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A Visualization Decision Support Tool for Multivariate SPC Diagnosis 

using Marginal CUSUM Glyphs 
 

Shing I Chang and Shih-Hsiung Chou* 
Quality Engineering Laboratory 

Department of Industrial and Manufacturing Systems Engineering 
Kansas State University, Manhattan, KS 66502-5101 

Abstract 

 A marginal CUSUM glyph is proposed to visualize and decompose out-of-control signals over 
time. The proposed visualization tool, consisting of a two-sided CUSUM and star glyphs, is capable of 
indicating when and which variables contributing to the cause. Complementing traditional multivariate 
control charts after indicating that the process under monitoring is out of control, the proposed method 
provides a visualization tool with additional diagnostic information. In addition, the proposed tool is 
capable of handling responses with high dimensions. Extensive simulation results conducted for up to 20 
dimensions provide a user guideline of how to implement the proposed methodology.  

1. Introduction 
Multivariate control charts such as Hotelling T2 are often used for a process of multiple quality 

characteristics. The look of a multivariate control chart often mimics that of a univariate control chart 

such as  ̅ chart consisting of three horizontal lines enclosing dots connected by straight line segments. 

Unlike a univariate process, an out-of-control point on a multivariate control chart does not reveal 

which quality characteristics contribute to the problem without further analysis.  A visualization tool is 

needed for users to make diagnostic related decisions such as when the out-of-control conditions start 

to take place as well as which quality characteristics are responsible. Although multiple univariate 

control charts, one for each quality characteristic, can be implemented as additional visual aids, this 

approach does not work when the number of quality characteristics is large. Not only is it difficult to 

control the overall type I error but scanning many univariate control charts simultaneously won’t 

provide effective visual aid.  

Many high-dimensional data visualization techniques have been developed to explore or to 

present datasets with multiple dimensions. Chen et al. (2008) summarized five tools visualizing high-

dimensional datasets, they are the mosaic plots, scatter plot matrix, parallel coordinate plot, trellis 

displays, and star glyphs. The Mosaic Plots, proposed by Hartigan and Kleiner (1984), provide 

contingency tables used to display the relationship among two or more categorical variables. Mosaic 

plots consist of groups of rectangles whose sizes are corresponding to values in contingency tables. 

Users can interpret the mosaic plot by looking at its sizes and the positions of the rectangles. Figure  (a) 

shows an example of the mosaic plot for a 2009 automobile dataset (collected from Automotive.com 

http://www.automotive.com/index.html). The mosaic plot displays the number of cars by country and 
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prices under the aspects of horse power (hp) and miles per gallon (mpg). Although the mosaic plot is a 

well-known visualization tool to multivariate datasets, it can only cope with categorical datasets, 

meaning that data has to be put into categories. It is difficult to apply a mosaic-plot approach to monitor 

a statistic process when quality characteristics are quantitative. In the car example, horse power is 

categorized into two classes – 0-350 and 350-850. In addition, a mosaic plot can only handle a small 

number of factors, e.g. four factors are considered in the car example in Figure  (a). A mosaic plot will 

not be able to handle problems with much larger number of factors. 

A Scatter Plot Matrix is another visualization tool to view all the pair-wise scatter plots into a 

matrix. Each scatter diagram displays the relationship between any two-variable pairs. The scatter plot 

matrix can be potentially used for process monitoring. Figure  (b) displays an example of scatter plot for 

a three-dimensional dataset. The dataset was generated from the multivariate normal distribution with 

one-step mean shifted, i.e. µ=(5,10,20) change to µ=(7,12,22) and ∑=[
     
   
     

], where µ is a vector of 

mean and ∑ is a variance-covariance matrix. Examining Figure 1 (b), users can easily identify that var1 

and var3 are corrected, but it is very difficult to distinguish there is a mean shift by looking at this plot. 

Montgomery (2008) gave an example of using principal component analysis and scatter plot with 95% 

confidence ellipse to show out-of-control points. Although the scatter plot matrix is a good visualization 

tool to display the pair-wise relationships in a snap shot, it has some limitations. First, a scatter plot 

presents all data points in a snapshot.  Users only can see some points plot outside an ellipse but the 

time sequence of the plotting points is lost. Second, a scatter plot cannot handle hyper-dimensional data, 

such as a 50-dimensional or 100-dimensional data set. In fact, 20 dimensions will post a challenge for 

pair-wise displays. There will be 20 x 20 boxes needed to be displayed simultaneously. 

 
Figure  (a) The Example of the Mosaicplot for 2009 Automobile Dataset; (b) The Example of the Scatter Plot Matrix for the 

Three-Dimensional Dataset. 

The third multivariate visualization tool is the Parallel Coordinate Plot. A parallel coordinate plot 

contains coordinate axes (vertical or horizontal) in parallel that can accommodate many variables at a 

time in the same plant. The number of parallel axes is corresponding to the number of variables. For 

each parallel axes, the bottom of line is the minimum value of the variable, while the maximum value of 

the variable is at the end of the line. A particular observation is represented by a line that connects the 
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vertical line at the specific height, which is the proportion of value of the observation to length of 

vertical line. Figure  (a) is a simple example of the parallel coordinate plot. The dataset consists of a 

three-dimensional data with five observations generated from the multivariate normal distribution. 

Although a parallel coordinate plot can handle high-dimensional data, too many observations on the 

same plot tends to lose its effectiveness. As shown in Figure (b), it is difficult to make out the changes 

made on an individual response among 100 observations with 20 dimensions each. Therefore, it is hard 

to tell if any out-of-control signal occurs.  

      
Figure  (a) An Simple Example of 5 observations, 3-dimensional dataset; (b) Example of 100 observations, 20-dimensional 

dataset with one step mean shift. 

