
EVALUATING AND QUANTIFYING

THE FEASIBILITY AND EFFECTIVENESS OF WHOLE IT SYSTEM

MOVING TARGET DEFENSES

by

ALEXANDRU GAVRIL BARDAS

B.S., Romanian-American University, Romania, 2008

B.A., Romanian-American University, Romania, 2009

M.S., James Madison University, 2010

AN ABSTRACT OF A DISSERTATION

submitted in partial fulfillment of the
requirements for the degree

DOCTOR OF PHILOSOPHY

Department of Computing and Information Sciences
College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2016

Abstract

The Moving Target Defense (MTD) concept has been proposed as an approach to rebal-

ance the security landscape by increasing uncertainty and apparent complexity for attackers,

reducing their window of opportunity, and raising the costs of their reconnaissance and at-

tack efforts. Intuitively, the idea of applying MTD techniques to a whole IT system should

provide enhanced security; however, little research has been done to show that it is feasible

or beneficial to the system’s security.

This dissertation presents an MTD platform at the whole IT system level in which any

component of the IT system can be automatically and reliably replaced with a fresh new

one. A component is simply a virtual machine (VM) instance or a cluster of instances.

There are a number of security benefits when leveraging such an MTD platform. Re-

placing a VM instance with a new one with the most up-to-date operating system and

applications eliminates security problems caused by unpatched vulnerabilities and all the

privileges the attacker has obtained on the old instance. Configuration parameters for the

new instance, such as IP address, port numbers for services, and credentials, can be changed

from the old ones, invalidating the knowledge the attackers already obtained and forcing

them to redo the work to re-compromise the new instance.

In spite of these obvious security benefits, building a system that supports live replace-

ment with minimal to no disruption to the IT system’s normal operations is difficult. Modern

enterprise IT systems have complex dependencies among services so that changing even a

single instance will almost certainly disrupt the dependent services. Therefore, the replace-

ment of instances must be carefully orchestrated with updating the settings of the dependent

instances. This orchestration of changes is notoriously error-prone if done manually, however,

limited tool support is available to automate this process.

We designed and built a framework (ANCOR) that captures the requirements and needs

of a whole IT system (in particular, dependencies among various services) and compiles

them into a working IT system. ANCOR is at the core of the proposed MTD platform

(ANCOR-MTD) and enables automated live instance replacements. In order to evaluate

the platform’s practicality, this dissertation presents a series of experiments on multiple IT

systems that show negligible (statistically non-significant) performance impacts. To evaluate

the platform’s efficacy, this research analyzes costs versus security benefits by quantifying

the outcome (sizes of potential attack windows) in terms of the number of adaptations, and

demonstrates that an IT system deployed and managed using the proposed MTD platform

will increase attack difficulty.

EVALUATING AND QUANTIFYING

THE FEASIBILITY AND EFFECTIVENESS OF WHOLE IT SYSTEM

MOVING TARGET DEFENSES

by

ALEXANDRU GAVRIL BARDAS

B.S., Romanian-American University, Romania, 2008

B.A., Romanian-American University, Romania, 2009

M.S., James Madison University, 2010

A DISSERTATION

submitted in partial fulfillment of the
requirements for the degree

DOCTOR OF PHILOSOPHY

Department of Computing and Information Sciences
College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2016

Approved by: Approved by:

Co-Major Professor Co-Major Professor
Xinming Ou, PhD. Scott A. DeLoach, PhD.

Copyright

ALEXANDRU GAVRIL BARDAS

2016

Abstract

The Moving Target Defense (MTD) concept has been proposed as an approach to rebal-

ance the security landscape by increasing uncertainty and apparent complexity for attackers,

reducing their window of opportunity, and raising the costs of their reconnaissance and at-

tack efforts. Intuitively, the idea of applying MTD techniques to a whole IT system should

provide enhanced security; however, little research has been done to show that it is feasible

or beneficial to the system’s security.

This dissertation presents an MTD platform at the whole IT system level in which any

component of the IT system can be automatically and reliably replaced with a fresh new

one. A component is simply a virtual machine (VM) instance or a cluster of instances.

There are a number of security benefits when leveraging such an MTD platform. Re-

placing a VM instance with a new one with the most up-to-date operating system and

applications eliminates security problems caused by unpatched vulnerabilities and all the

privileges the attacker has obtained on the old instance. Configuration parameters for the

new instance, such as IP address, port numbers for services, and credentials, can be changed

from the old ones, invalidating the knowledge the attackers already obtained and forcing

them to redo the work to re-compromise the new instance.

In spite of these obvious security benefits, building a system that supports live replace-

ment with minimal to no disruption to the IT system’s normal operations is difficult. Modern

enterprise IT systems have complex dependencies among services so that changing even a

single instance will almost certainly disrupt the dependent services. Therefore, the replace-

ment of instances must be carefully orchestrated with updating the settings of the dependent

instances. This orchestration of changes is notoriously error-prone if done manually, however,

limited tool support is available to automate this process.

We designed and built a framework (ANCOR) that captures the requirements and needs

of a whole IT system (in particular, dependencies among various services) and compiles

them into a working IT system. ANCOR is at the core of the proposed MTD platform

(ANCOR-MTD) and enables automated live instance replacements. In order to evaluate

the platform’s practicality, this dissertation presents a series of experiments on multiple IT

systems that show negligible (statistically non-significant) performance impacts. To evaluate

the platform’s efficacy, this research analyzes costs versus security benefits by quantifying

the outcome (sizes of potential attack windows) in terms of the number of adaptations, and

demonstrates that an IT system deployed and managed using the proposed MTD platform

will increase attack difficulty.

Table of Contents

List of Figures . xi

List of Tables . xiv

Acknowledgements . xv

Dedication . xvi

1 Introduction . 1

1.1 Thesis Statement . 3

1.2 Research Approach . 4

1.3 Contributions . 6

1.4 Related Work . 7

2 Compiling Abstract Specifications into Running Systems 9

2.1 Limitations of Available Automation and Abstraction Technologies 13

2.2 Enabling Technologies . 15

2.3 ANCOR Framework . 17

2.4 The Abstraction . 19

2.4.1 ARML language . 21

2.4.2 Role Implementation . 25

2.5 Constraint Model . 30

2.5.1 Inputs . 30

2.5.2 Roles-Interfaces Relationship . 36

2.5.3 Role Implementations-Interfaces Relationship 37

viii

2.5.4 Assigning Role Implementations to Roles 38

2.6 ANCOR Workflow . 43

2.7 Prototype Implementation . 46

2.8 Background: Related Projects . 50

2.9 Discussion . 55

2.10 Summary . 56

3 A Moving Target Defense Platform for Whole IT Systems 57

3.1 ANCOR-MTD Platform . 59

3.2 Instance Replacement . 61

3.3 Threat Model . 64

3.3.1 In-scope Threats . 64

3.3.2 Out-of-scope Threats . 65

3.4 Discussion - MTD System versus Threats . 66

3.5 Summary . 68

4 Feasibility and Security Analysis . 69

4.1 Feasibility Analysis . 70

4.1.1 Blogging Website . 71

4.1.2 eCommerce Deployments . 73

4.1.3 MediaWiki with Wikipedia Database Dumps 76

4.1.4 Hadoop Scenario . 78

4.2 Security Analysis . 82

4.2.1 Adaptation Points Placement . 86

4.2.2 Attack Windows Example . 89

4.2.3 Goals versus Costs . 93

4.2.4 Configuration Guidelines . 94

4.2.5 Attack Attempts . 95

ix

4.3 Discussion . 100

4.4 Summary . 103

5 Conclusions and Future Work . 104

Bibliography . 108

A Additional Proofs . 123

B OpenStack Filter Scheduler . 126

C Ruby ERB/Erubis Template for Generating an Alloy Model 128

x

List of Figures

2.1 Puppet class and corresponding Hiera configuration data 16

2.2 ANCOR framework . 17

2.3 Operations model (proposed abstraction): maintains an accurate picture of

the whole IT system, an up-to-date overview of the services and their depen-

dencies on other services . 20

2.4 eCommerce website . 21

2.5 eCommerce website ARML specification . 22

2.6 ARML’s abstract syntax . 23

2.7 Web load balancer requirements and Hiera example of parameters 27

2.8 Varnish profile for a web load balancer . 28

2.9 Web load balancer, Varnish, configuration files 29

2.10 Two eCommerce deployments . 31

2.11 List of available interfaces and schemas. This list may include the schemas

and interfaces descriptions used in multiple ARML specs 32

2.12 Abstract syntax for the list of interfaces and schemas 33

2.13 Lightweight eCommerce deployment . 33

2.14 List of available role implementations. This list may include the implementa-

tions used in multiple ARML specs. 34

2.15 Abstract syntax for the list of role implementations 34

2.16 Role complies with interface example . 36

2.17 Implementation complies with interface example 37

2.18 Required ARML role OS supported in a role implementation 39

xi

2.19 Alloy model generated based on inputs from Figures 2.5, 2.11, 2.14. Red text

are values populated from the input lists, blue text is generated as needed

(e.g., number of roles), black text is part of the default template. 41

2.20 ANCOR prototype implementaion . 48

3.1 ANCOR-MTD platform taking an abstract specification of an IT system as

input and creating and managing the corresponding concrete system on a cloud 59

3.2 The Instance Replacement Process merges the Add Instance and Remove In-

stance operations through a sequence of tasks carried out via the provisioning

component and the CMT. Affected dependent services are notified using a set

of updated CMT directives. 62

4.1 Blogging website blueprint: blogging webapp implemented by a homogenous

cluster of Drupal instances . 71

4.2 Magento: magento webapp implemented by a high-availability cluster of in-

stances running Magento CE . 73

4.3 Scalable and highly available eCommerce website blueprint: db master,

msg queue are single instances; weblb, webapp, bg worker, db slave are

implemented by a homogeneous, high-availability cluster of instances 74

4.4 MediaWiki with Wikipedia database dump: weblb, db master, memcached

are single instances; weblb, webapp, bg worker, db slave are implemented

by a homogeneous, high-availability cluster of instances 77

4.5 Cloudera Hadoop Deployment (CDH5): cloudera compute node is the only

service implemented by a high-availability cluster of instances 78

4.6 eCommerce deployment: Internal reachability options 83

4.7 Sample inputs for node X . 85

4.8 Using the Chinese Remainder Theorem to determine common adaptation points 87

xii

4.9 Possible IT system architecture. Arrows indicate dependencies and picture

the security group configurations, light-colored arrows indicate the attack path

from Section 4.2.2. 90

4.10 Maximum attack windows over one day . 90

4.11 Attack windows distribution over one day with a cost of 407 adaptation mo-

ments for 262 interruptions with starting times (0,0,0), 380 interruptions with

(0,0,1), and 381 interruptions with (0,1,6) 91

4.12 Adaptation schedule example . 92

4.13 Attack windows distribution over one day when no two adaptation points

coincide, with a cost of 393 adaptation moments for 393 interruptions in all

three cases . 92

4.14 Attack attempts within adaptation windows 97

4.15 Attack attempts on node E from Figure 4.9 98

4.16 Distribution of 20 webapp instances across 13 physical hosts (initial deploy-

ment and two whole-webapp-cluster replacements) 101

B.1 OpenStack sample Filter Scheduler1 . 126

xiii

List of Tables

2.1 Current solutions comparison . 51

4.1 Drupal blogging website – performance overhead of carrying out ONE re-

placement operation: replacing one webapp instance and replacing the whole

webapp cluster . 72

4.2 Magento eCommerce website – performance overhead of carrying out ONE

replacement operation: replacing one webapp instance and replacing the whole

webapp cluster . 73

4.3 eCommerce website – performance overhead of carrying out ONE replacement

operation: replacing one instance and replacing the whole cluster 75

4.4 WikiBench (MediaWiki with Wikipedia database dumps) – average perfor-

mance overhead of carrying out ONE replacement operation: replacing one

webapp instance and replacing the whole webapp cluster (the results for “Re-

placing one webapp” exclude one outlier experiment run) 77

4.5 Hadoop deployment – Sort job on 15 GB of data 81

xiv

Acknowledgments

I would like to thank my co-major professors, Dr. Xinming (Simon) Ou and Dr. Scott

DeLoach, for their guidance, patience, and support throughout the years.

Dr. Simon guided me through an incredible journey filled with research projects focused

on tackling hard problems, and building an eco-system for teaching and doing research in

cybersecurity. I feel very fortunate to have someone who has such a far-reaching perspective

in the field of computer science, never avoids real hard problems, and provides crucial support

at the most difficult times.

Dr. DeLoach has given me a more software engineering oriented vision on cybersecurity

and on computer science in general. I am also very grateful for his support and guidance

through the changing times at K-State. He was always able to put a smile on my face.

I would like to thank my committee members: Dr. Eugene Vasserman and Dr. Caterina

Scoglio, for helping me improve the presentation of this work and for their helpful suggestions,

and Dr. Ethan Bernick for stepping in as the outside chair on a short notice.

I would like to thank Dr. Robby for his help in enhancing this work, for his invaluable

advice and for pushing me, at times, out of my comfort zone. I am grateful to the faculty

and staff I interacted with throughout the years at K-State. Without their help, knowledge

and friendliness, everything would have been a lot harder (if not impossible).

I would like to also thank everyone who contributed to the Moving Target Defense project

over the years: Rui Zhuang, Ian Unruh, Trent Novelly, Brian Cain, Gilnei Pellegrin etc.

To my fellow, past or present, Argus members (Sathya, Loai, Xiaolong, Fengguo, Yuping,

Su, etc.), I am very grateful for the great times we have spent together.

At last, I am indebted to my wife, parents, and family for their continued and uncondi-

tioned support.

This research was supported by the Air Force Office of Scientific Research (AFOSR)

award FA9550-12-1-0106.

xv

To my wife, parents, and family

xvi

Chapter 1

Introduction

The static nature of current Information Technology (IT) systems gives attackers the ex-

tremely valuable advantage of time, as adversaries are able to plan attacks at their leisure.2

Therefore, a promising new approach to cyber security, called Moving Target Defense or

MTD,2;3 has emerged as a potential solution. The core idea of MTD is to make a system

change proactively as a means to eliminating the asymmetric advantage the attacker has on

time. MTD-related research efforts have included randomizing IP addresses,4–6 executable

codes,7;8 and machine instruction sets,9;10 which help achieve the overall goal of moving tar-

get defense. These efforts, however, focus on specific aspects of a system (i.e., IP addresses,

code for specific applications, and architecture of individual computers) MTD application.

Only limited research has studied how to apply the MTD idea to a whole IT system.

We are viewing a whole IT system as a subset (component) of an enterprise network,

a group of one or more machines (physical or virtual) that work together to fulfill a goal.

The overall goal and scope of a whole IT system are determined by the system engineer/ad-

ministrator and can range from a one-machine service (e.g., FTP server) to more complex

deployments such as multi-host eCommerce websites and Hadoop setups.

Applying the MTD idea at the whole IT system level is highly important for two reasons.

First, system administrators continually struggle to monitor their IT systems for possible

intrusions and compromises, patch potential vulnerabilities, maintain user access lists, or

1

modify firewall rules. The complexity of such IT systems and the time required to maintain

them allow errors to creep into system configurations and create security holes. Creating an

MTD mechanism for the whole IT system will support automation of those configuration

tasks and reduce the chance for errors. Second, due to the complexity and error-proneness

in configuring and maintaining a large IT system, system administrators are generally re-

luctant to change the system setups once they are deployed. The stagnant nature of the

configuration used in the IT system gives adversaries chances to discover security holes, find

opportunities to exploit them, gain/escalate privileges, and maintain persistent presence over

time.11 Introducing MTD mechanisms on the whole IT system’s configuration will limit or

eliminate this advantage.

While it sounds promising, little research has been done to show that MTD systems can

work effectively at the whole IT system level and that security benefits can be quantified

in realistic IT deployments. In general, the challenges of effective movement, as stated by

Hobson et al.12, can be summarized in three main concerns: are the right components being

moved, is the movement performed in a large enough space, and is the movement taking

place at the right time?

Moreover, there are a number of more specific challenges to consider. For example, there

are many configuration parameters one can change in an IT system with complex dependen-

cies. Introducing random changes will almost certainly render the system unusable. Setting

up an IT system and making it function properly is already a time-consuming and compli-

cated job. Introducing changes proactively, if done improperly, may introduce additional

complexities. Making a complex system more complex is unlikely to increase its security.

Thus a practical MTD design must also simplify system configuration and maintenance,

while introducing the capability of moving. Changing a system while it is running inevitably

introduces overhead, which must be carefully examined to determine if the benefits exceed

costs. To address all these questions, it is important to be able to measure the effectiveness

of an MTD mechanism at the whole IT system level, which is still lacking today.

2

1.1 Thesis Statement

Moving Target Defenses for a whole IT system are feasible and can offer several benefits when

using a high-level abstraction that captures the objectives and dependencies at the whole IT

system level.

In order to be effective, the abstraction and the framework/platform that is leveraging it

should exhibit the following properties:

• Users and system engineers (i.e., a more specialized workforce) should be able to quan-

tify the cost of changing a running system in terms of the security and maintenance

benefits it presents.

• The abstraction must represent what a user needs instead of low-level details on how

to implement those needs.

• The abstraction must support automatic compilation into valid running (concrete) sys-

tems on various infrastructures (e.g., cloud infrastructures). Such compilation should

use well-defined knowledge units built by system engineers and be able to translate an

abstract specification into different concrete systems based on low-level implementa-

tion/platform choices.

• The abstraction should facilitate long-term maintenance of the system, including re-

placing and reconfiguring live instances. It should also securely and reliably orchestrate

those changes and aid in fault analysis and diagnosis.

3

1.2 Research Approach

This work addresses two main research questions:

1. Can MTD systems work effectively at the whole IT system level?

2. Can security benefits of MTD systems be quantified in realistic IT deployments?

In order to address the first question, we focused on designing and implementing a platform

that supports an MTD system: enables the system to move, to change. Changes should

not be noticed by benign users, they should affect only attackers while the overhead is

negligible. This work proposes an abstraction that captures what a user needs instead of

low-level details on how to implement those needs. The abstraction is accompanied by a

process that automatically compiles the abstraction into a valid running (concrete) system.

The proposed solution is packaged in a framework called ANCOR (Automated eNterprise

network COmpileR), as described in Chapter 2.

The purpose of introducing MTD at the whole IT system level is to leverage the ANCOR

framework to replace any component of an IT system with a fresh new one. In this work a

component is simply a virtual machine instance or a cluster of instances.

Although ANCOR can be configured to work directly with bare-metal machines, the

MTD approach is assumed to be deployed in a cloud environment. Advancements in vir-

tualization technology have contributed significantly to the evolution of cloud computing, a

movement that has the potential to revolutionize industry, and reshape the way IT systems

are designed, deployed, and utilized.13 Cloud infrastructures (e.g., OpenStack,14 Amazon

Web Services – AWS)15 made it possible and easy to create bare-metal equivalent instances

and networks resulting in the following common capabilities: provisioning instances (VMs)

with various hardware capabilities, utilizing security groups, designing the desired network-

ing layout, creating storage volumes, etc. It appears inevitable that IT systems of all sizes

are moving towards the cloud, whether private, public, or hybrid.

As previously mentioned, while there are various MTD mechanisms at different levels of a

system, this work refers to an MTD system as an IT system deployed and managed using an

4

ANCOR-based MTD platform, or ANCOR-MTD, that supports live instance replacements.

To address the second research question, this work analyzes the main aspects that reflect

the practicality and effectiveness of the ANCOR-MTD platform:

• Performance and functionality

• Security

The first objective was to evaluate how an MTD movement process (primarily instance re-

placement) affects running cloud IT systems in terms of functionality and performance. This

research evaluated a series of IT systems (e.g., eCommerce deployments, blogging website,

Mediawiki with Wikipedia database dumps, Hadoop scenario) and determined that perfor-

mance impacts are mostly negligible, statistically non-significant. Research efforts focused

on applications and not on the synchronization of large amounts of persistent data.

The study also focused on determining if the movement process brings any security

benefits and how these benefits can be quantified by measuring the effectiveness of an MTD

system in terms of meaningful interruptions it creates for an attacker and costs associated

with those interruptions. For this purpose, we introduced the notion of an attack window,

or a continuous time interval an attacker may leverage without being interrupted by MTD’s

system changes. Controlling attack window sizes and their distribution can help valuably

quantify potential security benefits MTD adds to the system, while indirectly increasing

attackers’ efforts and reducing their window of opportunity.

5

1.3 Contributions

This work supplies the following contributions to cybersecurity:

1. An MTD platform is presented for whole IT systems based on instance replacements

via a high-level abstraction-based approach to managing IT systems. The abstraction

captures dependencies among the system entities and can be used to calculate the

correct values of each instance’s (VM) configuration parameters at any time – at system

creation or while the system is running.

2. The practicality of this MTD approach is analyzed through a series of experiments on

realistic IT system scenarios. Experimental results show that MTD operations may

have negligible impact (statistically non-significant) on normal operations of the IT

systems.

3. Security benefits brought by this MTD approach are analyzed through an attack win-

dow model, showing how to leverage the model in order to quantify the security benefits

of an MTD configuration.

6

1.4 Related Work

Although several research efforts in different areas16;17 have been established, MTD is still

in its infancy. Most previous work has focused on specific aspects of a system’s configura-

tion, such as IP addresses,4–6 memory layouts,18;19 instruction sets,9;10 html keywords,20;21

SQL queries,22 database table keywords,20 and so on. Additionally a few comprehensive

frameworks23;24 have been proposed, but most are still conceptual and require significant

theoretical and practical effort to bring them to fruition.

Previous works introduced software diversity in order to increase the difficulty of ex-

ploiting software vulnerabilities.7;8 Software diversity is an essential type of moving target

defense technique and, whereas applied to a different layer, it has many relations to the

approach presented in this work. The proposed MTD platform can be considered a compiler

for configuration primitives. The process of generating those primitives can be diversified

or randomized in the compilation process to further increase the “moving” dynamics of the

system. This is similar to software diversity through dynamic compilation. Our work can be

viewed as the first step towards this vision, and our instance reconfiguration and replacement

mechanism can be extended to accommodate more radical changes of the system, instead of

simply regenerating a fresh image with a pre-set configuration set up and a limited number

of randomized parameters.

SCIT25 is a technology for cleansing a machine image to achieve intrusion tolerance, and

it has previously been applied in a cloud environment.26 Our MTD platform’s instance re-

placement process achieves the same intrusion tolerance afforded by SCIT’s self-cleansing.

However, the proposed ANCOR-MTD platform does this through a higher-level abstraction

of the services’ dependencies to ensure that instance replacement will not disrupt the cloud

services’ operation. Moreover we show through a series of experiments that the MTD plat-

form instance replacement introduces a very small runtime overhead and it has the potential

to provide important security benefits.

Narain pioneered the use high-level specifications for network infrastructure configura-

tion management in the ConfigAssure27;28 and DADC29 projects. DADC attempts to bridge

7

the gap between requirement and configuration by taking formally specified network config-

uration constraints and automatically finding acceptable concrete configuration parameter

values using a Boolean satisfiability (SAT) solver. The approach has recently been used to

achieve moving target defense at the network configuration layer.30 Similar ideas have also

been proposed by Al-Shaer in the MUTE31 framework that uses binary decision diagrams

(BDDs) to achieve moving target defense on network configurations. Our proposed MTD

platform adopts the same philosophy of using formal models to facilitate system manage-

ment, and focuses on the configuration of applications in a cloud, which differs from that of

network infrastructure.

In terms of metrics, Okhravi et al.32 performed a quantitative study of dynamic platforms

as a defensive mechanism. Specifically, the paper analyzed and evaluated how diversity, lim-

ited duration, multi-instance, and the cleanup effect of an MTD mechanism would impact the

attacker’s control time over an active platform, given the system vulnerability is successfully

exploited. Zhuang et al.33 also proposed an analytical model for analyzing the effectiveness

of moving target defenses in terms of the success likelihood of an intrusion. The model

is scalable and provides insight to designers into how the MTD mechanism would impact

pivoting-type attacks. Rodes et al.34 motivate the need for security arguments to facilitate

comprehensive security metrics by introducing a framework in which security is measured

by the degree of belief in a security claim.

Cybenko and Hughes35 introduced a quantitative framework to model diversity, and they

showed how it can defend the three core goals of cyber security: confidentiality, integrity,

and availability. The framework quantifies the security impact in terms of a joint probability

function that is described by a sequence of time-to-compromise random variables. The attack

window approach described in this dissertation quantifies cost while system components are

“moving”, thereby providing a new perspective on measuring security benefits of an MTD

mechanism. Hence it may constitute an important component for the proposed higher-level

metrics frameworks.

8

Chapter 2

Compiling Abstract Specifications

into Running Systems

Cloud computing is revolutionizing industry and reshaping the way IT systems are designed,

deployed and utilized.13 However, every revolution has its own challenges. Already, com-

panies that have moved resources into the cloud are using terms like “virtual sprawl” to

describe the mess they have created.36 Cloud services are currently offered in several mod-

els: Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a

Service (SaaS). While these options allow customers to decide how much management they

want to perform for their cloud-based systems, they do not provide good abstractions for

effectively managing those systems or addressing diverse user needs.

IaaS solutions such as Amazon Web Services (AWS) and OpenStack allow cloud users to

access the raw resources (compute, storage, bandwidth, etc.); however, it forces users to man-

age the software stack on their cloud instances at a low level. While this approach gives users

tremendous flexibility, it also allows the users to create badly configured or misconfigured

systems, raising significant concerns (especially related to security).37;38 Moreover, offering

automatic scalability and failover is challenging for cloud providers because replication and

state management procedures are application-dependent.13 On the other hand, SaaS (also

known as “on-demand software”) provides pre-configured applications to cloud users (e.g.,

9

SalesForce and Google Apps). Users typically choose from a set of predefined templates,

which makes it difficult to adequately address the range of user needs. PaaS (e.g., Google

App Engine, Heroku, and Windows Azure) is somewhere in the middle, offering computing

platforms with various pre-installed operating systems as well as services and allowing users

to deploy their own applications as well. As PaaS is a compromise between IaaS and SaaS,

it also inherits the limitations of both to various degrees. For example, users can be easily

“locked in” to a PaaS vendor, like in SaaS, and the configuration of applications is still on

the users’ shoulders, like in IaaS.

We observe that existing cloud service models suffer from the lack of an appropriate

higher-level abstraction capable of capturing objectives and functionality of the whole IT

system. Such an abstraction, if designed well, can help both the creation and the long-term

maintenance of the system. While there have been attempts at providing abstractions at

various levels of cloud-based services, none have provided an abstraction that both separates

user requirements from low-level platform/system details and provides a global view of the

system. This has limited the usefulness of those solutions when it comes to long-term

maintenance, multi-platform support, and migration from one cloud provider to another.

We believe to be effective, the abstraction should exhibit the following properties.

1. It must be capable of representing what a user needs instead of low-level details on

how to implement those needs. A major motivation for using cloud infrastructures is

to outsource IT management to a more specialized workforce (called system engineers

hereafter). Communicating needs from users to engineers is better served using higher-

level abstractions as opposed to low-level system details.

2. It must support automatic compilation into valid concrete systems on different cloud

infrastructures. Such compilation should use well-defined knowledge units built by the

system engineers and be capable of translating a specification based on the abstrac-

tion (i.e., an abstract specification) into different concrete systems based on low-level

implementation/platform choices.

