval 

 Fifteen adult (4-5 mo. old) female Sprague-Dawley rats (Charles River Laboratories, 

Wilmington, MA) were maintained in accredited animal facilities at Kansas State University on a 

12-h light-dark cycle with food and water provided ad libitum in isolated cages. All procedures 

were approved by the Institutional Animal Care and Use Committee of Kansas State University 

and conducted according to the National Research Council Guide for the Care and Use of 

Laboratory Animals. Rats were initially randomly assigned to control (n = 6) or HF (n = 9) 

groups. 

Myocardial infarction protocol 

 Myocardial infarction (MI) was induced in HF rats (n = 9) by surgical ligation of the left 

main coronary artery as described previously (45, 100). Briefly, rats were initially anesthetized 

with a 5% isoflurane-O2 mixture (Butler Animal Health Supply, Elk Grove Village, IL; Linweld, 

Dallas, TX) and maintained on an ~2% isoflurane-O2 mixture and then intubated and 

mechanically ventilated with a rodent respirator (model 680, Harvard Instruments, Holliston, 

MA) for the duration of the surgical procedure. A left thoracotomy was performed to expose the 

heart through the fifth intercostal space and the left main coronary artery was ligated 1-2 mm 

distal to the edge of the left atrium with a 6-0 braided polyester suture. The thorax was then 

closed with 2-0 gut and the skin with 3-0 silk. Bupivacaine (1.5 mg/kg sc), ampicillin (50 mg/kg 

im), and buprenorphine (~0.03 mg/kg im) were administered to alleviate pain and reduce the risk 

of infection. Rats were monitored closely for ~8 h post-surgery for the development of 

arrhythmias and/or undue stress, with care administered as necessary following the removal from 

mechanical ventilation and anesthesia. At least 21 days of recovery were given to allow for 

complete remodeling of necrotic myocardial tissue and development of compensated HF (48, 

100, 102). Control rats were maintained on site while the HF group underwent the MI protocol 

and recovery to maintain age-matched groups. 

Treadmill acclimatization and determination of critical speed 

 All treadmill experiments were conducted on a custom-built motor-driven treadmill with 

the grade set to 5%. All rats completed an acclimatization phase across 6-10 days that consisted 

of daily 5 min runs. The initial runs were conducted at speeds of 20-25 m/min for the entire 5 
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min session. In the later runs, treadmill speed was increased to 30-50 m/min for the last ~1 min 

of the session to familiarize the rats with high speed running. This acclimatization protocol has 

been previously shown to not induce training adaptations (38, 101).  

 Following completion of the acclimatization phase, the speed-duration relationship was 

determined using the traditional multiple constant-speed method previously described (26, 27). 

Tests to exhaustion were performed at speeds eliciting exhaustion between 2 and 20 min. Each 

run began with an initial warm-up run at ~20 m/min for 2 min followed by ~1 min of quiet rest. 

The test was subsequently initiated with the treadmill speed being increased rapidly over a 10 s 

period to the required speed. Timing began when the investigator controlling the speed verified 

attainment of the desired speed. Rats were encouraged to run with bursts of air manually applied 

to the hindlimb whenever they drifted to the rear of the treadmill lane. Tests were terminated 

when rats were unable to maintain the required speed despite obvious exertion and 

encouragement. Termination of the test was determined by the same investigators, who were 

unaware of the exercise time, and exercise time was recorded to the nearest 0.1 s. Tests were 

determined to be successful when rats were unwilling or unable to right themselves for > 2 s 

when placed on their backs (i.e., lack of a righting reflex). The first run for all rats was 

performed at 60 m/min as this speed exceeds the critical speed of healthy rats (~45 m/min; (26, 

27)), and subsequent runs were randomly assigned to fill out the desired range of times to 

exhaustion. Control rats were given at least 24 h and HF rats at least 48 h between tests to allow 

adequate recovery. When at least four successful constant-speed tests were completed, the 

parameters of the speed-duration relationship were determined by: 1) the hyperbolic speed-time 

model (time = D′ / (speed – CS)), where the asymptote of this curve is CS and the curvature 

constant is D′; and 2) the linear 1/time model (speed = D′ x 1/time + CS), where speed is plotted 

as a function of the inverse of time (s)-to-exhaustion, the intercept of the regression line is CS 

and the slope is D′ (26, 27, 113). Both models were used to ensure accuracy and robustness of 

CS estimation and displayed good agreement in both groups (see Figure 2-1 for representative 

fits). 

Noninvasive and invasive determination of LV function and MI size 

 Transthoracic echocardiography was performed using a commercially available system 

(Logiq S8, GE Health Care, Milwaukee, WI, USA) with an 18 MHz linear transducer (L8-18i). 
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Rats were initially anesthetized with a 5% isoflurane-O2 mixture then maintained on a ~1.5% 

isoflurane-O2 mixture and placed on a heating pad (42 °C) to maintain core temperature. 

Standard two-dimensional and M-mode images from the mid-papillary level were obtained with 

frame rates > 50 frames s
-1

. Ventricular dimensions and wall thicknesses were obtained from M-

mode measurements for at least four consecutive cardiac cycles. All echocardiographic data were 

stored on the local hard drive and analyzed by an investigator using the manufacturer’s dedicated 

software. Left ventricular (LV) dimensions were measured from M-mode measurements across 

at four consecutive cardiac cycles at end-systole (LVIDs) and end-diastole (LVIDd). Similarly, 

LV posterior wall (PW) thickness was measured at end-systole (PWs) and diastole (PWd). End-

systole and end-diastole were defined as the time point of minimal and maximal dimensions 

respectively. Fractional shortening (FS) was calculated from the measures of LV chamber 

diameters: FS = [(LVIDd-LVIDs)/LVIDd] × 100. Left end-systolic (LVESv) and end-diastolic 

(LVEDv) volumes were calculated using the Teichholz formula: LV volume = (7.0 / 2.4 + LV 

dimension) × LV dimension
3
). Stroke volume was calculated as: SV = LVEDv – LVESv. 

Ejection Fraction (EF) was calculated from the measures of LV volumes: EF = [(LVEDv-

LVESv)/LVEDv] × 100. See Figure 2-2 for representative rat echocardiographic images pre- and 

post-MI. These measurements were performed on all rats prior to randomization into groups. The 

MI group had subsequent measurements 7- and 21-days post-infarction. All rats had a final 

echocardiographic assessment ~2 days after the determination of the speed-duration relationship 

(total time ~49-56 days post-infarction). 

 On the day of the terminal experiment (see interstitial PO2 methods below), rats were 

anesthetized with the same isofurane-O2 mixture and protocol described above. Following 

cannulation of the right carotid artery a micromanometer (2-french catheter-tip pressure 

manometer, Millar Instruments, Houston, TX) was advanced retrogradely into the LV to 

determine LV end diastolic pressure (LVEDP). These data were collected with a 

PowerLab/LabChart data acquisition system (AD Instruments); all data were displayed in real 

time and recorded for offline analysis. LVEDP was determined as the mean of 5 consecutive 

cardiac cycles. The LV MI surface area was measured post-mortem using planimetry and 

expressed as %LV endocardial surface area.  
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Surgical preparation for interstitial PO2 measurement 

 Following LV function measurements, a catheter (PE-10 connected to PE-50, Intra-

Medic polyethylene tubing, Clay Adams Brand, Becton, Dickinson and Company, Sparks, MD) 

was inserted into the carotid artery for measurement of mean arterial pressure (MAP) and heart 

rate (HR). A second catheter was introduced into the caudal artery for the administration of 

pentobarbital sodium anesthesia. Then the incisions for the carotid and caudal catheters were 

closed. Subsequently, while still under isoflurane anesthesia, an incision was made above the 

lateral malleolus of the left hindlimb and the skin and fascia were reflected to expose the biceps 

femoris. The distal portion of the biceps femoris was reflected (3-0 silk suture) to expose the 

soleus and white gastrocnemius muscles. Platinum iridium electrodes were attached (6-0 suture) 

to the proximal (cathode) and distal (anode) regions of the muscles in order to elicit electrically-

induced muscle contractions. Rats were then progressively transitioned to pentobarbital sodium 

anesthesia ([50 mg/ml]) with depth of anesthesia continuously monitored via toe pinch and 

corneal sensitivity reflexes; with additional anesthesia administered as necessary (as 0.03-0.05 

ml of [50 mg/ml] diluted in 0.3 ml of heparinized saline).  

 Rats were placed on a heating pad to maintain a core temperature of ~38 °C (measured 

via rectal probe, AD Instruments). Surrounding exposed tissues were covered with Saran Wrap 

(Dow Brands, Indianapolis, IN) to reduce tissue dehydration and minimize exposure of bordering 

tissues to superfused solutions. Exposed muscle was superfused frequently with warmed (38.5 

°C) Krebs-Henseleit bicarbonate buffered solution equilibrated with 5% CO2-95% N2.  

