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Abstract 

Ischemia, lack of blood flow, and reperfusion, return of blood flow, is a common phenomenon 

affecting millions of Americans each year. Roughly 30,000 Americans per year experience 

intestinal ischemia-reperfusion (IR), which is associated with a high mortality rate. Previous 

studies of the intestine established a role for neutrophils, eicosanoids, the complement system 

and naturally occurring antibodies in IR-induced pathology.  Furthermore, data indicate 

involvement of a lipid or lipid-like moiety in mediating IR-induced damage.  It has been 

proposed that exposure of neo-antigens are recognized by antibodies, triggering action of the 

complement cascade. While it is evident that the pathophysiology of IR-induced injury is 

complex and multi-factorial, we focus this review on the involvement of eicosanoids, 

phospholipids and neo-antigens in the early pathogenesis.  Lipid changes occurring in response 

to IR, neo-antigens exposed and the role of a phospholipid transporter, phospholipid scramblase 

1 will be discussed. 
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Abbreviations 

AA  arachidonic acid 

ATP  adenosine tri-phosphate 

β2-GPI  beta2-glycoprotein 1 

cAMP  cyclic adenosine mono-phosphate 

Cox  cyclooxygenase 

cPLA2  cytosolic phospholipase A2 

CR2  complement receptor 2 

ESI-MS/MS electrospray ionization-tandem mass spectrometry 

HR  hypoxia re-oxygenation 

HUVEC human umbilical vein endothelial cells 

Ig  immunoglobulin 

IR  ischemia reperfusion 

Lox  lipoxygenase 

LTB4  leukotriene B4 

MBL  mannose binding lectin 

miRNA micro ribonucleic acid 

mTOR  mammalian target of rapamycin 

MTT  3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

NFκB  nuclear factor kappa-light-chain-enhancer of activated B cells 

PA  phosphatidic acid 

PC  phosphatidylcholine 

PE  phosphatidylethanolamine 
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PGE2  prostaglandin E2 

PGF2α  prostaglandin F2 alpha 

PGI2  prostaglandin I2 

PI  phosphatidylinositol 

PLA2  phospholipase A2 

PLSCR phospholipid scramblase 

PS  phosphatidylserine 

Rag  recombination activating gene   

sCR1  soluble complement receptor type 1 

TxB2  thromboxane B2 
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Ischemia/Reperfusion 

Ischemia, the lack of sufficient blood supply to tissues, results in cellular dysfunction and 

eventually necrosis.  However, the return of blood flow, termed reperfusion, exacerbates the 

damage begun during the ischemic period.  Ischemia and reperfusion (IR) events occur in 

numerous organs as a result of various insults, such as trauma, shock, routine surgery and organ 

transplantation.The intestinal mucosa is among the organs most sensitive to IR (reviewed in [1]) 

with acute mesenteric arterial or venous thrombosis, embolism, and obstruction being common 

causes of intestinal IR (reviewed in [2, 3]). 

 Cases of acute mesenteric ischemia are classified by cause.  In order of incidence, they 

are arterial embolism, arterial thrombus, non-occlusive and venous thrombosis (reviewed in [2]).  

Symptoms are non-specific and can be subtle, resulting in a delay of correct diagnosis which 

decreases survival probability.  Furthermore, common sequelae include acute lung injury and 

multiple organ failure.  Bowel resection is indicated in most cases which leaves surviving 

patients with bowel problems, such as short bowel syndrome, for the remainder of their lives.  

Despite decades of improved imaging devices and medical advances, the mortality rate 

associated with intestinal IR remains at 50 to 80% (reviewed in [4]).   

 The mesenteric arteries can maintain adequate perfusion of the intestine over a broad 

range of blood pressures, however below 40 to 45 mm Hg, perfusion is compromised (reviewed 

in [3]).  The gastrointestinal tract has a very high capillary density, many collateral vessels and 

receives approximately 25% of total cardiac output at rest (reviewed in [3]).  Cellular injury in 

humans is detectable by 20 minutes of total ischemia and within 60 minutes in the case of partial 

ischemia (reviewed in [3]). 
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Rodents are commonly used as research models for intestinal IR and have provided a 

large knowledge base regarding associated physiology and pathogenesis.  Studies in mice have 

shown changes in the internal pH of enterocytes, abruptly increasing from 6.8 to 7.1 at the 

initiation of ischemia, and rapidly stabilizing at a pH of 6.3 by three minutes into ischemia [1].  

Upon reperfusion, cascades of cellular events lead to eicosanoid production, signaling molecules 

derived from 20 carbon fatty acids via oxidation, formation of reactive oxygen species, secretion 

of cytokines and activation of the innate immune response.  The barrier between luminal 

contents and intestinal mucosa is compromised as enterocytes are shed, by necrosis and 

apoptosis, and capillary permeability increases [5-7] (Fig. 1).  The duration of ischemia 

influences the severity of damage and mortality.  A recent study with mice demonstrated 

increasing severity of tissue damage, as assessed by histology, with increasing duration of 

ischemia [8].  Furthermore,  mice subjected to 30 and 35 minutes of ischemia survived a 

minimum of 18 hours while mice subjected to 40 and 45 minutes of ischemia all succumbed 

within six hours post ischemia [8].  In contrast, experimental models of intestinal IR in horses 

frequently utilize two hours of ischemia and horses survive for 18 hours of reperfusion [9-11].  

