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Abstract 

Larvae of the Indian meal moth, Plodia interpunctella (Hübner), have the ability to 

invade or penetrate packaging materials and infest the food within.  Energy bars with three 

polypropylene packaging types were challenged with eggs (for first instars), third, and fifth 

instars of P. interpunctella to determine package resistance to larvae at 28°C and 65% r.h. to 

determine which provided the greatest protection against P. interpunctella larval penetration.  

Third and fifth instars showed a higher propensity to infest all packaging variations.  First instars 

showed a reduction in package pentration abiltiy compared to third and fifth instars.   

Methoprene is an insect growth regulator labeled in the USA for use as an aerosol spray, 

a residual surface treatment, and as a grain protectant, and recently has been impregnated into a 

polymer-based packing film to prevent insect infestations of packaged products. The objectives 

of these studies were 1) determine the effect of short term exposure time and temperature on four 

week old larvae, continual exposure on egg-to-adult emergence of beetles, and sub-lethal effect 

on adults of the red flour beetle, Tribolium castaneum (Herbst) and warehouse beetle, 

Trogoderma variabile Ballion, on the inside and outside surfaces of methoprene-treated woven 

packaging material at 27 and 32C at 60% r.h.; 2) evaluate fecundity, egg hatch, and egg-to-adult 

emergence of T. castaneum and T. variabile, when exposed to two methoprene-impregnated 

polymer packaging on the inside and outside surfaces at 27 and 32°C at 60% r.h.; and 3) 

determine the effect of methoprene-treated foil packaging on larval emergence, penetration, and 

invasion ability of T. variabile and P. interpunctella at 27°C and 60% r.h. 

 Short term exposure results indicated that adult emergence from larvae of T. castaneum 

and T. variabile decreased with increasing exposure time.  The number of eggs laid per female of 

T. castaneum and T. variabile did not vary from their controls.  Continual exposure demonstrated 



  

100% supression of T. castaneum adult emergence, irrespective of exposure to outside or inside 

surfaces. T. variabile exposed to inside surfaces were unaffected and normal adult emergence 

was reduced in those exposed to outside surfaces..     

The number of T. variabile eggs laid per female was not significantly different among 

polymer packaging types. The methoprene-treated polyethylene terephthalate to polyethylene 

packaging, PET-PE reduced the number of T. castaneum eggs laid per female.  Both polymer 

packaging reduced the percent hatch of both species.  No T. castaneum adults emerged on the 

inside surface of PET-PE and both sides of the polyethlyene to polyethylene (PE-PE).  Egg-to-

adult emergence of T. variabile was arrested at the pupal stage on the outside surface of PE-PE 

packaging. The PET-PE packaging greatly reduced the number of normal adults by 87 to 97% 

when exposed to inside surfaces at both temperatures.   

The foil packaging had no significant effect on hatch of either species.  T. variabile were 

unable to penetrate/invade any foil packages.  P. interpunctella invaded all packaging containing 

pinholes.  Therefore, continual exposure of T. castaneum and T. variabile to methoprene 

impregnated packaging could be a vaiable tool to protect food packages. 
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Abstract 

Larvae of the Indian meal moth, Plodia interpunctella (Hübner), have the ability to 

invade or penetrate packaging materials and infest the food within.  Energy bars with three 

polypropylene packaging types were challenged with eggs (for first instars), third, and fifth 

instars of P. interpunctella to determine package resistance to larvae at 28°C and 65% r.h. to 

determine which provided the greatest protection against P. interpunctella larval penetration.  

Third and fifth instars showed a higher propensity to infest all packaging variations.  First instars 

showed a reduction in package pentration abiltiy compared to third and fifth instars.   

Methoprene is an insect growth regulator labeled in the USA for use as an aerosol spray, 

a residual surface treatment, and as a grain protectant, and recently has been impregnated into a 

polymer-based packing film to prevent insect infestations of packaged products. The objectives 

of these studies were 1) determine the effect of short term exposure time and temperature on four 

week old larvae, continual exposure on egg-to-adult emergence of beetles, and sub-lethal effect 

on adults of the red flour beetle, Tribolium castaneum (Herbst) and warehouse beetle, 

Trogoderma variabile Ballion, on the inside and outside surfaces of methoprene-treated woven 

packaging material at 27 and 32C at 60% r.h.; 2) evaluate fecundity, egg hatch, and egg-to-adult 

emergence of T. castaneum and T. variabile, when exposed to two methoprene-impregnated 

polymer packaging on the inside and outside surfaces at 27 and 32°C at 60% r.h.; and 3) 

determine the effect of methoprene-treated foil packaging on larval emergence, penetration, and 

invasion ability of T. variabile and P. interpunctella at 27°C and 60% r.h. 

 Short term exposure results indicated that adult emergence from larvae of T. castaneum 

and T. variabile decreased with increasing exposure time.  The number of eggs laid per female of 

T. castaneum and T. variabile did not vary from their controls.  Continual exposure demonstrated 



  

100% supression of T. castaneum adult emergence, irrespective of exposure to outside or inside 

surfaces. T. variabile exposed to inside surfaces were unaffected and normal adult emergence 

was reduced in those exposed to outside surfaces..     

The number of T. variabile eggs laid per female was not significantly different among 

polymer packaging types. The methoprene-treated polyethylene terephthalate to polyethylene 

packaging, PET-PE reduced the number of T. castaneum eggs laid per female.  Both polymer 

packaging reduced the percent hatch of both species.  No T. castaneum adults emerged on the 

inside surface of PET-PE and both sides of the polyethlyene to polyethylene (PE-PE).  Egg-to-

adult emergence of T. variabile was arrested at the pupal stage on the outside surface of PE-PE 

packaging. The PET-PE packaging greatly reduced the number of normal adults by 87 to 97% 

when exposed to inside surfaces at both temperatures.   

The foil packaging had no significant effect on hatch of either species.  T. variabile were 

unable to penetrate/invade any foil packages.  P. interpunctella invaded all packaging containing 

pinholes.  Therefore, continual exposure of T. castaneum and T. variabile to methoprene 

impregnated packaging could be a vaiable tool to protect food packages. 
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Chapter 1 - Literature Review 

1.1. Biology of Common Stored-Product Insects 

1.1.1. Tribolium castaneum 

The red flour beetle, Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) is found 

throughout the world, readily distributed under natural conditions, and is considered one of the 

most abundant stored-product insects found in flour mills (Hinton, 1948; USDA-ARS, 1986; 

Hagstrum et al., 2013).  The T. castaneum subgroup originates from the Indo-Australian region 

and includes seven species (Hilton, 1948).  The T. castaneum subgroup includes: T. castaneum, 

T. madens, T. freemani, T. cylindricum, and T. politum from the oriental region and T. 

waterhousei and T. antennatum from the Australian Region (Hilton, 1948).    

T castaneum has been associated with 233 stored commodities (Hagstrum et al., 2013).  

In raw stored grain, T. castaneum is considered a secondary pest because it feeds on broken 

kernels, flour, or grain dust and feeds on the germ of intact kernels.  However, T. castaneum is a 

primary pest of flour mills.  T. castaneum is capable of causing serious damage to infested food 

because the insect imparts a nauseous odor and taste to the infested food products (USDA-ARS, 

1986).  The change in taste and odor imparted by T. castaneum is caused by benzoquinones 

excreted by adults (Reichmuth et al., 2007).  These benzoquinones also have insecticidal 

properties. The developmental time of this insect varies with temperature and relative humidity, 

but optimum conditions are 32-35°C and 60% r.h (Howe, 1956).       

1.1.1.1. Description and Life Cycle 

Female T. castaneum lays and average of 450 eggs per female (USDA-ARS, 1986).  T. 

castaneum eggs are white in appearance, 0.4-0.6 mm in diameter, and are covered with a sticky 

secretion (Reichmuth et al., 2007).  The secretion will make flour or other food particles stick to 
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the egg or allow for the egg to adhere to the sides of boxes or packages.  T. castaneum eggs 

generally hatch within 5-12 days of oviposition. 

Howe (1956) noted that T. castaneum eggs do not hatch at any relative humidity at 

temperatures of 15 or 17.5°C, but any temperature and humidity combination ranging from 20-

40°C results in a mean egg hatch of 75-92%.  As the temperature decreases the egg period for 

egg hatch increases from 2.7 days at 40°C to 13.9 days at 20°C and that egg development is 

fastest at 37.5°C (Howe, 1956).    

Newly-hatched larvae appear small, slender, and cylindrical in appearance (USDA-ARS, 

1986). Neonate larvae are approximately 1 mm in length and fully grown larvae are roughly 8 

mm in length (Reichmuth et al., 2007).  Fully grown larvae have a dark brown colored head 

capsule, three pairs of legs, and two prolegs at the ninth segment of their abdomen (Reichmuth et 

al., 2007).  Late instars transition into naked pupae.   

T. castaneum larvae are less tolerant to extreme conditions compared to eggs (Howe, 

1956).  The optimum temperature for larval development to pupae is 35°C, and increasing 

relative humidity decreases development time to the pupal stage (Howe, 1956).  Similar to egg 

development, decreasing the rearing temperature increase the average larval to pupal transition 

(Howe, 1956).  

In the initial stage of T. castaneum pupation, the pupae appear whitish in color.  As the 

pupae ages, it changes from white to yellow and finally brownish in color, 3-4 mm in length, 

before adult emergence (USDA-ARS, 1986; Reichmuth et al., 2007).  Contrary to larval 

developmental time, the length of the pupal period is not affect by humidity (Howe, 1956).  

However, temperature significantly affects developmental time.  The pupal period at 40°C is 4.4 
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days, while at 20°C the pupal period is 24.4 days (Howe, 1956).  The most rapid developmental 

time occurs at 37.5°C, 3.9 days, which is the same as the egg developmental stage (Howe, 1956).    

The adult T. castaneum is reddish-brown in color with a flattened and oval shaped 

appearance (USDA-ARS, 1986).  The upper thorax and head display minute punctures when 

observed under a microscope.  T. castaneum is nearly identical to T. confusum except for the 

antennae, in which T. confusum gradually increase in size and has a distinct 3-segmented 

antennal club and T. castaneum abruptly increases in size (Hilton, 1948; USDA-ARS, 1986).  

Adult beetles range in size, 3-4 mm (Reichmuth et al., 2007).  Adult females lay 2-18 eggs per 

day.  Adult males can be distinguished from females by the setiferous patch on the posterior side 

of the fore femur (Bousquet, 1990).     

The life cycle of T. castaneum ranges from 40-90 days depending on season, temperature, 

and relative humidity.  The adult and larval stages of T. castaneum are known to be cannibalistic 

and will eat their own eggs and pupae (Howe, 1956; Ryan et al., 1970).  Both T. castaneum and 

T. confusum are cannibals, yet T. castaneum is more predaceous compared to T. confusum (Ryan 

et al., 1970).  When given a choice each species prefers to eat the other, but if given the right 

circumstances they will cannibalize their own species.  

1.1.2. Trogoderma variabile 

The warehouse beetle, Trogoderma variabile Ballion (Coleoptera: Dermestidae) was 

formerly known as T. parabile (Beal). T. variabile was first described by Beal in 1954 and was 

reported in 1956 as a common pest of granaries in California (Loschiavo, 1960).  T. variabile is 

distributed throughout the world on six contents and associated with 119 commodities such as 

dried milk, rolled oats, cat food, ground dog food, and barley (Hagstrum et al., 2013). After 

Trogoderma granarium (Everts), the khapra beetle, T. variabile the most serious dermestid pest 
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(Loschiavo, 1967; Okumura, 1972).  T. variabile is also known to feed on other dead insects 

(Okumura, 1972).      

1.1.2.1. Description and Life Cycle 

Newly laid eggs are pearly-white in color, translucent, covered in a sticky secretion and 

are cylindrically elongated (Loschiavo, 1960).  T. variabile eggs are extremely fragile, but after 3 

days they become more durable and can be handled with a soft-haired brush or an aspirator 

(Loschiavo, 1960).  A day prior to hatch, neonate larvae can be seen through the transparent egg.  

The egg has a reddish-brown appearance (Loschiavo, 1960).  The posterior end appears dark 

brown and the anterior end will have five distinct brown spots or ocelli (Loschiavo, 1960).  The 

setae and larvae segments are also visible prior to hatching.   

Egg hatch is generally 95%, and the duration of the egg stage is 6-8 days at 32°C and 

70% r.h. (Loschiavo, 1960; Burges, 1961).  Partida and Strong (1975) found that decreasing 

temperatures increased the number of days required for eggs to hatch.  At 37.8°C and 70% r.h. 

eggs required 5-8 days to hatch and at 30% r.h. 7-8 days were required (Partida and Strong, 

1975).  However, at temperatures between 32.2 - 21.1°C, decreasing the humidity resulted in a 

decrease in the average number of days for eggs to hatch and an increase in percent egg hatch 

(Partida and Strong, 1975).  At 26.7°C and 70% r.h., eggs took 9-10 days to hatch with an egg 

hatch of 82%, while at 30 % r.h. eggs took 8 days to hatch and had a 90% egg hatch (Partida and 

Strong, 1975).  Partida and Strong (1975) observed at a temperature of 32.2°C oviposition lasted 

4 days, while at 15.6°C oviposition lasted 12 days at constant humidity.  Similar results were 

observed by Loschiavo (1967).  Female T. variabile laid the highest percentage of eggs during 

the first day of oviposition (Partida and Strong, 1975).  Loschiavo (1967) observed highest mean 
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egg production per female was highest at 27.5 and 30.0°C, and the upper temperature limit for 

egg production was between 37.5-40.0°C and the lower limit was below 17.5°C.    

Newly hatched larvae will disperse in search of food upon hatching.  The larvae of T. 

variabile varies in color from yellowish-white to brown as the larvae ages and is approximately 6 

mm long when fully grown (Okumura, 1972).  Larvae will generally under 6 molts, instars, 

before pupating but larvae are capable of undergoing diapause and can molt 28 times in 11 

months (Loschiavo, 1960; Okumura, 1972).  The first instar’s head capsule width in mm is 0.19 

± 0.01, second instar 0.26 ±0.001, third instar 0.37 ± 0.1, forth instar 0.55± 0.003, fifth instar 

0.75±0.01, and sixth instar 0.86 ± 0.05 (Rai, 2014).    

T. variabile larvae are unique because they have two types of setae, bristles or hair; 

hastisetae and spicisetae (Okumura, 1972).  Hastisetae are spear-headed shafts containing barbs, 

and spicisetae are elongated structures (Okumura, 1972).  On average, T. variabile has 1,706 

hastisetae and 2,196 spicisetae (Okumura, 1972).  T. variabile also has hairs covering the entire 

surface of the larval body (Loschiavo, 1960).  As the larvae ages, the hairs or tail, increases in 

length. The mean length of a larvae’s tail is 1.6, 0.9, 0.6, 0.5, and 0.4 times the mean body length 

of the first, second, third, fourth, fifth, and sixth instar, respectively (Loschiavo, 1960).  During 

the molting process, the larval skin splits along the mid-dorsal line from the head to the sixth 

abdominal segment, and the cast skin is left behind (Loschiavo, 1960).  These cast skins, along 

with the setae, can be problematic to sensitive individuals (Okumura, 1972).      

During the last molt of the larval skin, the pupa splits the larval skin but is not cast off 

(Loschiavo, 1960; Burges, 1961).  The dorsal side of the pupae is visible through the split skin.  

Loschiavo (1960) observed that greater than 90% of pupae are found at or near the surface of a 

food source.  The mean lengths and widths of male pupae, 4.42 mm and 1.71 mm, are smaller 
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than females, 6.43 mm and 2.54 mm (Loschiavo, 1960).  The mean development time for pupae 

is 2-6 d at 32°C and 70% r.h. (Loschiavo, 1960).  Partida and Strong (1975) observed that the 

pupal stage of T. variabile increased as temperatures decreased from 37.8-21.1°C at constant 

50% r.h.   

Recently emerged adult T. variabile will spend 1-7 d within the larval skin before leaving 

(Loschiavo, 1960).  Adult T. variabile are approximately 2.0-4.6 mm in length and the female is 

larger in size than their male counterpart (Loschiavo, 1960; Reichmuth et al., 2007; Hagstrum et 

al., 2013).  T. variabile adults are a black and oval-shaped, and are covered with a fine 

pubescence (Loschiavo, 1960).  The elytra have reddish-brown maculae, but are varied 

throughout the species (Loschiavo, 1960).  Adult males are distinguished from females by the 

antennae.  Males have a 6-7 segmented antennal club, while females only have 4 (Bousquet, 

1990).   

Larvae of T. variabile are capable of undergoing diapause, which is an arrested 

development which occurs in either favorable or  unfavorable conditions for an extended period 

of time (Loschiavo, 1960).  An arbitrary threshold for larval development at 7 weeks and 30°C 

and 60-70 r.h., has been established as the dividing point between normal and delayed pupation 

in T. variabile (Burges, 1961).  Larvae can be arrested in diapause for up to two years.  T. 

variabile larvae will stop at the full grown larval stage, 6
th

 instar, and will continue to molt at 

irregular periods.  As the larvae continue to age, the length between molts increases.  Loschiavo 

(1960) observed that during an 11 month period, diapausing larvae molted 15-28 times.  

Additionally, the longest time observed between molts was 63 days (Loschiavo, 1960).  Many 

factors play apart in inducing larval diapause.  Loschiavo’s study (1960) used daily disturbance 

and handling to induce diapause.  Overcrowding and limited availability of food are other factors 
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which may prompt diapause in T. variabile.  Burges (1961) noted an inverse proportional 

relationship between the amount of food and delayed pupation.  Delayed pupation increased with 

decreasing amounts of food, but was not significantly related to the amount of food per larvae 

(Burges, 1961). 

The mean adult life span ranges from 8-20 days (Loschiavo, 1960).  Partida and Strong 

(1975) observed at an average temperatures of 32.2, 26.7, 21.1°C, the egg-to-adult development 

for males was 40-67, 38-57, and 62-94, respectively.  For females at the same conditions 

developmental time was 47-70, 43-60, 64-113, respectively (Partida and Strong, 1975).  In 

general, egg-to-adult developmental time was faster for males than females (Burges, 1961).   

Additionally, the average lifespan of adult males is inversely related to temperature, and females 

follow the same trend at temperatures under 35°C (Loschiavo, 1967).  Females may lay up to 94 

eggs in a single day (Loschiavo, 1960; Okumura, 1972).  Loschiavo (1960) observed that the 

maximum oviposition occurred among females that were 3-5 d old.  Additionally, females older 

than 7 d laid fewer eggs, and virgin females do not lay eggs (Loschiavo, 1960).  Non-ovipositing 

females generally live 2-3.5 times longer than ovipositing females at temperatures between 22.5-

35.0°C (Loschiavo, 1967).    

1.1.3. Plodia interpunctella 

The Indian meal moth, Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae) was first 

described by Jacob Hübner in 1827 (Hamlin and Reed, 1931).  Asa Fitch was the first to refer to 

this species by the name Indian meal moth, because he observed the larvae feeding on corn meal
 

(Hamlin and Reed, 1931).  Common names of P. interpunctella include cloaked-not-horn moth, 

dried fruit moths, horn compressed vegetable moth, mealworm moth, coppery dry fruit moth, 

and south storage moth (Hagstrum et al., 2013).  P. interpunctella has been reported in every 
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continent except Antarctica and in nearly 50 different countries
 
(Jonson et al., 1992).  P. 

interpunctella is a cosmopolitan storage pest and can be associated with 179 commodities such 

as chocolate, wheat flour, pecans, and pet food
 
(Hagstrum et al., 2013).  It is one of the most 

general feeders among stored-product pests
 
(Hamlin and Reed, 1931).  P. interpunctella can be 

found in retail stores, warehouses, processing facilities, flourmills, and consumer homes.  P. 

interpunctella infestations results in food safety and quality issues, product adulteration, and 

economic losses.  Loses are not directly related to the amount of product consumed by the moth, 

but from the quality issues resulting from infestations.  Larvae will leave behind excrement, cast 

skins, webbing, dead individuals, and pupal casings on food surfaces
 
(Hamlin and Reed, 1931).          

1.1.3.1. Description and Life Cycle:  

 Female moths lays between 100-300 eggs in a lifetime and the number of eggs directly 

depends on temperature, humidity, and availability of food (USDA-ARS, 1986).  The egg sizes 

range from 0.3-0.5 mm in length, are grayish-white in color, and are nearly perfectly ovate 

(Hamlin and Reed, 1931; Subramanyam, 2011).  When observed under a stereomicroscope, the 

eggs appear to have a grainy texture.  Females will lay eggs singly or in groups depending on the 

availability of a food source.  In general, females will lay more eggs on areas with food than 

those lacking food.  Food odor emanating from packaged products or processing facilities will 

significantly affect the oviposition behavior of P. interpunctella (Philips and Strand, 1994).  

Adult moths will orient themselves towards food odors and lay more eggs on substrates 

containing food versus those without food
 
(Philips and Strand, 1994).  Female oviposition is also 

influenced by the presence of larval secretions on a surface
 
(Philips and Strand, 1994).  Larval 

secretions may signal to female moths that a given oviposition site can support the growth of 

newly-hatched eggs
 
(Philips and Strand, 1994).  In instances where direct access to food sources 
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are unavailable, females will lay their eggs near a food source in which young larvae may travel 

to upon hatching.   

 The larvae of P. interpunctella will undergo five to six instars before pupation and instars 

can be distinguished by their head capsule size.  The mean ± SE first instar’s head capsule size in 

mm 0.25 ± 0.001, second instar 0.43 ± 0.001, third instar 0.66 ± 0.003, forth instar 0.71 ± 0.003, 

and fifth instar is 0.96 ± 0.003 (Allotey and Goswami, 1990). When the larvae are fully-grown, 

their size ranges from 9-19 mm but average is 13 mm
 
in length (Hamlin and Reed, 1931).  

Larvae begin to grow as soon as they hatch and have a higher growth ratio between the first and 

second instars (1.72) compared to any other stages indicting a faster growth rate at younger 

instars than older
 
(Allotey and Goswami, 1990).  P. interpunctella larvae are whitish in color but 

can vary to a pinkish-brown color and variation in color is also seen in larvae excrement
 
(Hamlin 

and Reed, 1931).  The variation in color can be a result in age and diet of the larvae.  P. 

interpunctella larvae contain 10 abdominal segments, which are covered with long, fine hairs
 

(Hamlin and Reed, 1931).  The 3-6th and 10th segments each contain a pair of short prolegs
 

(Hamlin and Reed, 1931).  Spiracles are present on the prothorax and each segment minus the 

9th and 10
th 

(Hamlin and Reed, 1931).  Similar to eggs, the larval surface is appears granular 

under stereomicroscope.  

 Newly hatched larvae will disperse to find a food source upon hatching.  Larvae are 

known to invade packages through existing openings or penetrate packaging materials by 

chewing through them.  First instar larvae can invade packages containing a food source through 

holes less than 0.39 mm (Tsuji, 1998).  The young instars are typically packaging invaders while 

older larvae are considered packaging penetrators.  Older larvae are capable of chewing through 

packaging materials due to their highly developed mandibles, whereas younger larvae have 
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poorly developed mandibles.  Research has shown that the P. interpunctella has the ability to 

chew through paper, polyethylene (25.4µm thick), cellophane (25.4µm thick), and aluminum foil 

(16.5µm thick)
 
(Cline, 1978).  Damage to commodities occurs only in the larvae stage because 

adult P. interpunctella do not feed.  The larvae are capable of feeding on 179 commodities such 

as dried fruit, granola bars, nuts, and seeds
 
(USDA-ARS, 1986).  During feeding, larvae will 

leave behind a silken thread or webbing on the surface of wherever it crawls.  This webbing 

material will capture food particles, cast skins, and fecal material from the larvae
 
(Mohandass et 

al., 2007).     

Similar to T. variabile, P. interpunctella may undergo diapause.  The duration of 

diapause will vary by stored-product species.  Generally P. interpunctella are reared at 25-28C 

and 14:10h light: dark (L:D) photoperiod.  Changing the rearing conditions of the P. 

interpunctella increases the frequencies of diapause within the culture.  A maximum diapause 

frequency has been observed at 20C and 8:16h L:D in populations of P. interpunctella from the 

United States and Canada (Wijayaratne and Fields, 2011).  Changing temperature or photoperiod 

alone, has no significant effect on diapause frequencies, but it is the combination of a decrease in 

temperature and increase in the length of darkness triggers diapause in the P. interpunctella 

(Wijayaratne and Fields, 2011).  The location of an P. interpunctella population will also affect 

diapause frequencies.  Research has shown that populations at higher latitudes have a greater 

diapause frequency that those at lower latitudes
 
(Wijayaratne and Fields, 2011).   

 Diapause is an important characteristic of P. interpunctella.  P. interpunctella adults can 

be significantly selected for diapause induction and doing so provides the opportunity to pass 

along this trait to following generations.  Selection of diapause induction of adult P. 

interpunctella increases diapause over the next two generation (Wijayaratne and Fields, 2011).  
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Since diapause has been shown to increase cold tolerances of P. interpunctella, this will make P. 

interpunctella harder to control by low temperatures
 
(Wijayaratne and Fields, 2011).   

The relative humidity of rearing conditions for the P. interpunctella will have a 

significant impact on growth and survival, especially in combination with temperature.  At 30C, 

the average development time at 25% relative humidity ranged from 35-46 days while at 70% 

relative humidity the interval decreases to 24-32 days
 
(Bell, 1975).  Increasing the relative 

humidity decreased development time.  When comparing field versus lab strains of the P. 

interpunctella, field strains generally tolerated lower relative humilities than lab strains
 
(Bell, 

1975).  It has been shown that development from 1st instars to adults is fastest at 30C and 80% 

r.h., average 30.4 days, and slowest at 25C and 60% r.h., average 44.3 days
 
(Mbata and Osuji, 

1983).  Thus, the optimal conditions for development of the Indian meal moth are 30-35C and 

70-80% r.h.
 
(Mbata and Osuji, 1983).   

 When fully grown, larvae will spin a cocoon and transform into a pupae
 
(USDA-ARS, 

1986). The 5th instar of the P. interpunctella will choose a pupation sites that offer protection 

such as a crack, corrugated cardboard, or wooden pallets.  P. interpunctella pupae are encased in 

a silken cocoon and range in size from 6-11 mm
 
(Hamlin and Reed, 1931).

  
Early in the pupation 

period, the pupae are light brown or straw colored, and towards the end of pupation, there is 

darkening of the pupal casing especially near the wing regions and becomes black just before 

adult emergence
 
(Hamlin and Reed, 1931).  

 

 Following the pupal stage, adult moths will emerge.  Adult moths have an approximate 

wingspan of 14-22 cm and averages 16 mm (Hamlin and Reed, 1931; Hagstrum et al., 2013).  P. 

interpunctella are distinguished from other moths by the reddish brown coloring on their 

forewings (USDA-ARS, 1986).  The body is whitish-gray and the hind legs are silver in color 
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with long silky fringe
 
(Hamlin and Reed, 1931).  Adult moths avoid light.  Moths are most active 

at night, early in the morning, dusk, and are strong fliers
 
(Subramanyam, 2011).

 
 During daylight 

hours moths will rest on walls, ceilings, or other poor lighted areas
 
(Hamlin and Reed, 1931).  

After emergence, females begin releasing a sex pheromone (cis-9, trans-12-tetradecadienyl 

acetate, ZETA) to attract male moths and mating can commence
 
(Subramanyam, 2011).  

