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INTRODUCTION

Bernoulli polynomials and numbers were first introduced by

Jacob Bernoulli, and the Bernoulli polynomials are a special case

of Appell polynomials. A set of polynomials are called Appell

polynomials if they obey the relationship

-r- A (x) = nA (x).
dx n' n-1*

It is shown in this report that the Bernoulli polynomials obey this

relationship.

Bernoulli polynomials and numbers are used in the theory of

finite differences especially in the process of summation. This report

will be concerned with the development of some of the more important ^

properties of Bernoulli polynomials and numbers rather than with

their usage.
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THE GENERATING FUNCTION
OF THE BERNOULLI POLYNOMIALS

Consider the function

f{x.y)=^ . (1)

e^-l

known as the generating function of the Bernoulli polynomials. Expand

xy
— in a series of powers of y; its coefficients are functions of the

e^-1

parameter x, and they are also polynomials in x. The coefficients are

defined as the Bernoulli polynonnials, i.e.,

n=0 " n!

03

f{x,y)= ^ B^(x)^ (2)

where B (x) are the Bernoulli polynomials. The generating function is
n

defined for all y except possibly y = 0. When y = 0, the generating

function is an indeterminate form, but using L'Hospital's Rule it is

found that liro^ f(x, y) = 1 for any x. Hence, f{x, 0) will be defined as

unity.

The first few polynomials can be determined by long division.

Expanding both numerator and denominator of the generating function in

Maclaurin series yields

Asgtts Taylor, Ad\-aiiced Calculus, p. 121.
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2 3 3 4

3!
ye"y = y+xy' + ^+^Vf-+- ' " P)

and
2 3 4

Thus

3 2

f{x.y) = 1 + (X - -^)y + (ix^ - |x + ^)y^ + (^- ^+ fz^V^ + • • • . (5)

The coefficients, B (x), n = 0, 1, 2, 3, • • • , are thus

B,(x) = 1

B^(x) = x.i

, X
2 1

B^(x) = x - X + -^

T, , ^
3 3 2 X

B3(x) = x --^x +-

^ , , 4,3 21
B^(x) = X - 2x + X -—
„ , , 5 5 4 5 3 X
B5(x) = x --X +3X --^

(6)

Using long division to find the Bernoulli polynomials beconnes cumbersome

very rapidly, and a sinnpler naethod for determining them ^vill be developed

later.

The expansion of the generating function as a power series in y raises

the question of convergence. The generating function may be rewritten as



'-V>"T^ ^

4

e^y
f(x,y)=-r- -—trr • (^)

' 1 + y + y_ + • • •

2! 3!

Letting

2 3

Y=f, +^ + ^7+ • • • . (8)

equation (7) becomes

f(x.y)= y^Py • ^^>

Expansion of (1 + Y) by means of the Binomial Theoremi yields

f(x, y) = e^(l - Y + Y - Y + • • • ). (10)

The generating function is now expressed as the product of two convergent

xy -

1

series, because e converges for all xy and (1 + Y) converges for all

)Y|^1. Since the product of two convergent series converges within their

common interval of convergence, a positive number r can be found such

that the power series expansion of the generating function converges for

IyKt.

BERNOULLI NUMBERS

Setting x = in equation (2) gives

f(O.y) =-^^= 2- B (0)-^ • (11)
y ,

"^--^ n n! . ^ '

e ' - 1 n=



-r

The numbers B (0) are called the Bernoulli numbers and are denoted
n

by B , that is, B (0) = B ; n = 0, 1, 2, 3, ' ' * . From equations (6)
' n n n

it is seen that

Bo(0) = 1

B,(0) = -i

B,(0) = i

BjCO) =

V°> = - To

65(0) =

• • •

A number of relations concerning Bernoulli numbers and polynomials

follows.

Theorem 1: B_ . = 0, n = 1, 2, 3,
Zn+1

Proof; Referring to equation (11),

e^-l

£(0, -y) =—fX

e-y-1

f(0,y) .f(O.y) = -y = ^ B (0) y_ -^B (0)(-l)^
n=0 n! n=0 n!

n=0 n!