10

3. It should facilitate the long-term maintenance of the system, including scaling the

system up/down, automatic fail over, application update, and other general changes

to the system. It should also support orchestrating those changes in a secure and

reliable manner and aid in fault analysis and diagnosis.

We believe such an abstraction will benefit all three existing cloud service models. For

IaaS, an abstract specification will act as a common language for cloud users and system

engineers to define the system, while the compilation/maintenance process becomes a tool

that enables system engineers to be more efficient in their jobs. Re-using the compilation

knowledge units will also spread the labor costs of creating those units across a large number

of customers. In the SaaS model the system engineers will belong to the cloud provider so

the abstract specification and the compilation/maintenance process will help them provide

better service at a lower cost. In the PaaS model we foresee using the abstraction and

compilation process to stand up a PaaS more quickly than can be done today. This could

even foster the convergence to a common set of PaaS APIs across PaaS vendors to support

easier maintenance and migration between PaaS clouds.

Nonetheless, such a vision is not only aligned with the objective of building an MTD

platform but also very needed. It’s flexibility and applicability to multiple environments

serve as a vital step towards making a whole IT system MTD approach a potential general

security solution.

There are multiple challenges in achieving this vision. The most critical is whether it is

feasible to design the abstraction so that it can capture appropriate system attributes in a

way that is meaningful to users and system engineers while being amenable to an automated

compilation process that generates valid concrete systems.

To demonstrate the efficacy of the proposed vision, we implemented and evaluated a

fully-functional prototype of our system, called ANCOR (Automated eNterprise network

COmpileR). The current implementation of ANCOR targets OpenStack14 and uses Pup-

pet39 as the configuration management tool (CMT); however, the framework can also be

targeted at other cloud platforms, such as AWS, or even tailored to work with virtualized

11

infrastructures, such as VMware40 or bare-metal machines (by taking advantage of MaaS41

or a similar approach). Other CMT solutions (e.g., Ansible,42 Chef)43 may also be leveraged.

This part of the research was published in “Compiling Abstract Specifications into Con-

crete Systems: Bringing Order to the Cloud”44 in the USENIX Conference on Large Instal-

lation System Administration (LISA), Seattle (WA), November 2014.

12

2.1 Limitations of Available Automation and Abstrac-

tion Technologies

Recent years have seen a proliferation of cloud management automation technologies. Some

of these solutions (e.g., , AWS OpsWorks) tend to focus on automation as opposed to ab-

straction. They include scripts that automatically create virtual machines, install software

applications, and manage the machine/software lifecycle. Some are even able to dynamically

scale the computing capacity36;45;46. Unfortunately, none of these solutions provide a way

to explicitly document the dependencies between the deployed applications. Instead, depen-

dencies are inferred using solution-specific methods for provider-specific platforms. Not only

is this unreliable (e.g., applications may have non-standard dependencies in some deploy-

ments), but it lacks the capability to maintain the dependency after the system is generated.

Ubuntu Juju47 is a special case that is described and discussed in Section 2.8 (Background:

Related Projects).

Recent years have also seen a general movement towards more abstractions at various

levels of cloud services, especially in PaaS. Examples include Windows Azure Service Defini-

tion Schema (.csdef)48 and Google AppEngine (GAE) YAML-based specification language.49

These abstractions are focused on a particular PaaS, thus they have no need to separate the

platform from user requirements. Rather, they simply abstract away some details to make

it easier for users to use the particular platform to deploy their apps. The abstractions only

capture applications under the users’ control and do not include platform service structures.

As a result the abstractions cannot support compiling abstract specifications to different

cloud platforms. It appears that these abstractions will likely make it harder for users to

move to other cloud providers as they are platform-specific.

Systems like Maestro,50 Maestro-NG,51 Deis52 and Flynn53 are based on Linux container

managers (in this case Docker).54 Some of the description languages in these systems (specif-

ically Maestro and MaestroNG) can capture dependencies among the containers (applica-

tions) through named channels. However, these specifications abstract instances (virtual

13

machines), as opposed to the whole system. There is no formal model to define a globally

consistent view of the system, and as a result once a system is deployed it is challenging

to perform reliable configuration updates. Current Docker-based solutions are primarily fo-

cused on the initial configuration/deployment; maintenance is usually not addressed or they

resort to a re-deployment process.

The lack of a consistent high-level abstraction describing the whole IT system creates a

number of challenges in configuring cloud-based systems: network deployments and changes

cannot be automatically validated, automated solutions are error-prone, incremental changes

are challenging (if not impossible) to automate, and configuration definitions are unique to

specific cloud providers and are not easily ported to other providers.

14

2.2 Enabling Technologies

Several new technologies have facilitated the development of our current prototype. In par-

ticular, there have been several advancements in the configuration management tools (CMT)

that help streamline the configuration management process. This is especially beneficial to

our work, since those technologies are the perfect building blocks for our compilation process.

To help the reader better understand our approach, we present a basic background on the

state-of-the-art CMTs.

Two popular configuration management solutions are Chef and Puppet. We use Puppet

but similar concepts exist in Chef and other CMTs as well. Puppet works by installing an

agent on the host to be managed, which communicates with a controller (called the master)

to receive configuration directives. Directives are written in a declarative language called

Puppet manifests, which define the desired configuration state of the host (e.g., installed

packages, configuration files, running services, etc.). If the host’s current state is different

than the manifest received by the Puppet agent, the agent will issue appropriate commands

to bring the system into the specified state.

In Puppet, manifests can be reused by extracting the directives and placing them in

classes. Puppet classes use parameters to separate the configuration data (e.g., IP ad-

dresses, port numbers, version numbers, etc.) from the configuration logic. Classes can be

packaged together in a Puppet module for reuse. Typically, classes are bound to nodes in

a master manifest known as the site manifest. Puppet can also be configured to use an

external program such as External Node Classifier (ENC)55 or Hiera56 to provide specific

configuration data to the classes that will be assigned to a node.

In the current prototype we use Hiera, which is a key/value look-up tool for configuration

data. Hiera stores site-specific data and acts as a site-wide configuration file, thus separating

the specific configuration information from the Puppet modules. Puppet classes can be

populated with configuration data directly from Hiera, which makes it easier to re-use public

Puppet modules “as is” by simply customizing the data in Hiera. Moreover, users can

publish their own modules without worrying about exposing sensitive environment-specific

15

data or clashing variable names. Hiera also supports module customization by enabling the

configuration of default data with multiple levels of overrides.

Figure 2.1a is an example of a Puppet class for a worker queue based on Redis.57

Puppet classes can be reused in different scenarios without hard-coding parameters: in this

particular example there is only one parameter, port. The concrete value of this parameter

($exports["redis"]["port"]) is derived from Hiera (Figure 2.1b), which is shown as 6379

but can be computed automatically by a program at runtime. This allows us to calculate

parameters based on the up-to-date system model, as opposed to hardcoding them. We use

this technology in the compilation process described later.

class role::work_queue::default {

 $exports = hiera("exports")

 class { "profile::redis":

 port => $exports["redis"]["port"]

 }

}

(a) Puppet Worker Queue Class

classes:

 - role::work_queue::default

exports:

 redis: { port: 6379 }

(b) Hiera Configuration Data

Figure 2.1: Puppet class and corresponding Hiera configuration data

We should also emphasize that while our current prototype uses Puppet, ANCOR can

work with many mature CMT solutions such as Chef, Ansible,42 SaltStack,58 Bcfg2,59 or

CFEngine.60 Two important properties are required for a CMT to be useable by ANCOR.

First, the directives an agent receives dictates a desired state as opposed to commands for

state changes, which allows configuration changes to be handled in the same way as the

initial configuration. Second, there is a mechanism for reusable configuration modules (e.g.,

Puppet classes) that become the building blocks, or the “instruction set,” into which ANCOR

can compile the abstract requirements model. Depending on the specific CMT features, an

orchestrator component might also be needed (especially in case the CMT employs only a

pull-configuration model). An orchestrator component can be used on the CMT master node

to trigger different actions on the CMT agents (achieve a push-configuration model).

16

2.3 ANCOR Framework

The three major components of the ANCOR framework are pictured in Figure 2.2: the

Operations Model, the Compiler, and the Conductor. The arrows denote information flow.

 Conductor

 Operations Model

Compiler

Cloud Platform
(OpenStack)

Configuring Provisioning

Requirements
ModelSystem Model

OpenStack API
Library (Fog)

CMT (Puppet)

Orchestrator
(Mcollective)

Figure 2.2: ANCOR framework

The key idea behind our approach is to abstract the functionality and structure of IT

services into a model that is used to generate and manage concrete systems. This high-

level abstraction is captured in the requirements model. We also maintain the details of the

concrete system in the system model. The two constitute the Operations Model. When

ANCOR compiles a requirements model into a concrete, cloud-based system, the system

17

model is populated with the details of the cloud instances and their correspondence to the

requirements model. When the system changes, the system model is updated to ensure it

has a consistent and accurate view of the deployment.

The Compiler references the requirements model to make implementation decisions nec-

essary to satisfy the abstract requirements and to instruct the conductor to orchestrate the

provisioning and configuration of the instances. It can also instruct the conductor to perform

user-requested configuration changes while ensuring the concrete system always satisfies the

requirements model.

The Conductor consists of two sub-components, Provisioning and Configuring, which are

responsible for interacting with the cloud-provider API, the CMT and orchestration tools

(shown below the dashed line).

The ANCOR framework manages the relationships and dependencies between instances

as well as instance clustering. Such management involves creating and deleting instances,

adding/removing instances to/from clusters, and keeping dependent instances/clusters aware

of configuration updates. The ANCOR framework simplifies network management as system

dependencies are formalized and automatically maintained. Moreover, traditional failures

can also be addressed, thus increasing network resiliency.

18

2.4 The Abstraction

The goal of our abstraction is to maintain an accurate picture of the whole IT system at

all times, an up-to-date overview of the services and their dependencies on other services.

The overview can then be leveraged in conjunction with dedicated solutions targeted at

managing primarily infrastructure resources (e.g., OpenStack Heat, CloudFormation) and

CMTs to automatically configure and change an IT system.

As previously mentioned, the key idea behind our abstraction is to separate user re-

quirements from the implementation details, and allow the users (system administrators) to

specify what they want in terms of service structure and dependencies in an abstract way

(see Figure 2.3). This high-level abstract specification (called the “requirements model”)

is then automatically compiled into concrete cloud-based systems, leveraging the existing

configuration management tools.

The compilation process populates a “system model” that reflects the low-level system

details corresponding to the requirements model. For example, the system model will provide

the mapping from the individual instances to the high-level roles they play in the overall

IT system. The combined system model and requirements model is called the “operations

model” (Figure 2.3). The operations model captures and maintains the dependencies among

the deployed instances at all times, which facilitates on-going system maintenance such as

cluster expansion and contraction, or instance replacement in a reliable manner.

IT systems are described in the operations model in terms of Goals and Roles. A Goal

is a high-level business objective whose purpose is to organize the IT capabilities (Roles)

around business goals. A Role can be viewed as a single unit of configuration. Basically

it represents a group of similarly configured instances that provide the same functionality.

Roles are the means that support the accomplishment of the deployed system’s Goal(s). For

example, a user wants to deploy a scalable and highly available eCommerce website which

adopts a multiple-layer architecture with various clusters of services, similar to Figure 2.4.

In terms of the abstraction, the Goal of the IT system is “eCommerce” and it is supported

by several Role structures such as web load balancer, web application, database master,

19

Role Channel
exported by

Goal

Role
Implementation

Instance

Instance
Interface

Network

ChannelSelection System Model

Requirements
Model

n

n

n

n

n

1

n

1

1

n

1

1

n

n

1

n

1

1

n

imported by
n

SetOfPortsChannel

SinglePortChannel

SecurityGroup

SecurityGroupRule

n

n
n

1

ProviderEndpoint

Legend

one-way
reference

two-way
reference

1
n

Figure 2.3: Operations model (proposed abstraction): maintains an accurate picture of the whole
IT system, an up-to-date overview of the services and their dependencies on other services

database slave, messaging queue and background worker. Roles can be implemented in

numerous ways, various applications and operating systems (OSs) can be chosen to fulfill a

role, e.g., , web load balancer – installing Varnish61 on an Ubuntu62 instance or Nginx63 on

Fedora64 can achieve the same objective.

In our abstraction, a RoleImplementation specifies a concrete way to implement the in-

tended functionality embodied by a role. An implementation points to the CMT building

blocks used to build a Role; a Role has one or more implementations. Moreover, an In-

stance is a virtual machine that fulfills a Role by implementing one of the concrete CMT

modules specified in RoleImplementations. An instance that fulfills a Role makes a number

of resources, Channels, available to other instances. These resources are usually consumed

(imported) by the instances belonging to a dependent Role. Most of the times, the resource

is a single port or a set of ports. A set of ports captures a number of ports that need to

be made available at all times for a certain service to work properly. For example, usually

an FTP server needs two open ports to work properly; it establishes the data channel on

20

one port (e.g., port 20) and the command channel on a different one (e.g., port 21). An

Instance Interface stores the MAC address(es) that belong to an instance and a Network

stores the network(s) that an instance is connected to. Moreover, an instance has access to

the ports that a role consumes or exposes (channels) through ChannelSelection. The cloud

provider firewall configuration (known as “security groups” in OpenStack) is captured in

SecurityGroup. One SecurityGroup can have multiple configuration entries, SecurityRules.

ProviderEndpoint captures the cloud platform specific API. This component makes it easier

to integrate ANCOR with different cloud providers (e.g., AWS).

Internal
Network

External
Networkweblb_role

db_master_role db_slave_role

work_queue_role

webapp_role

worker_role

Figure 2.4: eCommerce website

2.4.1 ARML language

We specify the requirements model in a domain-specific language called the ANCOR Re-

quirements Modeling Language (ARML). ARML’s concrete syntax is based on YAML,65

which is a language that supports specification of arbitrary key-value pairs. The abstract

syntax of ARML is detailed in Figure 2.6.

21

 1 goals:

 2 ecommerce:

 3 name: eCommerce deployment

 4 roles:

 5 - weblb_role

 6 - webapp_role

 7 - worker_role

 8 - worker_queue_role

 9 - db_master_role

10 - db_slave_role

11

12

13

14 roles:

15 weblb_role:

16 name: Web application load balancer

17 number_of_instances: 2

18 is_public: true

19 implementation_requirements:

20 default:

21 interface: weblb

22 os: Ubuntu

23 same_implementation: false

24 exports:

25 http:

26 type: single_port

27 protocol: tcp

28 number: 80

29 imports:

30 webapp_role: http

31

32 webapp_role:

33 name: Web application

34 number of instances: 3

35 implementation_requirements:

36 default:

37 interface: webapp_rdb_mht

38 os: Ubuntu

39 same_implementation: true

40 exports:

41 http: {type: single_port, protocol: tcp}

42 imports:

43 db_master_role: rw_query

44 db_slave_role: r_query

45 work_queue_role: queue

46

47 worker_role:

48 name: Worker application

49 number_of_instances: 2

50 implementation_requirements:

51 default:

52 interface: background_worker

53 os: Ubuntu

54 same_implementation: true

55 imports:

56 db_master_role: rw_query

57 db_slave_role: r_query

58 work_queue_role: access

59

60 work_queue_role:

61 name: Work queue application

62 number_of_instances: 2

63 implementation_requirements:

64 default:

65 interface: work_queue

66 os: Ubuntu

67 same_implementation: true

68 exports:

69 queue: {type: single_port, protocol: tcp}

70

71 db_master_role:

72 name: Database master

73 number_of_instances: 1

74 implementation_requirements:

75 default:

76 interface: db_master_rdb

77 os: Ubuntu

78 exports:

79 rw_querying: {type: single_port, protocol: tcp}

80

81 db_slave_role:

82 name: Database slave

83 number_of_instances: 2

84 implementation_requirements:

85 default:

86 interface: db_slave_rdb

87 os: Ubuntu

88 same_implementation: true

89 exports:

90 r_querying: {type: single_port, protocol: tcp}

91 imports:

92 db_master_role: rw_query

Figure 2.5: eCommerce website ARML specification

Figure 2.5 shows an example ARML specification for an eCommerce website. The example is

a scalable and highly available eCommerce website on a cloud infrastructure, which adopts a

multiple-layer architecture with the various clusters of services shown in Figure 2.4: web load

balancer (Varnish), web application (Ruby on Rails66 with Unicorn)67, database (MySQL)68,

worker application (Sidekiq)69, and messaging queue (Redis). Arrows indicate dependency

between the clusters. Each cluster consists of multiple instances that offer the same services.

Clustering supports scaling via cluster expansion (adding more instances to the cluster)

or contraction (removing instances from the cluster). The clustering strategies employed

by these applications fall into two main categories: homogeneous and master-slave. In a

22

ReqModel ::= goals GoalSpec+

 roles RoleSpec+

GoalSpec ::= goalID [name string]
 roles roleID+

RoleSpec ::= roleID [name string]
 [number_of_instances integer]
 [exports ChannelSpec+

]

 [imports ImportSpec+
]

 implementation_requirements ImplementationSpec+

ChannelSpec ::= channelID type single_port | set_of_ports
 protocol tcp | udp

 [number integer | integer, ,integer]

ImportSpec ::= roleID channelID+

ImplementationSpec ::= implementationID interface interfaceID
 os string
 same_implementation true | false

goalID, roleID, channelID, implementationID, interfaceID are symbols.

integer and string are defined in the usual way.

Figure 2.6: ARML’s abstract syntax

homogeneous cluster all cluster members have the same configuration. If one of the instances

stops working, another instance takes over. In master-slave, the master and slave instances

have different configurations and perform different functions (e.g., write versus read). If the

master fails, a slave can be promoted to be the master. In this example system, the web load

balancer, web application, and the worker application employ the homogeneous clustering

while the database employs master-slave (thus MySQL master and MySQL slaves form one

cluster). Redis is used as a messaging queue. The clustering approach, mainly replication,

supported by Redis is not suited for high-throughput queues.

A requirements model contains the specifications of system goals and roles. A goal is a

high-level business goal (e.g., blog website, eCommerce website, etc.) whose purpose is to

organize the IT capabilities (roles) around business objectives. In Figure 2.5 there is a single

system goal ecommerce that is supported by six roles.

A role defines a logical unit of configuration. Examples include a database role, a web

application role, a message broker role, and so on. In essence, a role represents a group of

23

similarly configured instances that provide the same functionality. In our model we use a

single role to represent all the instances that achieve that functionality. For example, the

web application instances in Figure 2.4 are configured identically (except for IP addresses,

ports, and credentials) and multiple load balancers dispatch incoming web requests to the

instances in the web application cluster. We have a single role webapp role for all the web

application instances, and a weblb role for all the load balancer instances. The role-to-

instance mapping is maintained in the system model.

A role may depend on other roles. A role uses a channel to interact with other roles. A

channel is an interface exported (provided) by a role and possibly imported (consumed) by

other roles. Channels could include a single network port or a set of ports. For instance,

the webapp role exports an http channel, which is a TCP port (e.g., , 80). weblb role

imports the http channel from the webapp role. A role is a “black box” to other roles, and

only the exported channels are visible interfaces. Using these interfaces the requirements

model captures the dependencies between the roles.

The webapp role also imports three channels from various other roles: querying from

db master, querying from db slave, and redis from work queue. This means the

webapp role depends upon three other roles: db master, db slave, and work queue.

The number of instances field indicates the number of instances that should be deployed

to play the role. If number of instances is not specified it’s default value is 1. The re-

quirements model addresses instance clustering naturally by requiring multiple instances to

play a role. For homogeneous clusters this is easy to understand. For master-slave clusters,

at least two roles are involved in the cluster, the master and the slave. The dependency

information captured in the export/import relationship is sufficient to support calculating

configuration changes when, for example, the master is removed from the cluster and a new

node is promoted to be the master. So far we have not found any real-world clustering

strategies that require explicitly modeling the cluster structure beyond the dependency re-

lationship between the roles that form the cluster. If more general clustering strategies are

needed, the requirements model can be extended to support them.

24

2.4.2 Role Implementation

Role names are system-specific and are chosen by the user or system engineers to convey a

notion of the role’s purpose in the system; there are no pre-defined role names in ARML.

However, to automatically compile and maintain concrete systems, system engineers must

provide the semantics of each role, which is specified in the role specification’s implementa-

tion requirements field. The implementation requirements field defines how each instance

must be configured to play the role. The implementation information is processed by the

a module within the compiler (e.g., constraint model, described in Section 2.5). Next the

conductor is informed to which of the actual implementations it should point to properly

configure and deploy the concrete instances. The information about the actual implemen-

tation is thus dependent on the CMT being used. This process is similar to traditional

programming language compilers where abstract code constructs are compiled down to ma-

chine code. The compiler must contain the semantics of each code construct in terms of

machine instructions for a specific architecture.

The analogy between our ANCOR compiler and a programming language compiler nat-

urally begs the question: “what is the architecture-equivalent of a cloud-based IT system?”

In other words, is there an interface to a “cloud runtime” into which we can compile an

abstract specification? It turns out that a well-defined interface between the requirements

model and the “cloud runtime” is well within reach if we leverage existing CMT technologies.

As explained in Section 2.2, there has been a general movement in CMT towards encapsu-

lating commonly-used configuration directives into reusable, parameterized modules. Thus,

one can use both community and custom modules to implement roles and populate those

reusable knowledge units with parameters derived from our high-level requirements model.

Potential role implementations must be specified in a role’s “implementation requirements”

field (see Figure 2.5). A role may have multiple implementations since there could be more

than one way to achieve its functionality. The compiler then selects an appropriate role im-

plementation from those that satisfy all constraints levied by existing role implementations

in the system. More details on the selection process are presented in Section 2.5.

25

An important challenge was structuring the knowledge units so that they could be easily

reused in different requirements models. Failing to have a proper role implementation design

model would lead to rewriting every single role implementation from scratch. We adopted

an approach similar to that used by Dunn.70 We name role implementations based on their

functionality and/or properties and use “profiles” to integrate individual components to

embody a logical software stack.

The software stack is constructed using community and custom modules as lower-level

components. In other words, profiles can be viewed as reusable custom-made classes that

aggregate these lower-level community and custom modules to implement a functional-

ity that might be needed in various role implementations across multiple scenarios. All

role implementations used with ANCOR are available on GitHub: https://github.com/

arguslab/ancor-puppet.

For instance, in case of the load balancer, let us assume that the weblb role points to

the role::weblb::default role implementation. Figure 2.7a is a Puppet class that shows

the implementation that was defined as default for the weblb role. Figure 2.7b pictures

a sample of possible parameters that Puppet is getting through Hiera from the compiler for

configuring one of the weblb role instances. There are two parts in each role implementa-

tion (see Figure 2.7a). The code before “---” imports operations model values from Hiera

(e.g., see Figure 2.7b). The statements hiera("exports") and hiera("imports") query

Hiera to find all the channels the web load balancer will consume (imports) and the channels

that it will make available to other roles (exports). These channels will be stored in two

variables, "exports" and "imports". The web load balancer will be instructed to expose

an http channel on a particular port (in this case port 80, see “exports” in Figure 2.7b),

and will be configured to use all instances that are assigned to play the webapp role, from

which it imports the http channel. Two different roles may use the same name for a re-

source they are exporting, even though there may be no relation between those resources

(e.g., weblb role and webapp role both use http to name their exports).

26

https://github.com/arguslab/ancor-puppet
https://github.com/arguslab/ancor-puppet

class role::weblb::default {

 $exports = hiera("exports")

 $imports = hiera("imports")

 class { "profile::varnish":

 listen_port => $exports["http"]["port"] }

 $backends = $imports["webapp_role"]

 file { "default.vcl":

 ensure => file,

 content =>

 template("role/weblb-varnish/default.vcl.erb"),

 path => "/etc/varnish/default.vcl",

 owner => root,

 group => root,

 mode => 644,

 require => Package["varnish"],

 notify => Exec["reload-varnish"], }

}

(a) Web load balancer role implementation

 {

 "exports": {

 "http": {

 "port": 80,

 "protocol": "tcp"

 }

 },

 "imports": {

 "webapp_role": {

 "webapp_role-ce66a264": {

 "ip_address": "10.118.117.16",

 "stage": "undefined",

 "planned_stage": "deploy",

 "http": {

 "port": 42683,

 "protocol": "tcp"

 }

 },

 "webapp_role-84407edd": {

 "ip_address": "10.118.117.19",

 "stage": "undefined",

 "planned_stage": "deploy",

 "http": {

 "port": 23311,

 "protocol": "tcp"

 }

 },

 "webapp_role-1ce1ce46": {

 "ip_address": "10.118.117.22",

 "stage": "undefined",

 "planned_stage": "deploy",

 "http": {

 "port": 10894,

 "protocol": "tcp"

 }

 }

 }

 },

 "classes": [

 "role::weblb::default"

]

(b) Specific weblb role parameters sample ex-
posed to Hiera by ANCOR

Figure 2.7: Web load balancer requirements and Hiera example of parameters

The default weblb role implementation is based on the reusable Puppet “Varnish profile”

(profile::varnish - see Figure 2.8). The profile::varnish Puppet class uses the neces-

sary specified parameters to customize the Varnish installation. Parameters (e.g., $listen -

address, $listen port, etc.) are initialized with default values. These values will be

overwritten in case they are specified in role::weblb::default. In the current example,

$listen port is the only parameter that will be overwritten (see Figure 2.7a), the other

parameters will keep their default values defined in profile::varnish. The parameters’

values (initialized in role::weblb::default or in profile::varnish) are passed to Fig-

27

ure 2.9a and Figure 2.9b to generate the customized Varnish configuration files, and this is

all done by Puppet automatically at runtime.

class profile::varnish(

 $listen_address = "0.0.0.0",

$listen_port's default value "6081" will be

overwritten with the value passed

from role::weblb::default

 $listen_port = 6081,

 $admin_listen_address = "127.0.0.1",

 $admin_listen_port = 6082) {

 apt::source { "varnish":

 location =>

 "http://repo.varnish-cache.org/ubuntu/",

 release => "precise",

 repos => "varnish-3.0",

 key => "C4DEFFEB",

 key_source =>

 "http://repo.varnish-cache.org/debian/GPG-key.txt",

 }

 package { "varnish":

 ensure => installed,

 require => Apt::Source["varnish"], }

 service { "varnish":

 ensure => running,

 require => Package["varnish"], }

 Exec {

 path => ["/bin", "/sbin", "/usr/bin", "/usr/sbin"]

 }

 exec { "reload-varnish":

 command => "service varnish reload",

 refreshonly => true,

 require => Package["varnish"] }

 file { "/etc/default/varnish":

 ensure => file,

 content =>

 template("profile/varnish/default.erb"),

 owner => root,

 group => root,

 mode => 644,

 notify => Service["varnish"],

 require => Package["varnish"], }

}

Figure 2.8: Varnish profile for a web load balancer

28

Configuration file for varnish

START=yes

NFILES=131072

MEMLOCK=82000

VARNISH_VCL_CONF=/etc/varnish/default.vcl

VARNISH_LISTEN_ADDRESS=<%= @listen_address %>

VARNISH_LISTEN_PORT=<%= @listen_port %>

VARNISH_ADMIN_LISTEN_ADDR=<%= @admin_listen_address %>

VARNISH_ADMIN_LISTEN_PORT=<%= @admin_listen_port %>

VARNISH_MIN_THREADS=1

VARNISH_MAX_THREADS=1000

. . .

