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Abstract 

Plant phenotyping has been studied for decades for understanding the relationship 

between plant genotype, phenotype, and the surrounding environment. Improved accuracy and 

efficiency in plant phenotyping is a critical factor in expediting plant breeding and the selection 

process. In the past, plant phenotypic traits were extracted using invasive and destructive 

sampling methods and manual measurements, which were time-consuming, labor-intensive, and 

cost-inefficient. More importantly, the accuracy and consistency of manual methods can be 

highly variable. In recent years, however, photogrammetry and 3D modeling techniques have 

been introduced to extract plant phenotypic traits, but no cost-efficient methods using these two 

techniques have yet been developed for large-scale plant phenotyping studies. High-throughput 

3D modeling techniques in plant biology and agriculture are still in the developmental stages, but 

it is believed that the temporal and spatial resolutions of these systems are well matched to many 

plant phenotyping needs. Such technology can be used to help rapid phenotypic trait extraction 

aid crop genotype selection, leading to improvements in crop yield. 

In this study, we introduce an automated high-throughput phenotyping pipeline using 

affordable imaging systems, image processing, and 3D reconstruction algorithms to build 2D 

mosaicked orthophotos and 3D plant models. Chamber-based and ground-level field 

implementations can be used to measure phenotypic traits such as leaf length, rosette area in 2D 

and 3D, plant nastic movement, and diurnal cycles. Our automated pipeline has cross-platform 

capabilities and a degree of instrument independence, making it suitable for various situations.  
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Chapter 1 - Introduction 

 Plant high-throughput phenotyping 

Phenotyping is acquiring a set of observable characteristics of plants resulting from the 

interaction of their genotypes with the environment (Wanscher 1975; Blum et al. 1982). 

Traditional phenotyping methods often rely on simple tools like rulers and other measuring 

devices, along with large amounts of manual work, to extract the desired trait data. Compared to 

advanced genotyping methods such as the latest sequencing technologies, traditional 

phenotyping methods are time-consuming, labor-intensive, and cost-inefficient. This limits our 

ability to quantitatively understand how genetic traits are related to plant growth, environmental 

adaptation, and yield.  

In the past several years, tremendous interest in plant high-throughput phenotyping 

(HTP) techniques has arisen. These techniques use sensor systems and automated computer 

algorithms to extract phenotypic traits for large genetic mapping populations using non-

destructive and non-invasive sampling methods (Fiorani and Schurr 2013). With such new 

techniques, plant phenotypes can be linked with functional genomics and environmental factors, 

thus facilitating plant breeding and leading toward improved crop production and yield stability. 

This is essential to meet the expected demands of the world population by 2050 (Bolon et al. 

2011; Bongaarts 2014).  

Typically, the extraction of data via HTP methods involves a series of discrete steps that 

must be reliably executed in sequence. Such a set of steps is referred to as a “pipeline”. 

Commercial phenotyping systems such as GROWSCREEN⁄FLUORO (Walter et al. 2007; 

Jansen et al. 2009), PHENOPSIS (Granier et al. 2006), and the LemnaTec Scanalyzer HTS 
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(Furbank and Tester 2011; Green et al. 2012; Chen et al. 2014; Dornbusch et al. 2014) have been 

used in some small-scale research laboratories for automating plant phenotyping in controlled 

environments. Larger-scale, fully-automated high-throughput phenotyping facilities have also 

been deployed in the greenhouses or growth chambers of private sector firms such as Monsanto 

and Dupont Pioneer and in the most advanced national plant research institutions such as the 

Australian Plant Phenomics Facility, the European Plant Phenotyping Network, and USDA; 

however, these indoor facilities cannot be used for field phenotyping. Additionally, the cost of 

these systems is beyond most research laboratories’ budgets, thus slowing the advance of 

science. 

In the field, most phenotyping systems have mainly focused on automated solutions for 

data acquisition using platforms that combine a vehicle and perhaps some robotics with imaging 

systems and sensors. Less well-developed are complete data pipelines that automate data storage, 

processing, and analysis (White et al. 2012). The result can be that slow manual collection of 

small amounts of data is replaced by slow manual management of large amounts of 

automatically-collected data. Therefore, what is needed is integrated HTP and data management 

systems incorporating both data acquisition and processing. Ideally, these systems would be 

sufficiently generic to be used with minimal or no alteration in both laboratory and field settings. 

We will present such a system in this and the chapters that follow, but first we will describe the 

biological system of interest.  

 The model plant Arabidopsis thaliana 

The plant used as the test subject in this study is Arabidopsis thaliana (L.) Heynh. It is a 

small, rapidly maturing plant in the Brassicaceae that is native to Europe, Asia, and parts of 

North Africa. It has also invaded North America on several occasions and is, therefore, virtually 

http://www.lemnatec.com/speaker/phenodays-2012-talks-jasec-benak/
http://www.pioneer.com/home/site/about/news-media/news-releases/template.CONTENT/guid.2041A14D-06A1-15E9-868E-BF415BF82D84
http://www.plantphenomics.org.au/
http://www.plant-phenotyping-network.eu/eppn/structure
http://www.nifa.usda.gov/nea/plants/pdfs/%20whitepaper_finalUSDA.pd
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ubiquitous from latitude 25 to 65 N, except for Greenland. It is also found in parts of South 

America, Sub-Saharan Africa, Australia, and New Zealand. Arabidopsis thaliana is an important 

model system that has been used for identifying plant genes and determining their functions 

(Arabidopsis Genome Initiative, 2000). It has a small genome and its small stature and rapid 

development times make it an ideal genetic model plant for the same reasons that Drosophila is 

an ideal genetic model for animals. It was the first plant to have its genome sequenced (in 2000).  

Figure 1.1 shows an Arabidopsis plant with key parts labeled. This study primarily 

focuses on vegetative development and the critical phenotypes are the areas, lengths, and angles 

of the rosette leaves, which form a circular pattern in close proximity to the ground. 

 Shade-avoidance responses 

All plants are vulnerable to shading by taller neighbors and this is particularly so in 

Arabidopsis because its rosette is close to the ground. Shade-avoidance behaviors form a suite of 

responses that plants can undertake to find more light. They range from increased leaf 

elongation, alteration of leaf angles, growth in a more upward rather than outward direction, and 

even flowering more rapidly (Morelli and Ruberti 2000; Mullen et al. 2006).  

Shade-avoidance responses are triggered by the reduced amounts of photosynthetically 

active radiation (PAR) transmitted through or reflected from plant tissues. In plant leaves, 

chlorophyll absorbs light more strongly in the red portion of the spectrum than in the longer-

wavelength, far-red region (Smith, 1982). Phytochrome is an important plant pigment that has 

two molecular configurations that are differentially sensitive to these two wavebands; therefore, 

the plant is able to sense the ratio of red to far-red wavelengths (R: FR). Low ratios are an 

accurate signal of neighboring plant proximity and, therefore, a positive indicator of competitive 

intensity (Ballare et al. 1990; Smith et al. 1990; Gilbert et al. 2001; Schmitt et al. 2003). Thus, 



4 

shade-avoidance phenotypes constitute an interesting complex of traits whose intricate 

interactions with each other and with the environment are therefore widely studied (Weijschedé 

et al. 2006; Schmitt et al. 2003). 

As listed above, leaf length, rosette area, and leaf angles are widely-studied traits related 

to shade-avoidance responses. Chitwood et al. (2012) manipulated far-red light to induce 

changes in leaf length. This study found a linear relationship between total leaf length and the 

square root of total leaf area. This study involved destructive sampling of fully-developed leaves. 

Studies of leaf angles are not only important in shade avoidance but also in studies of repetitive 

daily patterns of activity. Under some circumstances, plant leaves can rise and fall in an 

oscillatory behavior that can serve as a proxy for the cycling of the plant’s circadian clock (Hong 

et al. 2013; Dornbusch et al. 2014). In indoor environments (although not in the field), 

Arabidopsis plants exhibit these nastic movements (Greenham et al. 2015).  

In many shade-avoidance and growth-stage related studies, leaf area, leaf length and 

rosette area were obtained using mechanical measuring tools, such as calipers or rulers (Poethig 

and Sussex 1985; Boyes et al. 2001; Weijschedé et al. 2006, Gonzalez et al. 2010). The accuracy 

of those data, however, is limited by systematic error from the precision of conventional 

measuring tools along with human errors during invasive plant handling and subjective 

interpretation. The manual measurement process is also time-consuming and labor-intensive. 

Arvidsson et al. (2011) indicated a major bias in that the measurements of one stage during a 

particular plant developmental period are insufficient to interpret the phenotypes at other stages. 

Therefore, continuous time-series measurements during the entire developmental period are 

needed for studying shade-avoidance traits and, presumably, for other types of plant 

investigations as well. 
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 Objectives 

In the HTP pipeline to be described, the three traits of total leaf length, leaf area, and leaf 

angle will be detected by both 2D and 3D processing in a laboratory environment. The first two 

will also be monitored in the field using the 2D components of the same pipeline. 

This pipeline is low-cost, fully-automated, and, as just noted, generic. That is, the 

pipeline was specifically designed at the application level to have cross-platform capabilities and 

a degree of instrument independence. As depicted by the flowchart shown in Figure 1.2, the 

pipeline contains five sections. 1) Image data acquisition used different platforms in indoor vs. 

field environments to collect time-series images of plant development. Indoor, stationary 

imaging systems were designed and mounted on each of six shelves in a growth chamber of 

University of California, Davis (UCD). At the University of Wyoming (UWY), a mobile 

imaging system was developed for use in the field. 2) Image data storage, transmission, and 

management involved the use of servers at UCD, UWY, and Kansas State University (KSU). For 

both the chamber and field experiments, images were stored locally and then transmitted via the 

iPlant Collaborative (http://www.iplantcollaborative.org/) (iPlant) to servers at KSU. This 

resulted in three complete backups of all image sets: one at the origin, one at iPlant, and one at 

KSU. 3) Image processing operations include pre-processing, orthophoto generation, and image 

segmentation. 4) Metadata reconciliation is necessary because metadata generated by different 

sources (i.e., human-entered data and/or some automated data) may conflict regarding the 

identity of each image. Reconciliation yields the most accurate pairings of genotype and 

phenotype data. 5) Phenotype extraction includes the machine-vision operations that yield the 

biological data that comprise the ultimate goal of the system. Python, a high-level scripting 

language, was used to connect and automate the sections.  

http://www.iplantcollaborative.org/
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 In Chapter 2, we develop the pipeline in the context of a growth chamber experiment. It 

extracts data on total leaf length and 2D rosette area for a set of 1050 distinct Arabidopsis 

genetic lines comprising a nested association mapping (NAM) population. A NAM population is 

a set of plants specifically designed to permit measured traits to be associated with genomic 

regions by a particular form of statistical analysis (Brachi et al. 2010). Using the same pipeline, 

the relationship between these two traits will be analyzed both in the indoor environment where 

it was developed and also in the context of a field experiment using the same 1050 lines. This 

comparison will reveal how the pipeline is independent of the particular imaging platform used, 

as this is different for the two environments.  

In Chapter 3, we used the same pipeline over time to extract hourly measurements of 2D 

rosette area under the indoor environment for analyzing plant growth and plant nastic 

movements across multiple diurnal cycles. In this context, “2D” means that the nastic 

movements were detected via the influence of leaf angle changes on apparent leaf lengths and 

areas. A shortcoming of the 2D approach is that there is no way to correct the length and area 

estimates to account for those movements; however, we then proceed to exploit 3D information 

to construct just a correction. The result is a novel system that is able to track both nastic 

movements and plant growth from the same images, something not previously possible.  
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Figure 1.1 Potted Arabidopsis thaliana plant. 
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Figure 1.2. Flowchart of the high-throughput phenotyping pipeline. 
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Chapter 2 - High-throughput phenotyping pipeline development 

 Introduction 

Global crop production and plant biology is facing a tremendous challenge in that current 

production rates will not provide sufficient food to meet the demands of the world’s population 

by 2050 (Bongaarts 2014). Previous studies (Furbank et al. 2009; Reynolds et al. 2009; Tester 

and Langridge 2010) showed that traditional breeding programs cannot sufficiently increase 

annual crop production for the three major cereal crops: rice, maize, and wheat. In the past 

decade, advances in gene technology, such as next generation DNA sequencing, have provided 

various means to improve plant breeding techniques. With these new techniques, breeders can 

potentially increase the rate of genetic improvement by molecular breeding (Phillips 2010).  