Experimental protocol 

 Two separate soleus contraction bouts were performed under control and N
ω
 nitro-L-

arginine methyl ester (L-NAME; nonselective NO synthase (NOS) inhibitor, 1.5 mM) 

conditions. The L-NAME bout was always performed second due to the long half-life of L-

NAME. Muscle interstitial PO2 (PO2is) was recorded for ~40 s at rest, during 180 s of 

electrically-induced muscle contractions (1 Hz, 7-8 V, 2 ms pulse duration) with a Grass S88 

Stimulator (Quincy, MA), and for 180 s of passive recovery. L-NAME was administered via 

superfusion (3 ml total volume) on the soleus over 180 s of continuous PO2is recording. The 

recording was extended an additional 180 s to confirm that baseline PO2is had stabilized and the 

same contraction and recovery protocol was repeated. Between contraction bouts, rats were 



32 

given 20-30 min of recovery with regular superfusion of Krebs-Henseleit solution. Our 

laboratory has previously shown this duration of recovery elicits reproducible PO2is responses 

(29). The same contraction protocols were then performed on the white gastrocnemius, however, 

L-NAME had no effect on the white gastrocnemius and those data were excluded from 

subsequent data analysis. MAP and HR were measured during the experiment via the right 

carotid artery catheter connected to a pressure transducer (AD Instruments), displayed in real 

time, and stored for offline analysis. Upon completion of the protocol, rats were euthanized with 

intra-arterial potassium chloride overdose (1 ml/kg of 4M KCl). 

Interstitial PO2 measurement 

 Phosphorescence quenching was used to measure PO2is at rest and during contractions 

using a frequency domain phosphorometer (PMOD 5000; Oxygen Enterprises, Philadelphia, PA) 

as previously described (29, 60). Briefly, the Oxyphor G4 (Pd-meso-tetra-(3,5-dicarboxyphenyl)-

tetrabenzo-porphyrin) was injected locally (2-3 10 μL injections at 10 μM concentration) using a 

29G needle with care taken to avoid damaging any visible vasculature. After injection, the 

muscle was covered with Saran Wrap and given at least 20 min to allow the G4 to diffuse 

throughout the interstitial space. Since this oxyphor does not cross membranes and is stable 

across physiological pH ranges (41), it is well-suited for use in biological tissues. The oxyphor is 

temperature sensitive and muscle temperature was measured using a non-contact infrared 

thermometer. The mean exposed-muscle temperature was 30.1 ± 0.2 °C, with no differences 

between groups, muscles, or following contractions.  

 Phosphorescence quenching applies the Stern-Volmer relationship (41, 126), which 

describes the quantitative O2 dependence of the phosphorescent probe G4 via the equation: PO2is 

= [(τ0/ τ) – 1]/(kQ · τ0), where kQ is the quenching constant and τ and τ0 are the phosphorescence 

lifetimes at the ambient O2 concentration and in the absence of O2, respectively. For G4 in tissue 

at ~30 °C, kQ is ~258 mmHg
-1

·s
-1

 and τ0 is ~226 μs (41). Since muscle temperature does not 

appreciably change over the duration of the contraction protocol used herein, the 

phosphorescence lifetime is determined exclusively by the O2 partial pressure. After injection of 

G4, the common end of the bifurcated light guide was positioned 3-4 mm above the surface of 

the exposed muscle. The phosphorometer modulates sinusoidal excitation frequencies between 

100 Hz and 20 kHz and allows phosphorescence lifetime measurements from 10 μs to ~2.5 ms. 
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PO2is was measured continuously and recorded at 2 s intervals throughout the duration of the 

experimental protocol. All PO2is measurements were performed in a dark room with minimal 

extraneous light exposure.  

Analysis of interstitial PO2 kinetics 

 The kinetics analyses of the PO2is responses were conducted using 20 s of resting data 

and the 180 s contraction bout using a mono-exponential plus time delay model: 

 PO2 (t) = PO2(BL) – Δ1PO2 (1- e 
–(t – TD)/τ

) 

or a mono-exponential plus time delay with a secondary component when necessary: 

 PO2 (t) = PO2(BL) – Δ1PO2 (1- e 
–(t – TD)/τ

) + Δ2PO2 (1- e 
–(t – TD2)/τ2) 

where PO2 (t) represents the PO2is at any point in time, PO2(BL) is the baseline before the onset of 

contractions and any appreciable change in PO2is, Δ1PO2 and Δ2PO2 are the primary and 

secondary amplitudes, TD and TD2 are the time delays before the fall and secondary rise in PO2, 

and τ and τ2 are the time constants (i.e., the time required to reach 63% of the amplitude) for the 

primary and secondary amplitudes. The mean response time (MRT) was calculated as the sum of 

the model derived TD and τ. When the secondary component model was necessary, the primary 

amplitude was constrained to not exceed the nadir value to maximize the accuracy of the primary 

response kinetics (29). The goodness of model fit was determined using the criteria: 1) the 

coefficient of determination; 2) sum of the squared residuals; and 3) visual inspection and 

analysis of the model fits to the data and the residuals. Since Δ2PO2 (i.e., undershoot of PO2) was 

often non-exponential in nature, Δ2PO2 was determined manually, when necessary, by 

calculating the difference between the PO2is at the end of contractions minus the nadir value of 

PO2is during contractions.  

 

Skeletal muscle citrate synthase activity 

 The soleus muscle, white portions of the gastrocnemius muscle, and plantaris muscle 

were used for determination of citrate synthase activity. This mitochondrial enzyme, is a marker 

of muscle oxidative capacity and was analyzed using adapted methods previously described in 

(40). In brief, 15 µl and 30 µl samples were diluted using 210 µl and 195 µl of tris buffer, 

respectively. In addition, 15 µl of acetyl coenzyme A (Cayman Chemical, Ann Arbor, MI), and 

30 µl of DTNB (Thermo Fisher Scientific, Waltham, MA) were added to each sample. Samples 

were incubated in a spectrophotometer (accuSkan GO; Fisher Scientific, Hampton, NH) for 5 
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min at 30°C before readings. Following incubation, readings were collected with the 

spectrophotometer at 412 nm once per minute for 5 min followed by the addition of 30 µl of 

oxalacetic acid (Sigma-Aldrich, St. Louis, MO) to all samples and immediately analyzed again. 

Citrate synthase enzyme activity is reported as µmol/min/g wet weight of sample tissue.  

Statistical analysis 

 All curve fitting and statistical analyses were performed using a commercially available 

software package (SigmaPlot 12.5, Systat Software, San Jose, CA). Differences between the 

hyperbolic and linear 1/time model estimates of CS and D′ were compared across all rats using 

paired t-tests. Group differences for rat descriptive variables, speed-duration parameters, and 

resting hemodynamics (i.e., MAP and HR) during the PO2is experiment were compared using 

unpaired Student’s t-tests. Normality was assured using the Shapiro-Wilk test. If either the 

normality or equal variance assumptions were violated, a Mann-Whitney Rank Sum test was 

used to compare the above variables. Serial LV function measurements for the HF group were 

compared across time using 1-way repeated measures ANOVA. Comparisons of LV function 

across groups (pre-infarction and post-CS) were compared using 2-way repeated measures 

ANOVA using one factor repetition. Control condition PO2is kinetics parameters and skeletal 

muscle citrate synthase activity were compared among groups using 2-way repeated measures 

ANOVA (group x muscle). The effect of L-NAME superfusion on soleus PO2is kinetics 

parameters was compared within the soleus groups using 2-way repeated measures ANOVA 

(group x condition). When significant differences were detected, this was verified using Tukey’s 

honest significant difference post hoc tests. Pearson’s product-moment correlations and linear 

regressions were used to determine relationships among variables. Data are presented as means ± 

standard error unless otherwise noted. Significance was accepted at p < 0.05. 
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 Results 

 Nine of the original 15 rats successfully completed the protocol. Two control and two HF 

rats could not be motivated to run as required for the experimental protocol. An additional two 

HF rats died during the MI surgery. Since all rats did not complete the protocol, the statistical 

power achieved (0.78 – 1.0) has been reported for the primary variables. The body mass of the 

groups did not differ at the end of their final CS test (control: 338 ± 14, HF: 360 ± 15 g; p = 

0.33). 

Determination of CS and D′ 

 The times to exhaustion, hyperbolic and linear 1/time model fits, and estimated CS are 

shown for two representative rats in Figure 2-1. The combined-group CS (hyperbolic: 40.7 ± 1.1, 

1/time: 40.8 ± 1.1 m/min; p = 0.83), and D′ (hyperbolic: 68.0 ± 9.2, 1/time: 67.7 ± 8.9 m; p = 

0.92) did not differ between the models used to estimate the parameter, so the best fit (based on 

r
2
) was employed for all subsequent comparisons. CS was significantly lower in HF compared to 

control rats (38.3 ± 1.0 vs 44.1 ± 0.6 m/min; p < 0.001, power = 0.99) but D′ was not different 

(HF: 70 ± 11, control: 62 ± 14 m; p = 0.67). The individual rat speed-duration parameters from 

both model estimations are presented in Table 2-1. 

LV function 

 The average MI size in the HF group was 32 ± 3% and LVEDP was nearly 3-fold higher 

than controls (HF: 16 ± 2, control: 6 ± 1 mmHg; p < 0.01). The individual rat LV characteristics 

and functional measurements following speed-duration testing are presented in Table 2-2. The 

LV of the HF group was significantly dilated (LVIDd, LVIDs, LVEDv, and LVESv; all p < 

0.001, power > 0.8), the septal wall was hypertrophied (PWd and PWs; both p < 0.02, power = 

0.78), and the LV contractile function was substantially reduced (FS and EF; both p < 0.001; 

power = 1.0) compared to control. Figure 2-3 displays the group mean FS across time during 

recovery and following CS determination (all other echo measurements expressed parallel 

directional changes and time courses). FS was not different between groups pre-MI (p = 0.52) 

and there was no effect of time in the control group (p = 0.72). HF FS was severely reduced by 

Post-7 (p < 0.001) with no further changes throughout the recovery period or following CS 

determination.  
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 MI size was found to be highly correlated with the noninvasive (FS; r = -0.96, p < 0.001) 

and invasive (LVEDP; r = 0.89, p = 0.001) LV functional measurements (Figure 2-4: Top and 

Middle, respectively). FS and LVEDP were also highly correlated with each other (r = -0.89, p = 

0.002, Figure 2-4: Bottom). FS was highly correlated with CS (r = 0.9, p < 0.001, Figure 2-5: 

Top) as was LVEDP (r = -0.74, p = 0.02, data not shown).  