In fact, 10 of 11 horses subjected to two hours of jejunal ischemia survived 10 days, to the 

study’s end-point [12].  Thus, the duration of ischemia tolerated varies between species.   

Several factors contributing to IR-induced pathology will be discussed briefly; however, 

the majority of this review will focus on lipids, neo-antigens and phosopholipid scramblase 1 as 

they relate to IR-induced pathology.   Eicosanoids, derivatives of arachidonic acid, are rapidly 

produced during the reperfusion period.  Prostaglandin E2 (PGE2) was found to be required but 

not sufficient for tissue damage in a mouse model of intestinal IR [13].  The conversion of 

arachidonic acid (AA) to prostaglandins requires the cyclooxygenase (Cox) enzymes.  It is well 
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established that the expression of Cox 2, the inducible isoform, is elevated in the intestinal tissue 

following ischemia.  Several animal models have demonstrated an increase in Cox 2 

transcription and translation in the intestine following varying lengths of ischemia and 

reperfusion [13-18].  The use of Cox inhibitors, NS-398 and FK3311, has further demonstrated 

the importance of this pathway in reperfusion injury in some but not all animal models [14, 19].  

It is possible that structural differences in the inhibitors tested or species differences account for 

the discrepancy in results. 

The role of Cox 1, the constitutive isoform, in the post-ischemia production of 

prostaglandins is debated in the literature.  The expression of Cox 1 has primarily been reported 

in equine studies.  In the equine jejunum, Cox 1 protein is constitutively expressed and is 

increased, as is Cox 2, at 18 hours reperfusion following a two hour ischemic period [10, 20].  

Transcription of Cox 1 also increased, although not significantly, in response to 75 minutes of 

reduced blood flow to the jejunum [15].  Cox 1 is constitutively expressed in the lamina propria 

of equine colon and IR significantly increases protein levels in the epithelial cells [9, 11].  Our in 

vitro model using murine endothelial cells results in significant increases of both Cox 1 and Cox 

2, with a greater percent increase over control levels for Cox 1 (unpublished data).  The role of 

Cox 1 in IR-induced pathology may be underappreciated.   

The Cox enzymes catalyze the formation of prostaglandins, which, as stated above, are 

necessary but not sufficient for intestinal IR damage, at least in mice [13].  Prostaglandins are 

potent signaling molecules primarily derived from AA (reviewed in [21]) that are synthesized 

upon stimulation rather than being stored by the cell  (reviewed in [22]).  PGE2 is often 

associated with inflammation due to its vasodilatory effect and enhancement of vascular 

permeability ([23], reviewed in [24]).  Several in vivo studies have documented increased PGE2 
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production in response to intestinal IR [13, 25-29].  While increased transcription of the Cox 

enzymes begins during the ischemic period, reperfusion is necessary for PGE2 production [27].  

Endothelial cells produce prostaglandins (reviewed in [22]); however, not all endothelial cells 

generate the same prostaglandin profile.  PGI2 is the primary prostaglandin produced from 

endothelial cells of the large vessels, but microvessel endothelial cells, like those found in the 

mesenteric vasculature, synthesize more PGE2 and PGF2α [30].  It has long been postulated that 

PGE2 may paradoxically contribute to tissue healing by promoting angiogenesis and epithelial 

cell migration (reviewed in [31]).  Higher doses of Cox inhibitors which more profoundly 

suppress PGE2 production are inhibitory for mucosal repair following ischemia in a porcine 

model [17].  An ex vivo study of porcine ileum showed that PGE2 application could increase 

intracellular cyclic adenosine monophosphate (cAMP) levels and contribute to closure of leaky 

tight junctions [23].  It has been proposed that PGE2 may act to downregulate nuclear factor 

kappa light chain enhancer of activated B cells (NFκB) activity in a negative feedback fashion 

(reviewed in [32]).  While the precise mechanisms by which PGE2 exerts opposing effects are 

not well understood, concentration, timing and ligation of differing receptors are likely 

possibilities (reviewed in [24]). 