Initial molecular genetics studies focused on studying Arabidopsis thaliana to gain an 

understanding of plants in general. O’Malley and Ecker (2010) reported that homozygous 

genome-wide knockout lines were available in Arabidopsis thaliana. Weigel and Mott (2009) 

stated that 1001 Arabidopsis ecotypes were sequenced to provide a comparative genomic 

database. Similarly, the genome sequences of many crops, such as rice, maize, wheat, sorghum, 

and barley, have also been obtained due to the dramatic reduction in sequencing costs in the past 

few years (Furbank and Tester 2011). Because of high-throughput genotyping, it is possible to 

develop large mapping populations and diversity panels for plant breeding (McMullen et al. 

2009).  

 Although genotyping techniques have improved dramatically, methods of extracting 

phenotypic traits for large mapping populations are much less well-developed. This greatly limits 

our ability to quantitatively understand how genes relate to plant growth, environmental 
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adaptation, and yield. To remedy this, the genetic data need to be carefully and comprehensively 

linked to plant phenotypic traits in real-world environments (Miyao et al. 2007). In contrast to 

high-throughput genotyping that offers rapid and inexpensive genomic information extraction, 

conventional plant phenotyping methods are still labor-intensive and cost-inefficient. Plant 

phenotyping methods for smaller plants, such as Arabidopsis, are mainly dependent on intensive 

manual work for sampling, handling, and measuring plants often invasively, if not fully 

destructively. Due to this time-consuming process, very few phenotypic measurements can be 

acquired during the entire growing period (Arvidsson et al. 2011).  

 In the past few years, there has been increased interest in high-throughput phenotyping 

approaches in controlled indoor environments (Fiorani and Schurr 2013). These new approaches 

linking functional genomics, phenomics, and plant breeding are needed to improve both crop 

production and crop yield stability and also for efficient screening of high-yielding/stress-

tolerant varieties (Bolon et al. 2011). Walter et al. (2007) and Jansen et al. (2009) used the 

GROWSCREEN⁄FLUORO system to measure chlorophyll and leaf counts. Granier et al. (2006) 

utilized the PHENOPSIS system to automate the soil water content control for screening soil 

water deficit response. Many studies (Furbank and Tester 2011; Dornbusch et al 2012; Green et 

al. 2012; Chen et al. 2014; Dornbusch et al. 2014) have used LemnaTec Scanalyzer HTS systems 

(http://www.lemnatec.com) to scan plant surfaces with imaging, laser systems to acquire and 

analyze plant images, or 3D point clouds for extracting certain phenotypic traits. The main 

advantage of the Scanalyzer HTS is that it is a fully-automated processing pipeline containing 

image acquisition, storage, management, and processing components, along with some 

subsequent statistical analyses of the resulting data.  

http://www.lemnatec.com/
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Some larger-scale, fully-automated high-throughput phenotyping facilities have also been 

deployed in the greenhouses or growth chambers of private sector firms such as Monsanto and 

Dupont Pioneer and the most advanced national plant research institutions, such as the Australian 

Plant Phenomics Facility, the European Plant Phenotyping Network, and USDA. In these 

installations, robotics, precise environmental control, and remote sensing technologies are used 

to monitor and assess plant growth and development over time. Such high-end facilities require 

budgets far beyond those of most research laboratories, however, and may not be suitable for all 

situations, such as field environments.  

To date, current field phenotyping approaches have mainly focused on automated 

solutions for data acquisition using platforms that integrate a vehicle, robotics, imaging systems, 

and sensors. Although this is changing, less work has been directed toward automating data 

storage, processing, and analysis. Due to these considerations and limitations, high-throughput 

phenotyping under field conditions has not yet reached its full potential.  

Many previous indoor and field studies used imaging systems (cameras or scanners) and 

invasive sampling methods (excised plant parts) to extract phenotypic traits (Candela et al. 1999; 

Pérez-Pérez et al. 2002; Cookson et al. 2007; Bylesjö et al. 2008; Ali et al. 2012; Chitwood et al. 

2012). These studies, however, failed to take into account the optical distortion generated by 

imaging system lenses and the perspective distortion created by the angle of view. True distances 

and areas cannot be determined from a 2D image if either optical distortion or perspective 

distortion are present, and merely facing the imagers straight down does not fix this problem. In 

particular, if a large number of plants are clustered for imaging, most of the plants will not be at 

the center of each individual frame. The plants on the corners of each frame will be distorted by 

the perspective viewing angle of the wide-angle lens (Figure 2.1). The optical distortion and 

http://www.lemnatec.com/speaker/phenodays-2012-talks-jasec-benak/
http://www.pioneer.com/home/site/about/news-media/news-releases/template.CONTENT/guid.2041A14D-06A1-15E9-868E-BF415BF82D84
http://www.plantphenomics.org.au/
http://www.plantphenomics.org.au/
http://www.plant-phenotyping-network.eu/eppn/structure
http://www.nifa.usda.gov/nea/plants/pdfs/%20whitepaper_finalUSDA.pd
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perspective distortion of the imaging system must therefore be removed before measuring any 

geometric quantities from a 2D image. 

Therefore, in this chapter, we present a low-cost and fully-automated high-throughput 

imaging-based phenotyping pipeline suitable for both controlled environments and the field. This 

pipeline has three advantages compared to other existing pipelines: 1) a low-cost imaging 

system, 2) elements of instrument independency, and 3) cross-platform capability. The first 

advantage is that off-the-shelf, low-cost digital cameras were used as imaging devices instead of 

other possible remote sensors. This technique allows phenotypic traits (e.g., leaf length, rosette 

area, diurnal plant nastic movements, and plant vegetation conditions) to be extracted and 

measured directly from images.  

The second advantage of this pipeline is a degree of instrument independency. For 

example, high-level scripts were used to interface with camera-manufacturer–supplied image 

processing software. Because many camera manufacturers provide similar tools, exchanging 

cameras becomes mainly a matter of altering the interface scripts.  

The third advantage is cross-platform capability. Although the image data acquisition and 

data transfer methods may vary in different applications, the pipeline has a generic structure so 

that it can be deployed on different phenotyping platforms in multiple environments with 

minimal modification. Specifically, the pipeline was deployed on two different imaging 

platforms: a stationary growth chamber platform and a movable field platform. The novel, 

generic features enabling the pipeline to operate in these very different environments are outlined 

next.  

In particular, the pipeline extracts plant phenotypic traits by: 1) removing image optical 

distortion and perspective distortion, and 2) applying mathematical algorithms to analyze rosette 
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parameters (e.g., rosette center, leaf tips) for total leaf expansion and 2D rosette area 

measurements. The workflow for image analysis and extracting rosette parameters from 2D 

images is shown in Figure 2.2. 

 Materials and methods 

 Imaging platform 

 Indoor imaging platform 

The pipeline development was part of a growth chamber experiment conducted at 

University of California, Davis (UC-Davis) for studying the shade-avoidance response of an 

Arabidopsis NAM population. A total of 108 Canon Powershot S95 cameras were mounted 

facing straight down on six shelves—three shelves for simulating sun and three shelves for shade 

(Figure 2.3A and B). On each shelf, 18 cameras were mounted in a 2-row stationary camera 

frame 0.4-m height above the shelf surface. Each shelf held 24 (three rows of eight) 4-by-4 pot 

flats within a 0.80-by-2.13-m area.  

Each camera was assigned a three-digit ID comprised of shelf number (1–6), row number 

(1–2), and camera position (1–9), in that order. Figure 2.3C is one individual image showing the 

field-of-view (FOV) of each camera and the color dot systems for tracking plant rotation. (The 

color-dot system is described below in the section on indoor genotype assignment.) 

All of the cameras were set on manual focus, manual exposure mode (F7.1, 1/25 s, auto 

white balance), and a 28-mm (35-mm equivalent) focal length. A modified intervalometer script 

and the Canon Hack Development Kit (CHDK) firmware were installed on all of the cameras to 

trigger them simultaneously at the start of each hour. In order to prevent cameras from 

overheating, the LCD screen of each camera was turned off by this customized script after each 
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image was taken. All of the images were saved as Canon CR2 RAW format for preserving the 

maximal amount of geometric, spectral, and camera information.  

 Field imaging platform 

The same genotypes of Arabidopsis used in the chamber were also planted outdoors at 

the University of Wyoming (UWY) Plant Science Station in Laramie. Plants were grown for a 

few days in biodegradable pots in the greenhouse and then transplanted to the field in a 

randomized block design. They were placed in a 10-cm grid with 14 rows and 6 columns. Two 

Canon EOS REBEL T3i DSLR cameras with Canon EF 20mm f/2.8 wide-angle lens were 

mounted on a moveable camera frame at a 95-cm height above the ground (Figure 2.4). Instead 

of facing straight down as in the chamber pipeline design, both cameras were mounted angled 

slightly towards each other to maximize the overlap area of their respective FOV.  

For stability and repeatability, the camera mount was placed on a metal frame 

surrounding each plot. The inner frame dimensions were 153.0 cm by 73.6 cm. To image the 

whole plot, the camera mount was first moved to six fixed positions in sequence and pictures 

were taken. These six pairs did not fully capture all plants, but, because the cameras were on one 

side of the mount, a seventh position would only have seen the ground outside the plot. 

Therefore, the camera mount was turned 180 degrees and a final, seventh pair of pictures was 

taken.  

Two Canon flashes with diffusers were attached on opposite sides of the camera mount. 

These served to limit the influence of the ambient light changes during the exposure interval and 

minimize camera mount shadows. Each flash was camera-controlled through an extension cable. 

Both cameras were set on manual focus, manual exposure mode (F9, 1/200 s, auto white 

balance). A customized camera trigger was built so both cameras fired simultaneously.  
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 Image storing, management, and transfer 

 Indoor image storing, management, and transfer 

All cameras were connected to a local data server at UC-Davis via USB cables for 

transferring images automatically. A Perl script written by Michael Covington renamed the 

hourly image files using the combination of the imaging date, time, and camera ID. Nighttime 

images were deleted and daytime (5:00 am to 8:00 pm) images were stored in the server. 

Although all of the 108 cameras were mounted in landscape orientation, the built-in auto rotation 

function of the cameras would sometimes rotate images to portrait orientation, creating problems 

in subsequent steps. To fix this, ExifTool (http://www.sno.phy.queensu.ca/~phil/exiftool/), a 

Perl-based program, was integrated into the pipeline to automatically rotate any RAW images 

found to be in portrait orientation. Each night, the pre-processed RAW images were transferred 

to a data store operated by the iPlant and, from there, to a server at KSU. Once the images 

reached the KSU server, they were organized into different subdirectories based on the imaging 

date, time, and shelf number. This set of transfers resulted in three redundant copies of the 

images being maintained at UC-Davis, iPlant, and KSU.  

 Field image storing, management, and transfer  

For field image storing and transfer, images were first downloaded from the cameras onto 

a local computer at UW and then transferred to the data server at KSU via iPlant. Whereas the 

indoor system used camera ID’s and dates to organize the images, QR codes containing block 

and plot numbers were employed in the field (Figure 2.5). The QR-code images were first 

automatically recognized within the stream of images by computing a color histogram and 

looking for a large number of white pixels. The images containing QR codes were converted to 

binary using a threshold that removed shadows, then ZBar (http://zbar.sourceforge.net/), a 

http://www.sno.phy.queensu.ca/~phil/exiftool/
http://zbar.sourceforge.net/
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freeware QR coder reader integrated into the pipeline, extracted the block number and plot 

number. This data was used to group the subsequent images into a directory named by image 

date, block, and plot information.  

 Missing camera detection mechanism of indoor imaging pipeline 

During the imaging period, occasionally some cameras would accidently turn off, 

possibly due to unstable CHDK firmware. If not immediately detected and corrected, gaps in 

phenotypic data would result. Therefore, we included in the pipeline a mechanism for detecting 

missing cameras based on tracking the cameras’ IDs in the image names. When missing camera 

IDs were detected, the pipeline automatically sent an email reporting the problem so it could be 

manually fixed. 

 Pipeline control 

Agisoft Photoscan Pro (Photoscan), one of the programs to be described below, includes 

a Python scripting-capable application program interface (API) whose intent is to allow users to 

automate its capabilities. This was exploited to control all pipeline functions, including, in some 

cases, the control of programs completely external to Photoscan. The following sections describe 

all functions used in the processing pipeline, all of which were completely automated within the 

Photoscan Python API. 

