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Buckling of nonprismatic single columns with arbitrary boundary conditions resting on a nonuniform elastic foundation may
be considered as the most generalized treatment of the subject. The buckling differential equation for such columns is extremely
difficult to solve analytically. Thus, the authors propose a numerical approach by discretizing the column into a finite number of
segments. Each segment has constants 𝐸 (modulus of elasticity), 𝐼 (moment of inertia), and 𝛽 (subgrade stiffness). Next, an exact
analytical solution is derived for each prismatic segment resting on uniform elastic foundation.These segments are then assembled
in a matrix from which the critical buckling load is obtained. The derived formulation accounts for different end boundary
conditions. Validation is performed by benchmarking the present results against analytical solutions found in the literature, showing
excellent agreement. After validation, more examples are solved to illustrate the power and flexibility of the proposed method.
Overall, the proposed method provides reasonable results, and the examples solved demonstrate the versatility of the developed
approach and some of its many possible applications.

1. Introduction

By the beginning of the twentieth century, many researchers
got into studying the specific cases of bucking using various
methods such as continuous and lumped matrix analysis,
Finite Element Method (FEM), and Boundary Element
Method (BEM) [1]. Dinnik reported the exact solution of
simply supported columns with monomial variation in stiff-
ness and axial load in his paper published in 1932 [2]. Simply
supported tapered columns were studied and the analytical
solutions were presented by Gere and Carter in 1962 [3].
In 1970, Gallagher and Lee solved an axially loaded column
with a variable flexural stiffness using Finite ElementMethod
[2]. Additionally, Elishakoff and Bert in 1988 succeeded at
improving Rayleigh’s method and obtaining an approximate
solution for columns with variable stiffness [2]. A year
later, Eisenberger presented the exact buckling solution for
columns with variable cross-sections and variable axial load
using any polynomial variation and using different boundary

conditions [2]. In 1986, Ermopoulos published the solution
for buckling of tapered bars under stepped axial loads [4].
Analysis on the buckling of uniform columns with different
supports was performed by Iyengar in his book which was
published in 1988 [5]. Elastic stability of elastically supported
columns under the effect of distributed forces was studied
by Lee and Kuo in 1991 [5]. In the same year, Arbabei and
Li presented the solution for the buckling of nonprismatic
elastic columns [6]. A more recent solution for the exact
buckling of constrained stepped columns was presented by
Yang andPark in 2003 [7]. Coşkun andAtay analyzed the crit-
ical buckling load for elastic columns of constant and variable
cross-sections using variational iterationmethod in 2009 [6].
This variational iteration method produces an approximate
solution for the presented problem. In 2012, Huang and
Li published their solution for analytically determining the
exact critical buckling loads of nonuniform columns [8]. Lee
et al. published their calculations of natural frequencies and
buckling loads for columns with intermediatemultiple elastic

Hindawi
Mathematical Problems in Engineering
Volume 2017, Article ID 5976098, 14 pages
https://doi.org/10.1155/2017/5976098

https://doi.org/10.1155/2017/5976098


2 Mathematical Problems in Engineering

P

KB

�훽B

EI(x) �훽(x)

x

�

KA

�훽A

Figure 1: Nonprismatic columns with arbitrary boundary condi-
tions resting on nonuniform elastic foundation.

springs in 2002 [9]. Atanackovic and Novakovic worked on
Lagrange problem, in which they determined the optimal
shape of an elastic column on elastic foundation using an area
varying equation to represent the column shape [10]. Using
Pontryagin’s maximumprinciple, Levy presented the optimal
shape of simply supported columns on elastic foundations
in 1990 [10]. Using Galerkin’s method, Lacarbonara solved
for buckling and postbuckling of nonuniform nonlinearly
elastic rods [11]. To the authors’ best knowledge, this is the
first paper that provides a numerical treatment combining
the buckling of nonprismatic columns resting on nonuniform
elastic foundation with arbitrary end boundary conditions.

2. Formulation

2.1. The Buckling Equation. The buckling differential equa-
tion for the column shown in Figure 1 can be derived using
the bifurcation method resulting in the following equation:

𝐸𝐼 𝜕4V𝜕𝑥4 + 2𝜕 (𝐸𝐼)𝜕𝑥 𝜕3V𝜕𝑥3 + [𝜕2 (𝐸𝐼)𝜕𝑥2 + 𝑃] 𝜕2V𝜕𝑥2 + 𝛽V = 0. (1)

The boundary conditions (BCs) are as follows:

(1) Shear 𝑉 (0) = −𝛽𝐴V (0) ,𝑉 (𝐿) = 𝛽𝐵V (𝐿) . (2)

(2) Moment 𝑀(0) = 𝐾𝐴V󸀠 (0) ,𝑀 (𝐿) = −𝐾𝐵V󸀠 (𝐿) , (3)

where 𝐸(𝑥) is the column elastic modulus function, 𝐼(𝑥) is
the columnmoment of inertia function,𝑃 is the column axial
load, 𝛽(𝑥) is the elastic foundation spring stiffness function,
V(𝑥) is the column lateral deflection function,𝑥 is the distance
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Figure 2: Idealized prismatic column segment resting on uniform
elastic foundation.

from the bottom of the column, 𝛽𝐴 is the bottom lateral
discrete spring stiffness, 𝛽𝐵 is the top lateral discrete spring
stiffness,𝐾𝐴 is the bottom rotational discrete spring stiffness,𝐾𝐵 is the top rotational discrete spring stiffness,𝐿 is the length
of the column, 𝑉(𝑥) is the column shear force function, and𝑀(𝑥) is the column moment function.

Such a differential equation can prove to be extremely dif-
ficult to solve analytically for arbitrary 𝐸, 𝐼, and 𝛽 functions.
The authors are not aware of any analytical mathematical
method that can solve this differential equation. Thus, the
authors decided to solve the differential equation semiana-
lytically by discretizing the column into a finite number of
segments. Each segment has constants 𝐸, 𝐼, and 𝛽, as shown
in Figure 2. 𝐸, 𝐼, and 𝛽 values for each segment were taken
to be the average of each function within that segment of
the column. The averages were calculated using the general
equation for averaging functions within an interval:

𝑓ave = ∫𝑏
𝑎
𝑓 (𝑥) 𝑑𝑥𝑏 − 𝑎 . (4)

An exact solution was then obtained for each segment
using the classical buckling equation of columns on an elastic
foundation. The domain of 𝑥 for each segment was taken to
be 0 ≤ 𝑥 ≤ Δ𝑥:𝜕4V𝑖𝜕𝑥4 + 𝑘2𝑖 𝜕2V𝑖𝜕𝑥2 + 𝛽̂2𝑖 V𝑖 = 0, 0 ≤ 𝑥 ≤ Δ𝑥,

𝑘𝑖 = √ 𝑃𝐸𝑖𝐼𝑖 ,
𝛽̂𝑖 = √ 𝛽𝑖𝐸𝑖𝐼𝑖 ,Δ𝑥 = 𝐿𝑁,

(5)

where 𝑁 is number of segments, Δ𝑥 is segment length, and 𝑖
is segment number.
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2.2. Analytical Solution of the Segment Buckling Equation.
Thegeneral solution to the segment differential equationwith
arbitrary boundary conditions is complicated and requires
the consideration of four different cases. The solution to each
case is shown below.