Commercial traps are made from this female pheromone and can be used to trap males to prevent 

mating or measure distances traveled by male moths
 
(Subramanyam, 2011).  The number of male 

moths captured in pheromone based traps decrease with increasing distance from pupation sites 

(Subramanyam, 2011).  The number of moths captured vs. distance traveled from pupation site 

can be modeled by an exponential decay equation
 
(Subramanyam, 2011) 

𝑦 = 13.0𝑒𝑥𝑝−0.23𝑥 

Therefore, more moths will be captured close to pupation sites and location of pupation sites is 

of upmost importance.  

 The egg-to-adult development of the Indian meal moth can range from 35-151 days but is 

dependent on temperature, moisture content of food, relative humidity, and photoperiods.  At 

17.5, 20.0, 22.5, 25.0, 27.5, 30.0, 32.5, and 35C the developmental times from egg-to-adults are 

150.9, 9.3, 67.3, 48.1, 37.9, 34.9, 38.4, and 49.1 days, respectively (Subramanyam, 2011)
 
. 

Developmental times have been shown to decrease with increasing temperatures.  

Developmental times at high relative humidity (85-95%) are faster compared to lower relative 

humidity (10-60%)
 
(Subramanyam and Hagstrum, 1993).  Adults will develop 1.2 times faster at 

85-95% relative humidity than at 0-10%
 
(Subramanyam and Hagstrum, 1993).  Generally, 

unmated males and females live 2.4-2.7 days longer than mated adults and males live 2-3 days 

longer than females (though not statistically significant) (Hamlin and Reed, 1931).  The 
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temperature for maximum development is 29.45 ± 0.51C.  Among each life stage, the 

percentage of time spent in egg, larvae, and pupae stages are 8, 77, and 15%, respectively
 

(Subramanyam, 2011).  These percentages have been used to develop a formula to calculate the 

length of egg, larvae, and pupae stages for a given temperature (Subramanyam, 2011).  For 

example (Subramanyam, 2011): 

( 1) 𝑇𝑜𝑡𝑎𝑙 𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡 𝑎𝑡 𝑒𝑔𝑔 𝑠𝑡𝑎𝑔𝑒 = 𝐴𝑣𝑔. 𝑒𝑔𝑔 − 𝑡𝑜 − 𝑎𝑑𝑢𝑙𝑡 𝑑𝑒𝑣𝑒𝑙𝑜𝑝. 𝑡𝑖𝑚𝑒 × 0.08  

(2) 𝑇𝑜𝑡𝑎𝑙 𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡 𝑎𝑡 𝑙𝑎𝑟𝑣𝑎𝑒 𝑠𝑡𝑎𝑔𝑒 = 𝐴𝑣𝑔. 𝑒𝑔𝑔 − 𝑡𝑜 − 𝑎𝑑𝑢𝑙𝑡 𝑑𝑒𝑣𝑒𝑙𝑜𝑝. 𝑡𝑖𝑚𝑒 × 0.77 

(3) 𝑇𝑜𝑡𝑎𝑙 𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡 𝑎𝑡 𝑝𝑢𝑝𝑎𝑒 𝑠𝑡𝑎𝑔𝑒 = 𝐴𝑣𝑔. 𝑒𝑔𝑔 − 𝑡𝑜 − 𝑎𝑑𝑢𝑙𝑡 𝑑𝑒𝑣𝑒𝑙𝑜𝑝. 𝑡𝑖𝑚𝑒 × 0.15 

𝑇𝑜𝑡𝑎𝑙 𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡 𝑡𝑖𝑚𝑒 =  (1)  +  (2)  +  (3) 

1.2.  Infestation in Retail Stores 

Stored-product insect infestations in retail stores can cause significant economic losses 

resulting from product contamination, damaged product, and allergic reactions in susceptible 

individuals, as well as public relation and company image problems.  It is important to note that 

the size of a retail store has no significant effect on the total number of stored-product insects 

captured
 
(Roesli et al., 2003).  Stored-product insects are known to infest dried fruits, grains, 

nuts, cereals, flours, and pet foods, which is why they are commonly found in retail 

marketplaces.  Many times the central point of infestation by insects are found on areas with an 

accumulation of previously infested food products, spilled food between the enclosed space 

between the bottom shelves and the floor, shelves spaces, and/or flat surfaces (Arbogast et al., 

2000; Roesli et al., 2003).  Major infestations have been found in the stock rooms of retail 

establishments, which may be a result of infested products awaiting disposition (Arbogast et al., 

2000).  Other instances, suppliers’ ship infested products to the retail stores and without proper 

inspection upon arrival will perpetuate infestations into retail establishment.   
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The infestation risk in a retail stored is directly related to sanitation, inspection, and pest 

management practices employed (Roesli et al., 2003).  Effective management methods include 

proper sanitation, inspection of incoming products for signs of infestation, frequent stock rotation 

(first in first out), continual monitoring for pests, quick disposal of infested products, and 

application of insecticides if necessary
 
(Arbogast et al., 2000).  Sanitation methods include 

removal of spilled product from shelving or in-between shelving units, removing torn bags from 

the shelves, cleaning or replacing trapping devices, and application of approved insecticides
 

(Roesli et al., 2003).  Consumers should look for any rips, tears, or holes in a packaged product 

as this may indicate an infestation.  In addition, consumers should look on the package for 

webbing, cast skins, or fecal material.  This would also indicate infestation of a packaged good.  

If a consumer finds an infested package, it is crucial to notify store managers so they may 

address the problem.  If a consumer should happen to have an infested product, they may place 

the product inside a sealed container and place in the freezer for 1 week to ensure all life stages 

are killed before disposal.  Any additional products that are not in containers should be 

immediately placed in sealed containers and monitored for infestation.     

1.3. Role and Function of Food Packaging 

 The purpose of packing is to protect food products from infestation by stored-product 

insects throughout the entire distribution channel (Highland, 1991). Effective food packaging 

delays product deterioration, extends  shelf life of products,  and maintains product integrity and 

quality  (Marsh and Bugusu, 2007). Therefore, food packaging provides protection against the 

three major hazards: chemical, physical and biological (Marsh and Bugusu, 2007).  Food 

packaging provides  protection from factors due to environmental influences such as water, light, 

or oxygen or internal changes such as water activity, pH, and rancidity (Marsh and Bugusu, 
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2007).  Packaging protects products from physical damages such as crushing, impact, 

expansion/shrinkage, or foreign material during transportation and storage due to air pressure, 

temperature changes, or handling (Marsh and Bugusu, 2007).  Packaging protects food against 

biological hazards such as microorganisms, insects, rodents, spoilage, and prevents odor 

transmission (Marsh and Bugusu, 2007).  There is a direct correlation between the length of 

storage and severity of infestation by stored-product insects (Highland, 1991).  Increasing the 

shelf life of packaged food products, increases the chances for product infestation to occur.  Food 

processors can take all possible precautions to make their products insect free, but they lack 

direct and complete control of their product once it leaves their processing and storage facility 

(Highland, 1978).   

Packaged food can become infested during processing, transportation, storage at the retail 

market, and in the consumer’s pantry.  Food packages are more likely to become infested during 

extended storage periods on the retail shelf or warehouse storage facility (Mullen et al., 2012).  

Consumers may hold the manufacture responsible for infested products, regardless of how or 

where the package became infested.  Packaging materials vary in composition, structure, and 

thicknesses, therefore the ability of stored-product insects to penetrate or invade packages 

depends on these characteristics along with the insect species and life stage.  Stored-product 

insects can infest nearly all polymer films, but glass and metal cans are the only package types 

resistant to insect penetration or invasion (Mullen et al., 2012).  Ideally all food produced should 

be held in glass or metal containers, but costs, feasibility, and customer convenience are 

important and thus the wide use of metal or glass is minimal (Mullen et al., 2012).  Adult insects 

are capable of entering packages with openings ≥ 0.53mm, and neonate larvae are capable of 

entering packages with holes > 0.01mm (Wohlgemuth, 1979; Cline and Highland, 1981).  In 
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general, adult insects are capable of passing through holes nearly equal to their width (Cline and 

Highland, 1981).  Sometimes males are smaller than their female counterpart, and can invade 

smaller openings in packages.  Similarly, larvae are capable of entering packages approximately 

equal to their head capsule size (Wohlgemuth, 1979).  The objective of food packaging is to 

enclose commodities in a cost effective manner for industrial or consumer uses, maintain food 

integrity and safety, and minimize the environmental impact (Marsh and Bugusu, 2007).  In 

recent years, food-manufacturing companies have begun implementing package testing programs 

and packaging alternatives, to prevent stored-product insect infestations of their packaged food 

products (Mullen et al., 2012).   

1.3.1. Properties of Common Food Packaging Materials 

Foods are packaged in a wide variety of materials, including Kraft paper, foil, polymer 

film blends, metal cans, and glass.  Food packages are created based on the specific food product 

and its attributes, and no one package type will provide protection needed for all aspects of a 

food product (Campbell et al., 2004).  It is important to point out that there are two major 

considerations to address when selecting a food packaging type (Collins, 1963).  First, the 

method of sealing the package must be addressed.  Secondly, the type of packaging material used 

must be considered.  The later may be of most importance (Collins, 1963).  Kraft paper and 

cellophane are the least resistant to penetration by insects (Highland, 1978, 1991).  Wohlgemuth 

(1979) found that 0.05 mm thick cellophane, PVDV-coated cellophane, low density 

polyethylene, and nitrocellulose coated cellophane did not provide complete protection  (>10% 

of samples penetrated) from adults of the lesser grain borer, Rhyzopertha dominica (F.); drug 

store beetle, drug store beetle, Stegobium paniceum (L.); T. castaneum, and P. interpunctella  

(larvae).  Rigid polyvinyl chloride (PVC) at 0.06 mm thick was completely resistant to each of 
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these insects (Wohlgemuth, 1979).  Polypropylene (0.03 mm) was resistant to S. paniceum and 

T. castaneum, but did not provide complete protection to R. dominica and P. interpunctella 

(Wohlgemuth, 1979).  Thicker films of the same polymer base are more resistant to insect 

penetration than thinner films of the same material (Highland, 1978).  Kraft paper can be made 

more resistant to insect infestation by incorporating insect-resistant construction, tight closures, 

and/or using an insect-repellent (Secreast, 1968).  Coating Kraft paper with pyrethrins and 

piperonyl butoxide can be effective and the Food and Drug Administration (FDA) approve both 

treatments (Secreast, 1968).       

Aluminum foil can be used as a packaging material, but it is almost never used 

independently (Collins, 1963).  It is commonly used in conjunction with a polymer film to create  

a laminated or multi-layer packaging material.  This process creates a material which is more 

resistant to penetration by stored-product insects (Collins, 1963).  Cline (1978) found that when 

aluminum foil (0.0165 mm) was used independently to create a food package, the cadelle beetle, 

Tenebroides mauritanicus (L.), was able to penetrate 100% of packages containing food as 

second or fifth instars.  Similarly, the rice moth, Corcyra cephalonica (Stainton), also 

penetration 100% of foil packages as second instars (Cline, 1978).  T. variabile penetrated 88% 

and 40% of foil pouches as fifth and second instars, respectively (Cline, 1978).  Gerhardt and 

Lindgren (1954) found that laminated films consisting of pliofilm, aluminum foil, and acetate 

(0.254 mm total thickness), formed into a sealed package, and was resistant to penetration by ten 

different stored-product insects.  Another laminate film package, consisting of polyethylene and 

aluminum foil (0.05 mm total thickness), had 8.1% of packages penetrated by the same 10 

stored-product insects (Gerhardt and Lindgren, 1954).  Laminated films do not have to contain 

aluminum foil but consists of two or more packaging materials co-extruded to form one 
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continuous film.  Gerhardt and Lindgren (1955) studied the resistance of Mylar (polyester film) 

laminated with Saran film at 0.05 and 0.08 mm thick against ten insect species.  They concluded 

that none of the laminate films were penetrated by any species of insects but 0.03 mm thick 

Mylar films alone were penetrated by R. dominica, T. mauritanicus, and T. variabile (Gerhardt 

and Lindgren, 1955).  

The effectiveness of polyethylene (PE) as an insect resistant packaging material is 

directly proportional to the thickness of the film (Collins, 1963).  PE at 0.05 mm, was capable of 

being penetrated by adult R. dominica, S. paniceum, T. castaneum, and P. interpunctella (larvae) 

(>10% of samples penetrated) (Wohlgemuth, 1979).  However, a 0.02 mm thick PE film was 

resistant to P. interpunctella penetration by neonate larvae (Tsuji, 1998).  The fifth and second 

instars of P. interpunctella penetrated 60 and 33% of PE packages, at 0.0254 mm thickness, 

respectively (Cline, 1978).  Wohlgemuth (1979) did not mention the age of the P. interpunctella 

larvae used in the experiment, and the penetration found could be due to older larvae which 

contain stronger mandibles compared to young larvae.  Bowditch (1997a) demonstrated that 

older larvae are able to penetrate more polyvinyl chloride packages, which indicates that 

penetration ability of insects varies by life stage.  Linear low-density polyethylene (LLDPE), 

0.04 and 0.05 mm thick, is resistant to third instar of P. interpunctella and adult T. castaneum 

(Chung et al., 2011).  Even with 0.20 mm pinholes, T. castaneum adults were unable to invade 

the packaging material (Chung et al., 2011).  Third instar P. interpunctella invaded less than 

40% of the 0.04 mm thick LLDPE with pinholes and the 0.05 mm thick films had less than 10% 

invaded (Chung et al., 2011).   

Polyvinyl chloride (PVC) materials can vary in their structure, such as rigid vs. flexible 

films.  Wohlgemuth (1979) found that rigid PVC was more resistant to insect penetration 
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compared to flexible PVC at the same thickness.  Bowditch (1997a) sealed Cadra cautella 

(Walker), tropical warehouse moth or almond moth, and P. interpunctella first and fifth instars 

inside of PVC, 0.025 mm thick, packages and monitored penetration ability of the two moths.  

The PVC is resistant to first instars of C. cautella but first and fifth instars of P. interpunctella 

are able to penetrate 25 and 63% of the time, respectively (Bowditch, 1997a).  The fifth instar of 

C. cautella penetrated 69% of packages (Bowditch, 1997a).  Results indicate that as the age of 

the larvae increase, the penetration ability of the insect also increases.  Adult confused flour 

beetles, Tribolium confusum Jacquelin du Val, were tested in a similar manner and only one 

adult penetrated out of 15 films tested.   

Polypropylene (PP) laminates offers resistance to penetration by C. cautella, P. 

interpunctella, and T. confusum.  A PP laminate, 0.028 mm thick biaxially oriented and coated 

with acrylic on one side and polyvinylidene chloride on the other, was resistant to penetration by 

adult T. confusum, first and fifth instars of C. cautella and P. interpunctella (Bowditch, 1997a).  

Cast polypropylene (CCP) at 0.02 and 0.025 mm thickness and oriented polypropylene (OPP) at 

0.02 and 0.03 mm thickness, were resistant to penetration by third instar P. interpunctella and 

adult T. castaneum (Chung et al., 2011).  PP packages that were 0.0254 mm thick and contained 

food could only be penetrated by fifth instars of T. variabile 25% of the time, when compared to 

no penetration by 10 other stored-product insects (Cline, 1978).  However, when food was 

removed from the PP packages, fifth instars of T. mauritanicus were able to penetration 100% of 

packages tested (Cline, 1978).   

Polyester at a thickness of 0.05 mm was resistant to penetration by S. paniceum, T. 

castaneum, and P. interpunctella, but >10% of samples were penetrated by R. dominica 

(Wohlgemuth, 1979).  Riudavets et al. (2007) observed that R. dominica and the rice weevil, 
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Sitophilus oryzae (L.), were able to penetrate 0.012 mm thick polyester films, but the cigarette 

beetle, Lasioderma serricorne (F.), was unable to produce holes in the film. Polyethylene 

terephthalate (PET) films that were 0.012 and 0.016 mm thick inhibited penetration by third 

instars of P. interpunctella and T. castaneum adults (Chung et al., 2011).  However the 

introduction of a 0.20 mm pinhole, allowed larvae of P. interpunctella to invade packages but T. 

castaneum was unable to invade packages (Chung et al., 2011).  Insect species vary in their 

ability to penetrate polyester.  T. variabile second and fifth instars can easily penetration 

polyester at a thickness of 0.0254 mm, but other insects such as P. interpunctella, E. cautella, 

and hide beetle, Dermestes maculates (DeGeer), were unable to penetrate (Cline, 1978). 

1.4. Physical Properties Associated with Packaging Materials 

 Stored-product insects have been shown to produce different types of damage to various 

types of packaging materials (Riudavets et al., 2007).  Common physical properties of polymer 

films tested include elongation percentage and tensile strength.  Packaging films with high 

elongation (%) and low tensile strength (MPa) are generally more resistant to insect penetration 

(Chung et al., 2011).  The hole shape and size insects create in a packaging material is related to 

the shape of the mouthparts of a particular species, the head capsule width, and the mechanical 

properties of that particular film (Chung et al., 2011).  Chung et al. (2011) demonstrated that P. 

interpunctella was capable of creating holes with clear cut edges in PET films, but linear low-

density polyethylene (LLDPE) films contained scratches and tears around entry holes.  The 

difference between the materials is PET films have a low elongation and high tensile strength 

compared to LLDPE films.  High elongation in polyethylene (PE), 0.05 mm thick, produced a 

hole by L. serricorne with large amounts of filaments or fraying of the material (Riudavets et al., 

2007).  Harder materials such as PE and PP are less resistant to fraying and insects create holes 
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which are clean cut or contain scratches near the entrance (Riudavets et al., 2007).  Packaging 

materials can be ranked in many different ways, but ultimately the resistance of a particular film 

is related to the films thickness, and thicker films are more resistant to insect penetration.  

However, among packaging types Kraft paper and cellophane are the least resistant to insect 

penetration among all packaging materials.  Polyvinyl chloride (PVC) is less resistant to insect 

infestation than PP films (Bowditch, 1997a).  Among packaging films tested by Chung et al. 

(2011), LLDPE, PET, oriented polypropylene (OPP), and cast polypropylene (CPP) were all 

resistant to penetration by P. interpunctella, which is classified as a penetrator and a serious pest 

of packaged products.  When pinholes are introduced into the packaging material, stored-product 

insects are able to invade packages more readily.  Between the packaging materials tested by 

Chung et al. (2011), 0.05 mm thick LLDPE was the most resistant to invasion by P. 

interpunctella.  The resistance of polymer films to penetration or invasion by stored-product  

insects, varies by resins from which the films are made and their physical properties (Highland 

and Wilson, 1981).  The multilayer or laminate films, appear to be the most resistant to insect 

penetration among all packaging types.   

1.4.1. Methods used to Test Packaging Integrity  

Several methods for testing packaging integrity against stored-product insects have be 

developed over the years.  Generally, there are two types of testing methods employed.  The first 

method consists of constructing “bags” containing food from the packaging materials under test, 

and introducing the bags into a room containing stored-product insects (Wohlgemuth, 1979).  

This test requires extensive room capacity and long experimental periods, and determining if the 

packaging material was penetrated versus invaded through packaging defects, can be difficult to 
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assess (Wohlgemuth, 1979). This test is suitable for quality control testing of mass produced 

packages (Wohlgemuth, 1979).   

The second method employed, is creating a barrier from the packaging material under test 

and challenging the material with the test insect species.  In this situation, a piece of material is 

placed between two metal holders, the material is held taut, and insects are placed on top of the 

material being tested.  In this scenario, the insect can be held with or without food, and 

penetration of the material can be determined because once the insect penetrates the material 

they fall through and cannot escape.  Therefore, this eliminates the possibility of insects invading 

the material through a defect.  This test is suitable for small sample sizes, but not for large 

quality control type studies, which mimic retail environments (Wohlgemuth, 1979).  In this 

testing method, the introduction of a pinhole can also be included and invasion properties of the 

material can be determined.  The presence or absence of food, will also affect the penetration or 

invasion ability of stored-product insects (Newton, 1988).  Insect that are starved may penetrate 

packages to obtain food, but in the presence of a food source they may not necessarily invade 

those packages.  In addition, pricking packaging materials to provide access through pinholes 

increases the likelihood that insects will penetrate/invade the product.  In instances where insects 

normally fail to penetrate packages, the pinhole is utilized for assessment. 

1.4.2. Insect Boring Direction Determination 

On a manufacturer’s standpoint, it is important to determine whether insects bore through 

the packaging from the outside to inside and vice-versa (Wohlgemuth, 1979).  This enables 

manufactures to determine if an infestation occurred in the product before or after final 

packaging.  If there are no holes, tears, seam failures, or insect-bored holes in the packaging 

material, it is reasonable to assume that infestation originated during processing (Brickey et al., 



23 

 

1973).  However, if insect-bored holes are present the direction of penetration is key to 

determining the origin of the infestation (Brickey et al., 1973).  Brickey et al. (1973) developed a 

methodology for determining the direction of insect penetration.  One common characteristics in 

materials in which insects bore through is a tapered hole in which the diameter of the hole is 

greater on the entrance side than then exit side (Brickey et al., 1973).  In foil, cellophane, and 

polyethylene plastics, upturned edges around the perimeter are commonly found (Brickey et al., 

1973). The mandibles of insects also caused roughening to the surface or surface fraying on 

packaging materials formed by the pincer like action of the mandibles (Brickey et al., 1973).  

Though it is important to determine whether an insect bored through the packaging materials or 

were present inside prior to packaging, ultimately any type of flaw can easily negate the effects 

of a strong package design.   

1.5. Biological Attributes of Insects 

1.5.1. Invaders vs. penetrators 

The stored-product insects that affect packaged products are found throughout the world 

(Highland, 1978).  Athanassiou et al. (2011) proposed two scenarios that explain the presence of 

stored-product insects in packaged products: (1) insects are present in the product before 

packaging, or (2) insects invade or penetrate the product after packaging. Taking these two 

scenarios into consideration two classifications of stored-product  pests has been identified: (1) 

packaging invaders, or (2) packaging penetrators (Highland, 1978).  Packaging invaders include 

T. castaneum, T. confusum, the sawtoothed grain beetle, Oryzaephilus surinamensis (L.), and P. 

interpunctella (Mowery et al., 2012).  Packaging penetrators include S. oryzae, R. dominica, and 

C. cautella.  Packaging invaders enter a package through a pre-existing opening such as a tear, 

seam failure, or puncture (Highland, 1984).  Packaging invaders typically have weakly 
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developed mouthparts at the larval and adult stages (Wohlgemuth, 1979). Newly hatched larvae 

are of most concern because they possess the ability to invade holes as small as 0.1 mm wide 

(Wohlgemuth, 1979). Adults are capable of passing through hole diameters approximately equal 

the diameter of their body widths (Cline and Highland, 1981).  Cline and Highland (1981) 

determined the minimum size holes in which 20 adult species of stored-product insects are 

capable of crawling through and size of holes ranged from 0.53-2.25 mm depending on species.  

The flat grain beetle, Cryptolestes pusillus (Schönher), is capable of crawling through the 

smallest opening of 0.53 mm (Cline and Highland, 1981).  Dermestes maculatus; the yellow 

meal worm, Tenebrio molitor (L.), and T. mauritanicus all were unable to crawl through the 

largest opening of 2.25 mm (Cline and Highland, 1981).  The life stage of the insect is extremely 

important.  Larvae of P. interpunctella are capable of enter packages through pinholes.  First 

instars are able to penetrate a pinhole size of 0.293 mm, but were stopped by a 0.173 mm hole 

(Tsuji, 1998).  Information such as this is beneficial to packaging designers when considering 

allowable hole sizes in their packages.      

 Many packaged food products have mechanically produced pinholes, to avoid bulging 

after sealing due to air pressure or temperature changes.  The pinholes created in food packaging, 

allow for food odors to be emitted from the packages.  The food odors can be detected by insects, 

and orient insects towards the source (Muratore et al., 2009).  Invading insects account for more 

than 75% of packaging infestations (Collins, 1963).  However, little investigation has been 

conducted on the behavioral mechanism by which insects invade packages.  It has been 

suggested that volatile compound emanating from holes in packaging materials play a role in 

orienting larvae and adults towards the source (Barrer and Jay, 1979; Mowery et al., 2002).  

Food odors originating from stored grain bins or packaged food products provide olfactory cues 
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towards the direction of the odor and signal to the insect a potential food source (Barrer and Jay, 

1979).  

Under certain circumstances, packaging invaders may become penetrators, such as P. 

interpunctella (Mullen et al., 2012).  Penetrating insect can bore through flexible packaging 

materials due to their large and powerful mouthparts (Wohlgemuth, 1979; Highland, 1984).  The 

ability of insects to penetrate packaging materials depends on the species, life stage, type of film 

used, thickness of material and the presence of creases, scratches, or tears on the material 

(Gerhardt et al., 1954).  Insect species that are penetrators are most dangerous in the larval stages 

(Wohlgemuth, 1979).  Both penetrating and invading insect species will exploit any packaging 

flaw in order to reach a food source before beginning to chew through the package (Mullen et al., 

2012).  R. dominica, T. mauritanicus, T. variabile, L. serricorne, and P. interpunctella are all 

considered as important penetrating insects (Highland, 1991).  In a survey of infestation of 

chocolate-based products, a total of 141 bars were examined and 50 of those bars contained 

enough insect fragments for identification. P. interpunctella accounted for more than 50% of the 

infested bars (Bowditch and Madden, 1997b). This further emphasizes that P. interpunctella is a 

major pest of packaged products, because they possess the ability to feed on all types of 

products.  Further research indicated that the infestation of the chocolate bars most likely 

occurred post packaging, because researchers failed to capture P. interpunctella at the processing 

facility (Bowditch and Madden, 1997b). 

The primary method of preventing infestation is by using insect resistant packages 

(Mullen and Highland, 1988).  An indicator of a potential infestation problem in a packaged 

product is the attractiveness of the food to stored-product insects (Mullen, 1993).  Many stored-

product insects are cosmopolitan, meaning they can feed on a variety of food products and thus 
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making packaged food susceptible to insect attack.  Olfaction is the means by which insects can 

identify resources on which to feed and/or oviposit (Bell and Cardé, 1984).  Insects are attracted 

to particular packages by odors they emit, and when an insect detects a food odor it orient to  the 

source (Murator et al., 2009; Mowery et al., 2002).  Various factors can influence an insect's 

response to food odors such as species, age, sex, and mating status. 

1.5.2. The Effect of Metals in Insect Mandibles  

 Metals such as zinc and manganese, which have been found in the cutting edges of the 

mandibles of adult beetles, have been correlated with extreme hardness of the insect cuticle 

(Hillerton et al., 1984).  It has been found in wasps, that those species which require the 

ovipositors to bore through harder substrates contain metals and those that place their eggs in 

soft substrates lack metals in their ovipositors (Morgan et al., 2003).  Similarities can be seen 

between the ovipositors of wasps and the mandibles of stored-product insects.  The presence or 

absence of metals in larval and adult mandibles may depend on the feeding habits of the insect 

species, external versus internal feeders.  Morgan et al. (2003) found metals such as zinc and 

manganese, are present in the mandibles of stored-product insect larvae which are capable of 

boring into intact seeds, and larvae which do not have these metals present are usually unable to 

penetrate seeds.  R. dominica, L. serricorne, S. paniceum, and T. mauritanicus all contain zinc in 

the mandibles of the larvae (Morgan et al., 2003).  T. variable larval mandibles contain high 

levels of manganese (Morgan et al., 2003).  All of these insects, are classified as packaging 

penetrators (Highland, 1991).  Insects such as T. castaneum and O. surinamensis lack zinc and 

manganese in the larval mandibles  and are classified as packaging invaders (Morgan et al., 

2003).  The metal hardening in the mandibles of stored-product insects, may enable these species 

to penetrate various packaging materials (Morgan et al., 2003).  
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1.6. Insect Growth Regulators (IGRs) 

Insect growth regulators (IGRs) are formulated to mimic specific insect juvenile 

hormone, which regulates molting in insects  (Oberlander et al., 2000; Arthur, 2006).  