 Image pre-processing 

There were two corrections performed during the image pre-processing section for the 

images: image color correction and image optical distortion correction. The Canon Digital Photo 

Professional (DPP) program was used for color correction, optical distortion correction, and 

TIFF conversion. 
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 Image color correction 

Due to illumination variations across the shelf, the camera color responses differed 

slightly. For better plant segmentation process in the following step, the color of the RAW 

images was corrected by the white balance correction function of the DPP program. The 

spectral-lossless RAW file format was chosen despite its memory requirements to make this 

possible. Wide-angle lenses are also susceptible to vignetting effects where image brightness is 

reduced at the periphery. This can complicate color segmentation but was corrected during this 

process. A customized color-grid poster was photographed to verify the image color correction at 

the end of the process. 

 Image optical distortion correction 

Few of the previous image-base phenotyping studies have considered lens distortion 

when extracting leaf parameters (length, width, and area). Due to the geometric distortion caused 

by lens optics, those leaf measurements have reduced accuracy for plants not at the center of 

each image. Using the RAW file format also allowed us to use manufacturer-provided lens 

profile data to correct the geometric distortion of each plant—another function built into DPP. 

After image color correction and optical distortion correction, TIFF image files were exported. 

The color-grid poster was also used for verifying the image optical distortion correction.  

 DPP automation 

A design drawback of DPP is that it assumes a human will be using it to correct a small 

number of images. Thus, it lacks any automation capabilities. Therefore, AutoIt 

(https://www.autoitscript.com/site/autoit/), a BASIC-like scripting language, was used to 

automate the DPP graphical user interface (GUI). This language simulates user mouse clicks and 

text entries. While this may seem cumbersome, it is actually a major advantage of the pipeline. 

https://www.autoitscript.com/site/autoit/
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Aside from the Perl script described, the AutoIt script is the only element of the pipeline that 

would have to be altered if a different brand of camera and manufacturer-provided image 

correction software were adopted.  

 Orthophoto generation 

The final type of correction removed image perspective distortion. This was done by 

generating orthophotos, which are synthetic images produced as if each pixel is being viewed 

straight down. Thus, orthophotos permit geometric quantities such as 2D distances and areas to 

be measured with perspective effects removed. The Agisoft Photoscan Pro (Photoscan) program 

(http://www.agisoft.com) performed this step using the TIFF images output from DPP. This was 

done in nine-image subsets, each of which covered one half-shelf. (The original intent was to do 

full shelves but it was discovered after plants were added to the chamber that the vertical camera 

spacing did not permit this—a design flaw to be avoided in the future.)  The program converted 

each set to an orthophoto. However, in the process of implementing this step, a subtle difference 

between the chamber and the field was uncovered that affected exactly how this should be done. 

This is described in the following two subsections. 

 Indoor environment image rendering method 

Photoscan has four alternative rendering options for producing orthophotos: Mosaic, 

Average, Max Intensity, and Min Intensity. These govern the coloring method used to merge 

corresponding pixels from different images into the orthophoto. It was discovered that a wrong 

choice could have side effects for the small fraction of leaves that happened to have very 

different orientations with respect to different cameras. Specifically, the leaves would appear to 

be ghost-like double exposures. This was corrected by choosing the Mosaic method that favored 

http://www.agisoft.com/
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the camera whose view of ghost leaves was most vertical. An example orthophoto is shown as 

Figure 2.6A. 

Field image rendering method 

When used in the field, however, the Mosaic rendering method left pronounced shadows 

in the orthophoto that complicated subsequent processing steps. This was resolved by using the 

Average rendering method. This produces a more uniform orthophoto because areas that are 

shadowed by the camera mount in one image will often not be shadowed in others. Because it 

blends pixels, the Averaging method reduces shadow contrast. 

To summarize the pipeline control description, Python scripts written and executed 

within Photoscan first invoke AutoIt to run a script in that language simulating user keystrokes 

and mouse clicks instructing DPP to remove lens and color distortion and produce TIFF 

formatted images. Once AutoIt processing is finished, the Python script then initiates Photoscan 

operations that produce the orthophoto. The same script then continues, executing the operations 

described in the following sections. 

 Image segmentation 

 Pot segmentation 

In order to extract individual plants from each chamber orthophoto, the first step is to 

apply image segmentation to identify the pots. This was done using the following equation: 

𝑃𝑜𝑡 = 𝑏𝑤(𝐵𝑙𝑢𝑒 − 𝑅𝑒𝑑), 

where Blue is the pixel brightness value of the image blue channel, Red is the pixel brightness 

value of the image red channel, and bw() is the Otsu threshold method (Otsu 1975) for binary 

image transformation. Due to the slight illumination variation across each shelf, some of the pot 
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edges could not be detected. The probabilistic Hough Transformation (Duda and Hart 1972) was 

implemented in Python to identify the line segments and fill in the missing pot edges (Figure 

2.6B). A 4-by-4 grid was generated for each flat based on the known dimensions of the pots and 

flats (Figure 2.6C). 

 Plant segmentation 

Plant segmentation, the process of isolating the plants from other unwanted image 

features like soil, pots, or other items, is the next process applied to each orthophoto. The well-

controlled illumination sources and image color corrections in the previous step allowed us to 

use a simple vegetation index for quick plant segmentation. The vegetation index used for this 

study computes the difference between the green and red channels and uses a ratio to normalize 

it throughout the entire imaging period. This measure, the Normalized Green–Red Difference 

Index (NGRDI) developed by Hunt et al. (2005), is similar to the well-known Normalized 

Difference Vegetation Index (NDVI). However, NDRDI is more useful to distinguish healthy 

vegetation from background in cameras like ours that have not been modified to be infrared-

sensitive. The Otsu threshold method was then applied for transforming grayscale NGRDI 

images to a binary form in which the plant pixels are white and all non-plant pixels are black. 

The NDRDI equation in this study is as follows: 

𝑃𝑙𝑎𝑛𝑡 = 𝑏𝑤 (
𝐺𝑟𝑒𝑒𝑛 − 𝑅𝑒𝑑

𝐺𝑟𝑒𝑒𝑛 + 𝑅𝑒𝑑
), 

where Green is the pixel brightness value of the image green channel, Red is the pixel brightness 

value of the image red channel, and bw() is the Otsu threshold method for binary image 

transformation. The processed binary orthophoto is shown as Figure 2.6D. The NGRDI equation 

was implemented in Python and the Otsu threshold was from the Open Source Computer Vision 

Library (OpenCV; http://opencv.org/).  

http://opencv.org/
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 Plant genotype assignment 

 Indoor pipeline genotype assignment 

Although growth chambers are well controlled, there are still temperature and lighting 

gradients that can affect plant growth and development. It is therefore common practice in 

Arabidopsis experiments to randomly reshuffle flats of pots every two to three days. Flat 

movements are recorded in spreadsheet form, but, to provide redundancy within the image data, 

a system using three-color dot combinations on each flat was developed. A color-dot detection 

and decoding routine was integrated into the processing pipeline for automatically tracking pots 

so that the proper genotypes of each plant could be paired with the ultimate measured 

phenotypes.  

 Field pipeline genotype assignment  

Because all of the plants were placed with a 14-by-6 planting grid in each plot of the field 

study, a Python routine was integrated in the pipeline to generate a 14-by-6 grid on each plot 

orthophoto for extracting plants. However, due to some irregularities of planting grid placement 

in each plot, each plot orthophoto needed to be cropped first so the grids were generated in 

appropriate positions (Figure 2.7). As each plant was extracted, plant position and QR-code data 

on block and plot number was used to rename each single-rosette image. This information was 

paired with the genotype metadata collected when plant locations were assigned.  

 Phenotypic traits extraction 

 Leaf length and total leaf expansion calculation 

The key step in measuring leaf length is the detection of the rosette center and leaf tips on 

each single-rosette binary image. The contours of each binary image were analyzed first and the 
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image moments were then calculated (https://en.wikipedia.org/wiki/Image_moment). The rosette 

center was estimated using the binary image centroid of all white (i.e., plant) pixels. That is: 

(𝑥̅, 𝑦̅) = (
𝑀10

𝑀00
,
𝑀01

𝑀00
), 

where 𝑥̅ and 𝑦̅ are the coordinates of the binary image centroid and M are image moments.  

 Using the calculated rosette center as the origin, a radial scan was executed on the binary 

image to yield a curve representing the traced rosette outline in a 2D plot. The leaf tips, the 

points most distant from the plant center, should be the peaks of the curve just described. 

However, at first it was challenging to find accurate peak locations due to the rough edges of 

plant leaves. This was even more complicated when parts of the leaves appeared to be missing 

due to damage or segmentation faults. Therefore, the rosette-outline curve was first smoothed 

using Savitzky–Golay filter (Savitzky and Golay 1964) so small, erroneous maxima could be 

removed. The next step was to fit a Chebyshev polynomial (Tchebychev, 1853) to the smoothed 

rosette-outline curve. Putative peaks were then located by calculating the roots (i.e., zeros) of the 

first derivative of the Chebyshev polynomial curve. Unfortunately, this procedure still yielded 

false leaf tip positions sometimes.  

Therefore, as a second step, the peak widths were analyzed using the x coordinates of the 

rosette-outline curve to find the minimum peak width, which was used as the length of a moving 

window centered at each detected curve peak. Within this moving window, the maximum of the 

fitted rosette-outline curve and the maximum of the original rosette-outline curve were 

compared. The true peak locations were recovered if the maximum of the original rosette-outline 

curve was higher. The pixel coordinates of the leaf tips were calculated based on the curve peak 

locations. The length of each leaf was measured as the distance from the rosette center to the leaf 

tip. The total leaf expansion of each plant is the sum of all of the leaf lengths. 

https://en.wikipedia.org/wiki/Image_moment
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 Rosette area calculation  

The rosette area in each single-rosette binary image can be simply calculated by 

computing the total number of white pixels in each single-rosette binary image.  

 Statistical modeling 

Chitwood et al. (2012) manipulated far-red light to induce changes in leaf length as an 

index of the shade-avoidance response. This study demonstrated a linear relationship between 

total leaf length and square root of the total leaf area. To test the relationship between total leaf 

expansion and rosette area using our workflow, we implemented the power law function to fit the 

phenotype data with the following equation: 

𝑇𝑜𝑡𝑎𝑙 𝐿𝑒𝑎𝑓 𝐸𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛 = 𝑎 ∗  𝑅𝑜𝑠𝑒𝑡𝑡𝑒 𝐴𝑟𝑒𝑎𝑏, 

where a and b are parameters that determine the trajectory and shape of the power law function, 

respectively.  

The parameters a and b were estimated using the Levenberg-Marquardt non-linear least 

square method. Bootstrap resampling was used to calculate 95% confidence intervals (CI) based 

on 10000 simulations. The power law function and the least square estimation were implemented 

using Python Scipy package. 

 Indoor pipeline data analysis 

Data for total leaf expansion and rosette area measured on four different dates during a 

10-day growth period were used for the analysis. The first set of data was collected the eighth 

day after plant emergence, followed by three subsequent datasets at two-day intervals. The time 

points of this test were selected so that: 1) the plants were big enough to distinguish individual 

leaves from the start, 2) the final image had a large rosette, and 3) leaf overlap areas between 
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adjacent plants were minimal. All of the images from the indoor pipeline were taken at 6:00 am 

to minimize any possible ambient influences.  

 Field pipeline data analysis 

 The same genotypes tested in the indoor environment were also tested in the field 

experiment. Data from six different days were used to fit the same relationship. They were 

selected from an 18-day period in which Day 1 was the third day after plants were transplanted 

in the field. Five subsequent dates, each three to four days apart, followed. (The dates of field 

image data collection were dependent on weather conditions.)   

 Results and discussion 

 Indoor imaging pipeline throughput capability 

Because there was a certain amount of unavoidable manual work during image 

acquisition in the field, the completely-automated indoor pipeline was used to evaluate the 

throughput capability of the phenotyping pipeline.  

Orthophoto generation, which initially required 38 CPU-minutes per half-shelf, was the 

most time-consuming process in the entire pipeline. By implementing High Performance 

Computing (HPC) routines using OpenCL and AMD GPUs in the pipeline, this processing time 

was reduced to 25 minutes per half-shelf orthophoto. These HPC routines were also utilized in 

other steps. It took approximately 6–8 minutes to detect pots and decode the color dots for 

genotype assignment, then two minutes for extracting phenotypic trait data (e.g., total leaf 

expansion, rosette area). Therefore, the total runtime of the entire processing pipeline was 35 

minutes maximum for each half-shelf. 

