EXAMINING THE RELIABILITY OF LOGISTIC
REGRESSION ESTIMATION SOFTWARE

by
LIJIA MO

B.Sc. Capital University of Economics and Business, Beijing,
China, 1996.
M.Sc. Humboldt University of Berlin, Berlin, Germany, 2005.

AN ABSTRACT OF A DISSERTATION

submitted in partial fulfillment of the
requirements for the degree

DOCTOR OF PHILOSOPHY

Department of Agricultural Economics
College of Agriculture

KANSAS STATE UNIVERSITY
Manhattan, Kansas
2010



Abstract

The reliability of nine software packages using the maximum likelihood estimator for the
logistic regression model were examined using generated benchmark datasets and models.
Software packages tested included: SAS (Procs Logistic, Catmod, Genmod, Surveylogistic,
Glimmix, and Qlim), Limdep (Logit, Blogit), Stata (Logit, GLM, Binreg), Matlab, Shazam,
R, Minitab, Eviews, and SPSS for all available algorithms, none of which have been previ-
ously tested. This study expands on the existing literature in this area by examination of
Minitab 15 and SPSS 17. The findings indicate that Matlab, R, Eviews, Minitab, Limdep
(BFGS), and SPSS provided consistently reliable results for both parameter and standard
error estimates across the benchmark datasets. While some packages performed admirably,
shortcomings did exist. SAS maximum log-likelihood estimators do not always converge to
the optimal solution and stop prematurely depending on starting values, by issuing a “flat”
error message. This drawback can be dealt with by rerunning the maximum log-likelihood
estimator, using a closer starting point, to see if the convergence criteria are actually satis-
fied. Although Stata-Binreg provides reliable parameter estimates, there is no way to obtain
standard error estimates in Stata-Binreg as of yet. Limdep performs relatively well, but did
not converge due to a weakness of the algorithm. The results show that solely trusting the
default settings of statistical software packages may lead to non-optimal, biased or erroneous
results, which may impact the quality of empirical results obtained by applied economists.
Reliability tests indicate severe weaknesses in SAS Procs Glimmix and Genmod. Some soft-
ware packages fail reliability tests under certain conditions. The finding indicates the need

to use multiple software packages to solve econometric models.
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Chapter 1

Introduction

When doing research, researchers may face discrepancies among the estimation results from
different software packages. One of the reasons for these discrepancies may be the numerical
accuracy of the software. Testing numerical accuracy can benefit both software users and
developers. Benchmark tests used to analyze numerical accuracy of algorithms implemented
by software packages are available on the website of the National Institute of Standards and
Technology (NIST 2010). Using this information, estimates can be compared to a known
level of accuracy for univariate descriptive statistics, analysis of variance, Markov Chain
Monte Carlo models, as well as nonlinear and linear regression problems. The performance
of a package based on estimating different models allows researchers to understand the
strengths and weaknesses of alternative econometric software. Properties of the data may
also affect the choice of a suitable package, e.g. the degree of multicollinearity and the
number of covariates, because some packages may handle certain statistical issues better
than others.

For example, previous research has found that the instability of data is not reflected in
small standard errors, even if covariates are highly multicollinear. For nonlinear models,
the Jacobian matrix of the K x X covariate matrix is calculated based on the 1st derivative
of the covariate matrix with respect to X. For linear models, conditioning, defined as how
close a linear regressor matrix X’X is to singularity and explained in detail in Section 7,

is one important factor in accuracy, but it is not the only one. Well-conditioned data are



defined with respect to the model and the more pervasive problems of near-multicollinearity
are associated with X'X being ill-conditioned, X is the predicted value of X. The inverse
of X'X induces numerical instability into estimates of B . The accuracy of the estimate is a
function of the model, data and the algorithm (Altman, Gill and McDonald, 2004).

Benchmark tests are designed to investigate specific weaknesses of statistical software
algorithms. The StRD contains multiple problems for testing various aspects of each algo-
rithm. Since the release of the StRD, many reliability tests of statistical packages have been
facilitated by running the specified analysis and comparing the results with certified values.
It has become a widely used benchmark test for reviewers of software packages (NIST 2010).

A summary of reliability tests (Univariate Statistics; ANOVA; Linear Regression; Non-
linear Regression) have been conducted by researchers for major commercial econometric
software packages (Altman et.al., 2004, Chp.3). A reliable package needs to pass all the
benchmarks or provide clear error messages when inaccuracy occurs. Out of eleven pack-
ages (Limdep, Shazam, TSP, SAS, SPSS, S-Plus, Excel, Gauss, SST, Stata, and Eviews),
none of them fails all the benchmark tests (Altman et.al., 2004, Chp.3 Table 3.2). A few
packages perform badly on highly difficult nonlinear models (5 out of 11, Eviews, Limdep,
Shazam, TSP, SPSS) and in the tails of statistical distributions (4 out of 9) (Gauss 3.2.6,
Excel, Shazam, and TSP) (McCullough 1999a p.196, McCullough 1999b p.152-156, p.157,
Knuesel 1995).

The type of algorithm chosen and settings used can affect the outcomes of the benchmark
tests. When solving the same StRD problem, solvers may yield different results. Nonlinear
solvers can be geared to solving nonlinear least squares, maximum likelihood estimation
(MLE) and constrained maximum likelihood estimation. The nonlinear benchmark problems
in the StRD are formulated as nonlinear least squares problems.

Maximum likelihood problems can be used as generalized formulations in nonlinear re-
gression problems under the assumptions of a known model, a distributional error term and

no observation error in the data. Altman et.al. (2004) argue that the nonlinear bench-



marks can be used for maximum likelihood search algorithms, but they are not designed
specifically for them ( pp. 52). The application of the maximization likelihood function to
nonlinear least squares was completed by McCullough and Renfro (2000), which explained
the numerical sources of inaccuracy of the nonlinear solver. Different software packages deal
with nonlinear regression and maximum likelihood estimation differently. Eviews and TSP
have separate least squares routines from using the maximum likelihood procedure. Thus
separate tests are needed for each maximization routine. Limdep and Shazam combine the
two routines (McCullough 1999a pp.198). McCullough and Renfro (2000) suggest that the
reason MLE solvers perform worse in solving StRD problems is that nonlinear least squares
solvers overtake maximum likelihood solvers by using algorithms with the more restricted
structure of the original problem (i.e. Levenberg-Marquardt algorithms), and the MLE re-
formulation requires additional estimation of the sigma parameter for the variance of the
errors.

Logistic regression is one of the most commonly used models using the MLE approach in
applied economics. The conventional approach for logistic regression is based on asymptotic
maximum likelihood inference. Due to the fact that nonlinear least squares and maximum
likelihood estimators are not equivalent in many software packages, the reliability of MLE
solvers is not been examined. Greene (2002 Chp.17 pp.496) indicated that the nonlinear least
squares estimator ignores the Jacobian of the transformation. In a nonlinear least squares
model, nonlinearity in the parameters appears entirely on the right-hand side of the equation
in functions of the dependent variable. For the model where parameters are nonlinear
functions of dependent variable, the nonlinear least squares estimator is inconsistent due
to the ignorance of the Jacobian of the transformation. However, the MLE of this type of
model is consistent. If Jacobian terms involve the parameter of the nonlinear dependent
variable 6, the least squares is not same as the maximum likelihood.

This study will perform benchmark tests following the reliability evaluation procedures

outlined in McCullough (1998, 1999) for logistic regression econometric software packages.



The well-accepted logistic model has important implications for economists in binary choice
decisions.

The reliability of logistic regression procedures are tested in SAS, STATA, MATLAB,
R, SHAZAM, EVIEWS, MINITAB, SPSS, and LIMDEP, using benchmark datasets devel-
oped to test the accuracy and reliability of econometric and statistical software packages in

estimating logistic regression models.



Chapter 2

Literature Review

This section analyzes literature related to software reliability. It covers three aspects that
impact the reliability of logistic regression models: functional form, cut-off point, and mul-
ticollinearity, contributed by authors in the literature in chronological order.

Longley (1967) provides a benchmark for linear regression and compares it to hand
calculation results with coefficients produced by the program BMD on IBM 7094; program
NIPD on IBM 7094; NIPD’ on IBM 7094; ORTHO subroutine of OMNITAB on IBM 7094;
IBM 360 CORRE and MULTR subroutines; IBM 1401 Program; IBM 7070/7074 Stepwise
Regression Program; and FORTRAN-IV double precision on a IBM 7094 mainframe. The
micro-computer linear regression results conclude that these computer programs are not
accurate to more than one or two significant digits.

McCullough (1998) provides the foundation for reliability testing that goes beyond the
entry-level tests of accuracy for statistical software to provide a collection of intermediate-
level tests for linear and nonlinear estimation, random number generation, and statistical
distributions. The benchmarks for linear procedures, univariate statistics and analysis of
variance are used to test the quality of the software. Before the NIST benchmarks, several
researchers provided benchmarks to measure the reliability of software on microcomputers.
McCullough (1999b) discusses the reliability of all packages on all data sets listed in Longley
(1967). Besides describing the components of the NIST data, McCullough (1999b) raises the

importance of testing random number generators, which are important for bootstrapping



and Monte Carlo studies, but has not been improved in statistical software.

McCullough (1998) also provides guidelines for assessing the accuracy of statistical dis-
tributions, where the crude approximation for calculating p-values requires several digits of
accuracy. The computation of a desired probability needs to be accurate up to at least six
significant digits, with a relative error smaller than 1E-6. Each distribution has a different
numerical underflow limit. The p-values obtained from the lower tail probability may be
inaccurate due to cancelation errors. An approach for assessing the statistical distribution
is introduced by comparing program results with the Double Precision Cumulative Distri-
bution Function LIBrary (DCDFLIB) and ELV program (for Elementary Distributions, in
German: ELementare Verteilungen) critical values.

McCullough (1999b) discusses Marsaglia’s (1996) “DIEHARD Battery of Randomness
Tests” for random number generators. The DIEHARD tests assume the random number
generators tested can produce 32-bit random integers, but a random number generator
with enough period length needs to be much greater than 200n? where n is the number of
calls to the random number generator. A good random number generator needs to have
approximately n = 1000 with 23! as its period and will pass almost all 18 randomness tests,
some with many variations.

McCullough (1999b) applies his reliability assessment methodology in SAS, SPSS, and S-
Plus for estimation, random number generation, and calculation of statistical distributions.
Weaknesses are identified in all the random number generators, the S-Plus correlation pro-
cedure, one-way ANOVA, and nonlinear least squares problems in SAS and SPSS. SAS
correctly solves 20 out of 27, and SPSS solves 26 out of 27 nonlinear problems for the first
set of starting values. All random number generators are inadequate because the number
of calls made to the random number generator before its repetition is not large enough.

Finite precision cannot be obtained numerically. McCullough and Vinod (1999) argue
that some acquaintance with how computers handle numbers is necessary for software users.

Computation errors caused by two algebraically equivalent methods may have different



effects on computer implementation. Small differences in inputs or algorithms may cause
significant differences in estimation results.

McCullough and Vinod (1999) show that the numerical accuracy of econometric software
cannot be taken for granted. By surveying five journals that publish reviews of economet-
ric software, they conclude that authors do not consider numerical accuracy. They find 120
econometric software reviews that appeared from 1990-1997 in the Journal of Applied Econometrics,
American Statistician, Journal of Business Economics Statistics, Economics Journal, and
Econometrica. Benchmarking has no history in the economics profession. A useful bench-
mark collection for testing general routines is suggested, especially for economists. More
replications are suggested to improve software development, because bugs have been dis-
covered in the full information maximum likelihood estimation of Klein’s model, fitting a
Cochrane-Orcutt AR(1) correction model, and producing a correlation matrix for indepen-
dent variables of a multiple regression. The study assesses software packages but leaves
the original assessments to the published reviews. The priorities of a software package
are providing accuracy, speed and user-friendliness. McCullough and Vinod (1999) argue
that improving software is a joint responsibility of the users, developers, and the economics
profession.