Soleus and white gastrocnemius PO2is 

 Resting MAP was not different between groups (control: 93 ± 6, HF: 93 ± 3 mmHg; p = 

0.99) but resting HR was greater for HF compared to control (359 ± 6 vs 320 ± 9 beats/min; p < 

0.01). MAP and HR did not change appreciably during the contraction protocol. Kinetics 

parameter group means for the white gastrocnemius, soleus, and L-NAME treated soleus are 

presented in Table 2-3. The group PO2is profiles are presented in Figure 2-6. There were no 

between-group differences for the white gastrocnemius; however, the white gastrocnemius 

operated at a much lower PO2is compared to the soleus for both groups. In the soleus, HF rats 

expressed lower resting PO2is and reduced amplitude (both, p < 0.01) compared to control rats. 

Despite the lower amplitude, the soleus nadir and end-exercise PO2is was also reduced in the HF 

group (both, p < 0.01). L-NAME superfusion reduced soleus resting PO2is in the control rats (p = 

0.02) but had no effect on the HF group (p = 0.87, Figure 2-6: Right). Similarly, the nadir PO2is 

was reduced following L-NAME for the control rats (p < 0.01) but had no effect on the HF group 

(p = 0.73). Baseline soleus PO2is was negatively correlated with D′ (r = -0.84, p < 0.01, data not 

shown) and end-contraction soleus PO2is was found to be highly correlated with CS (r = 0.75, p 

= 0.02, Figure 2-5: Bottom).  

Skeletal muscle citrate synthase 

 No differences in citrate synthase activity were found between groups for the soleus 

(ratio of HF / control: 0.96; p = 0.74), plantaris (1.01; p = 0.98), or white gastrocnemius (1.11; p 

= 0.36).  
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 Discussion 

 Resolution of the mechanistic bases for the exercise intolerance induced by HF is an 

important physiological goal that has major clinical implications. The principal original findings 

of the present investigation include determination of the effects of HF on the parameters of 

speed-duration relationship in an animal model of HF free from prescription therapeutics that 

would complicate interpretation in human HF patients. Specifically, HF reduced CS, which 

represents the highest level of activity sustainable through primarily oxidative pathways, while 

leaving D′, the energy stores parameter, unchanged. Indices of central cardiac and skeletal 

muscle function correlated strongly with CS likely due to their role in reducing perfusive and 

diffusive O2 delivery to oxidative muscle fibers in this population. Importantly, the reduced CS 

occurred in the absence of impaired locomotory muscle oxidative enzyme capacity supporting an 

upstream (i.e., decreased PO2is) basis for compromised exercise tolerance; at least in this model 

of moderate HF (approximating Class II-III HF). These findings provide support for the viability 

of this rat model of HF, with reduced ejection fraction, to evaluate targeted therapeutics intended 

to improve exercise tolerance and quality of life and potentially reduce morbidity and mortality 

in the human HF population.  

The speed-duration relationship in heart failure 

 The present investigation revealed for the first time that the speed-duration relationship 

can be determined in HF rats and that CS is lowered while D′ is preserved compared to control. 

Although high intensity exercise is advocated for HF patients (98, 152), determination of the 

speed-duration relationship in human HF patients might meet with resistance from ethics review 

boards. Therefore, the rodent model of HF could prove to be a powerful tool to evaluate the 

effects of targeted interventions on physical activity tolerance in this population. Whereas 

maximal oxygen uptake (V̇O2max) is an excellent predictor of all-cause mortality (15) and heart 

transplant need (86), CS is a better indicator of physical activity tolerance and task-specific 

performance than V̇O2max (1, 105, 106, 118). The single study to determine the speed-duration 

relationship in human HF patients did not report the effect of HF on D′ (92); however, it has 

been postulated that HF would reduce D′ (113) in a manner similar to chronic obstructive 

pulmonary disease (COPD) (105). When refitting the mean data from Mezzani and colleagues 

(92), the D′ parameter appears to be ~30% lower in the HF group compared to the controls. Since 
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the O2 delivery impairments in HF primarily impact more oxidative fibers (12, 25, 102) and 

would intuitively reduce CS, we hypothesized that this population’s increased reliance on more 

glycolytic fibers (52, 137) and preservation of muscle morphology in moderate HF (34) would 

result in a  preserved D′. Further research is warranted to clarify this discrepancy, but it is 

important to consider that the HF rats in the present investigation were motivated to run until 

absolute exhaustion (reflected by the lack of a righting reflex) while the previously mentioned 

COPD (105) and HF (92) patients’ exercise tolerances were likely symptom limited (e.g., 

exaggerated perception of effort induced by dyspnea). Had these patient populations indeed been 

symptom limited rather than fully expending D′, the resulting effect would be a reduced 

tolerance to exercise above CS (i.e., apparent reduction of D′).  

Cardiac function in heart failure 

 Echocardiographic assessment of LV function following MI-induced HF is a valuable 

clinical and research tool in both humans (107, 111) and rats (6, 82, 132). We show herein that 

noninvasive and invasive assessments of LV function in HF are highly correlated with each other 

and, for the first time, strongly related to the performance parameter CS, which delineates the 

threshold of sustainable physical activity. Previous work suggests that there is no correlation 

between resting LV functional measurements and maximal exercise capacity (i.e., peak V̇O2) in 

HF during an incremental/ramp test (49, 57). One interpretation of this finding is that LV 

function is either a poor indicator of exercising LV function or is less important to exercise 

capacity than peripheral function during peak or maximal efforts. Resting LV function does, 

however, relate to submaximal sustained exercise performance (i.e., CS), which is more 

indicative of daily physical activity tolerance and ability in HF. Additional validation of the 

present findings in human HF patients is required, but the present data do provide a compelling 

argument as to the value of noninvasive LV functional measurements (e.g., echocardiography) to 

evaluate the effect of targeted interventions on HF patient exercise tolerance without the need for 

multiple, strenuous tests. Additionally, the present investigation confirms the earlier work of 

Litwin and colleagues (82), in that serial echocardiographic assessment of LV function in HF 

rats reveals a very rapid onset of LV dysfunction (7 days post MI) that is stable across multiple 

subsequent weeks (up to 8 weeks) of recovery and exercise testing.  
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Peripheral function in heart failure 

 The present investigation, to the best of our knowledge, is the first use of the 

phosphorescence quenching technique to measure PO2 in the interstitial space of HF rats. We 

show herein, that resting PO2is and the contraction-induced amplitude are reduced in HF rats 

compared to healthy controls but only in the oxidative soleus and not the glycolytic white 

gastrocnemius muscle. These differences were manifest despite a lack of change in central 

hemodynamic variables (i.e., HR and MAP) during contractions, supporting a peripheral 

vascular dysfunction locus. These findings are in agreement with the detrimental effects of HF 

on bulk blood flow (102) and the upstream microvascular PO2 compartment (12, 37) previously 

identified in our laboratory. Thus, reduced perfusive and diffusive delivery of O2 coalesces to 

lower the absolute PO2is across the rest and exercise transition. This reduction in the driving 

pressure of O2 across the sarcolemma will contribute to the increased reliance on non-oxidative 

energy production and earlier onset of exercise cessation evident in HF patients.  

 Interestingly, the soleus PO2is kinetics response (i.e., MRT) was slowed for HF in the 

present investigation, in contrast to the speeding of the PO2 profile in the microvascular space 

(12). This dissimilar temporal response could be due to differences in the regulation of PO2 in 

these two compartments (29, 60) and/or the closer proximity to the myocyte/mitochondria of the 

interstitial space. Skeletal muscle mitochondrial oxidative capacity, indicated by citrate synthase 

activity, is not usually compromised at this level of HF (i.e., moderate (3, 12, 34, 37, 85) and the 

present data); and there is evidence of a skeletal muscle metabolic reserve in HF revealed using 

small muscle mass exercise (42). It must be noted, however, that this is not always the case as 

locomotory muscle citrate synthase activity levels are occasionally reduced in HF (34, 50, 131) 

but this effect is modest compared with severe HF (3, 34). The matching of O2 delivery (i.e., 

blood flow) and utilization (i.e., V̇O2) determines PO2, and changes to one or the other, or both, 

must have occurred to slow the temporal response for HF compared to control. Since there is no 

evidence of improved blood flow in HF, we hypothesize that altered intracellular metabolic 

control drove the temporal PO2is changes observed herein. Two potential causes of this altered 

metabolic control are: 1) heterogeneous distribution of blood flow within the contracting muscle 

leading to inactive mitochondria potentially being over perfused while more active mitochondria 

were under perfused (see (123) for capillary functional deficits in HF); and/or 2) a relatively 

greater metabolic inertia in HF mitochondria compared to control.  
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 Heart failure reduces smooth muscle NO bioavailability and blockade of NO synthase 

with L-NAME discriminates the physiological contribution of endogenous NO (46, 47). L-

NAME superfusion had the greatest effect on resting and contracting soleus PO2is in the control 

group and no appreciable effects on the absolute values of PO2is for HF soleus or white 

gastrocnemius from either group. This coheres with previous work showing NOS inhibition via 

L-NAME had the greatest impact on more oxidative muscle fiber blood flow (62), and we now 

show for the first time that this projects into the interstitial space lowering PO2is of the more 

oxidative soleus muscle in healthy rats. Our laboratory has previously shown that L-NAME has 

an attenuated effect on blood flow (63) and microvascular PO2 (46) for HF rats. The results 

herein and our laboratory’s previous work (46, 63) continue to demonstrate that a reduced nitric 

oxide bioavailability plays a fundamental role in HF O2 delivery-to-utilization dysfunction. 