  

Although there were many techniques to visualize the multivariate data about its quantities or 

relationship, it is difficult to apply these techniques to visualize data for the purpose of statistical 

process control for multivariate processes. On the other hand, multivariate control charts based on 

Hotelling’s T2 statistic (Jackson, 1985), MCUSUM (Woodall and Ncube, 1985; Crosier, 1988; Pignatiello 

and Runger, 1990), MEWMA (Lowry, et al., 1992) cannot effectively indicate which variable(s) contribute 

to an out-of-control signal.  

Hawkins (1991) proposed a procedure called regression adjustment. Essentially, the regression 

adjustment is a set of univariate control charts of the residuals from the regression of each variable on 

all others. He further used regression adjustment to each variable to analyze out-of-control-caused 

variables. Since each variable contains at least one chart, it needs a large number of charts as many as 

the number of variables for high-dimensional datasets. Another method that indicates variables which 

caused out-of-control is based on decomposition of the Hotelling’s T2 statistic. Mason, Tracy and Young 

(1995) decomposed T2 to interpret signals. Suppose p=3, there are 3!=6 combinations of decompositions 

of one T2 value. For example T2= 2 2 2

1 2 1 31,2T T T   . It would lead to a very large number of combinations 

when p is large. Furthermore, Runger, Alt, and Montgomery (1996) used a similar concept to decompose 

an out-of-control signal. They used di=T2- 2

( )iT as an indicator to show the contribution of the ith variable. 

T2 is the current value of statistic and 2

( )iT  is the value of the statistic for all process variables except the 
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i
th one. Then, di is a major contributor to T2 if di is large.  Note that decomposition is usually applied to 

the latest T2 value when the process is deemed out of control. 

Although these methods introduced above can help diagnose which variables contribute to an 

out-of-control signal, they do not offer the information where or when the responsible variables went 

out of control. The reason is that decomposition is applied on the latest point that causes out-of-control 

signal.  In this study, we introduce a novel technique that combines CUSUM control charts and glyphs to 

provide a visualization decision support tool to indicate when and which variable(s) are out of control.  

As shown in Figure  and 4 in the background section, a trellis displays and star glyphs are very effective 

visualization tool for multivariate datasets. Features of these visualization approaches are applied to the 

proposed method in this study.  

The rest of this paper is organized as follows. Section 2 introduces backgrounds of the trellis 

displays and star glyphs as well as the standardized two-side CUSUM and the multivariate CUSUM. 

Section 3 is the proposed method using marginal CUSUM Glyphs followed by the experimental design of 

the proposed simulation study. Next, the computational results of simulations are showing in section 4. 

Section 5 consists of conclusions and future studies.  

2. Background 

 This section summarizes the trellis displays and star glyphs. In addition, the multivariate control 

charts adopted in the proposed visualization tool are also introduced in this section. Although both 

Exponential Weighted Moving Average (EWMA) and Cumulative Sum (CUSUM) control charts are 

effective detection and diagnosis tools for univariate processes, Hawkins (1993) stated that the CUSUM 

chart is a little better. In addition, Lowry et al. (1992) and Lowry and Montgomery (1995) both 

concluded that the multivariate EWMA can be as good as a multivariate CUSUM chart to detect small 

mean shifts. Thus, the proposed method will adopt two CUSUM charts: standardized two-side CUSUM 

(SD2CUSUM) and Multivariate CUSUM (MCUSUM). To investigate if any out-of-control signal occurred, 

users first run MCUSUM as a preliminary step of process monitoring so that the overall type I error is 

under control. If the MCUSUM provide an out-of-control signal, users can show all observations that are 

before the out-of-control signal in marginal CUSUM glyphs on the trellis display. 

2.1 Trellis Displays 

 A trellis display is a lattice-like arrangement to lay out plots into rows, columns, and pages on 

multiple panels. The plots on the panels can be histogram, kernel density plot, theoretical quantile plot, 

two-sample quantile plot, stripchart, bar plot, scatter plot, parallel coordinate plot, etc (Sarkar, 2008). 

Each panel contains a subset of the data graphed by plots. For example, Yates (1935) studied a split-plot 

experiment. The structure of the oats data set is including 72 rows and 4 columns, and its attributes are 

including six blocks (I, II, III, IV, V, and VI), three varieties (Victory, Golden Rain, and Marvellous), four 

concentrations of nitrogen, and yield. Figure  shows the trellis display of the Oats data with block I and II. 

The yield of oats is plotted against concentration of nitrogen for three varieties of oats and two blocks. 

In this paper, the idea of lattice-like arrangement of the trellis display is applying to the proposed 

multivariate visualization tool. The block assignment will be replaced by the time sequence while the 
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star glyphs will be adopted to represent each multivariate observation on panels. The star glyphs are 

introduced in next section.  

 
Figure   A Trellis displays of the Oats data. 

2.2 Star Glyphs 

 Star glyphs (also called star plot) display a multivariate data set in a geometrical shape such as 

hexagon for six dimensional data. In a star glyph, each individual graphic represents an observation. A 

star contains n spikes that radiate from the center with even space. The angle between each spike is 

equal to 360/n degree. Each spike has a value on it with the same proportion of the variable for that 

observation, which means observations must be standardized before stars are constructed. At the end 

of the point of each spike is usually connected to each other by line segments. To demonstrate the star 

glyph, five cars with seven attributes are used as an example. The seven attributes are: miles per gallon 

(mpg), weight of lbs (weight), horsepower (hp), engine displacement in cubic inches (disp.), number of 

cylinders (cyl.), torque of Newton-Meter (Torque), and price in US dollar (Price). 