Case 1 (𝛽𝑖 = 0). The segment differential equation becomes𝜕4V𝑖𝜕𝑥4 + 𝑘2𝑖 𝜕2V𝑖𝜕𝑥2 = 0, 0 ≤ 𝑥 ≤ Δ𝑥. (6)

Let V𝑖 = 𝑒𝜆𝑖𝑥, which can be substituted into (6) resulting
in (𝜆4𝑖 + 𝑘2𝑖 𝜆2𝑖 ) 𝑒𝜆𝑖𝑥 = 0 yields󳨀󳨀󳨀󳨀→𝜆𝑖1,2 = 0,𝜆𝑖3,4 = ±𝑗𝑘𝑖,

(7)

where 𝑗 = √−1. (8)
The deflection function is then obtained as follows:

V𝑖 (𝑥) = 𝐴 𝑖 cos 𝑘𝑖𝑥 + 𝐵𝑖 sin 𝑘𝑖𝑥 + 𝐶𝑖𝑥 + 𝐷𝑖. (9)

Case 2 (𝑘4𝑖 − 4𝛽̂2𝑖 = 0). Let V𝑖 = 𝑒𝜆𝑖𝑥, which can be substituted
into (5) resulting in(𝜆4𝑖 + 𝑘2𝑖 𝜆2𝑖 + 𝛽̂2𝑖 ) 𝑒𝜆𝑖𝑥 = 0 yields󳨀󳨀󳨀󳨀→

𝜆𝑖1,2,3,4 = ±𝑗 𝑘𝑖√2. (10)

The deflection function is then found to be

V𝑖 (𝑥) = 𝐴 𝑖 cos 𝑘𝑖𝑥√2 + 𝐵𝑖 sin 𝑘𝑖𝑥√2 + 𝐶𝑖𝑥 cos 𝑘𝑖𝑥√2+ 𝐷𝑖𝑥 sin 𝑘𝑖𝑥√2 . (11)

Case 3 (𝑘4𝑖 − 4𝛽̂2𝑖 > 0). Let V𝑖 = 𝑒𝜆𝑖𝑥, which can be substituted
into (5) resulting in(𝜆4𝑖 + 𝑘2𝑖 𝜆2𝑖 + 𝛽̂2𝑖 ) 𝑒𝜆𝑖𝑥 = 0 yields󳨀󳨀󳨀󳨀→

𝜆2𝑖 = −𝑘2𝑖 ± √𝑘4𝑖 − 4𝛽̂2𝑖2 yields󳨀󳨀󳨀󳨀→𝜆𝑖1,2 = ±𝑗𝛼1𝑖,𝜆𝑖3,4 = ±𝑗𝛼2𝑖,
(12)

where

𝛼1𝑖 = √ 𝑘2𝑖 + √𝑘4𝑖 − 4𝛽̂2𝑖2 ,
𝛼2𝑖 = √ 𝑘2𝑖 − √𝑘4𝑖 − 4𝛽̂2𝑖2 .

(13)

The deflection function is then obtained to be as follows

V𝑖 (𝑥) = 𝐴 𝑖 cos𝛼1𝑖𝑥 + 𝐵𝑖 sin𝛼1𝑖𝑥 + 𝐶𝑖 cos𝛼2𝑖𝑥+ 𝐷𝑖 sin𝛼2𝑖𝑥. (14)

Case 4 (𝑘4𝑖 − 4𝛽̂2𝑖 < 0). Let V𝑖 = 𝑒𝜆𝑖𝑥, which can be substituted
into (5) resulting in

(𝜆4𝑖 + 𝑘2𝑖 𝜆2𝑖 + 𝛽̂2𝑖 ) 𝑒𝜆𝑖𝑥 = 0 yields󳨀󳨀󳨀󳨀→
𝜆2𝑖 = −𝑘2𝑖 ± √𝑘4𝑖 − 4𝛽̂2𝑖2

= −𝑘2𝑖2 ± 𝑗√4𝛽̂2𝑖 − 𝑘4𝑖2 .
(15)

Let 𝜆𝑖 = 𝑎𝑖 + 𝑗𝑏𝑖 implying 𝜆2𝑖 = (𝑎𝑖2 − 𝑏𝑖2) + 𝑗2𝑎𝑖𝑏𝑖 which
results in the following two equations with two unknowns,𝑎𝑖 and 𝑏𝑖:

𝑎𝑖2 − 𝑏𝑖2 = −𝑘2𝑖2 , (16)

2𝑎𝑖𝑏𝑖 = ±√4𝛽̂2𝑖 − 𝑘4𝑖2 . (17)

From (17) we get

𝑎𝑖 = ±√4𝛽̂2𝑖 − 𝑘4𝑖4𝑏𝑖 yields󳨀󳨀󳨀󳨀→
𝑎𝑖2 = 4𝛽̂2𝑖 − 𝑘4𝑖16𝑏𝑖2 . (18)

Substituting into (16) we obtain

4𝛽̂2𝑖 − 𝑘4𝑖16𝑏𝑖2 − 𝑏𝑖2 = −𝑘2𝑖2 yields󳨀󳨀󳨀󳨀→
16𝑏𝑖4 − 8𝑘2𝑖 𝑏𝑖2 + 𝑘4𝑖 − 4𝛽̂2𝑖 = 0 yields󳨀󳨀󳨀󳨀→

𝑏𝑖2 = 𝑘2𝑖 ± 2𝛽̂𝑖4 .
(19)

We know that 𝑘4𝑖 −4𝛽̂2𝑖 < 0 yields󳨀󳨀󳨀󳨀→ (𝑘2𝑖 +2𝛽̂𝑖)(𝑘2𝑖 −2𝛽̂𝑖) < 0,
but it is obvious that 𝑘2𝑖 +2𝛽̂𝑖 > 0.Therefore, 𝑘2𝑖 −2𝛽̂𝑖 < 0 yields󳨀󳨀󳨀󳨀→𝑏𝑖2 ̸= (𝑘2𝑖 − 2𝛽̂𝑖)/4 since 𝑏𝑖2 > 0. This leaves the following:𝑏𝑖2 = (𝑘2𝑖 + 2𝛽̂𝑖)/4 yields󳨀󳨀󳨀󳨀→ 𝑏𝑖 = ±√2𝛽̂𝑖 + 𝑘2𝑖 /2.

Using (17) we can then obtain 𝑎𝑖 as follows:
𝑎𝑖 = ±√2𝛽̂𝑖 − 𝑘2𝑖2 . (20)
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Therefore, 𝜆𝑖 is found to be

𝜆𝑖 = ±√2𝛽̂𝑖 − 𝑘2𝑖2 ± 𝑗√2𝛽̂𝑖 + 𝑘2𝑖2 yields󳨀󳨀󳨀󳨀→𝜆𝑖1,2 = 𝛾1𝑖 ± 𝑗𝑔𝑖,𝜆𝑖3,4 = 𝛾2𝑖 ± 𝑗𝑔𝑖,
(21)

where

𝑔𝑖 = √2𝛽̂𝑖 + 𝑘2𝑖2 ,
𝛾1𝑖 = √2𝛽̂𝑖 − 𝑘2𝑖2 ,
𝛾2𝑖 = −√2𝛽̂𝑖 − 𝑘2𝑖2 .

(22)

The deflection function is then obtained to be

V𝑖 (𝑥) = 𝐴 𝑖𝑒𝛾1𝑖𝑥cos𝑔𝑖𝑥 + 𝐵𝑖𝑒𝛾1𝑖𝑥sin𝑔𝑖𝑥+ 𝐶𝑖𝑒𝛾2𝑖𝑥cos𝑔𝑖𝑥 + 𝐷𝑖𝑒𝛾2𝑖𝑥sin𝑔𝑖𝑥, (23)

where 𝐴 𝑖, 𝐵𝑖, 𝐶𝑖, and 𝐷𝑖 are the constant coefficients for each
segment.

After solving the segment differential equation, the fol-
lowing compatibility conditions were established at each
node between the segments.