Experimental considerations 

 Several limitations must be acknowledged when interpreting the data from the present 

investigation. Firstly, our sample size is small and could increase the chance of Type I errors, 

however our primary outcomes achieved adequate statistical power (0.8 – 1.0) for an alpha level 

of 0.05. Paired with the large effect sizes seen in this model of HF, we are confident that these 

observations are robust. Secondly, it is established that isoflurane anesthesia impacts cardiac 

function as measured with echocardiography (135). We contend that because the same level of 

isoflurane (~1.5%) was used for both groups in the present investigation, these effects should not 

confound interpretations of the underlying physiology. Finally, only young female rats were used 

and these data may not completely represent the effects of HF in males or in aged rats. Sexual 

dimorphism in young healthy rats is evident in vascular control, particularly when NO 

bioavailability is modulated (29). On the other hand, females are an underserved population in 

cardiovascular research and our findings provide an important first step to better understand 

physical activity tolerance in HF and the mechanistic bases of the speed-duration relationship in 

this disease. Additionally, the control group CS in the present investigation was near that 

reported in healthy male rats (~45 m/min (26, 27)), suggesting that there are no appreciable sex 

differences for CS within the control population. 
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 Conclusions 

 We show for the first time that CS and D′ can be resolved in an animal model of HF 

whereby CS is reduced but D′ is not. Crucially, this HF model is free from prescription 

therapeutics that confounds interpretation of the mechanistic relationship between HF and CS or 

D′ in humans. We show that in this model of moderate HF (i.e. LVEDP < 20 mmHg), where 

skeletal muscle oxidative capacity is preserved, decrements in central cardiac function 

(determined via echocardiography) and peripheral skeletal muscle O2 delivery-to-utilization 

function (determined via phosphorescence quenching) correlate directly with impaired exercise 

tolerance likely due to reduced perfusive and diffusive O2 delivery to oxidative muscle fibers.  
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Table 2-1 Individual Speed-duration Relationship Parameters as Determined Using the 

Hyperbolic and 1/time Models for Control and Heart Failure Rats 

 

  Hyperbolic 1/time Best fit 

  CS 

(m/min) 

D′ 

(m) 

r
2 

CS 

(m/min) 

D′ 

(m) 

r
2 

CS 

(m/min) 

D′ 

(m) 

Con 1 41.3 107 0.989 42.9 93 0.991 42.9 93 

 5 45.2 48 0.995 44.0 57 0.994 45.2 48 

 9 45.0 29 0.994 44.6 31 0.977 45.0 29 

 11 43.1 78 0.998 43.9 71 0.995 43.1 78 

 Mean 43.7 66 0.994 43.9 63 0.989 44.1 62 

 SE 0.9 17 0.002 0.4 13 0.004 0.6 14 

          

HF 3 39.1 92 0.928 40.7 82 0.901 39.1 92 

 6 40.9 101 0.994 39.2 119 0.978 40.9 101 

 7 34.8 61 0.998 35.4 58 0.926 34.8 61 

 13 38.0 50 0.999 38.2 48 0.996 38.0 50 

 15 38.9 46 0.994 38.2 50 0.962 38.9 46 

 Mean 38.3 70 0.98 38.3 71 0.95 38.3* 70 

 SE 1.0 11 0.01 0.9 13 0.02 1.0 11 

Con, control; HF, heart failure; CS, critical speed; D′, curvature constant. *, p < 0.05 vs Con. 
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Table 2-2 Doppler Echocardiographic Assessment of Left Ventricular Function Across Time for Control and Heart Failure 

Rats 

 

 Pre Post-7 Post-21 Post-CS 

 Con HF Con HF Con HF Con HF 

LVIDd (cm) 0.69 ± 0.02 0.66 ± 0.04 -- 0.78 ± 0.03ǂ -- 0.85 ± 0.01ǂ 0.71 ± 0.04 0.85 ± 0.02*ǂ 

LVIDs (cm) 0.35 ± 0.02 0.35 ± 0.03 -- 0.59 ± 0.02ǂ -- 0.70 ± 0.05ǂ 0.37 ± 0.04 0.66 ± 0.03*ǂ 

PWd (cm) 0.16 ± 0.02 0.20 ± 0.04 -- 0.23 ± 0.03 -- 0.19 ± 0.01 0.16 ± 0.01 0.25 ± 0.02* 

PWs (cm) 0.28 ± 0.02 0.31 ± 0.03 -- 0.30 ± 0.02 -- 0.26 ± 0.04 0.27 ± 0.02 0.34 ± 0.02* 

FS (%) 48.7 ± 1.4 46.9 ± 1.7 -- 24.0 ± 1.6ǂ -- 18.0 ± 5.5ǂ 47.8 ± 2.7 22.6 ± 2.1*ǂ 

LVEDv (ml) 0.75 ± 0.06 0.68 ± 0.1 -- 1.05 ± 0.1ǂ -- 1.32 ± 0.04ǂ 0.83 ± 0.14 1.34 ± 0.1*ǂ 

LVESv (ml) 0.12 ± 0.02 0.12 ± 0.02 -- 0.49 ± 0.04ǂ -- 0.79 ± 0.17ǂ 0.14 ± 0.04 0.67 ± 0.09*ǂ 

SV (ml) 0.63 ± 0.05 0.56 ± 0.08 -- 0.56 ± 0.07 -- 0.53 ± 0.14 0.68 ± 0.1 0.67 ± 0.05 

EF (%) 84.8 ± 1.3 83.1 ± 1.6 -- 53.1 ± 2.7ǂ -- 41.0 ± 11.3ǂ 83.6 ± 2.7 50.5 ± 3.6*ǂ 

Con, control (n = 4); HF, heart failure (n = 5 for all except Post-21, n = 3); Pre, pre-infarction measurement; Post-7, 7-9 days post-infarction; Post-

21, 21-23 days post-infarction; Post-CS, post speed-duration testing (49-56 days); LVIDd, Left ventricular end-diastolic diameter; LVIDs, LV 

end-systolic diameter; PWd, end-diastolic septal wall thickness; PWs, end-systolic septal wall thickness; FS, fractional shortening; LVEDv, LV 

end-diastolic volume; LVESv, LV end-systolic volume; SV, stroke volume; EF, ejection fraction. Data are means ± SE. *, P < 0.05 vs Con within 

time; ǂ, P < 0.05 vs Pre within group. 
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Table 2-3 Interstitial PO2 Kinetics Parameters of White Gastrocnemius and Soleus at Rest and During 180 s of Contractions 

for Control and Heart Failure Rats 

 

 

 White Gastrocnemius Soleus Soleus + L-NAME 

 Con HF Con HF Con HF 

PO2(BL) (mmHg) 7.2 ± 1.5ǂ 7.0 ± 0.3ǂ     24.7 ± 2.1   16.1 ± 2.6* 21.4 ± 0.4ǂ 15.9 ± 2.7* 

Δ1PO2 (mmHg) 5.0 ± 1.1ǂ 4.2 ± 0.6     13.5 ± 1.7   9.6 ± 2.3* 12.6 ± 0.8   9.4 ± 1.9 

τ (s)   16.6 ± 1.9 16.3 ± 2.1     12.7 ± 3.0   16.7 ± 3.2   13.4 ± 3.0   22.9 ± 1.9* 

TD (s)   5.9 ± 0.5ǂ    5.5 ± 0.9ǂ      13.1 ± 1.3 18.4 ± 1.6*      9.5 ± 1.4ǂ   12.9 ± 1.7ǂ 

MRT (s) 22.6 ± 2.4 21.9 ± 2.0ǂ     25.8 ± 2.0   35.1 ± 4.1* 22.9 ± 3.9 35.7 ± 3.2* 

PO2(Nadir) (mmHg)   2.2 ± 0.4ǂ   2.7 ± 0.5ǂ    11.2 ± 1.9     6.5 ± 0.8*   9.0 ± 1.1ǂ   8.8 ± 1.1 

Δ2PO2 (mmHg) 1.1 ± 0.3ǂ 1.2 ± 0.5 3.2 ± 0.3 2.3 ± 0.2 3.3 ± 1.1 2.0 ± 0.4 

PO2(End) (mmHg)   3.3 ± 0.4ǂ   3.9 ± 0.5ǂ 14.4 ± 2.1 8.7 ± 0.9*   12.3 ± 1.1   8.8 ± 1.1* 

Con, control (n = 4); HF, heart failure (n = 5); PO2(BL), baseline interstitial PO2; Δ1PO2, PO2 primary amplitude; τ, time constant; TD, time delay; 

MRT, mean response time; PO2(Nadir), lowest PO2 during contractions; Δ2PO2, PO2 undershoot during contractions; PO2(End), PO2 at the end of 

contractions. Values are means ± SE. *, p < 0.05 vs Con within muscle. ǂ, p < 0.05 vs Soleus within group. 
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Figure 2-1 Representative speed-duration relationship modeling 

 

 

Both hyperbolic (Left) and 1/time (Right) models for a control (filled circles, Con 5) and heart failure (open circles, HF 7) rat are 

presented. There was good agreement of parameter estimation between models. Critical speed was drastically reduced (indicated by 

the leftward and downward shift for the hyperbolic and 1/time model, respectively) but D′ was not different (best appreciated from the 

parallel slopes in the right panel). 
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Figure 2-2 Echocardiographic assessment of left ventricular (LV) function 

 

A representative rat pre-infarction (Left) and 7 days post-infarction (Right) is presented. Top portion: 2D image of LV used to guide 

M-mode imaging (bottom portion) at the level of the papillary muscle. Arrows demarcate LVIDd and LVIDs dimensions. M-mode 

imaging represents continuous measurement across 1 s for both images. 
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Figure 2-3 Group mean echocardiographic fractional shortening assessed across time 

 

Both control (filled circles; n = 4) and heart failure (open circles; n = 5 for all except Post-21, n = 

3) rats are represented. Inset images are transverse sections of healthy and infarcted left 

ventricles. Data are means ± SE. *, p < 0.05 vs heart failure within time; ǂ, p < 0.05 vs Pre within 

group. 
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Figure 2-4 Relationship between heart anatomical and functional variables 

 

 

 

Top: fractional shortening (FS) as a 

function of myocardial infarction size.  