Transposing -y and partially expanding the sum, one has

2 3 4
y + OB + 2B y + OB y + 2B ;jr_ + OB

_J[_
"*" ' * * = 0.

° 2! 3! 4!

This naay be rewritten as

p, 2n+l

(l + 2B^)y + 2:^B^n+l(kn)!=°-
n=l

Because of the linear independence of the powers of y,

B - 1
' ^1 - - 2

^2n.l = °'^=^' ^'^'

This completes the proof.

Theorem 2: B,(l) = \, B (1) = B (0); n = 0, 2, 3, 4, •——^-^— 1 ^ n n

Proof ; Set x = 1 in equation (1). Now

y ^ '

f(i.y)=^ = ^ Bji)^ . (12)

e^-1 n=0 " nl

Also

y ad
Xe

= y + -f- =y +^ Bjo)^ . (13)

e^-l e^-1 n=0 " n!

Equating the right-hand members of equations (12) and (13), one has

cx3 t>o

y +^ B (O)j^ -^B(l)£i
n=0 n! n=0 n!



or
Cw3

n=0 n!

Partially expanding the sum, one has

Bq(0)-Bq(1) +[i + B^(0) -B^(l)Jy +^ JBJO) .B^(1)J/^ =0.

Because of the linear independence of powers of y,

B^j(l) = Bq(0)

Bj(l) = 1 + B^(0)=i

B (1) = B (0), n= 2, 3, 4, •

n n

This completes the proof.

P
Theorem 3: B (x) = ^ C(p, n) B (0) x^ , where C{p, n) is the

P ^0

symbol denoting the number of combinations of p elements taken n at a

time.

Proof ; Recall the generating function of the Bernoulli polynomials

and write it as

B (X) y^ = ^^ e^
p=0 P p! e^-1

„ n <r~ m m
n=0

;
— m=0 m!

n!
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xy
Noting that the Maclaurin series expansion of e converges absolutely,

y 2
and the Maclaurin series expansion of

—

-— converges, a Cauchy product

e^-1

may be formed. Forming the Cauchy product yields

°^ °± CO p
„ n ^r m m <— .^:— „By ^xy =>>Bx

n=0 ;— m=0 m! p=0 n=0
n! ^ n! (p-n)!

Now

B (X) Z = S ^ ^n^''">^'' •

p=0 p! p=0 n=0
^, ^p_^^,

and equating corresponding coefficients of y gives the relationship,

B (x) p „ p-n
p^ ' ^ B x^— - ^ n

Therefore,

n=0 n! (p-n)!

P
B (x) = ^ C(p, n) B x^"
^ n=0

By the use of Theorem 3, one can calculate the Bernoulli polynomials

knowing only the Bernoulli numbers. This theorem can also be used

to derive a formula which expresses the (r + l)st Bernoulli number in

terms of the first r Bernoulli numbers.

2q.l
Theorem 4: B = -^—^ ^ C(2q + 1, n) B^, q^l.

n=0

2
Walter Rudin, Principles of Mathematical Analysis, p. 58.
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Proof : Consider Theorem 3, and set p = 2q + 1. Partially expanding

the sum yields

2q-l
2 +1

B, ^i(x) =^ C(2q+l,n)B X '^ "''+ C(2q+1, 2q)B, x + C(2q+1 , 2q+l )B, ^. . (14)
Zq+1 -^—- n CO ca +

L

n=0

From Theorem 2,

B (1) = B , n = 0, 2, 3, 4,
n n

From Theorems 1 and 2,

V+l '-

^2q+l'" = °- ''-'•

Thus, for q~ 1 and x = 1, equation (14) may be written as

2q-l

0= ^ C(2q+l,n)B^+ (2q+l)B + (1)(0).

n=0

Therefore,

2q-l

V = 2iTr^, C(2q+l,n)B^.
n=0

Define the difference operator ^^ by the relation:

Af(x) = f(x+l) - f(x).

n — 1

Theorem 5:AB (x) = nx '
, n = 0, 1, 2, 3,

n

Proof:



(x+l)y xy

e^.l a''-!

= ye '

n-1 n
iS y •

n=l (n-1)!