Nonlinear least squares regression packages obtain different number of accurate digits
for estimation for different statistical packages(McCullogh and Renfro, 2000). The FCP
(Fiorentini, Calzolari and Panattoni 1996) program, as a benchmark software package, its
output is correctly described as possessing both a stopping rule and a test for successful
convergence in McCullough and Renfro (1999). Reasons for the differences in results can
be explained by the step-length, stopping rule, convergence criterion and method of deriva-
tive calculation used by the modelers. Inaccurate estimates are produced by the failure of
modelers to implement algorithms properly, e.g. poor implementation of the termination
criteria that can be remedied by the gradient evaluation at the maximum. Reliability as-

sessments (McCullough 1999a, b, 2000 and McCullough and Wilson 1999) reveal that false



maxima occur when software procedures find a non-maximum solution. Two general re-
sults are obtained for nonlinear regressions in SAS, SPSS, and S-plus: analytic derivatives
are preferable to numerical derivatives and default estimation is not reliable (McCullough
1999b). Default numerical derivatives must be replaced by analytic derivatives to achieve
more digits of accuracy. McCullough (1999a) reports that TSP has the least amount of
zero digits of accuracy solutions in 27 StRD tests of nonlinear regression problems with
the default options when compared to Limdep, Eviews, and Shazam, indicating TSP has
a higher reliability than the rest. Because it takes time to test a package and the general
unawareness of pitfalls by the users, sufficient prior testing of algorithms under a variety
of different conditions should be widely implemented. The lack of a general appreciation
of the circumstances under which an implemented algorithm may fail, contributes to the
under-testing of software and the lack of user aids for evaluating these packages.

McCullough and Vinod (2003) propose critical examinations of optimal solutions pro-
duced by nonlinear solvers. They study Excel, TSP, Gauss, R and S-Plus and advocate a
four-step process for addressing numerical accuracy issues:

1. Examine the gradient by checking if the norm of the gradient is zero. The convergence
of the function value and the Hessian should be evaluated at the optimal solution. Relying
on nonlinear solver defaults may lead to false convergence.

2. Solution path (i.e. Trace)- Does the solution path exhibit the expected rate of conver-
gence? When the trace of quadratic convergence algorithms exhibit linear convergence in
its last few iterations, problems may exist. A solver permitting the user to access the func-
tion value along with the estimated parameters can be used to evaluate whether significant
changes occur as the solver ceases iterating.

3. Evaluate the Hessian using an eigenvalue-eigenvector analysis to determine if it is
negative (or positive) definite for a maximization (or minimization) problem and if it is
well-conditioned. If the Hessian is ill-conditioned, the step direction may be unreliable due

to round-off error. The largest eigenvalue should be examined as a rule of thumb, because



negative eigenvalues ensure a negative definite Hessian. Bates and Watts (1988, pp. 80) state
that the stationary point of a nonlinear minimization problem requires a positive definite
Hessian. Multicollinearity analysis is examined using eigen-systems in Vinod and Aman
Ullah (1981, sec. 5.3). If the Hessian is ill-conditioned, the difference between the infinitely
precise solution and the available precise solution may be large, especially in the direction of
the eigenvector associated with the largest eigenvalue of the Hessian at the optimal solution.
If the local maximum of the likelihood occurs in a flat region of the log likelihood function
surface, then small changes in the log likelihood function may be associated with a large
difference in the optimal solution.

Gill et al. (1981, pp. 313) found that if the first three conditions hold, a solution has
probably been found, regardless of whether the program has reported convergence. The last
step justifies the use of the usual t-statistics for coefficients reported by most packages.

4. The measure of variability of the point estimates are reflected in the standard errors
that can be produced by nonlinear routines as t-statistics, or more formally Wald statistics.
The validity of profiling the likelihood to assess the adequacy of the quadratic approximation
method is based on the shape of the objective function in the neighborhood of the solution.
Researchers should examine whether the shape of the objective function is locally quadratic
at the solution because a valid Wald test is based on a quadratic functional form.

When a software package declares convergence, researchers should verify the solution
to safeguard against false convergence. Software packages differ in both accuracy and the
ability to verify a potential solution. A brief review of articles using nonlinear estimation
published in the scholarly journals, suggests that published researchers often run solvers
with the default settings, that are often found to be less accurate (McCullough and Vinod
2003).

Oster (2002) indicates that the conventional approach for logistic regression is asymp-
totic maximum likelihood inference. Most software packages use a normal or a chi-square

distribution approximation to perform statistical hypothesis testing, under which exact and



approximate test results are similar. Conventional approximations do not work well when
the data are sparse among categories or unbalanced. The results are not correct when there
is a close relation between two or more independent variables (i.e. multicollinearity) or
the number of independent variables is too many with respect to the sample size under
study. Oster (2002) reviews three statistical software packages (i.e. StatXact, LogXact, and
Stata) for analyzing categorical data by using exact methods. StatXact 5, LogXact 4.1, and
categorical and nonparametric procedures of Stata 7 are developed for the purpose of per-
forming exact statistical tests for nonparametric statistical inference on either categorical or
continuous data. Oster (2003) tests two additional software packages, Testimate 6 and SAS
8.2. Software rating criteria include: installation, interface, ease-of-use, organization and
completeness of the documentation, the statistical quality of the documentation, data entry
and management, categorical, nonparametric and exact statistical tests, accuracy and reli-
ability aspects. None of the software packages received poor ratings for any of the criteria.
Each of them received excellent ratings for at least some of the criteria. Oster (2003) found
that researchers performing categorical and/or nonparametric statistical analysis may pre-
fer StatXact due to the limited capability of LogXact. A routine user of logistic regression
and/or Poisson regression may choose LogXact because StatXact does not provide relevant
capabilities. StatXact and LogXact contain capabilities (exact tests for logistic regression
and general linear models) unavailable in other software packages, e.g. Stata and SAS. A
number of asymptotic and exact categorical and nonparametric procedures have been added
to the most recent releases of SAS and Stata, but Oster (2003) argues that supplementing
them with StatXact and LogXact is a wise choice because SAS and Stata are limited in
their abilities to do exact tests.

Stokes (2004) investigates potential problems of relying on just one software package
in solving a probit model. Quite different results can be obtained using various software
packages. The difference can be traced to the default convergence tolerance built into

software packages. The nonexistence of MLE probit results can be detected only by changing

10



convergence tolerances. In the iterative process of MLE, if the algorithm can not find an
acceptable step to increase the value of the given objective function before the next step, the
process may fail to improve the current iteration. A maximum obtained repetitively from
increasing the convergence tolerance tests whether the solution is a maximum. It turns
out that quasi-complete separation, which occurs when there exists some coefficient vector
such that ¥'X; > 0if Y; = 1; VVX; < 0if Y; = 0 and occurs when a linear function of x
can generate almost perfect predictions of Y. Quasi-complete separation causes estimation
difficulties only in small sample cases, in which case the MLE may not exist; see Albert and
Anderson (1984) for more details. The increased condition number of the Hessian matrix
when lowering the tolerance necessitates further checking as to whether the Hessian matrix
is becoming singular, a symptom of quasi-complete separation.

Stokes (2004) provides an example of an undetected underlying problem in a nonlinear
probit /logit model that had been widely published in various places for many years. The
model problems are detected accidently during a routine replication exercise. Only by
varying the convergence tolerance is it possible to determine the nonexistence of maximum
likelihood solution to the model, as a undetected quasi-complete separation problem. The
analysis suggests the constant coefficient assumption implicit in the traditional probit model
is not met. A less restrictive model can outperform the probit model with more covariates.
Stokes (2004) suggests using more than one software package to solve the same problem and
to verify the reliability of the nonlinear solver of probit models in SAS, RATS, Limdep, and
Stata.

Keeling and Pavur (2007) compare the relative accuracy of nine software packages (SAS,
SPSS, JMP, EXCEL, Minitab, R, Splus, Stata, and StatCrunch) using certified statistical
values from NIST. The work contributes by introducing a method for visually plotting the
principal components of the correct number of significant digits to reveal how these pack-
ages tend to be plotted in a cluster for ANOVA and nonlinear regression. Few substantive

improvements have occurred in the area of nonlinear regression procedures in software pack-
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ages except SAS, whereas the ANOVA procedure has seen the most dramatic improvement
in accuracy from the correction of previous inaccuracies. Later versions of SAS, SPSS,
Splus, and Excel have demonstrated improvements in their accuracy of statistical analysis
compared to prior reliability studies for ANOVA routines.

Keeling and Pavur (2007) indicate that accuracy and convergence are impacted by the
default or user selected options in nonlinear regression procedures. The verification of these
solutions includes calculating a “profile” function and printing the gradient, Hessian, and
function value at every iteration. Finding an appropriate combination of options including
convergence criteria, tolerance, method of solution and form of derivative (analytic or nu-
merical) may yield better results than the default settings. A warning or error message is
better than a far from optimal solution with no descriptive message for lack of convergence.

Yalta (2007) conducts comprehensive tests of Gauss 8 for estimation, statistical distribu-
tions, and random number generation. He shows that statistical distributions and random
number generation procedures have serious problems.

Yalta (2007) uses the NIST certified values computed with Bailey’s multiple precision
FORTRAN preprocessor and NETLIB subroutine library with 500 digits of accuracy for
reading and representing data that are rounded to 15 significant digits for numerical tests
of linear least squares and 11 significant digits for nonlinear least squares (NIST 2010). In
the numerical test of nonlinear least squares, the testing is completed using the “curve fit”
package module, which employs the Levenberg-Marquardt algorithm. The primary method
for determining convergence is the relative gradient using a default tolerance equal to 1E-5.
The regression coefficients and standard errors are calculated in three different ways. For the
problems that could not be solved using numerical approximation of derivatives, analytical
derivatives were able to solve with more accuracy. The performance of the curve fit module
with the default settings is rather poor.

Yalta (2007) performs numerical tests of statistical distributions, using Knsel’s (2003)

ELV program. The ELV program enables the exact values of nine elementary statistical dis-
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tributions for probabilities to be calculated as small as 107%. Generally speaking, GAUSS’
performance on statistical distributions is unacceptable, because the comparison between
the critical values provided by GAUSS 3.2.6, GAUSS 8, and GNU-R 2.5 and the “exact”
counterparts computed by ELV for the F', beta, noncentral chi-square, noncentral F', and
noncentral ¢-distributions shows that the F' and Beta distributions are unstable in GAUSS
8, and the noncentrality parameters for the chi-square and the F-distribution need to be
revised to comply with the program ELV and GUN-R statistical packages.

Yalta (2007) also mentioned that in comparison with the GNU/Linux version, the
Windows version has identical source code for the calculations. For some datasets, the
GNU/Linux version of the program fails to converge with analytical derivatives requiring a
better set of starting values to converge with the default settings. The producer of Gauss-
Aptech’s curve fit module was developed for the MS Windows platform and is suspected to
be the reason for the greater difficulty in converging for only 11 datasets out of 27 in the
GNU/Linux version in comparison with the case 8 out of 27 in the Windows version. Re-
search replication is important in science and needs to cover the data programming code, the
software version and the operating system. Algorithms have indicated a trade-off between
accuracy and efficiency. Although the high speed is the main advantage of Gauss, modifying
the Gauss language to keep its high speed advantage becomes Aptech’s main concern. The
modification is designed to increase computing costs but gain greater accuracy of the output
after iterations by using the premier module “Curve Fit” package rather than using its of-
ficial “Constrained Optimization” module for solving a constrained nonlinear programming
problem.