Figure  shows five examples of star glyphs. The graphic (a) to (e) are five different sedan vehicles 

with seven attributes for star glyphs demonstration, while graphic (f) shows the basis of variable 

assignment in which each spike represents one attribute. The longer the spike the large the values for 

that attribute. The car “Saab 9-3 2.0T” shown in Figure  (b) has high mpg, less weight, low horse power, 

small engine displacement, four cylinders, small torque, and lowest price compared to the other cars. A 

side-by-side comparison with Bentley demonstrates why the mpg of Bentley seems to disappear. The 

Saab has 29 mpg while the Bentley only has 14 mpg. However, the sticker prices are the opposite: Saab 

$30,360 vs. Bentley $224,990. The function of star glyphs called “stars” in the R language (http://www.r-

project.org/) in its graphics package was used to generate these star glyphs in Figure .  
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Figure . Examples of Star glyphs where (f) Represents the Legend  

2.3 Standardized Two-Side Univariate CUSUM (SD2CUSUM) 

 The standardized two-side univariate CUSUM (SD2CUSUM) essentially is a tabular CUSUM with 

the standardized observations. This control chart is mainly designed for a process with only one quality 

characteristic. To run this procedure, it is necessary to obtain a phase I data set, so that mean µ0 and 

standard deviation σ can be estimated. The data collected during a phase I process is often deemed a 

nominal representation of the underlying process for future observations to follow. Basically, the tabular 

CUSUM accumulates the differences between observations and the target. Two types of tabular CUSUM 

statistics are one for positive mean shifts and the other for negative mean shifts. Specifically, the 

positive part deals with the observations that are above the target, while the negative part copes with 

those below the target. Let xi be the one dimensional ith observation on the process. Note that the 

statistic of the negative part is a positive number as well.  However, when these two statistics are 

plotted on the same chart, the CUSUM statistic for the negative shifts are plotted below the center line 

as showed in Figure . The statistics of the tabular CUSUM is showing below (Hawkins, 1993).  

0 1max[0, ( ) ]i i iC x K C 

                                                            (1) 

 0 1max[0,( ) ]i i iC K x C 

                                                           (2) 

where the C+ and C- represent the positive and negative parts of tabular CUSUM. The starting values are 

0 0 0C C   . K is called the reference value (or called the allowance or slack value). Usually, K is about 

half of the absolute difference between the target value µ0 and the out-of-control value of mean µ1 to 

be detected, i.e.,  

1 0

2
K

 
                                                                               (3) 

K can also be expressed in standard deviation form in terms of δ=| µ1- µ0|/σ, which provides the 

magnitude of the shift to be detected. And K then becomes
2
 σ or K=k σ, k=

2
 .  

Toyota Camry SE Saab  9-3 2.0T Bentley Arnage R

Mercedes-Benz  CLS550 Cadillac CTS
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Figure . An Example of the CUSUM Chart. The first 25 dataset was generated from N(10,1
2
), while the rest 5 dataset was from 

N(12,1
2
). 

The following steps in equations (4) to (6) are taken to standardize the original data set. 

Specifically, the ith observation is standardized as 

0i
i

x
y






  

(4) 

where   is from the phase I estimate or known, and the equation (5) and (6) become 

, , 1max[0, ]p i i p iC y k C     (5) 

, , 1max[0, ]n i i n iC k y C                                               (6) 

where Cp,i is the ith observation statistic of standardized two-side CUSUM for positive mean shifts, while 

Cn,i is the ith observation statistic for negative mean shifts.  

To decide whether the observation is out-of-control or not, H is the critical value for an out-of-

control signal. If either iC  or iC is larger than H, it is considered that the process is out of control. 

Montgomery (2008) suggested that H be 5 times the process standard deviation σ, i.e, H=hσ, where h=5. 

Since the process has been standardized, the detection criterion can be revised to whether Cp,i or Cn, i is 

larger than h or not. 

Furthermore, since the CUSUM procedure is based on the accumulated difference between 

observations and the target, a delay phenomenon will affect when an out-of-control signal is detected. 

For example, if a process has a mean shift at xi, but because of this phenomenon, the system will not 

give an alarm until xj, i<j. Montgomery (2008) provided an example of finding the last-in-control 

observation, and in this paper, a pseudocode of tabular CUSUM is implemented in Figure 6, where N+ is 

the counter that records the number of consecutive periods that the upper-side CUSUM Cp,i values are 

larger than zero, while N- is the counter for the lower-side CUSUM Cn,i. And the last-in-control position l 

is equal to o-N
+ or o-N

-, where o is the stopping counter number when the first out-of-control signal 

takes place during the phase II monitoring. 
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2.4 The Multivariate CUSUM Chart 

 For processes with multiple quality characteristics, a multivariate CUSUM should be 

implemented. Multivariate control charts are often recommended over running multiple univariate 

control charts simultaneously because the overall type I error can be controlled to a desired level. 

Crosier (1988) proposed one of the better multivariate CUSUM schemes in term of the ARL performance 

called vector-valued CUSUM. The main idea of this multivariate CUSUM (MCUSUM) is similar to that of 

the univariate CUSUM, except that MCUSUM multiples the statistic by a weight.  

Let Xi be ith observation on the process. Xi is from a multivariate normal distribution with mean T 

and variance-covariance ∑ which are known or can be estimated from a phase I data set. The statistics of 

MCUSUM is as below.  

1 1/2

1 1[( ) ' ( )]i i i i iC S X T S X T

                                                 (7) 

then 

1

0                                     if 

( )(1 )    if 

i i

i i i i

i

S C k

k
S S X T C k

C


 



    


                                       (8) 

where S0=0 and k>0 

An out-of-control signal is generated when  

' 1 1/2[ ]i i iy S S h                                                                (9) 

where k is a reference value and h is a decision interval for the process.  

The chosen value of k and h values for in-control ARL of 200 and 500 can be found in Crosier’s study 

(1988). In this study, we reorganize their result in Table 1.  

 

Procedure of Tabular CUSUM 

set i=1, Cp,0 and Cn,0 
while Cp,i and Cn,i smaller than h do 

     calculate Cp,i and Cn,i by using (5) and (6). 

     if Cp,i > 0  then N+= N++1 
     else N+==0 

     if Cn,i > 0 then N
－
= N

＿
+1 

     else N
－
==0 

     i++ 
end while 

out-of-control o=i 

last-in-control l =o- N+ or o- N
＿
 

print Cp,i, Cn,i, o, and l for all i. 