Also

l>3

A f(x. y) =A^ B (x) /
n=0 n!

Ab (X) /
n=0 n!

oa

Ab^(x) y""
,

n=l ^ n!

because Ab = 0.

Equating the two expressions for Af(x, y) yields

^B^(x) ^n-1

n! (n-1)!
*

Thus

Ab (x) = nx"^' , n = 0, 1, 2, 3,
n

Define the differential operator D by the relation:

df(x)
Df(x) =

dx

Theorem 6: DB (x) = nB ,(x), n = 0, 1, 2, 3,~ n n- i

10
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Proof : Differentiate the generating function of the Bernoulli

polynomials with respect to x and obtain

_a£ (X. y) = yf{x. y) = 2^ B (x) l_ • (^5)

ax t=0 t!

Differentiate the power series expansion of the Bernoulli polynomials

with respect to x and find

Bx n=0 n! n=l n! ' ^ '

because DB (x) = 0,

Letting n = t+1 in equation (16) and comparing equations (15) and (16),

one has

2 DB (x)l1 =^ B(x)^ . (17)

t=0 (t+1)! t=0 t!

Equating corresponding coefficients of y in equation (17), one finds

which implies

DB (x) = nB ,(x).
*

n n-

1

n-1

Theorem 7; ^ C(n, t)B (x) = nx^" , n = 1, 2, 3, * • • .

t=0
^
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Proof: Recall that B (x) is a polynomial of degree k. Write

k=0 t=0

Now one must see if the a, coefficients can be determined. Differencing
k

both sides of equation (18), one obtains

n-1

Zlx''=(x+l)''-x" = 2' a AB (X). (19)

$0 ^^^ .*+^

since Z\B(x) = 0.

From Theorem 5,

Ab^^^(x) = (t+l)x*, t^O (20)

By the Binonnial Theorem,

n-1

(x+l)"-x"=^ C(n, t)x . (21)

t=0

Using the results of equations (20) and (21), equation (19) may be

expressed as

n-1 n-1

^ C(n,t)x = ^ a (t+l)x^

t=0 t=0

Equating corresponding coefficients of x, one finds

%+l " "^H^ , t = 0. 1. 2, • • • , n-I. {Z2)
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Using the results of equation (22), equation (18) becomes

n-1

t=0

'- -„ ."i £i2^' B,^^(x,. <23,'

Differentiating both sides of equation (23) with respect to x, one finds

n-1
n-l_

t=0

nx"" =^ C(n,t)B(x). (24)

This theorem enables one to express the Bernoulli polynomial of degree

n in terms of Bernoulli polynomials of lower degree. This result is

seen more easily by letting m = n-1 in equation (24) and partially

expanding it to obtain

m-1

^^' = ""-5^^ C(mn,.)B^(x).

) (P) ~ ^_ — is the Riemann-Zeta function.

n=l n

Proof:

coth y ==
e^+e

e^-e-

-y

-y

= e^ + e
y

e^-e
-y

e^- e-y

1
+

1

a^^. 1 1- e
-2y

(25)



Multiply both sides of equation (25) by 2y, and one has

2y coth y = .,
^— + ^^-tt—

e'y-1 l-e-'y

Recall the generating function for the Bernoulli numbers, and 2y coth y

may be expressed as

03 n °^
, ^ .n

2ycothy=S' B ^^+5" B ^
-n n n! '^~ n n!

n=0 n=0

For odd powers of n the sunas cancel and thus

p=o ^P (^P)' '

3
Using the relationship

od

IT cot TTU - - = -2^ —
J, JuK'l,

u —,2 2
n=l n -u

and cot iu = -i coth u, let u = ix and

u coth irx = — + 3*
v ^

^ 2x

n=l n + X

t
Let X = -r— and equation (27) becomes

14

"^
(Z ^^P

y coth y = 5» B X\, • (26)

(27)

c-= t
,, t 2Tr ^ <- -Trcoth- = — +^ TT . (28)

n=l 2 2
n +_t

(2u)^

3
Kenneth S. Miller, An Introduction to the Calculus of Finite Differences

and Difference Equation^, p. 54. ~ ' ~~~
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Multiply both sides of equation (28) by— , and it becomes

c-o / t ^^

— coth —=1 + 2

Let y = t/2 in equation (26). Then

T cothi = 5" B, ^^ . (30)
2 2 ^ 2p (2p)!