The second method for improving pipeline throughput was to use distributed parallel 

computing routines to spread the processing tasks across a small computing cluster. Two split 
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half-shelf orthophotos from each shelf were processed by two nodes simultaneously. For the 

chamber application, there were 24 4-by-4 pot flats on each of the six shelves, which made 2,304 

plants photographed hourly. Because imaging was conducted for 16 hours per day, a total of 

36,864 single-plant pictures were obtained each day. Each cluster node processed 192 plant 

images in 35 minutes, equating to at least five plants per minute. Therefore, the runtime for 

processing 16 hours of single-rosette images on the six-node cluster was 11.2 hours. The 

capabilities of the chamber processing pipeline are shown in Table 2.1.  

This pipeline was fast because all 108 cameras took images for six shelves 

simultaneously. The times for image storing, management, and transfer have not been included 

in this analysis because of variations in local network and internet speeds. In the future, when the 

processing pipeline is executed on a local computer cluster at UC-Davis for minimizing data 

transfer time, all 2,304 plants can be screened within an hour.  

 Image analysis 

 Image optical distortion and color correction 

The 28-mm (35-mm equivalent) focal length caused the optical distortion to be much 

more severe on the image edges than on the image center. Figure 2.8A shows the color-grid 

image before optical distortion removal. The red reference line was drawn on the image to 

illustrate the curvature of the color grids caused by the optical distortion. Using Canon DPP to 

remove optical distortion was accurate and efficient because of the manufacturer’s lens profile 

database. Figure 2.8B shows that the curvature of the edges of color grids was removed after the 

optical distortion correction. The red reference line matched the edge of the color grid.  

Due to variations in shelf illumination and camera firmware differences, the original 

images were greener than the original RGB values of color grids. After comparing different 
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image color correction packages, the Canon DPP software provided reasonably accurate color 

correction using the white balance function provided by the camera manufacturer. After color 

correction, the green tone was removed and the photographed RGB values were very close to the 

original (Figure 2.9).  

 Image perspective distortion correction 

Figure 2.10 (A–B) shows two plants at the corner of the individual frame. The effects of 

perspective are clear because a great deal of pot wall can be seen compared to plants at the image 

centers, where much less wall is visible. Due to this issue, direct measurements from the image 

centers and corners are not comparable; Figure 2.10 (C–D) shows that after re-projecting each 

pixel vertically. The sidewalls of the pots were largely corrected and only a small portion of the 

pots’ sidewalls were visible compared to the uncorrected images. Moreover, the red-box–

highlighted leaves showed more leaf area in the corrected image for both of the plants when the 

leaves were not entirely flat. The two pots shown in Figure 2.10 are from the most extreme 

corners of the shelf, so the small portions of visible sidewalls are inevitable. For most of the pots, 

the sidewalls were well corrected. 

Moreover, the blue-box–highlighted leaves show that leaf positions were also corrected. 

For plant 1 (Figure 2.10A), the two leaves in the blue box showed a side-by-side position, but in 

reality, the smaller leaf was under the big leaf, as the corrected image shows (Figure 2.10C). For 

plant 2, the two leaves highlighted by blue boxes overlapped in the uncorrected image but 

distinguished clearly after correction (Figure 2.10B and 2.10D). Although smaller leaves could 

not be counted when covered by bigger leaves, the perspective-distortion–corrected images will 

provide more accurate leaf length and rosette area measurements, which are more critical when 

studying leaf shade-avoidance responses.  



32 

 Rendering methods for indoor and field orthophoto 

Most previous studies did not use orthophotos for extracting phenotypic traits from 2D 

images and therefore did not have occasion to compare rendering methods. In the chamber, each 

plant appeared in two views, one necessarily more oblique than the other. In a small number of 

cases, the leaf angles were sufficiently extreme that, depending on how the orthophoto was 

rendered, a double image of the leaf would result. Figure 2.11 illustrates the double image 

problem and how it was resolved using the Mosaic method, which colors the orthophoto using 

the image pixels that resolve as being closest in 3D space.  

The red-box–highlighted leaves in Figure 2.11A and B were photographed with different 

viewing angles by adjacent cameras 514 and 515. In this instance, a small leaf was covered by a 

bigger leaf. Camera 515 photographed them at an oblique angle so both leaves were visible to 

this camera but not to Camera 514. Because of this, under the Average rendering method, which 

blends corresponding pixel colors from both images, the highlighted leaf appears twice in the 

orthophoto (Figure 2.11C). This defect would subsequently confuse the leaf tip detection 

algorithm. However, in Figure 2.11D, when the Mosaic rendering method was used, the plant 

outline was not confusing and the “double-leaf” issue was solved.  

There are actually three defects in Figure 2.11 which need to be discussed: one is partial 

overlap (top red box), one is different viewing angle (middle red box), and the last is complete 

overlap (bottom red box). With the Average method, all three create spurious leaf tips due to 

differences in the “opacity” of the double images. However, the Mosaic method fixes this issue 

at the cost of occasionally losing an entire leaf (bottom red box). 

 On the other hand, in the field environment, the two cameras were relatively far away 

from the plants, so the viewing-angle issue was not as pronounced as in the chamber. Instead, the 
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major problem affecting rendering was the strong ambient illumination by sunlight, which cast 

constantly-changing shadows of the camera mounts into the plots. Originally, it was thought that 

the flashes could be used to completely eliminate shadows. Unfortunately, this required their 

most powerful settings, which saturated image brightness. Therefore, a lower setting was used in 

combination with the Average rendering method to improve the consistency of the brightness of 

the orthophoto. Figure 2.12A shows pronounced camera mount shadows when the Mosaic 

rendering method was used. Subsequent image segmenting by color analysis was not able to 

achieve equal results at identifying plants under shadowed and non-shadowed conditions. 

However, in Figure 2.12B, the orthophoto produced by the Average rendering method shows 

more uniform brightness throughout the entire plot. These images could be successfully 

segmented even though the shadows were not completely eliminated. 

 Field QR codes imaging and processing 

QR codes provided a very efficient way to store plot metadata and organize plot images. 

Initially, the ground-level field pipeline could successfully recognize all of the QR-code images 

among other field images by analyzing the histograms of the images, but there were some failed 

attempts when the ZBar reader tried to decode the QR codes. The failed attempts occurred when 

the shadow of the camera mount fell on the QR codes. To solve this issue, the brightness and 

contrast of all of the recognized QR-code images were first increased to minimize the shadow, 

then the adjusted images were thresholded to a shadow-free binary image. With this 

improvement, all of the QR codes were successfully decoded and the plot metadata was 

accurately extracted. 

 Leaf tip detection refinement 
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Accurate leaf tip detection is critical to measuring leaf length and total leaf length 

expansion. Initially, however, many false leaf tips were detected, due to small irregularities on 

the original rosette-outline curve (Figure 2.13). As Figure 2.14 shows, the estimated peak 

locations were shifted from the original rosette-outline curve peak locations, and peak heights 

were lowered due to smoothing after the Savitzky–Golay filter and the Chebyshev Polynomial 

curve fitting. However, after the second iteration of the leaf tip detection, most of the peak 

locations from the first iteration were shifted back to the original radial-scan-yield curve peak 

locations, true peak locations were recovered, and many false peaks were eliminated. These 

optimization operations provide much more accurate rosette-outline peaks for positioning the 

true leaf tips on the single-rosette binary image. This method was especially accurate and 

efficient for finding the leaf tips when the leaves were damaged, as in the example in Figure 

2.14. 

 Relationship between rosette area and total leaf expansion 

 Relationship for indoor pipeline 

The estimated parameter b of the power law function from Day 1 to Day 4 is 0.836 

(Figure 2.15A), 0.753 (Figure 2.15B), 0.750 (Figure 2.15C), and 0.636 (Figure 2.15D), 

respectively, indicating a change in shape from near-linearity to a more curved relationship. The 

range of possible estimates for parameters a and b obtained from 10000 bootstrap simulations is 

shown in Figure 2.16. The histograms shows the frequency of estimate for a and b in 10 bins. 

The mean, median, and mode for a and b, respectively, are very close to the original estimate 

from the least squares fit. The analyses of the parameter distributions and the bootstrap 95% 

confidence intervals are shown in Table 2.2.  
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Because the confidence limits for Days 1 and 4 do not overlap, it can be said that the 

exponent of the power law decreases with time while the slope factor increases, although there is 

considerable uncertainty about the values of parameter a. However, the range of values for b is 

within the reasonable expectations of being not greater than 1 and not less than 0.5. These values 

are consistent with the idea young leaves mainly grow by elongation. However, in later 

developmental stages, total leaf expansion slows relative to leaf-width growth increases, which 

become the main contributor to increasing rosette area. Chitwood et al. (2012) reported a linear 

relationship between total leaf length and square root of the total leaf area (i.e., b=0.5) for tomato 

leaves at a late developmental stage. This result is very similar to our finding of b=0.636 during 

late development.  

This dynamic relationship between total leaf expansion and rosette area has not been 

reported previously, quite possibly because destructive sampling made it impossible to collect 

time-series data from the same plant during growth. Our non-invasive imaging method, however, 

can be used to track the time-series development pattern for single plants in a mapping 

population.  

 Relationship for field pipeline 

 The estimated parameters a and b and the power law curves for Days 1 to 6 in the field 

are shown in Table 2.3 and Figure 2.17A-F, respectively. The b values also followed a 

descending trend over time. Figure 2.18 shows the analyses of the parameter distributions and 

the bootstrap 95% confidence intervals. This result follows what is seen in the chamber; that is, b 

is close to 1 at the beginning of the growth period but decreases over time. As above, the 

confidence intervals of the first and last days do not overlap, showing that a increases with time 
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and b falls. Again, b showed the pattern of being close to 1 earlier and not less than 0.5 later. 

This also appears similar to the Chitwood et al. (2012) result.  

It is noticeable that the b value increased at Day 6, mainly because of a highlight outlier. 

The Figure 2.17G shows that this outlier was from a bolting plant that yielded a confusing 

single-rosette binary image. The center part of this binary was missing due to bolting, and a 

noisy plant outline caused falsely-detected leaf tips (Figure 2.19). After removing this outlier, the 

b value dropped to 0.749. 

It is possible the parameter b would keep decreasing if a few more time points could be 

used. However, from Day 6, many genotypes started bolting, which created difficulties in 

generating clean binary images and deceased the reliability of the total leaf expansion and rosette 

area measurements. 

 Conclusion and perspectives 

We presented a low-cost, versatile, and automated high-throughput phenotyping pipeline 

based on imaging technology to extract plant phenotypic traits under different environmental 

conditions. Our pipeline integrated a series of automated operations, including: image data 

acquisition in a controlled indoor environment, image data transfer and management, genotype 

assignment, phenotypic trait extraction, and analytical processes. The field image data 

acquisition was not fully automated due to different experimental designs compared to the indoor 

environment.  

Our HTP pipeline dealt with many photogrammetric issues that have not been previously 

considered in most biology studies. Images were first processed for optical and perspective 

distortion removal to make sure the true geometric quantities (e.g., distance and area) could be 

measured based on 2D images. Next, mosaicked orthophotos of each shelf were created hourly 
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for a mapping population. Last, segmented single-rosette images were extracted from the 

orthophotos for measuring leaf length and rosette area with our novel image processing 

algorithm. This method transforms computing-expensive image processing operations to 

mathematical curve fitting problems and provides a reliable solution for leaf tip detection in the 

face of leaf irregularities, segmentation errors, and damage.  

With this framework of phenotyping, time-series phenotypic traits of a mapping 

population can be extracted and analyzed in a short period of time. In this study, we found a 

power-law correlation between total leaf expansion and rosette area from our time-series 

analysis. At the early developmental stage, this relationship was close to linear; towards the end 

of the developmental stages, the exponent started decreasing. The late-stage finding is very 

similar to the results reported by Chitwood et al. (2012). 

 There are still some aspects of this pipeline that need to be improved for future work. The 

color-dot system of chamber study was used to track flat position and orientation changes in the 

orthophoto. However, the QR-code approach proved its robustness and feasibility for storing 

metadata and could be competitive in chamber settings to enable genotype assignment. 