Figure  Pseudocode of Procedure of Tabular CUSUM 
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Table . Chosen value of k and h with different kinds of dimension p under two in-control ARLs. 
 In-Control ARL’s of 200 In-Control ARL’s of 500 

p h k h k 
2 5.50 0.5 6.65 0.5 
5 9.46 0.5 10.9 0.5 

10 14.9 0.5 17.2 0.5 
20 24.7 0.5 28.0 0.5 

3. The Proposed Marginal CUSUM Glyphs 

The proposed framework first relies on the MCUSUM described in the previous section to detect 

any process shift so that the overall type I error is desirable. If the type I error is excessive, too many 

false alarms will be triggered. Operators may become placid and ignore a true process shift that may 

prove to be costly in the future.   Therefore, in this study, the proposed method uses the multivariate 

control chart as the primary detection method, while the marginal univariate control chart described in 

section 2.3 is used as the diagnostic tool once the multivariate control chart signals an out-of-control 

observation.     

The proposed diagnostic tool, the marginal CUSUM glyphs, is presented in this section. The 

proposed method, integrating marginal CUSUM into one glyph, is a visualization tool for a decision 

support system dealing with multivariate quality characteristics. Specifically, glyphs plotted over time 

are organized in panels of trellis. Every row contains two time series glyphs, i.e., Cpi and Cni. Cpi is a glyph 

of ith observation for the upper (positive)-side CUSUM statistic, while Cni is a glyph of the same 

observation for the lower (negative)-side CUSUM statistic. Each vertex in the glyph represents a 

response that shares equal space around 360 degrees. When a CUSUM statistic becomes large, the 

corresponding vertex would grow in length. On the other hand, an in-control process would have all 

vertices close to the center “dot.” Finally, a circle with the radius h encircles the center dot, and this 

circle represents a control limit for each glyph. If a few responses are responsible for an out-of-control 

MCUSUM signal, their marginal CUSUM would show abnormality in the glyph over time leading to the 

out-of-control moment, and those spikes would excess the circle. The following steps describe the main 

procedure of the proposed marginal CUSUM glyphs. 

Step 1: Run MCUSUM until it provides an out-of-control signal at location or time τ assuming one sample 

is taken for each sample period. 

Step 2: Run SD2CUSUM procedure to generate Cp,i , Cn,i  and record any out-of-control o, and last-in-

control location l for each dimension. The out-of-control position for the ith dimension oi is the 

location that excesses the control limit h, while the last-in-control location li is equal to io N   

or io N  for dimension i where N+ and N- are defined in section 2.3. 

Step 3: Construct star glyphs staring from sample periods 1 to τ for both positive and negative glyphs. 

Each glyph consists of a circle with radius of h and spikes with length of Cp,i or Cn,i radiating from 

the center of a circle. We choose to start the spikes from 3 o’clock position and move the spikes 

in counterclockwise direction with identical angle between any adjacent spikes. 
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Step 4: Print out out-of-control o and last-in-control l for each dimension, and display the marginal 

CUSUM glyphs. Out-of-control signals indicate which variables contribute statistics of MCUSUM, 

while last-in-control locations show when these variables become out-of-control. 

 With a stable and in-control process, a glyph on the trellis panel should present a “dot” with 

some tiny spike inside of a circle. However, users might not see some small change by looking at a “dot”, 

for a tiny spike might be difficult to distinguish. Instead of a “dot”, users can add a constant c on both Cp,i 

and Cn,i to expend a “dot” into a polygon shape. The new statistics showing in equation (10) and (11) 

denoted CCp,i and CCn,i would replace the original Cp,i and Cn,i. Also the same c is required to be added to 

the radius h to maintain the same scale of threshold as shown in equation (12). This new limit is denoted 

as H. 

, , 1max[0, ]p i i p iCC c y k C                                                          (10) 

, , 1max[0, ]n i i n iCC c k y C                                                        (11) 

H=c+h                                                                                                        (12) 

 

3.1 An Example to Demonstrate the Use of the Proposed Method 

 An example of 5-dimensional, 20 observations with one sigma mean shift example is presented 

in this section. The dataset is shown in column of x1 to x5 in Table 2. It was generated from the 

multivariate normal distribution. The first 10 observations was simulated as in-control data from a 

multinormal distribution with mean vector μ0=(5,10,15,20,25) and variance-covariance matrix shown in 

equation (13), while the last 10 observations represented out-of-control data from µ1=(6,10,16,20,26), 

i.e. a small mean shift at the first, third and fifth variables, and its variance-covariance structure same as 

that of the first 10 observations.   

1 0.3 0.3 0.3 0.3

0.3 1 0.3 0.3 0.3

0.3 0.3 1 0.3 0.3

0.3 0.3 0.3 1 0.3

0.3 0.3 0.3 0.3 1

 
 
 
  
 
 
  

                                                                 (13) 

A Scatter plot of this example is shown in Figure , in which the dots represent the first 10 

observations, while the squares are for the last ten. The ellipses are 95% confidence contours based on 

the normal assumption. The solid-line ellipses are for the first 10 observations, while the dash-line 

ellipses are for the last 10.  Note that, in reality, one would not know in advance when such a shift takes 

place or if it takes place at all. Even with dots and squares it is difficult to identify the process status. 

At the beginning of the proposed method, the MCUSUM is applied. After using the equations (7), 

(8), and (9) with h=9.46 and k=0.5, the statistic of MCUSUM is showing in the column of C in Table 2 and 

its control chart is showing in Figure . The out-of-control signal occurred starting at 15th observation.  
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 At this point, the diagnostic process begins. The first step is to standardize every dimension by 

using equation (4) where σ=1 and μ0=(5,10,15,20,25). Next, the procedure of two-side CUSUM is applied 

via equations (5) and (6) with h=5 and k=0.5. The marginal CUSUM statistics are shown in Table . 