(1) Displacement

V𝑖 (0) = V𝑖−1 (Δ𝑥) ,
V𝑖 (Δ𝑥) = V𝑖+1 (0) . (24)

(2) Slope

V󸀠𝑖 (0) = V󸀠𝑖−1 (Δ𝑥) ,
V󸀠𝑖 (Δ𝑥) = V󸀠𝑖+1 (0) . (25)

(3) Moment

𝐸𝑖𝐼𝑖V󸀠󸀠𝑖 (0) = 𝐸𝑖−1𝐼𝑖−1V󸀠󸀠𝑖−1 (Δ𝑥) ,𝐸𝑖𝐼𝑖V󸀠󸀠𝑖 (Δ𝑥) = 𝐸𝑖+1𝐼𝑖+1V󸀠󸀠𝑖+1 (0) . (26)

(4) Shear

𝐸𝑖𝐼𝑖V󸀠󸀠󸀠𝑖 (0) + 𝑃V󸀠𝑖 (0)= 𝐸𝑖−1𝐼𝑖−1V󸀠󸀠󸀠𝑖−1 (Δ𝑥) + 𝑃V󸀠𝑖−1 (Δ𝑥) ,

𝐸𝑖𝐼𝑖V󸀠󸀠󸀠𝑖 (Δ𝑥) + 𝑃V󸀠𝑖 (Δ𝑥)= 𝐸𝑖+1𝐼𝑖+1V󸀠󸀠󸀠𝑖+1 (0) + 𝑃V󸀠𝑖+1 (0) .
(27)

Finally, in order to obtain the coefficient matrix (P-
matrix), the following boundary conditions were established.

(1) Shear

𝐸1𝐼1V󸀠󸀠󸀠1 (0) + 𝑃V󸀠1 (0) = −𝛽𝐴V1 (0) ,𝐸𝑁𝐼𝑁V󸀠󸀠󸀠𝑁 (Δ𝑥) + 𝑃V󸀠𝑁 (Δ𝑥) = 𝛽𝐵V𝑁 (Δ𝑥) . (28)

(2) Moment

𝐸1𝐼1V󸀠󸀠1 (0) = 𝐾𝐴V󸀠1 (0) ,𝐸𝑁𝐼𝑁V󸀠󸀠𝑁 (Δ𝑥) = −𝐾𝐵V󸀠𝑁 (Δ𝑥) . (29)

Solving the following system of equations would then
render the buckling load:

[𝑃] {𝐶} = {0} , (30)

where 𝑃 is the 𝑃-Matrix and 𝐶 =[𝐴1 𝐵1 𝐶1 𝐷1 ⋅ ⋅ ⋅ 𝐴 𝑖 𝐵𝑖 𝐶𝑖 𝐷𝑖 ⋅ ⋅ ⋅ 𝐴𝑁 𝐵𝑁 𝐶𝑁 𝐷𝑁]𝑇.
2.3.The𝑃-Matrix. The structure of the𝑃-matrix is as follows.

(1) One Segment

[4 × 4 BC Matrix] . (31)

(2) Two Segments

[[[[[[[[

[2 × 4 BC Sub-Matrix]
[[[
4 × 4 First Segment

Compatibility
Sub-Matrix

]]] [[[
4 × 4 Last Segment

Compatibility
Sub-Matrix

]]][2 × 4 BC Sub-Matrix]
]]]]]]]]

. (32)
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(3) Three Segments

[[[[[[[[[[[[

[2 × 4 BC Sub-Matrix]
[ 4 × 4 First Segment
Compatibility Sub-Matrix

] [[[[[[
8 × 4 Intermediate

Segment
Compatibility
Sub-Matrix

]]]]]] [ 4 × 4 Last Segment
Compatibility Sub-Matrix

][2 × 4 BC Sub-Matrix]

]]]]]]]]]]]]
. (33)

For the case of an assembly with more than three
segments, the structure of the 𝑃-matrix would be the same
as the three segments case but with additional intermediate
segment compatibility submatrices that are shifted diagonally
downwards. The buckling load would then be the load that
produces a singular 𝑃-matrix.

The submatrices inside the 𝑃-matrix are obtained by
applying the compatibility and boundary conditions and
are dependent on the case that governs each segment, as
explained earlier. These submatrices were found to be as
shown below.

(a) Intermediate Segments

Case 1 (𝛽𝑖 = 0).
[[[[[[[[[[[[[[[[[[

1 0 0 10 𝑘𝑖 1 0−𝑃 0 0 00 0 𝑃 0− cos 𝑘𝑖Δ𝑥 − sin 𝑘𝑖Δ𝑥 −Δ𝑥 −1𝑘𝑖 sin 𝑘𝑖Δ𝑥 −𝑘𝑖 cos 𝑘𝑖Δ𝑥 −1 0𝑃 cos 𝑘𝑖Δ𝑥 𝑃 sin 𝑘𝑖Δ𝑥 0 00 0 −𝑃 0

]]]]]]]]]]]]]]]]]]
. (34)

Case 2 (𝑘4𝑖 − 4𝛽̂2𝑖 = 0).

[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[

1 0 0 00 𝑘𝑖√2 1 0−𝑃2 0 0 √2𝐸𝑖𝐼𝑖𝑘𝑖0 𝑘𝑖𝑃2√2 −𝑃2 0− cos
𝑘𝑖Δ𝑥√2 − sin

𝑘𝑖Δ𝑥√2 −Δ𝑥 cos 𝑘𝑖Δ𝑥√2 −Δ𝑥 sin 𝑘𝑖Δ𝑥√2𝑘𝑖√2 sin
𝑘𝑖Δ𝑥√2 − 𝑘𝑖√2 cos

𝑘𝑖Δ𝑥√2 Δ𝑥 𝑘𝑖√2 sin
𝑘𝑖Δ𝑥√2 − cos

𝑘𝑖Δ𝑥√2 −Δ𝑥 𝑘𝑖√2 cos
𝑘𝑖Δ𝑥√2 − sin

𝑘𝑖Δ𝑥√2𝑃2 cos
𝑘𝑖Δ𝑥√2 𝑃2 sin

𝑘𝑖Δ𝑥√2 Δ𝑥𝑃2 cos
𝑘𝑖Δ𝑥√2 + √2𝐸𝑖𝐼𝑖𝑘𝑖 sin 𝑘𝑖Δ𝑥√2 Δ𝑥𝑃2 sin

𝑘𝑖Δ𝑥√2 − √2𝐸𝑖𝐼𝑖𝑘𝑖 cos 𝑘𝑖Δ𝑥√2𝑘𝑖𝑃2√2 sin
𝑘𝑖Δ𝑥√2 −𝑘𝑖𝑃2√2 cos

𝑘𝑖Δ𝑥√2 Δ𝑥 𝑘𝑖𝑃2√2 sin
𝑘𝑖Δ𝑥√2 + 𝑃2 cos

𝑘𝑖Δ𝑥√2 −Δ𝑥 𝑘𝑖𝑃2√2 cos
𝑘𝑖Δ𝑥√2 + 𝑃2 sin

𝑘𝑖Δ𝑥√2

]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]

. (35)
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Case 3 (𝑘4𝑖 − 4𝛽̂2𝑖 > 0).
[[[[[[[[[[[[[[[[[[