(a) Web load balancer, Varnish, initialization
script: default.erb (used in profile::varnish)

<% @backends.each do |name, backend| %>

backend be_<%= name.sub("-", "_") %> {

 .host = "<%= backend["ip_address"] %>";

 .port = "<%= backend["http"]["port"] %>";

 .probe = {

 .url = "/";

 .interval = 5s;

 .timeout = 1s;

 .window = 5;

 .threshold = 3;

 }

}

<% end %>

director webapp round-robin {

 <% @backends.each_key do |name| %>

 {

 .backend = be_<%= name.sub("-", "_") %>;

 }

 <% end %>

}

sub vcl_recv {

 set req.backend = webapp;

}

(b) Web load balancer, Varnish, configuration
file: default.vcl.erb (used in role::weblb::default)

Figure 2.9: Web load balancer, Varnish, configuration files

Thus, a role implementation definition specifies a concrete way to implement the intended

functionality embodied by a role by describing the invocation of pre-defined configuration

modules with concrete parameters computed from the operations model. The use of a high-

level requirements model that explicitly captures the dependencies among the various roles

is crucial to automating this process. These role implementations are not only useful when

generating the system, but also for modifying the system as it changes over time. For

example, if a new instance is deployed to play the webapp role, the dependency structure

in the operations model allows ANCOR to automatically find all the other roles that may

be impacted (those depending on the webapp role) and use their role implementation to

direct the configuration management tool to reconfigure them so that they are consistent

with the updated operations model.

ANCOR leverages existing CMTs to define the role implementations, to minimize addi-

tional work that has to be done by the users. For example, only information in Figure 2.7a

is what one needs to write for ANCOR; Figure 2.7b is generated automatically by ANCOR;

Figure 2.8, 2.9a, and 2.9b are what one would have to specify anyway using Puppet.

29

2.5 Constraint Model

The constraint model attempts to find a compatible combination of role implementations

(short-handed implementations) that will fulfill the roles defined in the ARML specification.

In other words, it will match a role with the implementations that are compatible with

the implementation requirements of the role, including its dependent and depended upon

(dependee) roles.

The constraint model ensures that role specifications and corresponding implementations

adhere to a common structure (e.g., the same number of imports and exports) and that the

required operating system is supported by the specific implementation. In addition to the

specification that defines the roles (ARML specification), the constraint model requires a

list with the available implementations and a way to match the two specifications – using

interfaces and schemas.

2.5.1 Inputs

The constraint model takes an ARML specification, a list of schemas and interfaces specs, and

a list of the available implementations specs as its input, and attempts to find a compatible

combination of implementations that fulfills the requirements. The list of schemas and

interfaces stores the characteristics of the roles and implementations; thus the constraint

model uses the list of schemas and interfaces to verify and match the implementations with

the role requirements specified in ARML format. The list of available implementations

describes the actual characteristics and needs of the software applications that are installed

using the CMT. Every implementation from this list implements an interface specified in the

schema and interface list.

30

Internal
Network

External
Networkweblb_role

db_master_role db_slave_role

work_queue_role

webapp_role

worker_role

(a)

Internal
Network

External
Networkweblb_role

db_master_role

webapp_role

(b)

Figure 2.10: Two eCommerce deployments

Let us consider a number of different eCommerce deployments as pictured in Figure 2.10,

a list of schemas and interfaces (see Figure 2.11), and the descriptions for the available

implementations (Figure 2.14).

The abstract syntaxes that describe the structures of the schemas-interfaces and imple-

mentations lists are illustrated in Figures 2.12 and 2.15. Similar to ARML, the concrete

syntax is based on YAML in the schemas-interfaces and implementations lists. While an

ARML specification describes a whole IT system (one scenario), the list of schemas and in-

terfaces, and the list of available implementations may be used for multiple whole IT systems

(e.g., Figure 2.10).

Thus, the name tag of an implementation (Figure 2.14) may also be used to point to the

location of the CMT modules implementing it (e.g., role::ecommerce:weblb::nginx points

to the location of the nginx Puppet manifest in the current ANCOR prototype). The cor-

responding ARML specs for Figure 2.10a are pictured in Figure 2.5, while the requirements

for Figure 2.10b are specified in Figure 2.13.

31

 1 # available_schemas_and_interfaces

 2

 3 er exp:

 4 type: single_port

 5 protocol: tcp

 6

 7 ir imp

 8

 9 schema no_imp_one_exp:

10 exports: exp

11

12 schema no_imp_two_exp:

13 exports: {exp, exp}

14

15 schema one_imp_one_exp:

16 exports: exp

17 imports: imp

18

19 schema two_imp_one_exp:

20 exports: exp

21 imports: {imp, imp}

22

23 schema three_imp_one_exp:

24 exports: exp

25 imports: {imp, imp, imp}

26

27 schema three_imp_no_exp:

28 imports: {imp, imp, imp}

29

30 interface db_master_rdb:

31 conforms: no_imp_one_exp

32 exports:

33 rw_query: {type: single_port, protocol: tcp}

34

35 interface work_queue:

36 conforms: no_imp_one_exp

37 exports:

38 queue: {type: single_port, protocol: tcp}

39

40 interface db_slave_rdb:

41 conforms: one_imp_one_exp

42 exports:

43 r_query: {type: single_port, protocol: tcp}

44 imports:

45 db_master_rdb: rw_query

46

47 interface webapp:

48 conforms: no_imp_one_exp

49 exports:

50 http: {type: single_port, protocol: tcp}

51

52 interface webapp_rdb:

53 conforms:one_imp_one_exp

54 extends: webapp

55 imports:

56 db_master_rdb: rw_query

57

58 interface webapp_rdb_ht:

59 conforms: two_imp_one_exp

60 extends: webapp

61 imports:

62 db_master_rdb: rw_query

63 db_slave_rdb: r_query

64

65 interface webapp_rdb_mht:

66 conforms: three_imp_one_exp

67 extends: webapp

68 imports:

69 db_master_rdb: rw_query

70 db_slave_rdb: r_query

71 work_queue: queue

72

73 interface weblb:

74 conforms: one_imp_one_exp

75 exports:

76 http: {type: single_port, portocol: tcp, port: 80}

77 imports:

78 webapp: http

79

80 interface background_worker:

81 conforms: three_imp_no_exp

82 imports:

83 db_master_rdb: rw_query

84 db_slave_rdb: r_query

85 work_queue: queue

Figure 2.11: List of available interfaces and schemas. This list may include the schemas and
interfaces descriptions used in multiple ARML specs

32

InterfaceSchemaList ::= (schema schemaID SchemaSpec)+

 (interface interfaceID InterfaceSpec)+

SchemaSpec ::= [exports Er+]
 [imports Ir+]

Er ::= er erID type single_port | set_of_ports
 protocol tcp | udp
 [port integer | (integer, ,integer)]

Ir ::= ir irID (interfaceID channelID)*

InterfaceSpec ::= conforms schemaID
 [extends interfaceID]
 [exports ChannelSpec+]
 [imports ImportSpec+

]

ChannelSpec ::= channelID type single_port | set_of_ports
 protocol tcp | udp
 [number integer | (integer, ,integer)]

ImportSpec ::= interfaceID channelID+

roleID, channelID, interfaceID, schemaID, erID, irID are symbols.

integer and string are defined in the usual way.

Figure 2.12: Abstract syntax for the list of interfaces and schemas

 1 goals:

 2 ecommerce:

 3 name: eCommerce deployment

 4 roles:

 5 - weblb_role

 6 - webapp_role

 7 - db_master_role

 8

 9 roles:

10 weblb_role:

11 name: Web application load balancer

12 number_of_instances: 2

13 is_public: true

14 implementation_requirements:

15 default:

16 interface: weblb

17 os: Ubuntu

18 same_implementation: false

19 exports:

20 http:

21 type: single_port

22 protocol: tcp

23 number: 80

24 imports:

25 webapp_role: http

26

27 webapp_role:

28 name: Web application

29 number of instances: 3

30 implementation_requirements:

31 default:

32 interface: webapp_rdb

33 os: Ubuntu

34 same_implementation: true

35 exports:

36 http: {type: single_port, protocol: tcp}

37 imports:

38 db_master_role: rw_query

39

40 db_master_role:

41 name: Database master

42 number_of_instances: 1

43 implementation_requirements:

44 default:

45 interface: db_master_rdb

46 os: Ubuntu

47 exports:

48 rw_querying: {type: single_port, protocol: tcp}

Figure 2.13: Lightweight eCommerce deployment

33

 1 # available_role_implementations

 2

 3 varnish:

 4 name: role::ecommerce::weblb::default

 5 description: Varnish webapp load balancer

 6 interfaces: weblb

 7 compatible_os: [Ubuntu, Fedora]

 8 imported_role_impls:

 9 webapp: [rails_super_lite]

10

11 nginx:

12 name: role::ecommerce::weblb::nginx

13 description: Nginx webapp load balancer

14 interfaces: weblb

15 compatible_os: [Ubuntu]

16 imported_role_impls:

17 webapp: [rails, rails_crazy]

18

19 rails_super_lite:

20 name: role::ecommerce::webapp::railsSL

21 description: Super lite Rails deployment

22 interfaces: webapp_rdb

23 compatible_os: [Ubuntu]

24 imported_role_impls:

25 db_master_rdb: [postgres_master]

26

27 rails_crazy:

28 name: role::ecommerce:webapp:railscrazy

29 description: Tweaked Rails deployment

30 interfaces: webapp_rdb_ht

31 compatible_os: [Ubuntu]

32 imported_role_impls:

33 db_master_rdb: [mysql_master]

34 db_slave_rdb: [mysql_slave]

35

36 rails:

37 name: role::ecommerce::webapp:default

38 description: Rails with Unicorn and Nginx

39 interfaces: webapp_rdb_mht

40 compatible_os: [Ubuntu]

41 imported_role_impls:

42 db_master_rdb: [mysql_master, postgres_master]

43 db_slave_rdb: [mysql_slave, postgres_slave]

44 work_queue: [redis]

45

46 sidekiq:

47 name: role::ecommerce::worker::default

48 description: Sidekiq background worker

49 interfaces: background_worker

50 compatible_os: [Ubuntu]

51 imported_role_impls:

52 db_master_rdb: [mysql_master]

53 db_slave_rdb: [mysql_slave]

54 work_queue: [redis, rabbit]

55

56 redis:

57 name: role::ecommerce:work_queue::default

58 description: Redis used as a work queue

59 interfaces: work_queue

60 compatible_os: [Ubuntu]

61

62 rabbit:

63 name: role::ecommerce::work_queue::rabbit

64 description: RabbitMQ used as a work queue

65 interfaces: work_queue

66 compatible_os: [Ubuntu]

67

68 mysql_master:

69 name: role::ecommerce::db_master::default

70 description: MySQL database master

71 interfaces: db_master_rdb

72 compatible_os: [Ubuntu]

73

74 mysql_slave:

75 name: role::ecommerce:db_slave::default

76 description: MySQL slave

77 interfaces: db_slave_rdb

78 compatible_os: [Ubuntu]

79 imported_role_impls:

80 db_master_rdb: [mysql_master]

81

82 postgres_master:

83 name: role::ecommerce::db_master::postgres

84 description: Postgres database master

85 interfaces: db_master_rdb

86 compatible_os: [Ubuntu, Fedora]

87

88 postgres_slave:

89 name: role::ecommerce::db_master::postgres

90 description: Postgres database slave

91 interfaces: db_slave_rdb

92 compatible_os: [Ubuntu, Fedora]

93 imported_role_impls:

94 db_master_rdb: [postgres_master]

Figure 2.14: List of available role implementations. This list may include the implementations
used in multiple ARML specs.

RoleImplList ::= RoleImplSpec
+

RoleImplSpec ::= roleImplID name string
 [description string]

 interface interfaceID
 compatible_os string+

 imported_role_impls {(interfaceID roleImplID+
)
+
}

roleImplID, interfaceID is a symbol.

integer and string are defined in the usual way.

Figure 2.15: Abstract syntax for the list of role implementations

34

Definition 1. A schema is a structure (outline) that is common to all adhering members.

Definition 2. We view an interface as a contract that specifies certain characteristics

that will apply to any implementing entity. The structural constraints for an interface are

specified in a schema, an interface always conforms to a schema. An interface may also

inherit characteristics from another interface. Inheritance implies a union operation between

the sets of characteristics in the child interface and the parent interface.

The webapp role from Figure 2.10a may have multiple implementations but although many

implementations are webapps (e.g., rails, rails super lite, rails crazy) that support the

required OS, only rails is compatible with the webapp role (implements the interface –

webapp rdb mht). The number of imported impls in rails differs from the number of

imported impls in rails crazy or rails super lite. Therefore their implementations

point to different interfaces (implement different contracts). However, the webapp role as

defined in the ARML spec in Figure 2.13 and in Figure 2.10b conforms to the webapp rdb

interface, and only rails super lite may be able to implement it.

An interface conforms to a schema and adheres to the structural restrictions specified

in the schema description (Figure 2.11). Usually restrictions refer to the number of exports

and imports – resources made available to other implementations and resources needed to

implement the desired functionality. For instance, weblb adheres to the one imp one exp

schema and, thus, it has one import and one export. In other words, all role specifications

(e.g., weblb role from Figure 2.10a) and implementations specs (e.g., nginx, varnish

from Figure 2.14) that adopt the interface weblb will have one import and one export.

35

2.5.2 Roles-Interfaces Relationship

A role implements an interface if

1. the interface name is specified in the role specification;

2. the interface and the role have the same number of imports and exports;

3. role exports have the same structure (same type, protocol, and port number) as the

interface exports;

4. imported roles implement (or inherit) the interfaces stated in the interface imports;

5. role imports have the same structure (same type, protocol, and port number) with

the interface imports.

Figure 2.16 shows an example of a role implementing an interface.

weblb_role:

 name: Web application load balancer

 number_of_instances: 2

 is_public: true

 implementation_requirements:

 default:

 interface: weblb

 os: Ubuntu

 same_implementation: false

 exports:

 http:

 type: single_port

 protocol: tcp

 number: 80

 imports:

 webapp_role: http

interface weblb:

 conforms: one_imp_one_exp

 exports:

 http: {type: single_port, portocol: tcp, port: 80}

 imports:

 webapp: http

5. Same structure for http resource
imported by weblb_role and

exported by webapp_role

4. webapp_role implements
webapp_rdb_mht which inherits webapp

webapp_role:

 ...

 interface: webapp_rdb_mht

 ...

 exports:

 http: {type: single_port, protocol: tcp}

interface webapp_rdb_mht:

 ...

 extends: webapp

 ...

interface webapp:

 conforms: no_imp_one_exp

 exports:

 http: { type: single_port, protocol: tcp }

expand

1. Implements
weblb interface

2. One export and
one import

3. exports have the same

structure (same type,

protocol,port number)

Figure 2.16: Role complies with interface example

36

2.5.3 Role Implementations-Interfaces Relationship

An implementation complies with an interface if

1. the interface name is specified in the implementation spec;

2. the number of interface imports is equal to the number of imported impls from the

implementation’s specification;

3. the imports’ names from the interface spec are the same with the imported impls

from the implementation’s specification;

4. implementations (values) specified in imported impls need to implement (or inherit)

their corresponding interface (key) name.

Figures 2.17 shows the implications of an implementation complying with an interface.

nginx:

 name: role::ecommerce::weblb::nginx

 description: Nginx webapp load balancer

 interfaces: weblb

 compatible_os: [Ubuntu]

 imported_impls:

 webapp: [rails, rails_crazy]

interface weblb:

 conforms: one_imp_one_exp

 exports:

 http: {type: single_port, portocol: tcp, port: 80}

 imports:

 webapp: http

1. Implements
weblb interface

2. One import

3. Same interface name
(webapp)

4. rails_crazy and rails implement
webapp_rdb_ht and

webapp_rdb_mht and both interfaces

inherit webapp

rails_crazy:

 ...

 interfaces: webapp_rdb_ht

 ...

interface webapp_rdb_ht:

 ...

 extends: webapp

 ...
expand

expand

rails:

 ...

 interfaces: webapp_rdb_mht

 ...

interface webapp_rdb_mht:

 ...

 extends: webapp

 ...

Figure 2.17: Implementation complies with interface example

37

2.5.4 Assigning Role Implementations to Roles

Definition 3. A candidate implementation for a role X implements the same interface

as X and supports the operating system required by X. Role X is specified in ARML format.

Definition 4. Implementation A depends on implementation B if B’s interface is present

in A’s imported impls.

Definition 5. Compatibility refers to implementations being able to work with each other

in the same scenario. Implementation A depends on implementation B. A and B are

compatible if A’s imported impls contains B. Implementations that do not depend on each

other are also considered compatible (do not directly influence each other’s functionality).

A candidate implementation for a role, implements the interface and supports the re-

quired OS as specified in the role’s ARML spec. In the current version of the constraint

model, a role implementation supports a required OS if the OS specified in the ARML role

is among the OSs specified in the implementation’s specification. Such an example is pic-

tured in Figure 2.18. A clean image of an operating system used in the list of available

implementations must be supported and present on the targeted cloud infrastructure. More

specific OS version names (e.g., Ubuntu14.04 x64) may also be used in the current format.

Once the constraint model was able to find at least one candidate implementation for

each role, it must check the compatibility of the implementations with the implementations

of the imported and dependent roles. For this purpose, the constraint model can trans-

late the individual compatibility constraints between candidate implementations to boolean

formulas and leverage the benefits of a satisfiability solver (SAT solver). Satisfiability con-

stitutes a solution to a boolean formula that is an assignment of values to the formula’s

boolean variables that result in the formula becoming true29;71. If the formula is satisfiable,

a SAT solver will produce an example of a truth assignment. The ultimate goal is to find a

compatible combination of implementations that will fulfill the roles defined in the ARML

specification.

38

nginx:

 name: role::ecommerce::weblb::nginx

 description: Nginx webapp load balancer

 interfaces: weblb

 compatible_os: [Ubuntu]

 imported_impls:

 webapp: [rails, rails_crazy]

weblb_role:

 name: Web application load balancer

 number_of_instances: 2

 is_public: true

 implementation_requirements:

 default:

 interface: weblb

 os: Ubuntu

 same_implementation: false

 exports:

 http:

 type: single_port

 protocol: tcp

 number: 80

 imports:

 webapp_role: http

varnish:

 name: role::ecommerce::weblb::default

 description: Varnish webapp load balancer

 interfaces: weblb

 compatible_os: [Ubuntu, Fedora]

 imported_impls:

 webapp: [rails, rails_crazy]

Ubuntu [Ubuntu, Fedora]

AND
Ubuntu [Ubuntu]

Figure 2.18: Required ARML role OS supported in a role implementation

The current version of the constraint model uses Alloy.72 Alloy is a language for describing

structures and a tool for exploring them.71;72 Hence the constraint model populates an Alloy

template model (see Figure 2.19) with information specific to the three inputs (ARML spec,

list of schemas and interfaces, and list of implementations) and passes it to the Alloy Ana-

lyzer. The Alloy Analyzer works by reduction to SAT and, thus, it employs a SAT solver to

find a solution.

Alloy Model

An Alloy model is built from atoms and relations. An atom is an indivisible, immutable and

uninterpreted primitive entity while a relation is a structure that relates atoms.71

Figure 2.19 pictures snippets from the Alloy model generated based on the inputs we

utilized for the eCommerce website scenario specified in Figure 2.5. Signatures (sig) de-

scribe the basic data elements we want to reason about and introduce the sets of atoms.

We have generated an abstract signature with the appropriate fields for a role (Role),

an interface (Interface) and a role implementation (RoleImpl). A field defines relations

between the signatures while an abstract signature has no elements except those belong-

ing to its extensions and subsets. Therefore, for each role, interface and implementation

from the inputed lists we have generated one signature that extends the corresponding ab-

39

stract signature (e.g., one sig Weblb role extends Role {}; one sig Weblb extends

Interface {}; one sig Varnish extends RoleImpl {}). Extensions of the same signa-

ture are mutually disjoint. We have also defined a signature for the imported role imple-

mentations (ImportedRi) and use facts (fact) and predicates (pred) constructs to capture

the entire eCommerce environment. Facts denote additional constraints on signatures while

predicates are named constraints, with zero or more arguments. We packaged the additional

constraints on the top-level signatures as predicates and then included the predicates in facts

to capture the relationships between roles, interfaces and implementations.

Alloy specifications can also be viewed from an object-oriented perspective. Signatures

(e.g., Role, RoleImpl, Interface, Weblb role etc.) are analogous to classes while a field

(e.g., interface) of a certain type (e.g., Interface) holds references to objects of that

particular type. Moreover, relations (e.g., interface one -> some ri) play a role similar

to Ruby hashes73 or Python dictionaries74 – they map elements in the domain type (e.g.,

interface from Interface) to elements in the range type (e.g., ri from RoleImpl).

The objective of the Alloy model is to find a compatible combination of role implemen-

tations that will fulfill the roles defined in the ARML specification. The solution is stored

in the SoftwareStack signature and “computed” by running the findImpl predicate. For a

candidate implementation to be associated to a role the findImpl predicate checks for the

following conditions:

• Same interface: Role and the candidate implementation implement the same interface

(e.g., role1.interface = ri1.interface)

• Compatibility with the implementations of the dependent roles: Implementations of the

imported role(s) are among the supported implementations of the current implemen-

tation (e.g., s.imp[role1.imported roles] in ri1.imported role impls.ri)

Optional (“sanity”) checks may also be added, and they may verify whether the number

of imports is the same in the role and in the candidate implementation or if the interface

names of the imported roles match (or are inherited by) the interfaces in the imported role

implementations.

40

module constraintModel/dependent_dependee_check

//Roles from the ARML specification

abstract sig Role {

interface: one Interface,

imported_roles: set Role

}

one sig Weblb_role extends Role {}

...

one sig Db_slave_role extends Role {}

//Interfaces from list of available schemas and interfaces

abstract sig Interface {}

one sig Weblb extends Interface {}

...

one sig Db_slave_rdb extends Interface {}

//Role Implementations from the list of available implementations

abstract sig RoleImpl {

interface: some Interface,

imported_role_impls: set ImportedRi

}

sig ImportedRi {

interface: one Interface,

ri: some RoleImpl,

imported_ris: interface one -> some ri

}

one sig Varnish extends RoleImpl {}

...

one sig Postgres_slave extends RoleImpl {}

fact {

//parameters' order: current_role, interface

populateRoleInterface [Weblb_role, Weblb]

...

populateRoleInterface [Db_slave_role, Db_slave_rdb]

//Populating role imports parameters' order: current_role, role1, role2, etc.

populateRoleImports [Weblb_role, none, Webapp_role, none, none, none, none]

...

populateRoleImports [Db_slave_role, none, none, none, none, Db_master_role, none]

... }

...

//SoftwareStack stores the solution

sig SoftwareStack {

 imp: Role -> RoleImpl

}

pred findImpl (s: SoftwareStack, role1: Weblb_role, role2: Webapp_role, role3: Worker_role,
 role4: Work_queue_role, role5: Db_master_role, role6: Db_slave_role,

 ri1: RoleImpl, ri2: RoleImpl, ri3: RoleImpl, ri4: RoleImpl,

 ri5: RoleImpl, ri6: RoleImpl) {

role1.interface = ri1.interface

 #role1.imported_roles = #ri1.imported_role_impls

s.imp[role1.imported_roles] in ri1.imported_role_impls.ri

s.imp[role1] = ri1

...

}

run findImpl for 1 SoftwareStack, 9 ImportedRi

Figure 2.19: Alloy model generated based on inputs from Figures 2.5, 2.11, 2.14. Red text are
values populated from the input lists, blue text is generated as needed (e.g., number of roles), black
text is part of the default template.

41

Constraint Model Implementation

Algorithm 1 provides an overview of the constraint model’s actions.

Algorithm 1 Constraint model actions. “impls” stands for implementations.

1: procedure constraint model(ARML spec, schema interface list, impls list)

2: Initialization and parsing the lists: ARML spec, schema interface list, impls list

3: // “Type checking” and OS compatibility:

4: for each role in the ARML spec do

5: Find all candidate impls

6: end for

7: for each role’s candidate impls do

8: Drop candidate impls that don’t support the required OS

9: (role.os /∈ impl.compatible os)

10: end for

11: // Impls compatibility with the impls of dependent and dependee roles:

12: for each role in the ARML spec do

13: Populate Alloy template with data about the candidate impls and from the three
parsed lists (ARML spec, schema interface list, impls list)

14: end for

15: Pass final rendered template to Alloy and run Alloy Analyzer

16: Retrieve solution from Alloy (the solution is a combination of compatible impls that
will fulfill the role specs or ∅)

17: end procedure

The current prototype uses a Ruby module to parse the YAML75 inputs and the Ruby

Erubis template engine76 to generate the Alloy model in an automated fashion. Erubis is

a fast, secure, and extensible implementation of eRuby, which means “embedded Ruby”

in documents.77 Appendix C contains a sample ERB/Erubis template for generating the

Alloy model described in Figure 2.19. The constraint model may also be implemented as a

stand-alone module that interacts with ANCOR when compatibility checks are needed.

42

2.6 ANCOR Workflow

There are four main phases involved in creating and managing cloud-based systems using

the ANCOR framework.

1. Requirements model specification

2. Compilation choices specification

3. Compilation/Deployment

4. Maintenance

The first two phases result in the creation of the requirements model while the next phase

performs the actual deployment of the cloud-based system. The final phase, maintenance, is

performed throughout the lifecycle of the system and may include other phases within it. In

a perfect world, the phases are performed sequentially; however, reality is rarely ever that

neat. In general, we expect that this is an iterative process that will require the repetition of

multiple phases during the lifecycle of a given system. Each of the four phases is discussed

in more detail below.

Requirements Model Specification

In this phase, the user and system engineers work together to define the goals of the system,

which may require significant input from various stakeholders. Next, they determine the

roles required to achieve each goal and the dependencies among the roles. The high-level re-

quirement language ARML provides an abstract, common language for this communication.

Compilation Choices Specification

In this phase, system engineers define role semantics using pre-defined CMT modules. In

our current prototype this is accomplished by defining the role implementations that invoke

Puppet classes as described in Section 2.4.2. If no appropriate CMT modules exist, system

engineers must define new profiles, update the list of available role implementations, and,

43

if needed, the schemas and interfaces list. In general, system engineers should specify mul-

tiple implementation choices using various operating systems for each role to provide the

constraint model flexibility in choosing the appropriate combination of implementations.

Compilation/Deployment

Once the requirements model has been defined, the framework can automatically compile

the requirements into a working system on the cloud provider’s infrastructure. This process

has seven key steps:

1. The framework signals the compiler to deploy a specific requirements model.

2. The compiler makes several implementation decisions including the number of instances

used for each role, the operating systems, and the role implementations.

3. The compiler signals the conductor component to begin deployment.

4. The conductor interacts with the OpenStack API to provision instances and create

the necessary security rules (configure the cloud’s internal firewall). The provisioning

module uses a package such as cloud-init to initialize each cloud instance, including

installing the CMT and orchestration tool agents (e.g., the Puppet agent and MCol-

lective78 agent).

5. Once an instance is live, the message orchestrator (e.g., MCollective) prepares the

instance for configuration.