To Determine Which Variables Contribute to the Out-of-control Signal 

The data of Cp,i and Cn,i where i=1 to 15 in Table  are used to construct the proposed glyphs. After 

applying the traditional star glyphs described in section 2.2 for each Cp,i and Cn,i, the soild-line circle with 

radius=h is also added on each of glyph. In Figure , the proposed glyphs are shown. The graph of “basic” 

is an elementary glyph of a scale. Note that the star glyphs are not visible when the process is in control, 

where the values of Cp,i and Cn,i are close to zero. Therefore, a constant c is added to Cp,i ,Cn,i and h 

according to equations (10) to (12). In this case, the glyphs with c=3 are shown in Figure . There are 

three spikes exceeding the circle, between CCp14 and CCp20 indicating that the means of variables x1, x3, 

and x5 have shifted.  In addition, there is no spike exceeding the circle in any of Cn or CCn. One can 

conclude that no negative mean shift occurred.  

To Determine When Shifts Took Place 

In Table , the 14th observation of Cp statistic in the first dimension is 5.83, which is larger than 

h=5. Thus, it is deemed that the first dimension has shift at 14th observation on positive-side CUSUM. 

Moreover, since the correspond Np,1 of 14th observation is 6, the last-in-control observation is 14-6=8th 

observation according to the definition of last-in-control in section 2.3. Using the same philosophy, the 

third and the fifth dimensions are found to shift at 16th and 17th, respectively. And their last-in-control 

locations are at 10th observation for the third dimension, and 11th observation for the fifth dimension. 

And there is no shift indicated in negative-side CUSUM. The proposed method indicates that variables x1, 

x3, and x5 make contribution to the out-of-control signal at location 8th, 10th, and 11th, respectively. 
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Table . 5-dimensional, 20 observations dataset. 

 x1 x2 x3 x4 x5 C 

1 4.79858 10.0034 15.0335 19.2843 25.0273 0.463891 

2 4.85333 9.1170 14.8924 18.3470 21.8418 2.607937 

3 4.32499 8.9170 16.2335 19.6594 25.6710 1.775256 

4 5.23184 10.2377 14.3568 18.8797 25.0120 2.239928 

5 6.76232 8.4736 14.8295 18.7632 25.3518 3.221392 

6 3.93670 10.0544 14.8085 18.3438 26.4359 2.147643 

7 4.98181 8.9128 12.3676 20.7162 24.5627 2.440458 

8 4.57178 12.2499 15.3191 20.6362 26.2305 2.130893 

9 5.85859 9.7962 14.5142 20.2430 24.0448 0.772875 

10 6.95341 9.3181 15.1976 20.6888 24.6941 1.788469 

11 7.15771 8.9142 15.6287 19.4212 25.4814 3.296222 

12 6.23149 9.7179 16.4945 19.4940 26.2335 5.596017 

13 6.16967 9.5291 17.2668 19.7801 26.9197 7.212117 

14 6.45825 10.9076 15.4995 19.0572 25.7781 8.722549 

15 7.39763 10.4058 15.5910 21.2973 25.9004 11.45267 

16 5.26227 10.2907 17.4474 21.4488 25.6842 13.99988 

17 5.42656 12.8401 18.6317 19.5853 25.1729 15.96414 

18 7.06759 10.2345 16.2082 19.4704 26.4889 15.93851 

19 7.20849 10.2192 13.8677 19.0505 26.8322 16.17303 

20 6.00803 10.2438 15.9425 20.9734 26.3481 18.32671 

 

 
Figure . The scatter plot of the given example.  

 
          Figure . MCUSUM control chart of the given example. 
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Table . The result of two-side standardized CUSUM for the given example. 