Equating the right-hand members of equation (29) and (30), one finds that

.2
I

t
cO

^- ^2p <;:7 \ 2tt

^p TT-TT = 1 + 2 '^, 2 / v2 . (31)
„_n 2P (2p)! n=l n +/t A

t\2 ,2
Divide both numerator and denominator of

[
r—

j

by n , and obtain

Z-nl

fef
2 , A \2 , . /. n2 •—

•

l2mr

2p

n\fl_ r 1 + (t_\ 7="i

[z-nJ [Zmtj

/t \'
The expression/r 1 represents the sumi of a geometric progression

ZmrJ
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t ^2
with common ratio - ; therefore, it can be replaced by

[ZniT )

p=l \2mr/

Using this result, equation (31) becomes

and, on equating corresponding coefficients of t,

Dividing through by 2,

Therefore

2(Zp). -.^^^^2p n=l ^2p -^^^^2p \ ^ ^^

^2p) = (^-)'"(-^)'"Sp
2(2p)!

There is no known closed form for (^(p) when p is an odd integer, but

using Theorem 8, one can sum (^(p) when p is an even integer.

Theorem 9 : B (1 - x) = (-1) B (x). This theorem is known as the
n n

complementary theorem.
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Proof : Refer to the generating function of the Bernoulli polynomials

and replace y by -y. Thus

-xy c^
f(x. -y)=^y^ =^ B{K){-lf^ . (32)

e"^-l n=0 n! ^..;,...

-xy
-ye V '

Multiply numerator and denominator of —

^

by e . Then

y(l-x) y(l-x) ^
f(x.-y)=::l^- =^^-^— =S B(i-x)/. (33)

e^-l 1-e^ n=0 . n!

Equating the fight-hand members of equations (32) and (33) yields

B (1-x) = {.!)% ix)
n n

Corollary: B (1/2) = for n odd.
i_ n

The proof is immediate, on setting x = 1/2 in the formula of

TheoreYn 9.

Theorem 10: There is no zero of B (x) within the open interval
2n+

1

(0, 1) other than 1/2.

Proof : For n = 0, B (x) = x - 1/2, and the theorem is true. From

the corollary to Theorem 9, B^
, (1/2) = 0, and from Theoremis 1 and 2

2n+i

^2n+l<°) = ^2n4-l(^) = °'"=^' '' ''

Suppose that B
, iv, i(p) = 0. where p lies in the open interval (0, 1)
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and is not equal to 1/2. Then B^, ,,,,, (x) has four zeros in the closed^ 2(n+l)+l

interval [^0, ij , and by Rolle's Theorem ^^2(n+n+l^^^ ^^^ ^^ least

three zeros in the open interval (0, 1). By Rolle's Theorem again

D B-,
,
(x) has at least two zeros in the open interval (0, 1). From

2{n+l)+l

Theorem 6

^'^2{n+l)+lt^) = ^^^-^^)
^^2(n+l)(^)

= (2n+3)(2n+l) B^^^^(x).

and B^
,
(x) vanishes at x = 0, 1/2 and 1 as previously stated. By

2n+l

assumption, B^ .(x) has four zeros in the closed interval [O, ij .

Consider B^ , (x) when n = 1. The representation of this is
2n+l

T, / X 3 3 2 ,
x

B3(x) = x --X +-2 .

and its zeros are x = 0, x = 1/2, and x = 1. Thus B-{x) has only one

zero in the open interval (0, 1). Since B-(x) can be expressed in terms

of derivatives of higher order Bernoulli polynomials of odd degree, it is

impossible for these higher order polynomials to have two zeros in the

open interval (0, 1) when B (x) has only one zero in this interval. This

furnishes a contradiction to the assumption that B^,
, , , , ,{p) = with

•^ 2(n+l)+l

O^Cp^l and p not equal to 1/2.