1 0 1 00 𝛼1𝑖 0 𝛼2𝑖−𝐸𝑖𝐼𝑖𝛼21𝑖 0 −𝐸𝑖𝐼𝑖𝛼22𝑖 00 𝑃𝛼1𝑖−𝐸𝑖𝐼𝑖𝛼31𝑖 0 𝑃𝛼2𝑖−𝐸𝑖𝐼𝑖𝛼32𝑖− cos𝛼1𝑖Δ𝑥 − sin𝛼1𝑖Δ𝑥 − cos𝛼2𝑖Δ𝑥 − sin𝛼2𝑖Δ𝑥𝛼1𝑖 sin𝛼1𝑖Δ𝑥 −𝛼1𝑖 cos𝛼1𝑖Δ𝑥 𝛼2𝑖 sin𝛼2𝑖Δ𝑥 −𝛼2𝑖 cos𝛼2𝑖Δ𝑥𝐸𝑖𝐼𝑖𝛼21𝑖 cos𝛼1𝑖Δ𝑥 𝐸𝑖𝐼𝑖𝛼21𝑖 sin𝛼1𝑖Δ𝑥 𝐸𝑖𝐼𝑖𝛼22𝑖 cos𝛼2𝑖Δ𝑥 𝐸𝑖𝐼𝑖𝛼22𝑖 sin𝛼2𝑖Δ𝑥(𝑃𝛼1𝑖−𝐸𝑖𝐼𝑖𝛼31𝑖) sin𝛼1𝑖Δ𝑥 − (𝑃𝛼1𝑖−𝐸𝑖𝐼𝑖𝛼31𝑖) cos𝛼1𝑖Δ𝑥 (𝑃𝛼2𝑖−𝐸𝑖𝐼𝑖𝛼32𝑖) sin𝛼2𝑖Δ𝑥 − (𝑃𝛼2𝑖−𝐸𝑖𝐼𝑖𝛼32𝑖) cos𝛼2𝑖Δ𝑥

]]]]]]]]]]]]]]]]]]
. (36)

Case 4 (𝑘4𝑖 − 4𝛽̂2𝑖 < 0).
[[[[[[[[[[[[[[[[[[[[[[[[[

1 0 1 0𝛾1𝑖 𝑔𝑖 𝛾2𝑖 𝑔𝑖−𝑃2 2𝐸𝑖𝐼𝑖𝛾1𝑖𝑔𝑖 −𝑃2 2𝐸𝑖𝐼𝑖𝛾2𝑖𝑔𝑖−𝐸𝑖𝐼𝑖𝛽̂𝑖𝛾1𝑖 𝐸𝑖𝐼𝑖𝛽̂𝑖𝑔𝑖 −𝐸𝑖𝐼𝑖𝛽̂𝑖𝛾2𝑖 𝐸𝑖𝐼𝑖𝛽̂𝑖𝑔𝑖−𝑒𝛾1𝑖Δ𝑥 cos𝑔𝑖Δ𝑥 −𝑒𝛾1𝑖Δ𝑥 sin𝑔𝑖Δ𝑥 −𝑒𝛾2𝑖Δ𝑥 cos𝑔𝑖Δ𝑥 −𝑒𝛾2𝑖Δ𝑥 sin𝑔𝑖Δ𝑥𝑒𝛾1𝑖Δ𝑥 (𝑔𝑖 sin𝑔𝑖Δ𝑥 − 𝛾1𝑖 cos𝑔𝑖Δ𝑥) 𝑒𝛾1𝑖Δ𝑥 (−𝑔𝑖 cos𝑔𝑖Δ𝑥 − 𝛾1𝑖 sin𝑔𝑖Δ𝑥) 𝑒𝛾2𝑖Δ𝑥 (𝑔𝑖 sin𝑔𝑖Δ𝑥 − 𝛾2𝑖 cos𝑔𝑖Δ𝑥) 𝑒𝛾2𝑖Δ𝑥 (−𝑔𝑖 cos𝑔𝑖Δ𝑥 − 𝛾2𝑖 sin𝑔𝑖Δ𝑥)
𝑒𝛾1𝑖Δ𝑥 (𝑃2 cos𝑔𝑖Δ𝑥 + 2𝛾1𝑖𝐸𝑖𝐼𝑖𝑔𝑖 sin𝑔𝑖Δ𝑥) 𝑒𝛾1𝑖Δ𝑥 (𝑃2 sin𝑔𝑖Δ𝑥 − 2𝛾1𝑖𝐸𝑖𝐼𝑖𝑔𝑖 cos𝑔𝑖Δ𝑥) 𝑒𝛾2𝑖Δ𝑥 (𝑃2 cos𝑔𝑖Δ𝑥 + 2𝛾2𝑖𝐸𝑖𝐼𝑖𝑔𝑖 sin𝑔𝑖Δ𝑥) 𝑒𝛾2𝑖Δ𝑥 (𝑃2 sin𝑔𝑖Δ𝑥 − 2𝛾2𝑖𝐸𝑖𝐼𝑖𝑔𝑖 cos𝑔𝑖Δ𝑥)𝑒𝛾1𝑖Δ𝑥 (𝐸𝑖𝐼𝑖𝛽̂𝑖𝛾1𝑖 cos𝑔𝑖Δ𝑥 + 𝐸𝑖𝐼𝑖𝛽̂𝑖𝑔𝑖 sin𝑔𝑖Δ𝑥) 𝑒𝛾1𝑖Δ𝑥 (𝐸𝑖𝐼𝑖𝛽̂𝑖𝛾1𝑖 sin𝑔𝑖Δ𝑥 − 𝐸𝑖𝐼𝑖𝛽̂𝑖𝑔𝑖 cos𝑔𝑖Δ𝑥) 𝑒𝛾2𝑖Δ𝑥 (𝐸𝑖𝐼𝑖𝛽̂𝑖𝛾2𝑖 cos𝑔𝑖Δ𝑥 + 𝐸𝑖𝐼𝑖𝛽̂𝑖𝑔𝑖 sin𝑔𝑖Δ𝑥) 𝑒𝛾2𝑖Δ𝑥 (𝐸𝑖𝐼𝑖𝛽̂𝑖𝛾2𝑖 sin𝑔𝑖Δ𝑥 − 𝐸𝑖𝐼𝑖𝛽̂𝑖𝑔𝑖 cos𝑔𝑖Δ𝑥)

]]]]]]]]]]]]]]]]]]]]]]]]]

. (37)

(b) First Segment

Case 1 (𝛽1 = 0).
[[[[[[[[[[[[

𝛽𝐴 0 𝑃 𝛽𝐴−𝑃 −𝐾𝐴𝑘1 −𝐾𝐴 0− cos 𝑘1Δ𝑥 − sin 𝑘1Δ𝑥 −Δ𝑥 −1𝑘1 sin 𝑘1Δ𝑥 −𝑘1 cos 𝑘1Δ𝑥 −1 0𝑃 cos 𝑘1Δ𝑥 𝑃 sin 𝑘1Δ𝑥 0 00 0 −𝑃 0

]]]]]]]]]]]]
. (38)

Case 2 (𝑘41 − 4𝛽̂21 = 0).
[[[[[[[[[[[[[[[[[[[[[[

𝛽𝐴 𝑘1𝑃2√2 −𝑃2 0−𝑃2 −𝐾𝐴 𝑘1√2 −𝐾𝐴 √2𝐸1𝐼1𝑘1− cos 𝑘1Δ𝑥√2 − sin 𝑘1Δ𝑥√2 −Δ𝑥 cos 𝑘1Δ𝑥√2 −Δ𝑥 sin 𝑘1Δ𝑥√2𝑘1√2 sin 𝑘1Δ𝑥√2 − 𝑘1√2 cos 𝑘1Δ𝑥√2 Δ𝑥 𝑘1√2 sin 𝑘1Δ𝑥√2 − cos 𝑘1Δ𝑥√2 −Δ𝑥 𝑘1√2 cos 𝑘1Δ𝑥√2 − sin 𝑘1Δ𝑥√2𝑃2 cos 𝑘1Δ𝑥√2 𝑃2 sin 𝑘1Δ𝑥√2 Δ𝑥𝑃2 cos 𝑘1Δ𝑥√2 + √2𝐸1𝐼1𝑘1 sin 𝑘1Δ𝑥√2 Δ𝑥𝑃2 sin 𝑘1Δ𝑥√2 − √2𝐸1𝐼1𝑘1 cos 𝑘1Δ𝑥√2𝑘1𝑃2√2 sin 𝑘1Δ𝑥√2 −𝑘1𝑃2√2 cos 𝑘1Δ𝑥√2 Δ𝑥 𝑘1𝑃2√2 sin 𝑘1Δ𝑥√2 + 𝑃2 cos 𝑘1Δ𝑥√2 −Δ𝑥 𝑘1𝑃2√2 cos 𝑘1Δ𝑥√2 + 𝑃2 sin 𝑘1Δ𝑥√2