Moreover, aerial-level field studies could also use QR-code system to store crop variety or field 

position metadata. 
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Figure 2.1 Original image with optical distortion and perspective distortion. 

 

An original image from indoor environment showing plants before optical distortion and 

perspective distortion correction. The plants from the corners were seriously distorted and the 

true distance and area cannot be measured directly from the image.  
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Figure 2.2 Image analysis workflow. 
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Figure 2.3 Indoor imaging platform. 

 
A and B show the chamber imaging system on each shelf. C is an individual image from one 

camera. The color-dot system was used to track 4-by-4 pot flat rotation during the growing 

period.  
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Figure 2.4 Field imaging platform. 

 
The ground-level field imaging setup. Two Canon DSLR cameras were mounted with an angle. 

Two flashes with diffusers were mounted on the side bars for creating a uniform illumination 

condition. 
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Figure 2.5 Field image data management. 

 
Three successive images from one camera. Left to right they are: the last image from the 

preceding plot, the first image from the next plot with a QR code held in the camera view, and 

the same plot view with the QR code removed. The image containing the QR code is recognized 

by its large number of white pixels. The QR code is then read to identify the new plot and the 

block that contains it.   
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Figure 2.6 Orthophoto processing. 

 

A) The mosaicked orthophoto for half-shelf; B) detected pot binary image; C) generated 4-by-4 

grid overlaid on the orthophoto; D) detected plant binary image. 
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Figure 2.7 Field single plant extraction and genotype assignment. 

The orthophoto of a plot with an automatically-generated black grid for single-plant extraction 

and genotype assignment.  
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Figure 2.8 Image optical distortion correction. 

 

 
A) The image before the image optical distortion correction. The red reference line on the top 

shows the curvature of the edge of the color grid. B) The image after the image optical distortion 

correction. The edge of the color grid shows straight comparing the red reference line.  
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Figure 2.9 Image color correction. 

 

 
A) The image before the image color correction. The green tone of the image was due to shelf 

illumination. B) The image after the color correction shows that the green tone was removed.  
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Figure 2.10 Image perspective correction. 

 
A) and B) were plant 1 and plant 2, respectively, before the perspective distortion correction, and 

C) and D) were the same two plants after the correction. The perspective distortion correction 

can: 1) show more leaf area when that leaf was not flat (as red-box–highlighted), and 2) show the 

corrected leaf positions (as blue-box-highlighted). 
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Figure 2.11 Indoor orthophoto-rendering methods comparison. 

 
A) and B) show the same plant photographed by two adjacent cameras. The leaf positions were 

not consistent due to different viewing angle. When the Average rendering method was used, the 

“ghost-leaves” issue confused segmentation algorithm, as C) showed; Mosaic blending method 

could provide better image for segmentation, as D) showed. 
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Figure 2.12 Field orthophoto-rendering methods comparison. 

 

A) is the ground-level plot orthophoto using Mosaic blending method; B) is the orthophoto for 

the same plot using Average blending method. Notice that the side-bar shadows were minimized 

by Average blending method. 
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Figure 2.13 First iteration of leaf tip detection. 

 
The first iteration of the Chebyshev Polynomial fitting for detecting the peaks of the rosette-

outline curve, then the corresponding leaf tips on the single-rosette binary image can be found. In 

the plot, the red curve is the original outline curve, the blue curve is the Chebyshev Polynomial 

fitting curve, and the blue-dashed curve is the first derivative of the fitted curve. A damaged 

leave (as pictured zoomed-in) can show false tips due to the roughness or the damage of leaf 

edges. The corresponding plant outline curve and peaks are also highlighted. The green-curved 

arrow shows the direction of the radial scan.  
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Figure 2.14 Second iteration of leaf tip detection. 

 

The second iteration for running the optimization algorithms. A smoother curve was fitted to the 

original outline curve and then a moving window was centered at each peak to locate the highest 

peak (black triangle markers on the curve) in the window. The zoomed-in view shows that a 

better leaf tip is detected. The zoomed-in view of the curve shows that the corresponding peak of 

the original outline curve (red curve) is detected at the black triangle marker. The true leaf tips 

could be relocated on the binary image. 
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Figure 2.15 Relationship of rosette area and total leaf expansion for indoor environment 

 

The relationship between rosette area and total leaf expansion was fitted with a power law 

function. The exponents of the power law function decrease from Day 1 (the eighth day after 

plant emergence) to Day 4 (the fourteenth day after plant emergence). At the early 

developmental stage, the exponent is close to 1 (as linear relationship), and at the late 

developmental stage, the exponent is close to 0.5, matching a previous study. 
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Figure 2.16 Parameter estimations for indoor environment. 

 

 

The distribution histograms of the parameters a and b of four different time points. Figure A) to 

D) stands for Day 1 to Day 4, respectively. The green histograms are the distributions for 

parameter a and the blue histograms are for parameter b. Red-dashed lines stand for 95% 

confidence intervals and black-dashed lines are estimated parameters. 
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Figure 2.17 Relationship of rosette area and total leaf expansion for field environment.  

 

 
The highlighted data point in F) is an outlier. G) is the same as last day after outlier removed.  
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Figure 2.18 Parameter estimations for field environment. 

 

The analyses of the parameter distributions and the bootstrap 95% confidence intervals. 
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Figure 2.19 Original image and analyzed image of the outlier. 

 

Highlights outlier from Figure 2.17F. This plant started bolting on Day 6, which lead to a 

confusing orthophoto. The segmented binary image missed the plant’s central section and false 

leaf tips caused by bolting were detected, which caused reduced rosette area but increased total 

leaf expansion. 
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Table 2.1 Throughput capability of chamber phenotyping processing pipeline. 

Hourly throughput     

(plants h-1 node-1) 

Average processing 

time per plant (s) 

Average processing time 

for daily single-rosette 

images (cluster h) 

Plant 

density 

(plants m-1) 

329 10.94 11.2 225 
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Table 2.2 The statistics of the parameter estimation for indoor environment. 

Date Paramete

r 

Estimatio

n 

Mean Median Mode Confidence Intervals 

Day 1 a 0.249 0.254 0.247 0.240 0.132 - 0.420 

b 0.836 0.838 0.837 0.840 0.770 - 0.913 

Day 2 a 0.493 0.520 0.497 0.499 0.311 - 0.857 

b 0.753 0.751 0.752 0.751 0.689 - 0.807 

Day 3 a 0.614 0.669 0.620 0.513 0.301 - 1.291 

b 0.732 0.730 0.731 0.725 0.649 - 0.811 

Day 4 a 1.771 1.833 1.785 1.582 1.035 - 2.908 

b 0.626 0.626 0.625 0.621 0.573 - 0.683 
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Table 2.3 The statistics of the parameter estimation for field environment. 

Date Parameter Estimation Mean Median Mode Confidence Intervals 

Day 1 a 0.067 0.072 0.065 0.066 0.023 - 0.162 

b 1.008 1.015 1.012 1.013 0.896 - 1.147 

Day 2 a 0.211 0.219 0.203 0.215 0.086 - 0.441 

b 0.869 0.875 0.873 0.871 0.778 - 0.980 

Day 3 a 0.236 0.239 0.233 0.235 0.123 - 0.391 

b 0.856 0.859 0.858 0.857 0.797 - 0.934 

Day 4 a 0.263 0.279 0.264 0.269 0.130 - 0.523 

b 0.838 0.838 0.837 0.837 0.759 - 0.918 

Day 5 a 0.858 0.831 0.829 0.849 0.372 - 1.307 

b 0.710 0.719 0.713 0.715 0.664 - 0.803 

Day 6 a 0.625 0.611 0.603 0.615 0.287 - 1.025 

b 0.749 0.757 0.752 0.754 0.694 - 0.835 
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Chapter 3 - 2D and 3D Pipeline results analyses  

 Introduction 

High-throughput plant phenotyping approaches have gained tremendous interest in recent 

years. Such non-invasive approaches are essential to improve the efficiency and accuracy of 

plant phenotyping, which is critical to understanding how plant phenotypes are linked to 

genotypes and the surrounding environment (Furbank and Tester 2011; Fiorani and Schurr 2013; 

Dhondt et al. 2013; Kjaer and Ottosen 2015). Various sensors, such as 3D laser scanning sensors, 

RGB/near-infrared cameras, hyperspectral sensors, thermal imaging systems, and chlorophyll 

fluorescence imaging sensors, have been integrated into automated phenotyping pipelines to 

extract plant phenotypic traits from mapping populations (Rascher et al. 2011; Mahlein et al. 

2012). Studies in large mapping populations enable detection of quantitative trait loci (QTLs), 

which are genomic regions that may contain genes controlling the plant feature of interest—for 

example, leaf area. 

Leaf areas are of particular importance to many plant biology studies, including 

photosynthesis, stomatal conductance, and transpiration efficiency (Juenger et al. 2005). 

Previous studies (Candela et al. 1999; Pérez-Pérez et al. 2002; Cookson et al. 2007; Bylesjö et al. 

2008; Weight et al. 2008; Backhaus et al. 2010; Ali et al. 2012; Chitwood et al. 2012; Maloof et 

al. 2013; Easlon et al. 2014) used imaging systems with commercial or customized software to 

acquire single-leaf areas and rosette area from 2D images. Invasive and destructive plant 

sampling methods (e.g., harvesting plant leaves) were used in these studies during imaging. Such 

methods do not allow any plant to be measured twice; moreover, they are highly labor-intensive, 

due to the number of plants needed to get sufficient data and the amount of manual work each 

plant requires.  
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Two-dimensional imaging techniques can provide useful information, such as obtaining 

estimates of rosette area or studying plant diurnal cycles via time-series analysis of nastic 

movements, which are rhythmic changes in leaf angles. Mullen et al. (2006) used image 

processing software to manually measure the leaf inclination angle in order to study these 

movements over short intervals. Hong et al. (2013), Dornbusch et al. (2014), and Greenham et al. 

(2015) used imaging systems to track leaf tip movements for studying leaf inclination angles and 

estimating circadian cycles. These and other, similar studies all reveal that nastic movements 

occur on 24-hour diurnal cycles. Note, however, that leaf tip tracking from a side view does not 

allow for simultaneous detection of leaf areas that change due to growth. On the other hand, 

vertical views that can see area will only be accurate once per day, when nastic movements reach 

an angle perpendicular to the line of sight. However, leaf area and plant canopy measurements 

based on 3D plant structure can provide good estimates regardless of plant nastic movements.  

Modeling and analyzing plant 3D shape is a computing-expensive and time-consuming 

process (Paulus et al. 2013; Vos et al. 2009; El-Omari and Moselhi 2011). Typically, there are 

two types of sensors used for plant 3D modeling: active sensors and passive sensors. Laser 

sensors such as LIDAR (Light Detection And Ranging) are active sensors for sensing plant 3D 

shapes. They emit a laser beam and the time it takes for the reflected light to return to the sensor 

is used to compute a depth map or generate a 3D point cloud of the plant canopy. Point clouds 

are simply sets of 3D coordinates that, collectively, have the shape of the object of interest. None 

of the points are connected, so phenotypes of interest have to be inferred in often complex ways.  

Palacín et al. (2007) used a laser sensor to scan pear trees for estimating canopy surface; 

Hosoi and Omasa (2009) utilized portable LIDAR imaging technology to model tomato plant 

canopy in a three-dimensional space; Keightley and Bawden (2010) and Paulus et al. (2013) used 
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ground-level LIDAR to estimate plant biomass. For these studies, coarse 3D measurements were 

sufficient, but detailed plant structures could not be studied based on these 3D models. 

Furthermore, the 3D measurements of these studies were not taken using an automated pipeline. 

Only limited numbers of plants could be analyzed during the growth period—too few for studies 

seeking to quantitatively relate genotypes and phenotypes within dynamic environments (Granier 

et al. 2006; Berger et al. 2010; Hartmann et al. 2011). Such studies can easily require mapping 

populations containing thousands of genetically-distinct plants. 

In recent years, an increasing number of studies have used the LIDAR-based LemnaTec 

Scanalyzer HTS system (http://www.lemnatec.com) to obtain 3D point clouds. This system 

includes an automated analysis pipeline that can extract a number of phenotypic traits (Furbank 

and Tester 2011; Dornbusch et al 2012; Green et al. 2012; Chen et al. 2014; Dornbusch et al. 

2014). However, due to the cost of such a system, it is not feasible for many smaller research 

laboratories and institutions.  