Another eicosanoid derived from AA in response to intestinal IR is leukotriene B4 

(LTB4).  LTB4, produced by endothelial cells, is chemotactic for neutrophils and facilitates 

adherence and degranulation of neutrophils (reviewed in [33]).  The chemotactic property of 

LTB4 has been well documented, both in vitro and in vivo.  Reperfusion greatly increases the 

number of neutrophils in the intestinal tissue ([34], reviewed in [35]).  Increased neutrophil 

adherence to endothelial cells was observed via intravital microscopy and in ex vivo assays on 

tissues subjected to intestinal IR [36, 37].  Activated neutrophils produce reactive oxygen 
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compounds which contribute to the reperfusion damage (reviewed in [38]).  Accordingly, IR 

induces release of  myeloperoxidase, an enzyme of neutrophils [39].  LTB4 receptor antagonists, 

LTB4-DMA and LY-255283, have been shown to attenuate the effects of hypoxia, increased 

survival and decrease intestinal myeloperoxidase activity, while application of LTB4 enhanced 

leukocyte adhesion in a dose-dependent manner [36, 40, 41].  Similarly, LTB4 production and 

intestinal myeloperoxidase activity was reduced in dogs subjected to three hours of ischemia and 

one hour of reperfusion when treated with the 5-lipoxygenase inhibitor A-64077 [42].  

Furthermore,  5-Lox-/- mice sustained less intestinal damage, had decreased intestinal 

myeloperoxidase activity and improved survival compared to wildtype mice following intestinal 

IR [43].       

The Cox enzymes also mediate the production of thromboxanes which promote 

coagulation and are increased by intestinal IR, similar to prostaglandins and leukotrienes.  In 

both rats and dogs, thromboxane B2 (TxB2) increased significantly over baseline during the 60 

minute reperfusion period [29, 44].  An equine study also revealed increased TxB2, but only 

during the first of three hours of reperfusion [45].  Thromboxanes contribute to IR-associated 

systemic effects, such as pulmonary compromise.  The release of TxB2 from the lungs and 

pulmonary permeability of rats subjected to intestinal IR was significantly greater when 

compared to Sham treated rats [46].  Furthermore, the pulmonary permeability was attenuated 

with thromboxane inhibitors [46].  It is clear that the synthesis of eicosanoids from AA potentiate 

IR-induced injury.   

Antibodies and Neo-antigens 

The complement system, comprised of over 30 proteins, plays a significant role in the 

pathology resulting from IR.  Traditionally, the complement system is described as having three 
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different methods of activation, converging at a common endpoint.  Several approaches were 

taken to delineate the contribution of each activation pathway due to the significant overlap and 

crosstalk between them . The involvement of both the classical and alternative pathways in IR 

injury was demonstrated in the early 1990s.  Administration of soluble complement receptor type 

1 attenuated intestinal damage and neutrophil infiltration in a rat model [47].  Later studies using 

this same complement inhibitor confirmed that both the classical and alternative pathways of 

complement activation contributed to IR injury [48].  The generation of factor D-/- mice allowed 

for investigation of the alternative pathway.  Mice deficient in factor D experienced attenuated 

intestinal injury and neutrophil infiltration following IR [49].  The lectin pathway was 

subsequently shown to contribute to IR pathology (reviewed in [50]).  A supporting study 

demonstrated the requirement for MBL in IR injury as MBL-/- mice were protected from IR 

damage [51, 52] but susceptible after reconstitution with MBL [51].  Two native inhibitors of the 

complement pathway, complement C1 inhibitor (classical and lectin) and Crry (classical and 

alternative), attenuate tissue injury and reduce neutrophil infiltration [53, 54].   

In accordance with the involvement of the classical complement pathway, antibodies are 

essential for IR injury.  Rag-1-/- mice do not produce antibodies and do not sustain IR damage; 

however, administration of pooled wildtype antibodies as well as the IgM fraction alone results 

in intestinal damage similar to that seen in wildtype animals [27, 55].  It was later shown that 

human IgM can also elicit injury and complement deposition in Rag-1-/- and Rag -2-/- mice [56, 

57].  Further support for the involvement of antibodies came out of studies investigating 

complement receptor 2 (CR2), a B cell membrane protein.  CR2-/- mice produce antibodies but 

have defects in the generation of the normal antibody repertoire [58, 59].  CR2-/- mice are 

protected from IR injury; and, like Rag-1-/- mice, administration of wildtype IgM results in 
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intestinal injury and complement deposition [59, 60].  Additional studies with CR2-/- mice 

identified specific antibodies capable of inducing IR damage.  An anti-phospholipid antibody 

and anti-β2-glycoprotein I (β2-GPI) antibody were each able to induce IR injury and complement 

deposition in CR2-/- mice; however both antibodies were required in Rag-1-/- mice [61].   

IR-Induced Neo-Antigens 

β2-GPI is one of three recently identified proteinacoeus neo-antigens involved in IR 

injury.  This 54 kDa protein, originally named apolipoprotein H, is one of the most abundant 

human plasma proteins with an average concentration of 200 µg per ml (reviewed in [62]).  Five 

short consensus repeats comprise the 326 amino acid protein categorizing it as a member of the 

complement control superfamily (reviewed in [62]).  β2-GPI primarily circulates unaccompanied 

but can be found bound to circulating lipid (reviewed in [62]).  A stretch of lysine residues 

(amino acids 282-287) in Domain V allows for binding to anionic phospholipids of cellular 

membranes which can activate the cells and promote apoptosis of the bound cell ([63], reviewed 

in [62]).  The results of the aforementioned study strongly suggested the involvement of β2-GPI 

[61] and further studies have demonstrated the efficacy of peptides derived from Domain V, the 

lipid binding domain, in protecting wildtype mice from IR damage [64].   Additionally, treatment 

with the β2-GPI -derived peptides minimized the intestinal injury, complement deposition and 

eicosanoid production resulting from administration of wildtype antibodies to Rag-1-/- mice [64].  