6. The configuration is pushed to the authenticated instances using the CMT agent and,

if needed, the orchestrator (e.g., Puppet agent and MCollective).

7. System engineers may check deployed services using system monitoring applications,

such as Sensu79 or Opsview,80 or by directly accessing the instances.

In the current implementation, the configuration from step 6 is carried out via the Hiera

component, while configuration directives (node manifests) are computed on the fly using

ANCOR’s operations model. This ensures that the parameters used to instantiate the Puppet

modules always reflect the up-to-date system dependency information.

44

Maintenance

System engineers can modify the system once the system is deployed in the cloud. If the

change does not affect the high-level requirements model, the maintenance is straightforward.

The compiler will track the impacted instances using the operations model and re-configure

them using the up-to-date system information. A good example for this type of change is

cluster expansion/contraction.

Cluster expansion is used to increase the number of instances in a cluster (e.g., to serve

more requests or for high-availability purposes).

1. System engineers instruct the compiler to add instances to a specific role.

2. The compiler triggers the conductor component to create new instances, which auto-

matically updates the ANCOR system model.

3. The compiler calculates the instances that depend on the role and instructs the con-

figuration manager to re-configure the dependent instances based on the up-to-date

ANCOR system model.

Cluster contraction is the opposite of cluster expansion. The main goal of cluster con-

traction is to reduce the number of instances in a cluster (e.g., to lower cost).

1. System engineers instruct the compiler to mark a portion of a role’s instances for

removal.

2. The compiler calculates the instances that depend on the role and instructs the con-

figuration manager to re-configure the dependent instances based on the up-to-date

ANCOR system model.

3. The compiler triggers the conductor component to remove the marked instances.

If the change involves major modifications in the requirements model (e.g., adding/removing

a role), ANCOR will need to re-compile the requirements model. Performing “incremental

recompilation” involving major structural changes without undue disruption will be a topic

for future research.

45

2.7 Prototype Implementation

We built a prototype (see Figure 2.20) in Ruby (using Rails, Sidekiq and Redis) to implement

the ANCOR framework (Figure 2.2) using OpenStack as the target cloud platform. The

operations model is stored in MongoDB collections using Rails.

ANCOR employs an initial straight-forward type-checking to ensure that the ARML

specification is well-formed (e.g., allowing a role to import a channel from another role only

if the channel is exported by that role). More type checking tasks are performed as part of

the constraint model as described in the previous sections, 2.5.2 and 2.5.3. The compiler

references the MongoDB document collections that store the operations model and interacts

with the conductor using a Redis messaging queue and Sidekiq, a worker application used

for background processing.

The conductor interacts with the OpenStack API through Fog81 (a cloud services library

for Ruby) to provision the network, subnets and instances indicated by the compiler. Once

an instance is live, the configuration module uses Puppet and MCollective to configure it

using the manifest computed on the fly based on the operations model. The conductor also

interacts with the system model and updates the provided system model database every

time it performs a task (provisioning or configuration). Therefore, the system model stored

in the MongoDB datastore will always have an updated picture of the system. Obviously,

the different role implementation choices (e.g., Sidekiq, Redis or Rails) used to build the

eCommerce website example scenario (Figure 2.4) are independent from the components that

leverage Sidekiq, Redis and Ruby on Rails in the ANCOR framework prototype (Figure 2.2).

The current implementation uses a workflow model that is based on chained and parallel

tasks processing. Once the ARML specification is entered by the user, the specification will

be parsed and the requirements model will be encountered. Next, the compiler steps in and

based on the requirements model it chooses the number of instances that play a role, the

role implementations, the IP addresses, the channels (port number and/or sockets that will

be consumed or exposed), etc. Then the compiler populates the system model and creates

various tasks that it passes to the worker queue. A task can be viewed as an assignment

46

that is passed to a background (worker) process. In ANCOR, Sidekiq is used for background

processing.

Tasks are stored in the database and have several attributes (e.g., type, arguments, state,

context). A task can be related to provisioning (e.g., using Fog) or to configuring an instance

(e.g., push configuration from Puppet master to Puppet agent). In case other tasks (e.g.,

deploy instance) depend on the execution of the current task (e.g., create network) a wait

handle is created. Wait handles can be viewed as the mechanism used by the tasks to signal

dependent tasks when they finished execution. A task creates a wait handle object that

stores the ids of the tasks that wait for it to execute. Once the task finished, the wait handle

triggers all the dependent tasks to execute. The purpose of a wait handle is to start, resume

or suspend the dependent tasks. Using this approach we can resume or suspend a task

several times including tasks related to the orchestration tool (MCollective) and the CMT

(Puppet). Independent tasks (e.g., two deploy instance tasks) will be executed in parallel

employing locks on certain shared resources.

The ANCOR prototype code, detailed instructions on how to deploy and run it, and a

detailed document containing specific implementation details are available online. 1

1The current ANCOR implementation is available and is distributed under the GNU (version 3) General
Public License terms: https://github.com/arguslab/ancor

47

https://github.com/arguslab/ancor

Rails
Routes

REST API

InstancesController

GoalsController

TasksController

EnvironmentsController

HomeController

HieraController

WebhookController

RolesController

Controllers

Views

(Serializers)

Model

Database

(MongoDB)

Adaptor

TasksProvider

ANCOR Specific

Code (lib/)

ANCOR

Worker and Worker

Queue

(Sidekiq and Redis)

CMT

(Puppet Master)

Hiera

Message Broker

(RabbitMQ)

Mcollective

Reports about Puppet Runs

ANCOR CLI and

ANCOR Dashboard

Cloud Provider Public API (OpenStack Public REST API)

Cloud Provider

(OpenStack)

Instance
(VM)

Instance
(VM)

Puppet AgentPuppet Agent

. . .

Puppet runonce

Mcollective Mcollective

Catalogs, Reports, Files

Figure 2.20: ANCOR prototype implementaion

48

Using ANCOR

The current framework implementation exposes a REST API82 to it’s clients (see Fig-

ure 2.20). The current clients include a Command-Line Interface (CLI), a web-browser dash-

board and also the Puppet master (specifically the Hiera module). Through the REST API,

Hiera is obtaining the specific configuration details (e.g., imported and exported channels

- $exports and $imports arrays, see Figure 2.1a) from the compiler in order to customize

the Puppet modules that are part of the chosen role implementation (e.g., see Figure 2.1b).

The CLI and the dashboard are used to deploy, manage, visualize (in case of the dashboard)

and delete ANCOR deployments.

One can use the CLI to deploy, manage and delete the eCommerce website example using

several key commands:

1. ancor environment plan eCommerce.yaml – plans the deployment (eCommerce.yaml

is shown in Figure 2.5)

2. ancor role list – lists the current set of roles

3. ancor instance list – lists the current set of instances

4. ancor environment commit – deploys the environment on the cloud infrastructure

5. ancor task list – displays the current progress of the deployment

6. ancor instance add webapp role – used to add a new webapp role instance after

all tasks are completed

7. ancor environment remove production – deletes the current deployment

More options and instructions on using the ANCOR CLI and the dashboard are available

on the framework’s website (https://github.com/arguslab/ancor).

49

https://github.com/arguslab/ancor

2.8 Background: Related Projects

A general trend has emerged towards creating more abstractions at various levels of cloud

service offerings. Some of the solutions even use similar terminologies and features as

those in ANCOR. For example, some solutions also use the term “role” in a similar way

to ours,48;70 and others have adopted named channels to describe dependencies in config-

uration files48;50;51. Thus it is important to describe the fundamental differences between

the abstraction used in ANCOR and those in the other solutions, so that one does not get

confused by the superficial similarities between them.

Abstractions used in the various PaaS solutions such as the Windows Azure service

definition schema48 and Google AppEngine YAML-based specifications,49 allow users to

define their cloud-based applications. These abstractions, while useful for helping users to

use the specific PaaS platform more easily, do not serve the same purpose as ARML. In

particular, they only define user-provided applications and not the whole (complete) IT

system in the cloud, since the important platform components are not modeled. Thus these

abstractions cannot be used to compile into different implementation choices or platforms.

They are tied to the specific PaaS platform and thus will never separate the user requirements

from the platform details. Using these abstractions will lock the users in to the specific PaaS

vendor, while ANCOR will give users complete flexibility as to implementation choices at

all levels, including platforms.

Docker container-based solutions such as Maestro, Maestro-NG, Deis,52 and Flynn53 pro-

vide management aid for deploying cloud instances using the Linux containers virtualization

approach. Some of them (Maestro and Maestro-NG) also have environment descriptions

(in YAML) for the Docker instances that include named channels to capture dependencies.

These solutions can automate initial deployment of cloud instances and make it easier to

stand up a PaaS, but they take a different approach and do not provide the same level of ab-

straction that supports the vision outlined at the beginning of this chapter. Specifically, the

abstractions provided by their environment descriptions are focused on instances as opposed

to the whole IT system, the container is the unit of configuration, and maintenance tasks

50

Offering Focus Platform
Multiple Cloud
Infrastructures

CMTs
(or similar

technologies)

OpenShift Private PaaS RHEL Yes None

Flynn Private PaaS Linux Yes
Heroku Buildpacks,

Docker

Deis Private PaaS Linux Yes
Heroku Buildpacks,

Chef
Docker

OpsWorks AWS General Ubuntu No Chef
Maestro Single-host Linux Yes Docker

Maestro-NG General Linux Yes Docker
Google AppEngine PaaS Linux No None

Heroku PaaS Linux No Heroku Buildpacks
Windows Azure PaaS Windows No None

Ubuntu Juju General
Ubuntu, CentOS,

Yes Charms
Windows

ANCOR General Any Yes Puppet

Table 2.1: Current solutions comparison

are done by progressing through containers. It is not clear how much the container-based

solutions can help alleviate the long-term maintenance problem of cloud-based IT systems.

We also summarized a few other features to differentiate ANCOR from the other solutions

in Table 2.1. ANCOR can be used to deploy systems using other orchestration tools such as

Flynn and Deis in conjunction with traditional IT systems. As shown in Table 2.1, ANCOR

is currently the most general and flexible management solution available.

Several companies are developing cloud migration technologies. While some appear to

internally use abstractions to support migration,83;84 no details are available for independent

evaluation. Our approach is more fundamental in the sense that we build systems using

the abstraction and, smoother and more reliable migration could be a future product of our

approach. Rather than creating technology specifically to replicate existing systems, we aim

to fundamentally change the way cloud-based systems are built and managed, which includes

enabling dynamic and adaptive system changes, reducing human errors, and supporting more

holistic security control and analysis.

Often, solutions like AWS CloudFormation,85 OpenStack Heat86 or Terraform87 may be,

mistakenly, viewed as being at the same level of abstraction with ANCOR. These solutions

51

are primarily focused on building and managing the infrastructure (cloud resources) by allow-

ing the details of an infrastructure to be captured into a configuration file. CloudFormation

and Heat manage AWS/OpenStack resources using templates (e.g., Wordpress template,88

MySQL template,89 etc.), and they do not separate user requirements from system imple-

mentation details. The templates have the potential to integrate well with configuration

management tools but there is no model of the structure and dependencies of the system.

Thus, it cannot achieve one main objective of ANCOR which is to use the operations model

to maintain the system, e.g., updating dependencies automatically while replacing instances.

Terraform similarly uses configuration files to describe the infrastructure setup, but it goes

even further by being cloud-agnostic and by enabling multiple providers and services to be

combined and composed.90

Juju47 is a system for managing services and works at a similar level as ANCOR. It resides

above the CMT technologies and has a way of capturing the dependencies between software

applications (services). It can also interact with a wide choice of cloud services or bare metal

servers. The Juju client works on multiple operating systems (Ubuntu, OS X, and Windows)

but Juju-managed services run primarily on Ubuntu servers, although support for CentOS

and Windows has been announced but is, currently, not widely available.91 While we were

aware of the existence of Juju when working on ANCOR, the lack of formal documentation

on how Juju actually works, the services running only on Ubuntu, and the major changes in

the Juju project (e.g., code base was completely rewritten in the Go programming language)

kept us away from this project.

We recently reevaluated Juju and discovered fundamental similarities between ANCOR

and Juju. Even so, there are subtle differences that make the two approaches work better

in different environments. For instance, the ANCOR approach adopts a more “centralized”

management scheme in terms of deciding the configuration parameters of dependent services,

while Juju adopts a negotiation scheme between dependent services (called relations in Juju)

to reach a consistent configuration state across those services. Depending on the need for

change in the system, the ANCOR approach may be more advantageous when it comes to a

highly dynamic system with proactive changing (e.g., an MTD system).

52

Our approach has benefited from the recent development in the CMT technologies that have

provided the building blocks (or “instruction sets”) for our compiler. The general good

practice in defining reusable configuration modules such as those advocated by Dunn70 is

aligned very well with the way we structure the requirements model. Thus our approach can

be easily integrated with those CMT technologies.

Sapuntzakis et al.92 proposed the configuration language CVL and the Collective system

to support the creation, publication, execution, and update of virtual appliances. CVL

allows for defining a network with multiple appliances and passing configuration parameters

to each appliance instance through key-value pairs. The decade since the paper was published

has seen dramatic improvement in configuration management tools such as Puppet39 and

Chef, which has taken care of specifying/managing the configuration of individual machines.

Our work leverages these mature CMTs and uses an abstraction on a higher level. ARML

does not need to mention details on host information such as virtual machine configuration

files or network interfaces, which is taken care of by the CMT and cloud infrastructure.

In particular, ARML specifies the dependency among roles through explicit “import” and

“export” statements with the channel parameters, which are translated automatically to

concrete protocol and port numbers by the integration of the operations model and the

CMT. While CVL does specify dependency among appliances through the “provides” and

“requires” variables, they are string identifiers and not tied to configuration variables of the

relevant appliances (e.g., the “DNS host” configuration parameter of an LDAP server). In

the CVL specification of the virtual appliance network, the programmer would need to take

care in passing the correct configuration parameters (consistent with the dependency) to the

relevant appliances. In ANCOR this is done automatically by the coordination between the

CMT and the operations model (compiled from the high-level ARML specification). This

also allows for easy adaptation of the system (e.g., cluster expansion and contraction).

Begnum93 proposed MLN (Manage Large Networks) that uses a light-weight language

to describe a virtual machine network. Like ANCOR, MLN uses off-the-shelf configuration

management solutions instead of reinventing the wheel. A major difference between ANCOR

and MLN is that ANCOR captures the instance dependency in the requirements model,

53

which facilitates automating configuration of a whole IT system and its dynamic adaptation.

ANCOR achieves this by compiling the abstract specification to the operations model, which

is integrated with the CMT used to deploy and manage the instances.

Plush94 is an application management infrastructure that provides a set of abstractions

for specifying, deploying, and monitoring distributed applications (e.g., peer-to-peer services,

web search engines, social sites, etc.). Although Plush’s architecture is flexible, it is not

targeted at cloud-based enterprise systems and it is unclear whether system dependencies

can be specified and maintained throughout the system life cycle.

Use of higher-level abstractions to improve system management has also been investi-

gated in the context of Software-Defined Networking (SDN). Monsanto et al. introduced

abstractions for building applications from independent modules that jointly manage net-

work traffic.95 Their Pyretic language and system supports specification of abstract network

policies, policy composition, and execution on abstract network topologies. Our ARML lan-

guage and the entire ANCOR system adopts a similar philosophy for cloud-based deployment

and management.

54

2.9 Discussion

Our requirements specification approach and the implemented ANCOR framework offer

system engineers the same flexibility as in a typical IaaS model. This means that engineers

can keep their workflow using their preferred configuration management tools (e.g., Puppet,

Chef, Ansible) and orchestration tools (e.g., MCollective). They have the option to do

everything in their preferred ways up to the point where they connect the components

(services) together. For example, system engineers have the option of using predefined

configuration modules and of leveraging the contributions from the CMT community. Or

they can write their own manifests or class definitions to customize the system in their own

ways. ANCOR can leverage all of these and does not force the system engineers to use

particular low-level tools or languages; rather it provides the ability to manage the whole

system based on a high-level abstraction.

The high-level requirements model we developed could also facilitate tasks like failure

diagnosis and system analysis to identify design weaknesses such as single point of failures or

performance bottlenecks. The system dependency information specified in the requirements

model and maintained in the operations model allows for more reliable and streamlined

system updates such as service patching. It also allows for a more fine-grained firewall

setup (i.e., only allows network access that is consistent with the system dependency), and

enables porting systems to different cloud providers in a more organized manner (e.g., one

can take the up-to-date requirements model and compile it to a different cloud provider’s

infrastructure, and then synchronize data from the old one to the new one).

55

2.10 Summary

Separating user requirements from the implementation details has the potential of changing

the way IT systems are deployed and managed. To capture user requirements, we developed

a high-level abstraction called the requirements model for defining IT systems. Once users

define their desired system in the specification, it is automatically compiled into a concrete

cloud-based system that meets the specified user requirements.

We demonstrate the practicality of this approach in the ANCOR framework. ANCOR

manages the relationships and dependencies between instances as well as instance cluster-

ing. Such management involves creating and deleting instances, adding/removing instances

to/from clusters, and keeping dependent instances/clusters aware of configuration updates.

The ANCOR framework simplifies network management as system dependencies are formal-

ized and automatically maintained. The current implementation targets a cloud infrastruc-

ture (OpenStack) and leverages the Puppet configuration management tool.

56

Chapter 3

A Moving Target Defense Platform

for Whole IT Systems

Our approach of introducing moving-target defense at the whole IT system level is to create

a platform where any component of the IT system can be replaced with a fresh new one.

A component is simply a virtual machine instance or a cluster of instances. We consider

that the MTD approach will be deployed in a cloud environment. Cloud infrastructures

(e.g., OpenStack14 and AWS) made it possible and easy to create bare-metal equivalent

virtual machine instances and networks. Moreover, the cloud is considered more and more

for various types of tasks (e.g., offloading jobs96) involving all types of network devices. It

appears inevitable that IT systems of all sizes are moving towards the cloud — be it private,

public, or hybrid. There are a number of security benefits of such replacements.

• By replacing a VM instance with a new one, the OS and applications will be installed

at the most up-to-date version, eliminating security problems caused by unpatched

vulnerable software.

• If the attacker already compromised an instance, replacing it with a fresh new one will

eliminate the attacker’s foothold on the instance.

• The fresh new instances will have everything installed from a clean slate. The key

57

configuration parameters for the new VM, such as IP addresses, port numbers for

services, authentication credentials, etc. can be changed to a new value hard to predict.

This will increase the difficulty for the attacker to re-compromise the instance – the

knowledge about the old system is no longer valid.

• The replacement can happen proactively or be triggered by security events. Mingling

the two will make it hard for the attacker to know whether the attack activities have

been discovered or not.

• When replacement is triggered by security events (e.g., IDS alerts), it is a low-cost

way to deal with potential false positives in such events since the replacement will not

disrupt the normal functionality of the whole IT system.

The above shows that even such a simple maneuver of replacing VMs in an IT system can

have significant benefit on security. However, such simple maneuvers have been non-trivial to

perform. Modern enterprise IT systems have complex dependencies among services, so that

changing one instance alone will almost certainly disrupt other instances that depend upon

it. Thus replacing VM instances must be carefully orchestrated with modifying configuration

settings of the dependent instances. Such orchestration of changes are notoriously error-prone

if done manually. Currently there is a limited tool support to automate this process. As a

result, many IT systems remain stagnant due to the fear that changing them may break the

working systems. Even applications with known patchable vulnerabilities are kept running

for long periods of time until the next system maintenance cycle, which often requires down

time.97 It is even beyond the current capability to replace running VM instances proactively. 1

1 with perhaps one exception, the Chaos Monkey introduced by Netflix98

58

3.1 ANCOR-MTD Platform

The ANCOR framework provides a solid foundation for the moving target techniques in-

troduced in this work. Therefore, we leverage the ANCOR framework to build an MTD

platform for whole IT systems.

CMT (Puppet) OpenStack API Library

Processing Module
(ANCOR Compiler)

MTD System Cloud Infrastructure
(e.g., OpenStack)

MTD System
Specification (e.g., ARML spec)

 MTD

Controller
(based on ANCOR) Configuring and Provisioning Module

(ANCOR Conductor)

Operations Model

 1 goa ls:

 2 eco mmerc e:

 3 nam e: eCo mmerc e dep loyme nt

 4 rol es:

 5 - web lb_rol e

 6 - web app_rol e

 7 - db_mas ter_rol e

 8

 9 rol es:

10 web lb_rol e:

11 nam e: Web appl icati on lo ad

bal ancer

12 num ber_of_ins tance s: 2

13 is_pub lic: tru e

14 imp lemen tatio n_req uirem ents:

15 def ault:

16 int erfac e: [web lb]

17 os: Ubu ntu

18 sam e_imp lemen tatio n: fal se

19 exp orts:

20 htt p:

21 typ e: sin gle_por t

22 pro tocol: tcp

23 num ber: 80

24 imp orts:

25 web app_rol e: htt p

26

27 web app_rol e:

28 nam e: Web appl icati on

29 num ber o f ins tance s: 3

30 imp lemen tatio n_req uirem ents:

31 def ault:

32 int erfac e: [web app_rdb]

33 os: Ubu ntu

34 sam e_imp lemen tatio n: tru e

35 exp orts:

36 htt p: {typ e: sin gle_por t, pro tocol: tcp}

37 imp orts:

38 db_mas ter_rol e: rw_que ry

39

40 db_mas ter_rol e:

41 nam e: Dat abase mast er

42 num ber_of_ins tance s: 1

43 imp lemen tatio n_req uirem ents:

44 def ault:

45 int erfac e: [db_mas ter_rdb]

46 os: Ubu ntu

47 exp orts:

48 rw_que rying: {typ e: sin gle_por t, pro tocol:

tcp}

Figure 3.1: ANCOR-MTD platform taking an abstract specification of an IT system as input
and creating and managing the corresponding concrete system on a cloud

As shown in Figure 3.1 our current MTD platform is based on the ANCOR prototype, it

targets OpenStack and leverages the Puppet CMT. The implementation can be changed to

work with other cloud infrastructures (e.g., AWS) and CMTs (e.g., Ansible). In this work,

we refer to an MTD system as an IT system deployed and managed using our ANCOR-

MTD platform that supports dynamically replacing instances. The MTD controller is used

to deploy and manage the MTD systems: it can reach the OpenStack API, it hosts the

59

Puppet master, and it is able to communicate through the Puppet agents with all instances

that are part of the IT system. The MTD controller cannot be reached from the public

network, so it communicates with the agents over an internal isolated network. Moreover,

the communication between the Puppet master and the agents is encrypted.

The ANCOR-MTD platform takes an MTD system specification (user’s requirements) as

its input and automatically creates and manages the corresponding concrete MTD system on

OpenStack (Figure 3.1). The key feature of the platform is that configuration parameters are

not hard-coded; they are generated at run-time from the high-level system specification. The

operations model stores the computed parameters and can be viewed as an MTD system

inventory — a layer on top of the CMT (Puppet). This inventory captures the user’s

requirements and explicitly documents the dependency among the instances, which nowadays

only exists in a system administrator’s mind. This data is passed to Puppet through Hiera, a

key/value look-up tool for configuration data. Whenever a change happens in the deployed

MTD system, it is also recorded in the operations model. This way we ensure that the

operations model always maintains up-to-date information about the running IT system.

More details about the underlying ANCOR framework are presented in Chapter 2.

60

3.2 Instance Replacement

Using the operations model, the platform facilitates a variety of adaptation operations (move-

ments) for the managed IT systems, creating a moving-target defense. When a user requests

an action, e.g., creating new instances, updating configurations, etc., the processing module

updates the inventory and triggers the configuring and provisioning module to perform the

tasks in an organized manner (see Figure 3.1). The processing module is responsible for com-

puting the concrete configuration parameters, for keeping the inventory up-to-date, and for

overlooking the whole process. In addition, every instance in an MTD system has its own

security group,99 an external firewall provided by the OpenStack infrastructure. Security

groups are also computed from the inventory by the processing module and configured using

the provisioning module, to allow an instance to communicate only with instances belonging

to dependent and depended-upon (dependee) instances.

In our MTD approach, live instance replacement is achieved by a sequence of adapta-

tions: adding new instances, reconfiguring dependent instances to use the new instances,

and removing the old instances. An MTD system may proactively or reactively perform

instance replacement. In case the MTD system uses high-availability clusters of services, the

overhead and interruptions will be negligible as detailed in Chapter 4.

Reconfiguring Instances In-place reconfigurations (updated CMT directives) may in-

clude internal service changes such as changing service parameters (e.g., credentials), up-

dating to a new version, applying service and OS patches, etc., or changes that involve

dependent roles (e.g., pointing to updated port numbers and IP addresses). These changes

will be accompanied by security group updates.

Adding or Removing Instances The MTD platform enables the addition and removal

of running instances. Both adapations also involve reconfiguring dependent instances. This

happens through a sequence of tasks and in both cases, the affected dependent services will be

notified using a set of updated CMT directives (see Figure 3.2). When adding a new instance,

the updated configuration directions are sent to the dependent instances (push configuration

61

Create or Sync Security
Group(s)

Provision Instance(s)

Push Configuration to
Provisioned Instance(s)

Push Configuration to
Dependent Instance(s)

Delete old Instance(s)

Delete old SecurityGroup(s)

Add
Instance

Remove
Instance

Push Configuration to
Dependent Instance(s)

Replace Instance

Create or Sync Security
Group(s)

Provision Instance(s)

Push Configuration to
Provisioned Instance(s)

Push Configuration to
Dependent Instance(s)

Delete old Instance(s)

Delete old SecurityGroup(s)

Figure 3.2: The Instance Replacement Process merges the Add Instance and Remove Instance
operations through a sequence of tasks carried out via the provisioning component and the CMT.
Affected dependent services are notified using a set of updated CMT directives.

to dependent instances) after the new instance was provisioned and configured. On the

other hand, when removing an instance, first, the dependent instances are notified about the

change before the actual deletion takes place. In this way, the MTD system’s functionality

will not be affected during the change process. Moreover, this makes it possible for the MTD

platform to gracefully recover from failures.

Replacing Instances The instance replacement process merges the adding of new in-

stances and removing the old instances (Figure 3.2): one instance or a cluster of instances

may be replaced at once. Creating security groups, provisioning new instances, and config-

uring them are tasks that can be performed in parallel. Once all these tasks finish, the MTD

controller computes the updated CMT directives for all the dependent instances. Dependent

instances will receive only one set of directives that contains all the updates. Therefore, re-

placing one instance, or replacing all instances belonging to a role, will require approximately

62

the same amount of time. The new instances may use compatible implementations with dif-

ferent IP addresses, passwords, port numbers, operating systems or application versions.

The roles specified in an MTD system can be implemented in numerous ways, by various

applications and operating systems e.g., web load balancer – installing Varnish on an Ubuntu

instance or Nginx on Fedora can achieve the same objective. As long as Puppet directives

(manifests) exist, they can be included in a role implementation.

63

3.3 Threat Model

The threat model covers the in-scope and out-of-scope risks and also the capabilities of the

MTD system to respond to the described threats.

3.3.1 In-scope Threats

In-scope threats are the risks the MTD system can mitigate by increasing the difficulty on

the attackers’ side. The risks range from reconnaissance actions to arbitrary code execution,

and side-channel attacks.