Middle: left ventricular (LV) end-

diastolic pressure (LVEDP) as a function 

of myocardial infarction size.  

Bottom: correlation between FS and 

LVEDP. Heart failure (open circles) and 

control (filled circles) rats are represented 

in each figure. 
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Figure 2-5 Central and peripheral contribution to critical speed (CS) 

 

  

Top: CS as a function of 

fractional shortening.  

Bottom: CS as a function of end-

contraction soleus interstitial 

PO2. Heart failure (open circles) 

and control (filled circles) rats 

are represented in each figure. 
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Figure 2-6 Group mean interstitial PO2 (PO2is) at rest and during contractions 

 

 

Electrically-induced twitch contractions were initiated at Time 0 (vertical dashed line).  

Top: control condition PO2is for both control (filled symbols; n = 4) and heart failure (open 

symbols; n = 5) rats in the soleus (circles) and white gastrocnemius (diamonds).  

Bottom: N
ω
 nitro-L-arginine methyl ester (L-NAME) condition soleus PO2is for control (filled 

circles) and heart failure (open circles) rats. Data are means ± SE. Shaded area highlights the 

difference between control and heart failure rats in the soleus PO2is profile which was greatly 

reduced following L-NAME superfusion.  
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 Summary 

Sex differences in the mechanisms underlying cardiovascular pathophysiology of O2 transport in 

heart failure (HF) remain to be explored. In HF, nitric oxide (NO) bioavailability is reduced and 

contributes to deficits in O2 delivery-to-utilization matching. Females may rely more on NO for 

cardiovascular control in health and as such experience greater decrements in HF. We tested the 

hypotheses that HF would reduce skeletal muscle interstitial PO2 (PO2is; determined by O2 

delivery-to-utilization matching) for both sexes compared to healthy and females would express 

greater dysfunction compared to males.  Furthermore, we tested the hypothesis that five days of 

dietary nitrate (Nitrate; 1mmol/kg/day) would increase NO bioavailability and raise PO2is in HF 

rats, with a greater effect seen in females. Forty-two Sprague-Dawley rats were randomly 

assigned to healthy, HF, or HF + Nitrate groups (all, n = 14). Spinotrapezius PO2is was measured 

via phosphorescence quenching during electrically-induced twitch contractions (1 Hz, ~6 V, 180 

s). HF reduced resting PO2is for both sexes compared to healthy (p < 0.01), and the reduction 

was greater in female (~30%) compared to male (~20%) HF (p < 0.05). Both HF sexes expressed 

reduced PO2is amplitudes following the onset of muscle contractions compared to healthy (p < 

0.01). In contrast, resting PO2is was not different between healthy and HF + Nitrate rats or males 

and females within HF + Nitrate. Only male HF + Nitrate expressed a reduced PO2is amplitude 

compared to healthy (p < 0.05). In this model of moderate HF, O2 delivery-to-utilization 

matching is attenuated in a sex-specific manner and dietary nitrate supplementation serves to 

offset this reduction with potentially greater efficacy in female HF rats.  
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 Introduction 

 Cardiovascular disease is the leading cause of death among men and women in the 

United States and upwards of 6.5 million individuals are adversely affected by heart failure (HF) 

each year (14). There are differences in the incidence, morbidity, and mortality of HF between 

women and men (7, 64) and these may be related to the role of estrogen in nitric oxide (NO) 

bioavailability and sensitivity (120, 148); however, the specific sex differences in the 

mechanisms underlying the cardiovascular physiology in HF have not been well delineated. HF 

begins with an initial insult to the heart that progresses to multiple organ system dysfunction and 

eventually develops into a syndrome which critically impacts the oxygen (O2) transport system 

by reducing O2 availability and increasing O2 requirements. The O2 transport dysfunction can be 

attributed to central (i.e., reduced heart function (160)) and peripheral (i.e., diminished vascular 

(36, 159), skeletal muscle and mitochondrial (80, 137) function) maladaptations. Experimental 

evidence shows that HF increases the reliance on glycolytic Type II muscles during exercise (63, 

102, 137) and decreases NO bioavailability (46, 63) which, in collective, serves to exacerbate the 

metabolic stress induced by deficits to the O2 transport system. The culmination of these 

impairments is reduced muscle function and exercise intolerance (112, 114), reduced quality of 

life, and ultimately death. Recently, our laboratory revealed NO-mediated sex differences in the 

control of skeletal muscle interstitial PO2 (PO2is) in healthy rats (29), which reflects the matching 

of O2 delivery to utilization. This interstitial site contributes greatly to O2 flux resistance (60) and 

is a critical component in establishing the driving pressure of O2 across the sarcolemma into the 

mitochondria in order to sustain the energetic demands of muscle contractions (i.e., metabolic 

control). Since NO plays an important role in the cardioprotection seen in healthy females and in 

the etiology of HF, it is likely that a female model of HF would show substantially exaggerated 

PO2is dysfunction; however, to date, this hypothesis has not been explored. 

 An ideal therapeutic intervention for patients with HF would target both aspects of the O2 

transport system by increasing O2 delivery and reducing O2 requirements during activity. Dietary 

nitrate supplementation (including beetroot juice) increases exercise performance in healthy 

individuals (5, 77, 142, 155). This effect is accomplished by lowering O2 consumption (V̇O2) (5, 

77), speeding V̇O2 kinetics (16, 28, 70), and increasing blood flow (i.e., bulk O2 delivery (20, 

44)) during submaximal exercise, all of which contribute to the enhanced exercise tolerance 
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found during severe intensity exercise (16, 70, 155). The precise mechanism(s) for these effects 

remain uncertain, but they are facilitated through the reduction of the dietary nitrate to nitrite in 

the mouth (83). Once absorbed into the circulatory system, nitrite
 
is readily converted to NO in 

hypoxic (31, 141) and acidic (95) environments, which are present in the exercising muscle 

(particularly Type II fibers) and intensified by HF. These beneficial effects of dietary nitrate 

translate to patients with cardiovascular disease. To date, the diseases investigated include HF 

with preserved ejection fraction (HFpEF) (39, 157), ischemic HF with reduced ejection fraction 

(HFrEF) (i.e., myocardial infarction induced HF) (45, 61), non-ischemic dilated cardiomyopathy 

(with rEF) (21, 72), and peripheral arterial disease (71). Dietary nitrate increases the tolerance to 

exercise in some (39, 71, 72, 157), but not all (61) of these studies. Females were represented in 

few of these studies (21, 39, 72), and importantly, were entirely absent from investigations of 

myocardial infarction induced HF (45, 61).  

 Thus, the present investigation was designed to fill these gaps in our knowledge. For 

instance: 1) whether the sex differences seen in healthy skeletal muscle PO2is translate to 

exaggerated pathology (exacerbated lowering of PO2is) in female HF; 2) if sex affects the 

efficacy of dietary nitrate supplementation in a pre-clinical model of myocardial infarction-

induced HF; and 3) the mechanisms which underlie the beneficial effects of dietary nitrate to 

potentially improve cardiovascular health, quality of life (157, 158), and reduce mortality in 

patients with HF. Specifically, we tested the following hypotheses: 1) HF would reduce PO2is 

and impair the kinetics response to a greater extent in female HF rats; and 2) dietary nitrate 

supplementation would improve the PO2is baseline and amplitude to a greater extent in female 

compared to male HF.  
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 Materials and Methods 

Ethical approval 

 Forty-two young adult (3-5 mo. old) Sprague-Dawley rats (Charles River Laboratories, 

Wilmington, MA) rats were maintained in accredited animal facilities at Kansas State University 

on a 12-h light-dark cycle with food and water provided ad libitum in isolated cages. All 

procedures were approved by the Institutional Animal Care and Use Committee of Kansas State 

University and conducted according to the National Research Council Guide for the Care and 

Use of Laboratory Animals. Equal numbers of male and female rats (n = 7 of each sex per group) 

were randomly assigned to healthy control, HF, or HF + Nitrate groups (n = 14 per group). 