Interestingly, administration of purified human β2-GPI to wildtype mice prior to intestinal IR 

attenuated injury, complement deposition, and PGE2 production [65].  The authors speculate that 

the anti-β2-GPI antibodies produced by the mice bind the human β2-GPI, thus reducing the titer 

of anti-β2-GPI antibodies available for binding the mouse protein [65].  This hypothesis is 

supported by further data demonstrating attenuation of IR injury and sequelae when Rag-1-/- 
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mice were administered pooled wildtype antibodies that had specifically been depleted of anti-

β2-GPI [64].   

The other two identified neo-antigens induced by IR are the intracellular proteins non-

muscle myosin heavy chain II and annexin IV.  Screening experiments probing ischemic tissue 

with several monoclonal antibodies identified  monoclonal antibodies against non-muscle 

myosin heavy chain II isoforms A and C  or annexin IV that rendered Rag-1-/- mice susceptible 

to IR injury complement deposition, neutrophil infiltration or eicosanoid production [66-68]. 

Importantly, the anti-annexin IV monoclonal antibody does not recognize non-muscle myosin or 

phospholipids [69].  A peptide based on non-muscle myosin heavy chain II provides additional 

evidence that this protein serves as a neo-antigen following IR [70].  Non-muscle myosin heavy 

chain II may be involved in other models of IR injury as this same peptide has conferred 

protection in hind-limb and myocardial IR models [71, 72].  In wildtype mice, recombinant 

annexin IV reduces tissue injury as well as neutrophil infiltration and eicosanoid production [67, 

69].  The authors propose that the recombinant annexin IV binds the circulating anti-annexin IV 

antibodies, greatly reducing the likelihood of antibody binding annexin IV expressed on 

damaged tissue [67, 69].  Although multiple neo-antigens have been identified, it is unknown 

how these proteinaceous neo-antigens interact. 

The Contribution of Lipids to Cellular Signaling and Processes 

The cellular membrane consists of a bilayer of phospholipids, which under normal 

conditions, exists in an asymmetric distribution with neutral phospholipids such as 

phosphatidylcholine (PC) residing in the outer leaflet of the bilayer and anionic 

aminophospholipids including phosphatidylserine (PS) remaining in the inner leaflet. Despite 
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advances in “lipidomics”, or mass spectrometry-based lipid analysis, only a few studies have 

applied this technology to investigate intestinal lipid composition.  

PC, PS, phosphatidylinositol (PI), phosphatidylethanolamine (PE) and sphingomyelin 

were the main lipid classes present in both wildtype and Rag-1-/- mice after Sham treatment [27].  

Similar results were obtained by ESI-MS/MS analysis of untreated mouse and rat intestines [73, 

74].  The prominent PC peaks in the rat intestine were composed of 16:0-18:2 PC species [73].  

These data correlate with that of Sparkes et al., in which the most prominent PC species was 34:2 

[27].  A study by Braun et al. also showed that normal mouse jejunum expressed a 496 Da and 

524 Da lysoPC in the highest concentrations [75].  These masses correlate with the predominant 

16:0 and 18:0 lysoPC species found in Sham-treated animals [27].  This data is consistent with 

formation of lysophospholipids by a lipase acting at the sn-2 position since mammalian lipids 

typically are enriched in saturated fatty acids at the 1-position and polyunsaturated fatty acids at 

the 2-position.   

Phospholipases catalyze phospholipid hydrolysis and are classified by their cleavage 

sites.   Phospholipase A cleaves fatty acyl chains from the glycerol backbone of a phospholipid. 

Three classes of PLA2, secretory, calcium-independent, and cytosolic, cleave the fatty acyl chain 

from the second carbon of the glycerol backbone (sn-2) (reviewed in [76]).  The ubiquitous 

cytosolic PLA2 (cPLA2) has an affinity for phospholipids containing polyunsaturated fatty acids, 

particularly AA, at the sn-2 position (reviewed in [76-78]).  While no preference for a 

phospholipid head group has been identified [79], AA is most often associated with 

phospholipids containing choline, ethanolamine or inositol as the head group [79].  The activity 

of cPLA2 is calcium-dependent and is synergistically increased by mitogen activated protein 

kinase mediated phosphorylation [80, 81].  Calcium is required for the translocation of cPLA2 
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from the cytosol to the plasma and intracellular membranes and for binding to a phospholipid 

substrate (reviewed in [76, 78]).  Although the majority of AA is released from PC by the action 

of PLA2 [82], the activity of phospholipase C and D can indirectly contribute to the AA pool 

(reviewed in [83]).    

