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Summary: Assume that D C R? is a bounded domain, diffeomorphic to a disc, star-shaped, with
a C™* boundary C, A > 0, which can be represented in polar coordinates as 7 = f(¢), where
f > 01is a smooth 27 —periodic function. Let ¢4y, := Y4n (@) := e f7(¢).

Theorem. Assume that

Yinf2(@)dp = n=1,2,...

0
Then f = const.

1 Formulation of the result

Assume that D C R? is a bounded domain, diffeomorphic to a disc, star-shaped, with a
obA boundary C, A > 0, which can be represented in polar coordinates as r = f(¢),
where f > 0 is a smooth 27 —periodic function. Let .1, 1= 11, (¢) := eT™® f7(¢).

Theorem 1.1 Assume that

27
; YinfH(P)dep=0 n=12... (1.1)
Then f = const.

Remark 1.2 A similar result is true for D C R™, m > 2. Its proof is essentially the
same.

Remark 1.3 The author raised the question, answered in Theorem 1.1, while thinking
about the Pompeiu problem, see Chapter 11 in [1]. This question is of interest regard-
less of its relation to the Pompeiu problem since it gives an unusual result concerning
completeness of a set of functions.

In Section 2 a proof is given.

AMS 2010 subject classification: 42C30
Key words and phrases: Completeness of a set of functions
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2 Proof

Assumption (1.1) implies that
/hndx:O n=12..., 2.1
D

where h,, := r|™le*¥"¢ are harmonic functions regular at the origin, 2 € R?, z = (r, ¢),

where (r, ¢) are polar coordinates. To see that (1.1) is equivalent to (2.1), write the left-

hand side of (2.1) in polar coordinates, integrate over 7 from 0 to f(¢), and get (1.1).
Let y € R2, Bg be a ball (disc), centered at the origin and containing D inside, Bj,

be its complement in R?, and G(x,y) = % In \ziyl be the fundamental solution of the

Laplace equation in R?. Let
ri=|z|, r =yl x-y=rr cosf.
Then, for r > 7/, one has

L o v g ’
2nG(x,y) = — lnr+§ In 1—76 +1n 1—?6 , r>r.

(2.2)

Expanding In(1 — %/eiw) in Taylor series, which is possible since TT/ < 1, one gets
o I +ing
In{l——e")=- —_— >7r' by = (r)e™. 2.3
n( Te) ;nrnﬂ e ()" @3)

We conclude from the assumption (2.1) and from (2.2)—(2.3) that
1
/ G(z,y)dy = ——|D|lnr, r> R, 2.4)
D 27T

where | D| denotes area of D.
Using the method from [2] (see also [3]) we derive from (2.4) that D is a disc.
It follows from (2.4) that the harmonic in D’ = R? \ D function

1
u(z) = / G(z,y)dy = ——|D|Inr, r > R, (2.5)
D 2m

solves the equation
Au(z) = —n|D|, (2.6)

where 1) is the characteristic function of D, thatis, = 1in D,andnp = 0in D’. Let Cr
be the boundary of Br. A harmonic in By function h satisfies the conditions

/ hds =0, / hds = 2mh(0). Q2.7)
CR CR

It follows from (2.5) that the functions u(x) and ux (z) are constant on Cp, since the
normal N on Cfp, is directed along the radius. Multiply (2.6) by an arbitrary regular at the
origin harmonic function h = h,,, integrate over a disc Bg, and use (2.7) to get

/ hdx = / (uhy —unh)ds = ch(0), ¢ = const. (2.8)
D Cr
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If h is harmonic in Bg, then so is h(gx), where g is a rotation by an arbitrary angle «
around z-axis, the axis perpendicular to D. Since h(g0) = h(0), one can replace h(zx)
by h(gx) in (2.8), differentiate with respect to o and then set v = 0. This yields

/ Vh(z) - [es, z]dx =0, 2.9
D

where e is a unit vector along z-axis, - stands for the scalar product, [es, x] is the vector
product in R3, and % is an arbitrary harmonic function in Bp, regular at the origin. One
has

Vh(x) ’ [6371‘} =V (h[63ax])7 (2.10)

because V - [e3, 2] = 0. Thus, integrating by parts in (2.9), one gets
/ (—N1$2+N281)hd8 = 0, (211)
c

where IV;, j = 1,2, are the components of the outer unit normal N to C' It is proved in
[2] that the set of restrictions of all harmonic functions in B, regular at the origin, onto
a closed curve C' C Bpg, diffeomorphic to a circle, is dense in L? (C). Therefore, (2.11)
implies
—Ni1s9 + Nos1 =0 Vs e C. (2.12)

Let us derive from equation (2.12) that C'is a circle. Geometrically equation (2.12) means
that the radius-vector r := sje; + sseq of the boundary C' is parallel to the normal N
to C, namely, [r, N] = 0. The unit tangential vector to C' is t = dr/ds, where s is the
arclength of C, and the normal N is directed along dt/ds.

Since the normal N is orthogonal to t, and N is parallel to r according to (2.12), it
follows that t - r = 0. Thus,

dr/ds-r =0 Vs € C. (2.13)
Consequently,
r-r = const Vs e C. (2.14)
Therefore, C is a circle, and D is a disc.
Theorem 1.1 is proved. O
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