Myocardial infarction protocol 

 Myocardial infarction was induced in HF rats by surgical ligation of the left main 

coronary artery as described previously (45, 100). Rats were initially anesthetized with a 5% 

isoflurane-O2 mixture (Butler Animal Health Supply, Elk Grove Village, IL; Linweld, Dallas, 

TX) and maintained on a ~2% isoflurane-O2 mixture. The rats were then intubated and 

mechanically ventilated with a rodent respirator (model 680, Harvard Instruments, Holliston, 

MA) for the duration of the procedure. The heart was exposed via a left thoracotomy through the 

fifth intercostal space and the left main coronary artery was ligated 1-2 mm distal to the edge of 

the left atrium with a 6-0 braided polyester suture. The thorax was then closed with 2-0 gut and 

the skin with 3-0 silk. Bupivacaine (1.5 mg/kg sc), ampicillin (50 mg/kg im), and buprenorphine 

(~0.03 mg/kg im) were administered to alleviate pain and reduce the risk of infection. Rats were 

monitored for ~8 h post-surgery for the development of arrhythmias and/or other complications 

with care administered as necessary. At least 21 days of recovery were given to allow for 

complete remodeling of necrotic myocardial tissue and development of compensated HF (100, 

102).  

Dietary nitrate supplementation and measurement of plasma [nitrite] 

 HF rats randomly assigned to the dietary nitrate group (HF + Nitrate) received 5 days of 

nitrate-rich beetroot juice (1 mmol/kg/day; Beet it, James White Drinks, Ipswich UK) diluted 

into ~90 ml of water each night and consumption was verified in the morning. During the day, 

rats received water ad libitum. This dose represents a [nitrate] similar to that used in humans (5, 

28, 142, 155) and crucially elevates plasma [nitrite] commensurately (44, 45) after accounting 
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for the increased metabolic rate of rats (99) and differences in the pathway of dietary nitrate (96) 

compared to humans. Plasma [nitrite] analysis was performed via chemiluminescence with a 

Sievers NO analyzer (NOA 280i, Sievers Instruments, Boulder, CO) using the techniques 

described previously (28, 45, 155) on small blood samples (~0.6 ml) drawn from the caudal 

artery. Within 5 min of the blood draw, these whole blood samples were spun at ≥ 1000 g in a 4 

°C centrifuge for 5 min. Aliquots of the separated plasma (~0.3 ml) were pipetted into separate 

Eppendorf tubes and stored at -80 °C until later analysis. 

Surgical Preparation 

 On the day of the experiment (described below), rats were anesthetized with a 5% 

isoflurane-O2 mixture and then maintained on 2-3% isoflurane-O2. The right carotid artery was 

isolated and a catheter (PE-10 connected to PE-50, Intra-Medic polyethylene tubing, Clay 

Adams Brand, Becton, Dickinson and Company, Sparks, MD) was inserted for measurement of 

mean arterial pressure (MAP) and heart rate (HR) collected with a PowerLab/LabChart data 

acquisition system (AD Instruments). Another catheter was inserted into the caudal artery for the 

administration of pentobarbital sodium anesthesia ([50 mg/ml]) and arterial blood sampling. 

After closing the catheter incisions, rats were progressively transitioned off of isoflurane to 

pentobarbital sodium anesthesia. Adequacy of anesthesia was monitored using toe pinch and 

corneal reflexes. Additional anesthesia was administered when necessary as 0.03-0.05 ml doses 

diluted in ~0.3 ml of heparinized saline. Rats were placed on a heating pad to maintain a core 

temperature of ~38 ˚C (measured via rectal probe). Incisions were then made to expose the left 

spinotrapezius muscle with overlying skin and fascia reflected as previously described (29, 60). 

Using 6-0 silk sutures, platinum iridium wire electrodes were secured to the rostral (cathode) and 

caudal (anode) portions of the muscle to facilitate electrically induced twitch contractions. 

Adjacent exposed tissue was covered with Saran wrap (Dow Brands, Indianapolis, IN) to reduce 

tissue dehydration. The exposed spinotrapezius was superfused frequently with warmed (38 ˚C) 

Krebs-Henseleit bicarbonate buffered solution equilibrated with 5% CO2-95% N2.  

Experimental protocol 

 Twitch contractions of the spinotrapezius were electrically evoked (1 Hz, 6-7 V, 2 ms 

pulse duration) with a Grass S88 Stimulator (Quincy, MA, USA) for 180 s. This contraction 

protocol increases spinotrapezius muscle blood flow ~ 5-fold and metabolic rate ~7-fold without 
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altering blood pH and is consistent with moderate intensity exercise (10, 58) and elicits 

reproducible responses (29). Phosphorescence quenching was used to measure PO2is in the 

spinotrapezius at rest and during contractions using a frequency domain phosphorometer (PMOD 

5000; Oxygen Enterprises, Philadelphia, PA, USA) as previously described (29, 60). Briefly, the 

Oxyphor G4 (Pd-meso-tetra-(3,5-dicarboxyphenyl)-tetrabenzo-porphyrin) was injected locally 

(3-4 10 μL injections at 10 μM concentration) using a 29G needle with care taken to avoid 

damaging any visible vasculature. After injection, the spinotrapezius was covered with Saran 

wrap and given at least 20 min to allow the G4 to diffuse throughout the interstitial space. This 

Oxyphor is well-suited for use in biological tissues due to its inability to cross membranes and 

stability across physiological pH ranges (41); it is however, temperature sensitive and therefore 

spinotrapezius temperature was measured using a non-contact infrared thermometer. Mean 

spinotrapezius temperature was 32.1 ± 0.1 °C, with no differences between groups or change 

during contractions. 

 Phosphorescence quenching applies the Stern-Volmer relationship (41, 126), which 

describes the quantitative O2 dependence of the phosphorescent probe G4 via the equation:  

 PO2is = [(τ0/ τ) – 1]/(kQ · τ0) 

where kQ is the quenching constant and τ and τ0 are the phosphorescence lifetimes at the ambient 

O2 concentration and in the absence of O2, respectively. For G4 in tissue at ~32.5 °C, kQ is ~258 

mmHg
-1

·s
-1

 and τ0 is ~226 μs (41). As muscle temperature does not appreciably change over the 

duration of the contraction protocol used herein, the phosphorescence lifetime is determined 

entirely by the O2 partial pressure. After injection of G4, the common end of the bifurcated light 

guide was positioned 3-4 mm above the surface of the exposed muscle. PO2is was measured 

continuously and recorded at 2 s intervals throughout the duration of the experimental protocol. 

All PO2is measurements were performed in a dark room with minimal extraneous light exposure. 

Upon completion of the protocol, rats were euthanized with intra-arterial potassium chloride 

overdose (1 ml/kg of 4M KCl). 

Analysis of interstitial PO2 kinetics 

 The kinetics analyses of the PO2is responses were conducted using 10 s of resting data 

and the 180 s contraction bout using a mono-exponential plus time delay model: 
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 PO2 (t) = PO2(BL) – Δ1PO2 (1- e 
–(t – TD)/τ

) 

or a mono-exponential plus time delay with a secondary component when necessary: 

 PO2 (t) = PO2(BL) – Δ1PO2 (1- e 
–(t – TD)/τ

) + Δ2PO2 (1- e 
–(t – TD2)/τ2) 

where PO2 (t) represents the PO2is at any point in time, PO2(BL) is the baseline before the onset of 

contractions and any appreciable change in PO2is, Δ1PO2 and Δ2PO2 are the primary and 

secondary amplitudes, TD and TD2 are the time delays before the fall and secondary rise in PO2, 

and τ and τ2 are the time constants (i.e., the time required to reach 63% of the amplitude) for the 

primary and secondary amplitudes. The mean response time (MRT) was calculated as the sum of 

the model derived TD and τ. When the secondary component model was necessary, the primary 

amplitude was constrained to not exceed the nadir value to maximize the accuracy of the primary 

response kinetics (29). The goodness of model fit was determined using the following criteria: 1) 

the coefficient of determination; 2) sum of the squared residuals; and 3) visual inspection and 

analysis of the model fits to the data and the residuals. Since Δ2PO2 (i.e., undershoot of PO2) was 

often non-exponential in nature, Δ2PO2 was determined manually by calculating the difference 

between the PO2is at the end of contractions minus the nadir value of PO2is during contractions.  

 

Heart failure classification 

 On the day of the terminal experiment described above additional procedures were 

performed on the HF groups to describe the level of HF achieved by the myocardial infarction. 

Following cannulation of the right carotid artery, a micromanometer (2-french catheter-tip 

pressure manometer, Millar Instruments, Houston, TX) was advanced retrogradely into the left 

ventricle (LV) to determine LV end-diastolic pressure (LVEDP). These data were recorded with 

the same PowerLab/LabChart data acquisition system (AD Instruments). LVEDP was 

determined as the mean of 5 consecutive cardiac cycles. The LV infarction surface area was 

measured post-mortem using planimetry and expressed as %LV endocardial surface area. 

 

Statistical analysis 

 All curve fitting and statistical analyses were performed using a commercially available 

software package (SigmaPlot 12.5, Systat Software, San Jose, CA). Differences between healthy, 

HF, and HF + Nitrate descriptive variables, hemodynamics (i.e., HR and MAP), and PO2is 
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kinetics parameters were compared for sex and group differences using 2-way ANOVA. 

Differences between HF and HF + Nitrate for HF morphological and descriptive variables were 

compared for sex and group differences using 2-way ANOVA. Tukey’s post hoc tests were used 

for multiple comparisons when significant differences were detected. Data are presented as 

means ± standard error. Significance was accepted at p < 0.05.  
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 Results 

 Male rats were heavier than their female counterparts for all groups as expected (all p < 

0.001; Table 3-1). There were no sex or group differences for resting HR and MAP (all p > 0.05; 

Table 3-1). Neither HR nor MAP changed appreciably during the contraction protocol (both p > 

0.05, data not shown). The level of HF was not different between control and treatment groups 

(i.e., moderate HF; Table 3-2) and there were no differences between sexes for any 

morphological indices of HF (all p > 0.05) except for the lung mass to body mass ratio which 

was greater in females compared to males (p < 0.05).  

