TRAINING AIDS FOR TRANSLATOR DESIGN

by

JAMES R. MEYER

B.S., Benedictine College, KS, 1971

A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1977

Approved by:

LD

2066%

KA

1977

M
a.2

Docume~+

49

%
TABLE OF CONTENTS

CHAPTER 1 - Introduction

CHAPTER 2 - Lexical Scanning

2.1

2,2

2.3

2.4

2.5

2.6

2.7

General

Separation and Identification of Input
Producing Tokens

Producing Symbol Tables

Example of a Scanned Procedure
Implementing Algorithm for Scanning

Error Detection

CHAPTER 3 - Parsing

3.1
3.2
3.3
3.4

3.5

General

Syntax Analysis
Top-Down Parsing
Bottom-Up Parsing

Code Generation

REFERENCE NOTES

Page No.

10
13
16
24
25
25
25
27
51
63

77

10.

11.

12.

13,

14,

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

FIGURES

Lexical Scanning

Data in Token Fields

Reserved Word Table

Operator Table

Delimiter Table

Developing Tokens for Source Code Line
Symbol Table

Symbol Table After Scanning Fhase
A Scanned Procedure

Scanning Algorithm

Recursive Decent Parser

Rules for Recursive Decent Parser
Explicit Stack Parsing Algorithm
Rules for Explicit Stack Parser

Parsing an Input String from Grammar (A)
by an Explicit Stack Parser

Example of Explicit Stack Parsing

Grammar for CS-700 Interpreter

Rules for CS-700 Production

Example of Parsing in CS-700 Interpreter
Simple Grammar for a Bottom-Up Parser

Rules for Parsing Grammar (E)

Bottom-Up Parse Using Grammar (E)

Grammar for CS-700 Bottom-Up Parser

Rules for CS-700 Interpreter Bottom-Up Parser

ii

Page No.

10
11
12
14
16
27
32
33

37

38
40
43
44
47
53
54
55
57

58

25.

26.

27.

28.

29.

30.

31.

FIGURES (continued)

Bottom-Up Parse in CS-700 Interpreter

Algorithm for Bottom-Up Parser in CS-700
Interpreter

Semantic Action During Parsing

Code Generation During Parsing

Example of Parsing in CS-700 Interpreter
Code Generated During Bottom-Up Parsing

Example of Code Generation During
Bottom-Up Parsing

iii

Page No.
59

61
65
66
70

76

77

CHAPTER 1

Introduction

The Interpreter Design Course, CS 286-700, is a first graduate
level course in the concepts and design of compilers for computer
systems. The course is designed to study the concepts, algorithms,
and data structures of interpreters and compilers. The primary
reference for the course is a text on compiler design. However, the
text is used only as a supplement to the classroom presentations in
the teaching of general concepts. The classroom presentations
concentrate on teaching the course objectives using a student-developed
interpreter as a model.

The model, the CS-700 Interpreter, was developed by students in
the summer of 1975. The draft code covers the basic components of
the interpreter, but requires further testing, debugging, and optimizing.
In addition, the documentation is in varying degrees of perfection, and
requires expansion and refinement. These discrepancies become individual
and group projects for the students during the course.

The purpose of this project is to produce algorithms and training
aids to be used in the classroom and as homework problems to support
the teaching objectives. Specifically, they aid in teaching lexical
scanning, top-down parsing, bottom-up parsing, and code generation.

Another master's report, Models for Translator Design, Kansas State

University, by Miles Tipton Clements Jr. concentrates on the execution
of the C5-700 Interpreter. The abstract tutorial cases are designed to

teach the concepts of a stack oriented sequential processor. The

narrative preceding the algorithms and training aids is designed to
provide an introductory framework only, and no attempt is made to
explain theories presented in the text. The specific implementation
cases are designed to illustrate the concepts and prepare the students
for the CS-700 Interpreter Projects. These specific implementation
cases are also abstracts of the actual implementation. For example,
the abstract may refer to an operator as "IPLUS", whereas in the real
implementation an operator would have a numeric value. However, this
level of abstraction lends clarity to details that are developing a

concept.

CHAPTER 2

Lexical Scanning

2.1 General. Lexical scanning is logically the first function
accomplished by a translator. In this phase the lines of -spurce

code are scanned and source code atoms are separated and identified.
After an atom is separated and identified, a token is produced to
represent the atom. In addition to producing tokens, some translators
accomplish other actions during the lexical scanning phase. These
actions may include semantic analysis and symbol table production. A
symbol table performs a dictionary function and further describes the
identifiers used in a source program. In the CS-700 Interpreter a
symbol table is produced during lexical scanning to further describe
identifiers in the source program;

2.2 Separation and Identification of Input. The scanning algorithm
in Figure 1 demonstrates a typical scanner logic for separating and
identifying source code atoms. This scanner is much like the scanner
in the CS-700 Interpreter. 1In this algorithm an atom's type is determined
by its first character. An atom may be typed as an identifier, an
integer, a real number, an operator, a delimiter, a label, or a string.
The right end of a variable length atom is determined when the scanner
detects a blank, delimiter, or operator. If an atom is determined to
be an identifier, then another algorithm matches it with a table of

reserved words to make this differentiation.

identifier

-

blank

Lexical Scanning

)

integer

START

v

1

real number

| S

f number)

‘lliiiiiiill'.
number '

onerator

()
Y s

T

a
? @),

number

delimiter

\string

()
/

I: any
character

Fipure 1

atom

2.3 Producing Tokens. After the scanner has separated and identified
an atom, it produces a token to represent the atom. A token in the
CS-700 Interpreter is composed of three fixed length fields; the tag,

the index, and the location field.

tag index location

The tag identifies the type of token. 1In the CS-700 Interpreter
there are nine types allowed; integers (INT), real numbers (REAL),
identifiers (ID), labels (LAB), strings (STR), reserved words (RES),
operators (OPR), delimiters (DEL), and start-of-line symbols (SOL).
The start-of-line symbol is actually not produced from an atom, but
is generated by the scanner before scanning a line of source code.
The start-of-line symbol acts as a pointer to the source code line
and is used by the interpreter as a reference point in the source
code. This reference point is necessary to later identify incorrect
source code and to identify the beginning position of strings.

The index is used to supplement information about the token and
its contents depends on the type of tag. The information in Figure
2 presents the contents of the index for the various types of tags.

The location is used to point to the relative position of the
first character of an atom within a line of code. The one exception
to this rule is for start-of-line symbols. Since the start-of-line
symbol is not an element of the source code line, this field is used

to depict the number of tokens in the source code line.

Data in Token Fields

Contents of

Type of Token Tag Index location
Integer INT value of integer beginning location
in source code ling
real number REAL value of real number beginning location
in source code line
identifier) index number of beginning location
symbol table in source code lineg
label LAB index number of beginning location
symbol table in source code line
string STR number of characters beginning location
in string in source code line
reserved word RES number representing beginning location
reserved word in source code linﬁ
*
operator OPR word representing location in source
type of operater code line
*
delimiter DEL word representing location in source
type of delimiter code line
start-of-line S0L line number count number of tokens in

source code line

* For abstract purposes this is a word, but in the real implementation

this is a number.

Figure 2

As shown in Figure 2, reserved words, operators, and delimiters
are represented by either a number or a word. The table in Figure 3
depicts the reserved words in the CS-700 Interpreter and the rules for

the algorithm that develops the representing number.

Reserved Word Table

Column
Row 1 2 3 4 5 6 7
1 I DO | END CASE BEGIN | ACCESS ENDPROC ENDWRITE
2 IF OUT | ELSE FALSE EXPORT EXTERNAL
3 IN EXIT | WHILE GLOBAL
4 FI GOTO | WRITE RETURN
5 PROC
6 : : READ
7 THEN
-8 TRUE
9 QUIT
10 CALL

Column - Reserved words were placed in columns based on the total num-
ber of characters in the word. Limitation was placed on the
language in that a reserved word may not exceed eight but
must have a minimum of two characters.

Row - The total number of rows of the table is dependent on the

- largest number of reserved words with the same number of
characters.

Index - The index value of a reserved word is determined by multiplying

the column number by a quantity and adding the column number.

Figure 3

The table in Figure 4 depicts the operators in the CS-700 Interpre
and the representing word that is inserted in the index of the token.

(In the real implementation this is a number.)