(a) SD2CUSUM for Positive Mean Shifts 

i , ,1p iC
 

, ,1p iN
 

, ,2p iC
 

, ,2p iN
 

, ,3p iC
 

, ,3p iN
 

, ,4p iC
 

, ,4p iN
 

, ,5p iC
 

, ,5p iN
 

1 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 

2 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 

3 0.00 0 0.00 0 0.73 1 0.00 0 0.17 1 

4 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 

5 1.26 1 0.00 0 0.00 0 0.00 0 0.00 0 

6 0.00 0 0.00 0 0.00 0 0.00 0 0.94 1 

7 0.00 0 0.00 0 0.00 0 0.22 1 0.00 0 

8 0.00 0 1.75 1 0.00 0 0.35 2 0.73 1 

9 0.36 1 1.05 2 0.00 0 0.10 3 0.00 0 

10 1.81 2 0.00 0 0.00 0 0.28 4 0.00 0 

11 3.47 3 0.00 0 0.13 1 0.00 0 0.00 0 

12 4.20 4 0.00 0 1.12 2 0.00 0 0.73 1 

13 4.87 5 0.00 0 2.89 3 0.00 0 2.15 2 

14 5.83 6 0.41 1 2.89 4 0.00 0 2.43 3 

15 7.73 7 0.31 2 2.98 5 0.80 1 2.83 4 

16 8.90 8 0.00 0 4.81 6 0.78 2 5.53 5 

17 9.06 9 0.00 0 6.64 7 0.19 3 6.75 6 

18 9.35 10 0.00 0 7.00 8 0.00 0 6.44 7 

19 8.93 11 0.00 0 6.12 9 0.00 0 7.75 8 

20 11.18 12 0.87 1 7.04 10 0.16 1 9.56 9 

(b) SD2CUSUM for Negative Mean Shifts 

i , ,1n iC
 

, ,1n iN
 

, ,2n iC
 

, ,2n iN
 

, ,3n iC
 

, ,3n iN
 

, ,4n iC
 

, ,4n iN
 

, ,5n iC
 

, ,5n iN
 

1 0.00 0 0.00 0 0.00 0 0.22 1 0.00 0 

2 0.00 0 0.38 1 0.00 0 1.37 2 2.66 1 

3 0.18 1 0.97 2 0.00 0 1.21 3 1.49 2 

4 0.00 0 0.23 3 0.14 1 1.83 4 0.98 3 

5 0.00 0 1.25 4 0.00 0 2.57 5 0.12 4 

6 0.56 1 0.70 5 0.00 0 3.72 6 0.00 0 

7 0.08 2 1.29 6 2.13 1 2.51 7 0.00 0 

8 0.01 3 0.00 0 1.31 2 1.37 8 0.00 0 

9 0.00 0 0.00 0 1.30 3 0.63 9 0.46 1 

10 0.00 0 0.18 1 0.60 4 0.00 0 0.26 2 

11 0.00 0 0.77 2 0.00 0 0.08 1 0.00 0 

12 0.00 0 0.55 3 0.00 0 0.08 2 0.00 0 

13 0.00 0 0.52 4 0.00 0 0.00 0 0.00 0 

14 0.00 0 0.00 0 0.00 0 0.44 1 0.00 0 

15 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 

16 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 

17 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 

18 0.00 0 0.00 0 0.00 0 0.01 1 0.00 0 

19 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 

20 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 
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Figure . The CMCUSUM glyphs of the given example with c=0. 

 

Figure . The CMCUSUM glyphs of the given example with c=3. 
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4. A Simulation Study 

 To examine the capability of the proposed method, a simulation study is planned to explore 

magnitude of h, number of dimensions, number of dimensions shifted, and type of correlation-

coefficient structures. Figure  shows the detailed experimental plan of the proposed study. The design is 

to test the capability of the proposed method at different types of value of h in terms of absolute value 

of deviation between true shift location and calculated shift location. Each factor combination is 

repeated 1000 times.  Each run contains 100 observations with 1σ mean shifts taking place at 31st 

observation for all planned dimensions. For example, considering a five-dimensional, 100 observations 

dataset with three of five dimensions having a step mean shift, the simulation data set would have the 

first 30 observations generated from the multivariate normal distribution with µ0, while the last 70 

observations are from μ1. The means of the non-shifted dimensions stay at the same magnitudes. The 

variance shift is not considered in this study.   

 

Figure . Experimental design of the proposed method at different types of h. 

Magnitude of h 

 Since h is the major criterion of setting the control limit of CUSUM, it is necessary to test the 

proposed method under different magnitudes of h. The smaller the value of h the more quickly the 

SD2CUSUM detects a shift. However, the type I error would increase. On the other hand, if h has been 

increased, the type II error would increase. In this paper, six types of value of h are applied to, i.e., h=3, 4, 

5, 6, 7, and 8.  

Number of Dimensions 

 The number of dimensions is one of the factors considered in implementing multivariate control 

charts, especially in visualization of multivariate dataset. In this study, four dimensions are considered. 

They are 3, 5, 10, and 20. This factor allows us to study how effective the proposed method is when the 

dimension increases. 

Number of Dimensions Shifted 

 There are three different levels of number of dimensions shifted in this study: small, medium, 

and large. For small level, 1/3 of number of dimensions shifted. For example, if one dimension has 1σ 

Magnitude of h: 
 h=3, 4, 5, 6, 7, 8 
 
Number of Dimension:  

dim=3, 5, 10, 20 
 
Number of Dimensions Shifted:  

1. Small: 1/3 of number of dimensions shifted—3(1); 5(2); 10(3); 20(5) 
2. Medium: half of number of dimensions shifted—3(2); 5(3); 10(5); 20(10) 
3. Large: All of number of dimensions shifted—3(3); 5(5); 10(10); 20(20) 

Note: 3(2) means two out of three dimensions are shifted. 
 
Types of Correlation-Coefficient Structure: 
 ρ=0, 0.5, 0.9 
 
Input Data Series Type: 
 Multivariate Normal Distribution 
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mean shift in a three-dimensional dataset, this case is in the small level category. That is, the first 30 

observations follow multivariate normal distribution with μ0=(5, 10, 15), while the last 70 observations 

are generated from multivariate normal distribution with µ1=(6, 10, 15). The notation of this case is 3(1). 

In addition, the other small number of dimension shifted cases has 2, 3, and 5 dimensions shifted for 5, 

10, and 20 dimensions, respectively. For the medium level, half of number of dimensions shifted, while 

all of number of dimensions has shifted for large number of dimensions shifted cases.  Note that the 

goal of this factor is to study the effect of how wide-spread mean shifts are to the responses rather than 

the magnitude of the shifts. 

Types of Correlation-Coefficient Structure 

 Different types of variance-covariance structures are also considered in this simulation. Without 

the loss of generality, three types of correlation-coefficient matrices are used to study no, medium and 

high correlations among the responses. The correlation-coefficient structure for the simulated data that 

generated from multivariate normal distribution is the following.  

1

1





 
 

 
 
  

, where ρ=0, 0.5, and 0.9                                             (11) 

4.1 Simulation Results and Discussions 

 This section shows the computational results of the proposed simulation study using 1,000 runs 

for each combination – 216,000 runs in total. The performance of the proposed method is measured by 

four statistics: the correct identification percentage, the average absolute value of deviation, type I 

error rate (false alarm rate), and type II error rate. These four statistics will be applied to the last-in-

control signals. The first one is the bigger the better, while the rest of which are the smaller the better. 