Microsoft Kinect (https://www.microsoft.com/en-us/kinectforwindows/) is a low-cost 

sensor originally designed for computer gaming whose operation is based on time-of-flight 

measurements for a raster pattern of infrared beams. It has become a very popular choice for 

modeling 3D shapes in the robotic and computer vision communities. Some studies (Chéné et al. 

2012; Azzari et al. 2013; Paulus et al. 2014) have evaluated it for plant phenotyping. There are, 

however, several issues. The throughput using Kinect is relatively low, which is not suitable for 

high-temporal time-series phenotyping of mapping populations. Additionally, its laser beams are 

not bright enough for outdoor daytime use (Azzari et al. 2013). Data can be acquired during the 

night but doing so is biologically problematic for the first Kinect model—its laser wavelength 

falls within the phytochrome absorption band. Phytochrome is a highly-sensitive plant 

http://www.lemnatec.com/
https://www.microsoft.com/en-us/kinectforwindows/
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photoreceptor with many roles in the control of plant processes. The just-released second Kinect 

model uses a longer wavelength that does not have this problem.  

The second approach is to use passive sensors—in particular, digital cameras—along 

with photogrammetric techniques to capture three-dimensional models of plants. The major 

advantage of these techniques is that because they are based on images, they can produce much 

more detailed information about the surface features being imaged than laser-based scanning 

can. This information is contained in a texture image that is painted onto the 3D model when it is 

displayed. Furthermore, because a texture image is an image, it can be subjected to common 

image processing techniques to extract useful information. Finally, digital cameras can be much 

less expensive than laser-based active sensors like LIDAR.  

Previous photogrammetry work includes that of Quan et al. (2006) and Tan et al. (2007), 

who used the techniques to estimate camera positions and produce point clouds. They did not, 

however, extract any phenotypes. Quan et al. (2006) proceeded beyond point clouds per se, 

combining clustering, image segmentation, and polygon models to create 3D canopy models. 

These were, however, of very coarse resolution. Biskup et al. (2007) developed a stereo imaging 

system using two digital cameras to model soybean plants in a three-dimensional space. This, 

too, was a point cloud approach, but they went on to produce false color images of leaf angle. 

Santos and Oliveira (2012) used stereo imaging system with photogrammetric and computer 

vision algorithms to generate 3D models of plants, but, as above, also did not extract phenotypes. 

While these studies produced 3D plant canopy models, they used a small number of cameras 

whose positions and orientations were changed to capture different viewing angles. Although 

only requiring a few cameras is an advantage, the resulting low throughput does not permit 

highly time-resolved studies for the large number of lines in mapping populations.  
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In this chapter, we first demonstrate an analysis using our indoor imaging pipeline to 

extract time-series 2D rosette areas of a mapping population of 1050 Arabidopsis thaliana lines 

from images for studying plant nastic movement, diurnal cycles, and plant growth. Then, the 

pipeline was used to generate 10-day time-series of 3D models with a one-hour temporal 

resolution for the same plant population. In order, the pipeline color and distortion corrects raw 

images of potted plants on growth chamber shelves, generates 3D models of half-shelf areas, 

segments individual plants, pairs them with their genotypes, and then extracts time-series data of 

leaf growth and movement. 

 Materials and methods 

 Imaging acquisition system 

The imaging acquisition process used the same indoor pipeline described in the previous 

chapter for studying the shade-avoidance response of a nested association mapping (NAM) 

population of Arabidopsis thaliana. In brief, 108 Canon Powershot S95 cameras were mounted 

facing straight down on six shelves that received two different lighting treatments. On each shelf, 

18 cameras were mounted in a 2-row stationary camera frame at a 0.4-m height and 

photographed 24 4-by-4 pot flats hourly. A modified intervalometer script with Canon Hack 

Development Kit (CHDK) firmware triggered the cameras simultaneously at the beginning of 

each hour. In order to ensure all images had at least 50-percent overlap, the focal length of the 

cameras was set at 28 mm (35 mm equivalent) to maximize the field-of-view (FOV). Daytime 

(5:00 am to 8:00 pm) images were stored and processed for the following processes. The RAW 

image file format was selected for preserving all image metadata. 
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 2D rosette analysis  

 Image pre-processing, orthophoto generation, single-plant extraction, and genotype 

assignment 

The first processing steps used the same methods introduced in the previous chapter. 

Briefly, the Canon Digital Photo Professional (DPP) program was used for RAW image color 

correction, optical distortion correction, and TIFF conversion. The converted TIFF images were 

imported into the Agisoft Photoscan Pro (Photoscan) program (http://www.agisoft.com) to 

generate an orthophoto for each shelf for correcting perspective distortion, so that each pixel of 

orthophoto was being viewed straight down. 

Each orthophoto was first segmented to a plant-only binary image using the Normalized 

Green–Red Difference Index (NGRDI) (Hunt et al. 2005) and the Otsu threshold method (Otsu 

1975) to eliminate non-plant pixels. In a parallel step, the orthophoto was segmented to detect 

the pot edges to subsequently assist in isolating each plant. Segmentation was augmented by use 

of the probabilistic Hough Transformation (Duda and Hart 1972) to search for pot edges. The 

output of these steps was a set of coordinate grids delineating pot edges. 

Using the color-dot system introduced in the previous chapter, the pots were tracked 

during the entire growth period, during which they were periodically repositioned to equilibrate 

environmental gradients internal to the growth chamber. Based on records made at planting, the 

genotype of each plant was assigned to its grid cell. Lastly, single plant binary images, each with 

its known genotype, were extracted from the grid cells.  

 2D rosette area analysis for plant nastic movement and diurnal cycle analysis 

 Chapter 2 reported the method we used to measure plant 2D rosette area. In this current 

chapter, we tracked one plant during the same 10-day growth period as in Chapter 2 and used the 

http://www.agisoft.com/
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Fourier Transform to study the characteristics of plant nastic movements. The hourly 2D rosette 

area values of the plant were calculated during this 10-day period and plotted as the black dots in 

Figure 10A. Because of the experimental design of the chamber study, no image data was 

collected during the night (9:00 pm–5:00 am). In order to extract the characteristics of the growth 

pattern, a linear interpolation algorithm was applied to estimate the rosette area for night hours. 

The Savitzky–Golay filter (Savitzky and Golay 1964) was utilized in the following step to yield 

a smoothed growth curve to minimize possible noise in the rosette area measurements. In order 

to reveal the 2D rosette area oscillation caused by the nastic movements, the Matlab detrend 

algorithm (http://www.mathworks.com/help/matlab/ref/detrend.html) was used to eliminate the 

ascending growth trend from the smoothed 10-day 2D rosette area curve. Fourier Transform was 

then applied to the resulting data to study the diurnal cycle.  

 3D rosette analysis 

 Camera array calibration and shelf-based 3D mesh generation 

Camera calibration is the process of determining which light beam from the real world 

falls on which pixel of the image sensor (Bellasio et al. 2012). This entails solving for two sets of 

numbers. Intrinsic parameters specify the optical behavior of the camera itself. Extrinsic 

parameters tell where the camera is positioned in space and the direction in which it is pointing. 

Intrinsic parameters are often determined one camera at a time using special targets and 

software; however, this was not feasible due to the large number of cameras in this study. 

Instead, the two-row camera array of each shelf was calibrated as one imaging system using 

Photoscan’s built-in camera calibration function.  

A customized color-grid poster was printed on a shelf-size vinyl and mounted and 

stretched flat on each shelf surface before the experiment started. The poster was photographed 

http://www.mathworks.com/help/matlab/ref/detrend.html
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by the 18-camera array of each shelf. After pre-processing by DPP, all 18 images were imported 

into Photoscan to build a sparse point cloud and a dense point cloud (Figure 3.1). Photoscan first 

estimated camera intrinsic parameters, including the image dimension in pixels, the focal length, 

and the coordinates of the pixel intersected by the optical axis. Other intrinsic parameters 

estimated by Photoscan describe the radial and tangential lens distortion; however, early 

experience showed that Photoscan was not fully effective at correcting lens distortion. This is 

why an initial stage of lens distortion removal was first performed by DPP, as described in the 

previous chapter.  

Photoscan next calculated the extrinsic parameters that are the X, Y, and Z coordinates of 

each camera’s focal point and the roll, pitch, and yaw angles of the optical axis. Figure 3.1 shows 

the cloud of over four million points that Photoscan produced during the calibration process as 

well as a visual depiction of selected internal and external camera parameters. After ensuring the 

estimation errors of 18 camera positions were smaller than 0.5 pixels, all calibration parameters 

were exported to a camera calibration xml file was that was used in all subsequent analyses. 

 Due to a shelf design flaw described in Chapter 2, after plants were placed on the shelf, 

there was not enough image overlap between the two rows of cameras to build a 3D model for 

the entire shelf. Instead, half-shelf models were constructed, each from a set of nine images, 

along with the camera calibration data just described. The output was a file in Polygon File 

Format (PLY), which is a standard for colored 3D mesh data. Figure 3.2 shows a rendering of a 

half-shelf mesh model.  

 Single 3D plant model segmentation and plant genotype assignment 

In most computer vision studies, 3D mesh segmentation is a computation-intensive and 

time-consuming process. For a half-shelf 3D mesh such as the one shown in Figure 3.2, there are 
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approximately 11 million points (vertices) connected into over 23 million faces (triangles). 

Locating the triangles comprising individual plants within the mesh depicting all objects in the 

half-shelf was nearly impossible with conventional computer vision algorithms. We developed a 

novel, computationally-efficient method to segment single-plant 3D models from half-shelf mesh 

and assign the corresponding genotype designations simultaneously. The key is the half-shelf 

PLY file exported from Photoscan.  

 There are two main sections of information contained in each PLY file. The first section 

contains the X, Y, Z vertex positions, unit normals (magnitude-one vectors perpendicular to the 

plant surface at each vertex position), and the RGB vertex colors. When the mesh is rendered, 

colors in between the vertices can be filled in by interpolation. Alternatively, the faces can be 

colored from data in a texture file which is synthesized from the original images. The latter 

option was used here because it provides more spatial detail.  

The second section describes the triangular faces. This was done by listing the ID 

numbers for each of the three vertices that bound the triangle. Also listed are the 2D pixel 

coordinates of where each vertex is located in the orthophoto. This builds a relationship between 

3D and 2D, but the linkage is one-directional. That is, from every 3D vertex one can locate a 2D 

pixel but from that 2D pixel one cannot easily locate its corresponding 3D vertex. 

 Therefore, using the methods in Chapter 2, we located binary images for each single 

plant, but, unlike what was done previously, they were left embedded in a background that was 

the same size as the orthophoto (Figure 3.3). Then, all the vertices in the mesh were scanned and 

the colors of their corresponding orthophoto pixels were examined. Any vertex linked to a black 

pixel that could not be a 3D point in the plant were not imaged in the orthophoto (Figure 3.4), 

and the vertices linked to the plant pixels were color-coded by the plant IDs. By using the color-
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coded vertices, the vertices and faces of each plant were efficiently sorted and then extracted 

from the half-shelf 3D mesh. Finally, these extracted vertices and faces were exported into one 

PLY file in order to generate single-plant 3D models for each plant (Figure 3.5). Table 3.1 shows 

a section of the Python pipeline that was used for sorting and extracting vertices and faces of 

each plant. The beauty of this process is that, because genotype information of the single-plant 

binary image is assigned during its extraction, the genotype of the 3D model is automatically 

known.  

 3D area measurement for a single plant 

To estimate the area of the plant, it is only necessary to sum the areas of the triangular 

faces of which its 3D model is composed. The area of each face was computed by: 1) converting 

its three vertices (A, B, and C) into two vectors, 𝐴𝐵⃗⃗⃗⃗  ⃗ and 𝐴𝐶⃗⃗⃗⃗  ⃗, 2) calculating the magnitude of the 

cross product of these two vectors, which equals the area of a parallelogram having these two 

vectors as sides, and 3) the face area is just half of this parallelogram’s area.  