Methoprene is an IGR and a juvenile hormone analog, which is able to disrupt molting and 

development in immature insects (Amos et al., 1978).  Methoprene was commercially introduced 

by the Zoecon Company in 1973 (Oberlander and Silhacek, 2000).  As of 2003, the United States 

Environmental Protection Agency granted methoprene exemption from food tolerance levels 

(Henrick, 2007).  Methoprene has been approved for use as a direct application to stored grains, 

residual surface treatments, aerosol sprays, packaging, and have little to no mammalian toxicity 

(Arthur, 2006).  There is little to no effect on non-target species such as birds, fish, crustaceans, 

or mammals when methoprene is used at appropriate application rates (Henrick, 2007).    

 A reduction in juvenile hormones, induces molting in insects (Mondal and Parween, 

2000).  Exposing young larvae to juvenile hormones will inhibit pupation and can cause 

supernumerary molting in young larvae, and on older larvae produces abnormal larval-pupal 

intermediates or pupal-adult intermediates (Mondal and Parween, 2000).  Treatment of pupae 

result in pupal-adult intermediates or causes morphological deformities in adults such as a 

twisted wing (Mondal and Parween, 2000).  It should be noted that the degree of morphogenetic 

effect on insects differs depending on mode of application, species, active dose, and age of the 

insects (Mondal and Parween, 2000).   

 Methoprene is very effective in controlling a vast variety of insect pest species, such as 

lepidopterous and coleopterous pests, when added to the insect diet (Henrick, 2007).  Amos et al. 

(1978) showed that crossing deformed adult males that had been exposed  to 0.1 ppm 

methoprene, with unexposed females produced no viable progeny.  Progeny production of males 



28 

 

and females is adversely affected by exposure to methoprene, and males are more sensitive 

compared to females (Wijayaratne et al., 2012).  Methoprene does not cause adult mortality or a 

quick knock-down effect, but methoprene works by reducing populations over extended periods 

of time (Mondal and Parween, 2000; Wijayaratne et al., 2012).   

Ishaaya and Yablonski (1976) found that the life span of T. castaneum can be up to ten-

times that of untreated T. castaneum when diet contained IGR's.  Loschiavo (1976) found diet 

containing 10 ppm methoprene increase larval developmental time by 35% compared to 

untreated diet.  Additionally, larval weight of T. castaneum also increased nearly twice that of 

larvae feeding on untreated diet, 5.0 mg compared to 2.4 mg (Ishaaya and Yablonski, 1976).  

Loschiavo (1976) observed fully developed larvae, which failed to pupate, were larger than 

untreated larvae.  Diet incorporating methoprene at 200 ppm increased mean larval weight of T. 

castaneum to 6.2 mg (Ishaaya and Yablonski, 1976).  Ishaaya and Yablonski (1976) found the 

critical point at which methoprene is most effective is the period between 4th instar and 

pupation. 
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Chapter 2 - Penetration by larvae of Plodia interpunctella (Hübner) 

into polypropylene packaging materials 

2.1. Abstract 

Larvae of Podia interpunctella (Hübner), Indian meal moth, can invade or penetrate 

packaging materials and infest the food within.  Three different polypropylene packaging types, 

containing energy bars, were challenged with eggs (for first instars), third instars, fifth instars, 

and pupae of P. interpunctella to determine package resistance to larvae at 28°C and 65% r.h., 

and also to determine which package type provided the greatest protection against P. 

interpunctella larval penetration.  Packaging samples infested with eggs, larvae, or pupae were 

evaluated after 21 or 42 d to count number of larvae, pupae, or adults found inside each package 

type.  Packaging types were evaluated for number of holes, diameter of holes, and amount of 

damage sustained to the energy bar. Third and fifth instars showed a higher propensity to infest 

all packaging variations.  First instars showed a reduction in package pentration abiltiy compared 

to third and fifth instars.  Among package types, Test A was most resilient to penetration by all 

larval stages.  In conclusion, energy bar manufacturers could improve packaging designs, utilize 

thicker gauge films, or use odor barrier technology to prevent penetration and infestation by P. 

interpunctella larvae.   
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2.2. Introduction  

 The presence of stored-product insects in ready-to-eat packaged products can cause 

product losses, decrease consumer confidence, and possibly result in allergic reactions in 

sensitive individuals (Subramanyam et al., 2001).  In addition, economic losses faced by the food 

industry include fines, penalties by government agencies, possibility of litigation by consumers 

who may suffer from eating infested products, and insurance claims (Laschiavo et al., 1979).  

Infestation of packaged products can occur due to insect contamination in raw ingredients, 

during the manufacturing process, prior to packaging, during transportation, in retail 

environments, and consumer homes (Hagstrum et al., 2009).  Stored-product insects are a 

persistent problem in retail stores, feed stores, food warehouses, and processing plants (Arbogast 

et al., 2000).  Infestation of packaged products at the retail level could be due to incoming 

products being infested, insects entering the retail store through open doors or windows, or due 

to insect populations that are already established in the store (Roesli et al., 2003).  In the retail 

marketplace, stored-product insects will contaminate and cause damage to food products such as 

candy bars, flour, and pet food (Arbogast et al., 2000).  Food processors may take all possible 

precautions to prevent infestations in their packaged products during manufacture, but they have 

little or no control over their product during shipping or storage in warehouses, and retail 

environments (Highland, 1978; Roesli et al., 2003).  Retail stores can employ effective pest 

management techniques to reduce or eliminate infestations.  Stock rotation, use of traps, 

inspection of incoming product, and good sanitation are some examples of an effective pest 

management program (Arbogast et al., 2000; Subramanyam et al., 2001).  Traditionally, retailers 

and pest management professionals used chemical pesticides to control insect infestations in 

retail environments (Arbogast et al., 2000).  In recent years, there has been a trend in the industry 
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to find alternative measures to manage infestation problems.  In order to create insect-resistant 

packaging, one needs to understand the mechanisms behind penetration by stored-product 

insects.  A thorough understanding of where, how, and when the infestations occurred in the 

packaged product, will help to identify critical aspects of the packaging material which need to 

be addressed (Athanassiou et al., 2011).   

The stored-product insects that affect packaged products are cosmopolitan (Highland 

1978).  Athanassiou et al. (2011) proposed two scenarios that explain the presence of stored-

product insects in packaged products: (1) insects are present in the product before packaging, or 

(2) insects invaded or penetrated the product after packaging.  Based on these two scenarios, 

stored-product insect pests have been classified as package invaders and package penetrators 

(Highland, 1978).  Invaders enter a package through a pre-existing opening such as a tear, seam 

failure, or puncture (Highland, 1984).  Invaders have weakly developed mouthparts in the larval 

and adult stages (Wohlgemuth, 1979).  Newly-hatched larvae are of most concern because they 

can invade holes as small as 0.1 mm in diameter (Wohlgemuth, 1979).  Penetrating insects can 

bore through flexible packaging materials due to their large and powerful mouthparts 

(Wohlgemuth, 1979; Highland, 1984).  The ability of insects to penetrate packaging materials 

depends on the species, life stage, type of film used, thickness of material, and the presence of 

creases, scratches, or tears on the material (Gerhardt et al., 1954; Mullen et al., 2012).  Insect 

species that are penetrators are most dangerous in the larval stages (Wohlgemuth, 1979).   

The Indian meal moth, Plodia interpunctella (Hübner) (Leipdoptera: Pyralidae), can 

attack a wide range of stored products (Allotey et al., 1990).  P. interpunctella is among the 

world's most economically important stored-product insect pests of raw or processed foods, and 

is found in food and feed processing plants, warehouses, and retail environments (Loschiavo et 
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al., 1979; Roesli et al., 2003).  The larvae of this pest have been associated with 179 different 

food commodities in 48 different countries spanning six continents (Hagstrum et al., 2013).  In a 

survey of four Hawaiian islands, 54 species of beetles and 11 species of moths were identified, of 

which P. interpunctella was the most frequently found moth (Loschiavo and Okumura, 1979). 

Adult moths are capable of laying 100-300 eggs per female (USDA, 1986).  Newly- hatched 

larvae wander in search of food.  While larvae are mobile, they leave behind a sticky silk and in 

this webbing, fecal material and cast skins of earlier instars may become entrapped (USDA, 

1986).  Newly-hatched larvae are able to invade films with pinholes of 0.293 mm or larger, but 

cannot invade pinholes of 0.173 mm or smaller (Tsuji, 1998).  The size of the thorax was the 

primary factor limiting invasion of a pinhole in packages by P. interpunctella larvae, and newly-

hatched larvae were unable to penetrate polyethylene films of 0.02 mm thickness (Tsuji, 1998).  

The second and fifth instars of P. interpunctella have the ability to chew through Kraft paper 

(114-µm thick), polyethylene (25.4 µm), and aluminum foil (16.5 µm) when held without food 

(Cline, 1978).  In the same study, the second and fifth instars of P. interpunctella were unable to 

penetrate polyester (25.4 µm) and polypropylene pouches (25.4 µm) (Cline, 1978).  Bowditch 

(1997) similarly found that fifth instars of P. interpunctella were unable to penetrate 

polypropylene (28 µm) pouches, but they were able to penetrate 63% of polyvinyl chloride (25 

µm) pouches.  In addition, 25% of polyvinyl chloride (25 µm) pouches tested were penetrated by 

first instars.  In Cline's study (1978), second and fifth instars were unable to penetrate 25.4 µm 

polyvinyl chloride pouches when food was given; however, when food was removed fifth instars 

penetrated 33% of pouches.  Bowditch (1997) and Cline (1978) demonstrated that older instars 

show a greater tendency to penetrate packages than younger instars, especially in the absence of 

food.  The objective of this research was to evaluate susceptibility of three types of 
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polypropylene energy bar packages to penetration and infestation by P. interpunctella when 

challenged with larvae. 

2.3.  Materials and methods 

2.3.1. Insects 

Cultures of P. interpunctella, which have been in reared since 1999 in the Department of 

Grain Science and Industry at Kansas State University, Manhattan, KS, USA, were used in this 

experiment.  Insects were reared on a diet consisting of 1000 g poultry mash, 150 ml glycerol, 

150 ml honey, and 75 ml distilled water (Subramanyam and Cutkomp, 1987) at 28C, 65% r.h., 

and 14:10 L:D photoperiod.  

2.3.2.  Properties of packaging films  

Three packaging film types, each containing a single energy bar, were obtained from the 

manufacturer.  Packaging films included Test A, package currently used in production, made of 

15.24 µm oriented polypropylene/30.48 µm metalized cast polypropylene (total thickness, 48.7 

µm); Test B 15.24 µm oriented polypropylene/27.90 µm metalized oriented polypropylene (total 

thickness, 43.14 µm), and Test C 15.24 µm oriented polypropylene/25.40µm metalized cast 

polypropylene (total thickness, 40.64 µml).  All packaging samples were visually similar in 

appearance and contained the same type of macadamia nut energy bars.  All packages were 

evaluated for pre-existing rips, tears, and seam integrity prior to use in all tests.  

2.3.3. Tests with three densities of first instars 

Male and female moths were collected from cultures and introduced into a 0.95-L glass 

jar fitted with a mesh screen.  The glass jar was inverted over a 9-cm glass Petri dish, and moths 

were allowed to mate and oviposit.  Eggs (0-24 h old) were collected and counted under a 

stereomicroscope and 50, 200, or 400 eggs were added to a 0.45-L glass jar containing a single 
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package type, Test A, B, or C, and closed with a metal lid fitted with mesh screen and filter 

paper.  Jars were held at 28C and 65% r.h.  Observations were made after 21 d or 42 d post-

infestation.  Each egg density, package type, and exposure duration was replicated five times for 

a total of 90 glass jars.  The average number of eggs that hatched was determined according to 

procedures described by Huang et al. (2004).  Three replicates of 100 eggs each of P. 

interpunctella were collected and placed in glass Petri dishes.  Dishes were placed at 28C and 

65% r.h. and examined after 7 d.  The percentage of eggs that hatched out of the total (100) was 

calculated (Huang et al., 2004).  The mean ± SE egg hatch was 79.3 ± 2.4%. 

After 21 and 42 d post-infestation, packages were removed from jars and examined for 

the number of larvae, pupae, or adults present inside each package type.  Additionally, the 

number and diameter of holes in each package and the amount of damage sustained to the energy 

bar was determined.  Hole diameter was measured by stereomicroscope fitted with a calibrated 

ocular micrometer.  The energy bar was examined and the amount of damage sustained to the bar 

was quantified on a 0 to 4 scale.  A score of 0 represented no visible damage to the energy bar.  

A score of 1 indicated that the bar had 1-25% of the total surface area covered with larval 

webbing, cast skins, frass, or dead insects.  A score of 2 indicated that the damage ranged from 

26-50% of the total surface area.  A score of 3 represented 51-75% damage, and a score of 4 

represented 76-100% damage.   

2.3.4. Tests with first, third, and fifth instars 

Male and female moths, collected from cultures, were introduced into an inverted 0.95-L 

glass jar fitted with a mesh screen.  Adult moths were allowed to mate and oviposit and eggs 

collected (≤ 24 h) were added to 500 g of poultry mash diet in a 0.95-L glass jar and held in a 

growth chamber at 28C and 65% r.h. to facilitate larval development.  Fifty eggs were counted 
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under a stereomicroscope and added to individual 0.45-L glass jars, as described previously, with 

lids fitted with mesh screens and filter papers containing a package type.  Eggs were used to 

represent first instars, because first instars could be damaged or injured during transfer due to 

handling.  Egg hatch was determined as described previously.  The mean ± SE (n = 3) egg hatch 

was 87.0 ± 1.7%.   

Third and fifth instars were determined by measuring the head capsule width (Allotey et 

al., 1990).  Fifty third or 50 fifth instars, from the culture jar, were added to 0.45-L glass jars 

containing a package type, and held at 28C and 65% r.h. Jars infested with eggs were examined 

at 21 d to count number of larvae and at 42 d to count number of pupae and adults. In the case of 

third instars, 21 d observations included counts of larvae and pupae and 42 d included only adult 

counts. In the case of fifth instars, observations were made after 21 d to count number of adults 

that emerged. After 21 and 42 d, packages were assessed for diameter and number of holes 

present, and the bars were rated for damage.  Each package type, larval age, and exposure period 

combination, was replicated five times.   

2.3.5. Tests with adults 

In the 0.95-L glass jars used for rearing P. interpunctella, corrugated paper spools were 

added to the top of the diet to serve as pupation sites for wandering larvae (Huang et al., 2003).  

Pupae were collected from the paper spools and sexes separated using characteristics and 

illustrated described by Richards and Thomson (1932).  Two male and two female pupae were 

added to 0.45-L glass jars fitted with mesh screens containing a package type, and held at 28C 

and 65% r.h. for 21 and 42 d.  After 21 and 42 d, packages and bars were assessed as described 

previously.  Each test was replicated eight times.      
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2.3.6. Data analysis  

For all experiments, a completely randomized design was used.  The means and standard 

errors for number of larvae, number of pupae, and number of adults that emerged and for bar 

damage and size and number of holes were calculated and reported (SAS Institute, 2008).  The 

number of larvae, pupae, or adults found inside energy bar packages after 21 and 42 d were 

transformed to log10 (x+1) scale for further analysis.  Data obtained on the number of holes in 

packages, hole diameter, and damage score were not transformed.  Data collected from tests at 

three first instar densities were subjected to two-way analysis of variance (ANOVA) by 

observation time to determine significant differences in each of the dependent variable measured 

as influenced by first instar densities and packaging type and their interaction.  Data collected 

from first, third, and fifth instars were analyzed similarly by observation time to determine 

significant differences in each of the dependent variable measured among instars and packaging 

type and interaction of these two main effects. Means male and female adults were subjected to a 

one-way ANOVA, and package type was the main factor.    

2.4. Results 

2.4.1. Tests with three densities of first instars 

 After 21 and 42 d following the addition of P. interpunctella eggs, the amount of 

packages penetrated varied by packaging type (Table 2.1).  At 21 d and a density of 50 eggs, at 

least one of each type of package was penetrated, but after 42 d there were no packages 

penetrated.  After 21 d, no packages were penetrated by larvae in the 200 egg density treatment, 

but after 42 d there was penetration in Test B and Test C packages.  Test B was the only package 

type that was not penetrated at an egg density of 400 eggs at 21 or 42 d.  With the exception of 

the lowest egg density, P. interpunctella larvae penetrated more packages after 42 d exposure.  
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The increase in package penetration from 21 to 42 d can be associated with an increase in 

exposure time and instar age.   

A two-way ANOVA of 21 d data show that the number of larvae found inside the 

packages was significantly different among egg densities (F = 4.03; df = 2, 36; P = 0.0263) but 

not among packaging type (F = 2.94; df = 2, 36; P = 0.0656).  However, the egg density and 

package type interaction was significant (F = 6.85; df = 4, 36; P = 0.0003).  Test C had the 

highest level of larvae present inside the package at an egg density of 400, but test B had the 

least amount of larvae present at an egg density of 50 (Table 2.2).  The number of holes in the 

packages was not significant for egg density (F = 1.91; df = 2, 36; P = 0.1629) or package type 

(F = 1.91; df = 2, 36; P = 0.1629).  Yet, the interaction between package and egg density was 

significant (F = 2.59; df = 4, 36; P = 0.0529).  The size of the holes produced in the packages 

was significant for egg density (F = 3.32; df = 2, 36; P = 0.0474), but was not significantly 

different for packaging type (df = 2, 36) or package type and egg density interaction (df = 4, 36) 

(Frange = 0.21-0.50; Prange = 0.7393-0.8135).  The damage score sustained by the energy bars was 

not significant for egg density (df = 2, 36) and packaging type (df = 2, 36) (Frange = 1.68-2.88; 

Prange = 0.0691-0.2007), but was significant among the package type and egg density interaction 

(F = 3.84; df = 4, 36; P = 0.0106).  Test C packages subjected to 400 eggs sustained the most 

damage to the energy bar.  This sample also had the most larvae present inside the package, 

which would explain the magnitude of damage observed.   

Statistical analysis of 42 d exposure data showed the number of larvae present inside 

packages was not significant for egg density (df = 2, 36), package type (df = 2, 36), and their 

interaction (df = 4, 36) (Frange = 0.66-1.17; Prange = 0.3409-0.5215).  However, the number of 

pupae found inside packages varied significantly by egg density (F = 3.79; df = 2, 36; P = 
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0.0322), but was not significant for packaging type (F = 1.10; df = 2, 36; P = 0.3449).  The egg 

density and packaging type interaction was significant (F = 2.74; df = 4, 36; P = 0.0437).  In 

packages that were penetrated after 42 d of continual exposure, test C had the highest number of 

adults present (Table 2).  Statistical analysis showed no significant differences based on egg 

density (F = 2.13; df = 2, 36; P = 0.1340), but significant differences were observed among 

packaging types (F = 4.67; df = 2, 36; P = 0.0158).  The interaction between egg density and 

package type was not significant (F = 1.30; df = 4, 36; P = 0.2889).  The number of holes found 

in the packages was not significant for egg density (df = 2, 36), packaging type (df = 2, 36) or 

their interaction (df = 4, 36) (Frange = 1.00-2.00; Prange = 0.1501-0.4203).  The size of holes in the 

packages was not significant based on egg density (F = 2.59; df = 2, 36; P = 0.0889), but it was 

significant for packaging type (F = 4.32; df = 2, 36; P = 0.0208), and Test C had the largest 

average hole size of 0.8 mm.  The interaction between egg density and packaging type was not 

significant (F = 1.53; df = 4, 36; P = 0.2131).  The damage score of the bars was not significant 

for any factor, egg density (df = 2, 36), packaging type (df = 2, 36), and their interaction (df = 4, 

36) (Frange = 1.14-2.17; Prange = 0.1287-0.3531).  Among the packaging types, Test C provided 

the least amount of resistance to penetration by P. interpunctella larvae. 

2.4.2. Tests with first, third, and fifth instars  

The third and fifth instars of P. interpunctella penetrated more packages that the first 

instars, regardless of the packaging type (Table 2.3).  Additionally, the number of packages 

penetrated at 42 d either remained constant or showed an increase up to 40% compared to 21 d 

penetrations.  Among the packaging types, Test A had the least number of packages penetrated 

by the first and third instars after 21 and 42 d exposure.  In tests conducted with fifth instars, Test 

B package had fewest penetrated packages.  The increase in the number of packages penetrate 
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from 21 to 42 d exposures can be associated with the increase in age of instars.  As P. 

interpunctella increase in larval age, the mandibles of the larvae increase in strength, which may 

enable them easily chew through packaging material.  Bowditch (1997) also demonstrated that 

fifth instars penetrated more polyvinyl chloride packages (25 μm) than first instars.     

A two-way ANOVA of 21 d data, showed the number of larvae found inside packages 

was significant for instar (F = 4.78; df = 2, 36; P = 0.0144), but was not statistically significant 

among package types (F = 2.25; df = 2, 36; P = 0.1196).  The package type and instar interaction 

was not significant (F = 2.48; df = 2, 36; P = 0.0613).  Test A had the least amount of larvae 

present inside packages and Test C had the most, 0 and 21.6, respectively (Table 4).  The number 

of pupae found inside the package was significantly different among instars (F = 17.99; df = 2, 

36, P < 0.0001), package type (F = 6.23, df = 2, 36; P = 0.0047), and package type and instar 

interaction (F = 2.75; df = 2, 36, P = 0.0332).  Similarly, the number of adults found inside the 

package was significant for instar (F = 9.50; df = 2, 36; P = 0.0005) and package type (F = 2.75; 

df = 2, 36; P = 0.0332). The package type and instar interaction was not significant (F = 2.20; df 

= 2, 36; P = 0.088).  The increase in larval age (third and fifth instars) resulted in having more 

number of pupae and adults inside each package type.  This was expected due to the fact these 

instars are further along in their life cycle, while 21 d was not adequate time for first instars to 

reach the pupal stage or adult stage.  Additionally, the number of holes in package, size of holes, 

and the amount of damage to the energy bar increased with increasing larval age.  Test 1 had the 

most holes per package, size of holes, and highest damage score among packaging types.  The 

number of holes in packages was not significant for instar age (F = 2.40; df = 2, 36; P = 0.1055).  

However, the package type was significant (F = 9.37; df = 2, 36; P = 0.0005) as well as the 

interaction (F = 2.88; df = 2, 36; P = 0.0361).  The hole size in packages was significant based 
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on instar age (F = 4.76; df = 2, 36; P = 0.0147), but not for packaging type (F = 2.91; df = 2, 36; 

P = 0.0675).  The interaction between instar age and packaging type was significant (F = 5.09; df 

= 2, 36; P = 0.0023).  The instar age did not influence damage scores (F = 2.18; df = 2, 36; P = 

0.1283). Conversely, packaging type significantly influenced the amount of damage sustained to 

energy bars (F = 6.54; df = 2, 36; P = 0.0038).  The package type and instar interaction was 

significant (F = 4.25; df = 2, 36; P = 0.0064).   

 Analysis of 42 d exposures results only include data for first and fifth instars, because 

after 42 d fifth instars would have completed one life cycle and therefore it would be difficult to 

determine which life stages found inside packages were a result of the original larvae or from F1 

adults.  Furthermore, the number of larvae present inside test packages was recorded as present 

or absent, because after 42 d of testing there were larvae present in various life stages of 

development from eggs laid by F1 adults.  The first instars in Test A were the only package that 

did not have larvae present inside (Table 2.4).  Statistical analysis showed that the number of 

pupae found inside packages was not significantly different among instars (df = 1, 24) package 

types (df = 2, 24), and their interaction (df = 2, 24)  (Frange = 0.00-3.23; Prange = 0.0572-1.000).  

Similarly, the same trend was seen in the number of adults found inside packages (Frange = 0.23-

3.13; Prange = 0.0619-0.6373).  Test B had the most holes in the packaging material.  The number 

of holes was not significant for instars (F = 2.70; df = 1, 24; P = 0.1132) but packaging type was 

statistically significant (F =5.30; df = 2, 24; P = 0.0124).  The interaction between instar and 

package type was not significant (F = 3.03; df = 2, 24; P = 0.0673).  The number of size of holes 

in the packages varied but the results were not significant among instars (df = 1, 24), package 

type (df = 2, 24), and their interaction (df = 2, 24)  (Frange = 0.05-3.17;  Prange = 0.0602-0.8290).  

The amount of damage sustained to energy bars was not significant based on instars (F = 0.02; df 
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= 1, 24; P = 0.8962).  However, damage was significant for packaging type (F = 5.97; df = 2, 24; 

P = 0.0079), but the interaction between package type and instar was not significant (F = 1.58; df 

= 2, 24; P = 0.2261).     

2.4.3. Tests with adults 

 The number of packages penetrated either increased or remained constant from 21 to 42 d 

exposure when subjected to male and female moth pairs (Table 5).  Test A was the only package 

that was not penetrated after 21 d, but 75% of packages were penetrated by 42 d.  Test B had the 

most packages penetrated at day 21, 63%, but the number of penetrated packages remained 

constant after 42 d of exposure.  The same trend was seen with Test C packages.  The number of 

larvae found inside packages after 21 d was significantly different among packaging types (F = 

5.33; df = 2, 42; P = 0.0087) (Table 6).  Test C had the most holes in packages, largest hole 

sizes, and greatest amount of damage to energy bars (Table 2.6).  The number of holes in 

packages was not significant (F = 0.12; df = 2, 42; P = 0.8847).  In addition, the size of holes 

was not significant based on packaging type (F = 0.75; df = 2, 42; P = 0.4807).  The amount of 

damage sustained to energy bars was also not significant based on packaging type (F = 1.85; df = 

2, 42; P = 0.1693).  After 42 d, all samples had at least 25% of packages penetrated.  Analysis of 

data showed that there was no statistical differences for the number of larvae (df = 2, 21), pupae 

(df = 2, 21), or adults (df = 2, 21) found inside packages (Frange = 0.50-1.00; Prange = 0.3847-

0.6149).  Additionally, the number of holes in packages (df = 2, 21), size of holes (df = 2, 21), 

and damage scores (df = 2, 21) were not statistically significant (Frange = 0.50-2.36; df = 2, 21; P 

= 0.1185-0.6136).    
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2.5. Discussion 

The objective of this research was to evaluate susceptibility of three types of 

polypropylene energy bar packages to penetration and infestation by P. interpunctella larvae.  

This study has demonstrated that first, third, and fifth instars of P. interpunctella are capable of 

penetrating multilayer polypropylene energy bar packages with thicknesses ranging from 40.6-

48.7 μm.  The results of this study indicates that older instars of P. interpunctella are capable of 

causing more damage to energy bars compared to first instars, presumably because the ability of 

these later instars to penetrate the package is greater.  Cline (1978) and Bowditch (1997) 

demonstrated the ability of P. interpunctella to penetrate packaging materials also varies among 

life stages, and in general, their studies found fifth instars to penetrate more packages compared 

to younger instars.   