Bangalore et.al. (2009) assess the tail areas of statistical distributions needed for hypoth-
esis testing, because the accuracy of these areas is important for scientific judgments. In
contrast to previous work evaluating statistical softwares’ accuracy of tail areas in statistical
distributions, Bangalore et.al. (2009) provide guidance on evaluating the accuracy of small

tail areas from the cumulative density function (CDF) of the Chi-square and t-distribution,
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which are important distributions for hypothesis testing. The evaluation is fulfilled by com-
paring commercially licensed numerical libraries in Java (SSJ, Colt, JSci, Jakarta Math,
SOCR, and JMSL), C (GSL) and R (Package Stats) to the accepted standards of ELV and
DCDFLIB.

The importance of accuracy of a distribution in the tails and percentiles in statistical
distribution using the ELV program by Knuesel (2003) and the DCDFLIB library by Brown
et al. (1997) is discussed by McCullough (1998). In Bangalore et.al. (2009), the numerical
accuracy compares the tail areas of statistical distributions to exact tail areas of distributions
to calculate a Logarithm Relative Error (LRE). The methods used in assessing accuracy
are based on guidelines in McCullough (1998) and McCullogh and Vinod (1998). The
testing focused on the upper tail of the statistical distribution using the p-values for typical
hypothesis testing. When using the complementary lower tail probability to obtain the
upper tail, estimating the outcome may be inaccurate because the lower tail probability is
near one. At the same time, cancellation errors occurring due to the underflow of floating
point representation indicates that complementation (defined as the probability of small tail
is equal to one minus the rest area in the CDF') will not work well. Complementation erodes
accuracy with an increasing cutoff point. C libraries and R functions have six significant
digits of accuracy. Colt is the most accurate of the Java libraries. GSL and R are as accurate
as ELV and DCDFLIB and can be used with equal appropriateness as alternative standards
of comparison.

Odeh et.al. (2010) investigate the reliability of selected econometric packages (Mathe-
matica, SHAZAM, Microsoft EXCEL, SAS, GAUSS, STATA, MATLAB, R, and GAMS).
Accuracy of the estimated results and software operations (including whether errors are
correctly identified and reported during estimation) of these packages are studied using the
National Institute of Standards and Technology (NIST) benchmark data sets. The accura-
cies of regression estimates and standard errors are examined for both linear and nonlinear

regression problems to investigate econometric software commonly used in economic stud-
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ies. This article examines whether observed inadequacies in earlier editions of software have
been corrected in later versions. They find that the earlier inadequacies have not always
been corrected.

Though reliability tests motivate software developers to improve these packages, many
deficiencies still exist. Specific studies on the reliability of econometric software for estimat-

ing logistic regression models have not been completed to the author’s knowledge.
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Chapter 3

Logistic Regression Model

The generalized linear model allows for estimating regression models with response data (V)

from the exponential family of distributions:

[y — b(0)]
a(¢)

which includes the normal, binomial, Poisson, geometric, negative binomial, exponential,

f(y;0,0) = exp +c(y,9) (3.1)

gamma, and inverse normal distributions (Myers et.al. 2002 pp. 157). With the normal
distribution, 6 = , b(0) = &, ¢ = 02, a(¢) = ¢, ¢y, ¢) = —3[% + In(2r02)], E(y) = p,
Var(y) = o2, identity link n = p.

For a binary response variable y P(y = 1) = P, and y is distributed Bernoulli with
ni =60 =In(P/(1-P)),b#) =nin(1+¢€),p=1,a(d) =1, c(.) = ln(%)

3.1 Model Assumptions and Definition

Assuming independence, the Generalized Linear Model (GLM) includes three components
(McCullagh and Nelder 1983 pp. 19):
1. Random Component: This component is the response variable distribution (or called
the error structure). For the logit model, Y follows an independent Bernoulli distribution.
2. Systematic Component: For the logit model, a linear predictor, n; = f'h(X;) =
In(P/(1 — P)), is the log odds ratio and P is defined as the expectation of y. h(X;) is a
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function of the explanatory variables X, and 5'h(X;) is linear in the parameters.

3. Link Function: A link function connects the linear predictor to the natural mean
of the response variable, i.e. ¢g(u;) = g[F(y;)] = m;. In GLMs, it may be any invertible
monotonic differentiable function within range (0,1). For the logistic regression model, it
is the logit link: 7; = g(p;) = Ing- , making E(y;) = o= = F(x), h(m:) = pi, and
n; = g(p;). h(n;) is the inverse function of g(p;) specified as the logit link. The link function
maps the unit interval (0,1) onto the real line (—oo, 00).

Statistical software programs provide different choices of link functions. For example,

Minitab provides binary and ordinary two options for the logit regression. Limdep separates

logit and probit model estimation commands.

3.2 Model Estimation

Based on the assumptions and definition, the logit model can be estimated using the maxi-
mum log-likelihood method (Gourieroux 2000). The likelihood function for the logit model

takes the form:

L(y:0) = [[{F(XBy [1 - F(X:8)]' ) (32)
Maximizing the likelihood functiomzi;1 equivalent to maximizing the log-likelihood, where F
is the logistic cumulative density function. The log-likelihood function is nonlinear in the
parameters.

The log-likelihood can be obtained using the likelihood function in the above equation.

That is:
(L) = D {unlF(XiB)] + (1= yo)in[1 = F(XiB)]} (3:3)
= D WFQGB)]+ 3 Infl = F(X;5)] (3.4)

When equation 3.3 is strictly concave, a unique global maximum exists. Because the like-

lihood is a probability between 0 and 1. The In(L) is always negative (Train 2003 pp.
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190).
Differentiating the log-likelihood given by equation 3.3 with respect to the parameter
vector # and setting the derivatives equal to zero, yields the gradient or score vector:

9 = aln Z f Z fXﬁ X, =0 (3.5)

zylfl

S (Xiﬁ)) ,
R ;F(Xiﬁ)[l—F(Xiﬁ)]f(Xiﬁ)Xi (3.6)

D_uX; = D FXGB)X; (3.7)

=1

The final expression for obtaining the parameter set b is based on equation 3.7 or score
function, which is a nonlinear equation.

Because the likelihood function is nonlinear in the parameters, closed-form expressions of
the MLEs are not available. Thus, the problem must be optimized using iterative numerical
methods. The most frequently used methods are discussed in Chapter 4. One such method
is the Newton-Raphson (NR) method (McCullough and Renfro 2000 pp. 65, Train 2003 pp.
190). This method finds * as follows:

e Begin with the starting value ;. (The maximum can be traced along the likelihood
function surface iteration by iteration until no further increase in the loglikelihood

function is found.)
e t iterations later,  reaches its current value [;.
o After taking a “ step”, the best value for §;,1 will be attained.

e The direction of the step is determined by the gradient g; (or the slope of the log-
likelihood function) evaluated at f; i.e. g;, and the length of the iteration is measured

by the Hessian H;, the curvature of the log-likelihood function (i.e. the second deriva-

0?2 9%log(L)

tives measured at ;), where H; = 9808 ’&
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Fisher information about the unknown parameters 3 is the expected value of the negative
Hessian, which provides information about the curvature and the readiness of discriminating
a good parameter estimate, indicated by a small variance.

The MLEs obtained from optimization has the properties:

1. MLEs are either unbiased or asymptotically unbiased with the minimum variance,
and additional assumptions are needed for the MLE under certain regularity conditions to
ensure this behavior.

2. Global concavity of the likelihood function ensures the existence and uniqueness of
MLESs, when the logit model has linear-in-parameters, however, not a guaranteed, functional
form (Amemiya 1998 pp.203).

3. Asymptotically normally distributed with mean b and covariance equal to the inverse

of the Fisher information matrix (expected value of the negative Hessian) I~': By ~

N (b {E[~ "5 1} 7).

4. MLEs form a set of sufficient statistics, i.e. all information about the parameters in

the sample is contained in the MLEs.

3.3 Model Predictive Ability

For a binary variable Y with two potential outcomes, the predicted value Y =F (XZB) =

- L ~5 may not be consistent with the observed values Y. This inconsistency results in
e i

prediction error. Type I prediction error occurs when the wrong observation is predicted
incorrectly to be true. Type II prediction error occurs when the correct observation is
predicted incorrectly to be wrong. At this point, the cut-off point for classifying the predicted
value is very important, because it is used as a threshold to determine the prediction. After
the predicted value is compared with the cut-off point, the outcome becomes a binary
function of the predicted value. The 2 way contingency table or prediction success table is a
way to express this predicted versus observed probabilities, which displays counts of correct

and wrong predicted outcomes ?Z»j, 1,7 = 1,2 in the cells.
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Predicted Value
Actual Value 01 Total
0 ne g
1 3//31 }:22 3:2
Total Yl YZ Y

Table 3.1: Prediction Success Table

A typical prediction success table can be expressed in the same way as in Table 3.1.

Some software packages (Limdep, Eviews, and Shazam) provide an actual versus pre-
dicted contingency table. Limdep provides an actual probability versus predicted probability
as well, but the probability of the cut-off point is 0.5 not the actual success probability, which
is changeable to the actual success probability. Eviews uses the actual success probability to
determine the percentage of success. Shazam reports this information in Hensher-Johnson
Prediction Success Table, which differs from results in other software packages due to its
usage of the DFP algorithm. Other software packages output the predicted values after
estimation, upon which the prediction success table can be formed based on the predicted
value. This prediction success probability is a test statistic depending on the MLE as a

function of the probability of conditional mean and its reliability can be evaluated.

3.4 Model Diagnostics

To determine whether a statistical model fits the data adequately, logistic regression uses
chi-square statistics to assess the fit of the model. The usual statistics -2 Log Likelihood
under null hypothesis provides chi-square statistics. Akaike Information Criterion (AIC)
is another way to measure the model fit in many software packages, adjusting the -2 Log
Likelihood statistic for the number of terms in the model and the number of observations
used. In R, when Log Likelihood is unavailable in the output, AIC becomes a substitute
statistic for the Log-Likelihood. If the p-value associated with a chi-square statistic is less

than the selected tolerance level, the test rejects the null hypothesis that the model fits the
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data (The R Book).

McCullough and Vinod (2003) argue that in nonlinear estimation, testing hypotheses,
using a Wald-type statistic (with the concomitant asymptotic normal approximation) that is
based on a quadratic approximation to the likelihood function maybe invalid. However, one
needs to understand the substantial differences between the two approaches. For example,
Walter W. Hauck-Allan Donner (1997) mentioned that the Wald test is convenient because
it requires fitting the model only under the alternative hypothesis, but the Likelihood ratio
test requires fitting the model both under the null and alternative hypothesis. Venables and
Ripley (1999, pp. 225) argue that Wald test has a definite advantage over likelihood ratio
test, because the maximum likelihood estimation has an iterative nature in approaching an
optimum as explained in section 3.2 and Wald test requires a quadratic functional form.
Fitting the model twice for the iterative maximum likelihood estimation causes redundant
calculations for the computer, which may be unnecessary in the Wald test. McCullough
(2004) examined a nonlinear least-squares model with a non-straight line (i.e. not approxi-
mately quadratic) profile, and found using Monte Carlo analysis that the likelihood intervals
provided better coverage than the Wald intervals. When the Wald statistic interval is valid,
so is the likelihood ratio interval, but the Wald statistic interval is valid only if the objective
function is quadratic. The likelihood ratio interval is not restricted to the functional form.