Theorem 11: B. (x)- B^ retains the same sign over the open interval
2n 2n ^

(0.1).
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Proof: Let

f(x) = B^_^(x) - B^_^.

By the definition of the Bernoulli numbers and Theorem 2,

f(0) = f(l) = 0.

Suppose f(x) changes sign in the open interval (0, 1); then it must vanish

for some x unequal to or 1. By Rolle's Theorem f'(x) vanishes for

at least two points in the open interval (0, 1). But

f'(x) = 2nB2^_^(x).

and from Theorem 10, B,
,
(x) vanishes only at x = 1/2. This is a

2n-

1

contradiction; therefore, f{x) retains the same sign throughout the open

interval (0, 1).

POWER SERIES EXPANSION
FOR THE TANGENT AND THE COTANGENT

In elementary calculus one learns how to find power series expansions

for analytic functions through the use of Maclaurin's formula. For

X -1
functions such as e , sin x, cos x, (1+x) , and In (1+x), the law of

formation for each respective term is easily seen. When tan x is

expanded by means of Maclaurin's formula, the law of formation of the

individual terms is not readily seen. It w^ill now be demonstrated that
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the coefficients of the terms in the Maclaurin series expansion of tan x

are essentially the Bernoulli numbers.

From the identity

y coth y = iy cot iy,

one has from equation (26)

°° 2p
iy cot iy = ^ B IM^ (34)

p=0 ^ ^

Setting X = iy and partially expanding the right-hand member of equation

(34), one finds

xcotx=B^ +f B '^-gV"' (^^>

P=l

Remembering that B = 1, and dividing both sides of equation (35) by x,

one has

cotx=1.2^ B, '^-f;:|'-"' (56)X ^j 2p (2p)!

Using the identity

tan X = cot X - 2 cot 2x

along with equation (36), one finds after some algebraic manipulation that

tan. = 2^ ^(-DPfl-Z^PLzx)^"-' . (37)

P=l
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Now that power series expansions for cot x and tan x have been

developed, the radii of convergence of these power series expansions

will be examined. From Theorem 8,

2(Zp)! (-dP''

=2p= (2,)2P $°(^P>-

Since the test ratio will involve the limit of the quotient ("(2p+2)/ ("(Zp),

this limit will now be evaluated. Now,

<^{Zp) = I + I + J_ + • • • + J_ + • • •

and

^Zp ^Zp ^2p

1 +/ 1 + 1 \ +/ 1 + 1 + 1 + 1

(z^P 3^P/ (4^P 5^P 6^P 7^P

<' 1 +/l + 1 \ +/ 1 -t- 1 + 1 + 1

iz^P Z^Py (4^P 4^P 4^P 4^P

= 1+1 +1 +•••= 1

^Zp-l ^4p.2
^ _

^-(Zp-l)

Therefore,

<<^{^p)<

1 . z-(^P-i>

Also

^"(Zp+Z) = 1 + 1 + 1 + • . . + 1

^Zp+Z ^^P"""^ ^P+2
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and

1 +/ 1 + 1 \ +

/ 1 +/l_ +_1_ \ +/ 1 + 1 + 1 + 1

U^P 2^P/ U^P 4^P 4^P 4^P

• • •

1 .
2-(2p-l)

Thus,

1 < (^{2p+2){ 1

1 . 2-(^P-^)

Since

lim 1 = 1,

it follows that

lim (?(2p+2) = 1.
p-.>oO ;

It can be shown in a similar manner that

lim (^{Zp) =1.
P~>oo J

Since the limit of a quotient is the quotient of the limits, provided both

limits exist,

lim f(2p+2) _
P-'-'

^-(2p)
-^-



Now, applying the ratio test to the power series expansion for

cot X , one has
X

lim
L = p->^ ^zp.z'^-"'^"'-"'"' '^P"

(2p+2)! B
2p

(2x)^P"\-l)P

(^x)^^'\ .^P+1.lim 2(2p+2)! ("D^J^^^p^^;""' (-ir (2p)!(27r)
2p

= p-}fO

(2p+2)! (2tt)^P^^2(2p)! (-1)^"^ (2x)^P'^
^^^^f{2p;

= lim <^(2p+2) X
P-7eo

—

'

-T
<^(2p) TT^

= X

TT

because lim Y(2p+2)
P-?oo -' - i.p-?«>

^(2p)

^, , . . r 1 . 2^ 2Thus the power series expansion for cot x converges tor x \ ir .