Shinoda et al. (1990) found that fourth and fifth instars were able to penetrate 30 µm 

thick polyethylene packages.  Fifth instars penetrated significantly more packages than fourth 

instars (Shinoda et al., 1990).  The results in this study are consistent to those found by Shinoda 

et al. (1990).  Cline (1978) found that second and fifth instars were unable to penetrate 25.4 µm 

thick polypropylene films but were able to penetrate 25.4 µm thick polyethylene films.  

Bowditch (1997) found that first and fifth instars were unable to penetrate 28 µm polypropylene 

pouches but could penetrate 25 μm polyvinyl chloride films when pouches were exposed to 

larvae for five days.  These two studies used films roughly half of that used in this study, and 

they found no penetration.  A study conducted by Tsuji (1998) also demonstrated that newly 

hatched larvae are unable to penetrate 20 µm polyethylene film even after 2-3 weeks of exposure 

to larvae.  In both the Bowditch (1997) and Tsuji (1998) experiments, the time larvae were 

exposed to packaged films was shorter compared to this study.  The additional time in this study 
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indicates that larvae exposed to surfaces for an extended period of time may increase their ability 

to penetrate packages.  Chung et al. (2011) found that third instars were not able to penetrate 20 

μm casted polypropylene and oriented polypropylene packages within five days.  Our study 

demonstrated increased exposure time, 21 d compared to 42 d, increased the number of packages 

penetrated by first, third, and fifth instars.  Again the results of this study differ from previous 

studies, but further emphasizes that exposure time is an important factor influencing the ability 

of P. interpunctella larval penetration.   

The results of this study demonstrated that increasing the film thickness decreased the 

ability of P. interpunctella's ability to penetrate.  Test C had the thinnest film, 40.64 µm total 

thickness, and was consistently penetrated by all stages of P. interpunctella tested.  In tests with 

first, third, and fifth instars, Test C had the highest larvae, pupae, and adult counts found within 

the package.  Additional, Test C had the most holes per package and the most damage to the 

energy bars after 21 and 42 d exposures.  Both Test A and B were consistently lower on all 

measurements.  Thus, thicker polypropylene films provide better protection against P. 

interpunctella penetration.  Further studies are warranted to determine the minimum thickness 

that can discourage P. interpunctella penetration.  Additional testing is underway to determine 

the effect of adding growth regulators to packaging materials to prevent packaging penetration of 

films.  
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Table 2.1 Number of packages penetrated by P. interpunctella at three egg densities. 

Trt Egg Density Observation Time 

21d 42 d 

Test A 50 1 0 

Test B  2 0 

Test C  1 0 

Test A 200 0 0 

Test B  0 1 

Test C  0 2 

Test A 400 0 1 

Test B  0 0 

Test C   3 3 

A total of five packages were exposed at each treatment and egg density.  
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Table 2.2 Number of larvae, pupae, and adults of P. interpunctella found inside packages of energy bars after 21 and 42 d of 

infestation, and extent of damage to packages and energy bars. 

Trt. Egg 

density 

Mean ± SE               

Number of larvae Number of pupae Number of adults Number of holes  Hole size (mm) Damage score  

21d 42 d 21d 42 d 21 d 42 d 21d 42 d 21 d 42 d 21 d 42 d 

Test A 50 2.4 ± 2.4 0.0 ± 0.0 ---
a
 0.0 ± 0.0 ---

a
 0.0 ± 0.0 0.2 ± 0.2 0.0 ± 0.0 0.3 ± 0.3 0.0 ± 0.0  0.4 ± 0.4 0.0 ± 0.0 

Test B   4.0 ± 3.1 0.0 ± 0.0 --- 0.0 ± 0.0 --- 0.0 ± 0.0 0.4 ± 0.2 0.0 ± 0.0 0.4 ± 0.3 0.0 ± 0.0 0.6 ± 0.4 0.0 ± 0.0 

Test C  0.2 ± 0.2 0.0 ± 0.0 --- 0.0 ± 0.0 --- 0.0 ± 0.0 0.2 ± 0.2 0.0 ± 0.0 0.3 ± 0.3 0.0 ± 0.0 0.2 ± 0.2 0.0 ± 0.0 

Test A 200 0.0 ± 0.0 0.0 ± 0.0 --- 0.0 ± 0.0 --- 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 

Test B   0.0 ± 0.0 0.4 ± 0.4 --- 0.8 ± 0.8 --- 1.0 ± 1.0 0.0 ± 0.0 0.4 ± 0.4 0 .0± 0.0 0.2 ± 0.2 0.0 ± 0.0 0.8 ± 0.8 

Test C  0.0 ± 0.0 0.0 ± 0.0 --- 0.0 ± 0.0 --- 4.4 ± 3.0 0.0 ± 0.0 0.6 ± 0.4 0.0 ± 0.0 0.6 ± 0.4 0.0 ± 0.0 1.2 ± 0.8 

Test A 400 0.0 ± 0.0 3.2 ± 3.2 --- 1.0 ± 1.0 --- 0.0 ± 0.0 0.0 ± 0.0 0.2 ± 0.2 0.0 ± 0.0 0.2 ± 0.2 0.0 ± 0.0 0.8 ± 0.8 

Test B   0.0 ± 0.0 0.0 ± 0.0 --- 0.0 ± 0.0 --- 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 

Test C   12.8 ± 4.6 0.0 ± 0.0 --- 2.6 ± 1.1 --- 2.4 ± 1.2 1.0 ± 0.5 0.6 ± 0.2 0.2 ± 0.1 0.8 ± 0.3 1.2 ± 0.4 1.8 ± 0.8 

a
No pupae or adults were found at 21 d; only larvae were found at 21 d.
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Table 2.3 Number of packages penetrated by first, third, and fifth instars of P. 

interpunctella. 

Treatment Instar Observation time 

21 d 42 d 

Test A 1 0 1 

Test B   1 3 

Test C   3 4 

Test A  3 2 3 

Test B   3 4 

Test C   4 4 

Test A 5 4 ---
a
 

Test B   0 --- 

Test C    5 --- 

A total of five packages was exposed at each treatment and instars 
a
All adults from fifth instars emerged within 21 d. 
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Table 2.4 Number of larvae, pupae, and adults of P. interpunctella found inside packages of energy bars after 21 and 42 d of 

infestation with first, third, and fifth instars, and extent of damage to packages and energy bars. 

 

Trt Instar Mean ± SE             

Number of larvae Number of pupae Number of adults Number of holes  Hole size (mm) Damage score  

21d 42 d
a
 21 d 42 d 21 d 42 d 21 d 42 d 21 d 42 d 21 d 42 d 

Test A 1 0.0 ± 0.0 N 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.2 ± 0.2 0.0 ± 0.0 0.2 ± 0.2 0.0 ± 0.0 0.2 ± 0.2 

Test B   15.4 ± 7.1 Y  0.0 ± 0.0 0.2 ± 0.2 0.0 ± 0.0 3.6 ± 2.7 0.8 ± 0.2 0.6 ± 0.4 0.7 ± 0.4 0.6 ± 0.4 1.4 ± 0.6 1.4 ± 0.9 

Test C   21.6 ± 9.3 Y  0.0 ± 0.0 0.4 ± 0.2 0.0 ± 0.0 8.0 ± 3.3 1.0 ± 0.6 0.8 ± 0.2 0.3 ± 0.2 1.2 ± 0.3 1.6 ± 0.7 2.6 ± 0.7 

Test A 3 1.8 ± 1.4 Y  0.6 ± 0.4 0.0 ± 0.0 2.8 ± 1.8 2.6 ± 1.5 0.4 ± 0.2 0.6 ± 0.2 0.4 ± 0.3 0.8 ± 0.3 1.0 ± 0.6 1.2 ± 0.6 

Test B   0.8 ± 0.4 Y 2.6 ± 1.3 0.0 ± 0.0 3.4 ± 2.1 0.6 ± 0.6 1.2 ± 0.4 0.2 ± 0.2 1.1 ± 0.3 0.3 ± 0.3 2.2 ± 0.6 0.2 ± 0.2 

Test C   0.8 ± 0.8 Y 2.4 ± 0.7 0.8 ± 0.6 6.0 ± 2.3 3.4 ± 1.9 2.0 ± 0.6 2.8 ± 1.1 1.2 ± 0.3 1.0 ± 0.3 2.2 ± 0.6 2.6 ± 0.7 

Test A 5 0.2 ± 0.2 ---
b
 2.6 ± 0.9 --- 4.6 ± 2.1 --- 1.2 ± 0.4 --- 1.0 ± 0.2 --- 1.8 ± 0.6 --- 

Test B   0.0 ± 0.0 --- 0.0 ± 0.0 --- 0.0 ± 0.0 --- 0 .0± 0.0 --- 0.0 ± 0.0 --- 0.0 ± 0.0 --- 

Test C   1.6 ± 1.0 --- 4.4 ± 0.6 --- 7.4 ± 3.1 --- 2.8 ± 0.7 --- 1.3 ± 0.2 --- 3.2 ± 0.2 --- 

a
N, no larvae were present; Y, larvae were present most probably from eggs laid by F1 adults.     

b
All adults emerged within 21 d
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Table 2.5 Number of packages penetrated by P. interpunctella larvae emerging from eggs 

after the addition of two mating pairs. 

Treatment Observation time 

21 d 42 d 

Test A 0 6 

Test B 2 2 

Test C 5 5 

A total of eight packages were exposed at each observation time
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Table 2.6 Number of larvae, pupae, and adults of P. interpunctella found inside packages of energy bars in treatments with two 

mating pairs after 21 and 42 d of infestation, and extent of damage to packages and energy bars. 

Trt Mean ± SE             

Number of larvae Number of pupae Number of adults Number of holes  Hole size (mm) Damage score  

21d 42d 21d 42d 21 d 42 d 21 d 42 d 21 d 42 d 21 d 42 d 

Test A 0.0 ± 0.0 2.1 ± 1.1 ---
a
 0.6 ± 0.4 --- 0.0 ± 0.0 0.0 ± 0.0 0.9 ± 0.2 0.0 ± 0.0 0.7 ± 0.2 0.0 ± 0.0 0.9 ± 0.3 

Test B 5.1 ± 4.3 1.4 ± 1.2 --- 0.3 ± 0.3 --- 0.0 ± 0.0 0.5 ± 0.4 0.3 ± 0.2 0.1 ± 0.1 0.4 ± 0.3 0.4 ± 0.2 0.5 ± 0.4 

Test C 15.0 ± 6.7 2.1 ± 1.1 --- 1.5 ± 1.0 --- 0.5 ± 0.5 1.0 ± 0.4 0.8 ± 0.3 0.3 ± 0.1 1.0 ± 0.3 0.5 ± 0.2 0.9 ± 0.3 

a
No pupae or adults were found at 21 d; only larvae were found at 21. 
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Chapter 3 - Susceptibility of Tribolium castaneum and Trogoderma 

variabile exposed to methoprene impregnated birdseed packaging 

material 

3.1. Abstract 

The insect growth regulator methoprene is registered for treatment of empty storage 

facilities, stored grain, and packaging.  Methoprene adversely affects the number of eggs laid by 

female beetles, egg hatch, and larval development.  The objectives of this study were to 

determine the effect of short term exposure time and temperature on four week old larvae, 

continual exposure on egg-to-adult emergence of beetles, and sub-lethal effect on adults of the 

red flour beetle, Tribolium castaneum (Herbst) and warehouse beetle, Trogoderma variabile 

Ballion, on the inside and outside surfaces of methoprene-treated packaging material at 27 and 

32C and 60% r.h.  Inside and outside surfaces of methoprene-treated and untreated packages 

were cut into discs and fitted into Petri plates. Disc edges were glued down to deter larvae from 

crawling underneath, and sides were coated with fluon to prevent insect escape. Approximately 

1500 mg of diet was added to Petri dish arenas.  Fifty third instars of T. castaneum or T. 

variabile were added to individual arenas and exposed to untreated and methoprene-treated 

surfaces for 8, 24, 48, 72, 96 h.  Exposed larvae were transferred to untreated Petri dishes 500 

mg of diet and observations were made weekly to determine the percentage of normal adults that 

emerged. Sub-leathal effect experiments used twenty-five, 3-4 d old eggs, of T. castaneum or T. 

variabile which were added to treatment and control arenas, respectively and held at 27 or 32°C 

and 60% r.h.  The number of hatched larvae for each species and treatment variation was 

recorded and percent hatch was determined.  In addition, ten mixed sex adults of either T. 
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castaneum or T. variabile were added to arenas and held at 27 or 32°C and 60% r.h. for 7 d or 3 

d, respectively.  Following exposure to each treatment combination, adults were removed and the 

contents of each arena were analyzed for the number of eggs laid per female and percent hatch 

for each species.  For continual exposure 10 mixed sex adults of each species were added to 

individual arenas, and adult T. castaneum were removed after 7 d and T. variabile after 3 d.  

Observations for normal adult emergence from eggs laid were made weekly. Short term exposure 

results indicated that the larvae to adult emergence of T. castaneum and T. variabile generally 

decreased with increasing exposure time.  The number of eggs laid per female of T. castaneum 

and T. variabile did not vary from thier controls.  Continual exposure demonstrated 100% 

supression of T. castaneum adult emergence, irrespective of outside or  inside surfaces of the 

bagging material. T. variabile exposed to inside surfaces were unaffected and those exposed to 

outside surfaces normal adult emergence was reduced compared to the untreated control.    

Therefore, continual exposure of T. castaneum and T. variabile to methoprene impregnated 

packaging could be a vaiable tool to protect food and feed products from infestation.  
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3.2. Introduction 

 Stored-product insects are serious pests in raw and processed grains, pet foods, and 

birdseed.  Food and feed manufacturing companies can take all possible preventive controls to 

produce an insect free product, but they have little to no control of their product once it leaves 

their facility.  Retail stores also present a serious threat for infestation of packaged products by 

stored-product insects (Roesli et al., 2003).  Potential sources of infestation include incoming 

commodities which are already infested, open doors or windows, and insect populations already 

present within the store (Subramanyam et al., 2001).  Beetles such as the rusty grain beetle, 

Cryptolestes ferrugineus (Stephens) and sawtoothed grain beetle, Oryzaephilus surinamensis (L.) 

can be found on or above shelves, underneath shelves, and/or below kick-plates (Subramanyam 

et al., 2001).   

 Food packaging is a consumer's last defense against infestation by stored-product insects.  

Insects infest packaged products by penetration or invasion.  Package penetrators such as the 

larvae of the warehouse beetle, Trogoderma variabile Ballion chew through packaging material 

and infest food products.  Package invaders such as the red flour beetle, Tribolium castaneum 

(Herbst), enter packages through natural defects, holes, or seam failures.  The larval stage of 

stored-product insects cause the most damage, because they can invade smaller holes than adults 

and possess powerful mouthparts which are capable of chewing through various packaging 

material (Wohlgemuth, 1979).   

Current methods employed by food manufacturers and warehouse facilities to control 

stored-product insects include fumigation, contact insecticides, aerosols, and heat treatments.  In 

recent years, manufacturers have been looking towards alternative and safer control methods to 

accommodate consumer demands (Wijayaratne et al., 2012).  Insect growth regulators, insect 
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resistant packaging, or odor barriers have all been documented as plausible alternatives to 

prevent infestation of packaged food products. 

 Insect growth regulators, such as methoprene, are formulated to mimic specific insect 

juvenile hormone which regulates the developmental process from the egg to the adult stage 

(Oberlander et al., 2000; Arthur, 2006).  Methoprene is a juvenile hormone analog, which is 

capable of causing morphogenetic and gonadotropic effects (Amos et al., 1978).  As of 2003, the 

United States Environmental Protection Agency granted methoprene exemption from food 

tolerance levels (Henrick, 2007).  Methoprene, an insecticide of very low mammalian toxicity, is 

approved for treatment of empty storage facilities, direct applications to stored grains, and as 

aerosol sprays, and for use in packaging (Arthur, 2006).  There is little to no effect on non-target 

species such as birds, fish, or mammals when methoprene is used at appropriate application rates 

(Henrick, 2007).   

 Juvenile hormones control physiological and behavioral processes in insects, along with 

ecdysones and molting hormones (Mondal and Parween, 2000).  They also regulate the 

morphogenetic changes during metamorphosis.  A reduction in juvenile hormones and ecdysones 

induces molting in insects (Mondal and Parween, 2000).  Exposing young larvae to juvenile 

hormones such as methoprene will inhibit pupation and cause supernumerary molting to occur 

because the reduction in juvenile hormones is inhibited (Mondal and Parween, 2000).  Juvenile 

hormone treatment of young larvae often produces supernumerary larvae and on older larvae, 

produces abnormal larval-pupal intermediates, or pupal-adult intermediates (Mondal and 

Parween, 2000).  Treatment of pupae results in pupal-adult intermediates or causes 

morphological deformities in adults such as a twisted wing (Mondal and Parween, 2000).  It 
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should be noted that the degree of morphogenetic effect on insects differs depending on mode of 

application, species, active does, and age of the insects (Mondal and Parween, 2000).   

 Methoprene is very effective in controlling a vast variety of lepidopterous and 

coleopterous pests (Henrick, 2007).  Amos et al. (1978) showed that crossing deformed adults 

exposed to 0.1 ppm methoprene did not result in progeny production.  Progeny production of 

males and females is adversely affected by exposure to methoprene, and males are more 

sensitive compared to females (Wijayaratne et al., 2012).  Methoprene does not cause adult 

mortality or a quick knock-down effect, but methoprene works by reducing populations over 

long periods of time by slowly reducing progeny production (Mondal and Parween, 2000; 

Wijayaratne et al., 2012).  The objectives of this study were designed to determine adverse 

effects of exposure to untreated and methoprene impregnated woven packaging material on 

development to adulthood of four week old larvae of T. castaneum and T. variabile at two 

temperatures, (2) effect of exposure of adults to untreated and methoprene-impregnated 

packaging on egg laying and egg hatch of the two species, and (3) effect of exposure of adults to 

untreated and methoprene-treated packaging on egg-to-adult emergence of the two species.    

3.3. Materials and Methods 

3.3.1. Insects 

Cultures of T. castaneum and T. variabile used in this study were obtained from the 

United States Department of Agriculture's Center for Grain and Animal Health Research 

(USDA-CGAHR) in Manhattan, Kansas.  T. castaneum cultures have been in rearing since 1958.  

T. castaneum cultures were reared on 95% unbleached whole-wheat flour (Hudson Cream Flour, 

Stafford Country Flour Mills Co., Hudson, Kansas, USA) with 5% by wt. of brewer's yeast (MP 

Biomedicals LLC, Solon, Ohio, USA)  and maintained at 27°C and 60% r.h. in constant 
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darkness.  T. variabile cultures were reared on 50% Purina One lamb and rice formula (Nestlé 

Purina PetCare Company, St. Louis, Missouri, USA), 50% Pharmanex vanilla shake mix 

(Arizona Nutritional Supplements, Chandler, Arizona, USA), and the top of the culture was 

sprinkled with 100% whole grain rolled oats (Kroger Co., Cincinnati, Ohio, USA) and 

maintained at 30°C and 60% r.h. and 16:8 L:D photoperiod.   

Eggs were obtained by using, approximately 100 g of flour sifted through a 149 µm 

opening sieve (Newark Wire Cloth Company, Clifton, New Jersey., USA), placed into a 0.18-L 

jelly jars (Ball, Muncie, Indiana, USA), and 60 unsexed T. castaneum or T. variabile adults of 

mixed ages were introduced.  The containers were incubated at 30°C and 65% r.h. and 16:8 L:D 

photoperiod to allow for mating and oviposition.  After three days, the adults were removed from 

jars using a 850 µm opening sieve on the top to retain the adults. The flour passed through the 

bottom 250 µm opening sieve and was collected in a pan. Eggs were retained on top of the 250 

µm sieve.  Eggs were collected and counted using an aspirator.   

In tests with adults, unsexed adults of mixed ages were used.  Adults were directly 

aspirated from culture jars. After exposure to packages the adults were removed, frozen, and 

separated as male and female.  Male T. variabile were distinguished by the 6-7 segmented 

antennal club, whereby females only have 4 segmented antennal club (Bousquet, 1990).  Male T. 

castaneum possess a setiferous patch on the posterior side of the fore femur, while the female 

lacks such a setiferous patch (Bousquet, 1990).  

Methoprene impregnated and untreated woven packaging materials were obtained from a 

commercial manufacturer of birdseed packaging.  The outer layer consisted of biaxial oriented 

polypropylene that was 18 μm thick (18 g/m
2
 weight), and the inner woven layer consisted of a 

60 g/m
2
 of fabric weight. The middle adhesive resin layer of 20 g/m

2
 weights where the 
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methoprene active material was impregnated into a polymer pellet matrix and extruded.  This 

layer is 8 μm think and is loaded with a methoprene application rate of 0.1% or 1000 ppm per 

area.   

3.3.2. Effect of short term larval exposure on adult emergence 

 Eighty individual treatment arenas were constructed by cutting a 150 by 25 mm (137 

cm
2
) circular discs from packaging material that either contained methoprene (40 discs) or did 

not contain methoprene (40 discs).  Out of the 40 discs containing methoprene impregnation in 

the packaging material, 20 discs with the inside surface and 20 discs with the outside surface 

were placed individually into 150 x 25 mm Petri dishes.  The dish edges were secured down by 

using adhesive caulking (DAP Products Inc., Baltimore, Maryland, USA) and the inner sides 

were coated with polytetrafluoroethylene (Fluon®) (Sigma-Aldrich Co., St. Louis, Missouri, 

USA) to prevent insects crawling on the sides of the Petri dishes and escape.  The inside and 

outside surfaces of packaging not treated with methoprene were placed in Petri dishes to serve as 

the control treatment.  Treatment combinations included, packages untreated or impregnated 

with methoprene, two surfaces (inside vs. outside), two temperatures 27 and 32°C at 60% r.h, 

and two insect species, T. castaneum and T. variabile. Each species had 8 treatment 

combinations, and each treatment combination was replicated five times.  

Testing methodology was modified from that described by Arthur and Fontenot (2012).  

Fifty, 4-week-old larvae of each species were exposed to each of the 40 methoprene treated and 

untreated (control) arenas. Each arena was supplemented with 1500 mg of flour with yeast (T. 

castaneum) or vanilla shake mix (T. variabile).  Treatment and control arenas were placed in an 

environmental chamber at 27 and 32°C at 60% r.h.  Larvae were exposed to methoprene-treated 

or untreated arenas and inside and outside surfaces for 8, 24, 48, 72, and 96 h.  At each exposure 
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time, 10 larvae were selected and removed from the arena and transferred to new untreated Petri 

dishes, 100 by 15 mm for T. castaneum or 100 by 20 mm for T. variabile, along with 500 mg of 

the respective insect diet and held in the environmental chambers at the two temperatures for 3-4 

weeks until the adults emerged. Diet was added as needed to the untreated Petri dishes. The 

number of normal adults that emerged did not have any visible morphological deformities were 

recorded and expressed as a percentage.  Any beetles that remained in the larval or pupal stages 

or adults with morphological deformities were also recorded.  Morphologically deformed adults 

included those with missing or deformed body parts, unsclerotized patches on the exoskeleton, or 

wing deformations.    

3.3.3. Effect of methoprene on egg hatch of T. castaneum and T. variabile  

 Forty eight individual arenas were prepared as described previously, except disc sizes 

were 9 cm in diameter (62 cm
2
) and fitted into 100 by 15 mm (T. castaneum) or 100 by 20 mm 

(T. variabile) Petri dishes.  Twenty four arenas did not contain methoprene (control) and twenty 

four were methoprene-treated.  Both the inside (12 arenas per treatment) and outside surfaces (12 

arenas per treatment) of each material were evaluated. Disc edges were secured with adhesive 

caulking (DAP Products Inc.) and the inner sides were coated with polytetrafluoroethylene 

(Fluon®) to prevent insect escape.  Each treatment combination was replicated six times.    

 To determine the effect of methoprene-treated packaging on T. castaneum and T. 

variabile egg hatch, 25, 3-4 day old eggs were added to sample arenas and held at 27 or 32°C 

and 60% r.h.  The number of larvae that hatched for each species and treatment combination 

after 7 d was recorded and the percent egg hatch was determined from the number of eggs that 

hatched out of the total exposed.        
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3.3.4. Effect of methoprene on adult fecundity and subsequent egg hatch  

 Forty eight individual treatment arenas, six replicates per treatment combination, were 

constructed as described in 2.3.  Approximately 500 mg of flour pre-sifted through a 150 μm 

opening sieve (Newark Wire Cloth Company, Clifton, New Jersey, USA) was added to each 

treatment arena.  Ten unsexed adults of mixed ages of T. castaneum or T. variabile were added 

to arenas and held at 27 or 32°C and 60% r.h. for 7 or 3 days, respectively.  Following exposure 

to each treatment combination, adults were removed, frozen, and separated into male and 

females using characteristics described by Bousquet (1990). The contents of each arena were 

sifted using a 250 µm opening sieve to remove flour but retain the eggs. The number of eggs laid 

female per was counted, and the unhatched eggs were transferred to new untreated Petri dishes to 

determine percent hatch after 7 d for each species in each treatment combination.  Percentage 

egg hatch was based number of eggs that hatched out of the total that were laid.    

3.3.5.  Effect of methoprene on egg-to-adult emergence of T. castaneum and T. 

variabile 

 Individual treatment arenas were constructed as previously described. A total of 24 discs 

of untreated and 24 of methoprene-treated materials were cut manually.  For each species, the 

untreated and methoprene treated discs, inside and outside surfaces, and two temperatures were 

replicated six times.  Approximately 500 mg of insect diet was placed in each arena, flour for T. 

castaneum and vanilla shake mix for T. variabile.  Ten unsexed adults of mixed ages of a species 

were placed in individual arenas and incubated in a growth chamber at 27 and 32°C at 60% r.h.  

Adult T. castaneum were held in the chambers for 7 d and adult T. variabile for 3 d to facilitate 

egg laying.  After 7 or 3 d, adults were gently removed from arenas using forceps, and placed in 

a freezer and then separated into males and females using characteristics described by Bosquet 
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(1990).  The arenas with eggs were placed back into the environmental growth chambers and 

examined every 2-4 d and food (500 mg) was added as needed.  The eggs were reared to 

adulthood, and arenas were held at the two temperatures until F1 larvae were present in the 

control arenas. The total time for this to occur spanned approximately 8-11 weeks.  Adults were 

assessed as either morphologically normal or deformed.  Deformed adults primarily included 

pupal-adult intermediates and adults with twisted wings. The deformed category also included 

supernumerary larvae that failed to pupate after 11 weeks. 

3.3.6. Data analysis   

 Data were analyzed by species. Data on the percentage of normal adults that emerged 

from 4-week-old larvae at the five exposure intervals were transformed to angular values for 

statistical analysis (Zar, 1984).  Since 10 larvae were sampled at each of the five exposure 

intervals, data on percentage of normal adults that emerged by exposure interval among 

treatment combinations were subjected to one-way analysis of variance (ANOVA). If ANOVA 

was significant (P < 0.05), differences among treatment combinations were determined by Ryan-

Einot-Gabriel-Welsch (REGWQ) multiple range test (SAS Institute, 2008). Data on percent egg 

hatch by species were transformed to angular values and differences (P < 0.05) in hatch among 

treatment combinations were determined by one-way ANOVA and REGWQ multiple range test. 