Operator Table

Operator Replacement

- IASG
+ IPLUS
- IMINUS
* IMULT
/ IDIV
= IEQ
> 1GT
< ILT
£ INE
7 INOT
< ILE
> IGE
TRUE ITRUE
FALSE IFALSE
Figure 4

8

The table in Figure 5 depicts the delimiters in the CS-700
Interpreter and the representing word that is inserted in the

index of the token.

Delimiter Table

Delimiter Replacement

(LPAREN
) RPAREN
: SCOLON
COLON
, COMMA
[LBRAK
] RBRAK
Figure 5

The following example illustrates the use of all three fields in

developing tokens for a source code line.

source code line-

Tokens
tap index location
SOL 1 6
RES 11 1
RES 43 4
ID 1 10
OPR TEQ 12
INT 0 14
DEL SCOLON 15

DO WHILE A = O;

Explanation

Start-of-Line symbol for first line
DO is reserved word number 11

WHILE is reserved word number 43
First identifier in symbol table =*
TEQ replaces the equal sign

Value is inserted into the index

SCOLON replaces the semicolon

* symbol tables are further explained in the next section

Figure 6

2.4 Symbol Tables. Since computer programs make frequent usé of

sywbolic identifiers, the translator must know more about identifiers

than other atoms.

1

One way to do this is to store the additional

information in a symbol table which acts as a dictionary of the symbols

used in the program.

The symbol table in Figure 7 is used by the

C5-700 Interpreter to store additional information on identifiers used

in a program.

10

Symbol Table

index number of literal value or
number characters name scope type address

Figure 7

The index number is a sequential number assigned to the entry

associated with the identifier. This index number is unique and specifies

the relative location of the identifier in the symbol table. (This is

also the value in the index field of a token representing the identifier.)

The number 2{ characters field contains the wvalue for the number of

characters in the identifier.

The scope field explains how the variable is used during the program's

execution. The following are the types of scope information in the CS=700

Interpreter:

IN -

ouT -

LOC -

EXT -

GLOB-

VARY-

This is a value that can be passed to the program as an
argument in the CALL statement.

This is a value that can be passed back as a result of
this program.

This is a value that is generated and used only within
this program. This is the default if scope is not
specified.

Not used, but intended to be the same as the EXTERNAL
scope in Algol.

This is a value that is common to all programs.

This is a value that can be passed to the program as an
argument in the CALL statement and can be changed and
returned.

11

The type field identifies the mode of the value; real, integer, etc.

The value or address field has three uses. If the identifier

represents a scalar value, then this field contains the value.

If the

identifier represents a string, then this field contains an address in

the source code of the beginning of the string. If the identifier

represents a label, then this field contains the address of ﬁhe associated

instruction.

During the scanning phase, however, most of the information needed

for the symbol table is not available. Some information will be. added

during the parsing, and some will be added or changed during the execution

of the program. In the CS-700 Interpreter the number of characters and

literal name are completed during the scanning phase. The scope and

address (for labels and strings) are completed during the parsing phase.

The type and value are completed during the execution phase.

The following is an example of a completed symbol table after the

scanning phase.

Symbol Table After Scanning Phase

source code line- PAY = GROSS - TAXES;

Symbol Table

index number of literal value or
number characters name scope type address
1 3 .| Pay
2 5 GROSS
3 5 TAXES
Figure 8

12

2.5 Example of a Scanned Procedure. The preceding paragraphs have
detailed the basic functions of the scanner in the CS-700 Interpreter.
The example in Figure 9 combines these functions to illustrate the
scanning of a simple procedure.
Erocedure- PROC NEWBALANCE;
NEWBAL = OLDBAL - PAYMENT; .
INTEREST = NEWBAL * ,015; -

ACCTBAL = NEWBAL + INTEREST;
RETURN ;END;

13

A Scanned Procedure

Source Statements

PROC NEWBALANCE;

NEWBAL = OLDBAL - PAYMENT;

INTEREST = NEWBAL * ,015;

ACCTBAL = NEWBAL + INTEREST;

Figure 9

i4

Tokens
Tag_ Index Location
SOL 1 3
RES 35 1
ID 1 6
DEL SCOLON 16
SOL 2 6
ID 2 1
OPR IASG 8
ID 3 10
OPR IMINUS 17
ID 4 19
DEL SCOLON 26
SOL 3 6
ID 5 1
OPR JASG 10
ID 2 12
OPR IMULT 19
REAL 015 21
DEL SCOLON 25
SOL 4 6
ID 6 1
OPR IASG 9
ID 2 11
OPR IPLUS 18

Tokens

Source Statements Tag Index Location
D 5 20
DEL SCOLON 28
RETURN ;END; SOL 5 4
RES 54 1
DEL SCOLON_ 7
RES 21 8
DEL SCOLON 11
Symbol Table
index number of literal value or
number characters name scope type address
1 10 NEWBALANCE
2 6 NEWBAL
1 3 6 OLDBAL
4 7 PAYMENT
5 8 INTEREST
6 8 ACCTBAL

(Figure 9 continued)

15

2.6 Implementing Algorithm for Scanning. The scanning phase of a
translator is the easiest phase to implement. Figure 10 is a structured

algorithm that would implement the pictorial algorithm in Figure 1.

Scanning Algorithm

PROCEDURE SCAN)
COMMENT: THIS PROCEDURE SCANS INPUT STATEMENTS AND PRODUCES
TOKENS AND A SYMBOL TABLE
SYMBOL-TABLE,INDEX = 0
LINE-COUNT = O
DO WHILE MORE-TQO-BE-READ = .TRUE
BEGIN

READ INPUT

LINE-COUNT = LINE-COUNT + 1

TOKEN-COUNT = O

IF LAST-INPUT THEN CALL PARSER

ELSE BEGIN

COMMENT: I IS THE LEFT END OF AN ATOM, J CLOCKS THROUGH
TO END OF AN ATOM

J=1
I=1 ,

COMMENT: PUSH START-OF-LINE SYMBOL ON TOKEN STACK
TAG = "SOL"

INDEX = "B

LOCATION = "

PUSH TOKEN ON TOKEN-STACK

NO = ADDRESS—-OF-TOKEN

DO WHILE J LESS-THAN-OR-EQUAL-TO 80

BEGIN '
COMMENT: WHEN I = J A NEW ATOM IS BEING SCANNED

IF I = J THEN CALL IDENTIFY-ATOM
ELSE NULL

CALL LOOK-FOR-ATOM-END

END=-DO

Figure 10
16

COMMENT: COMPLETE THE INDEX AND LOCATION FIELDS OF SOL TAKEN

MOVE LINE-COUNT TO TOKEN-STACK(NO) . INDEX
MOVE TOKEN-COUNT TO TOKEN-STACK(NO) .LOCATION
END-ELSE
END-DO
END=-PROC

PROCEDURE IDENTIFY-ATOM
COMMENT: AN ATOM IS IDENTIFIED BY ITS FIRST CHARACTER, HOWEVER THE
IDENTIFICATION CAN CHANGE FOR IDENTIFIERS THAT PROVE TO BE
RESERVED WORDS AND INTEGERS THAT PROVE TO BE REAL NUMBERS
CASE INPUT(J) = "B"
ATOM = BLANK
CASE INPUT(J) = "A THRU z"
ATOM = IDENTIFIER
COMMENT: "COUNT'" IS USED TO COUNT CHARACTERS IN IDENTIFIERS AND
LABELS
COUNT = O
CASE INPUT(J) = 0O IEEE gr
ATOM = NUMBER
CASE INPUT(J) = Nl éﬁg I=1
ATOM = LABEL
COUNT = 0
E&ﬁE INPUT(J) = "'v
ATOM = STRING
COMMENT: J IS SET TO FIRST CHARACTER IN STRING
J=J +1
CASE INPUT(J) = "+ OR — OR * OR /"
ATOM = OPERATOR

CASE INPUT(J) = "(OR) OR ;"
ATOM = DELIMITER

END-CASE

END-PROC

Figure 10 (continued)

