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Abstract

The purpose of this work is to study Hopf algebra analogs of constructions in the theory

of p-adic representations of p-adic groups.

We study Hopf algebras and comodules, whose underlying vector spaces are either Ba-

nach or compact inductive limits of such. This framework is unifying for the study of contin-

uous and locally analytic representations of compact p-adic groups, affinoid and σ−affinoid

groups and their quantized analogs. We define the analog of Frechet-Stein structure for

Hopf algebra (which play role of the function algebra), which we call CT-Stein structure.

We prove that a compact type structure on a CT-Hopf algebra is CT-Stein if its dual is a nu-

clear Frechet-Stein structure on the dual NF-Hopf algebra. We show that for every compact

p-adic group the algebra of locally analytic functions on that group is CT-Stein. We describe

admissible representations in terms of comodules, which we call admissible comodules, and

thus we prove that admissible locally analytic representations of compact p-adic groups are

compact inductive limits of artinian locally analytic Banach space representations.

We introduce quantized analogs of algebras Ur(sl2, K) from [7] thus giving an example

of infinite-dimensional noncommutative and noncocommutative nonarchimedean Banach

Hopf algebra. We prove that these algebras are Noetherian. We also introduce a quantum

analog of U(sl2, K) and we prove that it is a (infinite-dimensional non-commutative and

non-cocommutative) Frechet-Stein Hopf algebra.

We study the cohomology theory of non-archimedean comodules. In the case of modules

and algebras this was done by Kohlhasse, following the framework of J.L. Taylor. We use

an analog of the topological derived functor of Helemskii to develop a cohomology theory

of non-archimedean comodules (this approach can be applied to modules too). The derived

functor approach allows us to discuss a Grothendieck spectral sequence (GSS) in our context.



We apply GSS theorem to prove generalized tensor identity and give an example, when this

identity is nontrivial.
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Introduction

The purpose of this work is to study Hopf algebra analogs of constructions in the theory

of p-adic representations of p-adic groups.

Non-archimedean Banach Hopf algebras and comodules were first studied in the series

of papers by B. Diarra. Diarra used Hopf algebras and comodules to study continuous

representations of compact p-adic groups.

The breakthrough in the p-adic representation theory of p-adic groups was made in

papers by P. Schneider and J. Teitelbaum. Motivated by examples of p-adic representations,

which they found in their study of cohomologies of Drinfeld upper-half planes, they studied

locally analytic p-adic groups and their p-adic representations in general. They studied

categories of continuous representations of p-adic groups in Banach spaces over K (the orbit

maps are continuous), locally-analytic representations (orbit maps are locally-analytic) of

p-adic groups in topological Frechet K-vector spaces of compact type (i.e. inductive limits

of p-adic Banach spaces, endowed with inductive limit topology) and relations between these

two types of representations. They singled out “good” categories of representations of both

types, which they called admissible representations.

Schneider and Teitelbaum’s approach is to pass from a representation to its dual space,

which has a structure of a module over the algebra of distributions on the group G. To the

author’s knowledge, in the case of continuous representations and continuous distributions

this was first noticed by Diarra (see references in [5]). Schneider and Teitelbaum found

a special structure on the algebra D(G,K) of K-valued locally analytic distributions on a

compact p-adic group, which they called a Frechet-Stein structure. This structure is the

main tool in the work of M. Strauch and S. Orlik on the irreducibility of locally analytic

principal series representations, in the works of Schneider and Teitelbaum and in most other

works in this area.

For a compact group G, the Frechet-Stein structure on D(G,K) consists of a projective
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system of Banach algebras Dr(G,K), s.t. D(G,K) is a projective limit of Dr(G,K) and

i) all Dr(G,K) are noetherian Banach algebras; and

ii) the transition maps in that system are flat.

In particular, the algebras Dr(G,K) contain a Banach subalgebra Ur(g, K), which is

a completion of the universal enveloping algebra U (gK) (gK = Lie (G) ⊗ K), and, as a

Ur(g, K)-module, Dr(G,K) is finitely generated. The algebras Ur(g, K) also form projective

system with projective limit U(g, K), which is called the hyper-enveloping algebra, and

U(g, K) is a subalgebra of D(G,K).

Admissible locally analytic representations on a space V are defined as those for which

the topological dual V ′ is a separately continuous D(G,K)-module M (= V ′ as a vector

space), which is a projective limit of finitely generated Dr(G,K)-modules Mr. Schneider

and Teitelbaum prove that if for all r > s (s is fixed) Mr are simple modules, then V is an

irreducible representation.

Attempts to introduce a quantized version of this theory started with the empirical idea

(of Yan Soibelman) that, although the subject is technically difficult, introducing one more

variable (q) may actually help with some difficulties and provide an insight into the non-

quantized case. In the quantum case, Hopf algebras and modules and comodules give the

language one must use. Thus one must understand first whether the results and construc-

tions of locally analytic representation theory have analogs in the framework of Banach and

topological Hopf algebras and comodules. To answer this question was the purpose of this

work.

In Chapter 1 we study Hopf algebras and comodules whose underlying vector spaces

are either Banach or compact inductive limits of such. This framework is unifying for the

study of continuous and locally analytic representations of compact p-adic groups, affinoid

and σ−affinoid groups and their quantized analogs. In the algebraic setting it was outlined

by Z. Lin in [19]. We prove various results about Banach comodules over K-Banach Hopf

algebras, including results on simplicity and finite cogeneratedness for artinian comodules
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over artinian Banach Hopf algebras. We define the analog of Frechet-Stein structures on

Hopf algebra (which play role of the function algebra), which we call CT-Stein structures.

We prove that the compact type structure on a CT-Hopf algebra is CT-Stein if its dual

is a nuclear Frechet-Stein structure on dual NF-Hopf algebra. This allows us to describe

admissible representations in terms of comodules, which we call admissible comodules (in a

special case this description was noticed by Emmerton).

In Chapter 2 we show that the algebra of locally analytic functions on a compact p-adic

group is CT-Stein. We introduce quantized analogs of Ur(sl2, K) and prove that they are

Noetherian. We also introduce a quantum analog of U(sl2, K) and we prove that it is a

(infinite-dimensional non-commutative and non-cocommutative) Frechet-Stein Hopf alge-

bra.

The motivation for the study of Ur(g, K) and U(g, K) comes from the following: Consider

a compact locally analytic group G. So far, all known examples of irreducible admissible

representations of G arise as duals of simple D(G,K)-modules that are projective limits of

simple Dr(G,K)-modules. While in general there might be simple D(G,K)-modules not

of this type, this is a natural class to consider first. This motivates the study of simple

Dr(G,K)-modules. Any compact group G has a system of neighborhoods, consisting of

open normal subgroups. Fix such a subgroup H. Then we have an isomorphism of vector

spaces

CrH (G,K) ∼=
∑

g∈G/H

CrH (gH,K)

and by duality

D≤rH (G,K) ∼=
∑

g∈G/H

D≤rH (gH,K) ,

where rH is the r which corresponds to locally H−analytic functions. Since H is normal,

by results of Kohlhasse [15] on supports of p-adic distributions (which can be extended to

the case of D≤rH (G,K)), D≤rH (G,K) , is a G/H-graded algebra and Clifford theory gives

a relation between simple D≤rH (G,K)−modules and simple DrH (H,K)−modules. But

CrH (H,K) is a space of power series on H and its dual is the algebra UrH (gK , G) . Thus
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in order to study simple Dr(G,K)-modules one must start with simple Ur(g, K)-modules.

The later task is known to be extremely complicated even in the algebraic case of U(g)-

modules. The study of quantizations of these algebras may appear to be useful in view of

the above and also due to other relations in the algebraic case between quantum groups and

representation of their classical counterparts.

In order to prove the Frechet-Stein property of our quantized algebras we found it con-

venient to introduce the skew-commutative analogs of Tate algebras. We call those algebras

skew-Tate algebras and we found that the Weierstrass division and preparation theorems

also hold in the skew-commutative case.

In Chapter 3 we study a cohomology theory for non-archimedean comodules. In the

case of modules and algebras this was done by Kohlhasse [16], following the framework

of J.L. Taylor [30]. In the algebraic case the cohomology of comodules was studied by

various authors. It was believed for a long time that the derived functor approach was

not suitable for developing such a theory even in the case of modules. It was first done

in the thesis of T. Buhler [4], who developed the derived functor approach in the case of

bounded cohomology. We use an analog of the topological derived functor of Helemskii to

develop a cohomology theory of non-archimedean comodules (this approach can be applied to

modules too). The derived functor approach allows us to discuss the Grothendieck spectral

sequence (GSS) in our context (one needs to be careful since our category is not abelian,

but quasi-abelian). While the GSS theorem itself is very similar to the classical one, in

the application of the situation is more complicated than in the algebraic case. We apply

the GSS theorem to prove a generalized tensor identity, which is the main result of this

chapter. While in the case of continuous representations of compact locally analytic groups

on Banach spaces the locally analytic induction functor is exact and the above identity is

just zero, in the case of comodules over Hopf algebras of rigid analytic functions the situation

is different. The celebrated theorem of Noskov from the theory of bounded cohomology is

also a (straightforward) consequence of our GSS theorem.
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Chapter 1

Preliminaries

In this section we recall some preliminary notions and some results, mostly without proof.

One may find all missing details in the references cited.

1.1 Notations

In this paper the following will mean:

K or L - a finite extension of Qp

|·|K - the norm on K, extending the norm on Qp

|K| - value group of K (as a set it is a set of values of |·|K)

oK - its ring of integers

Zp ⊂ Qp - the ring of p-adic integers

∆A- the coaction of coalgebra or comodule A

εA- the counit of coalgebra A

1.2 Some nonarchimedean functional analysis

Here we recall some definitions and facts about nonarchimedean topological vector spaces

and Banach spaces. The main references are [24], but see also [6, 23, 31].

Recall that a (nonarchimedean) seminorm q on V is a function q : V → R, s.t.

1. q (av) = |a|Kq (v) for any a ∈ K and v ∈ V,
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2. q (v + w) ≤ max (q (v) , q (w)) for any v, w ∈ V.

From these axioms it is easy to check that q (0) = 0 and q (v) ≥ 0 for any v ∈ V.

A seminorm is called a norm if q(v) = 0 implies v = 0.

Since any K−vector space is also an oK−module, we can consider its oK−submodules.

Definition 1.2.1. A lattice L in V is an oK−submodule of V , s.t. for any v ∈ V there

exists 0 6= a ∈ K : av ∈ L.

The intersection of two lattices is again a lattice.

For any seminorm q we can define two oK−submodules of V :

L (q) =
{
v ∈ V

∣∣∣q (v) ≤ 1
}

and L− (q) =
{
v ∈ V

∣∣∣q (v) < 1
}
.

L (q) and L− (q) are lattices.

Conversely, for any lattice L in V we define its gauge pL by

pL : V → R
v 7→ inf

v∈aL
|a|K .

pL is a seminorm on V.

Definition 1.2.2. Let (Lj)j∈J be a family of lattices in the K−vector space V such that

(lc1) for any j ∈ J and a ∈ K× there is k ∈ J such that Lk ⊆ aLj;

(lc2) for any two i, j ∈ J there exists a k ∈ J such that Lk ⊂ Li ∩ Lj.

Such a family form a base of a topology, which is called locally convex topology on V

defined by the family (Lj)j∈J .

Definition 1.2.3. Let (qj)j∈J be a family of seminorms on the K−vector space V. The

topology defined by the family (qj)j∈J is the coarsest topology on V such that

i) all qj : V → R are continuous;

ii) for any v ∈ V the translation v + . : V → V is continuous.
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For any finitely many seminorms qj1 , . . . , qjr in the given family (qj)j∈J and any real

ε > o define

V (qj1 , . . . , qjr ; ε) = {v ∈ V : qj1 ≤ ε, . . . , qjr (v) ≤ ε} .

Lemma 1.2.4. V (qj1 , . . . , qjr ; ε) is a lattice in V.

The topology on V given by a family of seminorms (qj)j∈J coincides with the topology,

given by the family of lattices V (qj1 , . . . , qjr ; ε) .

The topology given by a family of lattices (Lj)j∈J can also be defined by the family of

gauges
(
pLj
)
j∈J

Proof. [24, par. 4].

Definition 1.2.5. Let V be a topological K−vector space. V is said to be locally convex

(LCVS) if the topology of V is given by a family of seminorms (qi)i∈I or, equivalently, by a

family of lattices.

Definition 1.2.6. Let H = (H, τH) be a topological K−vector space (H is a K−vector

space, τH is a topology on it). H is called a K−Banach space if there is a norm ‖·‖ on H,

which induces the topology τH and H is complete w.r.t. ‖·‖.

A Banach space is an LCVS whose topology is defined by a single seminorm, which is a

norm.

If we have a K−Banach space (H, ‖·‖1) then exists another norm ‖·‖2, which is equivalent

to ‖·‖1 such that values of ‖·‖2 lies in |K|.

Two important examples are [31, 3.B, 3.A]

c0 (X) =
{

(cx)x∈X ∈ K
X |∀ε > 0 : the number of x such that |cx|K > ε is finite

}
and

l∞(X) =
{

(cx)x∈X ∈ K
X |∃C > 0 : sup |cx|K < C

}

7



For K discretely valued, any K-Banach space is topologically isomorphic to a space c0(X)

for some X.

Now let us review the concept of orthogonality in Banach spaces.

Definition 1.2.7. Let H be a K−Banach space with a norm ‖·‖ and M be a closed

subspace. A vector v ∈ H is called ‖·‖-orthogonal to M , if infx∈M ‖x+ v‖ = ‖v‖.

In nonarchimedean case this condition is equivalent to the following:

∀x ∈M,λ, µ ∈ K : ‖λx+ µv‖ = max(|λ|K ‖x‖ , |µ|K ‖v‖)

A base in an LCVS is a linearly independent subset of vectors, such that the linear hull

of this subset is dense.

Lemma 1.2.8. Suppose that for K−Banach space H the values of ‖·‖ lies in |K|. Since K

is discretely valued,

1. the space H has an orthogonal base;

2. every closed subspace in H has an orthogonal complement.

Proof. This is a combination of results from [31]. For K discretely valued, every Banach

space is of the form c0 (X) . This is a condition ι) of [31, Thm. 5.16] for s ≡ 1 (see [31, 3.H]),

which is equivalent to the conditions η) of [31, Thm. 5.16] and β) of [31, Thm. 5.13].

Remark 1.2.9. 2 also follows from [31, 4.7] or [24, sec.10].

V ′ = L(V,K) will denote the set of continuous linear functionals on V . We will equip

V ′ with a topology.

Definition 1.2.10. Let V be an LCVS with the topology given by seminorms qi. A subset

B ⊂ V is called bounded if qi(B) is bounded for every i.

Definition 1.2.11. Let V be a LCVS. The strong topology τb on V ′ is the topology, defined

by family of seminorms pB (f) = sup
v∈B
|f (v)|K with B running over all bounded subsets of

V . We denote V ′ with strong topology by V ′b = (V ′, τb).

8



If V is a Banach space, then the strong topology on V ′ is the topology defined by the

dual norm. By [31, p.52 and 3.Q] we have (c0(X))′b
∼= l∞(X).

The map f : V → W of two LCVS is called strict if the subspace topology on the image

is equivalent to the quotient topology.

We always have V ⊆ (V ′b )
′
b by [24, sec. 9].

Definition 1.2.12. An LCVS V is called reflexive if V = (V ′b )
′
b.

A Banach space is reflexive iff it is finite dimensional (if K is discretely valued).