In tests were adults were exposed for 7 or 3 d to determine number of eggs laid and percent egg 

hatch, differences in number of males and females of a species among replicates in each 

treatment were determined by a paired t-test to test for deviation from a 1:1 sex ratio. Data on the 

mean number of females among treatment combinations and number of eggs laid per female 

were transformed to log10 (x) scale and data on percent egg hatch were transformed to angular 

values. These data were subjected to one-way ANOVA and REGWQ multiple range test to find 
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differences among the treatment combinations. In egg-to-adult emergence tests, the number of 

males and females of a species among replications in each of the treatments were determined by 

paired t-tests. Data on the number of normal and deformed adults that emerged from eggs were 

transformed to log10 (x + 1), and subjected to one-way ANOVA and REGWQ multiple range test 

to detect difference among treatment combinations.   

3.4. Results 

3.4.1. Effect of exposure interval and temperature on adult emergence 

 The mean percent normal adult emergence of T. castaneum varied overtime (Table 3.1).  

Significant differences in normal adult emergence were noted only at 96 h among treatment 

combinations (F = 4.76; df = 7, 32, P 0.0009). The lowest percent normal adult emergence 

occurred on the methoprene-treated inside surface at 96 h exposure and 32°C (24.0%), and the 

emergence in this treatment was significant different from emergence on all untreated surfaces 

irrespective of the temperature.  Across all methoprene-treated surfaces at 96 h of exposure, adult 

emergence ranged from 24.0-42.0% and the percent reduction in emergence compared to 

emergence of untreated surfaces ranged from 48.8-68.4%.  Treatment comparisons across each 

of the exposure time between 8 and 48 h were not significant (F, range among exposure times = 

0.82-1.65; df = 7, 32; P, range = 01566-0.5806). Lack of differences were also found among 

treatment combinations at the 72 h exposure time (F = 2.25; df = 7, 30; P = 0.0578).   Our results 

show longer exposure times are needed to significantly reduce the number of normal adults 

which emerge from four-week T. castaneum old larvae exposed to methoprene-treated packaging 

materials.  

 The lowest mean percent normal adult emergence for T. variabile was 50% on the 

methoprene-treat outside surface at 32°C at 48 and 72 h exposure periods (Table 3.2).  Among 
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all treatment combinations T. variabile normal adult emergence was significantly affected after 

48 and 72 h of exposure to methoprene-treated packaging materials (F, range among treatment 

combinations = 3.82-4.52; df = 7, 32; P, range = 0.0015-0.0044).  After 48 h of exposure the 

methoprene-treated surfaces at both temperatures was significantly lower than the untreated and 

methoprene-treated outside surfaces at 27°C.  At 72 h, the outside methoprene-treated surface at 

32°C was significantly different only from the outside untreated surface at 27°C.  T. variabile 

larvae exposure for 8 h produced a significant effect on the number of normal adults which 

emerged (F = 2.45; df = 7, 29; P = 0.0419), but further analysis using REGWQ multiple range 

test failed to show significant differences among treatment combinations.  The same results were 

also seen in exposure at 24 h (F = 2.67; df = 7, 32; P = 0.0270) but not for 96 h exposure (F = 

1.90; df = 7, 32, P = 0.1026).  The lack of significant differences between treatments following 

the REGWQ multiple range test could be due to the large standard error spreads for several 

observations.   The REGWQ test did not apparently control the type I experiment wise error rate. 

The use of linear contrasts may show which of the pairwise treatment combinations is different. 

3.4.2. Effect of methoprene on egg hatch of T. castaneum and T. variabile 

The mean ± SE percentage of hatch of T. castaneum eggs added to arenas ranged from 

86.2 ± 3.2 to 96.7 ± 1.1% (Table 3.3).  There was a significant difference based on a global 

ANOVA (F = 2.92; df = 7, 40; P = 0.0145) but the REGWQ test found no significant differences 

among treatment combinations. These differences may reflect biological variation in egg hatch. 

The mean ± SE percentage of hatch of T. variable eggs added to treatment arenas ranged 

from 59.2 ± 4.5 to 87.0 ±2.9% (Table 3.3).  The was a significant difference between the 

treatments (F = 8.77, df = 7, 40; P <0.001).  The outside surface of the control packaging at 27°C 

had the highest percentage of egg hatch, and the inside surface of the treatment package at 32°C 
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had the lowest percent hatch.  At 27°C, both the outside and inside methoprene-treated surfaces 

showed a lower percent hatch compared to the untreated surface.  However, at 32°C the 

untreated surfaces had a lower percent hatch compared to the methoprene-treated surfaces. 

3.4.3. Effect of methoprene on fecundity and egg hatch of T. castaneum and T. 

variabile 

The mean ± SE number of female T. castaneum adults ranged from 4.2 ± 0.7 to 6.2 ± 0.6.    

A paired t-test between females and male T. castaneum for each treatment showed no significant 

differences (t, range among treatments = -1.27 - 1.91; df = 5; P, range = 0.1099-1.000).  The 

mean ± SE number of T. variabile females per arena ranges from 3.8 ± 0.7 to 5.0 ± 0.6.  A paired 

t-test between females and males, showed no significant differences for each of the treatments (t, 

range among treatments = -1.81-0.42; df = 5; P, range = 0.1303-1.0000) 

The methoprene treated woven bags did not have a significant effect on the number of 

eggs laid per female or the subsequent egg hatch of T. variabile (Table 3.4) (F, range among 

treatments combinations for eggs laid and egg hatch = 1.17-1.37; df = 7, 40; P, range = 0.2440-

.3397).  The mean number of eggs laid per female T. variabile ranged from 42.8-67.9.  Adult T. 

variabile exposed to the inside and outside methoprene-treated surfaces had fewer eggs laid than 

the untreated surfaces at the same temperature.  The percent egg hatch for T. variabile ranged 

from 80.32-95.82%.  In all comparison except the inside surfaces at 27°C, the percent hatch of T. 

variabile eggs was lower on the methoprene-treated surface.   

The mean number of eggs laid per female was significant for T. castaneum (F = 2.56; df 

= 7, 40; P = 0.0281). The outside surface of methoprene treated packaging held at 32°C had 

significantly the most eggs laid per T. castaneum female (mean ± SE) 17.1 ± 3.1, while the 

methoprene-treated inside surfaces at 27°C had significantly the fewest eggs laid, 7.6 ± 1.8 and 
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7.4 ± 2.0.  All other treatments did not differ significantly from these. There were significant 

differences among the mean percent hatch of T. castaneum eggs (F = 2.35; df = 7, 40; P = 

0.0415).  The inside surface of the methoprene-treated material 27°C had the highest percent egg 

hatch, 81.4 ±5.4%.  The outside surface of the methoprene-treated material at 32°C had the 

lowest percent egg hatch 36.31±3.66%. The other treatments did not differ significantly from 

these two.   

3.4.4. Effect of continual exposure of methoprene-treated packaging on egg-to-adult 

development of T. castaneum and T. variabile 

The mean ± SE number of T. castaneum females ranged from 4.7 ± 0.4 to 5.8±0.7.  A 

paired t-test indicated that there was no significant differences between male and female T. 

castaneum in each of the treatments (F, range among treatments = -0.79 - 1.58; df = 5; P, range = 

0.1747 - 1.0000).   The mean ± SE number of female T. variabile ranged from 3.8 ± 0.6 to 4.8 ± 

0.6.  A paired t-test found a significant difference between the number of female and males on 

the outside surface of the untreated material at 32°C (t = -2.80; df = 5; P = 0.0379).  

The methoprene packaging had a significant effect on the number of normal T. 

castaneum adults (F = 95.70; df = 7, 40; P < 0.0001) and deformed adults (F = 38.70; df = 7, 40; 

P < 0.0001).  The methoprene packaging had a 100% reduction of normal adult emergence 

among all treatment combinations (Table 3.5).  Additionally, the number of deformities was 

significantly higher for methoprene surfaces.  The deformities of T. castaneum consisted of 

supernumerary larvae and pupal-adult intermediates.     

 Results of exposing T. variabile to methoprene treated packaging showed 

significant differences in normal adult emergence (F = 23.34; df = 7, 40; P < 0.0001).  The 

outside surface of the methoprene packages held at 32°C had significantly the least amount of 
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normal adults, and a 96.4% reduction in normal adult emergence compared to the control surface 

(Table 5).  All other methoprene packages were not significantly different from the control, and 

the percent reduction ranged from 33.9-40.9% compared to the control packaging.  The number 

of deformities was significant among treatments (F = 21.44; df = 7, 40; P < 0.001).  Since the 

outside surface of the methoprene packaging held at 32°C had the fewest number of normal 

adults emerge, it therefore has significantly the highest deformities among all treatments.  

Compared to the respective control, the methoprene had a greater number of deformities seen.  

Both methoprene-treated surfaces at 27 and 32°C, varied significantly from their respective 

untreated surfaces. 

3.5. Discussion 

 Comparisons of the effect of methoprene-treated materials for T. castaneum and T. 

variabile indicated significant reduction in normal adult emergence for T. castaneum after 96 h 

of exposure and 48 and 72 h exposure for T. variabile.  The lowest mean adult emergence for 

both species occurred at the 32°C temperature.  Our study indicated that 96 h or greater are 

needed to show a significant effect on normal larval development in T. castaneum and T. 

variabile.  The lack of significance in shorter time exposure periods indicates that the larvae of 

either species lacks the required time to absorb the methoprene and thus making it ineffective at 

short term exposures.  Arthur (2006) demonstrated that increasing the exposure time of Plodia 

interpunctella to hydroprene on concrete dishes, increases the time required for 5th instar larvae 

to emerge as adults.  Hydroprene, also and IGR, works in a similar manner as methoprene.  The 

results from the short-term exposure of four-week old larvae are comparable to those seen by 

Arthur (2006).  Arthur (2006) found that within a specific exposure time period the 

developmental time decreased as holding temperatures increased, indicating that at higher 
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temperatures immature stages develop faster.  Arthur (2006) found a relationship between time 

of exposure and temperature in relation to inhibition of adult emergence.    

 Wijayaratne et al. (2012) found that only some of the larvae exposed to methoprene 

treated wheat were susceptible and displayed adverse effects.  This is similar to the current short 

term exposure study.  Since the methoprene was incorporated into an adhesive matrix of the 

birdseed packaging, there may be an inherent variation of methoprene distribution throughout the 

packaging material which could account for the variation in normal adult emergence between 

replicates.  In addition, there could be a defined window of sensitivity at which methoprene is 

most effective during T. castaneum and/or T. variabile development (Wijayaratne et al., 2012).  

Since the current study used late instars, there is an inherent variation in the rate of development 

especially at the two experimental temperatures.  T. castaneum and T. variabile develop faster at 

32°C compared to 27°C.  At the higher temperature, both insects are ready to pupate after 96 h of 

exposure to methoprene and at 27°C the pupae stage is slightly delayed.  The slight delay in 

development may provide adequate time for methoprene uptake. 

 Wijayaratne et al. (2012) found that methoprene had no effect on progeny production of 

2-4 d old adult T. castaneum, indicating that the juvenile hormone, such as that in methoprene, 

may not be involved in the final stages of the reproductive system development once the adult 

beetle has emerged.  Conversely, the levels of juvenile hormone may be too high rendering the 

application of methoprene ineffective in disrupting the reproductive system development 

(Wijayaratne et al., 2012). 
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Table 3.1 Percentage of normal adult emergence of T. castaneum over short time periods.   

Surface Temp. 

(°C) 

Treatment  Mean ± SE
a
 

Exposure time (h)
 

8
b 

24
c 

48
d 

72
e 

96
 

Outside 27 Control  68.0±3.7 66.0±6.8 58.0±9.7 78.0±7.3 78.0±7.3a 

Methoprene  80.0±7.1 76.0±8.1 78.0±7.3 70.0±13.5 34.0±5.1ab 

32 Control  68.0±8.6 66.0±8.1 64.0±7.5 82.0±7.3 78.0±10.2a 

Methoprene  60.0±4.5 82.0±8.6 74.0±18.9 68.0±17.1 38.0±15.0ab 

Inside 27 Control  72.0±8.6 88.0±5.8 70.0±4.5 78.0±3.7 82.0±6.6a 

Methoprene  80.0±3.2 68.0±3.7 54.0±12.1 92.0±4.8 42.0±9.2ab 

32 Control 76.0±10.3 76.0±6.8 82.0±5.8 78.0±9.7 76.0±11.2a 

Methoprene  72.0±5.8 62.0±8.6 74.0±9.3 38.0±16.9 24.0±15.0b 

 
a
Mean for each exposure time followed by different letters are significantly different (P < 0.05; by Ryan-Einot-Gabriel-Welsch 

(REGWQ) multiple range test).  

b
There were no significant differences among the treatment combinations (F = 0.94; df = 7, 32; P = 0.4894; by one-way ANOVA). 

c
There were no significant differences among the treatment combinations (F = 1.65; df = 7, 32; P = 0.1566; by one-way ANOVA). 

d
There were no significant differences among the treatment combinations (F = 0.82; df = 7, 32; P = 0.5806; by one-way ANOVA). 

e
There were no significant differences among the treatment combinations (F = 2.25; df = 7, 30; P = 0.0578; by one-way ANOVA). 
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Table 3.2 Percentage of normal adult emergence of T. variabile over short time periods. 

Surface Temp. 

(°C) 

Treatment  Mean ± SE
a 

Exposure time (h) 

8
b 

24
c
  48 72 96

d 

Outside 27 Control  84.0±5.1 88.0±5.8 84.0±9.3a 90.0±5.5a 86.0±5.1 

Methoprene  78.0±2.0 86.0±2.4 92.0±3.7a 77.5±10.3ab 84.0±9.3 

32 Control  60.0±10.8 60.0±0.0 70.0±12.2ab 58.0±14.6ab 70.0±6.3 

Methoprene  70.0±3.2 70.0±8.4 50.0±8.4b 50.0±4.5b 68.0±8.6 

Inside 27 Control  82.0±5.8 84.0±5.1 86.0±4.0ab 88.0±3.7ab 86.0±7.5 

Methoprene  88.0±4.9 86.0±5.1 84.0±5.1ab 87.5±4.8ab 80.0±5.5 

32 Control 60.0±14.7 66.0±12.1 75.0±2.9ab 66.0±5.1ab 78.0±3.7 

Methoprene  62.5±4.8 76.0±5.1 52.0±8.0b 64.0±6.8ab 62.0±9.2 

a
Mean for each exposure time followed by different letters are significantly different (P < 0.05; by REGWQ multiple range test).  

b
There were significant differences among the treatment combinations (F = 2.45; df = 7, 29; P = 0.0419; by one-way ANOVA), but 

the REGWQ multiple range test failed to show which treatment combinations were different. 

c
There were significant differences among the treatments (F = 2.67; df = 7, 32; P = 0.0270; by one-way ANOVA), but the REGWQ 

multiple range test failed to show which treatment combinations were different. 

d
There were no significant differences among the treatment combinations (F = 1.90; df = 7, 32; P = 0.1026; by one-way ANOVA). 
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Table 3.3 Percent hatch of T. variabile and T. castaneum eggs exposed to treatment 

combinations. 

Surface Temperature (°C) Treatment  Mean ± SE
a 

T. castaneum
b 

T. variabile 

Outside 27 Control  89.1±1.2 90.9±2.6a 

Methoprene  96.7±1.1 87.8±2.0ab 

32 Control  95.5±2.4 67.9±3.9dc 

Methoprene  95.0±1.4 82.5±3.0abc 

Inside 27 Control  86.2±3.2 87.0±3.0ab 

Methoprene  89.4±3.0 81.7±2.0abc 

32 Control 94.4±1.8 59.3±4.5d 

Methoprene  96.5±1.3 74.0±5.8bcd 

a
Means for each species and variable studied followed by different letters are significantly 

different (P < 0.05; by REGWQ multiple range test). 

b
There were significant differences among the treatment combinations (F = 2.92; df = 7, 40; P 

= 0.0145; by one-way ANOVA), but the REGWQ multiple range test failed to show which 

treatment combinations were different. 
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Table 3.4  Effects of exposure of T. castaneum and T. variabile adults to methoprene-treated package surfaces on number of 

eggs laid by females and percent egg hatch. 

Surface Temp. (°C)  Treatment  Mean±SE
a 

    

T. castaneum T. variabile 

Number of 

females
b 

Number of 

eggs/female
 

% Egg 

hatch
 

Number of 

females
b 

Number of 

eggs/female
d 

% Egg 

hatch
e 

Outside 27 Control  5.2±0.3 10.5±1.5ab 69.0±8.3ab 4.7±0.6 51.9±6.3 88.9±3.7 

Methoprene  5.2±0.8 8.9±1.4ab 63.2±7.7ab 4.7±0.5 47.0±7.0 86.2±3.8 

32 Control  4.7±0.3 13.5±2.3ab 56.5±2.9ab 5.0±0.6 67.0±11.5 95.0±1.1 

Methoprene  4.2±0.7 17.1±3.1a 36.3±3.7b 3.8±0.7 42.8±7.0 87.0±7.1 

Inside 27 Control  6.2±0.6 7.6±1.8ab 63.3±6.5ab 4.8±0.4 67.9±12.2 80.3±7.5 

Methoprene  5.0±0.8 7.4±2.0b 81.4±5.4a 4.5±0.3 44.7±11.7 90.4±3.9 

32 Control 5.5±0.3 11.4±2.4ab 61.0±13.7ab 4.3±0.5 66.6±9.7 95.8±2.1 

Methoprene  4.2±0.7 11.2±1.8ab 56.7±4.0ab 4.5±0.5 46.1±8.7 92.0±0.8 

a
Mean for each species and variable followed by different letters are significantly different (P < 0.05; by RGEWQ multiple range 

test). 

b
There were no significant differences among the treatment combinations (F, range among treatment combinations and species = 

0.66-1.16; df = 7, 40; P, range = 0.3493-0.7046). 

c
There were no significant differences among the treatment combinations (F = 1.17; df = 7, 40; P = 0.3397). 

d
There were no significant differences among the treatment combinations (F = 1.37; df = 7, 40; P = 0.2440). 
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Table 3.5 Effect of continuous exposure to methoprene treated surfaces on T. castaneum 

and T. variabile egg-to-adult development..  

Surface Temp. 

(°C)   

Treatment  Mean±SE
a 

T. castaneum adults
 

T. variabile adult
 

Normal Deformed Normal Deformed  

Outside 27 Control  16.5±2.2a 0.8±0.3b 164.7±14.6a 12.8±4.9bc 

Methoprene  0.0±0.0b 11.0±2.0a 106.5±28.6a 31.0±4.4b 

32 Control  12.3±4.0a 1.2±0.4b 149.2±15.6a 4.0±1.1cd 

Methoprene  0.0±0.0b 14.8±1.5a  5.3±2.9b 122.3±22.8a 

Inside 27 Control  20.3±4.2a 0.5±0.3b 131.2±10.0a 1.8±0.7c 

Methoprene  0.0±0.0b 15.3±2.9a 77.5±28.5a 7.7±3.0cd 

32 Control 12.7±2.2a  0.2±0.2b  175.0±21.0a 9.0±2.7d 

Methoprene  0.0±0.0b 12.5±3.2a 115.7±14.7a 14.0±3.7bc 

a
Means among treatment combinations for each species and variable studied followed 

by different letters are significantly different (P < 0.05; by RGEWQ multiple range test). 

 

 

  



84 

 

Chapter 4 - Effect of methoprene impregnated polymer packaging 

on fecundity, egg hatch, and egg-to-adult emergence of Tribolium 

castaneum and Trogoderma variabile  

4.1. Abstract 

 Methoprene is an insect growth regulator used in aerosol sprays, for residual surface 

treatments, and as a grain protectant.  Methoprene was impregnated into a polymer-based 

packing film to prevent insect infestations of packaged products.  The study objectives were to 

determine fecundity, egg hatch, and egg-to-adult emergence of, Tribolium castaneum (Herbst), 

red flour beetle, and  Trogoderma variabile Ballion, warehouse beetle, when exposed to 

methoprene-impregnated packaging. The number of eggs laid by beetles, egg hatch, and egg-to-

adult development on the inside and outside surfaces of methoprene-impregnated polyethylene-

to-polyethylene (PE-PE) and polyethylene terephthalate-to-polyethylene (PET-PE) packaging 

were studied at 27 and 32C and 60% r.h.  Inside and outside surfaces of the packaging were cut 

into discs and fitted into 62 cm
2
 Petri plates, and 500 mg of flour (T. castaneum) or vanilla shake 

mix (T. variabile) were added to these arenas.  The number T. variabile eggs laid per female was 

not significantly different between the packaging types.  Methoprene-treated PET-PE packaging 

reduced the number of T. castaneum eggs laid per female.  The polymer packaging reduced the 

percent egg hatch of both species.  None of the T.castaneum adults emerged on the inside and 

outside surfaces of  the PE-PE treated packages at both temperatures. Only the inside surface of 

PET-PE packaging resulted in 100% suppression of T. castaneum adult emergence.  Egg-to-adult 

emergence of T. variabile was arrested at the pupal to adult stage transformation at both 

temperatures on the outside surface of PE-PE packaging, whereas on the inside surface T. 
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variabile were able to complete development to adulthood.  The PET-PE packaging greatly 

reduced normal adult emergence by 87-97% when exposed to inside surfaces at both 

temperatures.  Our results show that exposure of eggs to methoprene imprenated packaging 

reduced egg hatch of both species and adult emergence of T. castaneum, and to a lesser extent, 

emergence of T. variable.    
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4.2. Introduction 

 Stored-product insects are a reoccurring and persistent problem in retail and pet food 

stores where they cause damage to packaged food and animal products (Arbogast et al., 2000).  

Stored-product insects may be present in the store or are introduced during product deliveries 

from infested trailers or warehouses (Arbogast et al., 2000).  Infestations of human food or pet 

food products results in product losses, loss of consumer confidence, and possible allergic 

reactions by susceptible individuals.  Research studies have shown heaviest infestations are 

located in or near the pet food departments (Arbogast et al., 2000; Roesli et al., 2003).  Arbogast 

et al. (2000) found that the most intense infestation can be associated with bagged birdseed in 

seven out of eight stores surveyed.  Specifically in pet food stores, stored-product insects can be 

found in bagged birdseed and bulk stored pet food products (Roesli et al., 2003). Roseli et al. 

(2003) found at least 30 species from 20 different families among eight pet food stores in Kansas 

sampled over a seven month period.  Among the 30 species, there were 27 different stored-

product insect species captured in food-baited and pheromone traps (Roesli et al., 2003).  

Tribolium castaneum (Herbst), red flour beetle, and Trogoderma variabile (Ballion), warehouse 

beetle, were found in seven out of eight pet food stores, which make both species a concern 

when dealing with infestations in retail environments (Roesli et al., 2003).  The types and 

numbers of insects found in retail stores may be related to the level of sanitation and pest 

management practices, type of food products stored, and inspection and management of 

incoming products (Roesli et al., 2003).  

 Stored-product insects can be found in flour and feed mills, livestock ranches, food 

warehouses, containers, and commercial processing facilities (Loschiavo and Okumura, 1979; 

Campbell et al., 2002; Semeao et al., 2013; Arthur et al., 2014).  Common sources of stored-
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product insects can be caused by dispersal from the field, infested machinery, other structures 

which contain stored grain products, and food material which has accumulated outside the 

building (Semeao et al., 2013).  Loschiavo and Okumura (1979) studied several location types 

throughout four Hawaiian Islands and found T. castaneum in every type of premise studied and 

they considered it to be the most common and widespread stored-product insect (Loschiavo and 

Okumura, 1979).  Semeao et al. (2013) studied a commercial processing facility, feed mill, and a 

flour mill in the central United States, and likewise found T. castaneum in every facility studies.  

Loschiavo and Okumura (1979) found T. variabile to be a serious pest in containers. Similar to 

T. castaneum, Semeao et al. (2013) found T. variabile in every facility studied.  Arthur et al. 

(2014) found T. castaneum and T. variabile inside a food facility in the Midwest, but differences 

in species abundance were often widely distributed throughout the facility and time of year. 

Arthur et al. (2014) observed very little trap catches within the food facility from November-

May.  During this time period in the Midwest, often temperatures drop below optimum 

conditions for insect growth and reproduction.  This effect could influence the trap catches of 

these insects, however insects inside a structure could maintain a population if the building is 

heated.  Campbell et al. (2002) observed the spatial distribution of insects throughout a facility 

varies.  Campbell et al. (2002) found two specific hotspots within a facility, but observed that 

insects are highly mobile can the “hot spots” can vary location from time to time. Historically 

retailers, mill managers, and consumers depended on chemical insecticides and facility 

fumigations to control stored-product insects, but with an increasing awareness by consumers on 

the environmental and human health impacts, retailers are looking for a more targeted approach 

to reduce the total amount of area treated and the reduce the amount of pesticide usage (Arbogast 

et al., 2000).  
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 Methoprene is an insect growth regulator and a juvenile hormone analog which acts on 

stored-product insects by mimicking the hormone that regulates the developmental process of 

molting (Mondal and Parween, 2000).  The presence of the juvenile hormone in the insect allows 

for molting to occur but inhibits adult differentiation (Henrick, 2007).  As the juvenile hormone 

decreases in the last instar, the insect undergoes the larval-pupal molt which leads to the 

metamorphosis to the adult stage (Henrick, 2007).  The goal of juvenile hormone analogs is to 

maintaining the levels of this hormone over time in order to disrupt the insect from undergoing 

the larval-pupal and pupal-adult molting.  In addition, juvenile hormone is also needed in the 

adult stages of some insects for reproductive functions (Henrick, 2007).    

 Methoprene has low mammalian toxicity and is exempt from the Food and Drug 

Administration tolerance levels when used to control insect larvae.  Methoprene can be sprayed 

on stored grains, treat surfaces as an aerosol application, as a liquid spray applied directly to the 

surface, and impregnated into packaging materials. As of 2003, the United States Environmental 

Protection Agency granted methoprene exemption from a food tolerance (Henrick, 2007).  Using 

methoprene at the appropriate application rates, there is little to no effect on non-target species 

such as birds, fish, or mammals (Henrick, 2007).  Additionally, there are no harmful effects to 

humans when products containing methoprene are used (EPA, 2015).  Methoprene has high 

activity across many different insect species belonging to orders Lepidoptera, Coleoptera, 

Homoptera, Siphonaptera, Hymenoptera, Blattodea, and Diptera (Henrick, 2007).  Methoprene 

has been shown to be effective over several years against lepidopterous and coleopterous pests 

(Henrick, 2007).  Manzelli (1982) demonstrated that 10 ppm of methoprene applied to tobacco 

and stored for four years still gave protection against the Lasioderma serricone (L.), cigarette 

beetle, and Ephestia elutella (Hübner), tobacco or warehouse moth.  Loschiavo (1976) found that 
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increasing concentrations of methoprene on T. castaneum diet from 1 ppm to 20 ppm reduced 

larval survival by 89%.  At 20 ppm of methoprene, larvae of T. castaneum failed to pupate 

(Loschiavo, 1976). However, larvae which failed to develop into pupae weighed more and were 

longer in length than larvae reared on control diets.  In the case of larvae of T. castaneum that 

pupated, none emerged as normal adults on diets with 10 or 20 ppm of methoprene (Loschiavo, 

1976).   