 Comparison between 3D and 2D area time-series 

 In order to compare rosette areas extracted based on 2D images and 3D models, a plant 

(Figure 3.6) was tracked during a 10-day growth period, and both its 2D and 3D areas were 

calculated every hour. Because no images were collected from 9:00 pm to 5:00 am each day, 

linear interpolation was used to estimate rosette area overnight. Then, the Savitzky–Golay filter 

(Savitzky and Golay 1964) was applied to yield a smoothed growth curve. Because the 2D and 

3D systems had different units (pixel and mesh coordinates, respectively), the two areas could 

not be compared directly. Therefore, the values were converted to Z scores on a daily basis and 

plotted together for comparison. This statistical analysis was implemented in Matlab. 
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 Results and discussion 

 Camera array calibration results 

Figure 3.7A shows the 3D modeling results before camera calibration. Due to the linear 

camera array setup, the intrinsic parameters could not be estimated accurately by Photoscan 

because no information was available from other directions. Without correct camera intrinsic 

parameters, both the one-row camera array and the half-shelf 3D mesh showed curvature. The 

lack of information resulted because when plants were present, there was not enough vertical 

clearance for the fields of view of cameras in separate rows to overlap.  

 However, before the pots were placed on the shelf surface, the vertical space was 

sufficient for Photoscan to group both rows of cameras together for camera intrinsic parameter 

estimation. By using the camera intrinsic parameters estimated by the calibration, both the one-

row camera array and the half-shelf 3D mesh are flat and the estimation errors were less than 0.5 

pixels, as Figure 3.7B shows.  

 Plant nastic movement and diurnal cycle analysis 

The black dots in Figure 3.8A are the actual time-series 2D rosette area measurements, 

and the red curve is the smoothed 2D rosette area curve after interpolation for no night-hour data. 

The oscillation caused by plant nastic movement in the red curve is visible but is distorted by the 

overall pattern of increasing size that will also affect the Fourier Transform results. After 

detrending the 2D rosette area curve (Figure 3.8B), the daily time at which this plant reaches its 

maximum apparent area is between 9:00 am and 10:00 am. Furthermore, the oscillation is more 

obvious than without curve detrending. The peak of the Fourier Transform (Figure 3.8C) is at a 

24-hour frequency. This result is identical to previous studies (Hong et al. 2013; Dornbusch et al. 

2014; Greenham et al. 2015) and shows that our automated pipeline can extract this data. Figure 
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3.8D shows the overall daily growth of the plant. The individual leaf pictures were taken at 6:00 

am each day, when the leaves were most horizontal.  

 Time-series single-plant 3D modeling 

Figure 3.9 shows the respective time-series 3D plant models for a plant during a 10-day 

growth period. As is clear, some petiole parts are missing. This is because some of the petioles 

are missing in the binary image from which the 3D image was built. However, those petiole parts 

contribute an insignificant amount to total plant area.    

 Time-series comparison between 2D area and 3D area 

Figure 3.10 superimposes the day-by-day Z scores plots, directly comparing the 2D 

(black curve) and 3D (red curve) areas. Clearly, across the 10-day growth period, the 3D areas 

mainly show slow linear growth trends within each day and lack the oscillations caused by plant 

nastic movement in 2D areas. Also, the starting and ending measurements for both 2D and 3D 

curves are very close to one another within each day at times when the leaves are closest to 

horizontal. 

 Single-plant 3D modeling pipeline throughput 

Table 3.2 shows the throughput capability of 3D plant area and 2D plant area. For each 

half-shelf, it took approximately 35 minutes for image pre-processing, orthophoto generation, 3D 

mesh reconstruction, binary image segmentation, and genotype assignment, thanks to GPU 

acceleration with OpenCL. By using optimized algorithms, it took 0.02 s on an Intel Core i7 

processor to extract a single-plant 3D model from the half-shelf 3D mesh. For each plant, it took 

approximately 3.2 s to compute hourly 2D and 3D areas during a 10-day growth period (total: 

160 plants). 
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 Conclusion and perspectives 

In this chapter, we demonstrated a novel method to: 1) reconstruct time-series shelf-based 

3D meshes for NAM population of Arabidopsis with a stationary multi-camera array imaging 

system in a controlled environment, 2) analyze the time-series 2D rosette areas for studying the 

plant nastic movement and diurnal cycle, 3) extract each single-plant 3D model from the 

background 3D mesh, 4) associate it with its genotypic information, and 5) compute time-series 

3D areas during a 10-day growth period. This process was integrated into our high-throughput 

phenotyping pipeline (described in the previous chapter) so extracting 3D plant phenotypic traits 

could be automated.  

 Comparing the plants’ areas as measured from the 3D model and a corresponding 2D 

image during a 10-day growth period showed that both revealed increasing areas but that the 3D 

data was uncorrupted by plant nastic movements. This result shows that areas measured in a 

three-dimensional space might be more accurate and reliable when modeling and analyzing 

biological growth responses. Furthermore, 3D plant models can provide a unique perspective to 

study plant canopy structure and plant growth pattern under different environmental conditions 

with non-invasive and non-destructive sampling methods.  

 The processing time for single-plant 3D model extraction and 3D area calculation is 

extremely fast after applying optimized algorithms. The current limitation is the runtime for 

reading half-shelf 3D mesh; it is still long due to the large amount of vertices and faces of each 

half-shelf mesh. A further investigation on how to optimize the runtime for reading half-shelf 

mesh is needed. 



79 

 Acknowledgement 

This study was funded by the National Science Foundation Grant IOS-0923752 to 

Cynthia Weinig, Stephen Welch, and Julin Maloof. We are also appreciative of the helpful 

comments and suggestions of reviewers. 

 

  



80 

 References 

Ali, M. M., Al-Ani, A., Eamus, D., & Tan, D. K. (2012). A New Image-Processing-Based 

Technique for Measuring Leaf Dimensions. American-Eurasian Journal of Agriculture & 

Environmental Science, 12, 1588-1594. 

Azzari, G., Goulden, M. L., & Rusu, R. B. (2013). Rapid characterization of vegetation structure 

with a microsoft kinect sensor. Sensors, 13(2), 2384-2398. 

Backhaus, A., Kuwabara, A., Bauch, M., Monk, N., Sanguinetti, G., & Fleming, A. (2010). 

LEAFPROCESSOR: a new leaf phenotyping tool using contour bending energy and 

shape cluster analysis. New phytologist, 187(1), 251-261. 

Berger, B., Parent, B., & Tester, M. (2010). High-throughput shoot imaging to study drought 

responses. Journal of Experimental Botany, erq201. 

Bellasio, C., Olejníčková, J., Tesař, R., Šebela, D., & Nedbal, L. (2012). Computer 

reconstruction of plant growth and chlorophyll fluorescence emission in three spatial 

dimensions. Sensors, 12(1), 1052-1071. 

Biskup, B., Scharr, H., Schurr, U., & Rascher, U. W. E. (2007). A stereo imaging system for 

measuring structural parameters of plant canopies. Plant, cell & environment, 30(10), 

1299-1308. 

Bylesjö, M., Segura, V., Soolanayakanahally, R.Y., Rae, A.M., Trygg, J., Gustafsson, P., 

Jansson, S., Street. N.R. (2008). LAMINA: a tool for rapid quantification of leaf size and 

shape parameters. BMC Plant Biology, 8(1), 82. 

Candela, H., Martınez-Laborda, A., & Micol, J. L. (1999). Venation pattern formation in 

Arabidopsis thaliana vegetative leaves. Developmental biology, 205(1), 205-216. 



81 

Chen, D., Neumann, K., Friedel, S., Kilian, B., Chen, M., Altmann, T., & Klukas, C. (2014). 

Dissecting the phenotypic components of crop plant growth and drought responses based 

on high-throughput image analysis. The Plant Cell, 26(12), 4636-4655. 

Chéné, Y., Rousseau, D., Lucidarme, P., Bertheloot, J., Caffier, V., Morel, P., Belin, É., 

Chapeau-Blondeau. F. (2012). On the use of depth camera for 3D phenotyping of entire 

plants. Computers and Electronics in Agriculture, 82, 122-127. 

Chitwood, D.H., Headland, L.R., Filiault, D.L., Kumar, R., Jiménez-Gómez, J.M., Schrager, 

A.V., Park, D.S., Peng, J., Sinha, N.R., Maloof. J.N. (2012). Native environment 

modulates leaf size and response to simulated foliar shade across wild tomato species. 

PLoS One, 7(1).  

Cookson, S. J., Chenu, K., & Granier, C. (2007). Day length affects the dynamics of leaf 

expansion and cellular development in Arabidopsis thaliana partially through floral 

transition timing. Annals of Botany, 99(4), 703-711. 

Dhondt, S., Wuyts, N., & Inzé, D. (2013). Cell to whole-plant phenotyping: the best is yet to 

come. Trends in plant science, 18(8), 428-439. 

Dornbusch, T., Lorrain, S., Kuznetsov, D., Fortier, A., Liechti, R., Xenarios, I., & Fankhauser, C. 

(2012). Measuring the diurnal pattern of leaf hyponasty and growth in Arabidopsis–a 

novel phenotyping approach using laser scanning. Functional Plant Biology, 39(11), 860-

869. 

Dornbusch, T., Michaud, O., Xenarios, I., & Fankhauser, C. (2014). Differentially phased leaf 

growth and movements in Arabidopsis depend on coordinated circadian and light 

regulation. The Plant Cell, 26(10), 3911-3921. 



82 

Duda, R. O., & Hart, P. E. (1972). Use of the Hough transformation to detect lines and curves in 

pictures. Communications of the ACM, 15(1), 11-15. 

Easlon, H. M., & Bloom, A. J. (2014). Easy Leaf Area: Automated digital image analysis for 

rapid and accurate measurement of leaf area. Applications in plant sciences, 2(7). 

El-Omari, S., & Moselhi, O. (2011). Integrating automated data acquisition technologies for 

progress reporting of construction projects. Automation in Construction, 20(6), 699-705. 

Fiorani, F., & Schurr, U. (2013). Future scenarios for plant phenotyping. Annual review of plant 

biology, 64, 267-291. 

Furbank, R. T., & Tester, M. (2011). Phenomics–technologies to relieve the phenotyping 

bottleneck. Trends in plant science, 16(12), 635-644. 

Granier, C., Aguirrezabal, L., Chenu, K., Cookson, S. J., Dauzat, M., Hamard, P., Thioux, J., 

Rolland, G., Bouchier-Combaud, S., Lebaudy, A., Muller, B., Simonneau, T., Tardieu, F. 

(2006). PHENOPSIS, an automated platform for reproducible phenotyping of plant 

responses to soil water deficit in Arabidopsis thaliana permitted the identification of an 

accession with low sensitivity to soil water deficit. New Phytologist, 169(3), 623-635. 

Green, J. M., Appel, H., Rehrig, E. M., Harnsomburana, J., Chang, J. F., Balint-Kurti, P., & 

Shyu, C. R. (2012). PhenoPhyte: a flexible affordable method to quantify 2D phenotypes 

from imagery. Plant Methods, 8(1), 1-12. 

Greenham, K., Lou, P., Remsen, S. E., Farid, H., & McClung, C. R. (2015). TRiP: Tracking 

Rhythms in Plants, an automated leaf movement analysis program for circadian period 

estimation. Plant methods, 11(1), 33. 



83 

Hartmann, A., Czauderna, T., Hoffmann, R., Stein, N., & Schreiber, F. (2011). HTPheno: an 

image analysis pipeline for high-throughput plant phenotyping. BMC bioinformatics, 

12(1), 148. 

Hosoi, F., & Omasa, K. (2009). Estimating vertical plant area density profile and growth 

parameters of a wheat canopy at different growth stages using three-dimensional portable 

lidar imaging. ISPRS Journal of Photogrammetry and Remote Sensing, 64(2), 151-158. 

Hong, S., Kim, S. A., Guerinot, M. L., & McClung, C. R. (2013). Reciprocal interaction of the 

circadian clock with the iron homeostasis network in Arabidopsis. Plant physiology, 

161(2), 893-903. 

Hunt Jr, E. R., Cavigelli, M., Daughtry, C. S., Mcmurtrey III, J. E., & Walthall, C. L. (2005). 

Evaluation of digital photography from model aircraft for remote sensing of crop biomass 

and nitrogen status. Precision Agriculture, 6(4), 359-378. 

Juenger, T.E., Mckay, J.K., Hausmann, N., Keurentjes, J.J., Sen, S., Stowe, K.A., Dawson, T.E., 

Simms, E.L., Richards, J. H. (2005). Identification and characterization of QTL 

underlying whole‐plant physiology in Arabidopsis thaliana: δ13C, stomatal conductance 

and transpiration efficiency. Plant, Cell & Environment, 28(6), 697-708. 