17

PROCEDURE LOOK-FOR-ATOM-END
COMMENT: THE END OF AN ATOM IS LOCATED WHEN A BLANK OR DELIMITER IS
IDENTIFIED, A TOKEN IS CREATED, AND FOR IDENTIFIERS AND LABELS
AN ENTRY IS MADE IN THE SYMBOL TABLE
CASE ATOM = IDENTIFIER
BEGIN
IF INPUT(J) = " OR (OR) OR ;" THEN BEGIN
COMPARE ATOM TO RESERVED-WORD-TABLE.VALUES
IF COMPARE = .TRUE THEN BEGIN
TAG = "RES"
INDEX = RESERVE-WORD-TABLE.NO
LOCATION = I '
ELSE BEGIN
COMMENT: SEE IF IDENTIFIER IS ALREADY IN SYMBOL TABLE
COMPARE INPUT(I THRU J) TO SYMBOL-TABLE.VALUES
IF COMPARE = .TRUE THEN INDEX = SYMBOL-TABLE.NO
ELSE BEGIN
SYMBOL-TABLE . INDEX = SYMBOL-TABLE.INDEX + 1
INDEX = SYMBOL-TABLE.INDEX
MOVE INPUT(I THRU J) TO SYMBOL-TABLE (INDEX) .NAME
MOVE COUNT TQ SYMBOL-TABLE (INDEX).NO-CHAR
TAG = "ID"
LOCATION = I
PUSH TOKEN ON TOKEN-STACK
TOKEN-COUNT = TOKEN-COUNT + 1

I=2J
ELSE BEGIN
J=J +1

COUNT = COUNT + 1
END-CASE

Figure 10 (continued)

18

CASE ATOM = NUMBER

BEGIN

IF INPUT(J) = "B OR (OR) OR ;" THEN BEGIN
TAG = "INT"
INDEX = INPUT(I THRU J)
LOCATION = I
PUSH TOKEN ON TOKEN-STACK
TOKEN-COUNT = TOKEN—COUNT + 1
Ted

ELSE BEGIN
IF INPUT(J) = '"." THEN ATOM = REAL-NUMBER
ELSE NULL
J=J+1

END-CASE

CASE ATOM = REAL-NUMBER

BEGIN
IF INPUT(J) = " OR (OR) OR ;" THEN BEGIN
TAG = "REAL"
INDEX = INPUT(I THRU J)
LOCATION = I
PUSH TOKEN ON TOKEN-STACK
TOKEN-COUNT = TOKEN-COUNT + 1
I=J
ELSE J = J + 1
END-CASE

CASE ATOM = STRING

BEGIN
COMMENT: A SINGLE QUOTE MARK ENDS A STRING
IF INPUT(J) = '!'" THEN BEGIN

TAG = "STR"
INDEX = J - (I + 1)

Figure 10 (continued)

19

LOCATION = 1 + 1
PUSH TOKEN ON TOKEN-STACK
TOKEN-COUNT = TOKEN-COUNT + 1
Jd=J+1
I=J

ELSE J =J + 1

END-CASE

CASE ATOM = LABEL

BEGIN
COMMENT: LABELS ARE TERMINATED BY A COLON
IF INPUT(J) = ":'" THEN BEGIN
COMMENT: SEE IF LABEL IS ALREADY IN SYMBOL TABLE
COMPARE INPUT(I THRU J) TO SYMBOL-TABLE.VALUES
IF COMPARE = .TRUE THEN INDEX = SYMBOL-TABLE.NO
ELSE BEGIN
COMMENT: LABEL IS NOT IN SYMBOL TABLE
SYMBOL-TABLE.INDEX =.SYMBOL-TABLE.INDEX + 1
INDEX = SYMBOL-TABLE.INDEX
MOVE INPUT(I+1 THRU J-1) TO SYMBOL-TABLE(INDEX).NAME
MOVE COUNT TO SYMBOL-TABLE(INDEX).NO-CHAR
TAG = "LAB"
LOCATION = I + 1
PUSH TOKEN ON TOKEN-STACK
TOKEN-COUNT = TOKEN-COUNT + 1
J=J+1
I=1J
ELSE BEGIN
J=J+1
COUNT = COUNT + 1
END-CASE

Figure 10 (continued)

20

CASE ATOM = BLANK
BEGIN
COMMENT: BLANKS ARE NOT STORED AS TOKENS BUT ARE SKIPPED
IF INPUT(J) = "B" THEN J = J + 1
ELSE I = J

END-CASE

CASE ATOM = DELIMITER
BEGIN
TAG = "DEL"
CASE INPUT(J) - "("
INDEX = "LPAREN"
CASE INPUT(J) = "),
INDEX = "RPAREN"
CASE INPUT(J) = ";"
INDEX = “SCOLON"
CASE INPUT(J) = ":"
INDEX = '"'COLON'
CASE INPUT(J) = ","
INDEX = ''COMMA"
CASE INPUT(J) = “["
INDEX = "LBRAK"
CASE INPUT(J) = "]"
INDEX = "RBRAK"
LOCATION = I
PUSH TOKEN ON TOKEN-STACK
TOKEN-COUNT = TOKEN-COUNT + 1
J
I
END-CASE

J + 1

J

Figure 10 (continued)

21

CASE ATOM = OPERATOR

BEGIN
TAG = "OPR"
CASE INPUT(J) = " "

INDEX = "'IASG"
CASE INPUT(J) = "+"
INDEX = "IPLUS"
CASE INPUT(J) = "-"
INDEX = "IMINUS"
CASE INPUT(J) = """
INDEX = ''IMULT"
CASE INPUT(J) = "/"
INDEX = "“IDIV"
CASE INPUT(J) = "="

INDEX = "IEQ"
CASE INPUT(J) = "y
INDEX = "'IGE"

CASE INPUT(J) = "¢
INDEX = "ILT"
CASE INPUT(J) = i
INDEX = "INE"
CASE INPUT(J) = "q
INDEX = "INOT"
CASE INPUT(J) = "<
INDEX = "ILE"
CASE INPUT(J) = '
INDEX = "IGE"

CASE INPUT(J) = "TRUE"
INDEX = "ITRUE"
CASE INPUT(J) = "FALSE"
INDEX = "IFALSE"

LOCATION = I
PUSH TOKEN ON TOKEN-STACK

Figure 10 (continued)

22

TOKEN-COUNT = TOKEN=COUNT + 1
J=J +1
I =J

END-CASE

END-PROC

Figure 10 (continued)

23

2.7 Error Detection. Errors in the source code can be detected by
the translator in the scanning phase, parsing phase, and the
execution phase. During the scanning phase the translator can detect

the following errors:
illegal characters (e.g. unprintable characters in a line)
faulty strings (e.g. missing quote marks)
number overflow (e.g. numbers longer than the space allowed in
the index field)
symbol overflow (e.g. identifiers longer than the space allowed

in the symbol table)

24

CHAPTER 3

Parsing

3.1 General. Once the tokens and the symbol table have been
generated by the scanner, the parsing phase is ready to begin. There
are three functions that can be accomplished in the parsing phase.
The first function is syntax analysis or checking the input to insure
it conforms with the grammar of the language. The second function is
semantic analysis or checking the operators and operands against the
symbol table to insure the administrative rules of the grammar are
followed. A grammar that requires checking against the symbol table
is called 'context sensitive'". A grammar that does not require
checking against the symbol table is called "context free'". The
third function of the parser is to generate code.

In this chapter the functions are segmented and discussed
separately. However, in an actual parser the syntax analysis, the
semantic analysis, and the code generation functions are integrated
throughout the parsing process.

3.2 Syntax Analysis. Syntax analysis is the function of checking the
input to insure it conforms with the grammar of the language. To
accomplish this the parser must have a definition of the grammar for
the input language in a machine readable form. It then reads the tokens
created in the scanning phase and compares the tokens with this machine
readable form of the grammar.

In general, there are two types of parsers, top-down parsers and
bottom-up parsers. Top-down parsers that can parse a recursive language

are further categorized as a recursive parser or an explicit stack parser.

25

These two categories are further classified by the number of tokens
the parser must look ahead before it can recognize a production. For
example, if the parser can determine the production by looking at one
token, then the parser is classified as 111 (look ahead, left-to-right
parse, one token) or an lrl (look ahead, right-to-left parse, one
token). If the parser must look ahead more than one token then it is
classified as an 11k or 1lrk parser where k is the number of tokens it
must look ahead. Generally, top-down parsers are left-to-right parsers.
Another distinguishing feature of a parser is the number of passes
through the tokens the parser must make to generate the code. Some
parsers accomplish this in one pass, others require two or more passes.

Bottom-up parsers are categorized into three groups; simple precedence
parsers, operator precedence parsers, and other 1lrk parsers. In a simple
precedence parser every token is parsed. 1In an operator precedence
parser only the operators are important in the parse, and therefore
the operands become "invisible' in the parse. This concept of invisibility
will be further discussed in the examples. Other bottom-up parsers use
combinations of top-down and bottom-up parsing.