Reconnaissance

Attackers are able to perform various reconnaissance actions (e.g., port scanning) on the

public facing instances, as well as internal probing in case they can gain access to an instance

on the internal network.

Arbitrary Code Execution

Attackers may also execute arbitrary code on an instance. This can occur in multiple ways.

Applications may be poorly configured, misconfigured, or have vulnerabilities that allow

arbitrary code execution with administrator/root privileges on an instance which is part of

the targeted system, e.g., buffer overflow, unsanitized input, arbitrary file upload/execution,

SQL injection resulting in code running on the database instance, etc. Moreover, a privileged

user may be utilized to execute code, e.g., a malicious former employee leaks credentials, a

current user’s workstation is compromised and credentials are leaked, credentials are obtained

using social engineering techniques (e.g., phishing), etc. An instance can also pull and use

compromised code from a source controlled by attackers, e.g., compromised packages.

Arbitrary code execution can result in an operating system compromise that enables at-

tackers to escalate their privileges and maintain their access through backdoors. In addition,

attackers may attempt to pivot through the internal network.

64

DDoS Attacks or General Downtime

Applications or the underlying cloud infrastructure may experience downtime due to failures

or because of attackers’ actions (defacement, destruction, misconfiguration, etc.). Attackers

may also attempt to perform denial-of-service (DoS) or distributed-denial-of-service (DDoS)

attacks by flooding the target system with a huge amount of traffic.

Side-Channel Attacks – Instance Co-Residency

Attackers may gain co-residency with victim instances (perhaps in a similar way to100) and

use various techniques as described in101–103 to infer sensitive information about the target

(e.g., cryptographic keys).

3.3.2 Out-of-scope Threats

Our MTD systems will not provide any additional defense compared to a “static” IT system

when dealing with application vulnerabilities that lead to unauthorized data retrieval and/or

modification: SQL injection, cross-site scripting, cross-site request forgery (CSRF), etc.

In case the infrastructure or the MTD controller is compromised, the MTD mechanism

will no longer be effective. This can happen because of misconfigurations or vulnerabilities

on the MTD controller instance, hypervisor vulnerabilities in OpenStack or AWS, and so on.

65

3.4 Discussion - MTD System versus Threats

An MTD system will limit attackers’ capabilities to perform reconnaissance actions or to

pivot through the internal network assuming an instance is compromised and controlled

by attackers. The system model is constantly changing, and in case the MTD system is

proactively reconfiguring and/or replacing instances, various parameters must be repeatedly

discovered by attackers: IP addresses, passwords, port numbers, OS/app versions, etc. For-

mer knowledge about the system may become obsolete in a short amount of time. Lateral

movement (pivoting) is also restricted. Security groups allow instances to communicate only

with dependent instances on the internal network (granular rules for specific port numbers,

protocols, IP addresses, and direction – ingress or egress). Security groups are automatically

configured and maintained by the MTD controller. Furthermore, network packets that tar-

get IP addresses or port numbers that are not stored in the system model can be flagged as

suspicious with high-confidence. Performing reconnaissance actions without being detected

may be very difficult, if not impossible.

In order to restrain the effects of arbitrary code execution, the MTD system can be con-

figured to act in proactive and/or reactive ways. Through instance replacement, the patched

versions of various applications and OSs can be installed or a new implementation (different

OS and application) may be chosen. Recovery from credential leaks may be done faster and

with minimal or no downtime using replacement instances with new credentials. Compro-

mised virtual machines can be replaced and persistent access interrupted (especially effective

in case of attacks that succeeded because of a rare event). Using different implementations

in the replacement process may prove efficient in interrupting automated attacks. In the

worst case scenario it will force attackers to put more resources and time to cover different

OSs and applications that implement the same role.

In case of DDoS attacks, the MTD system can be expanded by temporarily adding more

instances in case the Service-Level Agreement (SLA) is violated. The deployment may also

be moved to another infrastructure if the current infrastructure or deployment cannot be

fixed (port the system specifications). However, synchronizing large amounts of persistent

66

data might prove to be a challenge. Solutions similar to IBM Aspera’s104 offerings can be

leveraged for moving object storage data. On the other hand, moving block storage data is

more provider specific and the effectiveness is highly dependent on the storage driver. For

instance, OpenStack has more than twenty proprietary storage drivers (e.g., Netapp Unified

Driver, IBM GPFS) and about four free ones (LVM, Ceph RBD, GlusterFS, and NFS)105.

A sufficiently sized cloud infrastructure collaborated with the instance replacement pro-

cess can make co-residency-based side-channel attacks against the instances belonging to an

MTD system very challenging. The instance distribution across physical nodes may change

when instances are replaced. Attackers might need to repeatedly re-locate the new target

instance, gain co-residency, or, at least, re-infer specific parameters about the new instance

in case it is placed on the same physical host.

67

3.5 Summary

Our vision of introducing moving-target defense at the whole IT system level depends on

building a platform in which any component of the IT system can be replaced with a fresh

new one. A component is a virtual machine instance or a cluster of instances. Although the

approach can be applied directly to physical hosts, due to the widespread adoption of cloud

technologies, we consider that the MTD system will be deployed in a cloud environment.

Our proposed MTD platform (ANCOR-MTD) is based on the ANCOR framework and

enables users to perform live changes to their running IT systems in an automated and

reliable fashion. Being able to reliably replace instances in a running IT deployment may

have a significant impact on the entire security landscape. It has the potential to drastically

increase attackers efforts and reduce their windows of opportunity at a very low cost.

68

Chapter 4

Feasibility and Security Analysis

This chapter aims to show that coordinated changes at the whole IT system level are possible,

and that such proactive changes have security benefits. Two main aspects that reflect the

practicality and effectiveness of an MTD mechanism:

1. Performance and functionality

2. Security

The main goal of this chapter is to analyze, evaluate, and quantify how the operations

supported by our MTD platform affect a running IT system in terms of functionality, per-

formance, and security.

Section 4.1 focuses on testing the performance of various real-world IT systems deployed

and managed using the ANCOR-MTD platform. We quantify the performance overhead that

adaptation operations impose on an IT system. Regardless of potential security benefits, an

unreasonable performance overhead makes the approach infeasible.

Section 4.2 measures the security benefits of an MTD system in terms of the interruptions

it creates for an attacker. Thus, we introduced the attack window concept that can be vali-

dated in an objective way. We are quantifying the security benefits (sizes of potential attack

windows) of using the ANCOR-MTD platform in terms of cost (number of adaptations).

69

4.1 Feasibility Analysis

The central intent of the feasibility analysis is to evaluate how an MTD movement process

affects a running cloud-based IT system in terms of functionality and performance. Despite

potential security benefits, an unreasonable performance overhead would make the whole

approach infeasible.

We have utilized “instance replacement” as our movement process because it is the most

resource-intensive operation (including both adding and removing instances) and it also

involves reconfiguration. Our efforts were primarily focused on applications. If needed, large

amounts of persistent data were stored on cloud infrastructure volumes (e.g., OpenStack

Cinder)106 and re-attached to the new instances.

We tested the following hypothesis: The cost of proactive movement can be negligible

if the movement is performed in an organized manner.

The experiments were performed on a private cloud testbed consisting of fourteen Dell

PowerEdge R620 (2 x CPU@2.20 GHz, 128 GB RAM) servers and a Dell S4810P switch. We

installed OpenStack (Icehouse distribution) on these machines using Mirantis’ open-source

tool Fuel.107 The infrastructure consists of one controller and thirteen compute nodes.

We deployed and managed a number of IT system setups based on two different archi-

tectures: multilayered web services architecture (blogging website, eCommerce deployments,

and MediaWiki with Wikipedia database dumps) and a high-performance computing archi-

tecture (Hadoop deployment).

To measure the performance, we used http-perf108 (NPM Node HTTP Server Perfor-

mance Tool) on our deployed blogging and eCommerce systems, and WikiBench109 to mea-

sure a MediaWiki deployment utilizing a Wikipedia (wikipedia.org) database dump.

http-perf runs an HTTP client that launches HTTP requests against a server, while

measuring and recording response times and other metrics. On the other hand, WikiBench

is a benchmarking tool that replays real traffic traces. We ran the benchmarking tools on

the initially deployed scenarios (no MTD operations interference) and established a baseline

for every component in our measurements.

70

wikipedia.org

The baseline measurements are viewed as the control group in our experiments. http-perf

was launched from client machines that were able to access the websites (i.e., connect to

the load balancer). After establishing the baseline, we started replacing instances belonging

to different roles while running the benchmarking tools. It is important to keep in mind

that the way services are configured can greatly affect the performance of an IT system

in general and, especially during the replacement process. In all scenarios caching features

were disabled. However, the load balancer instances were configured to reload the new

configuration without restarting the service. With caching enabled, requests are answered

from the cache and not from the system component under test (e.g., webapp). Thus, there is

little or no impact of component replacement. With caching, performance will be improved

and there will be no performance degradation.

The Hadoop deployment assessment was carried out using Hibench,110;111 a comprehen-

sive benchmark suite for Hadoop, which consists of a set of Hadoop programs including both

synthetic micro-benchmarks (e.g., Sort or WordCount) and real-world applications.

4.1.1 Blogging Website

A basic blueprint of the blogging website is pictured in Figure 4.1; arrows indicate depen-

dencies between clusters of instances implementing the defined roles: weblb, blogging -

webapp, and database.

weblb

database

blogging_webapp

External
Network

Internal
Network

Figure 4.1: Blogging website blueprint: blogging webapp implemented by a homogenous cluster
of Drupal instances

71

Aggregated results from 20 experiment runs
Each experiment run: 150,000 requests sent using 150 concurrent connections

Response time
Total time

Server Processing HTTP Error
(sec) Rate (req/sec) Responses

Avg. stdev Avg. stdev Avg. stdev Avg. stdev

Baseline 0.787 0.040 13min 8sec 40 sec 190.355 10.369 0 0

Replacing
0.793 0.047 13min 13sec 47 sec 188.917 11.195 0.25 0.79

one webapp

Replacing
0.797 0.057 13min 17sec 58 sec 188.206 12.235 13.25 37.57

webapp cluster

Table 4.1: Drupal blogging website – performance overhead of carrying out ONE replacement
operation: replacing one webapp instance and replacing the whole webapp cluster

We used a simple but common design that includes a load-balancer (Varnish or Nginx), a

cluster of web applications (three instances running Drupal)112, and a MySQL database.

Based on the scenario the only component that runs in a high-availability cluster format

is the web application (blogging webapp). Therefore, we chose the web application cluster

(blogging webapp) to be the component that is changed during this experiment (Table 4.1).

All the measurements are averages of twenty experiment runs. Once we collected the

baseline measurements, we started replacing instances while http-perf was running and col-

lecting metrics (Table 4.1). The Baseline column captures the system’s metrics without

performing any replacement actions; specifically the benchmarking tool was performing read

operations on the database. One hundred and fifty (150) connections was the maximum

number of connections our test scenario was able to handle. A higher number of connections

would overwhelm our test scenario and would cause failed requests under baseline conditions.

Next we ran the replacement operations under the same http-perf load to see if and how

much the replacement process delays the requests’ processing (Table 4.1).

It is worth noting that the difference between the baseline and the replacement results

is statistically non-significant, and that, overall, there were no or very few HTTP error

responses during the replacement operations.

72

weblb

database

magento_webapp

External
Network

Internal
Network

Figure 4.2: Magento: magento webapp implemented by a high-availability cluster of instances
running Magento CE

Aggregated results from 20 experiment runs
Each experiment run: 12,000 requests sent using 120 concurrent connections

Response time
Total time

Server Processing HTTP Error
(sec) Rate (req/sec) Responses

Avg. stdev Avg. stdev Avg. stdev Avg. stdev

Baseline 5.722 0.090 9min 36sec 9 sec 20.833 0.337 0 0

Replacing
5.732 0.115 9min 39sec 12 sec 20.725 0.436 1.25 3.42

one webapp

Replacing
5.763 0.404 9min 45sec 46 sec 20.513 1.520 108.25 163.83

webapp cluster

Table 4.2: Magento eCommerce website – performance overhead of carrying out ONE replacement
operation: replacing one webapp instance and replacing the whole webapp cluster

4.1.2 eCommerce Deployments

Our second experimental scenario is an eCommerce cloud IT system. We used two different

blueprints for this purpose: one based on a well-known eCommerce platform (Magento), and

one based on a more scalable and highly available architecture.

Magento

Magento is a flexible, open source commerce platform that powers over 250,000 online stores

worldwide.113 The blueprint for the deployment is somewhat similar to the previous blog-

ging website scenario. A load-balancer (Nginx) distributes the load (round-robin mode) to

73

the available Magento webapps (three instances) that are connected to a common MySQL

database (see Figure 4.2). The database stores the sample data that is available for Magento

CE (1.9.1.0-1.9.2.0)114. Table 4.2 pictures the results from twenty separate experiment runs.

Disabling the caching features had a significant impact on the overall effectiveness of the

system (only 12,000 processed requests and a very high response time), however the HTTP

error responses rate was less than 1%.

Internal
Network

External
Networkweblb_role

db_master_role db_slave_role

work_queue_role

webapp_role

worker_role

Figure 4.3: Scalable and highly available eCommerce website blueprint: db master, msg queue

are single instances; weblb, webapp, bg worker, db slave are implemented by a homogeneous,
high-availability cluster of instances

Scalable and Highly Available Deployment

This blueprint adopts a multilayered architecture with the various clusters of services shown

in Figure 4.3: web load balancers (Nginx or Varnish), web application (Ruby on Rails with

Unicorn), database (MySQL), messaging queue (Redis), and worker application (Sidekiq).

Arrows indicate dependency between clusters of instances implementing a role.

74

Aggregated results from 20 experiment runs
Each experiment run: 150,000 requests sent using 70 concurrent connections

Response time
Total time

Server Processing HTTP Error
(sec) Rate (req/sec) Responses

Avg. stdev Avg. stdev Avg. stdev Avg. stdev

Baseline 0.408 0.069 14min 48sec 160 sec 168.919 36.924 0 0

Replacing
0.425 0.050 15min 17sec 119 sec 163.577 22.236 1.50 4.66

one webapp

Replacing
0.424 0.047 15min 16sec 110 sec 163.755 18.887 42.60 37.57

webapp cluster

Replacing
0.426 0.040 15min 31sec 91 sec 161.117 16.481 588.10 62.84

one db slave

Replacing
0.439 0.035 15min 55sec 73 sec 157.068 12.320 913.75 113.57

db slave cluster

Table 4.3: eCommerce website – performance overhead of carrying out ONE replacement opera-
tion: replacing one instance and replacing the whole cluster

Each cluster consists of multiple instances that offer the same services. Our test deployment

consisted of two load balancers, three web applications, two database slaves, one database

master, two worker instances and one messaging queue.

The website implements the basic operations (i.e., read and write from and to the

database, or submit a worker task) needed in an eCommerce setup. The baseline per-

formance (Table 4.3) was determined by performing read operations on the eCommerce

website. We focused our efforts on the web application and database clusters. Based on the

scenario configuration it can be challenging and/or meaningless to measure the performance

of other components. For example, only one load balancer will run-at-a-time; the backup

load-balancer instance steps-in only if the main one fails. Furthermore, the worker cluster

and the messaging queue will be circumvented by the web applications, in case they become

unavailable (Unicorn workers will take over their functionality). Furthermore, if the master

fails, a slave may be promoted to act as the database master.

As it can be observed in Table 4.3, under baseline conditions the eCommerce deployment

was able to handle 150,000 requests originating from 70 connections without any errors.

Each request was reading 50 entries from the database. We chose this value based on the

observation that one of the most-popular eCommerce platforms in the world, amazon.com,

75

amazon.com

displays a comparable number of items (database entries) on a single page every keyword

search.115 Replacing database or webapp instances can be performed in a comparable amount

of time (within approximately 1 minute of the baseline measurements). Similar to the

previous scenarios, we tried to assess the overall impact the instance replacement process

will have when (for the testing eCommerce scenario) a very high number of requests are

processed. Even though caching features were disabled in both scenarios, the rich content

(mainly images) of the requested pages from the Magento scenario, contributes extensively

to the major performance difference between the two eCommerce deployments.

We performed one-instance and whole-cluster instance replacement on the web appli-

cation cluster, and then on the database cluster (specifically database slaves). The dif-

ferences between the replacement and baseline measurements are, in general, statistically

non-significant and the performance loss is insignificant during the replacement process (see

Table 4.3). When replacing the webapp, there were very few HTTP error responses. On

the other hand, when replacing the database slaves, as shown in Table 4.3, the performance

is slightly impacted by this change and on average 913.75 out of 150,000 requests failed,

amounting to 0.61% of the total number of requests.

4.1.3 MediaWiki with Wikipedia Database Dumps

Unlike the previous scenarios that utilized synthetic workloads, WikiBench is a web host-

ing benchmark that leverages actual Wikipedia database dumps, generates real traffic by

replaying traces of traffic that were addressed to wikipedia.org, and targets MediaWiki,116

the web application used to host Wikipedia. Similar to previous research, Moon et al.117, in

the area of side-channel attacks, we utilized the traces from September 2007 and the corre-

sponding Wikipedia database dump.118 Our setup consists of a load-balancer (Nginx), three

MediaWiki backends, a common database hosting Wikipedia dumps, and one Memcached

instance for synchronizing and sharing sessions among the MediaWiki backends (Figure 4.4).

76

wikipedia.org

weblb

database

External
Network

Internal Network

memcached

mediawiki_webapp

Figure 4.4: MediaWiki with Wikipedia database dump: weblb, db master, memcached are
single instances; weblb, webapp, bg worker, db slave are implemented by a homogeneous,
high-availability cluster of instances

Aggregated results from 10 experiment runs
Each experiment run: around 4150 requests (50 threads, 1 worker, max. timeout 200 ms)

Response time
Total time

Server Processing HTTP Error
(sec) Rate (req/sec) Responses

Avg. stdev Avg. stdev Avg. stdev
Avg.

stdev
Diff.

Baseline 0.054 0.001 10min 1sec 0.0003 sec 6.903 0.004 N/A 1.26

Replacing
0.053 0.001 10min 1sec 0.001 sec 6.905 0.006 0 1.12

one webapp

Replacing
0.053 0.001 10min 1sec 0.001 sec 6.904 0.005 +3 1.77

webapp cluster

Table 4.4: WikiBench (MediaWiki with Wikipedia database dumps) – average performance over-
head of carrying out ONE replacement operation: replacing one webapp instance and replacing the
whole webapp cluster (the results for “Replacing one webapp” exclude one outlier experiment run)

In establishing the baseline, we ran WikiBench (replaying Wikipedia traces) on the targeted

MediaWiki deployment. ANCOR-MTD did not interfere in any way when performing the

baseline measurements. Next, we replayed the same trace while replacing one MediaWiki

instance and then the whole cluster.

We recorded the averages and standard deviations over ten different runs (see Table 4.4).

The overall number of errors per se was not our main focus, we directed our attention on the

difference in number of errors between the baseline and the replacement actions. We noticed

that the difference between the replacement operations averages and the baseline is very

77

Internal Network

External
Networkcloudera_manager

cloudera_compute_node
dns_server

cloudera_master

Figure 4.5: Cloudera Hadoop Deployment (CDH5): cloudera compute node is the only service
implemented by a high-availability cluster of instances

small. In case of the one-instance replacement, we recorded an outlier that displayed a much

lower number of HTTP 200 responses than the rest of the experiment runs: 608 compared

to 855, which is the average over nine experiment runs. Including the outlier we would still

have only 27 errors (difference compared to the baseline) with a standard deviation of 90.55

errors.

4.1.4 Hadoop Scenario

We deployed and managed a Hadoop setup using Cloudera Manager119 on top of ANCOR-

MTD. Using Cloudera Manager with our MTD platform, we have deployed the CDH5 version

(Cloudera’s Distribution Including Apache Hadoop version 5) of Hadoop’s Distributed File

System (HDFS)120 and YARN121 (resource negotiator). HDFS is a highly fault-tolerant dis-

tributed file system which provides high throughput access to application data and is suitable

for applications that have large data sets. Moreover, it is designed to run on commodity hard-

ware.120 YARN is a resource negotiator responsible for managing and monitoring workloads,

implementing security controls, maintaining a multi-tenant environment, and administering

high availability features of Hadoop.

Our Hadoop deployment had one master (cloudera master) and three compute nodes

(cloudera compute node), see Figure 4.5. The dns server and the cloudera manager are

78

instances utilized to administer the actual Hadoop deployment. Compute nodes are mainly

worker nodes that conduct MapReduce jobs, while the master node orchestrates the job

execution and ensures that compute nodes are processing distinct parts of the data. Using

the Random Text Writer job we have generated a total of 15 GB of data. Next we used

Hibench to launch the default Sort job on the generated data and established a baseline

measurement (Table 4.5). Since a Cloudera Hadoop deployment supports only one active

master at a time, we have focused our evaluation on replacing the compute nodes: one

compute node instance and the whole compute node cluster. When replacing one compute

node instance, the MTD platform was instructing the Cloudera manager about the change.

Therefore, the Cloudera manager was ensuring the addition of the new compute instance to

the Hadoop deployment and the removal of the old instance were done in a smooth way.

We observed the following behavior: If the job started before the new (fresh) compute

instance was added to the compute cluster and the old (to-be-replaced) one removed, then

the old instance was assigned to participate in processing the job. When the old instance is

removed, the data to be processed on it will be relocated to other nodes by cloudera master.

Thus when performing the replacement after the job has started, the “map time” and “shuffle

time” (see Table 4.5) were significantly impacted because the relocation process had to

complete before the old compute instance could be removed. As a result the Sort job needed

a longer time to finish. Once the old instance was removed, the fresh instance did not affect

the completion of the current job. In case the replacement process was finished before the job

started, there was no compelling difference between the baseline measurements and replacing

one compute instance (Table 4.5). We have noticed a similar behavior when replacing all

the compute instances (the whole compute cluster). As observed in Table 4.5, a whole

compute cluster replacement after the job started would highly impact the completion time

of a running Sort job compared to the baseline measurements. However, if the replacement

finished before the job execution started, the difference was not significant.

ANCOR-MTD triggered the changes in the Hadoop deployment through Cloudera in an

organized way, by notifying the Cloudera manager about the changes it should perform. The

manager can be configured to act instantly (similar to experiments in Table 4.5) or it can

79

wait for certain conditions to be fulfilled (e.g., certain jobs should complete). Therefore,

the performance overhead of proactively replacing compute nodes can be negligible or non-

existent if it is performed before a job starts. Otherwise the performance impact can be

contained by trying to perform the changes when lower-priority jobs are running or during

off-peak times.

80

Average Average Average Average Elapsed
State

map time shuffle time merge time reduce time time

Baseline 9sec 20sec 8sec 43sec 5min 38sec SUCCEEDED

After
22sec 1min 2sec 3sec 32sec 8min 28sec SUCCEEDED

Replacing job started
one compute instance Before

15sec 19sec 4sec 34sec 5min 34sec SUCCEEDED
job started

After
53sec 1min 36sec 2sec 41sec 13min 21sec SUCCEEDED

Replacing job started
compute cluster Before

10sec 22sec 5sec 55sec 6min 3sec SUCCEEDED
job started

Table 4.5: Hadoop deployment – Sort job on 15 GB of data

81

4.2 Security Analysis

In general, quantifying the security of an IT system is a challenging task.122 Quantifying

the benefits of constantly changing a system is even more demanding.12 While there have

been numerous attempts,32;34;35;122 the proposed security metrics are usually at a higher

abstraction level that enables them to capture a wider range of IT systems. Thus, most of

the time, it is hard to validate them in an objective manner on a concrete whole IT system.

We propose to measure the effectiveness of an MTD system in terms of the meaningful

interruptions it creates for an attacker and the cost associated with those interruptions.

Definition 6. An attack window is a continuous time interval an attacker may leverage

without being interrupted by system changes.

Attackers usually exploit somewhat unpredictable occurrences on targeted IT systems

e.g., software bugs, misconfigurations, or user actions. Exploits and other actions may not

have the same outcome every time they are executed. However, in case an exploit succeeds

and the attacker compromises an instance (or a cluster of instances) on the internal network,

his/her lateral movement options (pivoting) would be highly restricted due to the security

groups that are automatically configured to allow ingress and egress traffic from and to

the dependee and dependent instances. Moreover, traffic will be allowed only to and from

the ports stored in ANCOR-MTD’s operations model and attackers may follow only the

dependency paths in order to possibly advance. For this reason, internal reconnaissance

actions on existing or newly created instances can be detected in a straight-forward way

with a high confidence (e.g., any attempt to probe a port that is not in the operations model

can be flagged as suspicious).

Figure 4.6 pictures the eCommerce example scenario with and without leveraging the

security groups. The limited pivoting options constitute an important security benefit if

an attacker is able to compromise one or more instances in the deployment. For example,

if the weblb instances were compromised, an attacker would be able to reach only the six

webapp instances through the internal network and not all the instances belonging to the

other nodes. A node represents a role in the IT system – a single unit of configuration

82

that corresponds to one instance or a high-availability cluster of instances. (Here, a role as

presented in Chapter 2 corresponds to a node in the security analysis.)

Internal
Network

External
Networkweblb

(2 instances)

db_master
(1 instance)

db_slave
(2 instances)

msg_queue
(1 instance)

webapp
(6 instances)

bg_worker
(3 instances)

(a) Nodes (roles) and instances

0

1

2

3

4

5

6

N
um

be
r	o

f	n
od

es
th
at
	c
an

	b
e	
re
ac
he

d

Not	 leveraging	security	groups

Leveraging	security	groups

(b) Number of nodes that can be reached
from each node belonging to the current
eCommerce deployment

0

2

4

6

8

10

12

14

16

N
um

be
r	o

f	i
ns
ta
nc
es
	

th
at
	c
an

	b
e	
re
ac
he

d

Not	 leveraging	security	groups

Leveraging	security	groups

(c) Number of instances that can be reached
from each instance belonging to various
nodes of the current eCommerce deployment

Figure 4.6: eCommerce deployment: Internal reachability options

83

Controlling the attack window sizes and their distribution indirectly increases attackers’

effort, reduces their window of opportunity, and can be a meaningful way to quantify the

potential security benefits MTD adds to the system. One of the primary challenges is to find

a balance between the budget (number and frequency of changes) and the main objective

(controlling the number and sizes of attack windows).

We have defined the following terminology to describe the proposed model. An attack

attempt is an effort to cause a breach on the targeted IT system. A breach can be viewed as

a set of unauthorized operations (actions) an attacker is able to perform on a node belonging

to the targeted IT system. An attack path may include several nodes that are part of the

targeted IT system. These nodes are:

1. Transparent nodes. The load balancers (weblbs) can be considered transparent nodes

if they just relay a request to an webapp instance without altering it regardless of the

weblb implementation (Varnish or Nginx). Replacing or changing a transparent node

on the attack path will not influence an ongoing attack, e.g., replacing a load balancer

should have the same effect on all requests (benign or malicious) to be passed to the

webapps in the blogging or eCommerce websites (Figures 4.1, 4.2, 4.3).

2. Stepping-stone nodes. In the eCommerce website (Figure 4.3), an attack on db master

to possibly succeed, usually, requires a vulnerable or misconfigured webapp. Changing

to a different implementation with an updated application and/or configuration will

most likely disrupt the ongoing attack. Thus replacing or changing a stepping-stone

node on the attack path will impact an ongoing attack.