Similarly, it may be shown that the power series expansion for tan x

2 TT^
converges for x <^— .

THE EULER-MACLAURIN FORMULA
PRELIMINARY REMARKS

It is shown in the calculus that, if f(x) is a function defined on the

1

—

"7

interval [-a, aj , and, if f{x) has derivatives of all orders at x = 0, then

f(x) can be expanded in a Maclaurin series.

23

f(x) = f(0) + Df{0)x + D^f(O) x^ +

2!
^ •- n
n=0

(38)
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If f(x) is analytic in the neighborhood of the origin, then the power series

of equation (38) has a positive radius of convergence. Taylor's series

with a remainder,

2

f{x) = f(0) + Df(0)x + D^f(O) iL + . . . + dV(0)x" + d""*"^ f(t) x"^^^
^-

nl (n+1)!

with -a<^t<^a can be deduced on the assumption that f(x) has n+1 derivatives

in T-a, aj. For the particular case where f(x) is a polynomial of degree

less than or equal to n, equation (38) reduces to the finite series:

2
2 n

f(x) = f(0) + Df(0)x + D f(0) Yf + • • • + D'^f(O) —^ . (39)

In considering the problem of expanding a polynomial in terms of

4
factorial polynomials one encounters Newton's formula ,

f(x) = f(0)+Af(0)x^^^ zff(O) x5f^+ • . . +A''f(0)x^.
2! n!

which is analogous to equation (39).

The preceding discussion indicates that, given a function f(x) with

certain properties, one can obtain an expansion of the function in terms

of powers of x or factorial functions. There are many other types of

expansions, such as a Fourier series, which express integrable periodic

4
Kenneth S. Miller, An Introduction to the Calculus of Finite

Differences and Difference Equations, p. 18.
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functions in terms of sines and cosines. In the theory of finite differences

one might want to consider the possibility of expressing a certain function

in terms of Bernoulli polynomials, i, e. , :

f(x) = ^qB^{x) + a^B^(x) + a2B^(x) + • • + a^B^(x) +• • • . (40)

The coefficients a can be determined by formal methods, as will be
n

shown.

If one integrates both sides of equation (40) with respect to x over

(0, 1), then .

1

n+1
f B (x)dx = ^n+1^''^

'o " ~^i
— = ^n,l^'^-\,l^'^ -0 . (41)

for n = 1, 2, 3, • • • . Then one has

f(x)dx = a I B (x)dx = a ,

""^ ^

since B (x) = 1. Thus a has been determined. Now differentiate both

sides of equation (40) to obtain

Df(x) = a B (x) + 2a B (x) + 3a,B,(x) + • • • + na B ,(x) + • • •.
i 2 1 3 2 n n-1

Integrating again from zero to one and using the results of equation

(41), one has

( Df(x)dx = a .
.
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But

Df(x)dx = f(x) = f(l)-f(0) =Mo).

Therefore,

In general.

a^ =Ai{0).

D^i{K) = a n!.B^(x) + a ^ fn+l)(n)(n-l)- • -(2)3 (x) + • • •

n n+i i

and

D f(x)dx = a n!
^ n

Also

.n-1
\ D f(x)dx= D" "f(x)

.n-1 n-1
= D''"Zif(0) = AD""'f(0).

and

n n!

Thus, equation (40) may be written as

^1
^

f(x)dx +

n=l
f(x) =j f(x)dx +^ B^(x) Ad"^" f(0)

n!

(42)

If one makes the change of variable

t = X + y
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and the change of function

f(x) = g(t).

then equation (42) becomes

g(^

y n!

(x+y) =
J

g{t)dt+_^ B^(x)ZId''" g(y).
'^ n=l :

If X = 0,

g(y) =
j

g(t) dt +
J^" ^/AD" - g{y). (43)

y

= / g(t)cit +^ \_Ad'"'^ g(y).
/ n= 1 n

!

and this is one form of the Euler-Maclaurin formula.