 Group mean PO2is profiles at rest and during contractions are presented in Figure 3-1. 

There were no sex differences between healthy male and female rats, with the exception of 

females expressing a lower PO2is nadir (p < 0.05, Table 3-3). HF reduced resting PO2is for both 

sexes compared to healthy (p < 0.01, Table 3-3), but the reduction was greater in female 

compared to male HF rats (p = 0.04). Both sexes in HF expressed reduced PO2is amplitudes 

following the onset of muscle contractions compared to healthy rats (p < 0.01) with no sex 

differences (p = 0.3). Female HF rats evidenced a reduced PO2is undershoot and end-exercise 

PO2is compared to healthy females (both p < 0.02) and HF males (p = 0.02 and p = 0.001, 

respectively). The difference between female and male rat PO2is for all groups is shown in 

Figure 3-2. 

 Both sexes in the HF + Nitrate groups expressed elevated plasma [nitrite] compared to 

the HF groups (both, p < 0.001) with no differences between the sexes in either case (HF 

females: 56 ± 8; HF males: 45 ± 7; HF + Nitrate females: 156 ± 23; HF + Nitrate males: 165 ± 

20 nM). Group mean PO2is profiles for HF + Nitrate rats are presented in Figure 3 and the 

kinetics parameters are presented in Table 3-3. Nitrate supplementation resulted in resting PO2is 

that were not different from healthy for female (p = 0.51) or male (p = 0.39) HF + Nitrate rats 

and there was no sex difference between female and male HF + Nitrate rats (p = 0.59). The male 

HF + Nitrate PO2is amplitude was lower than healthy males (p = 0.03) but female HF + Nitrate 

was not different from healthy females (p = 0.14). The female HF + Nitrate MRT was 

significantly longer compared to male HF + Nitrate (p = 0.02), but neither were different from 

healthy (both p > 0.05). Female HF + Nitrate rats showed a reduced PO2is undershoot and end-
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exercise PO2is compared to healthy females (both p < 0.02) and HF + Nitrate males (p = 0.03 

and p = 0.002, respectively).  



62 

 Discussion 

 Determining the mechanistic bases for exercise intolerance and the sexual 

(dis)similarities in HF patients carries important clinical implications. The primary original 

findings of the present investigation show that skeletal muscle PO2is is reduced significantly at 

rest in both male and female HF rats, and this reduction is amplified in the females. Moreover, 

during contractions sex differences in PO2is regulation are evident as female HF rats expressed a 

lower PO2is nadir, undershoot, and end-exercise level compared to HF males. This indicates that 

females potentially see a greater decrement in peripheral O2 delivery to utilization matching 

following myocardial infarction induced HF. These findings are important because this carrier-

free space provides a substantial barrier to O2 flux from the vascular space to the sarcolemma, 

and ultimately the mitochondria, potentially impacting metabolic control to a greater extent in 

female HF patients. Additionally, we show herein, for the first time, that 5 days of dietary nitrate 

(via beetroot juice) supplementation substantially improves O2 delivery to utilization matching in 

the interstitial space of HF rats and that females may see a greater effect compared  to males. 

These findings support the effectiveness of this therapeutic strategy to potentially improve 

quality of life and reduce morbidity and mortality in the human HF population.   

 

Spinotrapezius Interstitial PO2 in Heart Failure 

 We show herein for the first time, that the resting PO2is, which is determined by the 

matching of O2 delivery to utilization, is reduced in HF compared to healthy rats without 

differences in resting HR or MAP. The primary locus of this reduction is thought to be 

attenuated perfusive and diffusive O2 delivery in the periphery since there were no obvious 

differences in central hemodynamics and skeletal muscle V̇O2 is very low at rest. Although not 

ubiquitous (particularly in the human upper limb (9, 130)), reduced resting peripheral blood flow 

has been shown in both human (66, 138) and animal (74, 102, 123) models of HF. Importantly, 

the impact of this reduced perfusive O2 delivery is compounded by impaired diffusive O2 

delivery (42, 74, 123), likely due to heterogeneous capillary red cell hemodynamics (i.e., reduced 

red cell flux and velocity, and reduced proportion of capillaries supporting continuous flow) (74, 

123). These attenuations in O2 delivery would lead naturally to mismatched O2 delivery-to-

utilization despite the very low skeletal muscle V̇O2. This reduced resting PO2is contrasts 
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importantly with microvascular PO2 (PO2mv, (12, 37)), in that PO2mv is reduced in severe but 

not the moderate HF investigated herein. Although we were not able to explicitly test what 

caused this difference in the present investigation, one hypothesis is that PO2mv is more 

effectively buffered from the reduced O2 delivery across capillaries which may indicate that the 

PO2is measurement is more sensitive to upstream dysfunction. 

 

 Interestingly, the primary response amplitude (Δ1PO2) during contractions was reduced in 

the HF groups compared to healthy controls. At the onset of muscle contractions, both O2 

delivery and utilization increase to meet the elevated energetic demands of the skeletal muscle. 

With respect to the healthy rats, the decreased Δ1PO2 in HF rats must be caused by either an 

increased O2 delivery or a reduced utilization. Since increased blood flow has not been found in 

this population, it is more likely that reduced O2 utilization lead to the differences seen herein. 

The oxidative capacity of HF rats (as indicated by citrate synthase activity) is often preserved at 

this level of HF (12, 34, 37), which suggests that the aforementioned mechanisms that lead to 

attenuated diffusive O2 delivery (74, 123) may have also contributed to limiting muscle O2 

utilization. A potential explanation for this could be that the mitochondria which were more 

actively increasing oxidative phosphorylation were relatively more under perfused compared to 

the less active mitochondria. Additionally, since HF is often accompanied by fluid retention (i.e., 

tissue edema) the interstitial space could see an increased volume which would serve to impede 

O2 flux into the myocyte. The methodology necessary to test these hypotheses are currently 

unavailable; however, evidence suggests that NO plays an important role in the regulation of 

both vascular O2 delivery and spatial O2 utilization within the cell (109, 147), indicating that the 

reduced NO bioavailability present in this disease is a primary cause of this dysfunction.  

 

Sex Differences in the Control of Interstitial PO2 

 Although in HF both sexes expressed a reduced PO2(BL) compared to healthy rats, the 

female group saw a greater reduction (~30% vs. ~20%) compared to males at equivalent levels 

of HF. As discussed above, this reduction in resting PO2is is likely attributable to attenuated O2 

delivery. The contribution of NO to resting O2 delivery has been pharmacologically dissected in 

both humans (119, 128, 136) and animals (88, 108, 150) with females showing a greater effect of 

endogenous NO inhibition compared to males (29, 76, 84, 136). The increased reliance on NO in 
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health for females paired with the reduced NO bioavailability induced by HF (46, 63) creates the 

potential for greater dysfunction in female HF patients (Hypothesis 1). To the best of our 

knowledge, the present investigation is the first to show sex specific effects of HF on skeletal 

muscle O2 delivery to utilization matching, whereby HF induces greater decrements to PO2is in 

female HF compared to male HF.  

 

 There was no difference between the sexes for Δ1PO2 in HF, but the undershoot (Δ2PO2) 

and end contraction PO2is values were lower in the female HF group compared to both male HF 

and healthy females. This finding could be indicative of an increased fractional oxygen 

extraction in female HF, which agrees with the observation in human HF patients that exercising 

whole body O2 utilization may be attenuated but the contracting/recruited muscle venous effluent 

PO2 may be even lower than in healthy subjects (42). However, a more likely explanation is that 

an attenuated increase in O2 delivery for the female HF rats resulted in the lower PO2is baseline 

and end-exercise values. This profile has profound consequences with regard to metabolic 

control since PO2is represents the driving pressure of the O2 cascade across the sarcolemma into 

the mitochondria. These reductions are small in the absolute sense (~4 mmHg), but if they lead 

to deleterious changes of the intracellular PO2, they result in altered metabolism and augmented 

production and accumulation of fatigue-inducing metabolites (55, 122). Substantiating these 

findings in an ovariectomized and/or aged model of HF would be ideal to discriminate whether 

the chronic reduction in NO bioavailability had a greater effect in the females of the present 

investigation due to their relative youth and/or the presence of estrogen. Nonetheless, these 

findings provide an important first step in our understanding of sex differences in the 

manifestation of HF and underscore the need for additional studies that include both sexes.  