Collinearity among the covariates in the logit model is a data problem and not a statisti-
cal problem, resulting from ill conditioning in the explanatory variable matrix X. However,
collinearity can cause statistical problems. The collinearity problem can be studied by look-
ing at the log-odds equation In(P/(1 — P)) = n; = f'h(X;) (McCullagh and Nelder 1983
pp. 19). The presence of collinearity may degrade the parameter estimates and identifying
the affected estimates requires the information only on the data matrix X or the Jacobian.
Examining the harm of collinearity requires information on the response variable and/or the
variance o of the error term, because the systematic influence of the explanatory variables

on the response variable is swamped by the model’s random error term. For a real symmet-
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ric matrix X'X, its singular values are also its eigenvalues. As the collinearity of columns
of any matrix X increases, the matrix tends toward perfect singularity, and eventually, one
zero eigenvalue is associated with each pair of exact linear dependency columns. In this
way, one small singular value in comparison with the maximum singular value indicates a
near dependency among columns of X. The estimated variance of each regression coefficient
may be decomposed into a sum of terms each of which is associated with a singular value.
This decomposition is a way to determine the degree of near dependencies, indicated by
a high condition index. The variance-covariance matrix of the least-squares estimator can
be decomposed as var(b) = 0® 3= vi;/ 117, where i; are eigenvalues, vg; are elements of the
orthogonal matrix diagonalizing the squares of the eigenvalue matrix of X'X, i.e. the p
eigenvectors of X’X associated with nonzero eigenvalues (Belsley, Kuh and Welsch 1980).
The eigenvalue decomposition is used to motivate the condition number as a way to detect
near-multicollinearity (Spanos and McGuirk 2002).

In any regression, including logistic regression, multicollinearity refers to predictors that
are correlated with other predictors. In the logit model, the linear predictor is linear in the
parameters and are functions of the explanatory variables. The relationship of the explana-
tory variables in the above linear model discussion can be applied in evaluating the linear
predictor or log odds ratio and therefore the logit model. Moderate multicollinearity may
not be problematic. However, severe multicollinearity is problematic, because it can increase
the variance of the regression coefficients, making them unstable and difficult to interpret.
To measure multicollinearity, examine the correlation structure of the predictor variables
and review the variance inflation factor (VIF), which measures how much the variance of
an estimated regression coefficient increases if the predictors are correlated (McCullagh and
Nelder 1983 pp. 125).

Model validation (Harrell 2001 pp. 91) is used to determine if a model accurately pre-
dicts responses on future subjects or subjects not used to develop the model. The quantities

used in validation are pseudo R? (predictor within-sample), which is a biased measure of
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model’s predictive ability, and the adjusted pseudo R?, which resolves dramatic overfitting.
The unbiased estimates of R? can be obtained using data splitting, cross-validation, or the
bootstrap. The bootstrap provides the most precise estimates. Two major aspects of predic-
tive accuracy can be assessed by calibration or reliability. Validation of the model ensures
that the model is not overfitted. In the logistic regression, calibration can be assessed by
plotting Y against the predicted Y. Discrimination is assessed by R?, which drops in training
sample (the full sample less the test sample) from test sample and indicates overfitting. The
absolute R? in the test sample is an unbiased estimate of predictive discrimination.
Algorithm choice and implementation will impact accuracy. The algorithm is inde-
pendent of the statistical description of the model and a particular computer program or
language. An algorithm includes the choice of mathematical approximations for elements

of the model and the method used to find the estimates.
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Chapter 4

Alternative Numerical Algorithms

Optimization algorithms are iterative. They begin with an initial estimate of the solution
f and generate a sequence of improved estimates (iterations) until they terminate with an
“optimal” solution. The strategies used to move from one iteration to the next are different
for alternative algorithms. A good algorithm possesses the properties of robustness, effi-
ciency and accuracy, which is defined as the dissimilarity between estimates and output.
Robustness requires the algorithm to perform well on a wide variety of problems, for all
reasonable starting points. The efficiency criteria indicates the algorithm does not require
excessive computer time or storage. There is a trade-off between accuracy and efficiency. In
addition, identifying a precise solution without being over-sensitive to errors in the data or
arithmetic rounding errors is required for the accuracy criteria. The properties are conflict-
ing: trade-offs exist between convergence rate and storage, as well as robustness and speed
(Nocedal and Wright 2000 pp. 8).

An algorithm includes several components: search rule, step length, and termination cri-
teria, and/or stopping rule. Algorithms require information to guide the numerical analysis
(Train 2003 pp. 191. and Chapter 8 of Altman et. al. 2004). The stopping rule is needed to
determine the necessary conditions for a maximum or minimum. Usually the termination
criteria includes one or more of the following conditions:

1. |Log(L(Bs1))—Log(L(B:))| < es; that is, successive changes in the log-likelihood function

is less than some small value, called the convergence criterion. Finding a flat region of the
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Log-likelihood function may indicate an optimum is found, which is associated with a rela-
tively small change in parameter values. When the parameter changes very significantly on
a flat surface, the parameter value can not be approached in limited steps. However, when
the parameter values change significantly, it becomes a problem indicated by the software
output, for example, in Limdep, by outputting “Flat”. Software packages can specify this
value in the command options, for example, in SAS “Proc Catmod”, Epsilon is set at 1E-8
as the default value.

2. maz;[|B}1 — Bi]] < ep; when the largest successive change in the coefficients is less than
the convergence criterion.

3. ¢ H 'g < ¢, where ¢ is the value of tolerance(), used to compare with the current value
of the Hessian-scaled gradient, ¢’ H'g. This is the most commonly used stopping rule.

4. 1lg(B)|| < g4, sets the magnitude of the gradient to be less than the convergence
criterion to check whether the gradient is close to zero. For example, in SAS “Proc Logistic”
and “Proc Surveylogistic”, “Gconv”, the relative gradient convergence criterion, is set at
1E-8 as the default.

The convergence criteria are used to determine if a candidate point is a maximum.
Next, the sufficient condition for the maximum is evaluated. The Hessian must be negative
definite. This must be done manually and can be only determined locally.

McCullough and Renfro (2000) indicate that some software packages use a single criterion
(e.g. stopping rule) for both the stopping rule and convergence criterion. In these cases, the
optimization process may find a flat region of the log likelihood function, without checking
whether the gradient is close to zero. The negativeness of the Hessian is not guaranteed
at the round optimum, possibly indicating a maximum has not been found. McCullough
and Renfro (2000) recommend using a software package with an explicit calculation of the
Hessian, e.g. Newton Raphson.

Considering that a maximum may occur in a flat region of the parameter space, succes-

sive changes in the log-likelihood function could be small at points that are far from the
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maximum. The gradient may be very close to zero, which is numerically equivalent to zero
given the inherent inaccuracy of finite precision computation. The parameters also may not
be changing much in such a region.

In the convergence criterion, convergence is defined as the different ratio change of log-
likelihood function, as McCullough and Renfro (2000) mentions that it is to locate the flat
region of the log-likelihood function between two steps by examining:

hy = B, — B*, where * is a local maximum. Using this, the following sequences can be

constructed:
Linear: % < ¢, hiy1 = O(||he]]), e.g. convergence rates e-04, e-04, e-04.
Superlinear: % — 0, herr = o(]|e]]), e.g. convergence rates e-03, e-04, e-06.

Quadratic: ”Hh};leQH < ¢, hiyr = O(||h]]?), e.g. convergence rates e-02, e-04, e-08.

If hy = log(L(B;)) — log(L(5*)), where log(L(*)) is the value at the maximum, the rate
of convergence applies to the value of the objective function.

First derivative methods and second derivative methods can both be applied in finding
an optimum solution. The main difference between them is that first derivative methods do
not use Hessian matrix and second derivative methods need to compute the Hessian matrix,
or an approximation to it. Therefore, first derivative methods are usually, but not always

faster than second derivative methods in finding the optimal solution. In second derivative

methods, the Hessian is expensive to compute, but results may be more reliable.

4.1 First and Second Derivative Methods

1. Newton-Raphson (NR): According to numerical theory, parameter estimation can use the
Newton-Raphson method with the second-derivative matrix being replaced by its expected

value, where the search or iterative rule is derived from the log(L)’s second-order Taylor’s

series expansion around Sy: Log(L(Bi+1)) = Log(L(5:)) + (Bra1 — Be)ge + %(ﬁtﬂ — [(¢)*H,.

This gives the first-order Taylor approximating score function g(b) about the starting value
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/807

9(8) = g(8%) = 1(8°)(8 — 8°) (4.1)
B=p0"+1"(89(5") (4.2)

where I(") denotes the observed information matrix evaluated at 3°.

In an iterative manner, the i+1th estimate is obtained based on: 7! = i4+171(")g(5").
The algorithm iterates until the -2 Log Likelihood changes by only a small amount from the
previous iteration, when any of the stopping rules mentioned above are satisfied (Harrell
2001 pp. 192).

The value of 5,41 maximizing Log(L(f;+1)), i.e. a search rule can be found by setting

first derivative to zero:

OLog(L(Biy1))
0Bi41

=g+ Hi(Biy1— B) =0 (4.3)

B =B+ (—H; 'q) (4.4)

—H,; ! valued at 8° is equal to I=!(5°) in equation 4.2. When the log-likelihood function
is quadratic, it takes only one step to reach the maximum. However, because most log-
likelihood functions are not quadratic, it takes more than one step to reach the maximum.
A successful algorithm uses a local quadratic approximation to capture the shape of the
function to estimate the next step. To allow for the possibility of stepping past the maximum
to a lower Log(L(f;11)) for a global maximum, the second term on the right hand side is
multiplied by the step size A, which becomes: B;,1 = 8, + A(—H; )g;. If the approach ends
up with a tiny A, it safe-guards that a different iteration procedure-“line search” should
be used. If a rising A is arrived at in approaching the maximum, it reduces the number
of iterations needed. Adjusting the value of A instead of recalculating the H; and g¢;, can
quicken the search for the maximum in each iteration. Line search starts by fixing a search
direction d; and then identify an appropriate distance A to move along (Train 2003 pp. 194;

McCullough 2004 pp. 201). The speed of convergence is quadratic.
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If the log-likelihood function is globally concave, the Newton-Raphson method guaran-
tees an increasing likelihood function at the next iteration with —H,; ! being positive definite.
To guarantee an increase at each iteration even if in convex regions of the log-likelihood func-
tion are encountered, a reconstruction of —H; ' is necessary to make calculation easier and
ensure that the Hessian is positive definite (Train 2003 pp. 196).

The estimated covariance matrix of the parameter estimators using the Newton-Raphson
method is based on the observed information matrix.

2. Weighted Least Squares Estimate

An alternative estimator to MLE as a solution to the score equation is weighted least
squares. The Newton-Raphson method can be used to solve the score equation. The first
order Taylor expansion around the parameter vector 5 can be rewritten to arrive at: y; —u; ~

var(y;)(X; 0% — X;8), with var(n}) ~ n; = X!, where 5* is the value that solves the

1
var(y;)’
score function, n} is the value of n; evaluated at 5*. p; = n;p; is the binomial mean and y; is
the binomial response variable. Assuming m denotes the number of independent binomial

observations, V = diag(eXi?), giving:

> var(u). o —m) = 0 (45)
T XV - 0 (46)
XVpr—Xp) = 0 (4.7)

B = (X'VX)'X'Vy (4.8)

Standard errors of the estimated coefficients can be estimated using Cov(8) = (X'VX)"1,
which replaces § with MLE b in V.

yi/ni — Pi = (OF;/0n;)(nf —mi)s mf = mi + (yi/mi — B)(Omi/0m;); b= (X'VX) ' X'V,

IRLS and MLE are equivalent asymptotically. This can be proven from the following
steps:

1). The IRLS algorithm (or maximum quasi-likelihood) based on the Newton-Raphson

method uses ordinary least squares to obtain an initial estimate of Gy 2). uses fy to then
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estimate V' and 7; 3). lets g = X 5y; 4). bases z; on 1; 5). obtains a new estimate (3, and
iterates until convergence (Myers, Montgomery and Vining 2002 pp. 326).