An adaptation point is the moment when reconfigured or new instances start being used in

the deployment. New instances use a compatible implementation with different IP addresses,

passwords, and port numbers. Due to these configuration changes, attacks are generally

interrupted at adaptation points of stepping-stone or target nodes and the attacker must

restart the attack attempt.

A few definitions are needed to determine the size of attack windows in a certain time

period (Figure 4.7 illustrates some sample inputs).

84

Tr(X)

Tp(X) = 64 min

timeline
(min)

0 6410 20 30 40 50 60

ch(X)

d d d d d d

a(X)

Tr(X) = 10 min ch(X) = 4 min a(X) = 5 min 59 sec d(X) = 1 sec

Figure 4.7: Sample inputs for node X

Definition 7. We define Tp(X) to be the period of time taken into consideration i.e., extent

of time when attacks might be launched against node X.

Definition 8. Tr(X) is the interval between adaptation points on node X.

We defined Tr(X) = ch(X) + d(X) + a(X), where

ch(X) - time interval to bring a new instance that implements X in ready-to-use state

(e.g., provision and configure the new instances);

d(X) - duration to change to the ready-to-use new instance(s), d(X) > 0

(e.g., pushing configuration to dependent nodes); and

a(X) - delay to change to the ready-to-use new instance(s), a(X) ≥ 0

(e.g., specifically introduced by the user or by the adaptation strategy).

Definition 9. We define Ta(X) to be the duration of an attack attempt on node X, which is

the time interval when a system should not change in order for an attack attempt to possibly

succeed. In case of a successful attack attempt on a node X, then Ta(X) < Tr(X).

Definition 10. We define Ttarget(X) to be the time an attacker can spend on node X after

a successful attack, Ttarget(X) ≤ Tr(X)− Ta(X)

85

Although ANCOR-MTD can provision and configure new instances in parallel, changing to

the new instances belonging to dependent nodes (duration of parameter d for each node)

must be completed sequentially to prevent disruption of communication between dependent

services. Therefore, adaptation points (Trs) of two dependent nodes cannot be fully aligned

(coincide) because a very short delay will always be present between the two adaptation

points. However, because the duration of d was approximately 1 second in our testing

scenarios, we consider this type of alignment as efficient as a full alignment.

One adaptation point does not necessarily create one meaningful interruption for an attacker.

If there are several adaptation points that are aligned (coincide), we consider this as only

one meaningful interruption from an attacker’s perspective. We assume that one adaptation

point creates a meaningful interruption if it is at least one time measurement unit away (1

minute in our case) from other adaptation points. On the other hand, we view an adaptation

moment as one or more aligned adaptation points that create a meaningful interruption.

4.2.1 Adaptation Points Placement

An attack window is a continuous time interval an attacker might be able to leverage without

being interrupted by adaptation points of the targeted node or the stepping-stone nodes on

the way.

Assuming X is the targeted node and Y1 ... Yl−1 are the stepping-stone nodes on the

path to X. Our goal is to determine the lengths of potential attack windows. Therefore, we

start by determining the moments when adaptation points are aligned.

Intuitively, if there are no stepping-stone nodes on the way to X then the maximum attack

window is equal to Tr(X). Moreover, if Tr(X), Tr(Y1), ..., Tr(Yl−1) start at the same time, the

maximum attack window is equal to min(Tr(X), Tr(Y1), ..., Tr(Yl−1)), and their adaptation

points will be aligned (coincide) at every multiple of lcm(Tr(X), Tr(Y1), ..., Tr(Yl−1)).
1

1lcm stands for least common multiple gcd is the greatest common divisor, and min is the minimum.

86

If they do not start at the same time, the individual starting times must be taken into

consideration. Thus, the earliest starting time can be considered moment 0, while the

placement of the other starting times captures the difference related to moment 0.

For this purpose let us state the following:

tmin = min(start timeTr(X), start timeTr(Y1), ..., start timeTr(Yl−1))

tX = start timeTr(X) − tmin

tY1 = start timeTr(Y1) − tmin

...

tYl−1
= start timeTr(Yl−1) − tmin

The problem can be defined and solved using the Chinese Remainder Theorem.123 Using

this theorem one can determine integer m that, when divided by some given divisors, leaves

given remainders. In our scenario the given divisors are Tr(X), Tr(Y1) ...Tr(Yl−1) , the given

remainders are tX , tY1 , ..., tYl−1
, and m represents the moment when the adaptation points

are aligned (Figure 4.8).

...

Tr(X) timeline

0

0

Tr(Yl-1)
...

timelinetYl-1

Node X
(target node)

Node Yl-1

(stepping-stone node)

attack path

tX = 0

m

m

Node Y1

(stepping-stone node)

0

Tr(Y1) tY1

m ...
timeline

...

Tr(X)

Tr(Y1)

Figure 4.8: Using the Chinese Remainder Theorem to determine common adaptation points

87

Based on the Chinese Remainder Theorem we can derive the following possibilities:

Case 1

If Tr(X), Tr(Y1), ..., Tr(Yl−1) are pairwise coprime then:

• Integer m exists and can be calculated

• All solutions for m are congruent lcm(Tr(X), Tr(Y1), ..., Tr(Yl−1))

m ≡ tX mod Tr(X)

m ≡ tY1 mod Tr(Y1)

...

m ≡ tYl−1
mod Tr(Yl−1)

Case 2

If Tr(X),Tr(Y1), ..., Tr(Yl−1) not pairwise coprime then:

If ∀i, j ∈ {X, Y1, ..., Yl−1}, ti ≡ tj mod gcd(Tr(i), T (j)) is TRUE, then:

• Integer m exists and can be calculated

Else:

• Integer m does not exist

Case 3

If Tr(X), Tr(Y1), ..., Tr(Yl−1) are not pairwise coprime (no coprime pairs)

AND ∀i, j ∈ {X, Y1, ..., Yl−1}, ti ≡ tj mod gcd(Tr(i), T (j)) is FALSE, then:

• No pair of adaptation points will be aligned

• Integer m does not exist

Appendix A includes more details for this proof.

88

Case 4

If Tr(X), Tr(Y1), ..., Tr(Yl−1) are not pairwise coprime

AND ∃i, j, a, b ∈ {X, Y1, ..., Yl−1},

ti ≡ tj mod gcd(Tr(i), T (j)) is FALSE,

ta ≡ tb mod gcd(Tr(a), T (b)) is TRUE, then:

• Some of the adaptation points will coincide

• Integer m does not exist

Appendix A contains more details for this proof.

4.2.2 Attack Windows Example

To briefly illustrate the options users have when managing their deployment using ANCOR-

MTD, let us consider a possible IT system architecture as pictured in Figure 4.9. Nodes

may be implemented using high-availability clusters of instances or only by single instances.

Replacing one or all instances belonging to a node takes roughly the same amount of time

(Section 3.2). The architecture pictured in Figure 4.9 can serve as a concrete highly-available

eCommerce website (Figure 4.3).

Based on an improved version (with faster replacements) of the concrete eCommerce

scenario, the replacement times for the nodes in Figure 4.9 are Tr(B) = 10 minutes, Tr(F) =

11 minutes, Tr(E) = 11 minutes, Tr(A) = Tr(C) = 3 minutes, Tr(D) = 3 minutes and

d(B) = d(F) = d(E) = d(A) = d(C) = d(D) = 1
60

minutes. Tr values are at their lowest

bound for the current environment. In other words, ch’s and d’s are at their minimum and

a’s are equal to 0.

There are two possibilities to reach node E: A, B, F, E or A, B, E (see Figure 4.9). For

the purpose of this example we will focus on the first path, A, B, F, E.

Node A is transparent (corresponds to the weblb in the eCommerce scenario), and thus

Tr(A) will not be taken into consideration. Assuming the replacement intervals start at the

same time, the maximum attack window available to an attacker is min(Tr(E), Tr(B), Tr(F)) =

min(10, 11, 11) = 10 minutes.

89

Internal
Network

External
NetworkA

E F

C

B

D

Figure 4.9: Possible IT system architecture. Arrows indicate dependencies and picture the secu-
rity group configurations, light-colored arrows indicate the attack path from Section 4.2.2.

0 200 400 600 800 1000 1200 1400

Maximum	Attack	Window	(in	minutes)

No	MTD	(static) With	MTD One	day	=	1440	minutes

Figure 4.10: Maximum attack windows over one day

For example, over a period of one day, the MTD system will keep the maximum attack

window for the instances belonging to node E to 10 minutes while in a static system the

maximum attack window can be as long as the whole time period (Figure 4.10).

In the default scenario where adaptations start at the same time, the adaptation points

will be aligned every lcm(Tr(E), Tr(B), Tr(F)) = lcm(10, 11, 11) = 110 minutes. However,

depending on the starting times of Tr(B), Tr(E), and Tr(F), the adaptation points might

never coincide and the distributions of the individual attack windows may significantly vary.

Figure 4.11 illustrates three possible attack windows distributions over one day (24 hours).

90

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10

Nu
m
be
r	o

f	t
im

e	
w
in
do
w
s

Time	window	size	(min)

(0,0,0)	 /	262 (0,0,1)	 /	380 (0,1,6)	 /	381

Tr(B)	=	10	min
Tr(E)	=	11	min
Tr(F)	=	11	min

Starting	times	(tB,tE tF)		/	Number	of	interruptions:

Figure 4.11: Attack windows distribution over one day with a cost of 407 adaptation moments for
262 interruptions with starting times (0,0,0), 380 interruptions with (0,0,1), and 381 interruptions
with (0,1,6)

To generate these distributions 407 adaptation points are needed in each case. As observed

in Figure 4.11, for the same cost, the outcome may be very different. For instance, 262

interruptions and 26 ten-minute attack windows when starting at (0,0,0) might not be the

best option when a user can get 380 interruptions and fewer ten-minute windows for the

same cost.

In order to increase the number of interruptions while maintaining the same cost (number

of adaptations), adaptation points should not pairwise coincide. For that reason, we can opt

for a set of parameters that fall under Case 3 in Section 4.2.1:


Tr(E), Tr(B), Tr(F) - NOT pairwise coprime

tE ≡ tB mod gcd(Tr(B), T (E)) is FALSE

tE ≡ tF mod gcd(Tr(F), T (E)) is FALSE

For instance, by setting a(B) to 1 minute we have Tr(E) = Tr(B) = Tr(F) = 11 minutes.

Next, we chose different starting times that fulfill the above-stated requirements. For exam-

ple, Tr(E) starts first, Tr(F) starts 4 minutes later, and Tr(B) starts 7 minutes after Tr(E).

91

In other words, tE = 0, tF = 4, and tB = 7 (see Figure 4.12). Using these parameters, the

adaptation points of the instances belonging to the three nodes will not coincide and the

maximum attack window is only 4 minutes.

0 4 7 11 15 18

Tr(F)

Tr(E)

Tr(B)

22 26

Tr(E)

29

Tr(B)

Tr(F)

33
...

timeline

Figure 4.12: Adaptation schedule example

Figure 4.13 illustrates two more starting time options that result in the same number of

interruptions, 393, for the same cost. Furthermore, we have more attack windows of the

same size while the size of the maximum window is also smaller compared to Figure 4.11.

0

40

80

120

160

200

240

280

1 2 3 4 5 6 7 8 9 10 11

Nu
m
be
r	o

f	t
im

e	
w
in
do
w
s

Time	window	size	(min)

(0,4,7)	 /	393 (0,4,9)	 /	393 (0,2,9)	 /	393

Tr(B)	=	11	min
Tr(E)	=	11	min
Tr(F)	=	11	min

Starting	times	(tB,tE tF)		/	Number	of	interruptions:

Figure 4.13: Attack windows distribution over one day when no two adaptation points coincide,
with a cost of 393 adaptation moments for 393 interruptions in all three cases

92

In case of a successful attack, the maximum time an attacker may spend on an instance

belonging to node E, Ttarget(E), is equal to the difference between the maximum attack

window and the duration of the successful attack attempt, Ta(E). Thus, in the worst case

scenario an attacker may spend between 4 to 10 minutes on an instance belonging to node

E depending on the parameter choices (Figures 4.11 and 4.13).

While there are numerous options for starting times, a’s, etc., a user will always be able

to calculate the cost in terms of number of adaptations. In the following part of this effort

we are aiming at providing an ANCOR-MTD user with some guidelines for setting up the

parameters.

4.2.3 Goals versus Costs

The overall goal is to create as many meaningful interruptions for an attacker as the environ-

ment can afford. The values of the parameters used in the calculation of Tr depend on the

resources a system administrator is able to manipulate for each node. As an illustration, let

us consider the example described in the previous section (Section 4.2.2). The lower bound

in our testing environment is 10 minutes for Tr(B), and 11 minutes for Tr(E) and Tr(F)

with a(B) = a(E) = a(F) = 0.

In case of node B the duration of ch(B) (provisioning and configuring process) can be

shortened by tuning the software applications’ setups, adding more hardware to the cloud

infrastructure, or by keeping a pool of pre-configured instances for every node. The same

applies to nodes E and F . Pre-configured instances may be rapidly synchronized (if needed)

and made available much quicker than starting the whole provisioning and configuring pro-

cess from scratch. Depending on the size of the pre-configured instances pool, the overall cost

can be significantly affected. In military environments the cost might be justified, however

in other environments it might not be as cost-effective.

Parameter d(B) is mostly dependent on the configuration management tool’s settings

and represents the duration to push the changes to the instances belonging to the dependent

nodes. d(B), d(E) and d(F)’s values are in the seconds range (around 1 sec for each one in

93

our testing scenarios using Puppet) while the other parameters are in the minutes range.

Au contraire, a(B), a(E) and a(F) are the parameters that can be easily manipulated

in the vast majority of environments. These parameters capture the delay introduced by

the system administrator/user. For example, a system administrator can always increase

or decrease Tr(B) by increasing or decreasing a(B). While increasing a(B) has no upper

bound, once a(B) = 0, decreasing the value of Tr(B) might involve a significant cost.

The cost of an adaptation point is quantified in terms of the needed environment resources

and the performance overhead/degradation the environment can withstand (accept). The

environment resources may include the cost for the hardware equipment, electricity consump-

tion, and everything else needed to reach the desired values for the ch and d parameters.

As shown in Figure 4.13, for 393 adaptation points with (0,4,7) starting times, the attack

windows are 3 and 4 minutes long. If we make the necessary adjustments and bring the values

of Tr(B), Tr(E), and Tr(F) down to 6 minutes with (0,2,4) starting times, it would allow us to

have only 2-minute attack windows. Even though adaptation points will not pairwise coincide

(fall under Case 3 from Section 4.2.1’s), the cost increases to 721 adaptation points for 24

hours. Based on the measurements presented in Table 4.3, and assuming that there won’t

be any errors if no replacement is running, the overall performance overhead/degradation

alone would increase from roughly 1.5% errors in case of 393 adaptation points to 2.75% for

721 adaptation points.

4.2.4 Configuration Guidelines

Every environment has a certain budget – restrictions regarding the number and the fre-

quency of adaptation points. The frequency and the number of adaptation points depend

directly on the size of the Tr values. Once the lower bounds or the preferred values for

the adaptation intervals are known, one can determine the parameter values (starting times

and user introduced-delay) along with the adaptation order by generating all potentially-

interesting options.

94

Based on Section 4.2.1, we are proposing a few guidelines to consider when choosing/deter-

mining the parameters:

min Tr = min(Tr(X), Tr(Y1), ..., Tr(Yl−1))

• If tX , tY1 ,...,tYl−1
≤ min Tr then:

1. max attack window ≤ min Tr

2. the range of window sizes ∈ mod min Tr.

• Parameters that fall under Case 3 ensure that one adaptation point translates to one

interruption for attackers.

• Case 3 parameters with the same Tr values for all nodes usually result in a more

reduced range of various windows sizes. The sizes of the windows depend on the

difference between the starting times of the adaptation intervals.

• Interchanging nodes starting times may also impact the window size distribution.

• The maximum time an attacker may spend on a target node in case of a successful

attack: Ttarget(X) = max attack window - Ta(X).

4.2.5 Attack Attempts

We have defined an attack attempt as an uninterrupted effort to cause a breach on the

targeted IT system. In general, we consider this effort to be meaningful and with a realistic

chance to succeed. For example, blindly launching Linux kernel exploits against a Windows

machine is not viewed as a meaningful attack attempt and might not be considered a priority.

Therefore, when referring to attack attempts we are considering meaningful attack attempts.

As previously mentioned in case of the attack windows, the main objectives on an MTD

system is to increase uncertainty and apparent complexity for attackers, reduce their win-

dow of opportunity and increase the costs of their attack efforts. Attackers usually exploit

somewhat unpredictable occurrences on targeted IT systems and exploits may not have iden-

tical outcomes every time they are executed. Being able to determine and limit the number

95

of attack attempts increases attackers’ efforts, helps in determining the appropriate attack

window distribution, and can be a meaningful way to further quantify the potential security

benefits adaptations add to the system.

Being able to calculate the attack windows distribution enables a system administrator

(user) to calculate the maximum number of attack attempts on a node X within Tp(X).

NO MTD. If no MTD mechanism is in place, an attacker might be able to shorten the

duration of an attack attempt (Ta) by learning from previous failed attempts. Therefore,

the attacker will have at least

Attack attempts per Tp(X) = bTp(X)

Ta(X)
c

With MTD. Assuming the following information holds and is known to the attacker:



Tr(X) = Tr(Y1) = ... = Tr(Yl−1) < Tp(X),

a(X), a(Y1), ..., a(Yl−1) are known to the attacker,

d(X) = d(Y1) = ... = d(Yl−1);

while

Y1, ..., Yl−1 are stepping-stone nodes on the path to X

l is the total number of nodes on the attack path

q is the number of nodes that are aligned to create the interruption

An attack is not disrupted when stepping-stone nodes or the target node are provisioned

and configured (during ch(X), ch(Y1), ..., ch(Yl−1)) or during the delay introduced by the

user until a new instance becomes active (a(X), a(Y1), ..., a(Yl−1)). An attack is typically

interrupted when the new instance becomes active and changes are sent to the affected

instances (d(X), d(Y1), ..., d(Yl−1)).

96

Therefore, for each possible attack window, the number of possible attack attempts (including

adjacent and stepping-stone nodes) are computed as

Attack attempts per Tr(X) =


bTr(X)− q ∗ d(X)

Ta(X)
c, Tr(X) > q ∗ d(X) (Case 1)

0, Tr(X) ≤ q ∗ d(X) (Case 2)

Tr(X)− q ∗ d(X) is the amount of time the attacker has to launch attacks on X without

being disrupted during a single adaptation interval (Figure 4.14). The disruption happens

when changes are pushed to X or to the stepping-stone instances on the attack path. Pro-

visioning and configuring new instances can be performed by the MTD platform in parallel.

However, changing to the new instances belonging to dependent nodes must be completed

sequentially in order not to disrupt the communication between the dependent services. In

our MTD system, attack paths must follow the system dependency due to the security group

configuration. Therefore the time required for pushing changes to all the nodes on the at-

tack path leading to X is q ∗ d(X), during which time an attacker will not be able to launch

attacks on X.

Ta(X) = 4 min

Tr(X) = 10 min

timeline
(min)

0 10

q = 2; d = 1 sec
2 * 1 sec

Ta(X) = 4 min

15

Tr(Y2) = 5 min

Ta(X) = 4 min

q = 1; d = 1 sec
1 * 1 secTr(Y1) = 10 min

Target node: X
Stepping stone nodes: Y1 ,Y2

Figure 4.14: Attack attempts within adaptation windows

97

Thus, bTr(X)− q ∗ d(X)

Ta(X)
c captures the number of attack attempts on X that can be launched

during one full interval between adaptations (Case 1). In case Tr(X) ≤ q ∗d(X) (Case 2), no

attack attempts are allowed. Although Case 2 seams appealing, it might have a significant

negative impact on the functionality and the performance of the MTD system.

Based on the eCommerce deployment example described in Section 4.2.2 (Figure 4.9),

we have the following replacement times for the nodes: Tr(B) = 10 minutes, Tr(F) = 11

minutes, Tr(E) = 11 minutes, Tr(A) = Tr(C) = 3 minutes, Tr(D) = 3 minutes and d(B) =

d(F) = d(E) = d(A) = d(C) = d(D) = 1
60

minutes.

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1 2 3 4 5 6 7 8 9 10

M
ea
ni
ng
fu
l	A

tt
ac
k	
At
te
m
pt
s

Duration	of	an	attack	attempt	(min)	Ta(E)
TP(E)	=	1440	min	(1	day)

No	MTD With	ANCOR-MTD

Figure 4.15: Attack attempts on node E from Figure 4.9

98

Similar to Section 4.2.2, we will focus on node E and the path highlighted in Figure 4.9:

A, B, F, E. Based on the guidelines provided in Section 4.2.3, by setting a(B) to 1 minute

we have Tr(E) = Tr(B) = Tr(F) = 11 minutes, and opt for tE = 0, tF = 4, and tB = 7

(Figure 4.12). Figure 4.15 shows the number of attack attempts on node E. In case of

short attack attempts, adaptations help reduce the number of tries an attacker will have.

However, as the duration of an attack attempt increases the effectiveness of the adaptations

also increases e.g., Ta(E) ≥ 4 minutes, all attack attempts will be interrupted at least once

by the MTD system.

It is worth noting that for static systems (No MTD), the numbers are computed based on

the assumption that attackers do not learn from previous attack attempts. In case of an MTD

system, an attacker will be forced to re-run reconnaissance actions because new instances

will be configured using different parameters (e.g., IP, port, credentials, etc.) – attackers will

not be able to learn from previous attack attempts. Moreover, compromised instances will

be automatically replaced with clean instances as part of the proactive replacing schema.

99

4.3 Discussion

In recent years, several researchers have focused on side-channel attacks101–103;124–126 and co-

locating and detecting co-resident instances in public clouds100;127–130. In 2015, Varadarajan

et al.128 and Xu et al.129 concluded that determining co-residency is still possible,131 but

more challenging than just six years before100 due to, in part, the larger instance pools

(more hardware resources) in the current clouds.129

ANCOR-MTD provides users a control mechanism to deploy and manage their IT systems

on a cloud in a automated and reliable way. Instead of relying on the cloud provider, the

user controls the replacement operations and can regularly trigger physical host location

“refreshes”. New instances get new private IPs, application credentials and ports, and can

move to new physical hosts.

The physical host where a new instance is placed depends on the cloud provider’s sched-

uler. While public cloud scheduler rules may differ, Appendix B describes how the OpenStack

Filter Scheduler1 is configured on our cloud infrastructure.

We have deployed on our OpenStack infrastructure the highly-available and scalable

eCommerce scenario (described in Section 4.1.2) with twenty web applications (webapps).

Figure 4.16 illustrates the distributions of the webapp instances on the thirteen physical

compute hosts when initially deployed, and after two whole-cluster webapp replacements.

Despite having only thirteen compute nodes, instances “move” between nodes on every

replacement operation. We noticed that between the initial deployment and the first re-

placement only 3 out of 13 hosts were assigned the same number of instances, while between

the first and the second replacement only 2 out of 13.

Assigning configurable “expiration” dates to each instance will radically change the land-

scape against an attacker. While it might seem that more instance replacements provide

more chances to time instance deployments and thus achieve co-residency (see128), attackers

still have to determine whether the cost to achieve co-residency and perform a side-channel

attack is justified against instances with limited lifetimes (perhaps only minutes). More-

over, user controlled replacement complements existing and future cloud provider mitigation

techniques such as AWS VPC132 and Nomad.117

100

0

1

2

3

4

5

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13

Nu
m
be
r	o

f	I
ns
ta
nc
es

Physical	Hosts

Initial	Deployment First	Replacement Second	Replacement

Figure 4.16: Distribution of 20 webapp instances across 13 physical hosts (initial deployment and
two whole-webapp-cluster replacements)

Since a replacement operation can be triggered proactively or by security events, it is diffi-

cult for attackers to determine if their activities have been discovered. When triggered by

security events (e.g., IDS alerts), replacement is a low-cost way to deal with false positives

as replacements do not disrupt the normal operation of the system.

The performance loss can be compared in a way to Netflix’s approach to test the resiliency

of their services. They deployed a service (called Chaos Monkey)98 that seeks out clusters of

services and randomly terminates instances (VMs). By frequently causing failures, Netflix

forces their services to be built in a way that is more resilient. ANCOR-MTD terminates

instances during movement, but in a far more organized way.

All scenarios in this work have general-purpose designs and public-facing instances known

to both, benign and malicious users. In other environments (e.g., military), a hidden, possibly

dynamic, instance known only to the benign users may be plausible by using approaches such

as IP hopping. We used public instances because hidden interfaces on public networks are

more rightly viewed security through obscurity as opposed to movement.

We evaluated the feasibility of replacing services and small databases. Since persistent

data is stored on different volume types in a cloud (e.g., OpenStack Cinder, Ceph, etc.),

101

attaching the data volume to new instances proved more efficient than synchronizing the

data on each new instance. However, if persistent data must be synchronized with other

locations, IBM Aspera’s104 offerings could be used to move object storage data. Moving

block storage data is more provider-specific (e.g., copying AWS EBS snapshots)133 and the

effectiveness is highly dependent on the storage driver.

Attackers may be able to store backdoor information in persistent data that enables them

to restore persistent access, making the replacement process less effective. Orthogonal re-

search is needed to study the data integrity problem. Nevertheless, ANCOR-MTD addresses

system-level security and is capable of dramatically reducing the threat to current enterprise

network setups.

102

4.4 Summary

There are two main aspects that reflect the practicality and effectiveness of an MTD mech-

anism: (1) performance and functionality, and (2) security. This chapter analyzes and

quantifies how the operations supported by our MTD platform affect a running IT system.

For this purpose, we have developed a series of real-world IT systems for the proposed

ANCOR-MTD platform. ANCOR-MTD performs the movement process in a reliable way

with negligible performance (statistically non-significant) overhead. To evaluate the secu-

rity benefits facilitated through the platform, we analyze costs versus security benefits and

demonstrate that an IT system deployed and managed using ANCOR-MTD will increase

attack difficulty. We are able to quantify the outcome (sizes of potential attack windows)

in terms of the cost (number of adaptations), and show that MTD systems managed and

deployed using our platform will achieve the goal of increasing attack difficulty.

103

Chapter 5

Conclusions and Future Work

Moving Target Defenses are seen as a way to alter the security landscape by increasing

the uncertainty and complexity for attackers, reducing their window of opportunity and

increasing their reconnaissance costs and attack efforts.

The static nature of current IT systems gives attackers the extremely valuable advantage

of time. Therefore, the Moving Target Defense approach has emerged as a potential new

solution to cyber security. The core idea of MTD is to make a system change proactively

as a means to eliminating the asymmetric advantage the attacker has on time. There have

been a number of MTD-related research efforts such as randomizing IP addresses, executable

codes, and even machine instruction sets. These are important steps towards achieving the

overall goal of moving target defense, but they focus on specific aspects of a system to

apply the MTD idea e.g., IP addresses, code for specific applications, individual computer

architectures. There has not been much research on how to apply the MTD idea at the

whole IT system level.

A whole IT system can be described as a subset (component) of an enterprise network, a

group of one or more machines (physical or virtual) that work together to fulfill a goal. The

overall goal and scope of a whole IT system are determined by the users (system engineers)

and can range from a one-machine service (e.g., FTP server) to more complex deployments

(e.g., multi-host eCommerce websites, Hadoop setups, wiki deployments).