Keightley, K. E., & Bawden, G. W. (2010). 3D volumetric modeling of grapevine biomass using 

Tripod LiDAR. Computers and Electronics in Agriculture, 74(2), 305-312. 

Kjaer, K. H., & Ottosen, C. O. (2015). 3D laser triangulation for plant phenotyping in 

challenging environments. Sensors, 15(6), 13533-13547. 

Mahlein, A. K., Oerke, E. C., Steiner, U., & Dehne, H. W. (2012). Recent advances in sensing 

plant diseases for precision crop protection. European Journal of Plant Pathology, 133(1), 

197-209. 



84 

Maloof, J. N., Nozue, K., Mumbach, M. R., & Palmer, C. M. (2013). LeafJ: An ImageJ plugin 

for semi-automated leaf shape measurement. JoVE (Journal of Visualized Experiments), 

(71), e50028-e50028. 

Mullen, J. L., Weinig, C., & Hangarter, R. P. (2006). Shade avoidance and the regulation of leaf 

inclination in Arabidopsis. Plant, Cell & Environment, 29(6), 1099-1106. 

Otsu, N. (1975). A threshold selection method from gray-level histograms. Automatica, 11(285-

296), 23-27. 

Palacín, J., Pallejà, T., Tresanchez, M., Sanz, R., Llorens, J., Ribes-Dasi, M., Masip, J., Arnó, J., 

Escolà, A., Rosell, J.R. (2007). Real-time tree-foliage surface estimation using a ground 

laser scanner. Instrumentation and Measurement, IEEE Transactions on, 56(4), 1377-

1383. 

Paulus, S., Dupuis, J., Mahlein, A. K., & Kuhlmann, H. (2013). Surface feature based 

classification of plant organs from 3D laserscanned point clouds for plant phenotyping. 

BMC bioinformatics, 14(1), 238. 

Paulus, S., Behmann, J., Mahlein, A. K., Plümer, L., & Kuhlmann, H. (2014). Low-cost 3D 

systems: suitable tools for plant phenotyping. Sensors, 14(2), 3001-3018. 

Pérez-Pérez, J. M., Serrano-Cartagena, J., & Micol, J. L. (2002). Genetic analysis of natural 

variations in the architecture of Arabidopsis thaliana vegetative leaves. Genetics, 162(2), 

893-915. 

Quan, L., Tan, P., Zeng, G., Yuan, L., Wang, J., & Kang, S. B. (2006, July). Image-based plant 

modeling. In ACM Transactions on Graphics (TOG) (Vol. 25, No. 3, pp. 599-604). 

ACM. 



85 

Rascher, U., Blossfeld, S., Fiorani, F., Jahnke, S., Jansen, M., Kuhn, A.J., Matsubara, S., Märtin, 

L.L.A., Merchant, A., Metzner, R., Müller-Linow, M., Nagel, K.A., Pieruschka, R., 

Pinto, F., Schreiber, C.M., Temperton, V.M., Thorpe, M.R., Dusschoten, D.V., 

Volkenburgh, E.V., Windt, C.W., Schurr, U. (2011). Non-invasive approaches for 

phenotyping of enhanced performance traits in bean. Functional Plant Biology, 38(12), 

968-983.  

Santos, T. T., & Oliveira, A. A. (2012, August). Image-based 3D digitizing for plant architecture 

analysis and phenotyping. In Workshop on Industry Applications (WGARI) in SIBGRAPI 

2012, 21-28.  

Savitzky, A., & Golay, M. J. (1964). Smoothing and differentiation of data by simplified least 

squares procedures. Analytical chemistry, 36(8), 1627-1639. 

Tan, P., Zeng, G., Wang, J., Kang, S. B., & Quan, L. (2007, August). Image-based tree 

modeling. In ACM Transactions on Graphics (TOG) 26(3), p. 87. ACM. 

Vos, J., Evers, J. B., Buck-Sorlin, G. H., Andrieu, B., Chelle, M., & De Visser, P. H. (2009). 

Functional–structural plant modelling: a new versatile tool in crop science. Journal of 

experimental Botany, erp345. 

Weight, C., Parnham, D., & Waites, R. (2008). TECHNICAL ADVANCE: LeafAnalyser: a 

computational method for rapid and large‐scale analyses of leaf shape variation. The 

Plant Journal, 53(3), 578-586. 

 

 

 

  



86 

Figure 3.1 Camera calibration. 

 
The dense point cloud in a three-dimensional space generated by Photoscan for calibrating a two-

row camera system using a customized color-grid poster. The blue boxes are the estimated 

camera positions in a three-dimensional space; the black lines show the orientations of each 

camera. The camera intrinsic parameters were estimated by this process.  
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Figure 3.2 A half-shelf 3D mesh generated by Photoscan. 

 
The top center is the 3D mesh generated by one-row camera array; the lower-left is a close-up 

view for one 4-by-4 flat; the lower right is a close-up view for one plant.  
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 Figure 3.3 Single-plant binary image for extracting a single-plant 3D model. 

 
Left: A single-plant binary image with the original orthophoto’s dimension. The black area in the 

left image is used to eliminate the non-related mesh. Right: the close-up view of this plant. 
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 Figure 3.4 A single-plant vertex map. 

 
Left: A single-plant vertex map for representing the saved vertices of the 3D mesh. The grey 

pixels stand for the saved corresponding vertices from the half-shelf 3D mesh. Black area means 

that the corresponding area on the mesh was eliminated. Right: the close-up view of this vertex 

map.  
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Figure 3.5 A single-plant 3D model. 

 
The extracted single-plant 3D model viewed from two different angles. 
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 Figure 3.6 Plant orthophoto vs. 3D model. 

 
One sample plant was analyzed in this article. The left image is the orthophoto of this plant, and 

the right image is its 3D model before single-plant 3D model extraction. 
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 Figure 3.7 Half-shelf 3D mesh before and after camera calibration. 

 
A) The half-shelf 3D mesh showed curvature before camera calibration. No plant area could be 

estimated at this point. B) The same model with accurate camera intrinsic parameters; the 3D 

mesh was flat.  
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 Figure 3.8 Plant nastic movement and diurnal cycle analysis. 

 
A) The graph is the 16-hour rosette area measurements (black dots) and smoothed growth curve 

(red curve); B) the detrended plant growth curve to show the plant nastic movement; C) the 

Fourier Transform to the diurnal movement is a daily cycle; D) time-series single-rosette binary 

images for this plant.  
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 Figure 3.9 Time-series 3D models. 

 

 

Time-series single-plant models during a 10-day growth period. 
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Figure 3.10 Z score comparison between 3D area and 2D area. 

 

 

Daily Z scores comparisons between 3D areas (red curve) and 2D areas (black curve) during a 

10-day growth period.  
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Table 3.1 Sample Python code for sorting and extracting plant vertices and faces. 

Plant_verticesList = np.sort(existingPlant+[0]) 

 

FCodes = np.min(plant_idx[M.PixelX_vertex[M.Faces],M.PixelY_vertex[M.Faces]],axis=1) 

 

FIndex = np.argsort(FCodes) 

FBreaks = np.searchsorted(FCodes[FIndex], Plant_verticesList,side='right') 

 

# extracting the vertices and faces for each plant 

Areas_3D = np.zeros(len(coord)) 

for i in range(0,len(existingPlant)): 

start_SinglePlant = timeit.default_timer() 

plant = Mesh() 

plant_face = M.Faces[FIndex[FBreaks[i]:FBreaks[i+1]]] 

plant_faceReshape = np.reshape(plant_face, -1) 

plant_vertex = np.unique(plant_face) 

plant_vertexIDX = range(0, len(plant_vertex)) 

# build a dictionary for old vertex and new vertex 

Idx_dict = dict(zip(plant_vertex, plant_vertexIDX)) 

plant_FaceNewIDX = [Idx_dict[j] for j in plant_faceReshape] 

# reshape back the Faces for new plant mesh 

plant_NewFaces = np.reshape(plant_FaceNewIDX, (-1,3)) 

plant.Faces = plant_NewFaces 

plant.XYZ = M.XYZ[plant_vertex] 

plant.NRM = M.NRM[plant_vertex] 

plant.RGB = M.RGB[plant_vertex]  

 

if list(plant.Faces)==[]: # if the plant does not exist 

Areas_3D[existingPlant[i]-1]=0 

else: 

plant.FaceAreas() 

Areas_3D[existingPlant[i]-1] = sum(plant.Areas) 

plant.WriteSelectedPoints(path+filename+'_3Dplant_'+str(FCodes[FIndex[FBreaks[i]]]),

Data="ASCII") 
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 Table 3.2 Throughput capability of single-plant 3D and 2D area calculation. 

  

Average processing 

time per half-shelf (s) 

Average processing 

time per plant (s) 

Average runtime for hourly single-

plant area during 10-day period 

(cluster s) 

3.84 0.02 3.2 
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Chapter 4 - Conclusion 

The bottleneck of conventional phenotyping methods has limited the ability to understand 

the interaction between a plant’s genotype and its surrounding environment. In particular, 

invasive and destructive sampling methods, along with the traditional measuring techniques 

widely used in conventional phenotyping, are labor-intensive, time-consuming, costly, and can 

easily lack consistency across workers. These traits impede large-scale genetic studies within 

plant biology and crop production.  

The high-throughput phenotyping pipeline presented in this study shows significant 

potential for large-scale noninvasive plant measurement using photogrammetry and 3D modeling 

techniques in the model species, Arabidopsis thaliana. This not only supports improved 

understanding of plant growth and development in a time-series manner but also can help 

determine the performance of specific genotypes by analyzing whole-plant phenotypic traits in 

different environments. The main features of the pipeline include: noninvasive 2D imaging and 

3D reconstruction, elements of instrument independency with cross-platform capability, and 

customizable pipeline design. 

 Noninvasive 2D imaging and 3D reconstruction automates image data collection, 

transfer, storing, management, processing, analysis, and the extraction of phenotypes. This 

automated pipeline makes it possible to phenotype a large mapping population of Arabidopsis at 

one-hour intervals—something that could not be done by purely manual methods. The 2D image 

analyses in the pipeline utilizes remote sensing image processing methods that allow us to 

quickly measure the apparent lengths of all leaves, as well as analyze plant nastic movements 

and diurnal cycles. 3D plant reconstruction and segmentation by the pipeline allows us to 
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separate out the effects of nastic movements and, therefore, to accurately and efficiently measure 

genotypic rosette area growth increases for different genotypes.  

 Elements of instrument independency within this pipeline eliminate specific imaging 

system requirements by using high-level scripting language for pipeline automation. Unlike 

high-throughput phenotyping methods presented in other studies, this feature improves our 

pipeline flexibility regardless of differences in manufacturer-provided software. With minimal 

alterations (mainly rewriting short scripts), one imaging system and its corresponding vendor-

supplied software could be easily replaced by another without changing other portions of the 

pipeline. 

 Cross-platform capability is the main difference and advantage of this system compared 

to other high-throughput phenotyping pipelines. Although this pipeline was developed based on 

Arabidopsis for studying shade-avoidance responses in a controlled indoor environment, it was 

shown to be sufficiently generic that it could be transferred into a field environment with 

minimal or no alteration. For future work, the pipeline may be scaled up using other ground-level 

or even aerial-level imaging platforms in the field environment for phenotyping different plants 

and crops.  

 Customizable pipeline design allows us to integrate advanced analysis methods into the 

pipeline in the future. Quantitative statistics are routinely used to create models based on 

phenotype and genotype data, and environmental inputs are becoming more important in these 

and other types of models. The customizable characteristics of this pipeline support integration 

of various modeling methods into the pipeline in order to reduce the complexity of data analysis 

of large-scale genetic studies. For example, one might readily envision integrating a genetic 
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mapping program into the pipeline. The pipeline in this study showed its versatility in analyzing 

different plant phenotypic traits with different modeling methods.  

 Finally, the future phenotypic landscape is becoming increasingly more complex. 

Therefore, successful high-throughput phenotyping pipelines need to possess the competence to 

integrate interdisciplinary tools and technologies comprising agronomy, plant physiology, plant 

genetics, breeding, computer science, remote sensing, engineering, and mathematical modeling. 

Furthermore, phenotyping pipelines must also be suitable for working in different environments 

and on different platforms. The high-throughput phenotyping pipeline presented in this study 

fulfills these two requirements. Such a pipeline will show its versatility by helping to find 

solutions to crop production and plant biology problems.  
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