Larvae of T. variabile were thought to be extremely susceptible to juvenile hormone 

analogues, because the number of instars is indeterminate due to their ability to undergo diapause 

(Klein and Burkholder, 1984).  Klein and Burkholder (1984) found that a direct application of 10 

ppm methoprene to rearing medium caused a delay in the development of Trogoderma glabrum 

(Herbst), glaborous cabinet beetle.  However, virgin males exposed to surfaces treated with 100 

µg/cm
2 

for one to four days, and mated with an untreated female, showed no effect on the 

number of progeny produced (Klein and Burkholder, 1984).  Exposing virgin females to 100 

µg/cm
2 

treated surfaces for four days and then mating them with untreated males significantly 

reduced the average number of progeny by 97% compared to insects exposed to the control 

surface (Klein and Burkholder, 1984).    

The use of methoprene-impregnated packages for birdseed and other food products is a 

potential control strategy for stored-product insects.  One company that manufactures 

methoprene-impregnated packages is ProvisionGard LLC (Wayzata, Minnesota, USA).  The 

manufacturer of ProvisionGard provided packages that were impregnated with methoprene and 

those that were not impregnated with methoprene for evaluations with insects.  The objectives of 

the present study were to determine the effect of two methoprene impregnated polymer 



90 

 

packaging materials on number of eggs laid, egg hatch, and egg-to-adult emergence of T. 

castaneum and T. variabile held at 27 or 32°C and 60% r.h..   

4.3. Materials and methods 

4.3.1. Insects 

T. castaneum and T. variabile used in this study were obtained from laboratory cultures at 

the United States Department of Agriculture's Center for Grain and Animal Health Research 

(USDA-CGAHR) in Manhattan, Kansas.  T. castaneum cultures have been in rearing since 1958.  

Cultures were reared in total darkness at 27°C and 60% r.h. on 95% unbleached whole-wheat 

flour (Hudson Cream Flour, Stafford Country Flour Mills Co., Hudson, Kansas, USA) with 5% 

(w/w/) brewer's yeast diet (MP Biomedicals LLC, Solon, Ohio, USA ) in 0.95-L mason jars 

fitted with wire-mesh and filter paper lids. Cultures of T. variabile were reared on 50% Purina 

One lamb and rice formula (Nestlé Purina PetCare Company, St. Louis, Missouri, USA) and 

50% Pharmanex vanilla shake mix (Arizona Nutritional Supplements, Chandler, Arizona, USA). 

The top of the diet in 0.95-L jars was sprinkled with 100% whole grain rolled oats (Kroger Co., 

Cincinnati, Ohio, USA), and culture jars were maintained at 30°C, 60% r.h., and 16:8 L:D 

photoperiod.   

To obtain eggs, approximately 100 g of flour, sifted through a 150 µm opening sieve 

(Newark Wire Cloth Company, Clifton, New Jersey, USA) was placed into a 118 ml jelly jars 

(Ball, Muncie, Indiana, USA), and 60 unsexed T. castaneum or T. variabile adults of mixed ages 

were introduced.  The containers were incubated at 30°C, 60% r.h., and 16:8 L:D photoperiod.  

After three days, adults were removed from jars using an 841 µm opening sieve on top and a 250 

µm opening sieve on the bottom with a bottom pan. The adults were retained on the top sieve 
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and eggs on the bottom sieve with the flour ending up in the bottom pan. Eggs were gently 

collected from the bottom sieve.   

In tests with adults, unsexed adults of mixed ages were used, and these were directly 

collected from the culture jars. After exposure to packages, the adults were frozen and separated 

as male and female.  Male T. variabile have a 6-7 segmented antennal club, and females only 

have 4 segmented one (Bousquet, 1990).  Male T. castaneum have a setiferous patch on the 

posterior side of the fore femur, while the females lack the patch (Bousquet, 1990).  

4.3.2. Effect of methoprene on egg hatch 

 Two types of polymer packaging were used in these experiments: polyethylene-to-

polyethylene (PE-PE) and polyethylene terephthalate-to-polyethylene (PET-PE).  The two layers 

of polymers were extruded by using a solventless two part adhesive securing the two polymers 

structures together to form the final packaging material. Out of the two parts, one part has just 

the adhesive whereas the other has adhesive with methoprene. For each packaging type, 

methoprene purity was at was used at 1% active, such that that when the two adhesive parts were 

combined to form the packaging and extruded, the methoprene was diluted to 0.5% active 

throughout.  The adhesion layer was approximately 1 to 2 μm thick.  The untreated control 

packaging used the same solventless two part adhesive, but without the addition of methoprene.   

 Forty eight individual discs of 9 cm diameter with a surface area of 62 cm
2
 were cut by 

hand from the PE-PE packaging containing methoprene or PET-PE materials. A similar number 

of discs were cut from each of the two materials that did not contain methoprene (control).  Out 

of the 48 discs, 24 discs with the inside surface of the each packaging material treated with 

methoprene or untreated with methoprene were placed individually into 100 mm by 15 mm (T. 

castaneum) or 100 mm by 20 mm (T. variabile) Petri dishes (arenas). Similarly, 24 discs with the 
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outside surface of each packaging material were placed into Petri dishes. The disc edges were 

secured with adhesive caulking (DAP Products Inc, Baltimore, Maryland, USA). The inner sides 

of Petri dishes were coated with polytetrafluoroethylene (Fluon®) to create the final sample 

arena (Sigma-Aldrich Co., St. Louis, Missouri, USA).  The treatment combinations included, 

two package types, packages untreated and treated with methoprene, two package surfaces 

(inside vs. outside), two temperatures (27 and 32°C), and two insect species. Each of the 16 

treatment combinations was replicated six times.   

To determine the effect of packaging types at the treatment combinations on egg hatch, 

25, 3-4 d-old eggs of T. castaneum or T. variabile were added to the sample arenas and held in 

growth chambers at 27 and 32°C and 60% r.h.  The number of larvae that hatched for each 

species and treatment combination was recorded and percent hatch was determined from number 

of eggs that hatched out of the total.   

4.3.3. Effect of methoprene on adult fecundity and egg hatch 

To determine the effect of T. castaneum and T. variabile adult exposure to treatment 

combinations on adult fecundity and subsequent egg hatch, 96 discs of each package type were 

prepared as described previously.  Approximately 500 mg of flour presifted through a 150 μm 

opening sieve (Newark Wire Cloth Company, Clifton, N.J., USA) was added to each treatment 

arena.  Ten unsexed adults of mixed ages of T. castaneum and T. variabile were added to 

separate arenas and held in growth chambers at 27 and 32°C and 60% r.h. for 7 and 3 d, 

respectively.  Adults were removed, frozen, and separated into male and female using 

characteristics described by Bousquet (1990).  The eggs and flour from each arena were sifted 

using a 250 μm opening sieve to collect the eggs. The number of eggs laid per female was 

counted. These eggs were then transferred to new untreated Petri plates and percent egg hatch for 
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each species was determined after incubation in a growth chamber after 7 d at the two 

temperatures. 

4.3.4. Effect of methoprene on egg-to-adult emergence 

 Individual treatment arenas were constructed as described above using 96 discs for each 

package type.  Each surface, temperature, and species combination was replicated six times. 

Approximately 500 mg of flour (T. castaneum) or vanilla shake mix (T. variabile) were added to 

the discs.  Ten mixed sex and aged adults were placed onto individual arenas and placed into 

growth chambers at 27 and 32°C and 60% r.h.  Adult T. castaneum were held in the chambers 

for 7 d and adult T. variabile were held for 3 d. The adults of both species were removed from 

arenas and placed in a freezer and sexed following characteristics described by Bosquet (1990). 

After adult removal, the arenas with eggs were placed in environmental growth chambers 

at the two temperatures.  The arenas were examined every 2 to 4 d and food was added as 

needed. The eggs were reared through adulthood, and the number of normal or deformed adults 

that emerged was counted. Deformed adults primarily included supernumerary larvae, pupal-

adult intermediates, and adults with separated or twisted wings. 

4.3.5. Data analysis 

 All experiments were run as a completely random design.  Data were analyzed by 

package type and species. The percent egg hatch data were transformed to angular values (Zar, 

1984).  The number of males and females by replicate and treatment were compared using a 

paired t-test (SAS Institute, 2008) to determine if the sex ratio was 1:1 among the replications. 

The number of females found per arena among treatment combinations in different experiments 

were also compared using a one-way analysis of variance (ANOVA) after transformation of data 

to log10(x) scale (SAS Institute, 2008).  Data on the number of eggs laid by female were 
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transformed to log10(x) scale for analysis, and egg hatch data were transformed to angular values.  

Data on normal and deformed was adults were transformed to log10(x+1) scale and subjected to a 

one-way ANOVA. If the ANOVA was significant, differences among treatment combinations 

for the variables studied were separated using the Ryan-Einot-Gabriel-Welsch multiple range 

tests at  = 0.05 (SAS Institute, 2008).   

4.4. Results 

4.4.1. Effect of methoprene on egg hatch 

The mean ± SE egg hatch of T. castaneum eggs on PE-PE methoprene-treated arenas 

ranged from 49.6 ± 6.8 to 66.2 ± 3.7% and that on untreated arenas ranged from 80.7 ± 11.1 to 

87.4 ± 3.3% (Table 4.1).  Egg hatch of added T. castaneum eggs showed significant differences 

among treatment combinations (F = 5.10; df = 7, 40; P = 0.0003).  Generally, egg hatch was 

consistently lower on the methoprene-treated arenas compared with untreated arenas. On PE-PE 

arenas, the mean ± SE egg hatch of T. variabile eggs on methoprene-treated arenas ranged from 

53.9 ± 5.4 to 77.4 ± 4.4%  and on untreated arenas egg hatch ranged from 61.5 ± 7.1 to 83.9 ± 

3.8%, and differences were observed among the treatment combinations (F = 4.74; df = 7, 40; P 

= 0.0006).  The egg hatch of T. variabile eggs exposed to the inside and outside surfaces in 

methoprene treatment at 32°C was significantly different from the egg hatch of eggs exposed to 

the inside surface in the control treatment at 27°C.  The egg hatch of T. variabile on both 

methoprene-treated surfaces at 32°C was 34-36% lower compared with the inside untreated 

surface at 27°C.   

 On PET-PE packaging, mean ± SE egg hatch of T. castaneum eggs ranged from 56.8 ± 

3.2 to 98.0 ± 0.9 (Table 4.1), and differences were observed among treatment combinations  (F = 

15.83; df = 7, 40; P < 0.0001).  The inside surface of PET-PE packaging material at 32°C had the 
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lowest percent egg hatch (57%), and the inside untreated surface at 27°C had the highest percent 

egg hatch (98.0%).  Egg hatch in methoprene treatments when eggs were exposed to the inside 

surfaces at 27 and 32°C was significantly lower than corresponding egg hatch in the control 

treatments.  

The mean ± SE egg hatch of T. variabile eggs ranged from 66.3 ± 3.1 to 92.3 ± 3.4%, and 

although differences in treatment combinations were detected (F = 4.05; df = 7, 40; P = 0.0019), 

consistently more eggs hatched in methoprene than control treatments.  Thus, the significant 

differences observed among the treatment combinations were due to increased egg hatch in 

methoprene treatments relative to the control treatments, and not due to any adverse effects of 

methoprene on T. variabile egg hatch.    

4.4.2. Effect of methoprene on adult fecundity and egg hatch 

Paired t-tests showed no difference in the number of males and females added to the 

different treatments using PE-PE packaging material for T. castaneum (range in t values among 

treatments was -1.57 to 1.73; df = 5; range in P values was 0.1438 to 0.8969) or T. variabile (t 

value range, -2.30 to 1.94; df = 5; P value range, 0.0699 to 0.6109).  The mean ± SE number of 

female T. castaneum on PE-PE packaging in our tests ranged from 4.2 ± 0.5 to 6.0 ± 0.6 and for 

T. variabile females ranged from 3.7 ± 0.6 to 6.0 ± 0.5 (Table 4.2).  The mean number of females 

of T. castaneum on discs was not significant among treatment combinations (F = 0.93; df = 7, 

40; P = 0.4959).  However, numbers of female T. variabile varied significantly among treatment 

combinations (F = 3.21; df = 7, 40, P = 0.0086).  The outside surface of the untreated disc at 

32°C had the fewest mean ± SE number of females per arena (3.7 ± 0.6) and was significantly 

different than the inside of methoprene-treated surface (6.0 ± 0.5).  All other comparisons were 

not significantly different from one another.  
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The mean ± SE number of eggs laid ranged from 7.1 ± 0.3 to 12.0 ± 2.1 for T. castaneum 

and 29.1 ± 6.9 to 54.1 ± 20.5 for T. variabile (Table 4.2).  On PE-PE packaging, one-way 

ANOVA showed no significant differences on the number of eggs laid per female for T. 

castaneum (F = 1.13; df = 7, 40; P = 0.3663) on untreated and methoprene-treated packaging.  

The number of eggs laid per female T. variabile was not significantly different between 

untreated and methoprene-treated packaging (F = 0.67; df = 7, 39; P = 0.6926).  The percent egg 

hatch of T. variabile was not significantly different among treatment combinations (F = 0.52; df 

= 7, 39; P = 0.8132).  However, the percent egg hatch of T. castaneum eggs was significantly 

different among treatment combinations (F = 2.67; df = 7, 40; P = 0.0231).  The percent egg 

hatch for the outside surfaces of methoprene packaging at both temperatures differed 

significantly from the inside methoprene-treated surfaces at 27°C.  All other comparisons were 

not significantly different from one another.       

Paired t-tests of PET-PE data, showed no significant differences in the number of males 

and females of T. castaneum in each of the treatments (range in t values among treatments -1.94 

to 1.69; df = 5; range in P values was 0.1099 to 0.9049).  Only in one case, T. variabile at 27°C 

on PET-PE inside surface, there were more males per arena than females (t = -3.80; df = 5; P = 

0.0127).  In each of the other treatments there were no differences in number of females and 

males (range in t values among treatments was -2.08 to 1.57; df = 5; range in P values was 

0.0925 to 0.4341). The mean ± SE number of T. castaneum females on PET-PE packaging 

ranged from 3.8 ± 0.6 to 6.5 ± 0.9; female T. variabile ranged from 3.8 ± 0.3 to 5.7 ± 0.5 (Table 

4.3).  The number of female T. castaneum was not significantly different among treatment 

combinations (F = 1.39; df = 7, 40; P = 0.2374).  There was a significant difference in the 

number of T. variabile females among treatments (F = 2.95; df = 7, 40; P = 0.0137).  In order to 
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find which treatment combinations were different linear contrasts were used to compare 

treatment combinations pairwise (SAS Institute, 2008).  The treatment combinations that showed 

significant differences in number of females per disc are shown in Table 4.4.  At 27°C, the 

number of females on untreated outside surface was not significantly different among all 

pairwise comparisons (F, range among pairwise comparisons = 0.02 to 2.80; df = 1, 40; range in 

P values was 0.1022 to 0.8888).  The number of females on the outside methoprene treated 

surface at 27°C was not significantly different from those found among all pairwise comparisons 

(F, range among pairwise comparisons = 0.02 to 2.58; df = 1, 40; range in P values was 0.1158 

to 0.8888).  The number of females found on the inside and outside methoprene surfaces were 

not significantly different from those found at 32° (F = 4.03; df = 1, 40; P = 0.0514).  At 27C, 

the number of female on the inside surface of packaging that was untreated was not significantly 

different from females on both the methoprene-treated surface at 27°C and the outside surface at 

32°C (F, range between pairwise comparisons 
 
= 0.11 to 1.02; df = 1, 40; range in P values was  

0.3178 to 0.7434).  The number of females on the outside untreated surface at 32°C was not 

significantly different from those on the untreated inside surface at 32°C and the inside treated 

surface at 32°C (F, range between pairwise comparisons = 0.00 to 0.04; df = 1, 40; range in P 

values was 0.8380 to 0.9702).  The number of females on the inside untreated surface at 32°C 

was not significantly different from those found on methoprene-treated surface at 32°C (F = 

0.03, df = 1, 40; P = 0.8673).  Additionally, numbers of females on the methoprene-treated 

inside surface at 27 and 32C were not significantly different from one another (F = 0.86; df = 1, 

40; P = 0.3603).    

The mean ± SE number of eggs laid per female for T. castaneum ranged from 3.1 ± 0.8  

to 6.8 ± 1.0, and for T. variabile range from 27.1 ± 4.5 to 44.8 ± 6.3 (Table 4.3).  Although one-
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way ANOVA showed differences among treatment combinations in the number of eggs laid per 

T. castaneum female on PET-PE (F = 2.55; df = 7, 40; P = 0.0286), only the inside surface of 

methoprene treatment at 32°C was significantly different (P < 0.05) from the outside surface 

control treatment at 32°C.  There were no differences in the number of eggs laid by T. castaneum 

female among the other treatment combinations.  On methoprene-treated surface at 32°C females 

laid the fewest number of eggs compared with the other treatment combinations.  There was no 

significant differences in the number of eggs laid by T. variabile females among the treatment 

combinations (F = 1.30; df = 7, 40; P = 0.2734).  The percent egg hatch of eggs among treatment 

combinations were not significant for both T. castaneum (F = 0.76; df = 7, 40; P = 0.0667) and 

T. variabile (F = 2.09; df = 7, 40; P = 0.6256).    

4.4.3. Effect of methoprene on development from egg to adult  

 Paired t-tests on the initial adults added to lay eggs, showed no differences in number of 

females and males on untreated and methoprene-treated PE-PE packaging for T. castaneum 

(range in t values among treatments was = -1.27 to 0.81; df = 5; range in P values was 0.2586 to 

1.000).  The number of initial adults added to facilitate  egg laying for T. variabile was not 

significantly different between untreated and methoprene-treated packaging (range in t values 

among treatments was = -1.00 to 1.17; df = 5; P, range = 0.2956 to 0.9083).  The mean ± SE 

number of T. castaneum females on PE-PE packaging ranged from 4.5 ± 0.6 to 5.3 ± 0.3, and 

that of female T. variabile ranged from 4.7 ± 0.4 to 5.5 ± 0.5 (Table 4.5).  The number of 

females for both species were not significantly different among all treatment combinations (F, 

range between species = 0.35-0.36; df = 7, 40; P, range = 0.9204-0.9259).   

The continual exposure to the PE-PE methoprene packaging from egg to adult on had a 

significant effect on normal adult T. castaneum emergence (F = 332.4; df = 7, 40; P < 0.0001).  
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No normal adults emerged in methoprene treatments, irrespective of the temperature and 

surfaces tested (Table 4.5).  These results indicate a 100% reduction in adult emergence when 

eggs laid by adults are exposed to the PE-PE methoprene packaging.  Consequentially, the 

number of deformities was significantly different between methoprene and control treatments (F 

=25.76; df = 7, 40; P <0.0001), and the number of deformed adults was essentially similar in 

methoprene treatments at the two temperatures and on the inside and outside surfaces.  The 

deformities seen on the methoprene surfaces included supernumerary larvae and pupae-adult 

intermediates.   

The number of normal adults of T. variabile that emerged was significantly different 

among the treatment combinations (F = 75.26; df = 7, 40; P < 0.0001).  The number of normal 

adults on the outside surfaces of the PE-PE methoprene packages at both temperatures was 

significantly lower than all other treatments (Table 4.5).  Compared to the control these treatment 

combinations had a 99.9% reduction in adult emergence.  There was a 47.3% reduction in adult 

emergence between the inside surface of the methoprene-treated packaging at 32°C compared 

with the untreated inside surface of the packaging.  This treatment also was significantly 

different when compared outside surface of methoprene treatments at 27 and 32°C.  Only the 

inside surface in methoprene treatments at 27 and 32°C had significantly greater deformed adult 

emergence compared with other treatment combinations.  The deformities seen with T. variabile 

on methoprene packaging consisted of pupal-adult intermediates, and such individuals failed to 

emerge as viable adults.   

On PET-PE packaging tests, a paired t-test indicated a significant difference between the 

number of female and male T. castaneum initially placed on the packaging materials to facilitate 

egg laying for the inside methoprene-treated surface treatment at 27°C (t = 5.65; df = 5; P = 
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0.0024).  Difference in the number of T. castaneum females and males for each of the other 

treatments was not significant (range in t values among treatments was = -2.50to 1.20; df = 5; 

range in P values was 0.0545 to 1.0000).  A paired t-test between T. variabile females and males 

initially placed on the untreated and methoprene-treated packaging was not significantly 

different (range in t values among treatments was = -2.42 to 1.17; df = 5; range in P values was 

0.0599 to 1.0000).  Female counts on PET-PE packaging for T. castaneum ranged from 3.3 ± 0.7 

to 6.8 ± 0.5, and female T. variabile ranged from 4.2 ± 0.3 to 5.8 ± 0.6 (Table 4.6).  One-way 

ANOVA showed no significant differences in number of females among all treatment 

combinations for T. castaneum (F = 1.90; df = 7, 40; P = 0.0951) and T. variabile (F = 0.83; df = 

7, 40; P = 0.5651).  

 The emergence of normal adults of T. castaneum on the PET-PE packaging varied 

significantly among treatment combinations (F = 128.00; df = 7, 40; P < 0.0001).  The inside 

surface of the methoprene treatment had no normal adult emergence at both temperatures.  This 

was the only treatment which had a 100% reduction in emergence of normal adults, and pupal-

adult intermediates were found in these treatments.  On the outside surface of the PET-PE 

methoprene packaging at both temperatures, the number of normal adults that emerged was 22 

and 50% less than the corresponding control treatments.  The number of deformed adults of T. 

castaneum that emerged was significantly different among treatments (F = 15.9; df = 7, 40; P 

<0.001).  The inside surface of the methoprene packaging had significantly more deformities 

compared to all other treatments.   

The inside surface of the PET-PE methoprene packaging had a significant effect on the 

number of normal adults of T. variabile that emerged (F = 29.21; df = 7, 40; P < 0.0001).  The 

deformities seen on the methoprene packages predominantly consisted of pupae-adult 
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intermediates which failed to emerge as an adult.  In methoprene treatments where the inside 

surface was exposed to eggs at 27 and 32°C, there was a 87.1 and 96.8% reduction in adult 

emergence, respectively, when compared with emergence in the corresponding control 

treatments.  These two treatments were significantly different from all other treatments.  The 

number of deformed adults varied among the treatment combinations (F = 5.81; df = 7, 40; P < 

0.0001).  The inside surface of the methoprene packaging at 32°C and the outside methoprene 

packaging at 27°C had the most adult deformities.     

4.5. Discussion 

Klein and Burkholder (1984) found a relationship between egg mortality and egg age 

when T. glabrum eggs were exposed to cardboard treated with methoprene at 100 µg/cm
2
.  They 

found that the viability of T. glabrum eggs was reduced by 83% when eggs were exposed during 

the first day after oviposition, but when 5-6 day old eggs were exposed there was no effect on 

hatch (Klein and Burkholder, 1984).  In our study, exposure of T. variabile eggs to methoprene 

did not adversely affect egg hatch.  Consistently, low egg hatch was observed when T. 

castaneum eggs were exposed to methoprene-treated packaging. The eggs of T. castaneum in this 

study were 3-4 days old, which is consistent with Klein and Burkholder (1984) study, and this 

may explain lack of adverse effects on hatch in methoprene treatments. In another test, T. 

variabile and T. castaneum adults were exposed to arenas for 3 and 7 d, respectively, before they 

were removed and eggs transferred to untreated arenas.  This test was done to determine if short 

term exposure to methoprene treatments would result in reduced egg laying by T. castaneum and 

T. variabile.  The short term exposure to methoprene did not adversely affect the number of eggs 

laid by females of both species and the egg hatch. Additionally, hatch of the eggs among 

treatment combinations in tests with PE-PE and PET-PE packaging was essentially similar.  
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Although the eggs laid were exposed for the first developmental days before transfer to untreated 

arenas, the duration of exposure may not have been long enough to have a significant effect on 

percent hatch.  In addition, insect diet was provided for adults and studies have shown that a 

decrease in effectiveness of treated medium may be due to the interaction of methoprene and the 

diet (Klein and Burkholder, 1984). The observed changes in percent hatch also could be due to 

physical handling of the eggs, during sifting, counting, and transferring to untreated dishes, and 

not due to methoprene or differences in number of females on surfaces and number of eggs laid 

by females.  The last two variables were generally not different among the treatment 

combinations.  Observations on egg hatch untreated and methoprene treated surfaces, as opposed 

to adults moving to untreated surfaces before laying eggs, may have shown adverse effects of 

methoprene on egg hatch. 

 Loschiavo (1976) found that T. castaneum larvae failed to complete development and 

emerge as normal adults on methoprene-treated diet, and also reported that T. castaneum failed 

to produce eggs when exposed to diet treated with 5, 10, and 20 ppm of methoprene.  

Additionally, Loschiavo (1976) found that the duration of larval development to pupae was 

delayed in diet treated with 10 ppm methoprene by 5 days when compared to larval development 

in the control treatment.  In male and female T. castaneum pairs that emerged in methoprene-

treated diet, no eggs were produced at concentrations of 5, 10, and 20 ppm indicating 

gonadotropic effects of methoprene (Loschiavo, 1976).  However, T. castaneum produced 15 

eggs/female/day in untreated food and 8 eggs/female/day in 1 ppm treated food which indicated 

higher levels of methoprene are needed to adversely affect egg production and/or egg laying 

(Loschiavo, 1976).  In our study we observed no significant differences in the number of eggs 

laid by T. castaneum or T. variabile females exposed to PE-PE methoprene surfaces when 
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compared with untreated surfaces.  Adults of T. variabile exposed to PET-PE packaging also did 

not show decreased egg laying.  The number of T. castaneum eggs laid on PET-PE packaging 

was only significantly different between the outside control surface and the inside treated surface 

at 32°C, but all other treatments were not significantly different from one another.  The results of 

our study differ from those presented by Loschiavo (1976). In our study, the main mode of action 

is the diffusion of the methoprene through the polymer layers, whereas Loschiavo (1976) directly 

incorporated methoprene into a food source.   

 In general, juvenile hormones analog structures consist of an unsaturated lipophilic 

backbone with polar substituents at both ends (Mondal and Parween, 2000).  The chain length of 

the lipophilic backbone can vary and the optimum chain length varies between species (Mondal 

and Parween, 2000).  The chemical structure of methoprene, and other juvenile hormone 

analogs, can vary.  Some insects can respond to a wide variety of structures, while others will 

only respond to a specific analog (Henrick, 2007).  T. castaneum is more susceptible to 

methoprene-impregnated packaging compared to T. variabile.  The structure of the methoprene 

used in the packaging may be a factor as to why T. castaneum is more susceptible.  The 

methoprene structure contains a chiral center at the C-7 carbon atom, which leads to r and s-

enantiomers.  The r-enantiomer is an inert diluent and the s-enantiomer is the active isomer, and 

is why s-methoprene is used in insecticide formulations (Henrick, 2007).  However, the natural 

form of methoprene does not contain a chiral center (Henrick, 2007).  This could explain the lack 

of effect on T. variabile.  T. variabile may be an insect that responds to a specific structure, 

compared to T. castaneum which will respond to a variety of structures.  Manzelli (1982) used a 

racemic mixture of methoprene, and applied it to long term storage of tobacco.  This racemic 
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mixture was effective on both L. serricone and E. elutella.  It is possible that T. variabile could 

have a stronger response to a racemic mixture of methoprene instead of the s-methoprene only. 