3. Quadratic Hill-Climbing (Goldfeld-Quandt): As a straightforward variation of Newton-
Raphson, this method modifies the Newton-Raphson algorithm by adding a correction ma-

trix to the Hessian. The updating algorithm is given by

—~_1
Bimi=06—H q (4.9)

—H,=—H, +al (4.10)

where [ is the identity matrix and « is a positive number chosen by the algorithm when
refitting. The asymptotic standard errors are always computed from the unmodified (Gauss-
Newton) Hessian after convergence. This modification will push the parameter estimates
in the direction of the gradient vector. The idea is that when the solution is far from the
maximum, the local quadratic approximation to the function may be a poor guide to its
overall shape, so one may be better off following the gradient. The correction may provide
better approximation at locations far from the optimum, and allows for computation of the
gradient vector in cases where Hessian is near singular with a improved convergence rate
(Eviews 3 Manual User’s Guide 2002 pp. 620).

4. Method of Scoring or Fisher Scoring (or Iteratively Reweighted Least Squares (IRLS):
This method is performed by taking the expectation of the Hessian conditional on x, to form
the expected information matrix (EIM). This method just replace the Hessian matrix with
I;! using the score function in the estimator. It is an optimization of the deviance not of
the log-likelihood. The deviance is defined in Goodness-of-fit tests, one of which uses the
likelihood ratio criterion to define this concept. Deviance allows one to determine if the fitted
logistic model is significantly worse than the saturated (or full) model. E(y;) = P;,i = 1,2
the saturated model has y; the binary observation as the estimator ]3Z The saturated
model requires estimation of two parameters independent of regressor information. The
deviance is defined as twice the difference between the maximum attainable log likelihood

(i.e. the full model L(P)) and the log likelihood of the model under consideration (i.e.
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the reduced model L(f)). The deviance is often used as a measure of goodness of fit.
Thus, the deviance is D(f) = —2In[L(B)/L(P)], where L(f) is the likelihood for the fitted
logistic model with parameter replaced by MLE and L(P) is the likelihood for the saturated
model with 2 parameters estimated as before. For formal testing, one makes use of the
fact that asymptotically D(5) ~ X%7p7 where p is the degree of freedom. The maximum
attainable log likelihood is achieved with a model that has a parameter for every observation.
The estimated covariance matrix of the parameter estimators in Fisher scoring is based
on the expected information matrix. It has good asymptotic properties. The weighted
least-squares estimation is identical to the method of scoring (Gourieroux 2000 pp. 18).
In the case of a binary logit model, the observed and expected information matrices are
identical and resulting in identical estimated covariance matrices for both Newton-Raphson
and Fisher Scoring algorithms, although empirically, this does not always work out. The
equivalence of IRLS and MLE has been verified to obtain a significant estimated of 3 for
infinite observations.

5. Berndt, Hall, Hall, Hausman (BHHH): Called the Gauss-Newton for general nonlinear
least squares with a line search, this method is based on the Newton-Raphson algorithm.
The BHHH method can take more iterations to obtain the optimum than the Newton-
Raphson method, but each iteration is simpler computationally and less time-consuming

1

(Fiorentini et.al. 1996). In comparison with the Newton-Raphson, the —H, " is replaced

by B:. The score is defined as S, (f5;) = %ﬂ| 3,. P is the independent probability of
each observation. Thus, the gradient is the average score g, = W At the optimal
parameter values, the average score is zero. The outer product of the Jacobian of the
score is a K x K matrix, where K is the dimension of parameter §. B; = Z"S"(+)S"(Bt)/
approximating I, !, is the covariance matrix of scores averaging the outer product of the
gradient (OPG), which is necessarily positive definite. When the negative of the Hessian is

replaced by summing up OPG vectors for each observation’s contribution to the objective

function, the approximation is asymptotically equivalent to the actual Hessian evaluated at
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the optimal parameter values.

At the maximizing values of the parameters, B, is the variance of scores. Similar to
the Hessian, the variance of scores provides a measure of the curvature of the log-likelihood
function. The relationship between the variance of the scores and the curvature of the
log-likelihood function is stated as the information identity: the covariance of the scores
evaluated at the true parameters is asymptotically equivalent to the negative of the expected
inversed Hessian. This identity holds at the maximum of the log-likelihood function. When
the values of  are farther from the true values, the approximation is poorer.

6. Berndt, Hall, Hall, Hausman 2 (BHHH-2) At non-optimal parameter values, the log
likelihood is not at a maximum and the average score is non-zero. This variant of the

BHHH is determined by subtracting the mean score before taking the outer product. The

matrix W, = > (Sn(8 t)_gt)]E,S"(ﬂ 0-g0) represents the covariance of the scores around their
mean. When W, is taken as B;, the iteration reaches the maximum for the parameters.
W, and B, are identical at the optimal value of 5. The maximization procedure becomes:
Bii1 = B + )\(Wt_l) g A s a line search and is used to catch the difference between W, and
B; without actually adjusting the value of W;.

7. Steepest Ascent. When the identity matrix is used in place of W', an increasing
iteration is guaranteed: ;11 = B + Ag:. The gradient g; provides the direction of greatest
increase in the log-likelihood function. It moves from an initial stating point 3y in the
direction of g;. Usually, the step size is small. This method requires only the function and
the gradient values to conduct a search. The speed of the convergency is slow, which needs
more iterations than other algorithms, exhibiting linear convergence. As the algorithm
approaches the optimum, the procedure will produce shorter moves with a zig-zag behavior
(Nocedal and Wright 2000 pp. 43).

8. Broyden-Fletcher-Goldfarb-Shanno (BFGS) is a Quasi-Newton Method or Variable

Metric, Secant Method, which uses a sequence of approximations to the Hessian matrix. At

the t + 1 iteration, the approximation of the Hessian matrix depends on the approximated
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Hessian matrix at tth iteration and on the gradient at the current iteration g;y;. The
quantity (g1 — g¢)7 (X;41 — X;) approximates the curvature and the H;,; determined in
this way is not unique. The approximation of the Hessian is symmetric and positive definite.
It is generally agreed that the best overall performance is achieved by the BFGS update:
Hy = Hy— Hysy(Hysy)T /st Hysy +yyl Jyl sy, where (sy = X1 — X, ¥ = gep1 — g¢). BFGS
update is a rank-two modification of the current approximated Hessian and is superior in
computation without a precise reason (Fraley 1989). BFGS is the default algorithm for
the optimization in many software packages. The underlying difficulty is the use of only
gradient information, which may not detect a saddle-point (McCullough and Renfro 2000
pp. 71).

The update preserves positive definiteness of H; whenever y!'s; is positive, a condition
that automatically holds in a line search method satisfying |g(x; +csp;) T pi| < —nglp: as the
termination criterion. (o is the sufficiently small value as a step-length, p; is the direction
of an iterative process,  €[0,1) keeps the step-length bounded away from zero by forcing it
to approximate a local minimum of F' along the direction of p;, and g, is the gradient.)

9. Davidon-Fletcher-Powell (DFP) is a Conjugate Gradient method that uses informa-
tion at more than one point S; on the likelihood function to calculate the approximate
Hessian. Information at one point 3; can determine the shape of the function. In the place
of equation 9, a substitution of H; by )y, and (); is constructed so as to be negative definite
at any [; ensuring the convergence properties to be independent on the starting values. The
main point of the substitution is to update the matrix ); by a low-rank matrix iteratively
and eventually attain the convergence to the Hessian. To solve the problem of negative
definiteness center around replacing Hessian in Newton-Raphson with a matrix @); to form
the quasi-Newton (variable metric) method, where @ is constructed by the function F' and
g:- H; is approximated in several iterations by ); at the convergence. At each iteration,
Q; is updated by Q11 = Q¢ + U;. U, is a low-rank updating matrix. Both approaches are

based on rank two (U; has rank two) updates, and build up curvature information slowly.
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When convergence is not attainted before the iteration ends, the coefficient estimates may
be good, but the standard errors will not be as good, because (); is not a good approxi-
mation to H;. The arc Hessian can be used to approximate the Hessian, which reflects the
change in gradient that occurs for accrual movement along the log-likelihood function curve.
The Hessian reflects the change in slope for infinitesimally small steps around the point ;.
Different rules for constructing U; make the BFGS different from DFP (see Fletcher 1987
pp.55 for more details). The later is a refinement of DFP which adds another rank one
term (thus making in a rank three update)(McCullough Renfro 2000). Broyden-Fletcher-
Goldfarb-Shanno (BFGS) for the detail on how to calculate );. The speed of convergence
is superlinear.

10. Grid Search simply computes the objective function on a grid of parameter values
and chooses the parameters with the highest values. It is computationally costly especially
for multi-parameter models. It is used together with the other derivative methods to search

for the optimum solution in some statistical packages(Eviews 3 Manual pp. 620).

4.2 Algorithm Comparison

See Table 4.1 for detail on comparison among Newton Raphson, Berndt-Hall-Hall-Hausman,
Berndt-Hall-Hall-Hausman2, Steepest Ascent, Davidon-Fletcher-Powell, and Broyden-Fletcher-
Goldfarb-Shanno. The Gauss Newton’s method is a special case of the Newton-Raphson
method. The first order condition of log-likelihood function with respect to the parameter
vector b can be approximated by a first-order Taylor expansion around an initial value by.
The b,,1 can be solved iteratively based on b, (Gourieroux 2000 pp. 17).

Generalized or weighted least squares are very important methods for estimating the
parameters in GLM. It is shown that the (iteratively) reweighted least squares and maximum
likelihood score equation are asymptotically the same (Myers 2002 pp. 106 and pp. 325).

In weighted least squares, H = —X WX (minitab), where X is the design matrix. W is

a diagonal matrix with its ith diagonal element equal to weight on log-likelihood. (SAS 9.
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Table 4.1: Comparison of Algorithms

quadratic, it
does not

work well.

than maximum,
W, is not
same as

inverse Hessian.

Newton Raphson BHHH BHHH2 Steepest Ascent | DFP and BFGS
PROS
More B, is calculated W,is necessar- Works best Uses information
dependent on faster than H ily positive when the at
choice of definite, which starting point several points
starting value. ensures an is far to obtain
than Quasi- increasing from the curvature of
Newton log-likelihood optimum. the function.
across
iterations.
Calculates Hessian B, Information Numerically Works well
directly, necessarily identity holds, evaluates even if the
standard errors positive when the model | only function function is
are more definite is specified and gradient. nonquadratic.
exact. at the true No use DFP:Conjugate
parameters. of Hessian. Gradient BFGS:
Quasi-Newton
Convergence
Speed:
quadratic in
final iterations quadratic quadratic linear superlinear
CONS
Calculation When the itera- W is not Converges Uses approximate
of H is tion is far from the variance of slower Hessian.
computation- the maximum, it scores. than BFGS:Best for
ally- gives small steps BHHH median-sized
expensive that increases the and problems.
log-likelihood in BHHH2. DFP: best for
small increments. larger problems.
Does not Uses outer Approximates Requires Standard errors
guarantee an product of the inverse more are not as good
increased itera- gradient to Hessian by iterations. as actual using
tion if the log approximate demeaning OPG Zigzaging H-Lif
-likelihood is not negative of with the close convergence
globally concave. Hessian. gradients. At to is not
If the function the places other optimum attainted.
is highly non-
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GENMOD command reference).