In the CS-700 Interpreter all the code is generated from a ;ingle
pass, and all productions except expressions are parsed using a top-
down parser. The top-down parser uses an explicit stack and for the
most part is an 111 parser. (Two productions require a lock ahead
of two tokens.} The bottom-up parser is an operator parser that parses
expressions from right-to-left. Therefore, most of the examples will

concentrate on these two types of parsers.

26

3.3 Top-Down Parsing.

A recursive decent parser must use a recursive language to
perform syntax analysis. Therefore, languages like COBOL or
FORTRAN cannot be used to implement a recursive parser. The recursive
parser is the easier to implement because only one procedure needs
to be written for each non-terminal in the grammar. An example of
an algorithm for a recursive decent parser for an 111 grammar is

illustrated in Figure 11.

Recursive Decent Parser

Grammayr (A}

111

/N

b ch aBC
c

/\

aB cDf
> e
C D

Figure 11

27

PROCEDURE A(RETURN-CODE)
E&EE TOKEN = '"a
BEGIN
Eﬂ&k B(RETURN-CODE)
RETURN
END-CASE

CASE TOKEN = 'c"
BEGIN
MATCH "c"
CALL D(RETURN-CODE)
IF RETURN-CODE = "BAD" THEN RETURN
IF TOKEN = "f" THEN MATCH "f"
ELSE RETURN-CODE = "BAD"

END

ELSE
BEGIN
PRINT ERROR
RETURN-CODE = ""BAD"
RETURN

END-CASE

END-PROC

Figure 11 (continued)

28

PROCEDURE B (RETURN-CODE)
IF RETURN-CODE = '"BAD" THEN RETURN
CASE TOKEN = "h
BEGIN
MATCH ''b"
RETURN
END

E&EE TOKEN = ''¢"
BEGIN
Eé&& D(RETURN-CODE)
RETURN

END

ELSE
BEGIN
PRINT ERROR
RETURN-CODE = "BAD"
RETURN

END

END-CASE

END-PROC

Figure 11 (continued)

29

PROCEDURE C(RETURN-CODE)
IF RETURN-CODE = "BAD' THEN RETURN

E&EE TOKEN = "'¢"
BEGIN
EéEE C(RETURN-CODE)

RETURN

CASE TOKEN = "a
BEGIN
CALL D(RETURN-CODE)
RETURN
END

CASE TOKEN = 'e"
BEGIN
CALL D(RETURN-CODE)
RETURN

END

ELSE

BEGIN
PRINT ERROR
RETURN-CODE = "BAD"
RETURN

————

END

END-CASE

END-PROC

Figure 11 (continued)

30

PROCEDURE D(RETURN-CQDE)
IF RETURN-CODE = "BAD" THEN RETURN

CASE TOKEN = "a"
BEGIN
CALL B(RETURN-CODE)
IF RETURN-CODE = "BAD' THEN RETURN
CALL C(RETURN-CODE)
RETURN
END

CASE TOKEN = ''e"
BEGIN
MATCH '"'e"
RETURN

END

ELSE
BEGIN
PRINT ERROR
RETURN-CODE = '"BAD'
RETURN

END

END-CASE

END-PROC

Figure 11 (continued)

31

The logic for this recursive decent parser can be depicted in

a set of rules in a table.

Figure 12.

Grammar (A)

A

N

aB

C

c

Rules for Recursive

C

Decent Parser

The rules for Grammar (A) are shown in

Tokens
Procedure a b ¢ ¢ £
A Match "a" Error Match "e" Error Error
CALL B CALL D
Match “f
B Error Match "b" Match "e" Error Error
CALL D
€ CALL D Error Match "e" CALL D Error
CALL C
D Match "a" Error Error Match "e" Error
CALL B
CALL C
Figure 12

The second method of constructing a parser uses an explicit stack.
In this method the grammar in a machine readable form is pushed onto
a stack as needed, and then matched to the input token stream. To
accomplish this the procedures are more involved and complex, but
this method can be implemented with a non-recursive language such as
COBOL or FORTRAN. The CS-700 Interpreter is implemented in FORTRAN
and uses an explicit stack parser. An example of an explicit stack

parsing algorithm for Grammar (A) is depicted in Figure 13.

Explicit Stack Parsing Algorithm

PROCEDURE PARSE-USING-EXPLICIT-STACK

EH§E A" ON STACK
TOKEN-POINTER = 1
DO UNTIL DONE
BEGIN
EE BOT-0F-STACK éﬂg TOKEN = END-OF-LINE I§§§ DONE
EE Egl BOT-0F-STACK éﬁg TOKEN = END-OF-LINE THEN ERROR

—_—

END-QF-LINE THEN ERRCR

IF BOT-OF-STACK AND TOKEN NOT
IF STACK.TOP = TOKEN THEN BEGIN

POP STACK

TOKEN-POINTER = TOKEN-POINTER + 1

ELSE
CASE STACK.TOP = "A"
- BEGIN
CASE TOKEN = "a"
POP STACK
PUSH "aB" ON STACK

Figure 13

33

CASE TOKEN = "¢
POP STACK
PUSH "'cDf" ON STACK

ELSE ERROR
END-CASE

CASE STACK.TOP = "B"
BEGIN

CASE TOKEN = "b

POP STACK

PUSH "b" ON STACK
CASE TOKEN = "c"

POP STACK

PUSH "cD" ON STACK
ELSE ERROR

END-CASE

CASE STACK.TOP = "C"
BEGIN '
CASE TOKEN = "a"
POP STACK
PUSH "aBC" ON STACK
CASE TOKEN = ''c*
POP STACK
PUSH '"cC" ON STACK
CASE TOKEN = ''e"
POP STACK
PUSH "D ON STACK

ELSE ERROR
END-CASE

Figure 13 (continued)

CASE STACK.TOP = "D"
BEGIN
CASE TOKEN = "a"
POP STACK
PUSH '"aBC" ON STACK
CASE TOKEN = "e"
POP STACK
PUSH "e' ON STACK
ELSE ERROR

END-CASE

END-CASE

END-DO

END-PROC

Figure 13 (continued)

35

The CS-700 Interpreter uses two algorithms to parse statements.
The top-down algorithm begins the parse, but once an expression is
detected it calls the bottom-up parser. The bottom-up parser parses
the expression and returns to the top-down paréer. Top-down parsing
will be ‘discussed first, and bottom-up parsing will be discussed in
the next section. The following are general rules usedvfor-top—down
parsing.
1. Start: Push the start symbol on the explicit stack and
set pointer to first token.
2. Loop:
a. If bottom-of-stack and end-of-line, then done.
b. If not bottom-of-stack and end-of-line, then error.
¢. If bottom-of-stack and not end-of-line, then error.
d. If term on stack matches token, then pop stack,
move pointer, and continue to loop.
e. If non-terminal on stack, then use parse table to
choose which production to use, pop the non—te%minal, and push the

selected production on the stack with the left edge up.

example—
selected production- cDf

stack- c
D
F

36

The logic for this explicit stack parser can be depicted in

a set of rules in a table. The rules for Grammar (A) are shown in -

Figure 14.
Grammar (A) A
111°
aB cDf
b/\cD ch/\e
cC D
Rules for Explicit Stack Parser
Tokens
Procedure a B © © 5
A Pop "A" Error Pop A" Error Error
Push '"aB" Push "cDf™
B Error Pop "B" Pop "B" Error Error
Push "b" Push "cD"
c Pop "C" Error Pop "'C" Pop "C" Error
Push "D Push "'eC" Push '"'D" Error
D Pop "D" Error Error Pop "D" Error
Push "aBC" Push "e!
Figure 14

37

The example in Figure 15 illustrates the parsing of an input

string from Grammar (A) by an explicit stack parser.

Grammar (A) A
111

aB

c¢hf
b kf///ﬁ\\\sscn aBgé///\\\\Eie

cC D
Input string a c a b e
Step Token Execution Explicit Stack
1 PUSH "A"
TOKEN-POINTER = 1° l A .
2 a {STACK.TOP = A & TOKEN = a) a
POP STACK B
PUSH '"aB" F 4
3 a (STACK.TOP = TOKEN)
POP STACK F
MOVE TOKEN-POINTER B
4 C {STACK.TOP = B & TOKEN = c) c
POP STACK D
‘PUSH HeD" B
5 c (STACK.TOP = TOKEN)
_POP STACK ¢
MOVE TOKEN-POINTER D
6 a {(STACK.TOP = D & TOKEN = a) a
POP STACK B
PUSH "aBC" C
P
Figure 15

38

Step Token Execution
7 a (STACK.TOP = TOKEN)
POP STACK
MOVE TOKEN-POINTER
8 b (STACK.TOP = B & TOKEN = b)
POP STACK
PUSH ''b"
9 b (STACK.TOP = TOKEN)
POP STACK
MOVE TOKEN-POINTER
10 e (STACK.TOP = C & TOKEN = e)
POP STACK
PUSH HDH
11 e (STACK.TOP = D & TOKEN = e)
POP STACK
PUSH '"e"
12 e (STACK.TOP = TOKEN
POP STACK
* MOVE TOKEN-POINTER
13 " (BOT-OF-STACK & END-OF-LINE)

DONE

Figure 15 (continued)

39

Explicit Stack

o™=

= o

= o

The previous examples used an abstract grammar for tutorial
purposes. The example in Figure 16 uses a more functional grammar

and a parse of an input string using an explicit stack parser.