104

Applying the MTD idea at the whole IT system level is essential for two reasons. First,

system administrators fight the continual and generally losing battle of monitoring their IT

systems for possible intrusions and compromises, patching potential vulnerabilities, main-

taining user access lists, modifying firewall rules, etc. The complexity and ramifications of

such IT systems, and especially the time required to maintain them, constitute major rea-

sons why errors creep into system configurations and create security holes. Introducing an

MTD mechanism for the whole IT system will support automation of those configuration

tasks and reduce the chance for errors. Second, due to the complexity and error-proneness

in configuring/maintaining a large IT system, once deployed, system administrators are gen-

erally reluctant to change the set-ups. The stagnant nature of the configuration used in the

IT system gives adversaries chances to discover vulnerabilities, find opportunities to exploit

them, gain/escalate privileges, and maintain persistent presence over time. Creating and

employing an MTD mechanism on the whole IT system’s configuration will eliminate or

limit this advantage.

While it seems promising, there has been little research to show that MTD systems can

work effectively at the whole system level and the security benefits can be quantified in

realistic IT deployments. Nonetheless, there are a number of challenges to consider. For

example, there are many configuration parameters one can change in an IT system with

complex dependencies. Introducing random changes will almost certainly render the system

unusable. Setting up an IT system and making it function properly is already a time-

consuming and complicated job. Introducing changes proactively, if done improperly, may

introduce additional complexities. Making a complex system more complex is unlikely to

increase its security. Modern enterprise IT systems have numerous dependencies among

services, so that changing one instance alone will almost certainly disrupt the dependent

services. Changing a system while it is running inevitably introduces overhead, the amount of

which must be carefully examined to determine if the benefits exceed costs. Thus a practical

MTD design must simplify system configuration and maintenance, while introducing the

capability of moving.

105

This dissertation presents a Moving Target Defense platform (ANCOR-MTD) at the whole

IT system level based on separating user requirements from implementation details. To

capture user requirements, we developed a high-level abstraction for defining IT systems

(mainly cloud-based IT systems). Once users define their desired system in the specification,

it is automatically compiled into a concrete cloud-based system that meets the specified user

requirements. We demonstrate the practicality of this approach in the ANCOR framework,

the core of the ANCOR-MTD platform.

ANCOR manages the relationships and dependencies between instances as well as in-

stance clustering. Such management involves creating and deleting instances, adding/re-

moving instances to/from clusters, and keeping dependent instances/clusters aware of con-

figuration changes. The ANCOR framework simplifies network management as system de-

pendencies are formalized and maintained in an automated fashion. The current implemen-

tation targets a cloud infrastructure (OpenStack) and leverages the Puppet configuration

management tool.

Our approach of introducing moving target defense at the whole IT system level was to

develop a platform where any component of the IT system can be replaced with a fresh new

one. A component is a virtual machine instance or a cluster of instances. Even though the

approach can be also applied directly to physical hosts, due to the wide-spread adoption of

cloud technologies, we consider that the MTD system will be deployed on a cloud infrastruc-

ture. Our proposed MTD platform (ANCOR-MTD) enables users to perform live changes

to their running IT systems in an automated and reliable fashion. Being able to reliably

replace instances in a running IT deployment can have a significant impact on the whole

security landscape.

There are two important aspects that reflect the practicality and effectiveness of an MTD

mechanism: (1) performance and functionality, and (2) security. To evaluate the platform’s

practicality, we developed a series of experiments on multiple IT deployments: eCommerce

deployments, blogging websites, Hadoop formation, and Mediawiki with Wikipedia dumps

setup. ANCOR-MTD performs the movement process in a reliable fashion with negligible

performance (statistically non-significant) overhead.

106

To evaluate the security benefits facilitated through the platform, we analyze costs versus

security benefits and demonstrate that an IT system managed using ANCOR-MTD will

increase attack difficulty. We are able to quantify the outcome (sizes of potential attack

windows) in terms of the cost (number of adaptations), and show that MTD systems managed

and deployed using ANCOR-MTD will achieve the goal of increasing attack difficulty.

One of the future research directions is to construct an adaptation strategies generator

that automatically selects strategies based on the MTD systems’ budget and goals. This

effort may also involve developing a mechanism for incremental recompilation for structural

changes and developing a general cost formula that can be customized for various environ-

ments. In addition, on the implementation side, the OpenStack AWS compatible API could

be leveraged to potentially enable the use of one provider module for various cloud plat-

forms. Future work will also extend and implement the constraint model as an independent

component that may consume ANCOR-independent domain specific languages and generate

various combinations of compatible software stacks.

107

Bibliography

[1] OpenStack Documentation – OpenStack Filter Scheduler. http://docs.openstack.org/

developer/nova/filter scheduler.html, April 2015.

[2] Department of Homeland Security (DHS) – Moving Target Defense. https://www.dhs.

gov/science-and-technology/csd-mtd, April 2015.

[3] The Networking and Information Technology Research and Development (NITRD)

Program – National Cyber Leap Year Summit 2009 Co-Chairs’ Report. http://1.usa.

gov/1GS5tv3, June 2012.

[4] S. Antonatos, P. Akritidis, E.P. Markatos, and K.G. Anagnostakis. Defending against

hitlist worms using network address space randomization. In Proceedings of the 2005

ACM workshop on Rapid malcode, WORM ’05, pages 30–40, New York, NY, USA,

2005. ACM. ISBN 1-59593-229-1.

[5] Matthew Dunlop, Stephen Groat, William Urbanski, Randy Marchany, and Joseph

Tront. MT6D: a moving target ipv6 defense. In Military Communications Conference,

2011-MILCOM 2011, pages 1321–1326. IEEE, 2011.

[6] Stephen Groat, Matthew Dunlop, Randy Marchany, and Joseph Tront. Using dy-

namic addressing for a moving target defense. In Proceedings of the 6th International

Conference on Information Warfare and Security., page 84, 2011.

[7] Per Larsen, Stefan Brunthaler, and Michael Franz. Security through diversity: Are we

there yet? IEEE Security and Privacy, 12(2):28–35, Mar./Apr. 2014.

[8] Daniel Williams, Wei Hu, Jack W. Davidson, Jason D. Hiser, John C. Knight, and Anh

Nguyen-Tuong. Security through diversity: Leveraging virtual machine technology.

IEEE Security and Privacy, 7(1):26–33, 2009.

108

http://docs.openstack.org/developer/nova/filter_scheduler.html
http://docs.openstack.org/developer/nova/filter_scheduler.html
https://www.dhs.gov/science-and-technology/csd-mtd
https://www.dhs.gov/science-and-technology/csd-mtd
http://1.usa.gov/1GS5tv3
http://1.usa.gov/1GS5tv3

[9] Stephen W Boyd, Gaurav S Kc, Michael E Locasto, Angelos D Keromytis, and Vassilis

Prevelakis. On the general applicability of instruction-set randomization. Dependable

and Secure Computing, IEEE Transactions on, 7(3):255–270, 2010.

[10] Gaurav S. Kc, Angelos D. Keromytis, and Vassilis Prevelakis. Countering code-

injection attacks with instruction-set randomization. In Proceedings of the 10th ACM

Conference on Computer and Communications Security, CCS ’03, pages 272–280, New

York, NY, USA, 2003. ACM. ISBN 1-58113-738-9. doi: 10.1145/948109.948146. URL

http://doi.acm.org/10.1145/948109.948146.

[11] Mandiant – APT1 Report. http://intelreport.mandiant.com/Mandiant APT1

Report.pdf, October 2014.

[12] Thomas Hobson, Hamed Okhravi, David Bigelow, Robert Rudd, and William Streilein.

On the challenges of effective movement. In Proceedings of the First ACM Workshop

on Moving Target Defense, MTD ’14, pages 41–50, New York, NY, USA, 2014. ACM.

ISBN 978-1-4503-3150-0. doi: 10.1145/2663474.2663480. URL http://doi.acm.org/10.

1145/2663474.2663480.

[13] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy Katz,

Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, and Matei

Zaharia. A view of cloud computing. Commun. ACM, 53(4):50–58, April 2010. ISSN

0001-0782. doi: 10.1145/1721654.1721672. URL http://doi.acm.org/10.1145/1721654.

1721672.

[14] OpenStack – What is OpenStack? https://www.openstack.org/software/, April 2015.

[15] Amazon Web Services – AWS. https://aws.amazon.com/.

[16] M. Albanese, A. De Benedictis, S. Jajodia, and Kun Sun. A moving target de-

fense mechanism for manets based on identity virtualization. In Communications and

Network Security (CNS), 2013 IEEE Conference on, pages 278–286, Oct 2013. doi:

10.1109/CNS.2013.6682717.

109

http://doi.acm.org/10.1145/948109.948146
http://intelreport.mandiant.com/Mandiant_APT1_Report.pdf
http://intelreport.mandiant.com/Mandiant_APT1_Report.pdf
http://doi.acm.org/10.1145/2663474.2663480
http://doi.acm.org/10.1145/2663474.2663480
http://doi.acm.org/10.1145/1721654.1721672
http://doi.acm.org/10.1145/1721654.1721672
https://www.openstack.org/software/
https://aws.amazon.com/

[17] Valentina Casola, Alessandra De Benedictis, and Massimiliano Albanese. A moving

target defense approach for protecting resource-constrained distributed devices. In

Information Reuse and Integration (IRI), 2013 IEEE 14th International Conference

on, pages 22–29, Aug 2013. doi: 10.1109/IRI.2013.6642449.

[18] Chongkyung Kil, Jinsuk Jun, Christopher Bookholt, Jun Xu, and Peng Ning. Address

space layout permutation (aslp): Towards fine-grained randomization of commodity

software. In Computer Security Applications Conference, 2006. ACSAC ’06. 22nd

Annual, pages 339–348, Dec 2006. doi: 10.1109/ACSAC.2006.9.

[19] Team PaX – PaX Address Space Layout Randomization (ASLR). https://pax.

grsecurity.net/docs/aslr.txt, August 2015.

[20] Mihai Christodorescu, Matthew Fredrikson, Somesh Jha, and Jonathon Giffin. Moving

Target Defense: Creating Asymmetric Uncertainty for Cyber Threats, chapter End-to-

End Software Diversification of Internet Services, pages 117–130. Springer New York,

New York, NY, 2011. ISBN 978-1-4614-0977-9. doi: 10.1007/978-1-4614-0977-9 7.

URL http://dx.doi.org/10.1007/978-1-4614-0977-9 7.

[21] Shardul Vikram, Chao Yang, and Guofei Gu. Nomad: Towards non-intrusive moving-

target defense against web bots. In Communications and Network Security (CNS),

2013 IEEE Conference on, pages 55–63, Oct 2013. doi: 10.1109/CNS.2013.6682692.

[22] Stephen W. Boyd and Angelos D. Keromytis. Applied Cryptography and Network

Security: Second International Conference, ACNS 2004, Yellow Mountain, China,

June 8-11, 2004. Proceedings, chapter SQLrand: Preventing SQL Injection Attacks,

pages 292–302. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004. ISBN 978-3-

540-24852-1. doi: 10.1007/978-3-540-24852-1 21. URL http://dx.doi.org/10.1007/

978-3-540-24852-1 21.

[23] Angelos D Keromytis, Roxana Geambasu, Simha Sethumadhavan, Salvatore J Stolfo,

Junfeng Yang, Azzedine Benameur, Marc Dacier, Matthew Elder, Darrell Kienzle, and

110

https://pax.grsecurity.net/docs/aslr.txt
https://pax.grsecurity.net/docs/aslr.txt
http://dx.doi.org/10.1007/978-1-4614-0977-9_7
http://dx.doi.org/10.1007/978-3-540-24852-1_21
http://dx.doi.org/10.1007/978-3-540-24852-1_21

Angelos Stavrou. The meerkats cloud security architecture. In Distributed Computing

Systems Workshops (ICDCSW), 2012 32nd International Conference on, pages 446–

450, June 2012. doi: 10.1109/ICDCSW.2012.42.

[24] Georgios Portokalidis and Angelos D. Keromytis. Moving Target Defense: Creating

Asymmetric Uncertainty for Cyber Threats, chapter Global ISR: Toward a Comprehen-

sive Defense Against Unauthorized Code Execution, pages 49–76. Springer New York,

New York, NY, 2011. ISBN 978-1-4614-0977-9. doi: 10.1007/978-1-4614-0977-9 3.

URL http://dx.doi.org/10.1007/978-1-4614-0977-9 3.

[25] Yih Huang, David Arsenault, and Arun Sood. Closing cluster attack windows through

server redundancy and rotations. In Cluster Computing and the Grid, 2006. CCGRID

06. Sixth IEEE International Symposium on, volume 2, pages 12 pp.–21, May 2006.

doi: 10.1109/CCGRID.2006.1630916.

[26] Quyen Nguyen and Arun Sood. Designing scit architecture pattern in a cloud-

based environment. In Dependable Systems and Networks Workshops (DSN-W),

2011 IEEE/IFIP 41st International Conference on, pages 123–128, June 2011. doi:

10.1109/DSNW.2011.5958797.

[27] Sanjai Narain, Gary Levin, Sharad Malik, and Vikram Kaul. Declarative infrastructure

configuration synthesis and debugging. Journal of Network and Systems Management,

16(3):235–258, 2008. ISSN 1573-7705. doi: 10.1007/s10922-008-9108-y. URL http:

//dx.doi.org/10.1007/s10922-008-9108-y.

[28] Sanjai Narain, Sharad Malik, and Ehab Al-Shaer. Towards eliminating configuration

errors in cyber infrastructure. In Configuration Analytics and Automation (SAFE-

CONFIG), 2011 4th Symposium on, pages 1–2, Oct 2011. doi: 10.1109/SafeConfig.

2011.6111678.

[29] Sanjai Narain, Dana CheeBrian Coan, Ben Falchuk, Samuel Gordon, Jaewon Kang,

Jonathan Kirsch, Aditya Naidu, Kaustubh Sinkar, Simon Tsang, Sharad Malik,

111

http://dx.doi.org/10.1007/978-1-4614-0977-9_3
http://dx.doi.org/10.1007/s10922-008-9108-y
http://dx.doi.org/10.1007/s10922-008-9108-y

Shuyuan Zhang, Vahid Rajabian-Schwart, and Walt Tirenin. A science of network con

guration. Journal of Cyber Security and Information Systems, 4:18–31, 2016. URL

https://www.csiac.org/wp-content/uploads/2016/03/AFRL Special Final.pdf.

[30] Sanjai Narain, Dana Chee, and Sharad Malik. Demonstrating Assured and Dy-

namic Configuration Over a Live, Emulated Network. http://www.argreenhouse.com/

papers/narain/ADC-Live-Demo.pdf, 2011.

[31] Ehab Al-Shaer. Moving Target Defense: Creating Asymmetric Uncertainty for Cy-

ber Threats, chapter Toward Network Configuration Randomization for Moving Tar-

get Defense, pages 153–159. Springer New York, New York, NY, 2011. ISBN 978-

1-4614-0977-9. doi: 10.1007/978-1-4614-0977-9 9. URL http://dx.doi.org/10.1007/

978-1-4614-0977-9 9.

[32] Hamed Okhravi, James Riordan, and Kevin Carter. Research in Attacks, Intru-

sions and Defenses: 17th International Symposium, RAID 2014, Gothenburg, Swe-

den, September 17-19, 2014. Proceedings, chapter Quantitative Evaluation of Dy-

namic Platform Techniques as a Defensive Mechanism, pages 405–425. Springer

International Publishing, Cham, 2014. ISBN 978-3-319-11379-1. doi: 10.1007/

978-3-319-11379-1 20. URL http://dx.doi.org/10.1007/978-3-319-11379-1 20.

[33] Rui Zhuang, Scott A. DeLoach, and Xinming Ou. A model for analyzing the effect

of moving target defenses on enterprise networks. In Proceedings of the 9th Annual

Cyber and Information Security Research Conference, CISR ’14, pages 73–76, New

York, NY, USA, 2014. ACM. ISBN 978-1-4503-2812-8. doi: 10.1145/2602087.2602088.

URL http://doi.acm.org/10.1145/2602087.2602088.

[34] Benjamin D. Rodes, John C. Knight, and Kimberly S. Wasson. A security metric

based on security arguments. In Proceedings of the 5th International Workshop on

Emerging Trends in Software Metrics, WETSoM 2014, pages 66–72, New York, NY,

USA, 2014. ACM. ISBN 978-1-4503-2854-8. doi: 10.1145/2593868.2593880. URL

http://doi.acm.org/10.1145/2593868.2593880.

112

https://www.csiac.org/wp-content/uploads/2016/03/AFRL_Special_Final.pdf
http://www.argreenhouse.com/papers/narain/ADC-Live-Demo.pdf
http://www.argreenhouse.com/papers/narain/ADC-Live-Demo.pdf
http://dx.doi.org/10.1007/978-1-4614-0977-9_9
http://dx.doi.org/10.1007/978-1-4614-0977-9_9
http://dx.doi.org/10.1007/978-3-319-11379-1_20
http://doi.acm.org/10.1145/2602087.2602088
http://doi.acm.org/10.1145/2593868.2593880

[35] George Cybenko and Jeff Hughes. No free lunch in cyber security. In Proceedings of

the First ACM Workshop on Moving Target Defense, MTD ’14, pages 1–12, New York,

NY, USA, 2014. ACM. ISBN 978-1-4503-3150-0. doi: 10.1145/2663474.2663475. URL

http://doi.acm.org/10.1145/2663474.2663475.

[36] ServiceNow white paper – Managing the Cloud as an Incremental Step

Forward. http://www.techrepublic.com/resource-library/whitepapers/

managing-the-cloud-as-an-incremental-step-forward/, August 2013.

[37] Marco Balduzzi, Jonas Zaddach, Davide Balzarotti, Engin Kirda, and Sergio Loureiro.

A security analysis of amazon’s elastic compute cloud service. In Proceedings of the

27th Annual ACM Symposium on Applied Computing, SAC ’12, pages 1427–1434, New

York, NY, USA, 2012. ACM. ISBN 978-1-4503-0857-1. doi: 10.1145/2245276.2232005.

URL http://doi.acm.org/10.1145/2245276.2232005.

[38] Sven Bugiel, Stefan Nürnberger, Thomas Pöppelmann, Ahmad-Reza Sadeghi, and

Thomas Schneider. Amazonia: When elasticity snaps back. In Proceedings of the

18th ACM Conference on Computer and Communications Security, CCS ’11, pages

389–400, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0948-6. doi: 10.1145/

2046707.2046753. URL http://doi.acm.org/10.1145/2046707.2046753.

[39] Puppet Labs - What is Puppet? https://puppetlabs.com/puppet/what-is-puppet,

January 2014.

[40] VMware – Virtualization Solutions. https://www.vmware.com/, February 2016.

[41] Metal as a Service – MAAS. http://maas.io/, February 2015.

[42] Ansible – Automation for Everyone. https://www.ansible.com/, December 2015.

[43] Chef – Devops Delivered. https://www.chef.io/, May 2015.

[44] Ian Unruh, Alexandru G. Bardas, Rui Zhuang, Xinming Ou, and Scott A. DeLoach.

Compiling abstract specifications into concrete systems: Bringing order to the cloud.

113

http://doi.acm.org/10.1145/2663474.2663475
http://www.techrepublic.com/resource-library/whitepapers/managing-the-cloud-as-an-incremental-step-forward/
http://www.techrepublic.com/resource-library/whitepapers/managing-the-cloud-as-an-incremental-step-forward/
http://doi.acm.org/10.1145/2245276.2232005
http://doi.acm.org/10.1145/2046707.2046753
https://puppetlabs.com/puppet/what-is-puppet
https://www.vmware.com/
http://maas.io/
https://www.ansible.com/
https://www.chef.io/

In Proceedings of the 28th USENIX Conference on Large Installation System Adminis-

tration, LISA’14, pages 17–33, Berkeley, CA, USA, 2014. USENIX Association. ISBN

978-1-931971-17-1. URL http://dl.acm.org/citation.cfm?id=2717491.2717493.

[45] RightScale white paper – Quantifying the Benefits of the RightScale Cloud

Management Platform. http://www.rightscale.com/info center/white-papers/

RightScale-Quantifying-The-Benefits.pdf, August 2013.

[46] Amazon Web Services – OpsWorks . http://aws.amazon.com/opsworks/, April 2014.

[47] Ubuntu Juju – Juju. https://juju.ubuntu.com/, April 2015.

[48] Microsoft Azure – Azure Service Definition Schema (.csdef). http://msdn.microsoft.

com/en-us/library/windowsazure/ee758711.aspx, March 2014.

[49] Google Developers – Configuring with app.yaml. https://developers.google.com/

appengine/docs/python/config/appconfig, December 2013.

[50] Github – Maestro. https://github.com/toscanini/maestro, January 2014.

[51] Github – MaestroNG. https://github.com/signalfuse/maestro-ng, April 2014.

[52] Deis – What is Deis? http://deis.io/overview/, March 2014.

[53] Flynn – Say hello to Flynn. https://flynn.io/, April 2014.

[54] Docker – What is Docker? https://www.docker.com/what-docker, January 2014.

[55] Puppet Labs – External Node Classifiers. http://docs.puppetlabs.com/guides/

external nodes.html, January 2014.

[56] PuppetLabs docs – Hiera 1: Overview. http://docs.puppetlabs.com/hiera/1/, Febru-

ary 2014.

[57] Redis – Introduction to Redis. http://redis.io/topics/introduction, April 2015.

[58] SaltStack docs – SaltStack. https://docs.saltstack.com/en/latest/, April 2014.

114

http://dl.acm.org/citation.cfm?id=2717491.2717493
http://www.rightscale.com/info_center/white-papers/RightScale-Quantifying-The-Benefits.pdf
http://www.rightscale.com/info_center/white-papers/RightScale-Quantifying-The-Benefits.pdf
http://aws.amazon.com/opsworks/
https://juju.ubuntu.com/
http://msdn.microsoft.com/en-us/library/windowsazure/ee758711.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/ee758711.aspx
https://developers.google.com/appengine/docs/python/config/appconfig
https://developers.google.com/appengine/docs/python/config/appconfig
https://github.com/toscanini/maestro
https://github.com/signalfuse/maestro-ng
http://deis.io/overview/
https://flynn.io/
https://www.docker.com/what-docker
http://docs.puppetlabs.com/guides/external_nodes.html
http://docs.puppetlabs.com/guides/external_nodes.html
http://docs.puppetlabs.com/hiera/1/
http://redis.io/topics/introduction
https://docs.saltstack.com/en/latest/

[59] BCFG2 Website - What is Bcfg2? http://docs.bcfg2.org/, April 2014.

[60] CFEngine – What is CFEngine? https://cfengine.com/learn/what-is-cfengine/,

March 2015.

[61] Varnish Cache – About. https://www.varnish-cache.org/about, April 2015.

[62] Ubuntu. http://www.ubuntu.com/, March 2016.

[63] Nginx – nginx news. http://nginx.org/, April 2015.

[64] Fedora. https://getfedora.org/, March 2016.

[65] Clark C. Evans – YAML. http://yaml.org/, September 2013.

[66] Ruby – Ruby is. https://www.ruby-lang.org/en/, April 2014.

[67] RubyGems – Unicorn. https://rubygems.org/gems/unicorn, April 2015.

[68] MySQL – The world’s most popular open source database. https://www.mysql.com/,

September 2014.

[69] Github – Sidekiq. https://github.com/mperham/sidekiq, March 2015.

[70] Craig Dunn – Designing Puppet: Roles and Profiles. http://www.craigdunn.org/2012/

05/239/, October 2013.

[71] Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. The MIT

Press, 2012. ISBN 0262017156, 9780262017152.

[72] Alloy – a language & tool for relational models. http://alloy.mit.edu/, October 2015.

[73] Ruby docs – Hash. http://ruby-doc.org/core-2.2.0/Hash.html, April 2016.

[74] Python docs – Dictionaries. https://docs.python.org/2/tutorial/datastructures.html#

dictionaries, April 2016.

115

http://docs.bcfg2.org/
https://cfengine.com/learn/what-is-cfengine/
https://www.varnish-cache.org/about
http://www.ubuntu.com/
http://nginx.org/
https://getfedora.org/
http://yaml.org/
https://www.ruby-lang.org/en/
https://rubygems.org/gems/unicorn
https://www.mysql.com/
https://github.com/mperham/sidekiq
http://www.craigdunn.org/2012/05/239/
http://www.craigdunn.org/2012/05/239/
http://alloy.mit.edu/
http://ruby-doc.org/core-2.2.0/Hash.html
https://docs.python.org/2/tutorial/datastructures.html#dictionaries
https://docs.python.org/2/tutorial/datastructures.html#dictionaries

[75] Ruby docs – YAML. http://ruby-doc.org/stdlib-2.1.0/libdoc/yaml/rdoc/YAML.html,

February 2016.

[76] Roland Koebler – Template Engine. http://www.simple-is-better.org/template/,

March 2016.

[77] Kuwata-lab.com – Erubis. http://www.kuwata-lab.com/erubis/, February 2016.

[78] Puppet Labs – What is MCollective and what does it allow you to do? http://

puppetlabs.com/mcollective, January 2014.

[79] Sensu – What is Sensu? http://sensuapp.org/, April 2014.

[80] OpsView – Let’s make complex, simple. http://www.opsview.com/, April 2014.

[81] Fog – The Ruby cloud services library. http://fog.io/, January 2014.

[82] Roy T. Fielding. Architectural Styles and the Design of Network-based Software Archi-

tectures. PhD thesis, University of California, Irvine, 2000.

[83] CloudVelocity Software. One hybrid cloud software. Technical report, 2013.

[84] William Fellows – ‘Run any app on any cloud’ is CliQr’s bold claim. http://cdn1.

hubspot.com/hub/194983/Run any app on any cloud.pdf, January 2013.

[85] Amazon Web Services – AWS CloudFormation. https://aws.amazon.com/

cloudformation/, April 2015.

[86] OpenStack Wiki – Heat. https://wiki.openstack.org/wiki/Heat, April 2015.

[87] Terraform – Introduction to Terraform. http://www.terraform.io/intro/index.html,

September 2014.

[88] Github – Heat Wordpress Template. https://github.com/openstack/heat-templates/

blob/master/cfn/F17/WordPress With LB.template, September 2015.

116

http://ruby-doc.org/stdlib-2.1.0/libdoc/yaml/rdoc/YAML.html
http://www.simple-is-better.org/template/
http://www.kuwata-lab.com/erubis/
http://puppetlabs.com/mcollective
http://puppetlabs.com/mcollective
http://sensuapp.org/
http://www.opsview.com/
http://fog.io/
http://cdn1.hubspot.com/hub/194983/Run_any_app_on_any_cloud.pdf
http://cdn1.hubspot.com/hub/194983/Run_any_app_on_any_cloud.pdf
https://aws.amazon.com/cloudformation/
https://aws.amazon.com/cloudformation/
https://wiki.openstack.org/wiki/Heat
http://www.terraform.io/intro/index.html
https://github.com/openstack/heat-templates/blob/master/cfn/F17/WordPress_With_LB.template
https://github.com/openstack/heat-templates/blob/master/cfn/F17/WordPress_With_LB.template

[89] Github – Heat MySQL Template. https://github.com/openstack/heat-templates/

blob/master/cfn/F17/MySQL Single Instance.template, September 2015.