Algorithm robustness depends not only on the problem, stopping rules, and step length,
but on the amount of derivative information required on the gradient, or gradient and
Hessian, and the method of determining derivatives (i.e. numerical or analytic) (McCullough

and Renfro 2000).
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Chapter 5

Software Methods and Reliability

Learning computer software languages and how the computer manipulates real numbers,
provides assistance for evaluating software reliability. Computational results rely on both
hardware and software, distinguishing their difference and impacts on reliability can provide
value in assessing software reliability.

A computer uses finite discrete approximation to deal with real numbers instead of using
real numbers themselves; therefore, real number arithmetic is the heart of software comput-
ing and understanding the function of algorithms. Reliability involves the interplay between
the hardware, compiler, and algorithms. Sawitzki (1994a) found that truncation error is the
only error caused by limitation of the software. The study shows that a relative change
in the data on order of 1072 in his example can produce a change of order of 10~ in the
coefficients of the normal equation. Truncation error may be considered as an approxima-
tion error. When iterative algorithms are subject to truncation error, the algorithm will
provide the correct answer after an infinite number of iterations. However, the iterations of
most MLE algorithms converge after a finite time of iterations, which makes investigating
incorrect answers caused by the truncation error in finite MLE iterations important.

Monahan (2001) indicates that there are two ways to represent numbers in computers:
one is fixed numbers for representing integers, and another is using floating point numbers
for representing real numbers. Early computers used fixed point representation and some

used floating point. By the late 1950s, the range limitations of fixed point restricted its
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practice, and floating point was shown to be more versatile and efficient. The fixed point
representation had been criticized for using bits to store the exponent, which is seen as a
waste when they could be used to extend the precision of the significand.

In fixed point representation, three fields are used to store a number: one 1-bit field for
the sign of the number, a field of bits for the binary representation of the number before the
binary point, and one field of bits for the binary representation after the binary point. The
fixed point system is limited by the size of the numbers it can store, therefore it is rarely
used for numerical computation (Monahan 2001).

Floating point representation is based on exponential (or scientific) notation, where a
nonzero real number z is expressed in decimal as +S x 10, where 1 < S < 10, and F is an
integer. S and E are called the significand and the exponent. A normalized number can be
stored in three fields: one for the sign, one for the exponent F and one for the significand S.
A real number is called a floating point number if it can be stored exactly on the computer
using the floating point representation. Base 2 is preferred to base 10 (Monahan 2001).

Overton (2001) indicates the precision of the floating point system is the number of
bits in the significand (including the hidden bit). Usually precision is denoted by p. In a
computer system with p = 24 (i.e. single precision), 23 bits are used to store the fractional
part of the significand with 1 leading hidden bit. Storage € (machine epsilon) is the unit of
roundoff, which is the gap between 1 and the next largest floating point number.

Any positive number z can be expressed as a base- B number with a set of digits {0, 1, B—
1}, for example, with base B=2, the set of digits being used to express any positive number

is just {0, 1}. Using a converging series, a real number can be expressed as:

z=qB*+ .. .a;B* +ay+a_ B +a B+ ... (5.1)

The coefficients a; are integers in the set of digits {0, 1, B —1}, which give the expression
of the real number as the list of digits: z = (ay...ajapa_1a_5...)g. The radix point or base

point denotes the period in this representation. The following example shows how the base
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2 and base 10 representations are inter-changeable. When 2z is expressed in base 2, ag = 1,
as =0, a; = 1, and ag = 1 in equation 5.1, the representation is 1011. If using base 10 as the
base number, a; = 1, and ag = 1 in equation 5.1, the representation is 11. The intermediate
expressions are derived based on equation 5.1.

2 =1011y = 123 + 022 + 12! + 120 = 11,y = 110" + 110°

Because the exponent F is bounded for floating point numbers, a finite number of values
with floating point notation compose a finite set of representable numbers V', which can be
used to approximate any real number. One can represent a real number z lying between
two representative numbers, (S, E, F') and (S, E, F + B~4). For example, a real number
3.235710% becomes a choice between (+, 24, .323) and (+, 24, .324) depends on the methods
of rounding being chosen. This type of error due to finite precision is rounding error, and it
is a function of hardware. Rounding to the closest digit gives (+,24, .324); and chopping or
dropping the last coefficient gives (+, 24, .323). The choice between rounding and chopping
(or dropping) affects the result of analysis on accuracy.

Second, there are multiple representations for the same number in floating point nota-
tion. The value 6 can be expressed by (+,1,.6000) or (+,2,.0600), or (+,4,.0006). The first
expression is preferred due to its correct conveyance of the accuracy of the number. The
last can express any number in the interval (5.5, 6.5), for example, 5.8 can be expressed as
(+,4,.0006) by rounding up the last number after the decimal point to 1. The representations
with the most significant (the leading or leftmost) digit is nonzero are called normalized. The
inaccuracy of the computation is caused by the misuse of the interchangeable un-normalized
floating point notations in computer memory.

Most microcomputers and workstations follow the IEEE binary floating point standard,
which was a milestone in computer arithmetic in recent years. A single-precision floating
point number is typically stored using 32 bits. A computer uses 23+1 bits to store the
significand S, 8 bits for the exponent, unit roundoff is 272* ~ 5.96 x 1078, with range

of 10¥3%. A double-precision floating number uses double the storage of a single-precision
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number, i.e. 64 bits. The computer uses 52+1 bits to store the significand, 11 bits for the
exponent, 2753 ~ 1.11 x 10716 for unit roundoff with range of 10%3% (Higham 2002). “Double
precision” has been adopted by most software package and provides greater accuracy by
avoiding the perils of floating point arithmetic and roundoff error.

Quadruple precision uses 128 bits as storage for floating point numbers. Higher precision
arithmetic is implemented using arrays of double precision variables. A “Double-double”
format uses two double precision variables to represent a variable with twice the precision,
leading digits in the first array, and trailing digits in the second array (Overton 2001 pp.
23).

The arrangements for storing single and double precision numbers are different. Thus,
it takes twice the storage to store a double precision number. In addition, it takes three or
four times longer to finish a multiplication or division with double precision numbers.

McCullough (1998) points out that single precision is only accurate up to six or seven
digits, while double precision has 15 to 16 digits of accuracy. McCullough (1998) also
emphasizes the importance of the combination of using appropriately accurate programs
with a good algorithm in passing reliability tests. The infiniteness of the floating point
expressions of some numbers leads to either rounding or truncation errors at the last stored
bit (Altman, Gill, and McDonald 2004 pp. 25).

In addition to rounding and overflow, operations in floating point are problematic due
to underflow. Underflow occurs when a number is smaller than the smallest value capable
of being represented by the computer: the unit of roundoff or machine epsilon €. In the
double precision computer system, when the number is smaller than 27°2, underflow will
occur. The smallest quantities between machine epsilon and one are subnormal numbers
(McCullough and Vinod 1999 pp. 643 and Altman et. al. 2004 pp. 24), and when they
are added, they do not have full precision. If two nearly equal numbers are subtracted,
cancelation may occur, and as a result, rounding error is left (Higham 2002, pp. 493).

As a result of the inaccuracy, floating point arithmetic does not obey the algebraic
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associative law: if a list of numbers is summed up in different order, a different sum may
be computed. In floating point expression, the addition of 1 to 10000 (+,5,.1000) does not
increase the sum, and the sum is (+,5,.1000). Similarly, the addition of 1 to 2 and then to
1000, gives a different result from addition of 1 to 1000 and then of 2. To avoid the more
serious violation in the case of mixed sign numbers, two rules are followed: 1). add numbers
of like magnitude together, 2). add small numbers together, 3). add the larger ones.

To assess software reliability, first one must understand the concepts of accuracy and
precision. Accuracy and precision are different concepts. Following Altman et.al. (2004
pp. 20), accuracy refers to “the absolute or relative error of an approximation quantity,”
or the dissimilarity (or distance) between estimates and output. Referring to measurement,
precision ‘refers to the degree of agreement among a set of measurements of the same
quantity-the number of digits that are the same across repeated measurements,” (Altman
et.al. 2004 pp. 15) or in another way “the number of bits in the significand (including the
hidden bit)” (Overton 2001 pp. 14). For a single scalar value output, the log relative error
(LRE) can be used as a measure of the number of correct digits in the output with respect
to estimates.

LRE = —logo| ™*=¢|, where e is the benchmark estimate. In the test framework, the
comparison to the benchmark needs to be set up in order to obtain the highest possible LRE
value. An LRE value close to 0 indicates very inaccurate estimates. A less than 4 LRE may
be problematic.

Significant digits of a number are defined as the first non-zero and succeeding digits.
Doubling the number of zeros of the convergence tolerance (from 0.001 to 0.00001) can be
used to increase the number of accurate digits i.e. the LRE. The StRD can be used to find
the existence of a set of options producing better non-linear results than software defaults

(McCullough 1999).
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Chapter 6

Software Assessment

The content of the software assessment covers: estimator, algorithms, line search procedure,
standard error estimation, tolerance level, and precision aspects.

These contents are compromised in the results given by software packages commands.
The commands provided in software packages are listed in Tables 6.1-6.3.

SAS details are found in Table 6.1: in the “Proc Glimmix” command of SAS, Tech-
nique=NEWRAP denotes Newton-Raphson optimization combining a linear-search with
ridging; Technique=CONGRA denotes conjugate-gradient optimization; Technique=QUANEW
represents quasi-newton optimization (SAS Manual). This command fails many reliability
tests and can be used as an alternative estimator.

In a model sentence of SAS commands, /Gconv denotes relative gradient criterion, and a
value of 1E-8 are the default settings in the “Proc Logistic” and “Proc Surveylogistic” com-
mands. In addition, in these two Procs “Absfconv”, “Xconv”, “Gconv” and “Fconv” denote
absolute function convergence criterion, relative parameter criterion, gradient convergence
criterion, and relative function convergence criterion respectively (SAS Manual).

In the “Proc Catmod” command, the log likelihood change can be specified by “Epsilon”
in model sentence and a value of 1E-8 is the default setting.

In the model sentence of “Proc Genmod” command, the parameter estimate converge
has its default value 1E-4 using “Converge=1E-4"; relative Hessian convergence can be set

using “Convh=1E-4"; profile likelihood confidence interval is specified by “CIConv=1E-4".
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See manual for the sequence of the convergence levels. This command has been proved to
be extremely disable in reliability tests. This GEE can be used as alternative estimate.

In table 6.2, R and Minitab use iteratively reweighted least squares (IWLS) to estimate
the model.

In table 6.3, Stata commands use observed information matrix (OIM) in calculating
standard errors. Newton-Raphson steps should use the Fisher scoring Hessian or expected
information matrix (EIM) before switching to the observed information matrix (OIM). Some
commands use outer product of the gradient (OPG) vectors to calculate standard error.

An algorithm may prove to work properly only for a subset of the data and model.
Therefore, the existence of benchmark data is rationalized for the reason of consistent work-
ing for all data and models. To look for a “preferred combination” of options, reporting the
estimation results with more significant digits is necessary.

The software packages have respective advantages: R and Matlab are good at graphic
narrative. Minitab, Eviews, and SPSS have well build-in functional icons, which facilitate
the implementing the functions. Stata and SAS are very multi-functional in employing
various estimators in logistic modeling. Shazam and Limdep have very powerful nonlinear

solvers and MLE.
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Chapter 7

Data Properties and Benchmark Data
Generation

According to the literature introduction on benchmark data suites, StRD includes five main
suites: univariate summary statistics, analysis of variance, linear regression, Markov chain
Monte Carlo, and nonlinear regression (Table 7.1). Within each suite, NIST has created
problems with three different levels of difficulty: low, average, and high. NIST provides
certified values computed with multiple precision in 500 digits of accuracy (Yalta 2007),
rounding to 15 significant digits for linear regression and 11 significant digits for nonlinear
least squares. In nonlinear regression data sets, starting values near and far from the solution
are provided. The nonlinear problems are solved using quadruple precision (128 bits) on
two public domain programs, using only double precision, with different algorithms and
different implementations. The convergence criterion is the residual sum of squares with a
1E-36 tolerance level.