]]]]]]]]]]]]]]]]]]]]]]

. (39)
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Case 3 (𝑘41 − 4𝛽̂21 > 0).
[[[[[[[[[[[[[

𝛽𝐴 𝑃𝛼11−𝐸1𝐼1𝛼311 𝛽𝐴 𝑃𝛼21−𝐸1𝐼1𝛼321−𝐸1𝐼1𝛼211 −𝐾𝐴𝛼11 −𝐸1𝐼1𝛼221 −𝐾𝐴𝛼21− cos𝛼11Δ𝑥 − sin𝛼11Δ𝑥 − cos𝛼21Δ𝑥 − sin𝛼21Δ𝑥𝛼11 sin𝛼11Δ𝑥 −𝛼11 cos𝛼11Δ𝑥 𝛼21 sin𝛼21Δ𝑥 −𝛼21 cos𝛼21Δ𝑥𝐸1𝐼1𝛼211 cos𝛼11Δ𝑥 𝐸1𝐼1𝛼211 sin𝛼11Δ𝑥 𝐸1𝐼1𝛼221 cos𝛼21Δ𝑥 𝐸1𝐼1𝛼221 sin𝛼21Δ𝑥(𝑃𝛼11−𝐸1𝐼1𝛼311) sin𝛼11Δ𝑥 − (𝑃𝛼11−𝐸1𝐼1𝛼311) cos𝛼11Δ𝑥 (𝑃𝛼21−𝐸1𝐼1𝛼321) sin𝛼21Δ𝑥 − (𝑃𝛼21−𝐸1𝐼1𝛼321) cos𝛼21Δ𝑥

]]]]]]]]]]]]]
. (40)

Case 4 (𝑘41 − 4𝛽̂21 < 0).
[[[[[[[[[[[[[[[

𝛽𝐴 − 𝐸1𝐼1𝛽̂1𝛾11 𝐸1𝐼1𝛽̂1𝑔1 𝛽𝐴 − 𝐸1𝐼1𝛽̂1𝛾21 𝐸1𝐼1𝛽̂1𝑔1−𝐾𝐴𝛾11 − 𝑃2 − (𝐾𝐴 − 2𝐸1𝐼1𝛾11) 𝑔1 −𝐾𝐴𝛾21 − 𝑃2 − (𝐾𝐴 − 2𝐸1𝐼1𝛾21) 𝑔1−𝑒𝛾11Δ𝑥 cos𝑔1Δ𝑥 −𝑒𝛾11Δ𝑥 sin𝑔1Δ𝑥 −𝑒𝛾21Δ𝑥 cos𝑔1Δ𝑥 −𝑒𝛾21Δ𝑥 sin𝑔1Δ𝑥𝑒𝛾11Δ𝑥 (𝑔1 sin𝑔1Δ𝑥 − 𝛾11 cos𝑔1Δ𝑥) 𝑒𝛾11Δ𝑥 (−𝑔1 cos𝑔1Δ𝑥 − 𝛾11 sin𝑔1Δ𝑥) 𝑒𝛾21Δ𝑥 (𝑔1 sin𝑔1Δ𝑥 − 𝛾21 cos𝑔1Δ𝑥) 𝑒𝛾21Δ𝑥 (−𝑔1 cos𝑔1Δ𝑥 − 𝛾21 sin𝑔1Δ𝑥)𝑒𝛾11Δ𝑥 (𝑃2 cos𝑔1Δ𝑥 + 2𝛾11𝐸1𝐼1𝑔1 sin𝑔1Δ𝑥) 𝑒𝛾11Δ𝑥 (𝑃2 sin𝑔1Δ𝑥 − 2𝛾11𝐸1𝐼1𝑔1 cos𝑔1Δ𝑥) 𝑒𝛾21Δ𝑥 (𝑃2 cos𝑔1Δ𝑥 + 2𝛾21𝐸1𝐼1𝑔1 sin𝑔1Δ𝑥) 𝑒𝛾21Δ𝑥 (𝑃2 sin𝑔1Δ𝑥 − 2𝛾21𝐸1𝐼1𝑔1 cos𝑔1Δ𝑥)𝑒𝛾11Δ𝑥 (𝐸1𝐼1𝛽̂1𝛾11 cos𝑔1Δ𝑥 + 𝐸1𝐼1𝛽̂1𝑔1 sin𝑔1Δ𝑥) 𝑒𝛾11Δ𝑥 (𝐸1𝐼1𝛽̂1𝛾11 sin𝑔1Δ𝑥 − 𝐸1𝐼1𝛽̂1𝑔1 cos𝑔1Δ𝑥) 𝑒𝛾21Δ𝑥 (𝐸1𝐼1𝛽̂1𝛾21 cos𝑔1Δ𝑥 + 𝐸1𝐼1𝛽̂1𝑔1 sin𝑔1Δ𝑥) 𝑒𝛾21Δ𝑥 (𝐸1𝐼1𝛽̂1𝛾21 sin𝑔1Δ𝑥 − 𝐸1𝐼1𝛽̂1𝑔1 cos𝑔1Δ𝑥)

]]]]]]]]]]]]]]]
. (41)

(c) Last Segment

Case 1 (𝛽𝑁 = 0).
[[[[[[[[[[[[

1 0 0 10 𝑘𝑁 1 0−𝑃 0 0 00 0 𝑃 0−𝛽𝐵 cos 𝑘𝑁Δ𝑥 −𝛽𝐵 sin 𝑘𝑁Δ𝑥 𝑃 − 𝛽𝐵Δ𝑥 −𝛽𝐵−𝑃 cos 𝑘𝑁Δ𝑥 − 𝐾𝐵𝑘𝑁 sin 𝑘𝑁Δ𝑥 −𝑃 sin 𝑘𝑁Δ𝑥 + 𝐾𝐵𝑘𝑁 cos 𝑘𝑁Δ𝑥 𝐾𝐵 0

]]]]]]]]]]]]
. (42)

Case 2 (𝑘4𝑁 − 4𝛽̂2𝑁 = 0).
[[[[[[[[[[[[[[[[[[[

1 0 0 00 𝑘𝑁√2 1 0−𝑃2 0 0 √2𝐸𝑁𝐼𝑁𝑘𝑁0 𝑘𝑁𝑃2√2 −𝑃2 0
−𝛽𝐵 cos 𝑘𝑁Δ𝑥√2 − 𝑘𝑁𝑃2√2 sin

𝑘𝑁Δ𝑥√2 −𝛽𝐵 sin 𝑘𝑁Δ𝑥√2 + 𝑘𝑁𝑃2√2 cos
𝑘𝑁Δ𝑥√2 −(𝛽𝐵Δ𝑥 + 𝑃2 ) cos 𝑘𝑁Δ𝑥√2 − Δ𝑥𝑘𝑁𝑃2√2 sin

𝑘𝑁Δ𝑥√2 −(𝛽𝐵Δ𝑥 + 𝑃2 ) sin 𝑘𝑁Δ𝑥√2 + Δ𝑥𝑘𝑁𝑃2√2 cos
𝑘𝑁Δ𝑥√2−𝑃2 cos

𝑘𝑁Δ𝑥√2 − 𝑘𝑁√2𝐾𝐵 sin 𝑘𝑁Δ𝑥√2 −𝑃2 sin
𝑘𝑁Δ𝑥√2 + 𝑘𝑁√2𝐾𝐵 cos 𝑘𝑁Δ𝑥√2 −(Δ𝑥𝑃2 − 𝐾𝐵) cos 𝑘𝑁Δ𝑥√2 − (√2𝐸𝑁𝐼𝑁𝑘𝑁 + 𝐾𝐵Δ𝑥𝑘𝑁√2 ) sin