Definition 1.2.13. An oK−submodule A ⊆ V is called c-compact if, for any decreasingly

filtered family (Li)i∈I of open lattices Li ⊆ V the canonical map

A� lim
←−

A/ (Li ∩ A)

is surjective.

Definition 1.2.14. A continuous map f : V → W between two LCVS is called compact

if there is an open lattice L ⊂ V such that the closure of the image f (L) is bounded and

c-compact.

If f : V → W is compact then f ′ : W ′
b → V ′b is also compact.

Definition 1.2.15. A continuous map f : V → W between two LCVS is called completely

continuous if it belongs to the closuse of the subspace of maps with finite-dimensional image

in L(V,W ).

In case of Banach spaces the classes of compact and completely continuous maps are the

same.

Definition 1.2.16. Consider a sequence of LCVS (Vn) with maps φnm : Vn → Vm. On

inductive limit V = lim→ Vn consider the strongest locally convex topology such that all

inclusions Vn ⊂ V are continuous. Equipped with this topology, V is called locally convex

9



inductive limit of Vn. If the transition maps φnm are compact, the V is called a compact

limit of the sequence Vn.

Definition 1.2.17. Let V be a LCVS. V is said to be of compact type (or a CT- or

LS-space) if it is an compact limit of an inductive system (Vn, φnm) of Banach spaces Vn.

Remark 1.2.18. A Banach space H can be presented as a limit of the stationary sequence

Vn with Vn = H. H is of compact type iff it is finite dimensional. This follows from the fact

that only in this case the identity map is compact.

Every Banach space is an algebraic inductive limit of its finite-dimensional subspaces,

but the inductive limit topology in this case is not even metrizable.

Definition 1.2.19. We call an LCVS V a Frechet space if it is complete and metrizable.

Equivalently, the topology on V is defined by a countable family of seminorms.

Each Frechet space is countable projective limit of Banach spaces.

Next we discuss nuclearity. For any oK−submodule A ⊆ V in an LCVS V we can form

a K−vector space VA = K ⊗oK A and equip it with the topology defined by the gauge pA.

Denote by V̂A the Hausdorff completion of VA. It is a Banach space w.r.t. the continuous

extension of pA.

If A = L is an open lattice in V, then the identity map on V gives a continuous map

V → VL with dense image.

If f : V → W is a continuous linear map into a Banach space W , then there exists

unique fL : V̂L → W , where L is a preimage of the unit ball in W, such that we have a

commutative diagram

V̂L

V W

fL

f

10



When M ⊆ L is a second open lattice in V then the identity map can be viewed as a

continuous map VM → VL. By taking completions and using the above universal property

we get a canonical continuous map V̂M → V̂L.

Definition 1.2.20. An LCVS V is called nuclear if for any open lattice L ⊆ V there exists

another open lattice M ⊆ L such that the canonical map V̂M → V̂L is compact.

Any nuclear Frechet space (NF-space) is reflexive and its dual is a CT-space.

Definition 1.2.21. An LCVS V is called of countable type if there is a countable dense

subset in V .

Remark 1.2.22. In [12] it is proved that any CT-space is of countable type. In [21] it is

proved that any NF-space is of countable type. Thus in most places we can safely assume

that our spaces are of countable type. Mostly we will not use this assumption.

Definition 1.2.23. Let V be a Banach space.

1. Let U be a closed subspace of V . We define U⊥ ⊂ V ′b as

U⊥ =
{
φ ∈ V ′b

∣∣∣φ (u) = 0 ∀u ∈ U
}
.

2. Let W be a closed subspace of V ′b . We define

Ker (W ) = W⊥ ∩ V =
{
v ∈ V

∣∣∣φ (v) = 0 ∀φ ∈ W
}
.

It follows from Hahn-Banach theorem, that if U is a proper closed subspace of V , then

U⊥ 6= 0. It is also clear that

Ker (W ) =
⋂
φ∈W

Ker (φ)

and U⊥ and Ker (W ) are closed subspaces.

The following lemma is obvious.

Lemma 1.2.24. Let V and W be two CT-spaces. If φ : V � W is a continuous surjection,

then φ′ : W ′
b → V ′b is a continuous injection.
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Lemma 1.2.25. Let U be a subspace of a Banach space V. Then the largest Hausdorff

quotient of V/U is isomorphic to V/Ū.

Proof. The topology on V/U is given by quotient seminorm under the projection π : V →

V/U . The points of Ū = π−1({0}), which are not in U, in this topology are infinitely

close to zero, and thus if π (u) ∈ π
(
Ū
)
, then ∀v ∈ V/U the points v and v + π (u) are not

separated. In any Hausdorff quotient φ : V/U � W if φ (v) and φ (v + π ((u))) are separated

in W with non-intersecting neighborhoods Wφ(v) and Wφ(v+π((u))), then φ−1
(
Wφ(v)

)
and

φ−1
(
Wφ(v+π((u)))

)
are non-intersecting neighborhoods of v and v + π (u) .

Thus the quotient of V/U is Hausdorff iff π
(
Ū
)

goes to zero. Clearly V/Ū = (V/U) /
(
Ū/U

)
is the largest quotient with this property.

Corollary 1.2.26. Let U be a subspace of a space V of compact type. Then the largest

Hausdorff quotient of V/U is isomorphic to V/Ū.

1.3 Complete tensor products

Let V and W be two LCVSs (see, for example [24, sec. 17]).

The inductive tensor product topology is the finest locally convex topology on V ⊗
K
W,

such that the canonical bilinear map

V ×W → V ⊗
K
W

is separately continuous. We write V ⊗
K,i

W for V ⊗
K
W equipped with this topology. The

space V ⊗
K,i

W is characterized by the universal property that for any bilinear separately

continuous map f : V ×W → U the induced map f̃

U

V ×W V ⊗
K,i
W

f̃

f

12



is continuous.

The projective tensor product topology is the finest locally convex topology on V ⊗
K
W,

such that the canonical bilinear map

V ×W → V ⊗
K
W

is (jointly) continuous. We write V ⊗
K,π

W for V ⊗
K
W equipped with this topology. The

space V ⊗
K,π

W is characterized by the universal property that for any bilinear continuous

map f : V ×W → U the induced map f̃

U

V ×W V ⊗
K,π

W

f̃

f

is continuous.

Proposition 1.3.1. Let V and W be two LCVS.

1. If V and W are Frechet (in particular, Banach) spaces, then the projective and injective

tensor product topologies coincide.

2. If V and W are CT spaces, then the projective and injective tensor product topologies

coincide.

Proof. 1) [24, 17.6]; 2)[6, 1.1.31].

Thus we will usually write V ⊗
K
W meaning the above topology and V ⊗̂W for Hausdorff

completion of V ⊗
K
W.

Lemma 1.3.2. If V and W are a) Banach; b) Frechet; c) nuclear Frechet; d) CT spaces,

then V ⊗̂W is also of the same type.

Proof. [6, 1.1.28,29,32.]

13



The categories of a) Banach; b) Frechet; c) nuclear Frechet; d) CT spaces are tensor

categories with the tensor structure given by ⊗̂ (the morphisms are continuous maps).

Lemma 1.3.3. Let W and V be both either Frechet or CT spaces and let U be a linear

subspace of V.

Then W ⊗̂ (V/U) = W ⊗̂
(
V/Ū

)
.

The following is the analog of the ”integration” theorem of [26, Thm. 22]

Proposition 1.3.4. Let A be a CT LCVS and A′ is its dual NF LCVS. Then we have

continuous K-linear isomorphisms

1) Lb (A, V ) ∼= A′ ⊗̂
K,π
V

2) Lb (A′, V ) ∼= A ⊗̂V (the ”integration” map)

for any V of compact type.

Proof. The first isomorphism is [24, 20.9]. For the second observe that, if V = lim
→
Vn, then

Lb (A′, V ) = lim
→
Lb (A′, Vn) and A ⊗̂V = lim

→
A ⊗̂Vn, and apply [26, Prop. 1.5].

The above proposition does not hold for K-Banach spaces (see [24, 18.11]).

Lemma 1.3.5. For any K-Banach space A and any Banach space V

A ⊗̂V ∼= C (A′, V ) = CC (A′, V )

where C(·, ·) denotes compact maps and CC (·, ·) completely continuous maps, respectively.

Lemma 1.3.6. Let f : V → W be a strict map of Banach spaces. Then 1 ⊗ f : U ⊗̂V →

U ⊗̂W is also strict for any Banach space U .

Proof. Im (1⊗ f) = U ⊗̂ Im (f) .
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1.4 Seminormed spaces

We call a topological vector space E seminormed if its topology is defined by a seminorm

pE.

If E is a topological vector subspace of F and pF is a seminorm on F, then it induces a

seminorm p′ on E and p′′ on F/E, defined by

p′ (x) = p (x) and p′′ (x+ E) = inf
e∈E

p (x+ e) .

Thus in the category of seminormed spaces one can take a quotient by an arbitrary linear

subspace.

The seminormed space X is called complete if any net in X has an accumulation point.

Every seminormed space X can be embedded into a complete seminormed space X̃,

which is the space of Cauchy nets in X.

1.5 Nonarchimedean topological algebras.

Let A be a locally convex algebra, that is A is an LCVS with an associative unital K-algebra

structure such that the algebra multiplication m : A ⊗ A → A is continuous and thus can

be continued to the map m : A ⊗̂A→ A.

Definition 1.5.1. A seminorm q on A is called an algebra seminorm if there exists c > 0

such that

q (ab) ≤ cq (a) q (b) for any a, b ∈ A.

The seminorms, defining topology on A, are necessarily algebra seminorms.

Definition 1.5.2. An algebra seminorm is called submultiplicative if c = 1, i.e.

q (ab) ≤ q (a) q (b) for any a, b ∈ A

and unital if q (1) = 1.
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Definition 1.5.3. A locally convex algebra A is called a K-Banach algebra if its topology

is given by a single seminorm ‖·‖A, which is a norm.

Proposition 1.5.4. [27, Prop. 2.1]Let A be a (left) noetherian K-Banach algebra.

• Each finitely generated A-module carries a unique K-Banach space topology (called the

canonical topology) such that the A-module structure map A×M →M is continuous;

• every A-submodule of a finitely generated module is closed in the canonical topology;

in particular, every (left) ideal in A is closed;

• any homomorphism of finitely generated A-modules is continuous and strict for the

canonical topologies.

Finitely generated modules over a Noetherian K−Banach algebra form an abelian cat-

egory.

Since K is discretely valued, when values of ‖·‖A are a subset of the value group of K,

we can equip such K−Banach algebra with an integral, complete, separated, decreasing

filtration

FnA =
{
a ∈ A

∣∣∣ ‖a‖A ≤ p−n
}
.

Thus we can view A as a filtered ring.

A locally convex algebra A is called a (nuclear) Frechet algebra if it is a (nuclear) Frechet

LCVS.

Definition 1.5.5. A Frechet algebra A is called Frechet-Stein algebra, if it is a projective

limit of a projective system of K−Banach algebras (An, φnm) , where φnm : An → Am, such

that

1. the An are noetherian K−Banach algebras;

2. the maps φnm are flat algebra homomorphisms, i.e. Am is a flat An-module under

φnm : An → Am.
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The system (An, φnm) is called a Frechet-Stein structure on A.

Definition 1.5.6. A module M over a Frechet-Stein algebra A is called coadmissible with

respect to the Frechet-Stein structure (An, φnm) , if M is isomorphic to a projective limit of

a projective system (Mn, ψnm) of a finitely generated An−modules, such that

An ⊗
An+1

Mn+1 'Mn.

Coadmissible modules over a Frechet-Stein algebra form an abelian category (see [27]).

Lemma 1.5.7. Let I be a closed two-sided ideal in a Frechet-Stein algebra A. Then A/I is

also a Frechet-Stein algebra.

Proof. [27, Prop. 3.7].
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Chapter 2

Nonarchimedean Hopf algebras and
comodules

2.1 Nonarchimedean Hopf Algebras

Throught this chapter we assume K is a nonarchimedean discretely valued complete field.

Unless specified otherwise, for any LCVS V , V ′ will mean the strong dual V ′b .

2.1.1 Banach and topological Hopf algebras.

Recall that the categories of Banach, NF and CT spaces are tensor categories with the

tensor structure given by ⊗̂.

Definition 2.1.1. We say that A is a K−Banach Hopf algebra, if it is a Hopf algebra

in the category of K−Banach spaces, i.e. there are continuous maps (mA, eA,∆A, εA, SA)

satisfying all usual axioms of Hopf algebras.

If A is a K-Banach Hopf algebra with structure maps (mA, eA,∆A, εA, SA) , then A′ is

also a K-Banach Hopf algebra with structure maps (∆∗A, ε
∗
A,m

∗
A, e

∗
A, S

∗
A), where ∗ denotes

the dual map.

Let {An, φn} be an inductive system of K-Banach Hopf algebras An with injective tran-

sition maps φn : An → An+1, s.t. φn are morphisms of K−Banach Hopf algebras. Then

A = lim
→
An is a Hopf algebra in the category of locally convex K-vector spaces, with Hopf
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algebra maps (m, e,∆, ε, S) defined by the corresponding maps (mn, en,∆n, εn, Sn) and uni-

versal property of inductive limit.

Definition 2.1.2. Suppose φn are compact maps. Then A is a locally convex vector space

(LCVS) of compact type (CT-space or LS-space). In this case we call A a K-Hopf algebra

of compact type (or CT-Hopf algebra).

The dual A′ is a nuclear Frechet vector space, which is a projective limit A′ = lim
←
A′n

of K-Banach spaces A′n, with compact transition maps φ∗n : A′n+1 → A′n. The maps φ∗n are

also morphisms of K-Banach Hopf algebras. Thus A′ is a topological Hopf algebra with

structure maps (∆∗, ε∗,m∗, e∗, S∗) and it is a compact projective limit of K−Banach Hopf

algebras A′n.

Definition 2.1.3. We call A a nuclear Frechet K-Hopf algebra (or NF-Hopf algebra) if it is

topologically isomorphic to compact projective limit of K-Banach Hopf algebras.

So, if A is a CT-Hopf algebra, then A′ is an NF-Hopf algebras. Since spaces of compact

type are reflexive, by duality we have an anti-equivalence of categories

{CT-Hopf algebras} ←→ {NF-Hopf algebras} .

Definition 2.1.4. If A′ = lim
←
A′n, we say that A′n defines a NF structure on A. We say that

NF structures {A′n} , {B′n} are equivalent if they are equivalent (in the sense of [6, 1.2.7])

in the category of projective systems of K−Banach Hopf algebras.

It is known that any two NF structures are equivalent [6, 1.2.7].

Definition 2.1.5. If A = lim
→
An with injective and compact transition maps we say that

{An} defines a compact type structure on A.

If A = lim
→
An and B = lim

→
Bn are compact type K-Hopf algebras, then A ⊗̂B ∼=

lim
→

(
An ⊗̂Bn

)
is a compact type K-Hopf algebra with CT-Hopf structure being inductive

limit of Hopf structure on An ⊗̂Bn.
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It is known that if V is an LCVS of compact type and U is a closed vector subspace,

then U and V/U are also of compact type [26, Prop.1.2].

Proposition 2.1.6. If V is a CT-Hopf algebra and U is a closed Hopf subalgebra, then U

is also of compact type. If I is a closed Hopf ideal of V, then V/I is a CT-Hopf algebra.

Proof. By the Banach-Dieudonne Theorem, U ⊂ V is closed iff Un = U ∩ V is closed ∀n

[13]. Thus Un are Banach subspaces of Vn and, since U is a Hopf subalgebra, are K-Banach

Hopf subalgebras of Vn. Thus U = lim
→
Un is a CT-Hopf algebra.