The correct identification percentage indicates how accurate the system is to identify which responses 

are responsible for the out-of-control signal. The average absolute value of deviation measures the 

distance between true location of a mean shift and its calculated location among all dimensions that 

exhibit mean shifts. Specifically, it is calculated the follows: 

Average absolute value of deviation = 1

-
m

i i

i

l t

m




                                              (12) 

where li is the calculated location of ith dimension of dataset, ti is the true location of ith dimension, and 

m is the number of dimensions that are identified correct out of control. Under the measure of those 

out-of-control dimensions, the type I error rate, or the false alarm rate, is the probability when the 

proposed method indicates a dimension is out of control while, in truth, it is not. The type II error rate, 

on the other hand, is the probability when it fails to identify a shifted dimension. The desired result for 

the correct identification percentage is 100%, while that of the other three statistics is the closer to zero 

the better.  
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The suggestion of h for the proposed method provides a guideline for implementing the 

proposed method and will be discussed. The simulation results are shown in Figure  to 14, and their 

corresponding tables are available from the authors upon request. For example, Figure (a) indicates the 

simulation results of small number of dimensions shifted with ρ=0. Each sub-chart consists of four 

performance measures – correct identification percentages (correctness), average absolute value of 

deviation(dev), type I error rate (in %) (type I), and type II error rate (in %)(type II). Specifically Figure  (a) 

summarizes the simulation result of small number of dimensions shifted under different h with ρ=0, 

while Figure  (b) and 12(c) are for ρ=0.5 and ρ=0.9 respectively. Next level down, Figure  (a-1) to (a-4) 

depict four performance criteria respectively.  For example in Figure  (a-1), correct identification 

percentage plots against the dimension.  Although h=3 and 4 have the highest correct identification 

percentages, they also have high deviation and type I error rate. Therefore, h=5 is a more balanced 

control limit for this case because it has larger correct identification percentages and lower type II error 

rate than those of h=6, 7, and 8. Although values of deviation and type I error rate at h=6, 7, and 8 are 

lower than those of h=5, they are close to each other.  

In the case of small number of dimensions shifted with ρ=0.5 as shown in Figure (b), h=4, 5, and 

6 have the top three highest percentages of correct identification. The control limit h=4, however, have 

higher values of deviation and type I error rate than those of h=5 and h=6. The differences between h=5 

and 6 for all criteria and dimensions are small. Thus, h= 5 or 6 is the recommended control limit for this 

case if the correct identification percentage and accuracy of where a process shift takes place are 

important.  Note that h=7 and 8 are chosen due to their poor correct identification percentages 88.3% 

and 78.1% as oppose to those( 98.3% and 95.9%) of h= 5 and 6.  

Finally the case of ρ=0.9 with small number of dimensions shifted is considered, h=5, 6, 7, and 8 

have larger correct identification percentages than that of h=3 and 4. Moreover, h=7 and 8 have very 

small value of deviation and type I error rate shown in Figure  (c-3). However, Figure  (c-4) indicates high 

type II error rate in 3 and 5 dimensional datasets of h=7 or 8 may not be acceptable. Therefore, it is 

suggested that h=5 or 6 is used as the control limit in this case. In summary, h=5 is a good choice for all 

dimensions and covariance structure when the number of dimensions exhibiting shifts is small. 

 In the case of the medium number of dimensions shifted, half of response variables contain 

mean shifted. The simulation results are shown in Figure . In Figure  (a-1), h=5 performs a better result 

than any others for all ρ because it has high correctness rate, small deviation, type I error rate, and type 

II error rate for last-in-control signal. 

 The final situation is when all dimensions shift. Since all mean levels of dimensions have shifted, 

there is no type I error occurred in this case.  The computational results are shown in Figure  (a-1) to (c-

4). All of them show that h=5 has the best choice among h because of its balanced performance in terms 

of acceptable correct identification percentages, small deviation and type II error rate. Thus, h=5 is a 

recommended control limit for the proposed method when large number of dimensions shifted 

happened. From the above analysis, h=5 seems to provide the best balanced performance for all 

dimensions, covariance structure, and number of dimensions exhibiting shifts. 
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(a) Small Number of Dimensions Shifted with ρ=0
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(b) Small Number of Dimensions Shifted with ρ=0.5
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(c) Small Number of Dimensions Shifted with ρ=0.9

 
Figure .Performance statistics for small level of number of dimensions shifted with (a) ρ=0, (b) ρ=0.5, and (c) ρ=0.9 under 
different h. The y axis of plots (1) to (4) are correct classification percentage, average absolute value of deviation, type I error 
rate in percentage, and type II error rate in percentage, respectively. The x axis represents the numbers dimension for last-in-
control location.  
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(a) Medium Number of Dimensions Shifted with ρ=0
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(b) Medium Number of Dimensions Shifted with ρ=0.5
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(c) Medium Number of Dimensions Shifted with ρ=0.9

 
Figure . Performance statistics for medium level of number of dimensions shifted with (a) ρ=0, (b) ρ=0.5, and (c) ρ=0.9 under 
different h. The y axis of plots (1) to (4) are correct classification percentage, average absolute value of deviation, type I error 
rate in percentage, and type II error rate in percentage, respectively. The x axis represents the numbers dimension for last-in-
control location. 
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(a) Large Number of Dimensions Shifted with ρ=0
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(b) Large Number of Dimensions Shifted with ρ=0.5
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(c) Large Number of Dimensions Shifted with ρ=0.9

  
Figure . Performance statistics for large level of number of dimensions shifted with (a) ρ=0, (b) ρ=0.5, and (c) ρ=0.9 under 
different h. The y axis of plots (1) to (3) are correct classification percentage, average absolute value of deviation, and type II 
error rate in percentage, respectively. The x axis represents the numbers dimension for last-in-control location. 
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Simulation results of small number of dimensions shifted

 
Figure . Simulation results of small number of dimensions 

shifted. 

Table . Simulation results of small number of 
dimensions shifted. 

h 
Correct 
ident. % 

Type I 
Err. Rate 
(%) 

Type II 
Err. Rate 
(%) 

Avg.  abs. 
value of 
Deviation 

3 83.733% 13.698% 2.569% 7.328 

4 91.650% 4.127% 4.223% 4.645 

5 92.446% 1.145% 6.409% 3.620 

6 90.725% 0.349% 8.926% 3.238 

7 88.421% 0.099% 11.480% 3.056 

8 85.760% 0.030% 14.210% 2.943 
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Figure . Simulation results of medium number of 

dimensions shifted. 