 

Effect of Dietary Nitrate on Interstitial PO2 in Heart Failure 

 The reduced spinotrapezius PO2is seen at rest in HF rats herein was not evident following 

5 days of dietary nitrate supplementation. As discussed earlier, the presumable mechanism for 

this increase is improved O2 delivery. Exercising blood flow (i.e., perfusive O2 delivery) can be 

increased following dietary nitrate supplementation in healthy (44), older (20), and diseased (45) 

populations; however, resting blood flow appears to be unchanged (20, 28, 44, 45) supporting 

that this improved O2 delivery was likely facilitated through diffusive rather than perfusive 
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mechanisms. In agreement with this notion, preliminary work from our laboratory revealed an 

increased proportion of skeletal muscle capillaries supporting continuous flow at rest in HF rats 

(i.e., increased diffusive O2 transport capacity) following the same supplemental protocol used 

herein (30). This improved diffusive O2 transport appears to have attenuated any O2 utilization 

limitation, at least in the female HF rats, as their Δ1PO2 was no longer reduced compared to 

female healthy rats. It was recently revealed that dietary nitrate supplementation can increase 

local muscle O2 extraction without altering bulk O2 delivery in a human exercise model that 

mimics O2 delivery limitations (28). An important finding of the present investigation is that 

dietary nitrate supplementation in HF rats revealed a significant slowing of the PO2is kinetics 

(i.e., increased MRT) for the female HF rats compared to the male HF rats (but not the healthy 

female group, p = 0.09). An increased MRT is traditionally thought to reflect better matching of 

O2 delivery to utilization for PO2mv (10, 37) and is mechanistically explained by the observed 

increase of exercising blood flow following dietary nitrate supplementation in healthy and HF 

rats (44, 45). The combination of the greater relative increase in resting PO2is, increased Δ1PO2, 

and slowed MRT in the female HF rats suggests that dietary nitrate supplementation is more 

efficacious in this population compared to males. Notwithstanding these effects, that the female 

HF end contraction PO2 was still lower than males after dietary nitrate supplementation, while 

indicating greater fractional O2 extraction, may also reflect lowered intramyocyte PO2 with 

attendant pernicious consequences. An important next step would be to evaluate whether the 

sexual dimorphism seen herein translates to differential muscle function in a HF population. 

Muscle contractile function (as maximal knee extension efforts) was improved following dietary 

nitrate in a mixed population of HF patients during maximal effort contractions (21); however, 

that study was not designed to detect potential sex differences in the outcomes. Furthermore, the 

present investigation’s findings are more indicative of moderate, rhythmic exercise where O2 

delivery plays an important role in sustained effort unlike the previously discussed maximal 

efforts where O2 delivery is more vital for recovery between contractions (21).  

 

Experimental Considerations 

 The primary limitation of the present study was the lack of control for the female rat 

estrus cycle (or ovariectomy), which precludes the differentiation between the effects of 

biological sex or sex hormones. Additionally, because we did not directly measure either O2 
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delivery (as blood flow) or utilization (as metabolic rate) we can only hypothesize what drove 

the observed changes in the PO2is using previously reported findings. We made efforts to not 

over interpret the present findings if data were not available from previous studies that directly 

measured O2 delivery or utilization in HF and following dietary nitrate supplementation. Finally, 

we did not measure a performance outcome, such as muscle force production or endurance, so 

we are unable to explicitly state whether the observed effects would affect physical activity in 

these populations. However, we argue that the differential effects of HF and HF + Nitrate argues 

strongly for the need to include both sexes in cardiovascular research, particularly in populations 

which may have compromised NO bioavailability such as HF. 
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 Conclusions 

 The primary novel finding of the present investigation is that myocardial infarction-

induced HF reveals sexual dimorphism in the control of interstitial space O2 delivery-to-

utilization matching (indicated as PO2is) in rats. Specifically, HF in female rats induces greater 

reductions in resting PO2is compared to both healthy females and HF males, likely through 

peripheral vascular dysfunction mechanisms. Both sexes of HF rats expressed reduced PO2is 

amplitudes during contractions compared to their healthy controls indicating reduced capacity to 

increase O2 utilization. Following five days of dietary nitrate supplementation (as beetroot juice), 

resting PO2is was improved in both HF sexes such that the values were not different from 

healthy controls. Interestingly, during contractions female HF rats no longer expressed reduced 

PO2is amplitudes compared to healthy females while male HF rats remained lower than healthy 

males. Taken together, these findings indicate that, in this model of moderate HF, O2 delivery-to-

utilization matching is attenuated in a sex specific manner and dietary nitrate supplementation 

serves to offset this reduction with potentially greater efficacy in female HF rats during the early 

transient from rest to contractions. 
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Table 3-1 Healthy and Heart Failure Rat Body Weight and Resting Hemodynamics 

 

 

 

  

 

 Healthy Heart Failure Heart Failure + Nitrate 

 Male Female Male Female Male Female 

Body weight (g)   373 ± 18      287 ± 10 *      523 ± 11 †        337 ± 21 *†      506 ± 18 †   316 ± 8 * 

HR (beats/min)   395 ± 12   381 ± 18   364 ± 17 372 ± 9 362 ± 9   385 ± 11 

MAP (mmHg) 107 ± 5 100 ± 6 100 ± 6   96 ± 4 101 ± 4 103 ± 5 

HR, heart rate; MAP, mean arterial pressure. Values are means ± SE. *, p < 0.05 vs male within group. 

†, p < 0.05 vs healthy within sex. 
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Table 3-2 Morphological and Hemodynamic Characteristics of Heart Failure Groups 

 

 Heart Failure Heart Failure + Nitrate 

 Male Female Male Female 

Infarct size (%) 30 ± 2 33 ± 5 27 ± 3 31 ± 4 

LVEDP (mmHg) 17 ± 1 16 ± 3 20 ± 4 15 ± 2 

LV/Body mass (mg/g)   2.0 ± 0.1   1.9 ± 0.1   1.9 ± 0.1   2.0 ± 0.1 

RV/Body mass (mg/g)   0.6 ± 0.1   0.6 ± 0.1   0.6 ± 0.1   0.6 ± 0.1 

Lung/Body mass (mg/g)   3.6 ± 0.1      4.3 ± 0.2 *   3.8 ± 0.3      4.6 ± 0.3 * 

HF, heart failure; LVEDP, left ventricular end-diastolic pressure; LV, left ventricle; RV, right ventricle. Data are means ± SE. All 

groups, n = 7. *, p < 0.05 vs male within group.  
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Table 3-3 Interstitial PO2 Kinetics Parameters of the Spinotrapezius at Rest and During 180 s of Twitch Contractions 

 

 

 Healthy Heart Failure Heart Failure + Nitrate 

 Male Female Male Female Male Female 

PO2(BL) (mmHg) 21.0 ± 0.7 19.2 ± 1.4    16.6 ± 2.2 †      13.7 ± 1.4 *† 17.8 ± 1.4 16.5 ± 2.3 

Δ1PO2 (mmHg) 11.9 ± 0.8 12.9 ± 1.4      8.8 ± 1.4 †      7.6 ± 0.9 †      8.1 ± 1.1 †   9.7 ± 1.3 

τ (s)   9 ± 1 11 ± 2 10 ± 2 11 ± 2   7 ± 1    14 ± 2 * 

TD (s)   7 ± 1    7 ± 1   7 ± 2 10 ± 1   9 ± 1   9 ± 2 

MRT (s) 16 ± 2 17 ± 3 17 ± 3 21 ± 2 16 ± 2    23 ± 2 * 

ΔPO2/τ (mmHg/s)   1.5 ± 0.3   1.3 ± 0.2      1.0 ± 0.1 †      0.8 ± 0.2 †   1.4 ± 0.3      0.8 ± 0.2 * 

PO2(Nadir) (mmHg)   9.1 ± 0.5      6.3 ± 1.1 *   7.7 ± 1.3   6.1 ± 0.9   9.8 ± 1.4      6.9 ± 1.5 * 

Δ2PO2 (mmHg)   7.3 ± 1.1   7.4 ± 0.7   6.8 ± 1.6        4.3 ± 0.9 *†   5.1 ± 0.7        2.3 ± 0.2 *† 

PO2(End) (mmHg) 16.0 ± 0.9 13.9 ± 1.3 14.5 ± 1.3      10.4 ± 1.0 *† 14.9 ± 1.6        9.2 ± 1.4 *† 

PO2(BL), baseline interstitial PO2; Δ1PO2, PO2 primary amplitude; τ, time constant; TD, time delay; MRT, mean response time; Δ2PO2, 

PO2 undershoot during contractions. All groups are n = 7. Values are means ± SE. *, p < 0.05 vs male within group. †, p < 0.05 vs 

healthy within sex. 
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Figure 3-1 Group average spinotrapezius interstitial PO2 (PO2is) at rest and during 

electrically-induced twitch contractions 

Top: Healthy females (filled 

triangles) and HF females (open 

triangles).   

Bottom: Healthy male (filled 

circles) and HF males (open 

circles).  

There were no differences 

between healthy female and male 

rats. HF reduced resting PO2is in 

both sexes, and the decrease in 

resting PO2is was greater in HF 

females compared to HF males. 

All data are means ± SE. All 

groups, n = 7. 
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Figure 3-2 Differences between Female and Male PO2is at rest and during electrically-

induced twitch contractions 

 

Healthy (solid black line), HF (dashed red line), and HF + Nitrate (dash-dotted purple line) 

groups are represented. In the Healthy rats, a small, but not significant, difference was present 

and remained constant across both rest and contractions. HF resulted in a significant difference 

for resting PO2is between the sexes that was transiently worsened as contractions continued. 

Dietary nitrate supplementation in HF rats initially removed the sex difference in resting PO2is, 

however, the sex differences were reestablished as muscle contractions continued (i.e., beyond 

60 s). 
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Figure 3-3 Group average spinotrapezius interstitial PO2 (PO2is) at rest and during 

electrically-induced twitch contractions following 5 days of dietary nitrate supplementation 

(1 mmol/kg/day) 

 

Data represent both females (triangles) and males (circles). Dietary nitrate supplementation 

increased resting PO2is to values that were not different from Healthy rats and attenuated the sex 

difference present between the HF groups at rest. All data are means ± SE. Both groups, n = 7.  
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