 On PE-PE packaging containing methoprene, irrespective of surfaces and temperatures 

tested, no T. castaneum adults emerged from the eggs laid by females. However, such an adverse 

effect with T. variabile was observed only on inside surfaces of methoprene treated PE-PE 

packaging only at 27°C.  There may be a difference in the thickness between the inner and 

outside layer in the PE-PE packaging, and this may be a plausible explanation for lack of adverse 

effects on T. variabile. On PET-PE packaging, 100% reduction in normal adult emergence was 

seen on inside surface in methoprene treatments at both temperatures with T. castaneum and 

<87.1 reduction was seen with T. variabile. The results with T. variabile normal adult emergence 

on the inside surfaces PET-PE packaging in methoprene treatments are at variance from PE-PE 

packaging inside surface. In the PET-PE packaging, the PET layer is on the outside.  The PET 

layer is four times as thick (50 μm) compared with the inside PE layer (12.5 μm). Methoprene 

offers some volatility which is why it can be incorporated into packaging materials (Henrick, 

2007).  Comparing the two polymers, PET polymer has a lower oxygen and carbon dioxide 

transmission rates compared with PE polymers.  Though the methoprene is not an emitter of 

these two gases, it can be implied that the transmission rate of the volatile methoprene will also 

be inhibited strongly by the PET layer versus the PE layer.  This may explain the significant 

difference observed in normal adult emergence between the inside and outside surfaces of the 

methoprene treated packaging.  Comparing the structures of PET and PE, the PET polymer 

contains a cyclic ring capped with esters while the PE polymer is a repeating unit of ethylene. 

The methoprene in this packaging was impregnated within the adhesive layer between the two 

polymer layers.  Therefore the release of the methoprene onto the packaging surfaces occurs due 
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to diffusion through the polymer layers.  We hypothesize that the two esters groups and cyclic 

ring in the PET polymer structure provides static hindrance to the methoprene from diffusing 

through.  In contrast, the simplicity of the repeating ethylene structure provides the smallest 

amount of static hindrance to the methoprene molecule, thus allowing the molecule to more 

easily diffuse through the PE layer.  This may be a reason why the inside surface more effective 

against T. variabile and T. castaneum. 

Methoprene does not have an acute effect on insects, but rather its use is designed for 

long term control of stored-product insects.  In essence, the stored-product population will 

decrease over generations.  Research has shown that long exposure to juvenile hormones, such as 

methoprene, on young larvae results in supernumerary larvae (Mondal and Parween, 2000).  This 

effect would explain the supernumerary larvae seen on the PE-PE and PET-PE packaging on T. 

castaneum.  This affect can be highly useful in the warehouse and retail setting, when products 

sit on the shelves for extended periods of time.  This experiment has shown the effectiveness of 

methoprene impregnated polymer packaging against T. castaneum and T. variable.  This type of 

packaging can be used as a preventive method to control for stored-product insects on a wide 

variety of products such as birdseed, cereal, granola bars, and flour.   
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Table 4.1 Egg hatch of T. castaneum and T. variabile eggs exposed to methoprene-treated or untreated PE-PE and PET-PET 

packaging. 

Surface Temp. 

(°C) 

Treatment % Mean ± SE egg hatch
a
   

PE-PE  PET-PE  

T. castaneum T. variabile T. castaneum T. variabile 

Outside 27 Control  87.4±3.3a 61.5±7.1ab 93.2±2.1ab 80.4±3.4ab 

Methoprene  62.5±5.5ab 64.4±4.7ab 83.4±4.0bc 92.0±4.7a 

32 Control  81.1±2.9a 72.6±4.6ab 83.6±2.1bc 82.3±2.9ab 

Methoprene  49.6±6.8b 53.9±6.0b 82.3±1.5bc 92.3±3.4a 

Inside 27 Control  84.5±3.8a 83.9±3.8a 98.0±0.9a 81.6±3.8ab 

Methoprene  65.2±3.6ab 77.4±4.4ab 71.1±3.4cd 88.4±5.9a 

32 Control 80.7±11.1a 75.1±4.0ab 82.3±3.3bc 66.3±3.1b 

Methoprene  66.2±3.7ab 55.3±5.4b 56.8±3.2d 81.7±5.0ab 

a
Means for each packaging type and species followed by different letters are significantly different (P < 0.05; by Ryan-Einot-

Gabriel-Welsch (REGWQ) multiple range test). 
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Table 4.2 Effect of PE-PE methoprene packaging on fecundity and egg hatch of T. castaneum and T. variabile. 

Surface Temp. 

(°C) 

Treatment  Mean ± SE
a
  

T. castaneum T. variabile 

Number of 

females
b
 

Number of 

eggs/female
c
 

% Egg hatch Number of 

females
 
 

Number of 

eggs/female
d
 

% Egg hatch
e
 

Outside 27 Control  5.2±0.7 8.5±0.4 62.7±4.3ab 5.3±0.2ab 39.8±3.4  86.3±2.1  

Methoprene  5.5±0.8 12.0±2.1 53.6±3.8b 5.5±0.6ab 39.5±7.7  82.7±1.7  

32 Control  4.8±0.5 9.5±1.2 63.7±4.1ab 3.7±0.6b 29.1±6.9  84.7±4.6  

Methoprene  4.2±0.5 8.7±1.9 53.4±4.5b 4.5±0.4ab 41.9±9.0  84.6±1.2  

Inside 27 Control  5.2±0.9 7.1±0.3 64.5±2.9ab 5.2±0.3ab 37.2±2.1  80.6±3.1  

Methoprene  5.3±0.5 10.3±0.7 69.9±3.9a 4.5±0.3ab 46.5±6.1  84.3±2.9  

32 Control 6.0±0.6 8.4±1.3 56.5±1.7ab 4.3±0.4ab 54.1±20.5  84.4±2.6  

Methoprene  4.2±0.6 10.9±1.4 58.1±2.5ab 6.0±0.5a 30.7±6.9  80.1±3.9  

a
Means for each species and variable studied followed by different letters are significantly different (P < 0.05; by REGWQ 

multiple range test). 

b
There were no significant differences among treatment combinations (F = 0.93; df = 7, 40; P = 0.4959; by one-way ANOVA). 

c
There were no significant differences among treatment combinations (F = 1.13; df = 7, 40; P = 0.3663; by one-way ANOVA). 

d
There were no significant differences among treatment combinations (F = 0.67; df = 7, 40; P = 0.6926; by one-way ANOVA). 

e
There were no significant differences among the treatments (F = 0.52; df = 7, 39; P = 0.8132; by one-way ANOVA). 
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Table 4.3 Effect of PET-PE methoprene packaging on fecundity and egg hatch of T. castaneum and T. variabile  

Surface Temp. 

(°C) 

Treatment  Mean ± SE
a
   

T. castaneum
 
 T. variabile 

Number of 

females
b 

Number of  

eggs/female
 
 

% Egg hatch
c
 Number of 

females
d 

Number of  

eggs/female
e
 

% Egg hatch
f
 

Outside 27 Control  5.2±0.7 6.3±0.9ab 76.6±6.5 4.7±0.5 30.1±5.5 84.2±2.3 

  Methoprene  4.5±0.8 6.8±1.0ab 76.4±3.2 4.7±0.3 31.2±3.7 85.1±4.0 

 32 Control  4.8±0.8 7.7±1.5a 78.7±5.3 5.7±0.4 31.3±8.6 86.2±2.4 

  Methoprene  5.5±0.5 5.1±0.7ab 78.8±9.1 4.3±0.4 44.8±6.3 93.6±1.4 

Inside 27 Control  4.5±0.6 5.9±1.0ab 77.9±2.7 4.2±0.4 33.5±4.9 86.4±2.8 

  Methoprene  3.8±0.6 4.7±0.8ab 67.5±8.3 3.8±0.3 27.1±4.5 87.0±0.9 

 32 Control 6.5±0.9 4.9±0.7ab 71.7±7.5 5.7±0.5 30.9±6.6 89.7±4.0 

    Methoprene  6.2±0.7 3.1±0.8b 59.7±8.3 5.5±0.3 44.5±4.6 93.1±1.4 

a
Means for each species and variable studies followed by different letters are significantly different (P < 0.05; by REGWQ 

multiple range test. 
b
There were no significant differences among the treatments (F = 1.39; df = 7, 40; P = 0.2374; by one-way ANOVA). 

c
There were no significant differences among the treatments (F = 0.76; df = 7, 40; P = 0.6256; by one-way ANOVA). 

d
There were significant differences among the treatments (F = 2.95; df = 7, 40; P = 0.0137; by one-way ANOVA), but the 

REGWQ multiple range test failed to show significant differences among treatment combinations. Significant differences were 

separated using linear contrasts (see Table 4). 
e
There were no significant differences among the treatments (F = 1.30; df = 7, 40; P = 0.2734; by one-way ANOVA). 

f
There were no significant differences among the treatments (F = 2.09; df = 7, 40; P = 0.0667; by one-way ANOVA). 
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Table 4.4 Linear contrasts showing significant pairwise comparisons of T. variabile female numbers on PET-PE packaging.    

Treatments compared
a
  Mean Square F-value

a 
  P-value 

Untreated inside surface at 27°C  vs Untreated outside surface at 32°C 0.057 6.47  0.0149 

Untreated inside surface at 27°C vs Untreated inside surface at 32°C 0.055 6.28  0.0164 

Untreated inside surface at 27°C vs Methoprene-treated inside surface at 27°C 0.048 5.46  0.0246 

Untreated outside surface at 32°C vs Methoprene-treated inside surface at 27°C 0.087 9.85  0.0032 

Untreated outside surface at 32°C vs Methoprene-treated outside surface at 32°C 0.043 4.90  0.0326 

Untreated inside surface at 32°C vs Methoprene-treated inside surface at 27°C 0.085 9.62  0.0035 

Untreated inside surface at 32°C vs Methoprene-treated outside surface at 32°C 0.042 4.74  0.0354 

Methoprene-treated inside surface at 27°C vs Methoprene-treated inside surface at 32°C 

Error 

0.076 

0.009 

8.60  0.0055 

a
The degrees of freedom (df) for each pairwise comparison is 1, 40. 
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Table 4.5 Effect of PE-PE packaging on emergence of normal and deformed adults of T. castaneum and T. variabile   

Surface Temp. 

(°C) 

Treatment  Mean ± SE
a
 

T. castaneum T. variabile 

Number of 

females
b 

Normal 

adults
  

Deformed adults
  

Number of 

females
c 

Normal adults
  

Deformed 

adults
  

Outside 27 Control  5.3±0.3 23.5±2.7ab 1.8±0.7b 5.0±0.7 156.8±26.4ab 23.5±8.0c 

Methoprene  5.0±0.3 0.0±0.0c 19.8±4.6a 4.7±0.5 0.2±0.2c 116.3±23.3ab 

32 Control  4.5±0.6 33.5±5.5ab 3.3±2.4b 5.5±0.5 278.8±28.6a 11.0±3.4cd 

Methoprene  4.7±0.7 0.0±0.0c 27.2±3.8a 4.8±1.0 0.2±0.12c 207.8±29.3a 

Inside 27 Control  4.7±0.8 27.0±4.2b 1.8±0.5b 5.2±0.3 145.8±18.1ab 19.7±10.1cd 

Methoprene  4.7±0.7 0.0±0.0c 19.5±4.0a 5.2±0.2 209.0±8.6a 29.8±6.3bc 

32 Control 4.5±0.6 37.2±5.0a 0.3±0.2b 4.8±0.6 202.8±38.3a 4.5±2.7d 

Methoprene  4.7±0.6 0.0±0.0c 16.3±3.5a 4.7±0.4 106.8±37.7b 30.7±9.7bc 

a
Means for each packaging type, species, and variable studied followed by different letters are significantly different (P < 0.05; by 

REGWQ multiple range test). 

b
There were no significant differences among treatment combinations (F = 0.35; df = 7, 40; P = 0.9259; by one-way ANOVA). 

c
There were no significant differences among treatment combinations (F = 0.36; df = 7, 40; P = 0.9204; by one-way ANOVA). 
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Table 4.6 Effect of PET-PE packaging emergence of normal and deformed adults of T. castaneum and T. variabile. 

Surface Temp. 

(°C) 

Treatment  Mean ± SE
a 
 

T. castaneum T. variabile 

Number of 

females
b
 

Normal 

adults 

Deformed 

adults 

Number of 

females
c
 

Normal adults Deformed 

adults 

Outside 27 Control  5.2±0.9ab 38.5±5.0a 2.5±1.5b 5.3±0.5 181.8±25.8a 50.0±15.4abc 

Methoprene  3.3±0.7ab 19.3±2.7cd 1.2±0.6b 4.2±0.3 115.8±16.3a 7.7±3.0c 

32 Control  5.0±0.8ab 21.3±3.5bcd 1.8±0.7b 5.2±0.7 181.8±25.8a 15.0±3.8bc 

Methoprene  4.8±0.8ab 16.7±3.1d 4.2±1.9b 5.0±0.3 192.0±12.9a 20.8±14.4c 

Inside 27 Control  4.7±0.7ab 34.2±5.0ab 3.8±1.1b 5.7±0.7 172.3±28.1a 15.2±7.7b 

Methoprene  6.8±0.5a 0.0±0.0e 41.0±6.5a 5.8±0.6 22.2±21.8b 127.3±33.1ab 

32 Control 5.7±0.6ab 29.3±2.7abc 3.2±1.0b 5.5±0.4 157.7±15.7a 6.3±2.2c 

Methoprene  5.2±0.5ab 0.0±0.0e 25.0±3.6a 4.7±0.7 5.0±1.0b 148.0±28.9a 

a
Means for each packaging type, species, and variable studied followed by different letters are significantly different (P < 0.05; by 

REGWQ multiple range test). 

b
There were no significant differences among the treatments (F = 1.90; df = 7, 40; P = 0.0951; by one-way ANOVA). 

c
There were no significant differences among the treatments (F = 0.83; df = 7, 40; P = 0.5651; by one-way ANOVA). 
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Chapter 5 - Penetration ability of Plodia interpunctella and 

Trogoderma variabile on methoprene impregnated foil packages 

5.1. Abstract 

Retail stores and food warehouse are prime locations for stored-product insect infestation 

to occur.  The objective of this study was to determine the effect of methoprene-treated foil 

packaging on egg hatch and penetration ability of first and third instars of Tribolium variabile 

Ballion, warehouse beetle, and Plodia interpunctella (Hübner), Indian meal moth.  Untreated and 

methoprene-treated packaging at 0.1, 0.25, and 0.5% active were fitted into 9 cm diameter 

semicircles and 25 eggs of either species were added to plates, monitored for 7 d, to determine 

percent egg hatch.  A 6 cm by 8 cm foil food packages were created using a heat sealer, and 

placed into 0.18-L plastic vials.  First instar or third instar larvae were introduced into each vial 

either containing 500 mg diet or no diet in order to determine penetration ability and 

development of each species at 21 or 42 d exposure periods.  Additionally, foil packages were 

pierced with pinholes, 500 mg diet added, and first instar T. variable or P. interpunctella were 

introduced to determine if either species could invade the food packages.  The foil packaging had 

no significant effect on egg hatch of either species when placed on the methoprene-treated foil or 

on untreated Petri plates.  T. variabile were unable to penetrate any foil packages.  P. 

interpunctella penetrated all packaging containing pinholes.  Methoprene-treated foil packages 

adversely affected T. variabile development, when held with diet.  Deformed pupae and adults 

were observed at all levels of methoprene-treated packaging.  The methoprene-treated packaging 

reduced the adult emergence of P. interpunctella.    
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5.2. Introduction 

Stored-product insects are a common and persistent problem in processing facilities, 

warehouses, distribution centers, retail stores, and consumer pantries (Highland, 1978).  

Tribolium castaneum (Herbst), red flour beetle, Trogoderma variabile Ballion, warehouse beetle, 

and Plodia interpunctella (Hübner), Indian meal moth, are three serious stored-product insects 

found in these types of locations and throughout the world (Highland, 1978; Campbell et al., 

2002; Arthur et al., 2014).  Infestations in food facilities result from established insect 

populations within the facility, immigration of insects from the outside environment, or bringing 

infested products  inside the facility (Campbell and Arbogast, 2004).  T. castaneum, T. variabile, 

and P. interpunctella are all highly mobile insects.  P. interpunctella are capable of traveling 

large distances, while Campbell et al. (2002) stated  T. variabile was capable of moving across 

multiple floors and distances ranging from 7-216 m throughout a warehouse.    

 Arthur et al. (2014) monitored a commercial food storage facility over three years using 

pheromone traps, and T. castaneum and T. variabile were among the most common insect 

species captured, along with Lasioderma serricorne (F.), the cigarette beetle, and Oryzaephilus 

surinamensis (L.), the sawtoothed grain beetle.  Arthur et al. (2014) also noted capture of these 

species in a large room where no food was stored, but was adjacent to a food storage area with 

access through open bay doors.  P. interpunctella are commonly captured around doors to the 

outside, pallet wrapping equipment and near where food products are stored (Campbell et al., 

2002; Arthur et al., 2013).  Campbell et al., (2002) found an infestation  of T. variabile  near a 

conveyer system that carried packaged food products.  Additional inspection revealed  larval  

cast skins present in the conveyor system (Campbell et al., 2002).  Insect captures tend to be 

temporally and spatially variabile (Campbell et al., 2002; Arthur et al., 2014).  Arthur et al. 
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(2014) observed insect densities varied according to the calendar months, and noted very little 

trap cultures from November to May, which corresponds to winter months in the central United 

States.  However, trap catches increased during the warmer months.  Changes in abundance of 

insect captures may vary with the type of food product stored and transportation to and from the 

food storage facilities (Arthur et al., 2014).  Areas of high food spillage, damaged food packages, 

open doors and windows, and incoming products that are already infested are common locations 

for infestation sites (Subramanyam et al., 2001).  However, it is difficult to pinpoint a specific 

location of an infestation source in a warehouse or retail setting, because of the constant 

movement of food products (Arthur et al., 2013).    

  Infestation by stored-product insects result in product losses, decreased consumer 

confidence, and potential risk for allergic reactions (Subramanyam et al., 2001).  Commonly 

used pest management techniques in warehouse settings are sanitation, structural fumigations, 

heat treatments, removal of infested packages, and spot treatments with insecticides (Campbell 

and Arbogast, 2004).  In retail environments typical pest management techniques include 

sanitation, first in first out stock rotation, and traps (Subramanyam et al., 2001).  However, this 

may not be enough for adequate insect control.  The use of insect resistant packaging is 

becoming increasingly prevalent in stored-product packaging.   

 Exposure of insects to methoprene treated contact surfaces can result in insect deformities 

such as deformed adult genitalia, reduced egg production, incomplete scleorotization of adult 

legs and antennae, and inability to complete larval-pupal transformation (Klein and Burkholder, 

1984).  T. variabile is capable of undergoing multiple larval stages and molts.  A potential 

problem with using an IGR, is the continuation of the larval stage (Klein and Burkholder, 1984).  

The objective of this study was to determine the effect of methoprene-treated foil packaging on 
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egg hatch and penetration and invasion ability of first or third instars of T. variabile and P. 

interpunctella.  

5.3. Materials and methods 

5.3.1. Insects 

P. interpunctella and T. variabile species used in this study were obtained from 

laboratory cultures at the United States Department of Agriculture's Center for Grain and Animal 

Health Research (USDA-CGAHR) in Manhattan, Kansas.  P. interpunctella cultures used in all 

experiments were derived from a laboratory  strain established in 1969.  P. interpunctella was 

reared on a diet consisting of cracked wheat and wheat shorts (4.4 kg), brewer’s years (22 g), 

sorbic and benzoic acid (9.5 g each), honey (240 ml), glycerin (240 ml), and water (120 ml) 

(Jenson et al., 2009) at 27°C and 60% r.h and 16:8 L:D photoperiod.  T. variabile cultures were 

reared on 50% Purina One lamb and rice formula (Nestlé Purina PetCare Company, St. Louis, 

MO, USA), 50% Pharmanex vanilla shake mix (Arizona Nutritional Supplements, Chandler, AZ, 

USA), and the top of the culture was sprinkled with 100% whole grain rolled oats 

5.3.2. Properties of packaging films 

Foil packages, 6 cm by 8 cm, were constructed using a 15 mm portable hand sealer 

(Model KF-150CST, Global Industrial Marketplace, Northridge, CA, USA).  Foil packages were 

heat sealed on all four sides using a 1.5 cm ridged seal.  Prior to sealing, respective diet was 

added to each packaging.  P. interpunctella diet used consisted of poultry mash, glycerol, honey, 

and distilled water (Subramanyam and Cutkomp, 1987).  T. variabile diet used ground cat food 

(Meow Mix, Big Heart Pet Brands, Decatur, AL, USA).  Packages were filled with 3.07 ± 0.06 g 

of diet for P. interpunctella and 2.41 ± 0.05 g of diet for T. variabile.  All packages were 

evaluated for seam integrity prior to use in all tests.  Foil packages were added to 0.18-L plastic 
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vials and capped with filter paper and a sealed lid which contained a hole covered by wire mesh 

to allow passage of air. 

5.3.3. Effect of methoprene on egg hatch of P. interpunctella and T. variabile  

P. interpunctella eggs were obtained by collecting pupae from rearing jars.  Corrugated 

paper spools were added to the  P. interpunctella diet to provide pupation sites for wandering 

larvae (Huang et al., 2003).  Pupae were collected from the paper spools and transferred into 1.9-

L glass jars fitted with a mesh screen and filter paper.  Glass jars were inverted and moths were 

allowed to mate to oviposit.  Eggs, 0-24 h old, were collected and counted using an aspirator 

with a small glass collection jar.    

To obtain T. variabile eggs, approximately 100 g of flour was sifted through a 850 µm 

opening sieve (Newark Wire Cloth Company, Clifton, N.J., USA), placed into a 0.18-L jelly jars 

(Ball, Muncie, IN, USA) and 50 unsexed T. variabile adults of mixed ages were introduced to 

the jar.  The containers were held in an environmental growth chamber at 30°C and 65% r.h. and 

16:8 L:D photoperiod.  After three to four days, adults were removed from jars using a sieve 

with 250  µm opening.  The flour was sifted through a 149 µm opening and the eggs were 

retained on top of the sieve.  Eggs were then counted and collected using an aspirator with a 

small glass collection jar.   

 Forty individual arenas were prepared for this study.  From the foil packaging 9 cm 

diameter semicircles were cut by hand from all packaging materials containing methoprene and 

those that did not.  Out of the 40 discs, 20 were for P. interpunctella and 20 were for T. 

variabile.  The semicircle discs were secured to the divided Petri plate with adhesive caulking 

(DAP Products Inc, Baltimore, MD, USA). The inner sides and the divider of Petri dishes were 

coated with polytetrafluoroethylene (Fluon®) (Sigma-Aldrich Co., St. Louis, MO, USA) to 
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create the final sample arena.  The treatment combinations included untreated and methoprene-

treated foil packaging at three levels, 0.1, 0.25, and 0.5% active, eggs exposed to foil surfaces 

and those that were not, and the two species.  All experiments were conducted on the outside 

surface of the material at 27°C and 60% r.h.  Each combination was replicated five times.   

 To determine the effect of methoprene on the egg hatch from eggs, 25 eggs of P. 

interpunctella (0-24 d old) or T. variabile (3-4 d old) were added to the sample arenas either on 

the foil side or the non-foil side.  The number of larvae that emerged for each treatment 

combination and species was recorded and the percent egg hatch was determined.    

Egg hatch P. interpunctella and T. variabile were determined according to modified 

procedures described by Huang and Subramanyam (2003).  Three replicates of 50 eggs of each 

P. interpunctella and T. variabile were collected via aspirator and placed into glass Petri plates, 

as described previously.  Petri plates containing eggs, were placed at 27°C and 60% r.h. and 

examined after 7 d.  The average egg hatch out of the total number of eggs (50) was calculated 

(Huang and Subramanyam, 2003).  The mean ± SE egg hatch was 45.3 ± 7.0% for P. 

interpunctella and 80.7 ± 1.8% for T. variabile. 

5.3.4. Effect of methoprene on penetration ability of first instar P. interpunctella 

and T. variabile 

Foil packages were created as described previously, 6 cm by 8 cm, and placed into 0.18-L 

plastic vials, and covered with filter paper and a lid which contained a hole covered with wire 

mesh. Twelve vials contained approximately 500 mg of diet, chicken mash for P. interpunctella 

(Subramanyam and Cutkomp, 1987) or cat food for T. variabile, and 12 vials did not contain any 

diet.  Treatment combinations included two species, diet and no diet, one control and three 

methoprene-treatment levels (0.1, 0.25, and 0.5%), 21 and 42 d exposure intervals.  All treatment 
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combinations contained 6 replicates.  This was a total of 96 vials per treatment combination per 

species.   

The methods used for this study were modified from those used in Chapter 2 of this 

dissertation.   Fifty eggs of P. interpunctella or T. variabile were collected using an aspirator 

with a glass collection vial, and were added to individual vials containing a single foil package.  

Vials contained either 500 mg of diet or contained no diet.  The eggs of P. interpunctella and T. 

variabile were used to represent first instars of each species, because first instars could be injured 

or damaged during transfer due to handling. Egg hatch was determined as described previously 

(Huang and Subramanyam, 2003).  The mean ± SE (n = 3) egg hatch for eggs added to vials 

containing food was 50.0±2.3% for P. interpunctella and 88.0±1.2% for T. variabile. The mean 

± SE (n = 3) egg hatch for eggs added to vials containing no food was 41.3±6.4% for P. 

interpunctella and 76.7±4.4% for T. variabile.   All vials were placed into a  growth chambers at 

27°C and 60% r.h. for 21 or 42 d exposure periods..  Vials were examined at 21 to count the 

number of larvae and pupae, and at 42 d to count the number of larvae, pupae, and adults found 

inside and outside of the foil packaging.  Foil packages were assessed for number and diameter 

of holes (mm) present at both observational times.    

5.3.5. Effect of methoprene on invasion ability of first instar P. interpunctella and T. 

variabile through artificially created pinholes. 

The invasion ability of first instar P. interpunctella and T. variabile  were assessed by 

using foil packages, described previously, manually punctured with a 150 µm pinhole at one of 

three locations; bottom third, middle third, or top third, of the packaging surface on one side.  

Packages contain pinholes were placed inside of a 0.18-L plastic vial and approximately 500 mg 

of respective diet was added.  Fifty eggs of either species was added to vials and placed inside a 
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growth chamber at 27°C and 60% r.h. for 21 of 42 d.  Treatment combinations included two 

species, one control and three treatment levels (0.1, 0.25, 0.5%), 21 and 42 d exposure levels, 

and all treatment combinations were replicated six times.       

The eggs of P. interpunctella and T. variabile were used to represent first instars of each 

species.  Egg hatch was determined as described previously and the mean (±SE, n = 3) egg hatch 

for P. interpunctella was 44.0±4.2% and for T. variabile 90.0±3.5%.  The vials were examined at 

21 and at 42 d to count the number of larvae, pupae, and adults found inside and outside of the 

foil packaging.  Foil packages were also overserved for number and diameter of holes (mm) 

present at both observational times.    

5.3.6. Effect of methoprene on penetration ability of third instar P. interpunctella 

and T. variabile. 