The same argument works for V/I = lim
→
Vn/In with In = I ∩ Vn.

2.1.2 Normal Hopf algebras

In the algebraic theory of Hopf algebras there are different (but related) notions corre-

sponding to normal subgroups. They arise by generalizing notions natural in two principal

classical cases of Hopf algebras: coordinate function algebras and group algebras.

Since in non-archimedean analysis these two objects have different topological types, the

corresponding notions, corresponding to normal subgroups, and relations between them in

our context are more clear.

We assume that the reader is familiar with Sweedler notations.

Definition 2.1.7. Let (A,m, e,∆, ε, S) be a CT- or Banach Hopf algebra.

1. The left adjoint coaction of A on itself is a map

ρl : A−→A ⊗̂A

ρl (h) =
∑

h1S (h3)⊗ h2

2. The right adjoint coaction of A on itself is a map

ρr : A−→A ⊗̂A

ρr (h) =
∑

h2 ⊗ S (h1)h3
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3. A Hopf ideal I of A is called normal if ρl (I) ⊆ A ⊗̂ I and ρr (I) ⊆ I ⊗̂A.

4. We say that a Hopf algebra morphism φ : A→ B is normal if Ker φ is a normal Hopf

ideal of A.

One can write ρl as

ρl = (m⊗ id) ◦ (id⊗ σ23) ◦ (id⊗ id⊗ S) ◦ (id⊗∆A) ◦∆A

and

ρr = (id⊗m) ◦ (σ12 ⊗ id) ◦ (S ⊗ id⊗ id) ◦ (∆A ⊗ id) ◦∆A

(σij denotes cyclic permutation of terms from i to j).

Remark 2.1.8. One can check (straightforward) that ρl is an A−comodule structure on A

and a morphism of Hopf algebras φ : A→ B is normal if Ker φ is a subcomodule w.r.t. this

structure.

Definition 2.1.9. Let (A,m, e,∆, ε, S) be a NF- or Banach Hopf algebra.

1. The left adjoint action of A on itself is a map

(adlh) (k) =
∑

h1k (S (h2))

for all h, k ∈ A.

2. The right adjoint action of A on itself is a map

(adrh) (k) =
∑

S (h1) kh2

for all h, k ∈ A.

3. A Hopf subalgebra B of A is called normal if (adlA) (B) ⊆ B and (adrA) (B) ⊆ B.

One can see easily that adl, adr : A ⊗̂A→ A and

adl = m ◦ (id⊗m) ◦ (id⊗ id⊗ S) ◦ (id⊗ σ23) ◦ (∆A ⊗ id)
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and

adr = m ◦ (m⊗ id) ◦ (S ⊗ id⊗ id) ◦ (σ12 ⊗ id) ◦ (id⊗∆A) .

Taking dual map gives

(ρA,l)
′ = adA′,l and (ρA,r)

′ = adA′,r

and vice verse. Thus one has

Proposition 2.1.10. Let A be a CT-Hopf algebra.

A Hopf ideal I in A is normal (and projection A� A/I is normal) iff (A/I)′b is a normal

Hopf subalgebra of A′b.

2.2 Modules and comodules

All our modules and comodules are assumed to be continuous, i.e. multiplication and

comultiplication, respectively, are continuous maps.

2.2.1 Modules and comodules.

Definition 2.2.1. Let A be a CT- (Banach) Hopf algebra and V an LCVS of compact type.

1. We say that V is a right CT-comodule (Banach comodule) over A if exists ρ : V →

V ⊗̂A, a K-linear continuous map such that

(idV ⊗̄εA) ◦ ρV = idV
(ρV ⊗ idA) ◦ ρV = (idV ⊗∆A) ◦ ρV

.

Right CT (Banach) comodules form a category ComodCT − A (ComodBan − A) with

morphisms being continuous morphisms of comodules.

2. By duality, V ′b is an NF- (Banach) space which is a continuous right A′b−module.

We will say that V ′b is a module, dual to comodule V. Denote the category of right

continuous A′-modules that are NF spacesby modNF − A′.
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3. On V there is also a left A′−module structure

m : A′ ⊗̂
K,π
V → V

λ⊗ v 7→ λ · v = (idV ⊗̄λ) ◦ ρV (v) .

Such modules (with A′b-module structure coming from the comodule structure on V )

are called rational.

4. In Banach case, left A′−module structure on V gives a continuous left A−comodule

structure on V ′. Equipped with this comodule structure, we will call V ′ a dual comod-

ule.

5. Similarly, if W is a Banach space, one can give a structure of a continuous right

A′−module to the space Lb (V,W ) .

Now if V is a left A′−module and a compact type LCVS, then “integration” theorem

implies existence of a map ρV

V V ⊗̂A

Lb (A′, V )

ρV

i

(where i (v) (λ) = λ·v), such that the A′−module structure on V is exactly λ·v = (idv ⊗ λ)◦

ρV (v) . The module axioms for V imply that ρV satisfies the right comodule axioms ([29,

2.1.1]). Thus we have

Proposition 2.2.2. All continuous A′−modules on an LCVS of compact type are rational

(in the sense of [29, 2.1]).

Let A be a Banach K-Hopf algebra and M a left continuous Banach module over A′.

Following [29, 2.1], we define

ρ : M → Lb (A′,M)
m 7→ ρ (m) : ρ (m) (c∗) = c∗m

. (2.2.1)
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There is a natural embedding

M ⊗̂A ↪→ Lb (A′,M)
m⊗ a 7−→ f (m⊗ a) : f (m⊗ a) (c∗) = c∗ (a) ·m .

Now Prop.1.3.5 says that we have

Proposition 2.2.3. M is rational if ρ (M) ⊂ C (A′,M) ,i.e. ρ (m) is a compact map for

every m ∈M.

Now let V be a compact type comodule over A. The dual V ′b is a nuclear Frechet LCVS.

Since taking dual invert all arrows in diagrams, expressing comodule properties of V, V ′b is a

right module over A′ which is continuous. All together, we have an equivalence of categories

comodCT − A ∼ A′ −modCT

and anti-equivalence of categories

comodCT − A ∼ modNF − A′ .

Note that if the antipode of a Hopf algebra A′ is involutive (i.e. S2
A′ = Id), then the

categories of left and right modules are equivalent.

Proposition 2.2.4. Let V be a right CT-comodule over A and U a closed subcomodule of

A. Then U and V/U are right A-comodules of compact type and the exact sequence

0→ U → V → V/U → 0

give rise to the exact sequence of right A′−modules

0→ (V/U)′b → V ′b → U ′b → 0

with strict maps.

Definition 2.2.5. We call a topological comodule simple, if it does not have any closed

subcomodules.
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Proposition 2.2.4 gives

Corollary 2.2.6. CT A-comodule V is simple if and only if V ′b does not have closed proper

A′−submodules.

Lemma 2.2.7. Let V be a Banach A-comodule and V ′ be an A′−module.

1. If U is a closed subcomodule of V then U⊥ is a closed submodule of V ′.

2. If U ′ is a closed submodule of V ′ then U = Ker (U ′) is a closed subcomodule of V.

Proof. (1) If φ ∈ U⊥ and λ ∈ A′, then for any u ∈ U

(λφ) (u) = (λ⊗̄φ) ◦∆A (u) =
∑

λ (u0)φ (u1) = 0

since u1 ∈ U.

(2) Let u ∈ U. Then ∆A (u) =
∑
u0 ⊗ u1 can be written as ∆A (u) =

∑
i∈I

ai ⊗ ui,

where {ai}i∈I is an orthogonal base of A. Let λi be a functional, dual to ai. But then

(λiφ) (u) = φ (ui) for any φ ∈ V ′. Since U ′ is a submodule, ∀φ ∈ U ′ : (λiφ) (u) = φ (ui) = 0

and thus ui ∈ U. So U is a subcomodule.

Lemma 2.2.8. Let A be a Banach Hopf algebra and V be a Banach A-comodule. Then

1. V is simple if V ′ is simple;

2. V is simple if and only if it is simple as an A′−module.

Proof. (1) If 0 → M ↪→ V � V/M → 0 is an exact sequence of A−comodules, then, by

lemma 1.2.24, (V/M)′b is a closed submodule of V ′b .

(2) is proved in [5].

The following is the analog of [26, Lemma 3.9]

Proposition 2.2.9. Let V be a compact type comodule over A, which is an compact inductive

limit of Banach comodules Vn over An and ρV |Vn = ρVn+1|Vn = ρVn . Suppose there exists

N > 0 such that Vn are simple for all n ≥ N . Then V is simple.
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Proof. Let U ⊂ V be a proper closed subcomodule. Since V is of compact type, U = lim
→
Un,

such that for each n Un is a closed subspace of Vn. Since U and Vn are subcomodules of

V, Un is An−subcomodules of Vn. Since U is a proper subspace of V, Un must be proper

subspaces of Vn for all n > N for some N > 0 and this completes the proof.

Remark 2.2.10. [26, Lemma 3.9] is proved for coadmissible modules over Frechet-Stein al-

gebra, i.e. the duals of Vn are required to be finitely generated over A′n and A′n are required

to be Noetherian. These assumptions are not required in our result. On the other hand,

our result is for CT-comodules, which on the dual side mean a nuclear Frechet module, and

nuclearity is not required in [26, Lemma 3.9].

For K-Banach spaces an operator is compact iff it is completely continuous. Since the

later are limits of finite-dimensional operators, they motivate the following

Definition 2.2.11. Let M be a Banach module over A′.

• m ∈M is called finite if A′m is finite dimensional.

• N ∈ comodCT − A. n ∈ N is called finite if ρN (n) is a finite sum in N ⊗̂A (i.e.

ρN (n) ∈ N ⊗
K
A)

Proposition 2.2.12. n ∈ N is finite as an element of the comodule N if and only if n is

finite as a vector of the A′−module N iff ρ (n) (see 2.2.1) is a finite-dimensional operator.

Proof. Let ρN (n) = a1⊗n1+· · ·+ak⊗nn. Then for any φ ∈ A′ φ·n = φ (a1)n1+· · ·+φ (ak)nn.

Taking as φ the functional, dual to ai, gives ni ∈ A′n. Thus A′n = Kn1 + · · · + Kn2 and

this proves the first part. The second part is clear.

Example 2.2.13. Examples from representation theory:

• If N = A = C(Zp, K) - the continuous functions on Zp, then all polynomials are finite

elements and they are dense in A.
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• IfN = Ind
GL2(Zp)
P (χ)− the continuous principal series representation from [25] (viewed

as comodule over C (GL2 (Zp) , K)) with dominant integral χ, then the only finite ele-

ments are the elements of the space of corresponding rational representation and they

are not dense.

• If, as above, χ is such that the representation is topologically irreducible, then there

are no finite elements in N.

2.2.2 Induction

Let A and B be Banach or compact type K−Hopf algebras. Let (M,ρM) be a right

A−comodule and let (N, τN , ρN) be an A − B−comodule with left A−coaction τN and

right B−coaction ρN .

Definition 2.2.14. The space M�̂
A
N = Ker (ρM ⊗ idN − idM ⊗ τN) is called the cotensor

product of M and N over A. It has a right B−comodule structure with coaction idM ⊗ ρN .

Since M�̂
A
N is a kernel of a continuous map, it is a closed subspace of M ⊗̂N . Thus if

M and N are both Banach or CT spaces, then M�̂
A
N is Banach or CT respectively.

It is straightforward to check (using Hahn-Banach Theorem) the following

Lemma 2.2.15.
(
M�̂

A
N
)′
b

= M ′
b⊗̂
A′b

N ′b,

(
M ′

b⊗̂
A′b

N ′b

)′
b

= M ′′ �̂
A′′
N ′′.

Let π : A → B be a morphism of topological Hopf algebras (either Banach or compact

type). Then A is a left and right B−comodule via maps

ρlπ = (π ⊗ idA) ◦∆A

and

ρrπ = (idA ⊗ π) ◦∆A.

Denote those comodules by πA and Aπ respectively.
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Definition 2.2.16. Let V ∈ comod· − B. Then V �̂
B
πA is called induced A-comodule. We

have V �̂
B
πA ∈ comod·−A. We also denote the induced right A-comodule by V π. The functor

(−)π is called induction.

Definition 2.2.17. For V ∈ comod· − A Vπ will denote the B−comodule V with coaction

V
ρV→ V ⊗̂A id⊗π→ V ⊗̂B. The functor (−)π is called restriction.

In order to justify the names of our functors we need to prove Frobenius reciprocity, i.e.

that induction functor is a left adjoint to restriction.

Proposition 2.2.18. (Frobenius reciprocity)

Let π : A→ B be a continuous morphism of CT K-Hopf algebras, M be a CT-comodule

over B and N be a CT-comodule over A.

There is a topological isomorphism

ComodCT − A
(
N,M�̂

B
πA
)
' ComodCT −B (Nπ,M) ,

where ComodCT − A (V,W ) is a space of continuous comodule morphisms between V and

W, with the topology induced from Lb (V,W ) .

First we prove a technical

Lemma 2.2.19. The map id⊗εA : M�̂
B
πA −→M sending m⊗a 7−→ εA (a)m is a morphism

of B-comodules
(
M�̂

B
πA
)
π

and M.

Proof. We need to prove the commutativity of the following diagram:

M ⊗̂A M ⊗̂A ⊗̂A M ⊗̂A ⊗̂B

M ⊗̂B M ⊗̂B ⊗̂B

M M ⊗̂B

id⊗∆A

id⊗ π

id ¯⊗εA

id⊗̄εB

ρM

id⊗ id⊗ π

id⊗ π ⊗ id

id⊗̄εA ⊗ id

id⊗̄εB ⊗ 1
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Let m⊗ a ∈M�̂
B
πA. This means that we have

∑
m(0) ⊗m(1) ⊗ a =

∑
m⊗ π

(
a(1)

)
⊗ a(2).

The left and bottom parts composed are clearly
∑
m⊗ a 7→

∑
m(0) ⊗m(1)εA (a) .

The top and right parts composed are giving

∑
m⊗ a 7→

∑
m⊗ εB

(
π
(
a(1)

))
π
(
a(2)

)
=
∑

m⊗ εB
(
π (a)(1)

)
π (a)(2) =

=
∑

m⊗ π (a)(1) εB

(
π (a)(2)

)
==

∑
m⊗ π (a)(1) εA

(
a(2)

)
=
∑

m(0) ⊗m(1)εA (a) .

Proof of prop.2.2.18. Define morphisms

φ 7−→ (id⊗̄εA) ◦ φ = φ̃ = (id⊗̄ (εB ◦ π)) ◦ φ
(ψ ⊗ id) ◦ ρN = ψ̄ ←− (ψ : N →M)

.

The fact that φ̃ is a morphism of B−comodules follows from equality(
φ̃⊗ id

)
◦ ρNπ = (id⊗̄εB ⊗ id) ◦ (id⊗ π ⊗ id) ◦ (φ⊗ id) ◦ (id⊗ π) ◦ ρN =

= (id⊗̄εB ⊗ id)◦ (id⊗ π ⊗ π)◦ (φ⊗ id)◦ρN = (id⊗̄εB ⊗ id)◦ (id⊗ π ⊗ π)◦ (id⊗∆A)◦φ =

##
= ρM ◦ (id⊗̄εB) ◦ (id⊗ π) ◦ φ = ρM ◦ φ̃,

where (##) is given by Lemma 2.2.19.