PLA2 activity not only increases the level of free AA, but also lysophospholipids (Fig. 2).  

Several lysophospholipids are biologically active and circulate through the vasculature (reviewed 

in [84]).  The term “lyso” was applied to these lipids because they lyse red blood cells (reviewed 

in [84]); structurally lysophospholipids are those with a single acyl chain.  Just as PC is the most 

abundant phospholipid of cellular membranes, lysoPC is the most abundant lysophospholipid in 

serum (reviewed in [84]).  Beyond their contribution to cellular structure, phospholipids are 

biologically active and participate in intracellular signaling. 

 PA and lysoPA influence several aspects of immune function.  Many cells of the immune 

system express one or more of the nine known G protein coupled receptors for lysoPA (reviewed 

in [85]).  GPR92, the lysoPA receptor mentioned above, is expressed by the resident 

lymphocytes of the intestine, including those in the epithelial layer, lamina propria, Peyer’s 

patches and mesenteric lymph nodes [86].  Stimulation of the immune system can increase the 

concentration of lysoPA, which is chemotactic for leukocytes, elevates intracellular calcium 

concentrations and compromises the endothelial barrier ([87], reviewed in [85, 88]).   

High concentrations (75 µmol/L) of lysoPC are toxic to cells.  The addition of exogenous 

lysoPC (16:0) to cultures of human aortic endothelial cells reduced mitochondrial respiration, as 

assessed by MTT assay, promoted detachment of cells from the matrix and increased the number 

of apoptotic cells in a time- and dose- dependent manner [89].  Uptake of extracellular calcium is 
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promoted by lysoPC, increasing the intracellular calcium concentration, which appears necessary 

for lysoPC-mediated apoptosis [89, 90].   

A hallmark of apoptosis is externalization of PS (reviewed in [91]).  As the process of 

apoptosis begins, cardiolipin, the major constituent of mitochondrial membranes, is oxidized 

[92].  Cytochrome c is then released into the cytoplasm where it can oxidize PS residing in the 

inner leaflet of the plasma membrane [92].  Subsequently, oxidized PS is flipped to the outer 

leaflet where it is recognized as an apoptotic marker by the macrophage membrane protein 

CD36, promoting phagocytosis [92, 93].  Although transient exposure of PS occurs often, such 

as during cellular activation or fusion of membranes [94], the phospholipid is rapidly re-

internalized under physiological conditions.  LysoPS can also be flipped to the outer leaflet; 

however, lysoPS is not re-internalized, thus serving as a marker for phagocytosis (reviewed in 

[84]).  PS is also involved in the clotting of blood when externalized by platelets and acts as a co-

factor for maximal activity of protein kinase C and sodium/potassium ATPase [95].   

Hypoxia activated PLA2 in a study exposing primary human umbilical vein endothelial 

cells (HUVEC) to zero percent O2 for two hours [96]. However, in the context of IR, reperfusion 

seems essential for stimulating PLA2 activity and elevating lysophospholipid content [97].  A 

decrease in total phospholipids is observed after intestinal IR and IR studies in rats indicated that 

administration of quinacrine, a non-specific inhibitor of PLA2 enzymes, reduced intestinal 

permeability and lowered the ratio of lysoPC to PC suggesting a role for PLA2 in IR injury [97, 

98].  Quinacrine also attenuated the loss of total phospholipids following IR in a porcine heart 

model [99].  The total phospholipid content per gram of tissue following ischemia of the heart 

decreased in an investigation of the metabolic effects due to ischemia in cardiac tissue [99, 100].         
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An ex vivo study of myocardial cells indicated loss of PC and PE with a concomitant 

increase of lysoPC and lysoPE in response to four hours of zero percent O2 exposure [101].  An 

increase in fatty acids including AA was detected in the culture supernatant [101].  PC and PE 

were similarly decreased and lysophospholipids increased in a rat model of cerebral IR [102].  

Two independent studies found a decrease in total phospholipids, up to 20%, when primary 

porcine pulmonary artery endothelial cells were exposed to zero percent O2 for 24 to 48 hours 

[103, 104].  In accordance with the myocardial cell study, culture supernatants contained 

elevated levels of AA and other free fatty acids [103, 104].  Primary HUVECs exposed to zero 

percent O2 for two hours followed by 45 minutes re-oxygenation released approximately 15% 

more AA than the controls [96].  Accordingly, eicosanoid production was augmented when 

HUVECs and bovine aortic endothelial cells were enriched with fatty acids in a hypoxia/re-

oxygenation (HR) study [105].  Thus, several in vitro and ex vivo studies suggest a role for 

phospholipids and lysolipids in IR-induced damage. 

The limited investigation into the composition of the healthy lipid profile extends to 

diseased tissue.  A small number of studies have used ESI-MS/MS to study lipids in intestinal 

disease with variable results depending on the disease model.  IR increased lysoPC with a 

concomitant decrease in PC [27].  Furthermore, phospholipase A2 (PLA2) activity and the 

subsequent lysoPC:PC ratio increased in response to IR [97].  These data correlate with previous 

studies indicating that lysoPC increases the intestinal permeability and PLA2 activity as a result 

of intestinal IR [106].  In addition to increased lysoPC levels following IR treatment, intestinal 

levels of free AA increased.   