Table . Simulation results of medium number of 
dimensions shifted. 

h 
Correct 
ident. % 

Type I 
Err. Rate 
(%) 

Type II 
Err. Rate 
(%) 

Avg.  abs. 
value of 
Deviation 

3 85.394% 9.323% 5.282% 6.082 

4 89.114% 2.811% 8.075% 4.164 

5 87.591% 0.788% 11.620% 3.469 

6 83.887% 0.223% 15.890% 3.202 

7 79.725% 0.064% 20.211% 3.084 

8 75.119% 0.020% 24.861% 3.046 

 

 

876543

100.000%

80.000%

60.000%

40.000%

20.000%

0.000%

5.5

5.0

4.5

4.0

3.5

3.0

h

C
o

rr
e

c
tn

e
s
s
, 

T
y

p
e

II

D
e

v
ia

ti
o

n

Correctness

Type II

Deviation

Variable

Simulation results of large number of dimensions shifted

 
Figure . Simulation results of large number of dimensions 

shifted. 

Table . Simulation results of large number of 
dimensions shifted. 

h 
Correct 
ident. % 

Type II 
Err. Rate 
(%) 

Avg.  abs. 
value of 
Deviation 

3 94.884% 5.116% 5.332 

4 91.264% 8.736% 3.832 

5 86.474% 13.526% 3.336 

6 80.167% 19.833% 3.159 

7 73.063% 26.937% 3.080 

8 65.346% 34.654% 3.010 
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Table  to 6 present the simulation results in another perspective by averaging performance 

statistics over all covariance structures and dimensions. For example, the correct identification 

percentages of h=3 is an average value of different types of ρ and different numbers of dimensions 

when h=3. Figure  to 17 correspond to Table  to 6. An h should be chosen so that the correct 

identification percentage is as large as possible while the rest of the performance statistics are as small 

as possible. Note that y axis on the left in Figure  to 17 are percentages for criteria correct identification 

percentage, type I error rate in percentage, and type II error rate in percentage while that on the right-

hand side is for the deviation from the true change point. 

Figure  to 17 provide an overall guideline for choosing h that is determined by three criteria – 

correct identification percentage, type II error rate, and average absolution deviation. An ideal choice of 

h provides a high correct identification percentage, a low type II error rate, and a small deviation from 

the true out-of-control location.  However, users may not know what kind of underlying covariance 

structure among responses or number of responses that may have shifted in practice. These three 

figures suggest that h=5 and 6 provide the best overall balanced performance because the line segments 

of these three h values are very close together. Note that h=5 was recommended earlier from the 

analyses based on Figure  to 14. The overall comparisons here provide further confirmation. For 

example, if a user chooses h=5 to a situation where medium number of dimensions may be likely to shift, 

it will provide 87.6% correct identification percentage, 0.79% type I error rate, 11.6% type II error rate, 

and 3.5 of its average deviation from the true spot. This user should contemplate whether h=6 is a 

better choice because the criterion values of this new choice are 83.9% correct identification percentage, 

0.22% type I error, 15.9% type II error, and 3.2 as its average deviation. Do the gains in type I error (-

0.57%) and average deviation (-0.3) outweigh the loss in correct identification (-3.7%) and type II error 

rate (+4.3%)? 

Because there are multiple criteria present in this problem, a solution is generally reached by 

considering the trade off of all criteria. Eventually a compromised solution is generated. This type of 

problems often referred to as the multi-criteria decision making is beyond the scope of this work. Please 

refer to Triantaphyllou (2000) for more details. 

5. Conclusions and Future Study 

 This study provides a visualization tool for making quality-related decision when the number of 

dimensions is large such as 20. The proposed method, the marginal CUSUM glyphs, can help users not 

only decompose the traditional multivariate control chart, such as, Hotelling’s T2, multivariate EWMA, or 

multivariate CUSUM, but also visualize the original dataset. Unlike traditional multivariate control charts 

that only indicate an out-of-control condition has occurred, the proposed method provides the 

information which variable are responsible as well as where or when a variable is out of control. From 

the simulation results, the proposed method is capable of detecting mean shifts.  In this study, according 

to the simulation results, h=5 and 6 are recommended to be applied to all situations regardless of the 

covariance structure among responses or how many of them exhibiting shifts. The tables and figures 
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based on the simulation results also provide a user guideline for choosing other values of h via the 

correct classification percentage, magnitude of deviation, and false alarm rate and type II error rate. 

 For future research, the following issues can be studied. First, the effect of outliers should be 

considered. Outliers can make the statistics of SD2CUSUM increase dramatically to cause unnecessary 

out-of-control signals. To deal with this issue, filtering the dataset may be necessary. Techniques of 

outlier identification for high dimensional dataset include MVE/MCD (Rousseeuw, 1985; Rousseeuw and 

van Driessen, 1999), OGK estimator (Maronna and zamar, 2002), and PCOut (Filzmoser et al., 2008).  

In this study, the highest number of dimension is 20. It is not a trivia task to expand the 

proposed method to response dimension over 100 or more. The angles between spikes for 50 and 100 

dimensions are 7.2 and 3.6 respectively. The more spikes are within a circle in a star glyph the more 

clutter they cause. When a process is in control, cluttering is not an issue because all spikes are within 

the circles of control limits. Users do not need distinguish individual dimension. However, when there 

are many spikes that exceed control limit circles, it depends on how close these spikes are located. If 

they are equally spaced or far apart, the results of display are usually satisfactory. On the other hand, if 

all out-of-control spikes are adjacent to each other, users need to consult with the corresponding 

diagnostic report to make out which spikes exceed the circles. Another way to address high dimension 

problem is to reduce the number of dimensions, such as using principle component analysis (PCA). 

However, once PCA is applied to the original dataset, the original domain is transferred to a much 

reduced domain. It is hard to identify which original dimensions contribute to an out-of-control signal.  

Finally, the situation in which the number of dimensions is larger than the number of 

observation is challenging.  Neither can the proposed method nor traditional multivariate control charts 

cope with this situation because the estimate of the variance-covariance structure becomes a nontrivial 

task. Boyles (1996) and Chang and Ho (2001) have provided some ground work in this area. 
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