Low LREs indicate that a package might use a less robust solution method. To look for
a “preferred combination,” the NIST nonlinear benchmarks should be run using the first
set of starting values and report the LREs of any solution. When no solution is produced,
tinker with the preferred combination to find a solution from the first set of starting val-
ues by varying the tolerance, switching algorithms, or changing default derivatives from

numerical to analytic. For the last trial, the second set of starting values can be used. In
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Table 7.1: Comparison of NIST Benchmark Datasets

Properties Univariate | ANOVA | Linear Regression | Nonlinear Regression
Number of Datasets 9 11 11 27
Lower Difficulty 6 4 2 8
Average Difficulty 2 4 2 11
Higher Difficulty 1 3 7 8
Certified Value Digits 15 15 15 11
Observation Number 3-5000 5-2001 3-82 6-250
Coefficient Number 1-11 2-9

assessing numerical accuracy, nonlinear benchmarks can be used to answer two questions
in nonlinear estimation: whether the default options should be relied on? The combination
of convergence tolerance, the method of solution, and the convergence criterion can change
the solution. Are analytic derivative worth the effort? The answer is yes, because ana-
lytic derivatives are more accurate than their finite-difference approximations (McCullough
1998).

Forty years ago, Longley (1967) and Anscombe (1967) pioneered generating benchmark
data sets for validating software in multiple linear regression procedures and standard devi-
ation calculations. Algorithms were biased towards overstating numerical accuracy because
benchmarks use integer values. Anscombe’s benchmark shortcomings originate from using
integer values with an exact binary representation, whose magnitudes can be stored with-
out truncation in a computer. The exact benchmark omits the likelihood of existence for
the inexact binary representation. Modifying the integers by dividing them by ten gives
the inexact binary representation, which allows a study of their implications in algorithms.
Alternative benchmarks in Simon and Lesage (1988) containing flexible control parameters
provide a more realistic assessment of numerical accuracy with different ill-conditioned data
sets.

Prior benchmarks (e.g. Lesage and Simon 1985) for testing the accuracy of matrix de-

composition algorithms for solving the least squares problem in comparison with procedures
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used in many microcomputer statistical packages regression is pertinent to reliable results
in the face of ill-conditioned data. The benchmark data set is made with an increasingly
ill-conditioned manner that allows the continuum of the numerical accuracy to range from
mild to extreme. Wampler (1980) uses the proposed matrix size and a small deviation from
zeros, €, on the (j,j)th place as the design regressor matrix. When the € is zero, the X'X
matrix is singular, and when € is close to zero, the X'X matrix is near singular. When
the relationship between the condition number and e is formulated, the condition number
increases with a decreasing e (Wampler 1980).

The condition number is a concept defined in the numerical literature, as the product
of matrix norms || X'X|.|[(X'X)7!| of the linear regressor matrix (Sawitzki 1994), and
regression problems are well-known to be potentially ill-conditioned (i.e. the X’X matrix
is close to singularity). The condition number is defined as “the ratio of the largest to the
smallest singular values of X or the square root of the ratio of the largest to the smallest
eigenvalues of X’X (Lesage and Simon 1985 pp. 49). It measures to what extent the
matrix is ill-conditioned: the larger a condition number is, the closer the matrix X'X is
to singularity. The behavior of an ill-conditioned situation results in inherent instability of
the regression results, because any algorithm becomes affected by the ill-conditioned data.
“The error from truncation or rounding of input data is the same order of magnitude as the
estimated standard error of coefficients” (Sawitzki 1994 pp. 275).

Following Higham (2002 Secs. 1.5-1.6), conditioning is defined in the most general way
as “the sensitivity of the model to perturbations of the data” (pp. 9). Condition numbers
indicate the conditioning of a problem using a particular set of inputs. (McCullough 2004).
The consequences of ill-conditioning may lead to a putative solution in a “flat” region of the
parameter space: some parameter values change by large amounts without any change of the
objective function. Therefore the verification of the maximum of the log-likelihood problem
is difficult. Ill-conditioning leads to serious accumulative rounding error and inaccuracy in

computation. McCullough and Vinod (2003) show that for an ill conditioned Hessian, the
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quadratic approximation fails to hold in at least one direction. The Wald inference will be

unreliable for at lease one of the coefficients.

Tyix (Yi| X B) fx (X5 0;) = fxiy (X 05) fy (Yisp) = f(Y3, Xis 0) (7.1)

The data used in this study are generated using the inverse conditional distributions of X
on Y with parameter 6 to recover the joint distribution of X and Y depending on parameter
v, including 8 and #, or conditional distribution of Y on X, depending on 3. The parameters
0 (including p, o, and p) used in generation are functions of Y. p and o are the means
and standard errors of the distributions of covariates X;/Y;. p is the correlation among
covariates (Bergtold et al. 2010). The above equation denotes the relationship described
above for the simulation process (Scrucca and Weisberg 2004). It includes two steps: first
generate the inverse conditional distribution of X conditional on Y, choosing parameters 6
and P. Second, generate the conditioning binary Y with a Bernoulli distribution depending
on parameter P.

fyx (Yi|X;; B) is the conditional distribution that is of interest. By re-expressing it with
the equation after the first equality, the relationship on X can be obtained. fxy(X;;0;)
is the inverse conditional distribution that can be simulated. fy (Y;;p) is the unconditional
probability density of Y;. The data generation process takes these parameter values as given
and the [ of the conditional mean can be recovered using these selected parameters. Instead
of using X to cover Y, one can use fx|y(X;;0;) to cover §; and p the probability of ¥ = 1,
and therefore obtains fyx (Yi|Xs; B).
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Chapter 8

Experiments

To test the impact of different errors on the reliability of logistic regression estimation,
experiments are constructed for multicollinearity, cut-off point, and functional form.

First, to test the effect of different degrees of multicollinearity and the impact on logistic
regression reliability, this study performs tests by generating data with different numbers of
observations (e.g. 200 to 20000) with up to 5 covariates, changing the amount of correlation
between any two covariates with correlation from 0.75 to 0.995.

Next, the study examines the cut-off point. By changing the cut-off (i.e. P(Yi = 1))
from 0.01% to 50% with different numbers of observations (e.g. 32 to 20,000), the study
assesses the effect of changing the cut-off ratio on reliability.

Finally, the study examines how functional forms affect reliability. To examine the effect
of functional form has on the reliability of the logistic regression software packages, the forms
of the predictor or index function in logistic model will be varied from linear in parameters,
logarithm form, and quadratic.

The description of the datasets used to fulfill these experiments are presented in Table
8.1. The variance(X) denotes the variance of each covariate used in the simulation. The
details of the performed experiments to fulfil testing the impact of convergence, algorithms,
and starting values on the software reliability are in Table 8.2. All options evaluating from
these three perspectives are tested throughout. The options are evaluated with each other

as many combinations as possible in order to achieve a maximum LRE. The content on how
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default starting value of each software command is set will be described in the next section.
The closest starting values are found by comparing an assumed closest certain value with
respect to OLS and zero with the expected parameter values to determine which one is the

closest.
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Chapter 9

Results and Comments on Software
Reliability

To test the impact of starting value on the estimation, four sets of starting values are used
in estimating the results. The first is the default settings of the software, the second are
starting from the zero vector (in most cases it is farther from the estimates), the third are
relatively closer than zero starting values, and last are the ordinary least squares. The
starting value can be specified in some logistic regression commands(e.g. Logistic, Genmod,
and Qlim procs in SAS, Limdep, R, Minitab, Binreg in Stata, Eviews and their starting
values are specified in next subsection) but in Catmod, Surveylogistic, and Glim procs in
SAS, Matlab, Shazam, SPSS, GLM and Logit commands in Stata, only the default starting

values can be used in estimation.

9.1 Dependence on Starting Values

For most software packages the default starting value for MLE estimation uses ordinary
least square parameter estimates, while others use different methods (e.g. null vector). In
Shazam, starting values for the slope coefficients of the index function or predictor are equal
to zero, and the intercept is obtained by solving: m = S/N, where N is the number

of total observations; S is the number of observations with dependent variable Y = 1; S/N

is the probability that Y; = 1 for all observations.
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In Limdep, starting values are either computed internally - OLS values are a frequent
choice - or set to zero when the starting values do not matter (rarely).

During optimization, one may converge to a local maximum rather than a global one.
One may avoid local maxima by running the estimation with different starting values or
with a different maximization technique. The “START=" option in “Logit” and “Blogit”
commands can be used to automatically perform a grid search to aid in the search for a
global maximum.

In FEuviews, a built-in algorithm using specific information about the objective function
is used to determine the starting values.

In SAS, for “Proc Logistic”, starting values can be specified in the logit regression by
using “INEST= data set” to specify the input data set containing the initial estimates for all
parameters. For the “Proc Qlim” command, “INIT” initializes the specification of starting
values for each parameter estimates of a logistic regression model.

In nonlinear optimization, convergence can be expected only with fully identified param-
eters, adequate data, and starting values sufficiently close to solution estimates.

“Convergence and the rate of convergence may depend primarily on the choice of starting
values for the estimates. This does not mean that a great deal of effort should be invested
in choosing starting values” (SAS 9.1 online on starting value). It is suggested by SAS to
try the default values first and if the estimation fails with these starting values, examine
the model, data and re-estimate using reasonable starting values. It is usually not necessary
that the starting values are very good, just that they are not very bad; choosing values that
seem plausible for the model and data is helpful in obtaining convergence.

If the procedure fails to converge because it is unable to find a vector that improves the
objective value, check the model and data used to ensure that all parameters are identified
and data values are reasonably scaled. Then, re-estimate the model with different starting
values. Consider using the Marquardt method if Gauss-Newton fails, because the Gauss-

Newton method may fail if the Jacobian matrix is nearly singular or ill-conditioned. A
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nonlinear model may be well-identified and well-conditioned for parameter values close to
the solution values but unidentified or numerically ill-conditioned for other parameter values.

The choice of starting values may make a difference (SAS 9.1 online).

9.2 Software Reporting

To obtain estimation output with more significant digits, different software packages use
different methods.

Table 9 shows, how to obtain more significant digits in software output, using commands
in the different software packages examined.

The following commands can change the starting value (in Table 9.2), algorithms (in
Table 9.3), and convergence level (in Table 9.4) for optimization estimation of the logit
model.

SAS: “Proc logistic” has an option for changing the starting values by specifying the
name in “INSET” with the imported and named vector of starting values in an individ-
ual dataset. Its default algorithm, fisher scoring, can be changed to Newton by setting
“Technique=Newton”. In “Proc Surveylogistic”, the model sentence can be changed with
“Fconv”: relative function convergence criterion, “Geconv”’: 1E-8 as the default relative gra-
dient convergence criterion, “Xconv”: relative parameter convergence criterion, “Absfconv”:
absolute function convergence criterion to change consequent criteria. In “Proc Genmod”,
the starting value can be changed by setting “initial= starting value vector”. In the model
sentence, “converge”: 1E-4 as the default parameter estimates, “convh”: 1E-4 as the default
relative hessian convergence, “Clconv”: 1E-4 as the default profile likelihood confidence in-
terval. In “Proc Catmod”, the “Epsilon” has a default of 1E-8 in model sentence to denote
the change in log likelihood.