𝑘𝑁Δ𝑥√2 −(Δ𝑥𝑃2 − 𝐾𝐵) sin 𝑘𝑁Δ𝑥√2 + (√2𝐸𝑁𝐼𝑁𝑘𝑁 + 𝐾𝐵Δ𝑥𝑘𝑁√2 ) cos
𝑘𝑁Δ𝑥√2

]]]]]]]]]]]]]]]]]]]

. (43)
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Case 3 (𝑘4𝑁 − 4𝛽̂2𝑁 > 0).
[[[[[[[[[[[[[

1 0 1 00 𝛼1𝑁 0 𝛼2𝑁−𝐸𝑁𝐼𝑁𝛼21𝑁 0 −𝐸𝑁𝐼𝑁𝛼22𝑁 00 𝑃𝛼1𝑁−𝐸𝑁𝐼𝑁𝛼31𝑁 0 𝑃𝛼2𝑁−𝐸𝑁𝐼𝑁𝛼32𝑁−𝛽𝐵 cos𝛼1𝑁Δ𝑥 − (𝑃𝛼1𝑁−𝐸𝑁𝐼𝑁𝛼31𝑁) sin𝛼1𝑁Δ𝑥 −𝛽𝐵 sin𝛼1𝑁Δ𝑥 + (𝑃𝛼1𝑁−𝐸𝑁𝐼𝑁𝛼31𝑁) cos𝛼1𝑁Δ𝑥 −𝛽𝐵 cos𝛼2𝑁Δ𝑥 − (𝑃𝛼2𝑁−𝐸𝑁𝐼𝑁𝛼32𝑁) sin𝛼2𝑁Δ𝑥 −𝛽𝐵 sin𝛼2𝑁Δ𝑥 + (𝑃𝛼2𝑁−𝐸𝑁𝐼𝑁𝛼32𝑁) cos𝛼2𝑁Δ𝑥−𝐾𝐵𝛼1𝑁 sin𝛼1𝑁Δ𝑥 − 𝐸𝑁𝐼𝑁𝛼21𝑁 cos𝛼1𝑁Δ𝑥 𝐾𝐵𝛼1𝑁 cos𝛼1𝑁Δ𝑥 − 𝐸𝑁𝐼𝑁𝛼21𝑁 sin𝛼1𝑁Δ𝑥 −𝐾𝐵𝛼2𝑁 sin𝛼2𝑁Δ𝑥 − 𝐸𝑁𝐼𝑁𝛼22𝑁 cos𝛼2𝑁Δ𝑥 𝐾𝐵𝛼2𝑁 cos𝛼2𝑁Δ𝑥 − 𝐸𝑁𝐼𝑁𝛼22𝑁 sin𝛼2𝑁Δ𝑥

]]]]]]]]]]]]]
. (44)

Case 4 (𝑘4𝑁 − 4𝛽̂2𝑁 < 0).
[[[[[[[[[[[[[[[[[

1 0 1 0𝛾1𝑁 𝑔𝑁 𝛾2𝑁 𝑔𝑁−𝑃2 2𝐸𝑁𝐼𝑁𝛾1𝑁𝑔𝑁 −𝑃2 2𝐸𝑁𝐼𝑁𝛾2𝑁𝑔𝑁−𝐸𝑁𝐼𝑁𝛽̂𝑁𝛾1𝑁 𝐸𝑁𝐼𝑁𝛽̂𝑁𝑔𝑁 −𝐸𝑁𝐼𝑁𝛽̂𝑁𝛾2𝑁 𝐸𝑁𝐼𝑁𝛽̂𝑁𝑔𝑁−𝑒𝛾1𝑁Δ𝑥 [(𝛽𝐵 + 𝐸𝑁𝐼𝑁𝛽̂𝑁𝛾1𝑁) cos𝑔𝑁Δ𝑥 + 𝐸𝑁𝐼𝑁𝛽̂𝑁𝑔𝑁 sin𝑔𝑁Δ𝑥] −𝑒𝛾1𝑁Δ𝑥 [(𝛽𝐵 + 𝐸𝑁𝐼𝑁𝛽̂𝑁𝛾1𝑁) sin𝑔𝑁Δ𝑥 − 𝐸𝑁𝐼𝑁𝛽̂𝑁𝑔𝑁 cos𝑔𝑁Δ𝑥] −𝑒𝛾2𝑁Δ𝑥 [(𝛽𝐵 + 𝐸𝑁𝐼𝑁𝛽̂𝑁𝛾2𝑁) cos𝑔𝑁Δ𝑥 + 𝐸𝑁𝐼𝑁𝛽̂𝑁𝑔𝑁 sin𝑔𝑁Δ𝑥] −𝑒𝛾2𝑁Δ𝑥 [(𝛽𝐵 + 𝐸𝑁𝐼𝑁𝛽̂𝑁𝛾2𝑁) sin𝑔𝑁Δ𝑥 − 𝐸𝑁𝐼𝑁𝛽̂𝑁𝑔𝑁 cos𝑔𝑁Δ𝑥]
−𝑒𝛾1𝑁Δ𝑥 [(𝑃2 − 𝐾𝐵𝛾1𝑁) cos𝑔𝑁Δ𝑥 + (𝐾𝐵 + 2𝐸𝑁𝐼𝑁𝛾1𝑁) 𝑔𝑁 sin𝑔𝑁Δ𝑥] −𝑒𝛾1𝑁Δ𝑥 [(𝑃2 − 𝐾𝐵𝛾1𝑁) sin𝑔𝑁Δ𝑥 − (𝐾𝐵 + 2𝐸𝑁𝐼𝑁𝛾1𝑁) 𝑔𝑁 cos𝑔𝑁Δ𝑥] −𝑒𝛾2𝑁Δ𝑥 [(𝑃2 − 𝐾𝐵𝛾2𝑁) cos𝑔𝑁Δ𝑥 + (𝐾𝐵 + 2𝐸𝑁𝐼𝑁𝛾2𝑁) 𝑔𝑁 sin𝑔𝑁Δ𝑥] −𝑒𝛾2𝑁Δ𝑥 [(𝑃2 − 𝐾𝐵𝛾2𝑁) sin𝑔𝑁Δ𝑥 − (𝐾𝐵 + 2𝐸𝑁𝐼𝑁𝛾2𝑁) 𝑔𝑁 cos𝑔𝑁Δ𝑥]

]]]]]]]]]]]]]]]]]
. (45)

2.4. The Mode Shape. The mode shape can be obtained by
substituting the buckling load into the 𝑃-matrix and setting

one of the constant coefficients to be equal to 1. The original
system looks like the following:

[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[

𝑎11 𝑎12 . . . . . . . . . . . . . . . . . . . . . . . . 𝑎1(4𝑁)𝑎21 ...... ...... ...... ...... ...... P-Matrix
...... ...... ...... ...... ...... ...... ...𝑎(4𝑁)1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 𝑎(4𝑁)(4𝑁)

]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]

((((((((((((((((((((((((((((((
(

𝐴1𝐵1𝐶1𝐷1...𝐴 𝑖𝐵𝑖𝐶𝑖𝐷𝑖...𝐴𝑁𝐵𝑁𝐶𝑁𝐷𝑁

))))))))))))))))))))))))))))))
)

=

((((((((((((((((((((((((((((((
(

0000...0000...0000

))))))))))))))))))))))))))))))
)

. (46)
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After letting 𝐷𝑁 = 1, the following system of equations
is obtained.