The altered phospholipid composition resulting from hypoxia increases the fluidity of the 

cellular membrane, an effect that is reversible with a sufficient re-oxygenation period [103].  In 
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vivo studies demonstrated the effect of lysophospholipids on endothelial permeability.  Addition 

of lysoPC to the lumen of the ileum resulted in increased permeability to molecules as large as 

70 kDa [107].  LysoPC also enhanced the permeability that ischemia alone causes [108]. 

Inflamed tissue exhibits some of the same lipid changes found in HR studies.  Colon 

biopsies from inflammatory bowel disease patients and inflamed intestinal mucosal samples 

contained significantly more AA than biopsies and mucosa from healthy control patients [109, 

110].  LysoPE in the inflamed intestinal mucosal samples was also elevated in comparison to 

healthy control samples [110].  

Evidence of lipid oxidation is found in both in vitro HR and in vivo IR studies.  An 

increase in malondialdehyde occurred in  primary pulmonary artery endothelial cells after a 

hypoxic period of eight hours [103].  However, evidence of free radical production and lipid 

oxidation was detected with a 45 minute hypoxia, 15 minute re-oxygenation treatment of aortic 

endothelial cells in a separate study [111].  A rat model of intestinal IR showed that reperfusion 

was necessary for an increase in malondialdehyde [97].  Interestingly, a model of oxidative tissue 

damage in which mice are exposed to γ-irradiation revealed an increase in oxidation of 

cardiolipin and PS but no other phospholipids, suggesting an increased susceptibility of 

cardiolipin and PS to oxidative stress [74].  Together, these studies suggest that the lipid profile 

of a tissue can change and that lysophospholipids and oxidized lipids are important components 

of intestinal reperfusion injury.   

The Response of Phospholipid Scramblase 1 to Hypoxia 

The cellular membrane consists of a bilayer of phospholipids which form a hydrophobic 

barrier between the cellular constituents and the outside environment.  This bilayer is not a 

passive barrier however; the composition and distribution of membrane phospholipids are highly 
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regulated.  Under normal conditions, the membrane exists in an asymmetric distribution, with 

neutral phospholipids residing in the outer leaflet of the bilayer and anionic aminophospholipids 

remaining in the inner leaflet.  This asymmetric distribution of phospholipids is not present in all 

membranes that fuse with the cellular membrane, such as during endocytosis.   Thus, 

transmembrane proteins shuttle phospholipids from one leaflet to the other as a means of 

maintaining the asymmetric distribution of phospholipids (Fig. 3).      

Phospholipids move between membranes by several mechanisms.  Phospholipids can be 

transferred by vesicles and proteins (reviewed in [112]).  Proteins specific for the transport of 

phospholipids between organelles reside in the cytoplasm (reviewed in [113]).  Additionally, 

contact between membranes allows for lateral diffusion of phospholipids whereby relocation can 

be achieved (reviewed in [112]).       

The first of these lipid transporting proteins to be characterized was aminophospholipid 

translocase [114].  Use of spin-labeled analogs with bovine serum albumin back-extraction 

confirmed an affinity for PS and PE and demonstrated more rapid internalization of PS compared 

to PE [115, 116].  This aminophospholipid translocase was found to be ATP-dependent with a 

stoichiometry of one ATP per PS or PE transported [114, 117].  There is some evidence that 

basic fibroblast growth factor signaling regulates activity as incubation with an anti-basic 

fibroblast growth factor immunoglobulin inhibited aminophospholipid translocase activity in 

cultured bovine aortic endothelial cells [118].   

A counterpart to the aminophospholipid translocase, which transports 

aminophospholipids from the outer leaflet to the inner leaflet of the bilayer, was proposed for the 

cell to maintain shape and function.  Early evidence for such a counterpart was provided in 

studies with red blood cells [119].  Subsequently, this activity was also shown to be ATP-
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dependent, although independent of the aminophospholipid translocase [116].  This putative 

transporter was called flippase; for consistency and simplicity, the aminophospholipid 

translocase became known as floppase.   

A third class of transmembrane proteins involved in regulation of membrane asymmetry 

were discovered nearly a decade later and named scramblases.  Four members of this protein 

class have been identified in human ([120, 121], reviewed in [122])  and in mouse (reviewed in 

[122]).  The properties of the scramblases are in stark contrast to those of the floppases and 

flippases.  While floppases and flippases transport phospholipids in one direction, from inner 

leaflet to outer leaflet or vice versa, respectively, scramblases are bi-directional transporters, 

capable of moving phospholipids between leaflets in both directions (reviewed in [122]).  