 Third instars were used in this study base off the results seen by Chapter 2 of this 

dissertation, in which third instars have a higher propensity to penetrate foil based packaging 

compared to first instars.  Third instar P. interpunctella were determined by measuring mean 

head capsule width, 0.66 mm (Allotey and Goswami, 1990).  Third instar T. variabile was 

obtained by measuring head capsule width under stereomicroscope.  The mean head capsule 

width for third instars ranged from 0.31-0.37 mm (Rai, 2014).  Ten P. interpunctella or 20 T. 

variable larvae were added to vials containing a single packaging type, with 500mg of diet or no 

diet added, and held at 27°C and 60% r.h. for 21 or 42 d.  Vials were examined after 21 or 42 d 

for larvae, pupae, or adults that emerged.  Foil packages were observed for diameter (mm) and 

number of holes present.    
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5.3.7. Data analysis 

 All experiments were run as a completely random design.  Data were analyzed by 

package type and species.  The means and standard errors were calculated and reported (SAS 

Institute, 2008).  The mean egg hatch between non-foil and foil exposed surfaces were compared 

using a paired t-test (SAS Institute, 2008) to determine if significant differences existed between 

the two surfaces.  The percent egg hatch data were transformed to angular values and analyzed 

using a one–way analysis of variance (ANOVA) (Zar, 1984).  The number of larvae, pupae, and 

adults found inside or outside of the foil packaging was transformed to log10(x+1) scale for 

further analysis.  Data obtained for the number and diameter of holes were not transformed.  All 

data collected was subjected to an analysis of variance (ANOVA) by species and observation 

time to determine significant differences.  If the ANOVA indicated significant differences, the 

variables among treatment combinations were separated using a Tukey's adjustment and 

significance was determined at α = 0.05 (SAS Institute, 2008). 

5.4. Results 

5.4.1.  Effect of methoprene on egg hatch of P. interpunctella and T. variabile 

 The packaging film had little effect on the egg hatch of T. variabile.  The mean egg hatch 

on untreated surfaces exposed to foil was 85.6 ± 3.7% and exposed on the non-foil side was 93.6 

± 2.7% (Table 5.1).  The mean egg hatch of T. variabile on exposed on the no-foil side of the 

methoprene-treated samples ranged from 88.0 ± 3.6 to 93.6 ± 2.4%.  Egg hatch from direct 

exposure to the methoprene-treated foil ranged from 80.0 ± 2.9 to 84.8 ± 5.6%.  In all instances 

the 0.5% treated foil had the lowest percent egg hatch.  A paired t-test between foil and non-foil 

surfaces was not significant for any treatment (range in t values among treatments was 1.14 to 

2.59; df = 4; range in P values was 0.3188 to 0.0608).  Similar to P. interpunctella, the untreated 
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surface had a lower egg hatch of eggs directly on the foil side versus the non-foil side, 85.6 and 

93.6%, respectively.  Additionally, the egg hatch was lower on the methoprene-treated foil 

compared to the control.  The 0.5% methoprene foil had the lowest percent egg hatch among all 

treatments at 80.0±2.9%, which was a 14.5% reduction from eggs exposed to the non-foil side of 

the untreated arena.     

The mean egg hatch for P. interpunctella on untreated surfaces was 36% on the non-foil 

side and 22.4% on the foil side.  The egg hatch on the non-foil side for treatment arenas ranged 

from 30.4 to 29.6%, with the 0.25% methoprene-treated foil having the lowest percent 

emergence (Table 5.1).  On the foil side, the 0.5% methoprene-treated surface had the lowest egg 

hatch, 20.8%.  A paired t-test between the non-foil and foil sides showed no significant 

differences between pairs (range in t values among treatments was 0.10 to 2.45; df = 4; range in 

P values was 0.9273 to 0.0705).  P. interpunctella on the non-foil side was lower for all the 

methoprene-treated surfaces compared to the control.  This could indicate that the volatility of 

the methoprene has an effect on egg hatch, even without direct contact on the methoprene-treated 

packaging material.  However, only the 0.5% treated packaged had a lower percent egg hatch 

compared to the untreated packaging when eggs were exposed directly to the foil.  The 

difference in egg hatch was not significant and the differences observed could be related to do 

experimenter handling and transfer of the eggs.  Comparing egg hatch of P. interpunctella eggs 

exposed to the non-foil side compared to the foil side, the eggs exposed to the foil side had a 

lower egg hatch rate.  This indicates that the direct exposure to the methoprene-treated foil 

material had an effect on egg hatch.   
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5.4.2.  Effect of methoprene on penetration ability of first instars of P. interpunctella 

and T. variabile   

T. variabile larvae were unable to penetration any packaging, untreated or methoprene-

treated, after 21 or 42 exposure periods when held with or without diet.  There was no significant 

difference in the number of larvae found in vials after 21 d (F =0.43; df = 3, 20; P = 0.7357) or 

42 d exposure (F = 1.19; df = 3, 20; P = 0.1519) when held with 500 mg of diet.  In 21 d vials, 

the number of larvae ranged from 23.5 ± 2.7 to 28.5 ± 3.8 between all treatments and in 42 d 

vials larvae ranged from 14.2 ± 3.0 to 22.5 ± 2.2.  In 21 d vials, only larvae were found.  

However in 42 d vials, all four life stages were observed in the untreated packages held with diet.  

All packaging types contained pupae (4.7 ± 0.8 to 1.3 ± 0.4) but counts were not significantly 

different between treatments (F = 3.09; df = 3, 20; P = 0.0505).  Deformed half pupal-adult 

intermediates were observed in the methoprene-treated packages but not in the untreated 

packages containing food.  Similarly, deformed adults were also only seen in the methoprene-

treated packages at all treatment rates but not in the control.  Deformities observes consisted of 

white-translucent antennae and legs of the adult beetle and half pupae-adults, as described in 

Chapters 3 and 4.  The untreated packaging contained a mean of 3.5±0.6 morphogenically 

normal adults and the methoprene-treated packages contained zero normal adults.  In vials 

without diet containing T. variabile, there was not a significant difference in the mean number of 

larvae found per treatment vial at 21 or 42 d exposure periods (range in F values was 1.27 to 

2.38; df = 3, 20; range in P values was 0.1002 to 0.3117).  After 42 d, untreated or methoprene-

treated packaging vials did not containing any pupae or adults.  Additionally, the mean number 

of larvae found per vial decrease between 21 and 42 d exposure periods.  The decline in mean 

larvae could be due to cannibalistic effects of the larvae due to the lack of diet provided.   
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 After 21 d exposure to packages which contained 500 mg diet there was no significant 

difference in the mean number of larvae per treatment combination of P. interpunctella (F = 

1.53; df = 3, 20; P = 0.2386), and mean larvae ranged from 6.0 ± 1.3 to 10.0 ± 2.3.  The same 

result was observed for P. interpunctella after 42 d exposure (F = 0.51; df = 3, 20; P = 0.6786).  

The untreated packages at 21 and 42 d contained pupae, 2.3 ± 1.2 and 1.2 ± 0.6, respectively.  P. 

interpunctella adults were observed in the untreated package vials only.  At 21 d three packages 

of 0.1% methoprene were penetrated by larvae.  The mean diameter of the holes was 5.3 ± 0.8 

mm and the mean larvae inside the package were 15.2 ± 6.7.  The packages were observed under 

stereomicroscope and each penetration point was along the bottom seam of the sealed packaged, 

and the chewing pattern was in a linear fashion.  Additionally, the penetration points display 

stress lines which result from an imperfect seal and stress on the package.  The penetration holes 

seen in Chapter 2, were circular in appearance.  Therefore the penetration seen at 21 d will be 

regarded as a seam/seal failure.  In a similar fashion, 0.1% methoprene-treated packaging at 42 

had one instance of penetration.  There were no larvae present inside the package and the point 

of penetration was linear in fashion.  Packaging samples containing no diet at 21 d only produced 

larvae for untreated and methoprene-treated packages.  The mean larval density ranged from 

12.2 ± 1.5 to 15.0 ± 1.7 over all treatment combinations.  There was no significant difference 

between treatments (F = 0.64; df = 3, 20; P = 0.5969).  Likewise packages held for 42 d without 

food only produced larvae of P. interpunctella which ranged from 14.0 ± 2.3 to 17.2 ± 1.8.   

5.4.3. Effect of methoprene on invasion ability of first instar P. interpunctella and T. 

variabile through pinholes. 

 When presented with pinholes in three different locations, T. variabile was unable to 

invade any package type. There were no significant differences in the number of larvae found in 
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untreated and methoprene-treated vials after 21 or 42 d exposures (range in F values was 0.16 to 

2. 86; df 3, 20; range in P values was 0.0627 to 0.9221.  Larvae were the only life stage present 

at 21 d (Table 5.2), as well as packages with a pinhole on the top after 42 d.  Methoprene-treated 

foil packages at 42 d contained deformed pupae and adults.  Deformed pupae were seen as half 

pupal-adult intermediates whereby they died.  Deformed adults contain antennae and legs which 

appeared white and translucent in color, but remained alive.  Deformed pupae and adults were 

only seen in the methoprene-treated packaging samples.  Conversely, only normal adults were 

seen in untreated packaging vials. 

 Compared to T. variabile, P. interpunctella invaded all untreated and methoprene-treated 

packaging materials after 21 or 42 d exposure periods. There were no significant differences in 

the diameter of holes between untreated and methoprene-treated packaging at 21 d (range in F 

values was 0.44 to 1.42; df = 3, 20; range in P values was 0.2652 to 0.7286).  At 42 d the 

untreated packages had the smallest mean diameter holes at the bottom and middle locations, 1.0 

and 1.1, respectively.  This correlates to instars invading the packages at a younger age compared 

to methoprene-treated packaging because young instars have small head capsule sizes. The 

number of larvae found in each vial was significantly different between untreated and 

methoprene-treated packaging at both exposure periods.  At 21 d 0.1% methoprene-treated 

packaging had the highest mean larvae present at all pinhole locations.  However at 42 d the 

0.25% methoprene had the highest mean larvae per vial (Table 5.3).  In both exposure times, the 

untreated packaging had the fewest larvae present.  In the 42 d vials, the untreated material had 

the presence of young larvae (data not shown).  The number of pupae present varied significantly 

between untreated and methoprene-treated packaging at both exposure periods and pinhole 

locations, except for the top pinholes at 42 d.  In each occurrence, the untreated material had the 
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highest mean pupae found inside the vials, ranging from 6.3 to 21.5 (Table 5.3).  Methoprene-

treated packaging had a significant effect on the mean number of adults found inside vials.  

There were no adults found in methoprene-treated packaging at 21 d and only a mean of 0.2 was 

seen at 42 d at the top pinhole location.  The methoprene-treated packaging might not have 

inhibited invasion into foil packages, but it was effective in preventing larval development into 

the pupal and adult stages.   

5.4.4. Effect of methoprene on penetration ability of third instars of P. interpunctella 

and T. variabile 

 T. variabile was not able to penetrate any packages after 21 or 42 d exposures when 

testing was initiated with third instars.  At 21 d there were no significant differences seen in the 

number of larvae or pupae observed in untreated and methoprene-treated vials (range in F values 

was 01.02 to 2.52; df = 3, 20; range in P values was 0.0873 to 0.4042).  There were also no 

significant differences observed in the number of larvae present at 42 d (F = 0.44; df = 3, 20; P = 

0.7297).   When third instar larvae were exposed to methoprene-treated packaging, deformed 

pupae and adults were observed.  Deformities were only seen in the methoprene-treated 

packaging samples.  The methoprene-treated packaging vials contained a significantly higher 

amount of deformed pupae at 21 and 42 d exposure times (Table 5.4).  Among the treatments, 

the 0.50% methoprene-treated package had the highest mean number of deformed pupae at 21 

and 42 d, 7.7 and 15.8, respectively.  The methoprene-treated packaging at 42 d also had 

significantly more normal pupae.  The normal pupae observed in the methoprene-treated 

packaging vials could be newly developed pupae and the deformed pupae could be at the end of 

the pupal cycle hence the longer exposure to methoprene the increased chance of deformities.   
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Additionally, there were no normal adult emergence in any treatment at 0.25% or higher, and 

untreated samples contained 7.7 adults at 21 d and 17.7 adults at 42 d (Table 5.4).  

 T. variabile was not able to penetrate any packages when held without a food source.  

Furthermore, T. variabile were unable to develop past the larval stage after 21 or 42 d exposure 

period to both untreated and methoprene-treated packaging.  The number of larvae observed after 

21 d exposure was significantly higher in the untreated versus methoprene-treated packaging 

vials (F = 7.24; df = 3, 20; P = 0.0018).  There were no significant differentness in the number of 

larvae after 42 d of exposure (F = 1.12; df = 3, 20; P = 0.3634) (Table 5.5).  

Third instar P. interpunctella succeeded only one time to penetrate the foil packaging 

when held with and with a food source.  A 0.5625 mm hole located on the bottom third of the 

untreated packaging was observed, but there were no larvae present inside the packaging.  There 

were no significant differences in the number of larvae observed at 21 or 42 d exposure periods 

between the methoprene-treated and untreated packaging (range in F values was 0.58 to 2.46; df 

3, 20; range in P values was 0.0922 to 0.6379).  The number of larvae present was significantly 

different between untreated and methoprene-treated packaging.  The 0.50% methoprene-treated 

packaging at 21 d exposure period had the highest mean pupae 7.5 ± 0.8 and at 42 d, the 0.25% 

methoprene-treated packaging had the highest mean pupae 6.7 ± 0.5 (Table 5.6).  However, all 

methoprene-treated packaging at 42 and 21 d exposures were significantly higher than the 

untreated packaging material.  The mean number of adults observed at 21 d was significantly 

different among treatments.  The 0.50% methoprene-treated packaging had the lowest mean 

adults per vial, 2.0 ± 0.6, which was significantly different from the untreated and 0.10% 

methoprene treated packaging.  After 42 d there were no significant differences among all 

treatments and the mean number of adults ranged from 2.5 to 5.0 (Table 5.3).  
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 When third instar P. interpunctella were held without a food, significant differences were 

observed between the untreated and methoprene-treated packaging.  The mean number of larvae 

was significantly higher for 0.25% methoprene-treated packaging at 21 d compared to the 

untreated packaging, 1.8 to 0.2, respectively, but did not differ significantly from all other 

treatment levels (Table 5.4).  However, there were no significant differences observed at 42 d 

exposure (F = 2.29; df = 3, 20; P =0.0599).  The number of pupae that developed inside the vials 

was not significantly different between the untreated and methoprene-treated packaging at 21 or 

42 d range in F values was 0.13 to 1.01; df =  3, 20; range in P values was 0.4069 to  0.9403).  

At 21 d and 42 d, the 0.10% methoprene-treated packaging had the highest mean number of 

pupae present per vial, 5.2 and 5.0, respectively.  After 21 d and 42 d exposures to methoprene-

treated packaging, there were no adults observed at any level of methoprene (Table 5.5).  

5.5. Discussion 

Stored-product insects such as P. interpunctella and T. variabile are capable of chewing 

through and penetration multiple types of packaging materials such as cellophane, kraft paper, 

and aluminum foil (Cline, 1978b).  Cline (1978b) found that when young larvae are confined 

with no access to food, penetrated a greater tendency to penetrate food packages compared to 

larvae confined in pouches with food.  The results of our study are in contrast to Cline’s study.  

T. variabile and P. interpunctella were not able to penetrate any foil packaging, except in one 

isolated incidence, when confined with no food.  Additionally when larvae were held without 

access to food, the developmental rate was delayed.  T. variabile were not able to develop past 

the larvae stage, but when given access to food T. variabile were able to complete development 

to the adult stage.    
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 Klein and Burkholder (1984) applied 0.1, 1.0, and 10 ppm of methoprene to rearing diet 

of Trogoderma glabrum (Herbst), glaborous cabinet beetle, and exposed 1 d old eggs, and only 

the 10 ppm
 
treatment caused a delay in the developmental rate.  Jenson et al. (2009) found 

methoprene had little effect on adult emergence of eggs exposed to methoprene treated Kraft 

paper at 0.00015, 0.0003 and 0.00045 mg (AI/cm
2
).  Silhacek and Oberlander (1975) found that 

the timing of exposure of juvenile hormone to P. interpunctella was more critical than dosage in 

determining whether P. interpunctella will undergo metamorphosis.   

 Cline (1978a) studied the clinging and climbing ability of stored-product insects 

including P. interpunctella and T. variabile on nine different materials including aluminum foil, 

cellophane, and six different polymer films.  P. interpunctella is capable of climbing all types of 

materials tested at any angle up to 90°C (Cline, 1978a).  T. variabile was only able to climb 

Kraft paper to an angle of 90°C, but all other materials tested were at angles less than 25°C 

(Cline, 1978a).  The foil packages used in this study were held at an angle at approximately 

90°C.  This study used packages with and without pinholes to measure the penetration/invasion 

ability of T. variabile and P. interpunctella on methoprene-treated packaging.  The lack of 

penetration of T. variabile in packages containing pinholes could be due to the lack of ability of 

larvae to climb the foil packaging.  This is consistent with the results seen by Cline (1978a).  

However, P. interpunctella penetrated all packaging materials, untreated or methoprene-treated, 

when pinholes were provided.  Pinholes in this study were placed at three locations, bottom third, 

middle third, and top third.  P. interpunctella penetrated all packages irrespective of the pinhole 

location.  This reaffirms the ability of P. interpunctella’s ability to climb multiple types of 

surfaces.  The fact that T. variabile has a difficult time climbing slick packaging material could 

reiterate the need for proper storage of food packages.  Tightly wrapped polymer films tend to be 
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more resistant to insect infestations compared to loosely wrapped packages (Cline, 1976a).  

Storing food packages upright, could also increase resistance to infestations.    

 The retail marketplace is the final point of contact between food processors and 

consumers (Platt et al., 1998).  Research has shown stored-product insects are commonly found 

in retail stores and are capable of invading packaged products.  Platt et al. (1998) survey 322 

grocery stores in the south-central United States and found that approximately 25% of service 

calls to pest control companies occurred more than 45 days apart.  P. interpunctella and T. 

variabile's life cycle is within the 45 day treatment window, thus infestations of newly acquired 

packaged food products would allow for populations of these insects to reproduce and grow 

(Platt et al., 1998).  Stored-product insects have been documented in grocery stores and pet food 

stores, and this study demonstrated the ability of stored-product insects to infest food packages.    

The use  of methoprene impregnated packaging could be  a valuable new tool that  food product 

manufacturers could utilize to limit infestations of their products.  Additionally, it will help retail 

stores prevent further infestations in their stores. 
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Table 5.1 Egg hatch of P. interpunctella and T. variabile exposed to methoprene-treated 

packaging material and non-treated material on Petri plates.   

 

Treatment % Egg hatch (Mean ± SE) 

P. interpunctella
a 

T. variabile
b
  

Non-foil side  Foil side Non-foil side  Foil side 

0.00% 36.0±2.2 22.4±6.0 93.6±2.7 85.6±3.7 

0.10% 30.4±3.5 28.0±4.2 93.6±2.4 84.8±5.6 

0.25% 29.6±7.4 28.8±1.5 92.0±2.5 82.0±5.7 

0.50% 35.2±3.9 20.8±5.3 88.0±3.6 80.0±2.9 

a
There were no significant differences among the treatments (F = 1.41; df = 7, 32; P = 0.2360, 

one-way ANOVA). 

b
There were no significant differences among the treatments (F = 2.07; df = 7, 32; P = 0.0760, 

one-way ANOVA). 
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Table 5.2 Effect of methoprene on foil packing contain pinholes against T. variabile 

Pinhole 

location 

Treatment Mean ± SE
a 

21 d 42 d 

Larvae Larvae Pupae 

Deformed 

Pupae Adults 

Deformed 

Adults 

Bottom 0.00% 17.5±3.3 9.7±2.5 4.3±0.8 0.0±0.0c 5.8±0.8a 0.0±0.0b 

0.10% 16.7±3.9 10.3±1.3 3.5±1.0 0.7±0.3bc 0.0±0.0b 2.8±0.7a 

0.25% 18.8±5.1 9.5±2.6 2.8±0.5 2.2±0.8ab 0.0±0.0b 0.2±0.2b 

0.50% 19.3±5.0 14.0±1.7 2.3±0.6 2.7±0.6a 0.0±0.0b 0.2±0.2b 

Middle 0.00% 19.8±5.2 8.0±3.1 3.5±0.6ab 0.0±0.0b 8.5±2.0a 0.0±0.0c 

0.10% 18.2±2.7 4.7±2.7 9.3±2.2a 1.5±1.1ab 0.0±0.0b 6.2±1.6a 

0.25% 18.0±4.8 10.0±1.3 2.3±0.4ab 3.0±0.6a 0.0±0.0b 2.5±0.8ab 

0.50% 16.3±4.2 11.7±2.1 1.7±0.7b 4.0±1.3a 0.0±0.0b 0.3±0.3bc 

Top 0.00% 17.7±2.2 9.3±3.5 -- -- -- -- 

0.10% 17.3±1.2 11.5±3.0 -- -- -- -- 

0.25% 16.2±1.7 13.2±1.3 -- -- -- -- 

0.50% 12.0±2.2 15.8±3.0 -- -- -- -- 

a
Means for each insect stage followed by different letters are significantly different (P<0.05; by 

Tukey’s adjustment)  
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Table 5.3 Effect of methoprene on penetration ability of P. interpunctella 

Pinhole 

location 

Trt. Mean ± SE
a
  

 21 d 42 d 

 Outside of package Inside of 

package 

Diameter 

of hole 

Outside of package Inside of 

package 

Diameter of 

hole 

  Larvae Pupae Adults Larvae Larvae Pupae Adults Larvae 

Bottom 0.00% 0.3±0.3c 12.8±2.1a 0.5±0.5 1.2±0.5 1.1±0.1 0.0±0.0b 7.0±1.9a 6.5±1.9a 5.3±2.6 1.0±0.1b 

0.10% 17.8±3.1a 0.0±0.0b 0.0±0.0 1.5±1.1 1.3±0.1 14.5±1.3a 0.3±0.3b 0.0±0.0b 1.3±0.6 1.3±0.1a 

0.25% 11.0±1.8ab 6.5±1.6a 0.0±0.0 0.5±0.3 1.2±0.1 14.8±1.8a 0.3±0.3b 0.0±0.0b 1.5±0.8 1.3±0.1a 

0.50% 5.5±1.7b 6.7±2.3a 0.0±0.0 0.0±0.0 1.2±0.2 12.5±0.7a 0.0±0.0b 0.0±0.0b 4.7±1.0 1.5±0.1a 

Middle 0.00% 0.5±0.3b 6.3±1.8a 10.2±1.5a 0.0±0.0b 1.1±0.1 0.0±0.0b 7.0±2.0a 10.0±1.1a 8.0±4.8 1.1±0.1b 

0.10% 15.0±0.5a 0.8±0.4b 0.0±0.0b 1.2±1.0ab 1.3±0.1 11.5±1.0a 0.7±0.3b 0.0±0.0b 0.5±0.2 1.2±0.1b 

0.25% 10.5±2.3a 2.5±2.5b 0.0±0.0b 4.7±1.2b 1.4±0.1 12.8±1.4a 0.0±0.0b 0.0±0.0b 3.7±0.6 1.4±0.1a 

0.50% 10.3±2.5a 0.0±0.0b 0.0±0.0b 4.0±1.3b 1.2±0.2 12.5±2.0a 1.5±1.5b 0.0±0.0b 2.2±0.6 1.3±0.1ab 

Top 0.00% 0.8±0.5b 21.5±2.1a 1.7±0.6a 0.5±0.3c 1.1±0.1 0.0±0.0b 2.3±1.0 12.2±1.0a 0.8±0.4c 1.1±0.1 

0.10% 15.3±1.9a 0.0±0.0b 0.0±0.0b 4.0±0.4b 1.2±0.1 10.0±0.9a 2.0±0.5 0.2±0.2b 2.3±0.3b 1.1±0.1 

0.25% 11.0±1.0a 0.0±0.0b 0.0±0.0b 8.0±0.7a 1.1±0.1 12.5±1.0a 0.7±0.2 0.2±0.2b 5.5±0.8a 1.2±0.1 

0.50% 10.7±1.6a 0.0±0.0b 0.0±0.0b 12.0±1.8a 1.2±0.1 10.3±1.9a 0.7±0.2 0.0±0.0b 5.3±0.8ab 1.1±0.1 

 
a
Means for each insect stage followed by different letters are significantly different (P<0.05; by Tukey’s adjustment)  
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Table 5.4 Development of third instar T. variabile exposed to untreated and methoprene-treated packaging containing 500 mg 

food 

Trt. Mean ± SE
a 

 T. variabile  

 21 d 42 d 

  Larvae Pupae  Deformed 

Pupae 

Adults Deformed 

Adults 

Larvae Pupae  Deformed 

Pupae 

Adults Deformed 

Adults 

0.00% 11.7±5.7 3.5±1.1 0.2±0.2c 7.7±1.4a 0.0±0.0b 1.0±0.4 0.0±0.0b 0.0±0.0d 17.7±0.7a 0.0±0.0c 

0.10% 9.8±0.7 1.7±0.5 3.3±0.8b 0.0±0.0b 4.0±0.9a 0.5±0.2 0.2±0.2ab 5.3±0.7c 1.8±0.9b 11.0±1.5a 

0.25% 12.2±0.6 1.3±0.8 5.5±0.8ab 0.0±0.0b 1.0±0.4b 1.2±0.6 1.2±0.3a 10.8±1.4b 0.0±0.0c 5.2±1.8b 

0.50% 11.0±0.5 1.0±0.6 7.7±0.4a 0.0±0.0b 0.2±0.2b 0.7±0.2 0.7±0.4ab 15.8±0.9a 0.0±0.0c 1.8±0.9b 

a
Means for each insect stage followed by different letters are significantly different (P<0.05; by Tukey’s adjustment) 
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Table 5.5 Development of third instar T. variabile and P. interpunctella exposed to untreated and methoprene-treated 

packaging containing no food. 

Treatment Mean ± SE
a 

T. variabile  P. interpunctella  

21 d 42 d 21 d 42 d 

Larvae Larvae Larvae Pupae  Adults Larvae Pupae  Adults 

0.00% 7.0±1.5a 3.5±0.4 0.2±0.2b 3.3±0.7 2.7±0.8a 0.0±0.0 3.8±0.6 3.8±0.8a 

0.10% 4.0±0.6b 3.8±0.5 0.7±0.2ab 5.2±1.7 0.0±0.0b 0.5±0.2 5.0±1.8 0.0±0.0b 

0.25% 3.5±0.4b 2.7±0.3 1.8±0.4a 2.2±1.4 0.0±0.0b 0.8±0.3 4.0±1.8 0.0±0.0b 

0.50% 2.8±0.2b 3.8±0.9 1.5±0.7ab 4.3±1.5 0.0±0.0b 1.2±0.5 5.0±1.8 0.0±0.0b 

a
Means for each insect stage followed by different letters are significantly different (P<0.05; by Tukey’s adjustment) 
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Table 5.6 Development of third instar P. interpunctella exposed to untreated and 

methoprene-treated packaging containing 500 mg food. 

Treatment Mean ± SE
a 

 P. interpunctella  

 21 d 42 d 

  Larvae Pupae  Adults Larvae Pupae  Adults 

0.00% 0.5±0.3 1.5±0.3b 7.7±0.6a 2.5±0.9 0.8±0.3b 5.0±1.7 

0.10% 0.2±0.2 4.3±0.5a 5.5±0.6a 0.5±0.3 4.7±0.6a 4.3±0.7 

0.25% 0.7±0.3 4.7±0.8a 4.5±0.8ab 0.7±0.3 6.7±0.5a 2.5±0.8 

0.50% 0.5±0.2 7.5±0.8a 2.0±0.6b 0.3±0.2 6.2±0.6a 3.5±0.4 

a
Means for each insect stage followed by different letters are significantly different (P<0.05; 

by Tukey’s adjustment) 

 

 

 