Example of Explicit Stack Parsing

Grammar (Equation) (equation)

(term) = (term) ;

N\

(factor) l (factor) (sign) (term)

N,

(number) I (variable) - I + | * ' /
o] 1|2 |®] semsa AlBlc]D| i]|z
Input string A = 1 :

Note: Non-terminals are enclosed in parenthesis
This grammar is almost 111. The production where term reduces
to factor or factor,sign,term is an 112 production.

Figure 16

Step Token Execution

1 (START) .
PUSH (equation)
TOKEN-POINTER = 1

2 A (STACK.TOP = (equation) & TOKEN = A)
POP STACK
PUSH (term) = (term) i

3 A (STACK.TOP = (term) & TOKEN = A)
POP STACK
PUSH (factor)

4 A (STACK.TOP = (factor) & TOKEN = A)
POP STACK
PUSH (variable)

5 A (STACK.TOP = (variable) & TOKEN = A)
POP STACK
PUSH A

6 A {STACK.TOP = TOKEN)
POP STACK
MOVE TOKEN-POINTER

7 = (STACK.TOP = TOKEN)
POP STACK
MOVE TGKEN-POINTER

8 1 (STACK.TOP = (term) & TOKEN = 1)
POP STACK
PUSH {factor)

9 i {STACK.TOP = (factor) & TOKEN = 1)

POP STACK
PUSH (number)

Figure 16 (continued)

41

Explicit Stack

(equation)

(term)

(term)

—-{equa;ieﬁ+—-

(factor)
—{Eermi—

(term)

b

(variable)
~{faetar)-

(te;m)

A
—{wariable}-

(te;m)

(te;m)

;]

(factor)
—{termy—

]

(number)
(factor)

Step

Token

Execution

10

11

12

13

v

(STACK.TOP
POP STACK
PUSH 1

{number) & TOKEN = 1)

(STACK.TOP
POP STACK
MOVE TOKEN-POINTER

TOKEN)

(STACK.TOP = TOKEN)

POP STACK

MOVE TOKEN-POINTER
(BOT-OF-STACK & END-OF-LINE)
DONE

Figure 16 (continued)

42

Explicit Stack

1
(number)

.

i

-..'.—

The grammar for the CS-700 Interpreter is depicted in Figure 17.

Grammar for CS-700 Interpreter

proc-def
head body
PROC id [nm-list] # opt* st-1ist ENDPROC
/ \
(idﬁg—fﬂdﬂdﬂ‘:‘I’;;:’;—:—l‘eol scope 1id# # state tails
IN | OUT | VARY | GLOBAL | EXTERNAL [>lab:] st # state

GO TO lab | BEGIN st-list END | IF E THEN st-list [ELSE st-list] FI]
WHILE E DO st-list ENDWHILE | CASE (CARD E : st-list)7#*ENDCASE |
READ arglist I WRITE arglist l CALL id [arglist]] RETURN I E

(arg#)

\

id I int l real ’ E

Terminals are in upper-case type.

E represents an expression.

[] represents an entry that may or may not be present.

* prepresents an entry that may be present more than one time.

77 represents more than one entry separated by commas.

777~ represents more than one entry separated by semicolons.

eol represents an end-of-line.

This grammar is almost an 111, however, the productions from "#"
and 'arg" cause it to look ahead two tokens.

Notes:

LT = B | 7 I L

Figure 17

43

The rules for the CS5-700 Interpreter grammar are depicted in

Figure 18.

Rules for CS-700 Production (Head)

Terminals

PROC | id (.) ; eol| IN | OUT| VARY|GLOB| EXT

Production

push | Note
prod 3
push
prod

pop
PROC hoth

. pop
i both

proc-def

head

push pop |pop
prod prod|prod

(pop
both

: pop pop
idff both prod

Note|pop
’ 1 |prod

) pop
both

nm-1ist

Note|Note

1 pop
P both

push [push | push|push|push
prod |prod | prod |prod|prod
push |push | push [push|push
prod |prod | prod|prod|prod
pop
both

opt*

scope

IN

pop

OUT
both

pop

VARY
both

pop
both
EXT pop
both

GLOB

Figure 18

44

Rules for C5-700 Production (Body)
id
END- int |other
Production > |Go TO | BEGIN IF| WHILE| READ|WRITE| CALL| RETURN E 5 eol [PROC (|real|terminals
— pop |pop pop | pop |pOp | pop |pop | pop pop
P prod|prod | prod |prod|prod | prod| prod | prod prod
-, push|push | push | push|push | push| push | push push
ooy prod|prod | prod | prod]prod | prod| prod | prod prod
t1list push|push | push [push|push | push| push | push push
P L8 prod|{prod | prod | prod|prod | prod| prod | prod prod
__— push|push | push | push|push | push| push | push{push |push END
PO prod|prod | prod | prod| prod | prod| prod | prod] prod |prod
. push | push
*
?mpu prod | prod
S pop [pop PCP | pop | pop | Pop |pop | Pop | pop pop
prod|prod | prod | prod| prod | prod| prod | prod| prod |[prod
R push|push | push | push| push | push| push | push| push |push
s prod| prod | prod | prod| prod | prod| prod | prod| prod |prod
; push
arglist prod
Note Note
arg 77 5 5
pop
E both
other Note Note
terminals 2 4
Figure 18 (continued)

45

Notes:

1. Since there may be a series of id's separated by commas, both are
popped and another "id," production is pushed.

2. This is one place where the grammar is 112. Therefore the parser
must look at the next terminal before taking action.

3. Blanks are either errors or impossible conditions.

4. Pop both if match, otherwise it is an error.

5. Since there may be a series of arg's separated by commas, both are
popped and another "arg,'" production is pushed.

Figure 18 (continued)

46

The example in Figure 19 is a parse of a procedure using an explicit
stack and the grammar for the CS-700 Interpreter. This example will
omit the parsing action for expressions (E), and instead, will call
the Bottom-Up Parser when an E is encountered. Bottom-up parsing will
be explained in the next section. Normally, the source code would be
in the form of 3-tuple tokens (see Chapter 2). However, for ease in

reading, the source code is not converted to tokens in this example.

Example of Parsing in CS-700 Interpreter

Grammar (ref. Figure 17)

Source code PROC A (NUM):
VARY NUM;
NUM<-NUM * 3.,142; (see Note)
ENDPROC

Note: For this example the expression is replaced by "E".

Step Token Execution Explicit Stack
1 (Start)
PUSH "proc-def™
TOKEN-FOINTER = 1 proc-def
2 PROC POP S5TACK head
PUSH ‘'head body" body
-pree—def—
3 PROC POP STACK PROC
PUSH "PROC id [nm-list] # opt#*" id
[nm-list]
#
opt*
—head-
body
Figure 19

47

Step

Token

Execution

10

11

PROC

NUM

(Match)
POP STACK
MOVE TOKEN-POINTER

(Match)
POP STACK
MOVE TOKEN-POINTER

POP STACK
PUSH "(id#)"

(Match)
POP STACK
MOVE TOKEN-POINTER

(Match)
POP STACK
MOVE TOKEN-POINTER

(Match)
POP STACK
MOVE TOKEN-POINTER

POP STACK
PUSH ';"

(Match)
POP STACK
MOVE TOKEN-POINTER

Figure 19 (continued)

48

Explicit Stack

-PRBG-
id
[nm-1list]
#
opt*
body

—3d-
[nm-list]
#
opt*
body

(
id#
)
—f{nm-1ist}-
#
opt#
body

i
id#-
)
#
opt*
body

—-3dF~
)
#
opt#*
body

s
#

opt*

body

—F—
opt#*
body

g
opt*
body

Step Token Execution

12 VARY POP STACK

PUSH ''scope id/f #"
13 VARY POP STACK

PUSH "VARY"
14 VARY (Match)