The identity

(ρM ⊗ id) ◦ φ̃ = (ρM ⊗ id) ◦ (ψ ⊗ id) ◦ ρN = (ψ ⊗ id⊗ id) ◦ (ρNπ ⊗ id) ◦ ρN =

= (ψ ⊗ id⊗ id) ◦ (id⊗ π ⊗ id) ◦ (ρN ⊗ id) ◦ ρN =

= (ψ ⊗ id⊗ id) ◦ (id⊗ π ⊗ id) ◦ (id⊗∆A) ◦ ρN =

= (id⊗ π ⊗ id) ◦ (id⊗∆A) ◦ (ψ ⊗ id) ◦ ρN = (id⊗ π ⊗ id) ◦ (id⊗∆A) ◦ ψ̃

means that the image of ψ̃ belongs to M�̂
B
πA.
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The identity

ρM�̂
B
πA
◦ ψ̃ = (id⊗∆A) ◦ (ψ ⊗ id) ◦ ρN = (ψ ⊗ id⊗ id) ◦ (id⊗∆A) ◦ ρN =

= (ψ ⊗ id⊗ id) ◦ (ρN ⊗ id) ◦ ρN =
(
ψ̃ ⊗ id

)
◦ ρN

shows that ψ̃ is a morphism of A−comodules from N to M�̂
B
πA.

Let us show that ˜̃φ = φ and ˜̃ψ = ψ.

˜̃φ =
(
φ̃⊗ id

)
◦ ρN = (id⊗ εA ⊗ id) ◦ (ψ ⊗ id) ◦ ρN = (id⊗ εA ⊗ id) ◦ ρM�̂

B
πA
◦ φ =

= (id⊗ εA ⊗ id) ◦ (id⊗∆A) ◦ φ = φ

˜̃ψ = (id⊗̄εA) ◦ (ψ ⊗ id) ◦ ρN = (id⊗̄εA) ◦ ρM ◦ ψ = ψ.

Since the topologies on the spaces ComodCT−A
(
N,M�̂

B
πA
)

and ComodCT−B (Nπ,M)

are induced from Lb
(
N,M ⊗̂A

)
and Lb (N,M) respectively, the continuity of our linear

bijections follows from the argument same as in [24, sec.18]. Namely, composition with

linear continuous map W → U is a linear continuous map Lb (V,W )→ Lb (V, U) . Since our

(̃·) maps are compositions of continuous maps, they are continuous.

Remark 2.2.20. Proposition 2.2.18 is also true for Banach comodules over Banach K−Hopf

algebras. The proof is the same.

2.2.3 Tensor Identities

One can define the tensor product of topological comodules as in the algebraic case.

Definition 2.2.21. Let (M,ρM) and (N, ρN) be two right Banach or CT comodules over a

Banach or CT Hopf algebra A respectively. Then on M ⊗̂N there is an right A-comodule

structure

ρM ⊗̂N = (idM ⊗ idN ⊗mA) ◦ (idM ⊗ σ23 ⊗ idA) ◦ (ρN ⊗ ρN) ,

making M ⊗̂N an A-comodule of appropriate type.
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Proposition 2.2.22. (Tensor identities) Let π : A → B be a continuous morphism of

topological K-Hopf algebras (either Banach or compact type), and let W be a comodule over

B and V a comodule over A (of appropriate type), then

(i) V ⊗̂
(
W �̂

B
πA
)
∼=
(
Vπ ⊗̂W

)
�̂
B
πA,

(ii)
(
W �̂

B
πA
)
⊗̂V ∼=

(
W ⊗̂Vπ

)
�̂
B
πA,

both isomorphisms being as topological A-comodules.

Proof. We include a complete proof, since it is not present in any source known to us.

(i) Both V ⊗̂
(
W �̂

B
πA
)

and
(
Vπ ⊗̂W

)
�̂
B
πA are embedded into V ⊗̂W ⊗̂A. Their ele-

ments satisfy the following identities in respective order:

(∗)
∑

v ⊗ w(0) ⊗ w(1) ⊗ h =
∑

v ⊗ w ⊗ π(h(1))⊗ h(2) (2.2.2)

(∗∗)
∑

v(0) ⊗ w(0) ⊗ π(v(1))w(1) ⊗ h =
∑

v ⊗ w ⊗ π(h(1))⊗ h(2) (2.2.3)

in V ⊗̂W ⊗̂B ⊗̂A.

Let φ be the map

φ : V ⊗̂W ⊗̂A → V ⊗̂W ⊗̂A∑
v ⊗ w ⊗ h 7−→

∑
v(0) ⊗ w ⊗ v(1)h

.

Suppose that
∑
v⊗w⊗ h satisfies (*). For

∑
v(0)⊗w⊗ v(1)h (**) takes the following form∑

v(0)(0) ⊗ w(0) ⊗ π(v(0)(1))w(1) ⊗ v(1)h =
∑
v(0) ⊗ w ⊗ π(v(1)(1))π(h(1))⊗ v(1)(2)h(2)

(∗ ∗ ∗) .

A direct check shows that (***) is obtained from (*) by applying to the left and right hand

side the maps enlisted below
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∑
v ⊗ w(0) ⊗ w(1) ⊗ h

∑
v ⊗ w ⊗ π

(
h(1)

)
⊗ h(2)

∑
v(0) ⊗ v(1) ⊗ w(0) ⊗ w(1) ⊗ h

∑
v(0) ⊗ v(1) ⊗ w ⊗ π

(
h(1)

)
⊗ h(2)

∑
v(0)(0) ⊗ v(0)(1) ⊗ v(1) ⊗ w(0) ⊗ w(1) ⊗ h

∑
v(0) ⊗ v(1)(1) ⊗ v(1)(2) ⊗ w ⊗ π

(
h(1)

)
⊗ h(2)

∑
v(0)(0) ⊗ w(0) ⊗ π

(
v(0)(1)

)
w(1) ⊗ v(1)h

∑
v(0) ⊗ w ⊗ π

(
v(1)(1)

)
π
(
h(1)

)
⊗ v(1)(2)h(2)

ρv ⊗ id⊗ id⊗ id

ρv ⊗ id⊗ id⊗ id⊗ id

(id⊗ id⊗mB ⊗ id) ◦ σ23 ◦ (id⊗ π ⊗ id⊗ id⊗mA) ◦ σ35

ρv ⊗ id⊗ id⊗ id

id⊗∆A ⊗ id⊗ id⊗ id

(id⊗ id⊗mB ⊗ id) ◦ σ23 ◦ (id⊗ π ⊗ id⊗ id⊗mA) ◦ σ35

which can be easily seen to be identical (σij means cyclic permutation from the jth to the

ith entry).

Thus φ maps V ⊗̂
(
W �̂

B
πA
)

to
(
Vπ ⊗̂W

)
�̂
B
πA.

Let us show that φ is a morphism of right A−comodules, i.e.

(φ⊗ idA) ◦ ρ
V ⊗̂

(
W �̂
B
πA

) = ρ(Vπ ⊗̂W)�̂
B
πA
◦ φ.

We have ∑
v ⊗ w ⊗ h

∑
v(0) ⊗ w ⊗ v(1)h

∑
v(0) ⊗ w ⊗ h(1) ⊗ v(1)h(2)

∑
v(0) ⊗ w ⊗ v(1)(1)h(1) ⊗ v(1)(2)h(2)

∑
v(0)(0) ⊗ w ⊗ v(0)(1)h(1) ⊗ v(1)h(2)

φ

ρ
V ⊗̂

(
W �̂
B
πA

)

ρ(Vπ ⊗̂W)�̂
B
πA φ⊗ id

The equality follows from

(ρV ⊗ id⊗∆A) (
∑

v ⊗ w ⊗ h) =
∑

v(0) ⊗ v(1) ⊗ w ⊗ h(1) ⊗ h(2) =

= (ρV ⊗ id⊗ id⊗ id⊗ id)
(∑

v(0) ⊗ v(1) ⊗ w ⊗ h(1) ⊗ h(2)

)
=

=
∑

v(0)(0) ⊗ v(0)(1) ⊗ v(1) ⊗ w ⊗ h(1) ⊗ h(2) =
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= (id⊗∆A ⊗ id⊗ id⊗ id)
(∑

v(0) ⊗ v(1) ⊗ w ⊗ h(1) ⊗ h(2)

)
=

=
∑

v(0) ⊗ v(1)(1) ⊗ v(1)(2) ⊗ w ⊗ h(1) ⊗ h(2)

Now let

ψ : V ⊗̂W ⊗̂A −→ V ⊗̂W ⊗̂A∑
v ⊗ w ⊗ h 7−→

∑
v(0) ⊗ w ⊗ SA

(
v(1)

)
h
.

Suppose
∑
v ⊗ w ⊗ h satisfies (**). For

∑
v(0) ⊗ w ⊗ S(v(1))h (*) takes the form:

∑
v(0) ⊗ w(0) ⊗ w(1) ⊗ S(v(1))h

?
=
∑

v(0) ⊗ w ⊗
{

(π ⊗ id) ◦
(
SA
(
v(1)

)
h
)}

=

=
∑

v(0) ⊗ w ⊗ π
(
SA
(
v(1)(2)

)
h(2)

)
.

The last part of the above formula equals

(id⊗ id⊗ id⊗mA) ◦ σ24 ◦ (id⊗ id⊗ id⊗mb ⊗ id) ◦ σ34◦

◦ (id⊗ id⊗ π ⊗ id⊗ id⊗ id) ◦ (id⊗ SA ⊗ SA ⊗ id⊗ id⊗ id) ◦

◦((id⊗∆A) ◦ ρV︸ ︷︷ ︸ ⊗id⊗ id⊗ id)

(∑
v ⊗ w ⊗ π

(
h(1)

)
⊗ h(2)︸ ︷︷ ︸

)
=

|| || by (**)
(ρV ⊗ idA) ◦ ρV

∑
v(0) ⊗ w(0) ⊗ π

(
v(1)

)
w(1) ⊗ h

=
∑

v(0)(0)(0) ⊗ w(0) ⊗ π
(
S
(
v(0)(1)

))
π
(
v(1)

)
w(1) ⊗ S

(
v(0)(0)(1)

)
h =

=
∑

v(0) ⊗ w(0) ⊗ w(1) ⊗ S
(
v(1)

)
h,

where the last equality is due to

∑
v(0)(0) ⊗ π

(
SA
(
v(0)(1)

))
π
(
v(1)

)
=
∑

v(0) ⊗ π
(
SA
(
v(1)(1)

)
v(1)(2)

)
=

=
∑

v(0) ⊗ εA
(
v(1)

)
= v ⊗ 1.

Thus ψ maps
(
Vπ ⊗̂W

)
�̂
B
πA to V ⊗̂

(
W �̂

B
πA
)

.

We have ∑
v ⊗ w ⊗ h ψ−→

∑
v(0) ⊗ w ⊗ S

(
v(1)

)
h

ρ
V ⊗̂

(
W �̂
B
πA

)
−→
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∑
v(0)(0) ⊗ w ⊗ S

(
v(1)(2)

)
h(1) ⊗ v(0)(1)S

(
v(1)(1)

)
h(2)

#
=

=
∑
v(0)(0) ⊗ w ⊗ S

(
v(1)

)
h(1)⊗ v(0)(1)(1)S

(
v(0)(1)(2)

)︸ ︷︷ ︸ h(2) =

||
ε
(
v(0)(1)

)
=
∑

v(0)(0)ε
(
v(0)(1)

)
⊗ w ⊗ S

(
v(1)

)
h(1) ⊗ h(2),

where the (#) equality is due to

(ρV ⊗∆A) ◦ ρV = (id⊗∆A ⊗ id) ◦ (ρV ⊗ id) ◦ ρV .

On the other hand∑
v ⊗ w ⊗ h

ρ(Vπ ⊗̂W)�̂
B
πA

−→
∑

v ⊗ w ⊗ h(1) ⊗ h(2)
ψ⊗idA7−→

∑
v(0) ⊗ w ⊗ S

(
v(1)

)
h(1) ⊗ h(2) =

=
∑

v(0)(0)ε
(
v(0)(1)

)
⊗ w ⊗ S

(
v(1)

)
h(1) ⊗ h(2).

Thus ψ is morphism of right A−comodules.

The verification that φ ◦ ψ = id(Vπ ⊗̂W)�̂
B
πA

and ψ ◦ φ = id
V ⊗̂

(
W �̂
B
πA

) is trivial. Since all

involved maps are continuous, φ and ψ are topological isomorphisms.

The proof of (ii) is the same up to permutation of some terms in tensor products.

Corollary 2.2.23. If B = K, π = εA and W = K then we have a comodule isomorphism

V ⊗̂A ∼= Vtr ⊗̂A,

where Vtr means the underlying vector space of V with trivial comodule structure.

2.3 Admissible comodules

Recall [6, 1.2.8] that a module M over A′ is called coadmissible (w.r.t. a fixed nuclear

Frechet structure A′n on A′), if we have the following data:

1. a sequence of finitely generated Banach modules Mn over A′n;

2. an isomorphism of Banach A′n−modules A′n ⊗̂
A′n+1

Mn+1 'Mn;
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3. an isomorphism of topological A−modules M ' lim
←
Mn (projective limit is taken

w.r.t. transition maps Mn+1 −→Mn, induced by 2).

It is known that if M is coadmissible w.r.t. one nuclear Frechet structure on A, then it is

coadmissible w.r.t. any [6, 1.2.9].

Definition 2.3.1. Let V ∈ comodCTA. We call V admissible, if exists a sequence {Vn}n of

comodules over An, s.t.

1. Vn are Banach right comodules over An and there is an embedding of Vn into a finite

product of copies of Ans;

2. we have an isomorphism of An−comodules Vn+1 �̂
An+1

An ' Vn (An is a left and right

An+1−comodule, so we can take completed cotensor product);

3. we have an isomorphism of topological comodules V ' lim
→
Vn.

Proposition 2.3.2. Let φ : A → B be a morphism of compact type K−Hopf algebras and

suppose that A is admissible as both a left and right B−comodule. Then:

• If V is an admissible A-comodule then Vφ is an admissible B-comodule;

• If W is an admissible B-comodule then W φ is an admissible A-comodule.

Proof. In both cases we have to check the three conditions of admissibility.

• Vφ case

1. If Vn is embedded into Akn and An is embedded into Bm
n , then we have an em-

bedding Vn ↪→ Bkm
n .

2. We have Vn+1 �̂
An+1

An ∼= Vn and (An+1)φ �̂
Bn+1

Bn
∼= (An)φ . Then

(Vn+1)φ �̂
Bn+1

Bn
∼=
(
Vn+1 �̂

An+1

An+1

)
φ

�̂
Bn+1

Bn = Vn+1 �̂
An+1

(An+1)φ �̂
Bn+1

Bn =

= Vn+1 �̂
An+1

(An)φ
∼=
(
Vn+1 �̂

An+1

An

)
φ

∼= (Vn)φ
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3. (V )φ = lim
→

(Vn)φ follows from V = lim
→
Vn.

• W φ case:

1. If Wn ↪→ Bm
n , then Wn �̂

Bn
φAn ↪→ Bm

n �̂
Bn

φAn =

(
Bn �̂

Bn
φAn

)m
∼= Amn .

2. We have(
Wn+1 �̂

Bn+1
φAn+1

)
�̂

An+1

An ∼= Wn+1 �̂
Bn+1

φAn ∼= Wn+1 �̂
Bn+1

(
Bn �̂

Bn
φAn

)
∼=

∼=
(
Wn+1 �̂

Bn+1

Bn

)
�̂
Bn

φAn ∼= Wn �̂
Bn

φAn

with the last isomorphism due to the admissibility of Wn.

3. W φ = W �̂
B
φA = lim

→

(
Wn �̂

Bn
φAn

)
(clear).