[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[

𝑎11 𝑎12 . . . . . . . . . . . . 𝑎1(4𝑁−1)𝑎21 ...... ...... ...... ...... ...... Reduced P-Matrix
...... ...... ...... ...... ...... ...𝑎(4𝑁−1)1 . . . . . . . . . . . . . . . 𝑎(4𝑁−1)(4𝑁−1)

]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]

(((((((((((((((((((((((((((
(

𝐴1𝐵1𝐶1𝐷1...𝐴 𝑖𝐵𝑖𝐶𝑖𝐷𝑖...𝐴𝑁𝐵𝑁𝐶𝑁

)))))))))))))))))))))))))))
)

=

(((((((((((((((((((((((((((((((((((((
(

−𝑎1(4𝑁)−𝑎2(4𝑁)..............................−𝑎(4𝑁−1)(4𝑁)

)))))))))))))))))))))))))))))))))))))
)

. (47)

The constant coefficients can then be calculated by solving
the system as follows:

{𝐶𝑅} = [𝑃𝑅]−1 {𝐹} , (48)

where 𝑃𝑅 is the reduced 𝑃-matrix, 𝐶𝑅 =[𝐴1 𝐵1 𝐶1 𝐷1 ⋅ ⋅ ⋅ 𝐴 𝑖 𝐵𝑖 𝐶𝑖 𝐷𝑖 ⋅ ⋅ ⋅ 𝐴𝑁 𝐵𝑁 𝐶𝑁]𝑇,
and 𝐹 = [−𝑎1(4𝑁) −𝑎2(4𝑁) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −𝑎(4𝑁−1)(4𝑁)]𝑇.

After substituting the constants back into their respective
equations, one can obtain the deflection functions and plot
the mode shape.

3. Sensitivity Analysis

As the proposed approach solves the differential equation for
buckling numerically by discretizing the column into a finite
number of segments, a sensitivity analysis was conducted to
determine the optimum number of segments necessary to
obtain accurate results.The sensitivity analysiswas conducted
for a simply supported column with both cross-section
and soil stiffness varying to account for all approximations
involved in the solution. The following functions were used:𝐸𝐼 = 𝑥 and𝛽 = 𝑥2. The first 3 buckling loads and their
associated mode shapes were determined. Table 1 shows the
results for 10, 20, 50, 100, and 200 segments.

The results, for the discretization segments above, were
reasonably close; however, the results required a high seg-
ment count to stabilize. In the next section, it will be shown
that this variation is not significant as the obtained results
with a segment count of 20 provided excellent agreementwith
the results in the literature. Figure 3 shows the first three
mode shapes, which did not vary with the change in the
number of segments.

4. Validation of the Proposed Approach

In order to validate the proposed approach, a few cases
were analyzed and compared with available solutions from
the literature. For the first case, a column resting on elastic
foundation is analyzed. A fixed-pinned columnwas evaluated
with the following parameters: 𝐸𝐼 = 1, 𝐿 = 1, and 𝛽 = 100
[10]. In this case, a single element was used in the analysis
as no variation in any of the parameters occurs along the
span. The critical load was determined to be 28.307, which
matches the load obtained by Wang and his coauthors [12].
Figure 4 shows the first three mode shapes for this case and
their associated buckling loads.

The following cases are those for a nonprismatic column,
as derived by Gere and Carter [13]. For Case 2, nonprismatic
fixed-pinned column, as derived by Gere and Carter [13],
was analyzed. The parameters were as follows: 𝐸𝐼 = (1 +3.5(𝑥/𝐿))3, 𝐿 = 1, and 𝛽 = 0, and the number of elements
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Table 1: Sensitivity analysis results.𝑁 𝑃cr1 𝑃cr2 𝑃cr3
10 3.598021035 11.85057958 26.03460752
20 3.655748351 12.00379038 25.20788505
50 3.68272198 12.21549833 25.50181667
100 3.688362459 12.2799962 25.72594058
200 3.690129118 12.30323418 25.82633913

1.2
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−0.3

−0.8

−1.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Mode 1: Pcr = 3.656

Mode 2: Pcr = 12.004

Mode 3: Pcr = 25.208

Figure 3: Mode shapes for column utilized in sensitivity analysis.

was taken to be 20. The buckling load obtained was 221.031,
compared to 222.2 obtained by Gere’s approach. Figure 5
shows the mode shape obtained for this case.

In Case 3, the variable end conditions implementation
was validated.This was accomplished by analyzing cases with
different rotational spring values at the ends and comparing
the results with the alignment charts. This was done for both
the sway permitted and swaynot permitted cases.The column
analyzed had the following parameters: 𝐸 = 𝐼 = 𝐿 = 1.
For the pinned-pinned reference case, the Euler buckling
load (𝑃𝐸) was obtained to be 9.8696. The results obtained are
shown in Table 2.

The results obtained showed excellent agreement with
those obtained from the alignment charts. This validates the
derivation of variable end supports and its implementation in
the computer program.

Finally, in Cases 4 and 5, the approach was validated for
cases with nonprismatic sections [2] and variable soil stiffness
[14], respectively. In Case 4, columnswith different boundary
conditionswere analyzed as shown in Table 3.The parameters
for these columns were as follows: 𝐸𝐼 = (1 + 𝑥/𝐿), 𝐿 = 1, and𝛽 = 0. The results obtained are also shown in Table 3.

For Case 5, a column resting on a variable elastic founda-
tion was analyzed.The column had the following parameters:𝐸𝐼 = 1.5 × 105N⋅m2, 𝐿 = 3m, and 𝛽 = (4𝑥 − 3𝑥2 + 𝑥3)106N/
m2. The critical load was obtained to be 148514.92N, which
is very close to what was obtained by Eisenberger and
Clastornik [14].

5. Examples

5.1. Example 1: Column on Variable (Linear and Nonlinear)
Elastic Foundation. After validating the proposed formula-
tion in the previous section, the case of nonuniform soil
pressure was investigated. A simply supported column was
analyzed with 20 segments. The column’s parameters were
as follows: 𝐸𝐼 = 100 and 𝐿 = 10, and, similar to what

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Mode 1: Pcr = 28.307

Mode 2: Pcr = 62.561

Mode 3: Pcr = 120.329
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−0.3

−0.8
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Figure 4: Mode shapes for Case 1.
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Mode 1: Pcr = 221.031

Figure 5: Mode shape for Case 2.

Gere and Carter [13] did for the moment of inertia in
nonprismatic columns, the soil stiffness (𝛽) was taken to be
as follows: 𝛽 = (1 + 𝑥𝐿)𝑛 , (49)

where 𝑛 = 1, 2, or 3.
The soil pressure profiles are shown in Figure 6.
The first three buckling loads were determined for each

case as shown in Table 4. It is observed that the buckling loads
experienced an increase with the increase in the exponent(𝑛). This is reasonable because, as shown in Figure 6, the
area under the soil pressure distribution increases as power𝑛 increases.

The mode shapes are shown in Figure 7. The first mode
shape shifts to the left as the exponent increases, which is
expected as the relative soil stiffness is less in that area.

5.2. Example 2: Crack Propagation. In this example, a simply
supported column was analyzed. As the maximum moment
in simply supported structural elements develops at the
midspan, it was assumed that crack initiation occurred at the
center of the column. The crack was modeled by a change
in the cross-section of column, making it nonprismatic, as
shown in Figure 8. This change was attained by reducing the
moment of inertia (𝐼). The propagation of the cracks in the
column was modeled by increasing the cracked length (𝐿cr).
The following constants were used for the columns in this
example: 𝐸 = 1, 𝐼 = 1, 𝐿 = 1, and 𝛽 = 0. The matrix of
the columns to be modeled in this example was generated by
varying the crack length to column length ratio (𝐿cr/𝐿) and
moment of inertia of the cracked section to gross moment of
inertia (𝐼cr/𝐼) ratio. The varying parameters from which the
combinations were generated are shown in Table 5.