An alternate fornn of the Euler-Maclaurin fornnula that is useful in

summation problems will now be developed. In order to do this, it is

necessary to introduce a displacement operator E defined by the equation

Ef(x) = f(x + 1).

A relationship between the displacement operator E and the difference

operator LA must also be derived. By definition,

Af(x) =f(x+l) - f(x)

= Ef(x) - f(x).
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(1 +Z\)f(x) = Ef(x).

Suppose F(x) is a function such that

28

Then

Af(x) = f(x).

F(x+1) - F(x) = f(x). (44)

Summing equation (44) as x ranges from to n-1 yields,

n-1

F{n) - F(0) = ^ f(x).

x=0
(45)

Expanding f(x+l) in a Taylor's series gives,

r^ —I

n=0 ^ -

As stated previously,

f(x+l) = Ef(x) = (1 +A)f(x).

Hence, comparing the operators, one has

e°=l+zi.

Introducing the operator /\ one can rewrite

ZiF(x) = f(x)

as
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F(x) =A'^f(x) = -^ f(x)

e -1

= D"^Df(x)
, . (46)

n=0 n!

Note that the last step follows from the definition of the Bernoulli numbers

in equation (11). Expanding equation (46) and substituting in the numerical

values of the Bernoulli numbers yields.

L 2 12 720 30240
F(x) = :D"H +^-^ +1?777^ " ' ' * fi^)

= D"'^f(x) - f(x) + f'(x) - f"'(x) +

2 12 720

Evaluating this expression for x = and x = n gives,

F(n) - F(0) = D"\^f(n) - f(0)] - -| f(n) + i f(0) +~ f(n) - jj f'(0)

1 1
f"'(n) +.r^f"(0) + • . • . (47)720 ' ' 720

/"n
The quantity D [f(n) - f(0)J can be replaced by 1 f(x) dx, because

JO

n
D''^[f(n) - f(0)]= D"Y _d_f(x)dx

dx

d f(x)dx dx

"^

n

'O / dx

^ f(x) dx.
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Recalling that
n-1

F(n) - F(0) =^ f(x),

x=0

and adding f(n) to both sides of equation (47), one has,

> f{x) =f
f(x) dx + j[f{n) + f(0)J + Yz[f'{n) - f(0)]

- jjol^'^'i^) - f"'(0)j+ • • •
.

x=0 ''o

The Euler-Maclaurin formula can be expressed in several other

forms that are also valuable in summation problems, and some of these

other formulas can be written with a renaainder term. The derivation of

these additional formulas has been omitted as it is felt they are beyond

the scope of this report.
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CONCLUSION

The Bernoulli numbers and polynomials have many properties

and uses other than those mentioned in this report. The Bernoulli

numbers play an important role in the development of Stirling's

formula which is used in statistics. Euler polynomials, which have

extensive properties, can be defined in termis of Bernoulli polynomials.

It is possible to expand certain functions in Bernoulli series, and

it is also possible to expand Bernoulli polynomials in a Fourier series

over the interval (0, 1), As previously stated, the practical application

of Bernoulli numbers and polynomials is in dealing with expansions

and sumnaation problems.

The discussion in the body of this report has been restricted to

the derivation of properties of Bernoulli numbers and polynomials

of the first kind. The reader should be aware that Bernoulli numbers

and polynomials of the second kind exist, and they also possess

generating functions and numerous properties.
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This report is a brief study of the development of some of the

major properties of Bernoulli numbers and polynomials of the first

kind.

The Bernoulli numbers and polynomials both have generating

functions, and both of these generating functions are defined. Several

theorems concerning the more prominent properties of Bernoulli

numbers and polynonaials are proved. Maclaurin series expansions

for the tangent and cotangent are derived illustrating the usefulness of

Bernoulli numbers in these particular expansions. A relationship

between the Bernoulli numbers and the Riemann-Zeta function is

developed in closed form.

Two forms of the Euler- Maclaurin formula are deduced to

demonstrate the value of Bernoulli numbers in their derivation. The

report is concluded with a brief discussion regarding the use of

Bernoulli numbers in other areas.