Definition 2.3.3. Let M be a topological left A−comodule.

• M is called s-coflat, if the functor −�̂
A
M : comod· − A→ LCV SK is exact.

• M is call s-cofree if M = V ⊗̂A for some vector space V (Banach or compact type).

Clearly all s-cofree modules are s-coflat.

2.4 Compact Type-Stein Hopf algebras

In this section we define the structure dual to the structure of Frechet-Stein algebra and

prove analogs of some results from [27] in terms of comodules.

2.4.1 Artinian comodules

Let A be a Banach Hopf algebra. Recall that a (co)module is called Noetherian if any in-

creasing chain of its sub(co)modules stabilises and Artinian if any decreasing chain stabilises

In our case we restrict to closed sub(co)modules.
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Proposition 2.4.1. Let V be an A-comodule. Then

V is Artinian if V ′b is a Noetherian A′b−module.

If V ′b is a Noetherian A′b−module then (V ′b )
′
b is Artinian (A′b)

′
b−comodule.

Proof. Let V ′ be Noetherian and let V ⊇ X1 ⊇ X2 ⊇ . . . be a descending chain of closed

subcomodules in V. Then X⊥i form an ascending chain of closed submodules of V ′. Since

V ′ is Noetherian, there exists N : X⊥n = X⊥N for all n ≥ N. But, since (Xn/Xn+1)′ =

X⊥n+1/X
⊥
n = 0, this imply that Xn = Xn+1 for all n ≥ N.

The proof of the second assertion is similar.

In Noetherian modules over Noetherian rings every submodule is finitely generated. To

prove similar property for Artinian comodules first we need to prove the next simple lemma.

Lemma 2.4.2. Let A be a coalgebra, B ⊂ A be a subcoalgebra and M be a subspace of

An =
n⊕
i=1

A, such that ∆ (M) ⊂M ⊗̂B.

Then M ⊂ Bn.

Proof. It is enough to prove this in the case n = 1. If ∆A (M) ⊂ M ⊗̂B then (εA ⊗ 1) ◦

∆A (M) ⊂ K ⊗̂B = B.

Proposition 2.4.3. Let A be an Artinian Banach Hopf algebra and let V be a Banach

A-comodule. Then

V is Artinian if and only if for any quotient V � M there is an embedding M ↪→ An

for some n.

Proof. “Only if” part: If the statement holds then in the dual A′−module V ′ every sub-

module is finitely generated. Since A′ is Noetherian, V ′ is Noetherian and by proposition

2.4.1 V is Artinian.

“If” part: Let V be an Artinian A−comodule and let V �M be a quotient of V. Then

V ′ is a Noetherian A′−module and M ′ is an A′−submodule of V ′. Since A′ is Noetherian

we have a surjection M ′ � (A′)n . By duality, we have an embedding φ : (M ′)′ ↪→
(
(A′)′

)n
.
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Since φ is a morphism of comodules and M is a closed A−subcomodule of M ′′, the coaction

of
(
(A′)′

)n
sends M to

(
(A′)′

)n ⊗̂A. By lemma 2.4.2, φ : M ↪→ An.

2.4.2 Flatness and Coflatness. CT-Stein structure.

Proposition 2.4.4. Let A be a Banach K-Hopf algebra and V be a Banach A-comodule.

Then

1. V is a coflat A-comodule if V ′b is a flat A′-module;

2. V ′ is a flat A-module if V ′′b is a coflat A′′-comodule.

Proof. Let

0→M → N → L→ 0

is a short exact sequence in Comod-A. By Corollary 4.1.3, which will be proved indepen-

dently, exactness of the above sequence is equivalent to the exactness of the sequence

0→ L′b → N ′b →M ′
b → 0.

Since V ′b is a flat A′-module, we have an exact sequence

0→ L′⊗̂
A′
V ′ → N ′⊗̂

A′
V ′ →M ′⊗̂

A′
V ′ → 0.

of Banach spaces. By lemma 2.2.15 this sequence is exactly

0→
(
L�̂
A
V
)′
b
→
(
N�̂

A
V
)′
b
→
(
M�̂

A
V
)′
b
→ 0

The same Corollary 4.1.3 give us the exactness of the sequence

0→M�̂
A
V → N�̂

A
V → L�̂

A
V → 0

of Banach spaces.

The proof of (2) is similar.

Recall that
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Definition. An NF-Hopf algebra A = lim
←−
An is called nuclear Frechet-Stein (NFS) if

1. An are Noetherian;

2. An is a flat An+1−module.

Definition 2.4.5. A CT-Hopf algebra A = lim
→
An is called compact type-Stein (CTS) if

1. An are Artinian;

2. An is coflat An+1−comodule.

Propositions 2.4.1 and 2.4.4 together give us the following

Theorem 2.4.6. Let A be a CT-Hopf algebra and let {An} be a CT-structure on A. Then

1. {An} is CTS-structure for A if {A′n} is a NFS-structure for A′b.

2. {A′n} is a NFS-structure for A′b if {A′′n} is a CTS-structure for A.

3. Let A be such that {An} be a CTS-structure for A and {A′n} is a NFS-structure for

A′b. Then an A-comodule V is admissible if V’ is coadmissible A′-module.

Conjecture 2.4.7. The above theorem is true for ”iff” statement.
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Chapter 3

Examples

3.1 Examples from representation theory.

3.1.1 Finite dimension.

Any finite group G can be thought as p-adic Lie group with finite dimensional algebra of

K−valued functions equal to the group algebra K [G] . It is both a Banach and CT-Stein

K−Hopf algebra.

More generally, any finite-dimensional Hopf algebra over K is a Banach and CT-Stein

Hopf algebra.

3.1.2 Locally analytic compact groups.

Let G be a uniform compact locally analytic group. Then

G ∼= Zdp

as locally analytic manifolds. The space of locally analytic functions C la (G,K) is isomorphic

to the space of Mahler series

C la (G,K) ∼= C la
(
Zdp, K

)
=


∞∑
|n|=0

fn

(x
n

)
, f ∈ K

∣∣∣ ∀r > 1 : |fn|K r
|n| → 0

 .

The space of locally analytic distributions Dla (G,K) on G thus can be described as

Dla (G,K) ∼= Dla
(
Zdp, K

)
=

d =
∞∑
|n|=0

dnbn| ∀r > 1 : lim sup
n
|dn|K r

|n| <∞

 ,
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where {bn} is the dual basis for Mahler polynomials
(x
n

)
.

Consider the space of locally analytic functions of order h (denoted C la
h (G,K)). These

are the functions, whose restriction to any ball of radius ph is a power series. By the Amice

Approximation Theorem [1, III.10, Cor. 3] we have the following description

C la
Rh

(G,K) ∼= C la
Rh

(
Zdp, K

)
=


∞∑
|n|=0

fn

(x
n

)
, f ∈ K

∣∣∣ |fn|K R|n|h → 0

 , (3.1.1)

whereRh = inf

{
R
∣∣∣∀n ∈ N :

∣∣∣∣([ nph]!)−1
∣∣∣∣
K

≤ Rn

}
= lim inf

n

(
n

√
1/
∣∣∣[ nph ]!∣∣∣

K

)
> 1. C la

Rh
(G,K)

is a Banach space w.r.t to the norm

‖f‖Rh = max
n
|fn|K R

|n|
h .

We have inclusions C la
Rh

(G,K) ↪→ C la
Rs

(G,K) for h < s and these inclusions are compact

maps of Banach spaces. Thus we have an topological isomorphism

C la (G,K) ∼= lim
→
C la
Rh

(G,K)

and the spaces C la
Rh

(G,K) with give C la (G,K) a compact type structure. C la
Rh

(G,K) and

C la (G,K) are topological Hopf algebras with comultiplication, counit and antipode induced

from the group operations. Thus each C la
Rh

(G,K) is a commutative Banach Hopf algebra

and C la (G,K) is a commutative CT-Hopf algebra.

The space
(
C la
Rh

(G,K)
)′

can be described as

Dla
≤Rh (G,K) =

(
C la
Rh

(G,K)
)′ ∼=

d =
∞∑
|n|=0

dnbn| lim sup
n
|dn|K R

−|n|
h <∞

 .

By duality, Dla
≤Rh (G,K) are cocommutative Banach Hopf algebras and Dla (G,K) is a

cocommutative NF-Hopf algebra.

Proposition 3.1.1. The Banach Hopf algebras
{
C la
Rh

(G,K)
}

give C la (G,K) a CT-Stein

structure.
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Proof. In [27, 4] it is proved that the algebras Dla
≤Rh (G,K) are Noetherian and the transition

maps between them are flat. Thus
{
Dla
≤Rh (G,K)

}
is a NFS-structure on Dla (G,K) and by

theorem 2.4.6
{
C la
Rh

(G,K)
}

is a CTS-structure.

Similarly to [27, 5] one prove the above proposition for any locally analytic compact

group. Thus for all compact locally analytic groups the Hopf algebras of locally analytic

functions are CT-Stein.

Algebras of germs and hyperenveloping algebras

For G as above, the algebra of germs of locally analytic functions at identity Cω
1 (G,K) =

lim
→
Can
r (G,K) from [26] is also a compact type K−Hopf algebra. Its dual Cω

1 (G,K)′ =:

U (g, K) is a “hyperenveloping algebra” (g = Lie(G)). It is a nuclear Frechet-Stein K−Hopf

algebra and U (g, K) = lim
←
Ur (g, G) = lim

←
U≤r (g, G) . Since (Can

r (G,K))′ ∼= U≤r (g, G) ,

Cω
1 (G,K) is CT-Stein. It is known that U(g, K) does not depend on G.

3.2 Examples from quantum enveloping algebras

Here we construct an example of noncommutative and noncocommutative NFS-Hopf alge-

bra, by completing the quantum enveloping algebra of the Lie algebra sl2. In this section

the base field is denoted by L.

3.2.1 Preliminaries on a quantum group SLq (2, L).

Here we will recall some notions from theory of quantum groups. There are numerous

references on that subject, we will use [14]. For any unknown notation in this section one

should look in [14].

Through this paper the words quantum group mean the quantized function algebra on

a corresponding group G. Quantum enveloping algebras will be referred to as is QEA.

The quantum matrix algebra Mq(2, L) is a bialgebra, defined as a quotient of free algebra

L 〈a, b, c, d〉 by the following relations
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ab = qba, ac = qca, bd = qdb, cd = qdc, bc = cb,

ad− da =
(
q − q−1

)
bc .

The comultiplication is given by formulas

∆ (a) = a⊗ a+ b⊗ c ∆ (b) = a⊗ b+ b⊗ d
∆ (c) = c⊗ a+ d⊗ c ∆ (d) = c⊗ b+ d⊗ d .

The counit is given by

ε (a) = 1 ε (b) = 0 ε (c) = 0 ε (d) = 1 .

The quantum determinant detq = ad−qbc is a central group-like element in this algebra.

The quantum group SLq(2, L) is a quotient SLq(2, L) = Mq(2, L)� (detq = 1).

The set {anabnbcnc ,bnbcncdnd }, ni ∈ N is a vector space basis for SLq(2, L).

It is a Hopf algebra with the antipode

S (a) = d, S (b) = −q−1b, S (c) = −qc, S (d) = a .

The transposition morphism θα,β is an automorphism of SLq (2, L), given by the following

formulas

θα,β (a) = αa, θα,β (b) = βc, θα,β (c) = β−1b, θα,β (d) = α−1d .

Uq (sl2,L).

The QEA Uq (sl2,L) is the associative algebra over the field L (q) with generators E, F , K

and K−1 and the following relations

K ·K−1 = K−1 ·K = 1 ,
KE = q2EK ,
KF = q−2FK ,

EF − FE =
K −K−1

q − q−1
.

(3.2.1)

43



The algebra Ŭq (sl2,L) has the same generators but different relations

K ·K−1 = K−1 ·K = 1 ,
KE = qEK ,
KF = q−1FK ,

EF − FE =
K2 −K−2

q − q−1
.

The set
{
EnF lKm

}
, n, l > 0 and m ∈ Z, is a basis for both algebras.

There is an injective algebra homomorphism

φ :

Uq (sl2,L) −→ Ŭq (sl2,L)
E 7−→ EK
F 7−→ K−1F
K 7−→ K2

,

but the two algebras are not isomorphic.

Both algebras admit an automorphism

θα :
E 7−→ αE
F 7−→ α−1F
K 7−→ K

.

The Hopf algebra structure on Uq (sl2,L) is given by comultiplication

∆ (E) = E ⊗K + 1⊗ E
∆ (F ) = F ⊗ 1 +K−1 ⊗ F

∆ (K) = K ⊗K
,

counit

ε (K) = 1, ε (F ) = 0, ε (E) = 0,

and antipode

S (F ) = −KF, S (E) = −EK−1, S (K) = K−1 .

Duality between Uq (sl2,L) and SLq(2, L).

There is a non-degenerate pairing 〈·, ·〉 between Uq (sl2,L) and SLq(2, L), see [14, I.4.4].

There is also a pairing 〈·, ·〉̆ for Ŭq (sl2,L) and SLq(2, L), [14, I.4.4 Prop.22]:

〈
KmEnF l, dscrbt

〉̆
= q(n−r)2

[
s

n− r

]
q2
γsrtmnt

if 0 ≤ n− r = l − t ≤ s,
〈
KmEnF l, dscrbt

〉̆
= 0 otherwise, and〈

KmEnF l, ascrbt
〉̆

= δrnδtlγ
−srt
mnt ,
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where

γsrtmnt =
qm(s+r−t)/2q−s(n+l)/2

qn(n−1)/2ql(l−1)/2

(q2; q2)l (q
2; q2)n

(1− q2)l+n
,

(a; q)n = (1− a) (1− aq) . . .
(
1− aqn−1

)
.

There is a relation between these pairings

〈x, y〉 =
〈
φ (x) , θ1,q−1/2 (y)

〉̆
=
〈(
φ ◦ θq1/2

)
(x) , y

〉̆
.

Remark 3.2.1. A direct check shows that if |1− q|L < 1, then |γsrtmnt|L = 1 . This mean

that any KmEnF l is a bounded linear functional on SLq(2, L) with norm 1. In the case

|1− q|L = 1 any KmEnF l is just a bounded linear functional. The condition |1− q|L < 1

corresponds to the case when q = exp(h) for some h ∈ Zp s.t. exp(h) converges, i.e. the

case when SLq(2, L) and Uq (sl2,L) are deformations of SL(2, L) and U (sl2,L) respectively.

3.2.2 Skew-Tate algebras.

Let A be a K−Banach algebra, A0 = {x ∈ A| ‖x‖A ≤ 1} and A00 = {x ∈ A| ‖x‖A < 1} . A0

and A00 are complete K0−submodules of A and Ā = A0/A00 is a k−vector space. Denote

the image of f ∈ A0 in Ā by f̄ .

First we recall the definition of Ore extension.

Definition 3.2.2. Let A be a ring, α : A→ A is an injective homomorphism and δ : A→ A

is an α-derivation of A. The Ore extension A[x, α, δ] is a ring of polynomials A[x] with a

new multiplication, defined by the relation x · a = α (a)x+ δ (a) , a ∈ A.

If α is an automorphism and A is left Noetherian, then A[x, α, δ] is also left Noetherian.

Lemma 3.2.3. Let B = A [x, α, δ] be an Ore extension of A (α : A → A automorphism

of A and δ is an α−derivation of A). Consider the “Gauss R-norm” on B: for f ∈ B,

f =
∑
fnx

n, then ‖f‖Gauss,R = maxn ‖fn‖ARn (R ∈ R). Suppose ‖α‖ ≤ 1, ‖δ‖ ≤ 1 and

|R| ≥ 1. Then ‖·‖Gauss,R is a submultiplicative non-archimedean algebra norm on B.
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Proof. It is clear that ‖·‖Gauss,R is a K−vector space norm (as in commutative case).