Additionally, scramblases show very little specificity for phospholipid head-groups, transporting 

both neutral and aminophospholipids at a similar rate (reviewed in [123, 124]).  Thus, 

scramblase activity serves to disrupt and reduce the membrane asymmetry ([125, 126], reviewed 

in [122]).  The exposure of aminophospholipids, particularly PS, is at times desired, such as for 

initiation of the coagulation cascade and clearance of apoptotic cells (reviewed in [127]).  

Conceptually, scramblase activity should be tightly regulated even in cases of physiologic 

benefit.  Experimentally, activation of scramblase corresponds with very specific intracellular 

conditions.  Scramblase is activated by high concentrations of intracellular calcium [125, 126, 

128-130] and acidic pH [130].  In contrast to the constitutive activity of floppases and flippases, 

scramblase activity is highly regulated and ATP-independent.   

The scramblases are a conserved family, with orthologs found in several diverse 

organisms including the model organisms Mus musculus, Drosophila melanogaster, Danio rerio 

and Saccharomyces cerevisae (reviewed in [122]). The four human homologs are similar in 
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sequence with PLSCR2 – 4 exhibiting 46 to 59% protein identity with PLSCR1 [120].  Each of 

the four known scramblases appears to have distinct localizations and functions.  The 

localization of each murine protein has been investigated and all findings regarding the 

localization of human homologs are consistent with the murine data.  Phospholipid scramblase 1 

(PLSCR1), the first to be characterized [128, 129], primarily localizes to the cellular membrane 

[131-134] while PLSCR3 resides in the outer mitochondrial membrane [135].  Expression of 

PLSCR2 is only detected in the testes [120] and PLSCR4 appears to distribute both to the 

cellular membrane and the nucleus [136], though the functions of these two family members 

remain unidentified.    

Activation of PLSCR1 involves the binding of calcium or potentially other divalent 

cations  [128, 137] to a predicted single cation binding site [137] in the cytoplasmic portion.  

Several studies have demonstrated an increase in phospholipid scrambling in the presence of 

calcium [128, 129, 138].  Recent work confirms the importance of the C-terminal alpha helix for 

both calcium binding and scrambling activity [121, 139].  It is hypothesized that calcium binding 

is followed by a conformational change and perhaps self-aggregation [131, 137, 138].  In the 

absence of calcium, acidic conditions (pH < 6.0) activate PLSCR1 in erythrocyte-derived inside 

out vesicles [130].  Data suggest that protein kinase Cδ phosphorylates PLSCR1 at the threonine 

residue at position 161 following calcium binding [140].  This phosphorylation appears to be 

required for PLSCR1 activity; as either specific inhibition of protein kinase Cδ or transfection of 

PLSCR1 alone in cells intrinsically lacking both protein kinase Cδ and PLSCR1 resulted in loss 

of phospholipid scrambling [140].   Additionally, PLSCR1 and epidermal growth factor receptor 

are primarily localized to lipid rafts.  There is evidence that PLSCR1 is a component of the 

epidermal growth factor receptor complex as epidermal growth factor stimulation allows for the 
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co-immunoprecipitation of phosphorylated PLSCR1, epidermal growth factor receptor and the 

adaptor protein Shc [133].  Furthermore, data suggest that signaling via epidermal growth factor 

receptor activates synthesis of PLSCR1 [133].    

Normally, PLSCR1 is found in the cellular membrane and to a lesser extent membranes 

of secretory vesicles, often associated with lipid rafts [131, 133, 134, 141].  The protein contains 

18 cysteine residues [132], each of which could potentially serve as a site of palmitoylation.  

Using a mutated PLSCR1 that cannot be palmitoylated or the native structure with inhibition of 

palmitoylation revealed that palmitoylation is required for the protein’s association with the 

membrane [132].  Site directed mutagenesis studies in which alanine residues were 

systematically substituted for cysteine residues provided insight into which cysteine residues 

were important for palmitoylation.  Only when all five of the cysteine residues between amino 

acids 184 and 189 were changed to alanine residues was palmitoylation lost [132].  Additionally, 

the binding affinity for calcium and activity of PLSCR1 is greatly decreased in the absence of 

palmitoylation [142].   

In the absence of palmitoylation, PLSCR1 is found diffusely in the nucleus [132].  While 

PLSCR1 does not contain a classical nuclear localization signal [143], the amino acid sequence 

from residues 257 to 266 is necessary for active import into the nucleus by importin α and β 

[143, 144].  However, the full significance of PLSCR1’s function in the nucleus is still unclear.   

A study by Rami et al. performed immunohistochemical staining for PLSCR1 on the 

hippocampal region of human brain samples from patients who had experienced and temporarily 

recovered from an ischemic insult and found an increase in PLSCR1 protein versus control 

samples in which IR did not occur [145].   Our unpublished data indicate a decrease in 

endothelial cell protein levels during a period of acute hypoxia but a significant increase in 
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transcription within 15 minutes of re-oxygenation.  While it is important to point out the different 

cell types under investigation, neurons in the Rami study and endothelial cells in ours, both 

suggest an increase in PLSCR1 shortly after reperfusion is established.  As for the decrease in 

PLSCR1 protein during the hypoxic period that we observed, the potential for PLSCR1 to be 

released from the cell membrane must be considered and may be due to shedding of the protein 

into the culture media as was recently described for PLSCR3 [146].  

