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A problem in analysis2

A. G. Ramm3

Received: Nov. 17, 20114

Summary: Assume that D ⊂ R2 is a bounded domain, diffeomorphic to a disc, star-shaped, with5

a C1,λ boundary C, λ > 0, which can be represented in polar coordinates as r = f(ϕ), where6

f > 0 is a smooth 2π−periodic function. Let ψ±n := ψ±n(ϕ) := e±inϕfn(ϕ).7

Theorem. Assume that8 ∫ 2π

0

ψ±nf
2(ϕ)dϕ = 0 n = 1, 2, . . .9

Then f = const.10

1 Formulation of the result11

Assume that D ⊂ R2 is a bounded domain, diffeomorphic to a disc, star-shaped, with a12

C1,λ boundary C, λ > 0, which can be represented in polar coordinates as r = f(ϕ),13

where f > 0 is a smooth 2π−periodic function. Let ψ±n := ψ±n(ϕ) := e±inϕfn(ϕ).14

Theorem 1.1 Assume that15 ∫ 2π

0

ψ±nf
2(ϕ)dϕ = 0 n = 1, 2, . . . (1.1)16

Then f = const.17

Remark 1.2 A similar result is true for D ⊂ Rm, m > 2. Its proof is essentially the18

same.19

Remark 1.3 The author raised the question, answered in Theorem 1.1, while thinking20

about the Pompeiu problem, see Chapter 11 in [1]. This question is of interest regard-21

less of its relation to the Pompeiu problem since it gives an unusual result concerning22

completeness of a set of functions.23

In Section 2 a proof is given.24
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2 Proof25

Assumption (1.1) implies that26 ∫
D

hndx = 0 n = 1, 2, . . . , (2.1)27

where hn := r|n|e±inϕ are harmonic functions regular at the origin, x ∈ R2, x = (r, ϕ),28

where (r, ϕ) are polar coordinates. To see that (1.1) is equivalent to (2.1), write the left-29

hand side of (2.1) in polar coordinates, integrate over r from 0 to f(ϕ), and get (1.1).30

Let y ∈ R2, BR be a ball (disc), centered at the origin and containing D inside, B′
R31

be its complement in R2, and G(x, y) = 1
2π ln 1

|x−y| be the fundamental solution of the32

Laplace equation in R2. Let33

r := |x|, r′ := |y|, x · y = rr′ cos θ.34

Then, for r > r′, one has35

2πG(x, y) = −
[
ln r +

1

2

(
ln

(
1− r′

r
eiθ

)
+ ln

(
1− r′

r
e−iθ

))]
, r > r′.

(2.2)36

Expanding ln(1− r′

r e
±iθ) in Taylor series, which is possible since r′

r < 1, one gets37

ln

(
1− r′

r
eiθ

)
= −

∞∑
n=1

hn
nrn+1

, r > r′, hn = (r′)ne±inθ. (2.3)38

We conclude from the assumption (2.1) and from (2.2)–(2.3) that39 ∫
D

G(x, y)dy = − 1

2π
|D| ln r, r > R, (2.4)40

where |D| denotes area of D.41

Using the method from [2] (see also [3]) we derive from (2.4) that D is a disc.42

It follows from (2.4) that the harmonic in D′ = R2 \D function43

u(x) :=

∫
D

G(x, y)dy = − 1

2π
|D| ln r, r > R, (2.5)44

solves the equation45

∆u(x) = −η |D|, (2.6)46

where η is the characteristic function of D, that is, η = 1 in D, and η = 0 in D′. Let CR47

be the boundary of BR. A harmonic in BR function h satisfies the conditions48 ∫
CR

hNds = 0,

∫
CR

hds = 2πh(0). (2.7)49

It follows from (2.5) that the functions u(x) and uN (x) are constant on CR, since the50

normal N on CR is directed along the radius. Multiply (2.6) by an arbitrary regular at the51

origin harmonic function h = hn, integrate over a disc BR, and use (2.7) to get52 ∫
D

hdx =

∫
CR

(uhN − uNh)ds = ch(0), c = const. (2.8)53



A problem in analysis 1003

If h is harmonic in BR, then so is h(gx), where g is a rotation by an arbitrary angle α54

around z-axis, the axis perpendicular to D. Since h(g0) = h(0), one can replace h(x)55

by h(gx) in (2.8), differentiate with respect to α and then set α = 0. This yields56 ∫
D

∇h(x) · [e3, x]dx = 0, (2.9)57

where e3 is a unit vector along z-axis, · stands for the scalar product, [e3, x] is the vector58

product in R3, and h is an arbitrary harmonic function in BR, regular at the origin. One59

has60

∇h(x) · [e3, x] = ∇ · (h[e3, x]), (2.10)61

because ∇ · [e3, x] = 0. Thus, integrating by parts in (2.9), one gets62 ∫
C

(−N1s2 +N2s1)hds = 0, (2.11)63

where Nj , j = 1, 2, are the components of the outer unit normal N to C. It is proved in64

[2] that the set of restrictions of all harmonic functions in BR, regular at the origin, onto65

a closed curve C ⊂ BR, diffeomorphic to a circle, is dense in L2(C). Therefore, (2.11)66

implies67

−N1s2 +N2s1 = 0 ∀s ∈ C. (2.12)68

Let us derive from equation (2.12) thatC is a circle. Geometrically equation (2.12) means69

that the radius-vector r := s1e1 + s2e2 of the boundary C is parallel to the normal N70

to C, namely, [r,N] = 0. The unit tangential vector to C is t = dr/ds, where s is the71

arclength of C, and the normal N is directed along dt/ds.72

Since the normal N is orthogonal to t, and N is parallel to r according to (2.12), it73

follows that t · r = 0. Thus,74

dr/ds · r = 0 ∀s ∈ C. (2.13)75

Consequently,76

r · r = const ∀s ∈ C. (2.14)77

Therefore, C is a circle, and D is a disc.78

Theorem 1.1 is proved. 279
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