Let us prove submultiplicativity, i.e. ‖fg‖Gauss,R ≤ ‖f‖Gauss,R ‖g‖Gauss,R .

One can prove (using induction) that xn · a =
∑n

k=0 cnk (a)xk, where cnk (a) is the sum

of all words with k−letters α and (n− k)−letters δ, applied to a. Since ‖α‖ ≤ 1, ‖δ‖ ≤ 1,

then ‖cnk (a)‖A ≤ ‖a‖A . Now let f =
∑l

n=0 fnx
n and g =

∑s
k=0 gkx

k. Then

‖fg‖Gauss,R =

∥∥∥∥∥
(

l∑
n=0

fnx
n

)(
s∑

k=0

gkx
k

)∥∥∥∥∥
Gauss,R

=

∥∥∥∥∥
l∑

n=0

fn

(
s∑

k=0

(xngk)x
k

)∥∥∥∥∥
Gauss,R

=

=

∥∥∥∥∥
l∑

n=0

s∑
k=0

(
fn

n∑
i=0

cni (gk)x
i

)
xk

∥∥∥∥∥
Gauss,R

=

∥∥∥∥∥
l∑

n=0

fn

n∑
i=0

(
s∑

k=0

cni (gk)x
k+i

)∥∥∥∥∥
Gauss,R

≤

≤ max
n

∥∥∥∥∥
n∑
i=0

s∑
k=0

fncni (gk)x
k+i

∥∥∥∥∥
Gauss,R

 = max
n

max
i

max
k

(
‖fn‖A ‖cni (gk)‖AR

k+i
)
≤

= max
n

max
i

max
k

(
‖fn‖AR

i
) (
‖gk‖AR

k
)
≤ ‖g‖Gauss,R ·max

n,i
‖fn‖AR

i =

= ‖g‖Gauss,R ·max
n
‖fn‖AR

n = ‖f‖Gauss,R ‖g‖Gauss,R .

Denote the completion of B = A [x, α, δ] w.r.t. ‖·‖Gauss,R by A {x/R, α, δ} .

Remark 3.2.4. it is clear that if |s|K = R, then A {x/R, α, δ} ∼= A {z, α, s−1δ} with x mapped

to sz.

Definition 3.2.5. An algebra of the form K {x1, α1, δ1} . . . {xn, αn, δn} with ‖·‖Gauss =

‖·‖Gauss,1 will be called a skew-Tate algebra.

For Tate algebras there are Weierstrass division and preparation theorems. We now

prove corresponding results for skew-Tate algebras.

Definition 3.2.6. An element f ∈ A {x, α, δ} with ‖f‖Gauss = 1 is called regular of degree

d if f̄ has the form λzd +
d−1∑
i=0

ciz
i with λ ∈ k∗ and ci ∈ Ā.

Theorem 3.2.7. (Weierstrass division and preparation)
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1. (Division) Let f be a regular element of A {z, α, δ} of degree d. Then for any g in

A {z, α, δ} there exists unique q and r such that g=qf+r and degree of r is less then d.

Moreover, ‖g‖Gauss = max (‖q‖Gauss , ‖r‖Gauss) .

2. (Preparation) Let f be a regular element of A {x, α, δ} of degree d. Then there exists

w ∈ A [x, α, δ] , s.t. f = w · e, where e is a unit in B, and w is regular of degree d. If

f ∈ A [x, α, δ] then e ∈ A [x, α, δ] also.

Proof. (1) We have f = f0 −D, where f0 = λzd +
d−1∑
i=0

ciz
i, ci = A0 and ‖D‖Gauss < 1. Let

us prove that the statement of (1) is true for f0. Let us first prove the statement for powers

of z, i.e. zi = qif0 + ri. We clearly have zd = λ−1

(
λzd +

d−1∑
i=0

ciz
i −

d−1∑
i=0

ciz
i

)
= qdf0 + rd

with qd = λ−1 and rd = λ−1

(
d−1∑
i=0

ciz
i

)
and for i < d qi = 0. Now for zn+1 we have

zn+1 = z · zn = z · (qnf0 + rn) = (z · qn) f0 + z · rn. If rn =
d−1∑
i=0

cniz
i, then from commutation

relations we get

z · rn =
d−1∑
i=0

(z · cni) zi =
d−1∑
i=0

(α (cni) z + δ (cni)) z
i =

= α
(
cn(d−1)

)
zd +

d−1∑
i=0

(
α
(
cn(i−1)

)
+ δ (cni)

)
zi =

= α
(
cn(d−1)

) (
λ−1f0 + rd

)
+

d−1∑
i=0

(
α
(
cn(i−1)

)
+ δ (cni)

)
zi =

= α
(
cn(d−1)

)
λ−1f0 + α

(
cn(d−1)

)
rd +

d−1∑
i=0

(
α
(
cn(i−1)

)
+ δ (cni)

)
zi.

Thus zn+1 = qn+1f0 + rn+1, where qn+1 = z · qn + λ−1α
(
cn(d−1)

)
and rn+1 = α

(
cn(d−1)

)
rd +

d−1∑
i=0

(
α
(
cn(i−1)

)
+ δ (cni)

)
zi. It is clear that in this formulas the norms of the coefficients do

not increase, and thus for any g =
∞∑
n=0

gnz
n we have

g =

(
∞∑
n=0

gnqn

)
f0 +

(
∞∑
n=0

gnrn

)

47



with both sums being convergent in A {z, α, δ}.

Now let us prove the division property for f. We have f0 = f +D and for any g we have

g = q0f0 + r0 = q0f + g1 + r0

where g1 = q0D. Since the norm is submultiplicative, we have

‖g1‖Gauss ≤ ‖q0‖Gauss ‖D‖Gauss ≤ ‖g‖Gauss ‖D‖Gauss .

Next

g1 = q1f0 + r1 = q1f + g2 + r1,

where g2 = q1D and

‖g2‖Gauss ≤ ‖q1‖Gauss ‖D‖Gauss ≤ ‖g1‖Gauss ‖D‖Gauss ≤ ‖g‖Gauss ‖D‖
2
Gauss .

Continuing by induction, we have zero sequences gn, qn and rn s.t. gn = qnf + gn+1 + rn.

Adding up all these recurrence relations gives

g =

(
∞∑
n=0

qn

)
f +

(
∞∑
n=0

rn

)
and

‖g‖Gauss = max

(∥∥∥∥∥
∞∑
n=0

qn

∥∥∥∥∥
Gauss

,

∥∥∥∥∥
∞∑
n=0

rn

∥∥∥∥∥
Gauss

)
.

Now let us prove uniqueness. If we have g = q1f + r1 = q2f + r2, we have 0 =

(q1 − q2) f + (r1 − r2) . Since the norm of f is one, we have ‖q1 − q2‖Gauss = ‖r1 − r2‖Gauss
and multiplication by an appropriate number makes both norms equal 1. But then in

A {z, α, δ}0 /A {z, α, δ}00 we have q1 − q2 · f̄ = r1 − r2, and this is impossible, since on left

hand side we have a skew-polynomial of degree ≥ d and on the right hand side < d.

(2) Since f is distinguished, by (1) there exists e′ and r′ s.t. xd = e′f+r and deg (r) < d.

Define ω = xd − r. We have ω = e′f. Since ‖r‖Gauss ≤
∥∥xd∥∥

Gauss
= 1, we have ‖ω‖Gauss = 1

and ω is distinguished of degree d. Then in A {z, α, δ}0 /A {z, α, δ}00 we have ω = e′f with

ω̄ and f̄ being unitary skew-polynomials of the same degree. This means that ē′ is a unit

in A {z, α, δ}0 /A {z, α, δ}00 and e′ is a unit in A {z, α, δ} . If f is a polynomial then so must

e be.
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3.2.3 Completion of Uq (sl2,L)

Consider the QEA Uq (sl2,L) . It is generated by elements F, E and K±1 subject to relations

3.2.1 . We want to define a completion of Uq (sl2,L) with respect to certain norm.

In order to do so, let us recall [11, Prop. 6.1.4] that Uq (sl2,L) is a Noetherian algebra,

obtained by a sequence of Ore extensions

L [K,K−1] = A0 ↪→A1 = A0 [F, α0, 0]
α0 (K) = q2K

and
A1 ↪→A2 = A1 [E,α1, δ]
α1

(
F jK l

)
= q−2lF jK l

δ (F ) = K−K−1

q−q−1

δ
(
F jK l

)
=

j−1∑
i=0

F j−1δ (F )
(
q−2iK

)
K l

δ (K) = 0

. (3.2.2)

Let Â0 be the algebra of bidirectional Laurant series in K,

Â0 =

{∑
n∈Z

fnK
n| lim

n→±∞
|fn|Rn

K = 0

}

with fixed RK . It is a Banach K−algebra w.r.t.

‖f‖R = max
n∈Z
|fn|LR

n
K .

Let |q|L = 1. Then

α0 : Â0 → Â0, α0 (K) = q2K

is an automorphism of norm 1. Then, by lemma 3.2.3, the algebra Â1 = Â0

{
F
RF
, α0, 0

}
is

a Banach Â0−algebra

Â1 =

{
∞∑
n=0

anF
n
∣∣∣an ∈ Â0, s.t. lim

n→∞
|an|LR

n
F = 0,

}

or a K−Banach algebra of skew-commutative convergent series in F, K±1 with radius of

convergence (RF , RK) .
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Consider A2 = Â1 [E,α1, δ] . Since |q|L = 1, ‖α‖ = 1. In order to apply lemma 3.2.3, we

need ‖δ‖ ≤ 1. From formulas 3.2.2 we see that ‖δ‖ ≤ 1 if

∣∣∣∣ 1

q − q−1

∣∣∣∣
L

RK ≤ RF . So, under

this condition, the Gauss RE−norm is a norm on A2 and Â2 (the completion of A2) is a

K−Banach algebra.

We denote by Uq (sl2,L) (RK , RF , RE) or just Uq,R (sl2,L) the algebra Â2.

Note that, due to symmetry between F and E, instead of condition

∣∣∣∣ 1

q − q−1

∣∣∣∣
L

RK ≤ RF ,

we can take

∣∣∣∣ 1

q − q−1

∣∣∣∣
L

RK ≤ RE (and first extend Â0 by E instead of F ).

From the formulas in the section 3.2.1 for comultiplication, counit and antipode one can

see that (∆, S, ε) are bounded maps only ifRK = 1. So, in caseRK = 1, Uq (sl2,L) (RF , RE) :=

Uq (sl2,L) (1, RF , RE) is a Banach K−Hopf algebra (RF or RE ≥
∣∣∣(q − q−1)

−1
∣∣∣
L
).

The projective limit Uq (sl2,L, L) = lim
←
Uq,R (sl2,L) is a noncommutative and noncocom-

mutative weak Frechet-Stein algebra. The topology on Uq (sl2,L, L) is given by the family of

norms νR : νR
(∑

cnmlF
nKmEl

)
= sup

(
|cnml|LRn

FR
m
KR

l
E

)
.

Equivalently, one can take the family of norms ν ′R = sup
(
|cnml|L

∣∣∣[n]q!
∣∣∣
L

∣∣∣[l]q!∣∣∣
L
Rn
FR

m
KR

l
E

)
(similarly to [15, 1.2.8]). This is possible due to an estimate (4.1.1.1) from [32], which implies

that ∃C ≥ 1 : ∣∣∣∣∣ 1

[n]q!

∣∣∣∣∣
L

≤ Cnp
n
p−1

(note, that in [32], [n]q = 1 + q + ...+ qn−1 = [[n]]q in notation of [14], and one needs to use

[n]q = q−n+1 [[n]]q , [11, 6.1.1. (1.7)]).

Remark 3.2.8. Let us describe the corresponding completion of SLq(2, L).

The pairing from 3.2.1 gives the following pairing between Uq (sl2,L, L) and SLq(2, L):

〈
KmEnF l, dscrbt

〉
= q(n−r)2

[
s

n− r

]
q2
γsrt(m+n−l)nt · q

−(n(n+1)
2

+
l(l−1)

2
+ln)

if 0 ≤ n− r = l − t ≤ s,〈
KmEnF l, dscrbt

〉
= 0 otherwise, and〈

KmEnF l, ascrbt
〉̆

= δrnδtlγ
−srt
(m+n−l)nt · q

−(n(n+1)
2

+
l(l−1)

2
+ln) .
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The norm on SLq(2, L) as on algebra of continuous functionals on Uq (sl2,L, L) is given

by

α ∈ SLq(2, K) : ‖α‖∗R = sup
x
|〈x, α〉|L , x ∈ Uq,R (sl2,L) : ‖x‖R ≤ 1.

Since (from [14, 2.1.1. (3)])(
q2, q2

)
m

= [m]q! ·
(
1− q2

)m · qm(m−1)
2 ,

then in the case |q|L = 1, we have∣∣γsrtxnt

∣∣
L

=
∣∣∣[n]q!

∣∣∣
L

∣∣∣[l]q!∣∣∣
L
.

Thus ∣∣〈KmEnF l, ascrbt
〉∣∣
L

= δrnδtl

∣∣∣[n]q!
∣∣∣
L

∣∣∣[l]q!∣∣∣
L

and the norm of ascrbt as of functional on Uq,R′ (sl2,L) (the completion of Uq,R (sl2,L) w.r.t.

ν ′R) is equal to R−rE R−tF .

For elements of the form dscrbt we have∣∣∣∣∣
〈
Km En

[n]q!

F l

[l]q!
, dscrbt

〉∣∣∣∣∣
L

=

∣∣∣∣∣
[

s

n− r

]
q2

∣∣∣∣∣
L

≤ 1

due to [11, 6.1.1 (1.8)] and [32, 4.1.1.2]. Thus the norm of dscrbt as of functional on

Uq,R′ (sl2,L) is equal to R−rE R−tF .

We get a completion of SLq(2, L), which we denote by Can
R (SLq (2)) , which consist of

series
∑
αnmka

nbmck +
∑
βmklb

mckdl with

lim
n,m,k→∞

|αnmk|L
(

1

RE

)k (
1

RF

)m
= 0,

lim
m,k,l→∞

|βmkl|L
(

1

RE

)k (
1

RF

)m
= 0.

It is a Banach algebra w.r.t. “sup”-R norm. The comultiplication, counit and antipode are

also bounded, so it is an L−Banach Hopf algebra.

The injective limit Cω (SLq (2)) = lim
→
Can
R (SLq (2)) is an LCVS of compact type (simi-

larly to [24, 16.11]). So, Cω (SLq (2)) is a noncommutative and noncocommutative L−Hopf

algebra of compact type.
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Remark 3.2.9. More generally, one can take Ra, Rb, Rc, Rd < 1 and define a completion of

SLq (2, L) in a similar way. The norm will not be submultiplicative (i.e. multiplication is

not continuous w.r.t. Gauss-R norm), but comultiplication will be bounded, so in this case

we get a noncocommutative coalgebra. Moreover, the completion can be done if |q|L < 1

and in this case the Haar functional of SLq (2, L) [14, 4.2.6] is bounded.

Remark 3.2.10. We have a relation between RK and RF . It does not exist for completion of

the 2-parameter quantum group Up,q (sl2,L) of Takeuchi with |p− q−1|L = 1.

Remark 3.2.11. The subalgebras Â0 and Â1 of Uq,R (sl2,L) are also Banach L−Hopf algebras.