Summary 

Although the phenomenon of intestinal IR has been recognized for centuries and medical 

knowledge and technology have progressed immensely, a high mortality rate remains for those 

afflicted.  The pathogenesis is multi-factorial and the numerous molecular and cellular 

interactions contribute to the difficulty of designing effective therapeutics.  While several aspects 

of intestinal IR-induced pathogenesis have been identified, the initial molecular response remains 

unknown.  Figure 4 represents one possibility for initiation of the cascade.   

 Recent studies have identified neo-antigens as potential triggers, but their roles remain 

undefined [64, 66, 68].  The involvement of a lipid moiety is suggested by data in the literature.  

Antibodies are known to be one of the required components for IR-induced tissue damage as 

antibody-deficient Rag-1-/- mice are protected and reconstitution of Rag-1-/- mice with antibodies 

from wildtype mice prior to intestinal IR renders the Rag-1-/- mice susceptible to IR-induced 

injury [27]. Likewise, reconstitution with a monoclonal anti-phospholipid antibody and anti-

phospholipid binding protein, β2-GPI, (both found in wildtype sera) produces IR-induced 

pathology in the otherwise protected Rag-1-/- mice [147].   

Mass spectrometry has been used to compare the intestinal lipid profiles of polar lipids 

and free fatty acids between different strains of mice, C57Bl6, Rag-1-/-, TLR9-/-, TLR2-/- and  
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CR2-/- ( [26, 27] and unpublished data).  IR treatment results in considerable changes in the lipid 

composition; however these alterations are largely independent of genetic background.  

Importantly, the levels of lysolipids increased, especially lysoPC and lysoPE, as did the levels of 

AA.  Release of AA through phospholipase activity is essential for production of eicosanoids.  

These data show that cellular lipids are altered in response to intestinal IR and provide support 

for the hypothesis that a lipid moiety participates in the pathogenesis of IR-induced injury.      

As the lipid profiles from various strains of mice prior to and following IR are quite 

similar, this may be the inciting stimulus for the pathogenic cascade leading to tissue damage.  

Ischemia activates PLSCR1 resulting in disruption of the phospholipid bilayer (Fig. 4).  

Following exposure of negatively charged phospholipids, such as PS, circulating β2-GPI is able 

to deposit on the cellular membranes of endothelial cells.  The conformational change that occurs 

in β2-GPI upon binding allows for antibody recognition of the now exposed neo-antigens.  The 

complement cascade can then be activated and an inflammatory response initiated.   

Future Directions 

In addition to their role in activating the complement cascade, antibodies are required for 

the up-regulation of Cox 2 transcription.  In the absence of antibodies, Cox 2 transcription is not 

up-regulated and the production of PGE2, another required component for IR-induced damage, is 

not increased [27].  The mechanism by which antibodies influence Cox 2 transcription remains 

unidentified.  Future studies addressing the relationship between antibodies and Cox 2 

transcription will be important not only for the development of therapeutics for IR-induced 

injury but also for other conditions in which a Cox 2-mediated inflammatory response is 

detrimental.  The contribution of the Cox 3 isoform to IR-induced injury is another area of study 

that may be of therapeutic value.   
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The identification of IR-induced neo-antigens is an important step in further dissecting 

the early molecular events involved in the pathogenesis.  The mechanism by which these neo-

antigens, being large intracellular or serum proteins, are exposed to the extracellular milieu 

remains a mystery.  It seems likely that facilitated transport of some sort, either direct or indirect, 

must occur to allow for the intracellular neo-antigens to traverse the membrane.  Likewise, it is 

probable that some change at the membrane triggers the deposition of the serum neo-antigen, β2-

GPI.   

PLSCR1 is sensitive to changes in O2 tension.  Transcription and activity of PLSCR1 are 

promoted by hypoxia.  The activity of PLSCR1 involves disruption of the cellular membrane, 

with phospholipids flipping between the inner and outer leaflets of the membrane.  To 

successfully disrupt the membrane, this action is fairly non-specific and affects a relatively large 

area of the membrane.  Accordingly, PLSCR1 activity could provide a means for externalization 

of intracellular neo-antigens.  Going forward, with the knowledge that PLSCR1 is activated 

under hypoxic conditions (unpublished data), it will be important to assess the relationship 

between PLSCR1 activation and neo-antigen externalization.  In addition to determining if the 

intracellular neo-antigens are exposed to the extracellular environment via PLSCR1 activity, 

studies examining the binding of β2-GPI to endothelial cells following hypoxia in the absence of 

PLSCR1 will further clarify the potential value in pursuing PLSCR1 as a therapeutic target.  

Hypothesized to be one of the first cellular responses to hypoxia, PLSCR1 may become an 

important target for the development of IR-related therapeutics.  
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