POP STACK

MOVE TOKEN-POINTER
15 NUM (Match)

POP STACK

MOVE TOKEN-POINTER
16 : POP STACK

PUSH "3
17 2 (Match)

POP STACK

MOVE TOKEN-POINTER
18 E (No more head)

POP STACK
19 E POP STACK

PUSH "st-1list ENDPROC"
20 E POP STACK

PUSH "state tail"

Figure 19 (continued)

49

Explicit Stack

scope
id7”
#
opt*
body

VARY
-geepe—
id7#
#
opt*
body

VARY
id7r
Ty
opt#
body

—id3E
#

opt*
body

-
opt*
body

—i.—
opt*
body

eptt
body

st-list
ENDPROC
-bedy-

state
tail#*
-gb-1i56—
ENDPROC

Step Token Execution
21 E POP STACK
PUSH " [>lab:] st"
22 E (No optional label)
POP STACK
23 E POP STACK
PUSH "E'
24 E POP STACK
CALL BOTTOM-UP PARSER
MOVE TOKEN-POINTER
25 5 POP STACK
PUSH "# state"
26 : POP STACK
PUSH '";"
27 : (Match)
POP STACK
MOVE TOKEN-POINTER
28 ENDPROC {(No more statements)
POP STACK
29 ENDPROC (Match)
POP STACK
MOVE TOKEN-POINTER
30 {(Bot-of-Stack and End-of-Line)

DONE

Figure 19 (continued)

50

Explicit Stack

[>lab:]
st
-atate-
tail*
ENDPROC

-Plabs+i-
st
tail+*
ENDPROC

E
—at—
tail*
ENDPRQC

-
tail*
ENDFROC

#

state
~-tailt—
ENDPROC

H
! 5
state
ENDPROC

—Fe
state
ENDPROC

-gtate—
ENDPROC

—ENBRROG—-

3.4 Bottom-Up Parsing. In the previous example whenever an expression
was detected the algorithm called for the Bottom-Up Parser. Expressions
are composed of identifiers, strings, numbers, operators and delimiters.
The function of a bottom-up parser is to check the syntax of these
elements with the operator grammar, the rules‘for expressions. The
operator grammar sets the rules for the relative positioning. of the
elements of an expression and the precedence of the operators. Since
this is an operator precedence parser, the operands are invisible.

A bottom-up parser also can be implemented using a stack. Some
bottom-up parsers use two stacks, one for operators and delimiters,
and the other for identifiers and numbers. Other bottom-up parsers
use one stack for all. In the examples in this section only one stack
will be used.

Instead of the operators Push and Pop, the stack operators in the
bottom-up parsing examples in this section will use Push and Reduce.
The Push operator performs in the same manner as in the top-down
parser. However, the Reduce operator performs multiple pop operations,
and replaces the popped elements with a temporary element (E). For
example, assume the elements "A + 5" are in a stack and the reduce
operator is performed. The stack would now contain "E'", the temporary
element.

The bottom-up parser is faced with three problems; when to push,
when to replace, and how much is to be replaced. 1In the following
examples and, in general, in the CS-700 Interpreter the question of

how much is to be replaced is limited to the following:

51

1. operand, operator, operand
2. parenthesis, operand, parenthesis
3. bracket, operand, bracket
An operand can be an identifier, number, or temporary (E).

The following are some examples:

Before After
Reduction Reduction

Example #1- A + 5 5
+

A E
Example #2- 500 + E E
*

500 E
Example #3- E + A A
+

E |«
Example #4- E + E E

=+
{j_

Example #5- (A + 5)

—~P + o

)
E
|

([& |

The questions of when to push and when to replace are determined by
rules formed from the precedence of the operators allowed in a grammar.
For example, normally the expression 3 + 4 * 5 would give an answer of
23 because the multiplication operation is assumed to have a higher

precedence than the addition operation. But, (3 + 4) * 5 would be

52

35 because the parentheses (delimiters) have a higher precedence than
the multiplication operation.

A bottom-up parser requires a grammar similar to a top-down parser.
A simple grammar for a bottom-up parser is depicted in Figure 20. In
this example the operations allowed are multiplication (*) and addition

(+). The delimiters allowed are the left and right parentheses.

Simple Grammar for a Bottom-Up Parser

Grammar (E)

operator precedence E
E +T. T
T *F F
/\\
(E) operand
Figure 20

Next, the rules for the simple grammar must be defined. The first
rule is that there cannot be two adjacent operands. The second rule
is that the low to high precedence of operators is (, +, *, and)
respectively. These rules are depicted in the table for Rules for

Parsing Grammar (E) in Figure 21.

53

Rules for Parsing Grammar (E)

Next Token in Input

Operator
on + * () operand e?d_Of_
Stack.Top input
+ Reduce Push # Push (Reduce Push Reduce
operand
Push
* Reduce Reduce Push * Reduce Reduce
operand
Push
(Push + Push * Push (Push) Reduce
operand
) Reduce Reduce Reduce Reduce Error Reduce
bot-of- Push + Push *# Push (Error Push Done
stack operand

Figure 21

Notice that in the above rules there is no row for operands. This
is because once an operand has been pushed onto the stack, it becomes
invisible when making the next comparison. For example, if "A + B"
are in the stack and the next input token is "*'', then the "+" would
be compared to the "*" because the operand is invisible.

In summary, how-much-to-reduce is determined by a set of rﬁles
developed from formations of expressions. The when-to—-push and
when-to-reduce quéstions are determined by rules for parsing the
grammar which in turn are developed from the relative positioning
of elements of the expressions and the precedence of the operators
in the expressions.

Figure 22 depicts the parsing of an input string (expression)

using Grammar (E) and the Rules for Parsing Grammar (E).

54

Bottom-Up Parse Using Grammar (E)

Input string- (+ 100) + 5 * B
Token Token
Step on Stack.Top in String Execution Stack
1 bot-of-stack (Push (I (I
2 (A Push operand A
(
3 (+ Push + +
A
(
4 + 100 Push operand 100
+
A
(
5 +) Reduce 100
+ } E
A
(
6 () Push))
E
(
7) + Reduce)
E E
{ .
8 bot-of-stack + Push + +
E
9 + 5 Push operand 5
+
E
10 + * Push * *
S
+
E
Figure 22

55

Token Token

Step on Stack,Top in String Execution

11 * B Push operand
12 * end-of-input Reduce

13 + end-of-input Reduce

14 bot-of-stack end-of-input Done

Figure 22 (continued)

56

Stack

M+ o

B+ o % W

+ =
=

In the CS-700 Interpreter the precedence of the operators is a
right-to-left precedence. For example, for the expression "3 * 4 + 5"
the answer would be 27 — not 60 — because the addition operator is to
the right of the multiplication operator, and therefore has a higher
precedence.

The grammar for the C5-700 Interpreter Bottom-Up Parser is

depicted in Figure 23.

Grammar for CS-700 Bottom-Up Parser

Operator precedence E

!

basic | (E) I op E | basic op E

/

value | id | id [E## | id (E7) *l'l*i/bkl:l("‘l

Ty \a

number l string | vector-constant (list separated (list separated
\\\\\\\EA by semicolons) by commas)
real | 1nteger exponential-form (number list separated
by spaces)
Figure 23

The rules for CS-700 Interpreter parsing are depicted in Figure 24.

Rules for CS-700 Interpreter Bottom-Up Parser

Next Token in Input String

Stack end
Top [] ; . () opr |opnd gk
[push |[push |push |push |[push | error | push |push |error
1 reduce |reduce |reduce| reduce |reduce reduce | reduce|reduce| reduce
: push [push |[push |error |push lerror push |push [error
. push |error |error [push |push |push push [push |error
(push |error |error [push |push I|push push {[push |error
) error |reduce |reduce|reduce|error |reduce reduce |reduce| reduce
opr push |reduce [reduce|reduce|{push [reduce {push [push |[reduce
FyEeE= push |error ferror }error |[push [rror push |push |done
stack
NOTE: operands once pushed onto the stack are invisible.

next token, the push action results in right-to-left
precedence of operators.

Figure 24

58

when an operator is on Stack.Top and another operator is the

An example of a bottom-up parse using the CS-700 Interpreter

grammar and rules for parsing is depicted in Figure 25.