One can obtain corresponding subalgebras Ã0 and Ã1 of Uq (sl2,L, L) .

3.2.4 Frechet-Stein property for Uq (sl2,L, L)

We will show that Uq (sl2,L, L) is a Frechet-Stein algebra. In order to do this we note that in

the same way as in the previous section, one can form a projective system of algebras AR =

k{K,M}{F/RF , α0, 0}{E/RE, α1, δ1}, with δ1 defined similarly to 3.2.2 by δ (F ) = K−M
q−q−1

and take a projective limit A = lim
←−

AR. Note that Uq (sl2,L) (RF , RE) ∼= AR/(KM − 1),

and Uq (sl2,L, L) = A/(KM − 1). Thus to show that Uq (sl2,L, L) is Frechet-Stein, by lemma

1.5.7 it is enough to show that A is Frechet-Stein.

Proposition 3.2.12. The algebras AR are Noetherian if RF ·RE >
∣∣∣(q − q−1)

−1
∣∣∣
L
.

Proof. Let F̃ and Ẽ be the images of elements F and E in the skew-Tate algebra B,

isomorphic to AR (see remark 3.2.4). Then, if RF ·RE >
∣∣∣(q − q−1)

−1
∣∣∣
L
, then in the residue

algebra B̄ of B ¯̃F and ¯̃E commute. Since |1− q|L < 1, then in the residue field q̄ = 1. So

in this case ¯̃F and ¯̃E commute with ¯̃K and ¯̃L. All together this gives commutativity of the

residue algebra B and B̄ ∼= l[x1, x2, x3, x4]. Since B̄ is a residue algebra of the Tate algebra

T4, any ideal of B̄ has an image of a regular element of some degree d. But then a preimage

of this element in B is a regular element of degree d. This proves that any ideal I in B has

a regular element fI of some degree.
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Let I be an ideal in B = L {x1, α1, δ1} . . . {x4, α4, δ4} . By the Weierstrass Division The-

orem I is generated by fI and by the ideal J = I ∩ L {x1, α1, δ1} . . . {x3, α3, δ3} [x4, α4, δ4].

Since L {x1, α1, δ1} . . . {x3, α3, δ3} [x4, α4, δ4] is an Ore extension of L {x1, α1, δ1} . . . {x3, α3, δ3} ,

it is Noetherian if L {x1, α1, δ1} . . . {x3, α3, δ3} is Noetherian. If we continue in this way, we

reduce the Noetherianess of L {x1, α1, δ1} . . . {x3, α3, δ3} [x4, α4, δ4] to that of L, which is a

field. So the ideal J is finitely generated and I is also finitely generated.

This implies that B is Noetherian and thus AR is also Noetherian.

Corollary 3.2.13. The category of finitely generated (Banach) Uq (sl2,L) (RF , RE)−modules

is abelian.

Proposition 3.2.14. Let AR1 ↪→ AR2 be the inclusion map for R1 > R2. Then AR2 is a

flat AR1−module.

Proof. The proof follows the idea from [27]. We view our Banach algebras as complete

filtered rings with the filtration induced by the norm. By [27, Prop. 1.2] the map between

two such rings is flat if the associated graded rings are Noetherian and the associated map

of graded rings is flat.

As in [27] we factor our map AR1 ↪→ AR2 into AR1 ↪→ A≤R1 ↪→ AR2 , where

A≤R1 =
〈∑

anK
nKMnMF nFEnE

∣∣∣an ∈ AR1 : sup ‖an‖AR1
≤ ∞

〉
is a module with the same relations as for AR1 . A≤R1 is a Banach algebra w.r.t. supremum

norm and AR1 is a closed subalgebra. Easy to see that the associated graded ring of AR1 is

the ring of polynomials l [x1, x2, x3, x4] and the associated graded ring of A≤R1 is the ring

of formal power series l [[x1, x2, x3, x4]] . Since both rings are Noetherian and inclusion of

polynomials into power series is a flat map, the inclusion AR1 ↪→ A≤R1 is flat.

For the second inclusion note that A≤R1
∼= L ⊗̂A0

≤R1
and A≤R1 ↪→ AR2 is flat iff A0

≤R1
↪→

AR2 is flat. It follows from the strong triangle inequality that A0
≤R1

is a closed subset of

AR2 and thus it is complete w.r.t. the norm filtration of AR2 . So one can apply [27, Prop.
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1.2] in this case too. Similarly to [27, Thm. 4.9] one can show that the map of associated

graded rings of A0
≤R1

and AR2 is a localization and thus is flat. This proves that the second

inclusion is also flat.

Remark 3.2.15. Similarly to the Uq (sl2,L) case, one can consider arbitrary Drinfeld-Jimbo

QEA Uq (gL) for any semisimple Lie algebra gL.One can form the Banach algebras Uq (gL, R) ,

similarly to the sl2,L case and Uq (gL, L) . The above proof of Frechet-Stein property works

for Uq (gL, L) with the only difference that we quotient the corresponding algebra A also by

quantum Serre relations.
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Chapter 4

Cohomology

4.1 Cohomology of nonarchimedean Hopf algebras

In order to do homological algebra for topological algebras one must work in relative context

[8, 9, 30]. That is, one must consider complexes with certain restriction on maps. For

topological algebras the best class of maps is given by strong maps. For nonarchimedean

distribution algebras the relative homological algebra was worked out in [16].

In comodule theory one must impose the same assumption.

Recall that a K−linear map between two LCVS is called strong if it is strict, with closed

image and both the kernel and the image of the map are complemented subspaces.

4.1.1 Banach Hopf algebras.

In this section we will restrict our attention to the Banach Hopf algebras case. In a Ba-

nach space strictness is equivalent to closedness of the image since every closed subspace is

complemented. This also allows us to generalize results of [8, 0.5.2].

Let A be a Banach Hopf algebra.

Lemma 4.1.1. Let φ : X → Y be an injective morphism of (co)modules with dense image.

If W is another (co)module and if L (φ) : Lb (Y,W )→ Lb (X,W ) is surjective, then so is φ.

Proof. Since φ : X → Y is injective with dense image, L (φ) is injective. By the Open

Mapping Theorem, L (φ) is a topological isomorphism. Any ψ ∈ W ′ gives us surjective
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maps Lb (X,W ) � X ′ and Lb (Y,W ) � Y ′ such that the diagram

Lb (Y,W )
L(φ)−→ Lb (X,W )

↓ ↓
Y ′

φ′−→ X ′

is commutative. Since vertical arrows and L (φ) are surjections, φ′ is also a surjection and,

by discussion above, a topological isomorphism. But then φ′′ : X ′′ → Y ′′ is also a topological

isomorphism and so is φ, as restriction of φ′′ to the closed subspace X ⊂ X ′′.

Consider a sequence of Banach A−comodules

. . . −→ Vn+1
dn−→ Vn

dn−1−→ Vn−1 −→ . . . (4.1.1)

For any Banach space W it gives rise to a sequence of Banach A′−modules

. . . ←− Lb (V n+1,W )
L(dn)←− Lb (Vn,W )

L(dn−1)←− Lb (V n−1,W ) ←− . . . (4.1.2)

Lemma 4.1.2. Let V and W be as above.

1. If 4.1.1 is exact at Vn−1 and Vn, then 4.1.2 is exact at Lb (V n,W ) ;

2. if 4.1.2 is exact at Lb (Vn+1,W ) , then Im dn is closed in Vn;

3. if 4.1.2 is exact at Lb (Vn,W ) , then Im dn is a dense subset of Ker dn−1.

Proof. 1. We have L (dn−1 ◦ dn) = L (dn)◦L (dn−1) = 0 and thus ImL (dn−1) ⊂ KerL (dn) .

Let f ∈ Lb (Vn,W ) and L (dn) (f) = 0. Then f = 0 on Imdn and, by exactness of 4.1.1,

f = 0 on Kerdn−1. Define g0 : Imdn−1 → W by g (dn−1 (x)) = f (x) . By exactness of

4.1.1, Imdn−1 = Kerdn−2 and thus Imdn−1 is closed. By the Open Mapping Theorem

dn−1 is an open map on its image, and thus continuity of f implies continuity of g0.

Since Imdn−1 is complemented, we can extend g0 to the whole Vn−1 and denote this

extension by g. For any x ∈ Vn−1 we have g (dn−1 (x)) = f (x) , i.e. L (dn−1) (g) = f.

Thus ImL (dn−1) = KerL (dn) .
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2. Consider the quotient norm ‖·‖q on Im dn. Im dn is a Banach space with respect to

‖·‖q , which is isomorphic to Vn/Ker dn and dn is continuous w.r.t. ‖·‖q . We have a

natural continuous embedding φ : Vn/Ker dn → Im dn. By lemma 4.1.1 we need to

show that L (φ) is surjective, i.e. that for all f0 ∈ Lb (Vn/Ker dn,W ) if f0 is continuous

w.r.t. ‖·‖q it is also continuous w.r.t. ‖·‖Vn . If z ∈ Vn+1, let h (z) = f0 (dnz) . Clearly

h ∈ Lb (Vn+1,W ) and L (dn+1) (h) = 0. Exactness of 4.1.2 at Lb (Vn+1,W ) implies that

h = L (dn) f for some f ∈ Lb (Vn,W ) . We have f (dnz) = h (z) = f0 (dnz) ∀z ∈ Vn+1,

i.e. f = f0 on Im dn.

3. L (dn) ◦ L (dn−1) = L (dn−1 ◦ dn) = 0 implies Im dn ⊂ Ker dn−1. Since every closed

subspace is complemented, it is enough to show that every map f ∈ Lb (Vn,W ), which

is zero on Im dn, is also zero on Ker dn−1 (otherwise, Im dn is not dense in Ker dn−1, so

we can construct a map which is zero on Im dn, but is non-zero on Ker dn−1 ). If f is

zero on Im dn, then L (dn) (f) = 0. Since 4.1.2 is exact at Lb (Vn,W ) , f = L (dn−1) (g)

for some g ∈ Lb (Vn−1,W ) . But this mean that ∀x ∈ Vn : f (x) = g (dn−1x) and thus

∀x ∈ Ker dn−1 : f (x) = g (dn−1x) = 0.

Corollary 4.1.3. The sequence 4.1.1 is exact if and only if the sequence is 4.1.2 is exact.

4.1.2 Injective resolutions

Recall that a map is called strong if its kernel and image are closed and complemented. In

a Banach space strictness is equivalent to closeness of the image and every closed subspace

is complemented. Thus in the Banach space case strict and strong maps are the same.

We call a map of Banach (or any topological) (co)modules strong, if it is strong as a

map of the corresponding spaces.

Definition 4.1.4. We call a chain complex of Banach (CT) A−comodules

. . . −→ Vn+1
dn+1−→ Vn

dn−→ Vn−1 −→ . . .
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is an s-complex if it is a chain complex in which all maps dn are strong maps of Banach

(CT) spaces (equivalently, strict maps of A−comodules). An equivalent requirement is the

existence of a contracting homotopy in the category of Banach (CT) spaces [8, 16, 30].

One defines cochain s-complexes similarly.

Definition 4.1.5. M ∈ Comod − A is called s-injective if the functor Comod-A (−,M)

sends short s-exact sequences of comodules to short exact sequences of K−vector spaces.

One can show by a standard argument that this definition is equivalent to the one in

terms of diagrams, i.e. s-injective comodules are s-injective objects in Comod-A.

Lemma 4.1.6. For any V a Banach (CT) K-vector space, V ⊗̂A is a right Banach (CT)

A−comodule with coaction ρV ⊗̂A = idV ⊗∆A. Moreover

α : Comod− A
(
W,V ⊗̂A

)
−→ Lb (W,V )

f 7−→ (idV ⊗̄εA) ◦ f

is a topological isomorphism.

Proof. First statement is obvious. For the second α−1 is given by

(f : W → V )
α−1

7→
(
(f ⊗ idA) ◦ ρW : W → V ⊗̂A

)
.

Corollary 4.1.7. V ⊗̂A is s-injective. Every comodule V is embedded into the s-injective

comodule V ⊗̂A with embedding ρV : V → V ⊗̂A.

Proof. Follows from the definition 4.1.5 and corollary 4.1.3.

Thus the category of A−comodules has enough s-injectives.

For every comodule V one can construct an s-injective resolution, called the CoBar

resolution. One takes

Cob−1 (V ) = V,
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Cobn (V ) = Cobn−1 (V ) ⊗̂A, n ≥ 0.

The differentials dn : Cobn (V )→ Cobn+1 (V ) are given by

d−1 = ρV ,

dn = dn−1 ⊗ idA + (−1) idCobn(V )
⊗∆A.

The contracting homotopy for the CoBar complex is given by

sn : Cobn+1 (V )→ Cobn (V ) ,

sn = idV ⊗̄εA ⊗ idA⊗̂n ,

which imply that the maps dn are strong.

It is standard exercise to prove that any two s-injective resolutions are homotopy equiv-

alent.

4.1.3 The Helemskii approach to derived functor

Let A and B be Banach Hopf algebras.

Consider an additive functor F : Comod-A→ Comod-B. For any object V ∈ Comod-A

take an s-injective resolution V → I . and apply the functor F to the complex 0→ I ..

Definition 4.1.8. The n-th cohomology of the complex 0 → F (I .) is called n-th right

derived functor of F and is denoted by RnF.

RnF takes value in the category of seminormed comodules over B, i.e. ∀M ∈ Comod-A :

ρM (RnF (M)) ⊆ RnF (M) ⊗̃B, where ⊗̃ is the completion of the tensor product of semi-

normed spaces.

RnF does not depend on the choice of s-injective resolution and thus one can safely take

as I . the CoBar resolution.

The following statements are proved similarly to algebraic case.
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Proposition 4.1.9. [8, III.3.2]Let 0 → X → Y → Z → 0 be a short s-exact sequence in

Comod-A. Then we have a long s-exact sequence

. . .←−Ri (X)←−Ri (Y )←−Ri (Z)←−Ri+1 (X)←− . . .

Lemma 4.1.10. [8, III.3.5]If F is left s-exact then R0F is isomorphic to F.

4.1.4 Strict derived functors

For an additive functor F : Comod-A→ Comod-B consider the functors Rn
sF : Comod-A→

Comod-B, Rn
sF (V ) is defined as the largest Hausdorff quotient of RnF (V ) . In general, these

functors do not make a short s-exact sequence into a long exact sequence and are not equal

to RnF.

However these functors can be defined purely in terms of the categories Comod-A →

Comod-B and, more generally, they are direct analogs of algebraic derived functors in quasi-

abelian categories. Also, some identities are naturally expressed with their help, so we find

them worthwhile to discuss.

Much of the below discussion follows from works of Kuzminov and Kopylov.

Quasi-abelian categories

Definition 4.1.11. An additive category is called quasi-abelian if

1. Every morphism has kernel and cokernel;

2. The pull-back of a cokernel along arbitrary morphism is a cokernel and the push-

forward of a kernel along arbitrary morphism is a kernel.

Kernels are also called strict monics and cokernels are also called strict epics.

Definition 4.1.12. A morphism in a quasi-abelian category is called strict if it can be

factors as a composition of a monic with an epic.

Example 4.1.13. Examples
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1. The category of topological abelian groups is quasi-abelian. The monics are injective

maps, the epics are the maps with dense image. The strict maps are the one with

closed image.

2. The categories of Banach, Frechet, LS- and LF-spaces are quasi-abelian (in view of

example 1).

3. The categories of Banach or Frechet modules over a Banach Hopf algebra are quasi-

abelian.

4. The category of Banach comodules over a Banach Hopf algebra is quasi-abelian.

5. The category of CT-comodules over CT-Hopf algebra is quasi-abelian.

In examples 3-5 the class of strict maps is the same.