[90] Terraform – Terraform vs. CloudFormation, Heat, etc. http://www.terraform.io/intro/

vs/cloudformation.html, September 2014.

[91] Steven J. Vaughan-Nichols – Canonical Juju DevOps Tool

Coming to CentOS and Windows. http://www.zdnet.com/

canonical-juju-devops-tool-coming-to-centos-and-windows-7000029418/, October

2014.

[92] Constantine Sapuntzakis, David Brumley, Ramesh Chandra, Nickolai Zeldovich, Jim

Chow, Monica S. Lam, and Mendel Rosenblum. Virtual appliances for deploying and

maintaining software. In Proceedings of the 17th USENIX Conference on System Ad-

ministration, LISA ’03, pages 181–194, Berkeley, CA, USA, 2003. USENIX Association.

URL http://dl.acm.org/citation.cfm?id=1051937.1051965.

[93] Kyrre Begnum. Managing large networks of virtual machines. In Proceedings of the

20th Conference on Large Installation System Administration, LISA ’06, pages 16–16,

Berkeley, CA, USA, 2006. USENIX Association. URL http://dl.acm.org/citation.cfm?

id=1267793.1267809.

[94] Jeannie Albrecht, Christopher Tuttle, Ryan Braud, Darren Dao, Nikolay Topilski,

Alex C. Snoeren, and Amin Vahdat. Distributed application configuration, man-

agement, and visualization with plush. ACM Trans. Internet Technol., 11(2):6:1–

6:41, December 2011. ISSN 1533-5399. doi: 10.1145/2049656.2049658. URL http:

//doi.acm.org/10.1145/2049656.2049658.

[95] Christopher Monsanto, Joshua Reich, Nate Foster, Jennifer Rexford, and David

Walker. Composing software-defined networks. In Proceedings of the 10th USENIX

Conference on Networked Systems Design and Implementation, nsdi’13, pages 1–14,

117

https://github.com/openstack/heat-templates/blob/master/cfn/F17/MySQL_Single_Instance.template
https://github.com/openstack/heat-templates/blob/master/cfn/F17/MySQL_Single_Instance.template
http://www.terraform.io/intro/vs/cloudformation.html
http://www.terraform.io/intro/vs/cloudformation.html
http://www.zdnet.com/canonical-juju-devops-tool-coming-to-centos-and-windows-7000029418/
http://www.zdnet.com/canonical-juju-devops-tool-coming-to-centos-and-windows-7000029418/
http://dl.acm.org/citation.cfm?id=1051937.1051965
http://dl.acm.org/citation.cfm?id=1267793.1267809
http://dl.acm.org/citation.cfm?id=1267793.1267809
http://doi.acm.org/10.1145/2049656.2049658
http://doi.acm.org/10.1145/2049656.2049658

Berkeley, CA, USA, 2013. USENIX Association. URL http://dl.acm.org/citation.cfm?

id=2482626.2482629.

[96] Hao Qian and Daniel Andresen. Reducing mobile device energy consumption with com-

putation offloading. In Software Engineering, Artificial Intelligence, Networking and

Parallel/Distributed Computing (SNPD), 2015 16th IEEE/ACIS International Con-

ference on, pages 1–8, June 2015. doi: 10.1109/SNPD.2015.7176219.

[97] Security Week – Prioritizing Patch Management Critical to Security. http://www.

securityweek.com/prioritizing-patch-management-critical-security, March 2016.

[98] Netflix – Chaos Monkey Released Into The Wild. http://techblog.netflix.com/2012/

07/chaos-monkey-released-into-wild.html, January 2014.

[99] OpenStack Docs – Security Groups. http://docs.openstack.org/openstack-ops/

content/security groups.html, February 2014.

[100] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. Hey, you,

get off of my cloud: Exploring information leakage in third-party compute clouds. In

Proceedings of the 16th ACM Conference on Computer and Communications Security,

CCS ’09, pages 199–212, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-894-0.

doi: 10.1145/1653662.1653687. URL http://doi.acm.org/10.1145/1653662.1653687.

[101] David Gullasch, Endre Bangerter, and Stephan Krenn. Cache games – bringing access-

based cache attacks on aes to practice. In Proceedings of the 2011 IEEE Symposium

on Security and Privacy, SP ’11, pages 490–505, Washington, DC, USA, 2011. IEEE

Computer Society. ISBN 978-0-7695-4402-1. doi: 10.1109/SP.2011.22. URL http:

//dx.doi.org/10.1109/SP.2011.22.

[102] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. Cross-vm side

channels and their use to extract private keys. In Proceedings of the 2012 ACM Confer-

ence on Computer and Communications Security, CCS ’12, pages 305–316, New York,

118

http://dl.acm.org/citation.cfm?id=2482626.2482629
http://dl.acm.org/citation.cfm?id=2482626.2482629
http://www.securityweek.com/prioritizing-patch-management-critical-security
http://www.securityweek.com/prioritizing-patch-management-critical-security
http://techblog.netflix.com/2012/07/chaos-monkey-released-into-wild.html
http://techblog.netflix.com/2012/07/chaos-monkey-released-into-wild.html
http://docs.openstack.org/openstack-ops/content/security_groups.html
http://docs.openstack.org/openstack-ops/content/security_groups.html
http://doi.acm.org/10.1145/1653662.1653687
http://dx.doi.org/10.1109/SP.2011.22
http://dx.doi.org/10.1109/SP.2011.22

NY, USA, 2012. ACM. ISBN 978-1-4503-1651-4. doi: 10.1145/2382196.2382230. URL

http://doi.acm.org/10.1145/2382196.2382230.

[103] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. Cross-tenant

side-channel attacks in paas clouds. In Proceedings of the 2014 ACM SIGSAC Con-

ference on Computer and Communications Security, CCS ’14, pages 990–1003, New

York, NY, USA, 2014. ACM. ISBN 978-1-4503-2957-6. doi: 10.1145/2660267.2660356.

URL http://doi.acm.org/10.1145/2660267.2660356.

[104] Aspera white paper – Aspera Direct-to-Cloud Storage. http://asperasoft.com/

fileadmin/media/Asperasoft.com/Resources/White Papers/AsperaWP Direct to

cloud.pdf, March 2015.

[105] OpenStack Marketplace – OpenStack Drivers. https://www.openstack.org/

marketplace/drivers/, July 2015.

[106] OpenStack Wiki – Cinder. https://wiki.openstack.org/wiki/Cinder, May 2015.

[107] Mirantis – Mirantis OpenStack/Fuel. http://software.mirantis.com/, April 2015.

[108] http-perf – Node HTTP Server Performance Tool accessed. https://www.npmjs.com/

package/http-perf, April 2015.

[109] Wikibench – The realistic Web hosting benchmark. http://www.wikibench.eu/,

November 2015.

[110] Github – HiBench (version 2.2). https://github.com/intel-hadoop/HiBench/tree/

MRv2, April 2015.

[111] Shengsheng Huang, Jie Huang, Jinquan Dai, Tao Xie, and Bo Huang. The hibench

benchmark suite: Characterization of the mapreduce-based data analysis. In Data En-

gineering Workshops (ICDEW), 2010 IEEE 26th International Conference on, pages

41–51, March 2010. doi: 10.1109/ICDEW.2010.5452747.

[112] Drupal – About. https://www.drupal.org/, April 2015.

119

http://doi.acm.org/10.1145/2382196.2382230
http://doi.acm.org/10.1145/2660267.2660356
http://asperasoft.com/fileadmin/media/Asperasoft.com/Resources/White_Papers/AsperaWP_Direct_to_cloud.pdf
http://asperasoft.com/fileadmin/media/Asperasoft.com/Resources/White_Papers/AsperaWP_Direct_to_cloud.pdf
http://asperasoft.com/fileadmin/media/Asperasoft.com/Resources/White_Papers/AsperaWP_Direct_to_cloud.pdf
https://www.openstack.org/marketplace/drivers/
https://www.openstack.org/marketplace/drivers/
https://wiki.openstack.org/wiki/Cinder
http://software.mirantis.com/
https://www.npmjs.com/package/http-perf
https://www.npmjs.com/package/http-perf
http://www.wikibench.eu/
https://github.com/intel-hadoop/HiBench/tree/MRv2
https://github.com/intel-hadoop/HiBench/tree/MRv2
https://www.drupal.org/

[113] Magento – Magento Community Edition. https://magento.com/products/

community-edition, November 2015.

[114] Magento – Installing Sample Data for Magento Community Edition (CE). http:

//devdocs.magento.com/guides/m1x/ce18-ee113/ht magento-ce-sample.data.html,

November 2015.

[115] Alexa – How popular is amazon.com? http://www.alexa.com/siteinfo/amazon.com,

February 2016.

[116] Mediawiki – Welcome to MediaWiki.org. https://www.mediawiki.org/wiki/

MediaWiki, November 2015.

[117] Soo-Jin Moon, Vyas Sekar, and Michael K. Reiter. Nomad: Mitigating arbitrary

cloud side channels via provider-assisted migration. In Proceedings of the 22Nd

ACM SIGSAC Conference on Computer and Communications Security, CCS ’15,

pages 1595–1606, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3832-5. doi:

10.1145/2810103.2813706. URL http://doi.acm.org/10.1145/2810103.2813706.

[118] Archive.org – Wikimedia database dump of the English Wikipedia on January 03,

2008. https://archive.org/details/enwiki-20080103, November 2015.

[119] Cloudera – Local, On Premise, or Cloud-based Apache Hadoop Management. https:

//www.cloudera.com/downloads.html, April 2015.

[120] Hadoop – HDFS Architecture Guide. https://hadoop.apache.org/docs/r1.2.1/hdfs

design.html, April 2015.

[121] Hadoop – Apache Hadoop YARN. https://hadoop.apache.org/docs/current/

hadoop-yarn/hadoop-yarn-site/YARN.html, April 2015.

[122] Jeff Hughes and George Cybenko. Quantitative metrics and risk assessment: The three

tenets model of cybersecurity. In Technology Innovation Management Review, 2013.

URL http://timreview.ca/article/712.

120

https://magento.com/products/community-edition
https://magento.com/products/community-edition
http://devdocs.magento.com/guides/m1x/ce18-ee113/ht_magento-ce-sample.data.html
http://devdocs.magento.com/guides/m1x/ce18-ee113/ht_magento-ce-sample.data.html
http://www.alexa.com/siteinfo/amazon.com
https://www.mediawiki.org/wiki/MediaWiki
https://www.mediawiki.org/wiki/MediaWiki
http://doi.acm.org/10.1145/2810103.2813706
https://archive.org/details/enwiki-20080103
https://www.cloudera.com/downloads.html
https://www.cloudera.com/downloads.html
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
http://timreview.ca/article/712

[123] Stanford Crypto – The Chinese Remainder Theory. http://stanford.io/20kH3JW,

January 2016.

[124] Mehmet Sinan İnci, Berk Gülmezoğlu, Gorka Irazoqui, Thomas Eisenbarth, and Berk

Sunar. Seriously, get off my cloud! Cross-VM RSA Key Recovery in a Public Cloud.

In IACR Cryptology ePrint Archive, Sept. 2015.

[125] Yunjing Xu, Michael Bailey, Farnam Jahanian, Kaustubh Joshi, Matti Hiltunen, and

Richard Schlichting. An exploration of l2 cache covert channels in virtualized en-

vironments. In Proceedings of the 3rd ACM Workshop on Cloud Computing Secu-

rity Workshop, CCSW ’11, pages 29–40, New York, NY, USA, 2011. ACM. ISBN

978-1-4503-1004-8. doi: 10.1145/2046660.2046670. URL http://doi.acm.org/10.1145/

2046660.2046670.

[126] Yuval Yarom and Katrina Falkner. FLUSH+RELOAD: A High Resolution, Low Noise,

L3 Cache Side-channel Attack. In USENIX Security Symposium, SEC’14, pages 719–

732, Berkeley, CA, USA, 2014. USENIX Association. ISBN 978-1-931971-15-7. URL

http://dl.acm.org/citation.cfm?id=2671225.2671271.

[127] Adam Bates, Benjamin Mood, Joe Pletcher, Hannah Pruse, Masoud Valafar, and

Kevin Butler. Detecting co-residency with active traffic analysis techniques. In Pro-

ceedings of the 2012 ACM Workshop on Cloud Computing Security Workshop, CCSW

’12, pages 1–12, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1665-1. doi:

10.1145/2381913.2381915. URL http://doi.acm.org/10.1145/2381913.2381915.

[128] Venkatanathan Varadarajan, Yinqian Zhang, Thomas Ristenpart, and Michael Swift.

A placement vulnerability study in multi-tenant public clouds. In Proceedings of the

24th USENIX Conference on Security Symposium, SEC’15, pages 913–928, Berkeley,

CA, USA, 2015. USENIX Association. ISBN 978-1-931971-232. URL http://dl.acm.

org/citation.cfm?id=2831143.2831201.

[129] Zhang Xu, Haining Wang, and Zhenyu Wu. A measurement study on co-residence

121

http://stanford.io/20kH3JW
http://doi.acm.org/10.1145/2046660.2046670
http://doi.acm.org/10.1145/2046660.2046670
http://dl.acm.org/citation.cfm?id=2671225.2671271
http://doi.acm.org/10.1145/2381913.2381915
http://dl.acm.org/citation.cfm?id=2831143.2831201
http://dl.acm.org/citation.cfm?id=2831143.2831201

threat inside the cloud. In Proceedings of the 24th USENIX Conference on Security

Symposium, SEC’15, pages 929–944, Berkeley, CA, USA, 2015. USENIX Association.

ISBN 978-1-931971-232. URL http://dl.acm.org/citation.cfm?id=2831143.2831202.

[130] Yinqian Zhang, Ari Juels, Alina Oprea, and Michael K. Reiter. Homealone: Co-

residency detection in the cloud via side-channel analysis. In Proceedings of the 2011

IEEE Symposium on Security and Privacy, SP ’11, pages 313–328, Washington, DC,

USA, 2011. IEEE Computer Society. ISBN 978-0-7695-4402-1. doi: 10.1109/SP.2011.

31. URL http://dx.doi.org/10.1109/SP.2011.31.

[131] Zhenyu Wu, Zhang Xu, and Haining Wang. Whispers in the hyper-space: High-speed

covert channel attacks in the cloud. In Proceedings of the 21st USENIX Conference

on Security Symposium, Security’12, pages 9–9, Berkeley, CA, USA, 2012. USENIX

Association. URL http://dl.acm.org/citation.cfm?id=2362793.2362802.

[132] Amazon Web Services – Amazon Virtual Private Cloud (VPC). https://aws.amazon.

com/vpc/, October 2015.

[133] Amazon Web Services – Copying an Amazon EBS Snapshot. https://docs.aws.amazon.

com/AWSEC2/latest/UserGuide/ebs-copy-snapshot.html, July 2016.

122

http://dl.acm.org/citation.cfm?id=2831143.2831202
http://dx.doi.org/10.1109/SP.2011.31
http://dl.acm.org/citation.cfm?id=2362793.2362802
https://aws.amazon.com/vpc/
https://aws.amazon.com/vpc/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-copy-snapshot.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-copy-snapshot.html

Appendix A

Additional Proofs

X is the target node while {Y1, ..., Yl−1} are the stepping-stone nodes on the way to X.

Assuming A,B ∈ {X, Y1, ..., Yl−1} AND A 6= B then

tmin = min(start timeTr(A), start timeTr(B))

tA = start timeTr(A) − tmin

tB = start timeTr(B) − tmin
Tr(A) and Tr(B) are NOT pairwise coprime (1)

tA ≡ tB mod gcd(Tr(A), T (B)) is FALSE (2)

(1)⇒ gcd(Tr(A), T (B)) = z, z 6= 1

In other words

Tr(A) = z × s1, s1 is an Integer

Tr(B) = z × s2, s1 is an Integer

(2)⇒ tA 6= tB

123

If m would exist then

Assuming Tr(A) starts before Tr(B), then

tmin = start timeTr(A)

tA = 0

tB = start timeTr(B) − start timeTr(A)

Furthermore 
m = tB + q × Tr(B) ,q is an Integer

m = p× Tr(A) ,p is an Integer

⇒ p× Tr(A) = tB + q × Tr(B)

⇔ tB = q × Tr(B)− p× Tr(A)

⇔ tB = q × z × s2 − p× z × s1

⇔ tB = z × (q × s2 − p× s1)

⇒ tB is divisible by z

⇒ tB is divisible by gcd(Tr(A), Tr(B))

⇒ 0 ≡ tB mod gcd(Tr(A), Tr(B)) is TRUE

⇒ tA ≡ tB mod gcd(Tr(A), Tr(B)) is TRUE

which CONDRADICTS the initial assumption (2)

If Tr(B) starts before Tr(A) then the proof is symmetric to the one presented above.

Assuming A,B,C,D ∈ {X, Y1, ..., Yl−1}
Tr(A), Tr(B), Tr(C), Tr(D)- NOT pairwise coprime (3)

tA ≡ tB mod gcd(Tr(A), T (B)) is FALSE (4)

tC ≡ tD mod gcd(Tr(C), T (D)) is TRUE (5)

124

If m would exist then based on the proof above:
tA ≡ tB mod gcd(Tr(A), T (B)) is TRUE

tC ≡ tD mod gcd(Tr(C), T (D)) is TRUE

Contradicts the initial assumption (4), therefore m does not exist.

125

Appendix B

OpenStack Filter Scheduler

The latest versions of Openstack use the Filter Scheduler,1 which supports filtering and

weighting to enable informed decisions on where a new instance should be created. Depend-

ing on the employed filters and the weighting approach, the schedulers’ complexity ranges

from simple (basic) to very complex. Figure B.1 illustrates a sample decision process when

using the Filter Scheduler.

Filters

RetryFilter

Availability
ZoneFilter

RamFilter

CoreFilter

 Host 5

 Host 2

 Host 3

Weighting

RAM
Weigher

 Host 1

 Host 2

 Host 3

 Host 4

 Host 5

 Host 1

 Host 2

 Host 3

 Host 4

 Host 5

Figure B.1: OpenStack sample Filter Scheduler1

The scheduler uses various filters to find the potential destination hosts and then orders

these hosts based on a weighting scheme. For example, the RamFilter only passes hosts that

have sufficient RAM for the new instance. On the other hand, the RAMWeigher is used to

126

sort the valid hosts based on their available RAM.

In our deployment, we used Openstack (Icehouse) with the default scheduler options.

/etc/nova/nova.conf:

scheduler default filters=RetryFilter,

AvailabilityZoneFilter, RamFilter,

ComputeFilter,ComputeCapabilitiesFilter,

ImagePropertiesFilter,ServerGroupAnti AffinityFilter,ServerGroupAffinityFilter

ram weight multiplier=1.0

127

Appendix C

Ruby ERB/Erubis Template for

Generating an Alloy Model

The Ruby ERB/Erubis template pictured below is used to generate the Alloy model (als file)

that is passed to the Alloy Analyzer. The scenario specific information from the three inputs

is passed to the template through hash table-like Ruby structures (e.g., roles, interfaces

role implementations).

/*

* Constraint Model - Compiling Abstract Specifications into Concrete Systems

*

* Inputs: ARML specification, list of available role implementations

* Objective: Trying to find a compatible combination of role implementations

* that will fulfill the roles defined in the ARML specification.

*

* @author Alex Bardas

*

*/

module constraintModel/dependent_dependee_check

//Roles from the ARML specification

abstract sig Role {

interface: one Interface,

imported_roles: set Role

}

128

<% for role in roles -%>

one sig <%= role.keys[0].capitalize %> extends Role {}

<% end -%>

//Interfaces

abstract sig Interface {}

<% for interface in interfaces -%>

one sig <%= interface.capitalize %> extends Interface {}

<% end -%>

//Role Implementations from the list of available implementations

abstract sig RoleImpl {

interface: some Interface,

imported_role_impls: set ImportedRi

}

sig ImportedRi {

interface: one Interface,

ri: some RoleImpl,

imported_ris: interface one -> some ri

}

<% for ri in role_implementations -%>

one sig <%= ri.keys[0].capitalize %> extends RoleImpl {}

<% end -%>

//Populating the roles and the role_implementations sets with the information

//from the ARML spec and the available role implementations list

fact {

//parameters’ order: current_role, interface

<% role_names = Array.new -%>

<% for role in roles -%>

populateRoleInterface [<%= role.keys[0].capitalize %>,

<%= (role[role.keys[0]]["interface"]).capitalize%>]

<% role_names.push(role.keys[0]) -%>

<% end -%>

//Populating role imports

//parameters’ order: current_role, role_1, role_2, ..., role_n

<% for role in roles -%>

<% output = "" -%>

<% current_imports = role[role.keys[0]]["imported_roles"] -%>

129

<% for role_name in role_names -%>

<% if current_imports.include?(role_name) -%>

<% output = output + ", #{role_name.capitalize}" -%>

<% else -%>

<% output = output + ", none" -%>

<% end -%>

<% end %>

populateRoleImports [<%= role.keys[0].capitalize %><%= output %>]

<% end -%>

//Building "lattices" using the available role impls (interface name

//is the "supremum")

//parameters’ order: current_role_impl, interface

<% impl_names = Array.new -%>

<% for ri in role_implementations -%>

populateRiInterface [<%= ri.keys[0].capitalize %>,

<%= (ri[ri.keys[0]]["interface"]).capitalize -%>]

<% impl_names.push(ri.keys[0]) -%>

<% end -%>

//Populating Role impl imports

//parameters’ order: current_ri, interface,

// role_impl_1, role_impl_2, ..., role_impl_n

<% for ri in role_implementations -%>

<% current_role_impls = ri[ri.keys[0]]["imported_role_impls"] -%>

<% if current_role_impls.length != 0 -%>

<% for current_role_impl in current_role_impls -%>

<% output = "" -%>

<% current_ri = current_role_impl[current_role_impl.keys[0]] -%>

<% for impl_name in impl_names -%>

<% if current_ri.include?(impl_name) -%>

<% output = output + ", #{impl_name.capitalize}" -%>

<% else -%>

<% output = output + ", none" -%>

<% end -%>

<% end -%>

populateRiImports [<%= ri.keys[0].capitalize %>,

<%= (current_role_impl.keys[0]).capitalize%><%= output %>]

<% end -%>

finishRiImports [<%= ri.keys[0].capitalize %>,

<%= (ri[ri.keys[0]]["imported_role_impls"]).length %>]

<% else %>

<%= ri.keys[0].capitalize %>.imported_role_impls = none

<% end -%>

<% end -%> }

130

pred finishRiImports (ri: RoleImpl, no_of_imported_ri: Int) {

#ri.imported_role_impls = no_of_imported_ri

}

pred populateRoleInterface (current_role: Role, interface1: Interface){

current_role.interface = interface1

}

pred populateRiInterface (ri_current: RoleImpl, interface1: Interface){

ri_current.interface =interface1

}

<% impl_param = "" -%>

<% impl_add = "" -%>

<% impl_substract = "" -%>

<% i = 1 -%>

<% while i <= impl_names.length -%>

<% impl_param = impl_param + ", ri#{i}: RoleImpl" -%>

<% if impl_add != "" -%>

<% impl_add = impl_add + " + ri#{i}" -%>

<% else -%>

<% impl_add = impl_add + "ri#{i}" -%>

<% end -%>

<% impl_substract = impl_substract + " - ri#{i}" -%>

<% i = i + 1 -%>

<% end -%>

pred populateRiImports (ri_current: RoleImpl,

imp_interface: Interface<%= impl_param %>){

let ris = <%= impl_add %> |

ri_current.imported_role_impls.imported_ris =

ri_current.imported_role_impls.imported_ris +

imp_interface -> ris

let not_imported = RoleImpl<%= impl_substract %> |

ri_current.imported_role_impls.imported_ris[imp_interface] &

not_imported =

none

}

<% role_param = "" -%>

<% role_add = "" -%>

<% role_substract = "" -%>

<% i = 1 -%>

131

<% while i <= role_names.length -%>

<% role_param = role_param + ", role#{i}: Role" -%>

<% if role_add != "" -%>

<% role_add = role_add + " + role#{i}" -%>

<% else -%>

<% role_add = role_add + "role#{i}" -%>

<% end -%>

<% role_substract = role_substract + " - role#{i}" -%>

<% i = i + 1 -%>

<% end -%>

pred populateRoleImports (current_role: Role, <%= role_param %>) {

let all_imported_roles = <%= role_add %> |

current_role.imported_roles = current_role.imported_roles +

all_imported_roles

let not_imported_roles = Role<%= role_substract %> |

current_role.imported_roles & not_imported_roles = none

}

//SoftwareStack stores the solution

sig SoftwareStack {

imp: Role -> RoleImpl

}

<% role_param = "" -%>

<% impl_param = "" -%>

<% i = 1 -%>

<% for role_name in role_names -%>

<% role_param = role_param + ", role#{i}: #{role_name.capitalize}" -%>

<% impl_param = impl_param + ", ri#{i}: RoleImpl" -%>

<% i = i + 1 -%>

<% end -%>

pred findImpl (s: SoftwareStack<%= role_param %><%= impl_param %>) {

<% i = 1 -%>

<% while i <= role_names.length -%>

<%= "role#{i}" %>.interface = <%= "ri#{i}" %>.interface

#<%= "role#{i}" %>.imported_roles = #<%= "ri#{i}" %>.imported_role_impls

s.imp[<%= "role#{i}" %>.imported_roles] in

<%= "ri#{i}" %>.imported_role_impls.ri

s.imp[<%= "role#{i}" %>] = <%= "ri#{i}" %>

<% i = i + 1 -%>

<% end -%> }

132

<% imp_ris = Array.new -%>

<% for ris in role_implementations -%>

<% for ri in ris[ris.keys[0]]["imported_role_impls"] -%>

<% imp_ris << ri -%>

<% end -%>

<% end -%>

run findImpl for 1 SoftwareStack, <%= imp_ris.uniq.length %> ImportedRi

133

	Title Page
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Dedication
	Introduction
	Thesis Statement
	Research Approach
	Contributions
	Related Work

	Compiling Abstract Specifications into Running Systems
	Limitations of Available Automation and Abstraction Technologies
	Enabling Technologies
	ANCOR Framework
	The Abstraction
	ARML language
	Role Implementation

	Constraint Model
	Inputs
	Roles-Interfaces Relationship
	Role Implementations-Interfaces Relationship
	Assigning Role Implementations to Roles

	ANCOR Workflow
	Prototype Implementation
	Background: Related Projects
	Discussion
	Summary

	A Moving Target Defense Platform for Whole IT Systems
	ANCOR-MTD Platform
	Instance Replacement
	Threat Model
	In-scope Threats
	Out-of-scope Threats

	Discussion - MTD System versus Threats
	Summary

	Feasibility and Security Analysis
	Feasibility Analysis
	Blogging Website
	eCommerce Deployments
	MediaWiki with Wikipedia Database Dumps
	Hadoop Scenario

	Security Analysis
	Adaptation Points Placement
	Attack Windows Example
	Goals versus Costs
	Configuration Guidelines
	Attack Attempts

	Discussion
	Summary

	Conclusions and Future Work
	Bibliography
	Additional Proofs
	OpenStack Filter Scheduler
	Ruby ERB/Erubis Template for Generating an Alloy Model