Bottom-Up Parse in CS-700 Interpreter

Input string- Al (|B , 1 cl1)]l x| 2
Token on Token in
Step Stack.Top String Execution Stack
1 bot-of- A Push operand lA !
stack
2 bot-of (Push ((
stack A
3 (B Push operand B
(
A
4 (. Push , s
: : - B
(
A
5 . c Push operand C
3
B
(
A
6 ") Push))
C
H
B
(
A
7) ® Reduce)
C
) E
B
(
A
Figure 25

59

Token on Token in

Step Stack.Top String Execution
8 bot-of- * Push =*
stack
9 * 2 Push operand
10 * end-of- Reduce
line
11 bot-of end—-of- Done
stack line
NOTE: Operands on stack are invisible

Figure 25 (continued)

60

Stack

An algorithm for a bottom-up parser using a decision table of
rules for parsing can be a rather simple procedure. Figure 26 is an

example of such an algorithm for the CS-700 Interpreter.

Algorithm for Bottom-Up Parser
in CS-700 Interpreter

PROCEDURE BOTTOM-UP PARSER (RETURN-CODE)
COMMENT: ROW IS THE ROW NUMBER (FIGURE 24), COL IS THE COLUMN NUMBER

(FIGURE 24)
COMMENT: SET ROW NUMBER TO BOTTOM-OF-STACK
ROW = 8
DO UNTIL DONE
BEGIN

READ TOKEN

IF END-TOKEN THEN COL = 9

IF TOKEN.INDEX = "LBRAK" THEN COL = 1

IF TOKEN.INDEX = ""RBRAK" THEN COL = 2

IF TOKEN.INDEX
IF TOKEN.INDEX
IF TOKEN.INDEX
IF TOKEN.INDEX = "RPAREN' THEN COL
IF TOKEN.TAG = "ID'* OR "INT" OR "REAL'" THEN COL = 8
COMMENT: CHECK TABLE FOR ACTION REQUIRED

IF TABLE(ROW,COL) "PUSH" THEN CALL PUSH-TOKEN

IF TABLE(ROW,COL) = "REDUCE" THEN CALL REDUCE-STACK
IF TABLE(ROW,COL) = "DONE" THEN RETURN

IF RETURN-CODE = "BAD" THEN RETURN

I

"SCOLON'" THEN COL = 3
""COMMA" THEN COL = 4
"LPAREN" THEN COL

5
6

]

END-DO

END-PROC

Figure 26

61

PROCEDURE PUSH=-TOKEN

COMMENT: IF TOKEN IS AN OPERATOR OR DELIMITER IT BECOMES THE ROW VALUE
PUSH TOKEN ON STACK

IF TOKEN.TAG = "OPR" OR "DEL'" THEN ROW = COL

RETURN
END-PROC

PROCEDURE REDUCE-STACK
COMMENT: L-H-E IS A FUNCTION THAT FINDS THE LEFT-HAND-END OF THE TOKENS
ON THE STACK, AND POPS THESE TOKENS.

IF ROW = 2 THEN L-H-E-LBRAK
IF ROW = 6 THEN L-H-E-RPAREN
IF ROW = 7 THEN L-H-E-OPR

COMMENT: SET ROW = LAST OPERATOR OR DELIMITER ON STACK
IF STACK.TOP = BOT-OF-STACK THEN ROW = 8
IF STACK.TOP.INDEX = "LBRAK" THEN ROW = 1
IF STACK.TOP.INDEX = "RBRAK" THEN ROW = 2
IF STACK.TOP.INDEX = "SCOLON" THEN ROW = 3
IF STACK.TOP.INDEX = "COMMA" THEN ROW = 4
IF STACK.TOP.INDEX = "LPAREN" THEN ROW = 5
IF STACK.TOP.INDEX = "RPAREN' THEN ROW = 6
IF STACK.TOP.TAG = "OPR" THEN ROW = 7
PUSH “E" ON STACK

RETURN

END-PROC

[}
]

[}

PROCEDURE ERR-RTNE

PRINT "ERROR"

PRINT (TOKEN.TAG, TOKEN.INDEX, TOKEN.LOCATION)
RETURN-CODE = ''BAD"

RETURN

END-PROC

Figure 26: (continued)

62

3.5 Code Generation, This section describes where the parser takes
semantic actions, generates code and the function of the code. The

master's report on Models for Translator Design presents the format of

the code and execution of the code.
The Grammar for the CS-700 Interpreter, Figure 17, depicts the

first production as follows:
proc-def

head body

This production shows the two basic parts of the grammar for procedures.
The "head" is a section of the grammar that names the procedure,
identifies the arguments, and declares the scope of the variables.

Code is not generated during the parsing of statements in the
"head'" section until all the '"head" statements are parsed. At this
time the parser reviews the identifiers in the symbol table. For each
identifier that has a scope of IN or VARY, the parser generates code
to link these arguments from the calling program to the corresponding
value/address field in the symbol table.

Once the code for the "head" is generated, the parser begins
parsing the productions in the body. The body contains a list of pro-
gram instructions. As each statement is parsed, code is generated to
perform the action required by the instruction. When the body is
completely parsed and the "ENDPROC" is detected, the parser generates
code to link return arguments back to the calling procedure. Return
arguments are identified in the symbol table as those with a scope of

OUT or VARY.

63

After the parser has generated all the code it then calls for the
execution phase. Again, this phase is discussed in detail in Models

for Translator Design. The next two figures depict all the statements

that cause semantic actions to be taken, a description of the actions
taken, and all the statements that cause code to be generated and a

description of the function of the generated code.

64

The semantic action taken during parsing is depicted in Figure 27.

Semantic Action During Parsing

65

Production Semantic Actions
1. PROC id [nm-list]
PROC none
id Set symbol table TYPE to PROC-ID.
(id”#) Set symbol table TYPE to IN.
2. scope id
IN [ouT [vary | GLOBAL| EXTERNAL none
id Set symbol table TYPE to keyword.
Note: If TYPE is IN, then it can
only be changed to VARY or OUT.
If TYPE is LOCAL (the default
value), then it can only be
changed to GLOBAL.
3. >lab:
> none
lab Set symbol table TYPE to LABEL.
Note: TYPE could have been LOCAL
or LABEL.
5. CALL id [arglist]
CALL none
id Set symbol table TYPE to PROC-ID
(arg 7) none
Figure 27

28.

The code generation actions taken during parsing arc depicted in Figure

Code Generation During Parsing

Production Code Generation During Parsing

1.

body Code is generated to forward link
all arguments from the calling
procedure.
GO TO lab GO TO none
lab Case 1: If the label has a value of
a line number, then code is generated
for a branch direct instruction.
Case 2: If the label does not have a
value of a line number (the label has
not been parsed prior to this state-
ment), then code is generated for a
branch indirect thru the symbol table
instruction.
IF E THEN st-list [ELSE st-list] FI
IF none
E Code is generated to call the bottom-
up parser.

THEN Code is generated for a branch-if-false
instruction where the address of the
branch is temporarly unknown. The
current code address is saved so the

unknown address can be completed later.

Fipure 28
66

st-list Code is generated as required by the
statements following.
FI Complete the unknown branch address
of the instruction that jumped over the
ELSE statement list.
4. WHILE E DO st-list ENDWHILE
WHILE Save the address of the next code to
be generated. This address will be
inserted into the branch address at
the end of the "DO'" list of statements
to provide the loop back to the beginning

of the "DO" list of statements.

E Code is generated to call the bottom-up
parser.
DO Code is generated for a branch-if-false

instruction. The branch address is
temporarily unknown. This address when
completed will be to the first instruction
after the "DO" loop.

st-list Code is generated as required by the
statements following.

ENDWHILE Code is genefated to branch back to the
beginning of the '"DO" loop (the call to
the bottom-up parser).

Complete the unknown branch address of
the branch-if-false instruction with
the address of the next line of code to

be generated.

Figure 28 (continued)
67

st-list Code is generated as required by the
statements following.
FI Complete the unknown branch address

with the address of the next code to be

generated.
iF none T
E Code is generated to call the bottom-up
parser.
THEN Code is generated for a branch-if-false

instruction where the address of the
branch is temporarily unknown. This
address when completed will be to the
first statement code of the ELSE section
The current code address is saved so the
unknown branch address can be completed
later.

st-list Code is generated as required by the
statements following.

ELSE Code is generated to branch over the

statements in the ELSE statement list.
The branch address is temporarily unknown,
so the current code address is saved so
the unknown branch address can be complete:
later.
Complete the unknown branch address of

the branch-if-false instruction.