Definition 4.1.14. We call an additive functor between two quasi-abelian categories strict

if it preserves strict morphisms.

Remark 4.1.15. In [28] such functors are called regular.

A complex in a quasi-abelian category is called strict or s-complex if all maps are strict.

Definition 4.1.16. Let V· = . . . −→ Vn+1
dn+1−→ Vn

dn−→ Vn−1 −→ . . . be a com-

plex in a quasi-abelian category. One has a canonical morphism αn : Vn+1 → Ker dn. The

n-th cohomology of V· is Hn (V.) = Coker (αn) .

One can prove in the standard way that if two complexes are homotopic then their

cohomologies are isomorphic.

Lemma 4.1.17. [17]Let A, B and C be s-complexes bounded below in a quasi-abelian cate-

gory and 0 → A
φ→ B

ψ→ C → 0 be a short exact sequence such that φn and ψn are strict.

Then we have a long s-exact sequence of cohomologies.
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Remark 4.1.18. The class of kernel-cokernel pairs in a quasi-abelian category form an exact

structure. Thus any quasi-abelian category is an exact category and strict morphisms are

admissible (strict) with respect to that exact structure.

One can define s-injective (s-projective) objects and resolutions. The proof that any two

s-injective resolutions are homotopy equivalent is standard.

Strict derived functors

Let C be a quasi-abelian category with enough s-injectives and let F be an additive functor

to a quasi-abelian category D. For any V ∈ C an s-injective resolution 0 → V → I . is an

s-exact sequence in C and 0→ F (V )→ F (I .) is a complex in D.

Definition 4.1.19. The functor Rn
sF : C → D with values Rn

sF (V ) = Hn (F (I .)) is called

the n-th strict right derived functor of F.

Since any two s-injective resolutions are homotopy equivalent, Rn
sF does not depend on

the choice of I ..

Lemma 4.1.20. If F is left s-exact, then R0
sF is isomorphic to F.

Lemma 4.1.21. Let 0→ A→ B → C → 0 be a short s-exact sequence. If F is strict, then

we have a long s-exact sequence

0←−R0
sF (A)←−R0

sF (B)←−R0
sF (B)←−R1

sF (A) . . .

Remark 4.1.22. (Derived functor of Schneiders) Since any quasi-abelian category is an exact

category, one can consider derived categories and functors in exact sense. This was worked

out in detail in [28].

4.1.5 The cohomology of comodules

Consider the fixed-point functor (−)A on Comod− A,

M ∈ Comod− A : MA = {m ∈M : ρM (m) = m⊗ 1} =
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= Ker

(
M

ρM
⇒

idM⊗1A

M ⊗̂A
)
.

Since MA is a kernel, it is closed and MA ∈ Comod− A.

Proposition 4.1.23. (−)A preserves strict monomorphisms (and thus left s-exact).

Proof. If f : M → N is a strict monomorphism in Comod−A, then fA : MA → NA is just a

restriction of f to MA. The image of fA is embedded in NA∩ Im (f), since if ρM (v) = v⊗1,

then

ρN (f (v)) = (f ⊗ idA) ◦ ρV (v) = f (v)⊗ 1.

We want to prove that if f (v) ∈ NA then v ∈MA. If f (v) ∈ NA then we have an identity

f (v)⊗1 = ρN (f (v)) = (f ⊗ idA)◦ρM (v) = (f ⊗ idA)◦
(∑

v(0) ⊗ v(1)

)
=
∑

f
(
v(0)

)
⊗v(1)

in N ⊗̂A. Since f is injective, f ⊗ idA is also injective and this implies

ρM (v) = v ⊗ 1.

Thus the image of fA is equal to NA ∩ Im (f) and closed, making (−)A preserve strict

monics and thus left s-exact.

The CT case follows from the Banach one, since if M = lim
→
Mn then MA = lim

→
MA

n and

Im
(
fA
)

= lim
→

Im
(
fA|MA

n

)
.

Definition 4.1.24. The functors Hn (A,−) := Rn (−)A are called n-th cohomology func-

tors.

The functors Hn
s (A,−) := Rn

s (−)A are called n-th strict cohomology functors.

Since the fixed point functor is left s-exact, for any M ∈ Comod−A we have H0 (A,M) =

H0
s (A,M) = M.
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4.2 The Grothendieck Spectral Sequence

4.2.1 Fully s-injective resolutions

In case of abelian category the key element in proving the convergence of the Grothendieck

spectral sequence is the existence of fully injective resolution. Similar results holds in quasi-

abelian case.

Definition 4.2.1. Consider an s-complex C in a quasi-abelian category. An s-injective

resolution of C is an s-exact sequence of complexes

0 → C → I0 → I1 → I2 → . . . (4.2.1)

such that complexes In = . . . → In,i
dn,i→ In,i+1 → . . . consists of s-injective objects

with strict differentials. Thus

0→ Cn → I0,n → I1,n → . . .

is an s-injective resolution of Cn.

Define complexes

0→ Zi (C)→ Z0,i → Z1,i → . . .

0→ Bi (C)→ B0,i → B1,i → . . .

0→ H i (C)→ H0,i → H1,i → . . .

with Zj,i = Ker (dj,i) , Bji = Im (dj,i−1) = Ker (Coker (dj,i−1)) and Hj,i = H i (I .,j) .

Definition 4.2.2. The resolution 4.2.1 is called fully s-injective, if the above complexes for

Zi (C) , Bi (C) and H i (C) are s-injective resolutions.

Lemma 4.2.3. For any s-complex in a quasi-abelian category with enough s-injectives there

exists a fully s-injective resolution.

Proof. The proof is same as in algebraic case (see [18, XX.9.5]) with the application of the

Horseshoe lemma in exact categories ([4, 12.8]).

64



4.2.2 Spectral sequences

Proposition 4.2.4. Let F : Comod-A → Comod-B and G : Comod-B → Comod-C be an

additive functors between categories of Banach comodules over A, B and C, such that

• A and B have enough s-injectives and,

• F is strict and maps injective objects into G-acyclic objects.

Then for each M ∈ A there exists a spectral sequence Ep,q
r (A) in the quasi-abelian category

of seminormed comodules over C, such that

Ep,q
2 (A) = RqG (RpF (A))⇒ Rp+q (G ◦ F ) (A) .

If G is also strict then Ep,q
2 (A) is in Comod-C and thus there is a low-degree terms exact

sequence in Comod-C

0→
(
R1G

)
(F (A))→ R1 (GF ) (A)→ G

(
R1F (A)

)
→ R2G (F (A))→ R2 (GF ) (A) .

Proof. The proof repeats the classical one. If G is strict, it will map a fully s-injective

resolution of the s-complex

0→ R.F (A)→ I .

into a double s-complex. Since the elements of the first page of spectral sequence, corre-

sponding to the row filtration of the total complex, are just elements of G (I .) with horizontal

differentials (which are strict by full s-injectivity of I . and strictness of G), the elements of

the second page belong to Comod-C.

Corollary 4.2.5. Under the assumptions of proposition 4.2.4,

1. if F is s-exact, then Rn (G ◦ F ) ∼= RnG ◦ F ;

2. if G is s-exact, then Rn (G ◦ F ) ∼= G ◦RnF.
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4.2.3 Applications

The Generalized Tensor Identity

Let π : A→ B be a continuous morphism of Banach K-Hopf algebras.

Denote by Rn
s

(
�̂
B
πA
)

the n-th strict right derived functor of the induction functor(
−�̂
B
πA
)
.

Proposition 4.2.6. Let W be a Banach comodule over B and V be a Banach comodule over

A.

Then

Rn
s

(
�̂
B
πA
) (
Vπ ⊗̂W

) ∼= V ⊗̂Rn
s

(
�̂
B
πA
)

(W ) . (4.2.2)

Remark 4.2.7. Since V ⊗̂Rn
s

(
�̂
B
πA
)

(W ) ∼= V ⊗̂Rn
(
�̂
B
πA
)

(W ) one also has

Rn
s

(
�̂
B
πA
) (
Vπ ⊗̂W

) ∼= V ⊗̂Rn
(
�̂
B
πA
)

(W ) .

Proof. The tensor identity 2.2.22 give us an isomorphism of functors(
−�̂
B
πA
)
◦
(
Vπ ⊗̂−

) ∼= (V ⊗̂−) ◦ (−�̂
B
πA
)

Since the functor
(
Vπ ⊗̂−

)
- the tensor product over K is strict s-exact, the left hand side

is obtained from 4.2.5.1 by taking Hausdorff completion.

The functor
(
−�̂
B
πA
)

is not strict, so one cannot simply apply 4.2.5.2. For any W

consider CoBar resolution of V ⊗̂
(
W �̂

B
πA
)

:

0→ V ⊗̂
(
W �̂

B
πA
)
→ V ⊗̂

(
W �̂

B
πA
)
⊗̂A→ V ⊗̂

(
W �̂

B
πA
)
⊗̂A ⊗̂A→ . . . .

By Corollary 2.2.23 one can replace it with resolution

0→ V ⊗̂
(
W �̂

B
πA
)
→ Vtr ⊗̂

(
W �̂

B
πA
)
tr
⊗̂A→ Vtr ⊗̂

(
W �̂

B
πA
)
tr
⊗̂A ⊗̂A→ . . . . (4.2.3)

The comodule V ⊗̂
(
W �̂

B
πA
)

is a subcomodule of a comodule V ⊗̂Wtr ⊗̂A ∼= Vtr ⊗̂Wtr ⊗̂A

and thus

V ⊗̂
(
W �̂

B
πA
)
∼= Vtr ⊗̂

(
W �̂

B
πA
)
.
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Putting these observations together, we see that the complex 4.2.3 is isomorphic to the

complex

0→ Vtr ⊗̂
(
W �̂

B
πA
)
→ Vtr ⊗̂

(
W �̂

B
πA
)
⊗̂A→ Vtr ⊗̂

(
W �̂

B
πA
)
⊗̂A ⊗̂A→ . . .

and we have an isomorphism

Hn
s

(
V ⊗̂

(
W �̂

B
πA
))
∼= V ⊗̂Hn

s

(
W �̂

B
πA
)

which gives the right hand side of 4.2.2.

Example 4.2.8. It is known that for locally analytic or continuous representations of com-

pact p-adic groups an induction functor is exact. Thus all of its derived functors are zero

and the generalized tensor identity is trivial. Here we give an example where this is not the

case.

Consider a Banach Hopf algebra of affinoid functions

A = Can (SL (2,Zp) , K) = K {a, b, c, d} /(ad− bc− 1)

on SL (2,Zp) and a Hopf algebra of affinoid functions on its Borel subgroup C = Can (B,K) =

Can (SL (2,Zp) , K) /(c). We refer to the functor A�̂
C
− as affinoid induction.

Any analytic character λ of the maximal torus of SL (2,Zp) gives a 1-dimensional comod-

ule over C, which we also denote by λ. It is easy to see that all these characters are algebraic

(also see [3]). Thus we know that if λ is dominant then A�̂
C
λ is non-zero, since it contains

an algebraic induced comodule (actually, this inclusion is an equality). Also it is clear that,

similarly to the case of algebraic groups (see [10, I.5]), A�̂
C
λ is equal to the 0-cohomology

(global sections) of the sheaf L (λ) on P1
K (rigid-analytic projective line), associated to λ.

Since P1
K is a proper rigid-analytic space, we can apply Serre duality [2]. Thus, similarly to

the case of algebraic groups (see details in [10, II.4,5]), A�̂
C
λ ∼= R1

(
A�̂
C

)
(−λ) and we see

that in general affinoid induction is not exact.
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Hochshild-Serre for bounded cohomology

A celebrated theorem of Noskov in the theory of bounded cohomology immediately follows

from proposition 4.2.4.

Let G be a (discrete) group.

Theorem. [20]Let N be a normal subgroup of G and V is a bounded G-module such that

H∗b (N ;V ) is Hausdorff. Then H∗b (N ;V ) is a bounded G/N-module and there exists a spec-

tral sequence (Er) such that

Epq
2 = Hp

b (G/N ;Hq
b (N ;V ))⇒ Hp+q

b (G;V ) .

Proof. The condition that H∗b (N ;V ) is Hausdorff means that differentials in CoBar resolu-

tion of VN are strict.

The Hochshild-Serre spectral sequence for comodules

In the algebraic context the Hochshild-Serre spectral sequence was established in [22]. We

give a simplified treatment of the theory in topological context. We need to make some

assumptions on our Hopf algebras, which are satisfied, for example, in the case of finite

groups.

Let A and B be a topological Hopf algebras and π : A� B be a normal surjective map.

Consider ρl : A→ A ⊗̂A, the left adjoint coaction on A. By definition of ρl, the diagram

A
ρl−→A A ⊗̂ A

π ↓ ↓ π ⊗ id
B −→ B ⊗̂ A

ρB

defines an A−comodule structure on B.

Since (Aπ)B is a left B−homogeneous, (Aπ)B ⊆ A ⊗̂ (Aπ)B .

Lemma 4.2.9. The normality of π implies

1. (Aπ)B is a subcoalgebra of A.
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2. For any (M,ρM) ∈ Comod−A ρM (Mπ)B ⊆ (Mπ)B ⊗̂ (Aπ)B , (Mπ)B is a (Aπ)B −comodule.

3. We have
(

(Mπ)B
)(Aπ)B

= MA.

Proof. 1 and 2 - [22, 3.4, 3.6, 3.8]. For 3, it is clear that MA ⊆
(

(Mπ)B
)(Aπ)B

and also,

since the action on MB
π is ρM , the inverse inclusion holds.

Since all maps involved in [22, 3.4, 3.6, 3.8] are continuous, one has

Lemma 4.2.10. If H i (B,Mπ) are Hausdorff (Banach spaces), then H i (B,Mπ) are

(Aπ)B −comodules.

Remark 4.2.11. If H i (B,Mπ) are not Hausdorff, then the coaction from preceding lemma

maps H i (B,Mπ) into H i (B,Mπ) ⊗̃K,π (Aπ)B see section 1.4. The Hausdorff completion of

this space is H i (B,Mπ) ⊗̂ (Aπ)B .

Proposition 4.2.12. Under the assumptions of this section, let M be such that all H i (B,Mπ)

are Hausdorff and Aπ is an s-injective B-comodule. Then there exists a spectral sequence

with

Ep,q
2 = Hp

(
ABπ , H

q (B,Mπ)
)
⇒ Hp+q (A,M) .

Proof. Lemma 4.2.9.3 means that (−)A
B
π ◦ (−)B = (−)A . By lemma 4.2.10 (−)B take values

in Comod−ABπ . Thus we have a functor ((−)π)B : Comod − A → Comod − ABπ . Since Aπ

is injective B−comodule, for any M ∈ Comod − A, (−)π sends the CoBar resolution of

M into an s-injective resolution of Mπ, thus we have Rn ((−)π)B = Rn (−)B ◦ (−)π . Since

both (−)B and (−)π preserve s-injectives and under (−)B ◦ (−)π the A−comodule structure

is mapped to ABπ structure, (−)B ◦ (−)π maps s-injective to s-injectives. Proposition 4.2.4

gives the spectral sequence.

The following example shows that assumption “Aπ is an s-injective B-comodule” is nat-

ural.
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Example 4.2.13. Let G be a p-adic compact group and H be any locally analytic subgroup

of G. It is known that

C la (G,K) ∼= C la (G/H,K) ⊗̂C la (H,K) .

Thus, if π : C la (G,K)→ C la (H,K) then C la (G,K)π is injective C la (H,K)−comodule.
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