The analysis was performed, and the results for the
columns are shown in Table 6. For each moment of inertia
ratio, the first column shows the buckling load obtained,
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Table 2: Results for Case 3.𝑘𝑎 𝑘𝑏 Sway not permitted Sway permitted𝐺𝑎 𝐺𝑏 𝑃cr/𝑃𝐸 (program) 𝑃cr/𝑃𝐸 (charts) % Error 𝐺𝑎 𝐺𝑏 𝑃cr/𝑃𝐸 (program) 𝑃cr/𝑃𝐸 (charts) % error
40 20 0.05 0.1 3.471079 3.467779 0.095% 0.15 0.3 0.86597 0.865333 0.074%
10 10 0.2 0.2 2.853986 2.85336 0.022% 0.6 0.6 0.69959 0.700268 −0.097%
2 2 1 1 1.668095 1.669237 −0.068% 3 3 0.29998 0.300244 −0.087%
0.4 0.1 5 20 1.097091 1.096461 0.057% 15 60 0.04668 0.046709 −0.057%
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Figure 6: Soil pressure profiles for 𝑛 = 1, 2, 3.
Table 3: Results for Case 4.

Boundary conditions Critical load
Strong end Weak end Eisenberger [2] Proposed approach
Free Fixed 3.1177 3.118548250634
Fixed Free 4.1242 4.1238
Hinged Hinged 14.5112 14.5105
Hinged Fixed 29.449 29.4571
Fixed Hinged 29.4788 29.4734
Fixed Fixed 57.394 57.4019

Table 4: Critical buckling loads for nonuniform elastic foundation
example.𝑛 𝑃cr1 𝑃cr2 𝑃cr3
1 25.0219 43.3211 90.5166
2 32.4221 45.9158 91.4651
3 40.7501 53.5283 93.133

Table 5: Cracking parameters for example 2.𝐿cr/𝐿 0 0.1 0.2 0.3 0.4 0.5𝐼cr/𝐼 1 0.95 0.6 0.4 — —

while the second column shows the buckling load normalized
against Euler’s buckling load. Euler’s buckling load is obtained
for the uncracked prismatic column, which corresponds to
a crack length ratio of 0 (row 1). The compression action in
the column forces the crack to close; however, this causes an
imperfection at that location which encourages the initiation
of buckling from it.

In order to further analyze the obtained results, Figures 9
and 10 were plotted. Figure 9 plots the normalized buckling
loads against the cracked span ratios. A reduction in the buck-
ling load as the cracked span ratio increased was observed.
This is logical as the propagation of the cracks reduces the
overall moment of inertia of the column and thus decreases
the load required to buckle the column. Each series of data
points was fitted with a second-degree polynomial function.
These regression equations provided excellent correlation(𝑅2 = 0.99).

Figure 10 plots the normalized buckling loads against
the cracked moment of inertia ratios. It was noted that the
buckling load decreased as the cracked moment of inertia
ratio decreased. This is rational because the smaller the ratio
is, the larger the crack is and, thus, the smaller the overall
moment of inertia becomes. An interesting trend observed
was that the curve was bilinear for small cracked span ratios
and approached the standard linear behavior as the span ratio
increased.

5.3. Example 3: Column on Linearly Variable Elastic Foun-
dation. In this example, a simply supported column was
analyzed under different distributions of linear soil pressure.
Details on the analyzed soil stiffness functions are shown in
Table 7 and Figure 11. These functions provide a constant
area under the soil stiffness profile and only differ in the
distribution of that area. For this example the length (𝐿) was
taken to be 10.

In order to facilitate the analysis, a few parameters will be
defined.The slope of the soil stiffness profile (𝛽󸀠) is calculated
by taking the derivative as follows:𝛽󸀠 = 𝑑𝛽 (𝑥)𝑑𝑥 . (50)
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Table 6: Critical buckling loads and their normalized values for example 2.𝐼cr/𝐼 0.95 0.6 0.4𝐿cr/𝐿 𝑃cr 𝑃cr/𝑃𝑒 𝑃cr 𝑃cr/𝑃𝑒 𝑃cr 𝑃cr/𝑃𝑒
0 9.869599 1 9.869599 1 9.869599 1
0.1 9.767448 0.98965 8.695862 0.881075 7.53605 0.763562
0.2 9.67209 0.979988 7.806693 0.790984 6.148034 0.622926
0.3 9.58769 0.971437 7.157659 0.725223 5.29744 0.536743
0.4 9.517094 0.964284 6.693711 0.678215 4.755724 0.481856
0.5 9.461763 0.958678 6.370312 0.645448 4.405123 0.446332
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Figure 7: Mode shapes for (a) 𝑛 = 1; (b) 𝑛 = 2; (c) 𝑛 = 3.
Table 7: Soil stiffness functions for example 3.

Case # 𝛽 (𝑥) Type
1 3 Uniform (rectangular)
2 2.25 + 0.15𝑥 Trapezoidal
3 1.5 + 0.3𝑥 Trapezoidal
4 0.75 + 0.45𝑥 Trapezoidal
5 0.6𝑥 Triangular

Another parameter is Kappa (𝜅), which relates the uni-
form soil stiffness (𝛽1) to the stiffness of the column (𝐸𝐼)
according to the following equation:

𝜅 = 4√ 𝛽14𝐸𝐼 . (51)

For this example, columns with 𝜅 values that correspond
to the following 𝛽/𝐸𝐼 ratios were analyzed: 0.1, 1, 10, 100, and
200. The modulus of elasticity and moment of inertia were
varied based on this ratio. The obtained buckling loads were
normalized against Euler’s buckling load and are shown in
Table 8.

Additionally, the data points were plotted in Figures 12
and 13. Figure 12 plots the normalized buckling load versus 𝜅.
It is observed that as the value of 𝜅 increased, the normalized
buckling load increased. Also, at low 𝜅 values, which indicates
that the EI is relatively high compared to 𝛽, the soil stiffness
distribution did not have a significant effect on the buckling
load. On the contrary, columns resting on relatively stiff
soil experienced a significant variation in the buckling load
based on the soil stiffness distribution (about 51%). Data in
Table 8 show that as the slope (𝛽󸀠) increases, the buckling
load decreases. Figure 13 plots the normalized buckling load
versus 𝛽󸀠. Lower 𝜅 results are represented by straight lines,
which indicate again that the distribution of soil stiffness did
not significantly affect the buckling load for these columns.
As 𝜅 increased, the decrease in the critical load became more
evident with the increase in 𝛽󸀠.
6. Conclusion

In this paper, an approach to determine buckling loads and
their associated mode shapes semianalytically for nonpris-
matic columns with variable boundary conditions resting
on nonuniform elastic foundation was formulated. An exact
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Table 8: Normalized buckling loads for example 3.

Case 1 2 3 4 5𝛽󸀠 0 0.15 0.3 0.45 0.6𝜅 𝑃cr/𝑃𝑒
0.294283096 4.054726368 4.034826 3.965174 3.865672 3.746269
0.52331757 11.75376884 11.42211 10.78894 10.01508 9.140704
0.930604859 35.42211055 33.97487 31.13065 27.47236 22.9799
1.65487546 112.4170854 104.1457 92.38693 77.44221 57.70352
1.967989671 157.8341709 146.1256 128.598 106.3065 76.12563

EI

EI

EIcr

Lcr L

Figure 8: Column elevation for example 2.
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Figure 9: Normalized buckling load versus cracked span ratio for
example 2.

solution for the segment buckling equation was derived
under all possible cases that govern the differential equation.
Coupling the solutions of the various segments resulted in
a system of equations that can be used to numerically solve
for the buckling load and plot the mode shape. Sensitivity
analysis and benchmarking verification of the derived solu-
tion is performed next. Finally, three examples addressing
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Figure 10: Normalized bucking load versus cracked moment of
inertia ratio for example 2.
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Figure 11: Soil stiffness profile along column span for example 3.

the comparison of linear and nonlinear elastic foundation,
crack propagation using nonprismatic column analysis, and
investigating the effect of changing soil stiffness distribution𝛽 on the buckling load are examined.
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