Figure 28 (continued)
68

5. CALL id (arglist)

CALL none
id none
(arglist) Code is generated to call the bottom-up

parser for each expression in the arglist.
Code is generated to 1iﬂ& arguments to
the called procedure.
Code is generated to link a count of
the number of arguments to the called
procedure.
Code is generated to activate the called
procedure.

6. RETURN or ENDPROC

RETURN| ENDPROC Code is generated to link arguments

back to the calling procedure.

7. start-of-line

start-of-line Code is generated to set the source
token
line counter to the appropriate line
number.
8. E N Code is generated to call the bottom-

up parser.

Figure 28 (continued)

69

The example in Figure 29 depicts a parsing of source code and
indicates where semantic actions (SA) or code generation (CG) occurs.
A rule number is also included to allow for ease in referencing the
specific semantic action occurring or code generation action occurring.
For example, an "SA1" would indicate semantic action rule number one

in Figure 27. A '"CG5" would indicate code generation rule number five.

Example of Parsing in CS=700 Interpreter

Grammar (ref. Figure 17)

Source code PROC A (NUM);
VARY NUM;
NUM <-NUM * 3.142; (see Note)
ENDPROC

Note: For this example the expression is replaced by "E".
Semantic Action

Explieit or Code
Step Token Execution Stack Generation
1 (start)
PUSH "proc-def™
TOKEN-POINTER = 1 - proc—def
2 PROC POP STACK head
PUSH 'head body" body
proe—des
3 PRGC POP STACK PROC
PUSH "PROC id [nm-list] # opt=" id
[nm=1list]
#
opt*
-head-
body

Figure 29

70

Step

Token

Execution

10

PROC

NUM

(Match)
POP STACK
MOVE TOKEN-POINTER

(Match)
POP STACK
MOVE TOKEN-POINTER

POP STACK
PUSH "(id+#F)"

(Match)
POP STACK
MOVE TOKEN-POINTER

(Match)
POP STACK
MOVE TOKEN-POINTER

(Match)
POP STACK
MOVE TOKEN-POINTER

POP STACK
PUSH ";"

Figure 29 (continued)

71

Explicit
Stack

Semantic Action

or Code
Generation

-PROG—
id

[nm-1ist]
#

opt*
body

g

[nm-1ist]
#

opt*
body

(
id#

)
Fam—1lissd—
#

opt*
body

sl
id#
)
#
opt*
body

—idf-

body

SAl

5Al

Step Token Execution

11 : {Match)

POP STACK

MOVE TOKEN-POINTER
12 VARY POP STACK

PUSH ''scope id/7 #"
13 VARY POP STACK

PUSH "VARY"
14 VARY (Match)

POP STACK

MOVE TOKEN-POINTER
15 NUM (Match)

POP STACK

MOVE TOKEN-POINTER
16 ; POP STACK

PUSH ;"
17 ; (Match)

POP STACK

MOVE TOKEN-POINTER
18 E (No more head)

POP STACK
19 E POP STACK

PUSH "st-list ENDPROC"

Figure 29 (continued)

72

Semantic Action
or Code
Generation

Explicit
Stack

-—1.._
opt*
body

scope
id#f
#
opt#*
body

VARY
~-gespe—
idtr
#
opt*
body

VARY
id7#
#
opt#*
body

—rdt SA2
#
opt*
body

—H
opt#*
body

—+—
opt#*
body

ep%*
body

st=list
ENDPROC Cs1

-beéz-

Semantic Action

Explicit or Code
Step Token Execution Stack Generation
20 E POP STACK state
PUSH "state tail" tail*
—aE-diat-
ENDPROC
21 E POP STACK [>lab:]
PUSH " [>lab:] st st
—-state—
tail*
ENDPROC
22 E (No optional label) -{>leb+d-
POP STACK st
tail*
ENDPROC
23 E POP STACK E
PUSH """ —nf-
tail~*
ENDPROC
24 E POP STACK G- CG8
CALL BOTTOM-UP PARSER tail*
MOVE TOKEN-POINTER ENDPROC
25 - POP STACK #
PUSH "# state" state
~baidi—
ENDPROC
26 ; POP STACK ;
PUSH ¢ - " __#_
state
ENDPROC
27 - (Match) e
POP STACK state
MOVE TOKEN-POINTER ENDPROC
28 ENDPROC (No more statements) -state—
POP STACK ENDPROC
29 ENDPROC (Match)
POP STACK

MOVE TOKEN-POINTER

Figure 29 (continued)

73

I ENDPROC I CG6

Semantic Action
Explicit or Code
Step Token Execution Stack Generation

30 (Bot-of-Stack and End-of-Line)
DONE

Symbol Table After Parsing

Index Number of Literal Value or
No. Characters Name Scope Type Address
1 1 A PROC-ID
2 3 NUM VARY

Figure 29 (continued)

74

When the top-down parser in the CS-=700 Interpreter recognizes
an expression, it calls the bottom-up parser. The bottom-up parser
analyzes the expression, generates code and returns control to the
top-down parser. The code generated is determined by the type of
expression. There are five types of expressions in the €S-700
Interpreter bottom-up grammar. One expression, indexing, is not
implemented at this time and will only be referenced in the following
discussion. Figure 30 depicts the types of expression and the result-

ing code generation.

Code Generated During Bottom-Up Parsing

Type Code Generated

i. (E) No code is generated when the
parentheses are eliminated.

2. EopE A code triple is generated in
the form: op, E, E

3. opE A code triple is generated in the
form: op, E, null

4. id [E:E;...E] This type is indexing and has not
been implemented yet.

5. id (E,E,...E) Code is generated in the same manner
as in top-down procedures.

Note: "E'" can be a temporary value, a constant, or an identifier.

Figure 30

75

An example of code generation in the bottom-up parser is

depicted in Figure 31.

Example of Code Generation
During Bottom-Up Parsing

Grammar (ref. Figure 23)

Source code X<—A * B + 100
Step Token Remarks Code Generated
1. 100 Note: Dbottom-up parsing none

is right-to-left

2. + 100 none

B B + 100 This is a Type 3 IPLUS;id,n-index,loc;int,100,loc
expression.

4. * E When the code in step 3 none

is executed, a temporary
(E) will be left on the
stack. Therefore, E is
represented here as the

token.

5 A * E This is a Type 3 IMULT;id,n-index, loc;temp
expression.

6. <—E none

7. X<-E This is a Type 3 IASG;id,n-index,loc;temp
expression.

8. E This is the end of bottom-

up parsing of the ex-
pression. Control is
returned to the top-down
parser.

Figure 31

76

REFERENCE NOTES

Subject in Compiler Construction for
Subject in Project Report Digital Computers - David Gries

1. Lexical Scanning. Gries discusses the theory of scanning
and problems with non-deterministic
grammars. The report discusses only
deterministic grammars and focuses on
token and symbol table construction
in the CS-700 Interpreter. The algorithms
are more detailed and made more readable
by the use of comments, case statements,
and structured programming techniques.

2. Top-Down Parsing. Gries discusses the theory of parsing
and the various types of recognizers.
The report includes a discussion of
recursive decent parsing not in Gries.
In addition, the parsing algorithms are
in more detail and include error pro-
cedures not in Gries. Other features of
the report such as the use of decision
tables to portray the logic of algorithms
add clarity to the discussion material.
Also, the report includes parsing
abstracts for the CS5-700 Interpreter.

3. Bottom-Up Parsing. Gries presents both precedence parsing
and operator precedence parsing in
limited detail. The report expands on
operator precedence parsing and presents
abstracts of algorithms for CS-700
Interpreter Bottom-Up Parsing.

4. Code Generation. Gries' coverage on this subject is
rather general. The report concentrates
on code generation in the CS-700 Inter-
preter.

77

TRAINING AIDS FOR TRANSLATOR DESIGN

by

JAMES R. MEYER

B.S., Benedictine College, KS, 1971

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1977

TRAINING AIDS
for

TRANSLATOR DESIGN

ABSTRACT

The purpose of this project is to produce algorithms and training
aids to augment the classroom instruction of Translator Design I,
Course Number CS 286-700. The algorithms demonstrate both abstract
tutorial cases and specific implementations of a student-developed
interpreter. The training aids consist of examples of traces of
execution of a lexical scanner, and a parser (with and without code
generation). In addition, examples of scanning, parsing and code
generation using the student-developed CS700 Interpreter are included
to prepare the students for implementation projects using this model.
This material can be used to supplement the text, augment the classroom

presentation, or as homework problems.