Limdep: “Matrix ; Peek” ; Changing Starting value: “Start=0,0"; Changing algorithms:
“Alg=BHHH”; “BFGS”: rank 2 update; “NEWTON”; “DFP”: rank 1 update ; “SteDes”.
LIMDEP will choose either “Broyden” (BFGS) or “Newton” as the default. The value of
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convergence can be set in the model sentence, by using “Tlg” to denote value of change
gradient with a default 1E-6, “Tlb” to denote value of parameter change with a default
0, “Tlf” to denote value of function change with a default 0. One can prevent any rule

“=value” part of the

from being met by changing the tolerance to 0.0 by not including the
command. User supplied starting values are never necessary for the models estimated by
LIMDEP. Iterative routines in LIMDEP normally require from 5 to 25 iterations. A large,
complex problem can require many more. The default settings for maximum iterations
are 25 for Newton’s method and 100 for Quasi-Newton. One can change the maximum
iterations with “; Maxit = value” in any model command. Note, as well, that “; Maxit =
0” is a special command that requests computation of a LM statistic (as well as all other
results) at the starting values (Limdep 9 Manual).

Moreover, the success of an algorithm depends on the data. Usually the default set-
ting - “BFGS” and Quasi-Newton are the most reliable. In large datasets, “NEWTON”
or “BHHH” may perform better, and “BFGS” or “DFP” if they fail to find the maximum.
Newton’s method is best for logit model, because the objective function is globally concave.
When the “BHHH” estimator is used to estimate the covariance matrix and fails to con-
verge, Newton’s method will be used. Steepest descent is not suggested for use, because its
convergence speed is slow and tends to fail (Limdep 9 Manual).

R-2.10.1: Unless the convergence criteria are made fairly tight, different algorithms will
often provide with fifth or sixth significant digit answers. “options(digits = 15)” controls.
Changing starting values can be realized by specifying “start=c(starting values)”.

Shazam, STATA, and Matlab: “Format” is used to specify the number of significant
digits in output.

StatalO “Binreg” can change the starting value and algorithms in estimation, using the
“Init(vector of starting value)” or “tech(name of the algorithm)”. Need to import and name
a vector of starting values in the dataset. The tolerance level of change in log likelihood

(“Itol”) has a default of 1E-7, change in gradient relative (“gtol”) to the coefficients does
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not have a value as default, and change in scaled gradient (“nrtol”) has a default of 1E-5.

Minitab : One can follow the following steps to fulfill the testing: first use “File-
Open worksheet- CSV file” to open the data, and then use “Stat-Regression-Binary lo-
gistic regression-Storage” to specify the information needed from the regression result; after
that use “Editor - Format column - Numerical - Fixed decimal” - built-in icons, to obtain
the number of precision digits one wishes to obtain. To specify starting value: first, one
needs to change the icon in “Stat-Regression-Binary logistic regression”-Option and then
import and name a vector of starting values in the dataset.

Eviews 3.1: After loading the data through “New-workfile- input time period”, use
“Procs-import” to input the data with relative names of variables and use “Genr” enter
equation “z=1". Use icon “File-open-Program” to type in command “logit Y Z X”, and run:
in the equation: untitled, and workfile-untitled. Use the set icon “Stat-copy-unformatted”
to reach the maximum precision. The starting points and algorithms can be changed using
the estimate option icon-option, where one can change from the default “quadratic climbing
hill” to “Newton” and “BHHH”. The starting point can be changed from “Eviews provided”
to “0.3xEviews” and “zero”. The convergence level can be changed by using different icons.

SPSS 17-“ordinal regression” default: “Maximum iterations”: 100, “log-likelihood con-
vergence”: 0 (1E-5 is the maximum), “parameter convergence”: 1E-6 (1E-8 is the maxi-
mum), and “Singularity tolerance”: 1E-8 (1E-10 is the maximum). Threshold V;=0 inter-
cept has a wrong sign, because it measures the probability of Y = 0 by default. Double click
each coefficient in the output provides numbers with more significant digits. Transform the

variables using icon in transform - calculate variables.

9.3 Comments on Dependence on Algorithms

During estimation, algorithms can be changed from defaults to other algorithms (e.g. “Proc
Logistic” in SAS, Limdep, Eviews, “Binreg” in Stata), but algorithms may not be changed

in other software packages; such as “Catmod”, “Genmod”, “Surveylogistic”, “Glimmix”,
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and “Qlim” procs in SAS, “Logit” and “GLM” in Stata, Minitab, SPSS, R, Matlab, and
Shazam.

Based on the minimum coefficient LREs, the ranks of all commands for dataset1 (multi7)
with 1000 observations and dataset2 (cuto3) with 5000 observations are in Figure 9.1. The
legend for this figure is: SASlgt, Gen, Glim, Cat, Slgt, Qlim: SAS Logistic, Genmod,
Glimmix, Catmod, Surveylogistic, Qlim; Stbrd, Stbrbh, Stbrbf, Stlgt, Stglm: Stata Binreg
Default, BHHH, BFGS, Logit, and GLM; Sha: Shazam; Mint: Minitab; LdpBF, BH: Limdep
BFGS, BHHH; Evd, EvNr: Eviews Default, NR; Mat: Matlab. Figure 1 summarizes the
sensitivity of the commands depending on the change of number of observation. The left plot
is for dataset multi7 with 1000 observations and the right plot is for dataset cuto3 with 5000
observations. As the number of observations increases, the performance of Eviews-Newton
Raphson, Eviews-Default, Minitab, R, Shazam, Stata-Binreg(BFGS and BHHH), Limdep-
Logit, Blogit (BFGS), SAS-Qlim Glimmix worsened. Whereas, SAS-Logistic Surveylogistic
Limdep-Logit, Blogit (BHHH) improve their performance. SAS-Catmod can not estimate
the larger dataset.

Identical algorithm provides the same results for the Limdep Logit and Blogit commands.

In Table 9.5, Stata, Logit GLM Binreg(default) can estimate coefficients of datasets
multil-7 up to the same reliable level but Binreg (BHHH and BFGS) does a worse job.
In Table 9.8, however, for datasets mvarl-4 and cutol-4, the coefficient LREs of Logit,
GLM, Binreg (default) are greater than Binreg (BHHH), and Binreg (BFGS) with mvar3
as an exception. In Stata, Logit, GLM, Binreg(default), and Binreg (BFGS) can estimate
standard errors reliably, but they are greater than standard error LREs provided by Binreg
(BHHH) for all datasets except base. Log-likelihood LREs are relatively invariant to choice
of algorithms.

In Table 9.14, for Eviews, BHHH has smaller coefficient and standard error LREs than

the default setting and the Newton-Raphson option.
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Figure 9.1: The Rank of Software Commands-Minimum Coefficient LRE of Parameter
FEstimates for Multi7 (on the left with 1000 observations) and Cuto3 (on the right with 5000
observations) (Refer to List of Acronyms)
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9.4 Comments on Dependence on Observation Num-
ber

Tables 9.5, 9.8, 9.11, 9.15, 9.18, and 9.21 provide the LREs, on which figure 9.1 is based.
SAS “Catmod” provides the highest coefficient LRE of 10.59 (12.34)' for multi7, but its
performance depends on the number of observations of the dataset. For cuto3, that has
a larger number of observations, it does not converge at all. The maximum LRE for SAS
“Qlim” increases and minimum LRE decreases with an increasing number of observations,
i.e. 6.30 (6.64) in multi7, and 5.68 (7.67) in cuto3. SAS “Logistic” and “Surveylogistic”
LRE increases with an increasing number of observations, i.e. 6.13 (6.88) in multi7, and 6.75
(7.32) in cuto3. Limdep- Logit or Blogit “BFGS” LREs decreases with an increasing number
of observations, i.e. 10.54 (11.61) in multi7, and 9.07 (9.47) in cuto3. Limdep “BHHH” LRE
increases as the number of observations increases, i.e. 7.72 (8.08) in multi7, and 9.64 (10.92)
in cuto3. Shazam LRE decreases with an increasing number of observations, i.e. 7.05 (7.91)
in multi7, and 5.23 (5.71) in cuto3. Stata “GLM” maximum LRE increases and minimum
LRE decreases with an increasing number of observations, i.e. 6.23 (6.46) in multi7, and

5.81 (7.19) in cuto3.

9.5 Comments on Dependence on Starting Values

Figures 9.2 and 9.3 describe how the starting values impact the coefficient and standard
error LREs in Tables 9.7, 9.10, and 9.13.

SAS “Proc Logistic” is sensitive to starting values. Starting with the closest and OLS
points provide larger LREs, while default starting values or zero provide smaller LREs. For
multi7, Table 9.7 shows coefficient minimum LRE changes from closest (6.3) and OLS (6.6)
to default (6.1) and zero (5.8). Standard error minimum LRE changes from closest (6.0)
and OLS (6.4) to default (5.9) and zero (5.6). For cuto3, Table 9.17 shows the coefficient

'The number in parentheses besides the minimum LRE is the maximum LRE. This convention is used
throughout the remainder of the dissertation.

29



Figure 9.2: Comparison of the minimum Coefficient LRFEs for Different Starting Values
for datasets Multi7 and Cuto8 - Refer to List of Acronyms
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—R 10,52790423 | 10,58599003 | 10,53512568 | 10,52928206 Minitab 8954302024 | 8,954240113 | 8,95429606 | 8,954242058
——Minitab 9471135764 | 9,4746701 | 9,47053579 | 9,470006882

Figure 9.3: Comparison of the minimum Standard Error LRFEs for Different Starting
Values for datasets Multi7 and Cuto3 - Refer to List of Acronyms
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—SAS-Qlim 3,7043267 | 3,3849295 | 3,3818772 | 3,3823379 0
Default Zero Closest oLs
~—Limdep-BFGS | 10,903237 11,282158 10,870892 10,845071 —
SAS-Logistic 7,0121651 7,45708 7,4581275 7,4570866
~==Limdep-BHHH | 7,775037 9,149623 9,449598 8,419402 -
SAS-Qlim 4,0769192 4,0769898 4,0770309 4,0762771
—R 6,912904791 | 5,598193178 | 6,034199751 | 6,374334151 -
— ~=Limdep-BFGS | 9,162028 7,457081 7,458125 7,457085
= Minitab 5,902171474 | 5,598176701 | 6,034154817 | 6,374235861
—R 4,848133201 | 3,809249569 | 3,809770772 | 3,809252885
== Minitab 6,977630251 | 7,461477896 | 7,462529984 | 7,461484609
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minimum LRE changes from zero (7.3), closest (7.3), and OLS (7.3) to default (6.7). Stan-
dard error minimum LRE changes from zero (7.5), closest (7.5), and OLS (7.5) to default
(7.0). Log-likelihood LRE does not seem to be as sensitive as coefficient and standard error
minimum LREs to changes in starting values.

SAS “Proc Qlim” is sensitive to changing starting values and starting with the null and
closest starting values providing the highest LREs, but this depends on the dataset. For
multi7, zero provides the smallest LRE (5.7) while the closest starting values provide the
largest LREs (7.8), with default LRE and OLS LRE values in-between. However, for cuto3,
starting from zero provides the largest LRE (7.8), but default LRE is the smallest with zero
and OLS in-between.

Limdep-BHHH provides the most variation in LREs depending on the starting values.
Table 9.10 shows, for multi7, coefficient minimum LREs change from 7.7 (default) and 7.9
(OLS) to 9.6 (closest) and 9.3 (zero), and standard error minimum LREs change from 7.8
(default) and 8.4 (OLS) to 9.4 (closest) and 9.1 (zero). As Table 9.20 shows, for cuto3,
changing from the default starting values to other values shows a problem of convergence
to the maximum of the log-likelihood function, and in the latter three cases estimators fail
to provide a non-flat log-likelihood function. However, for cutol, changing from default
starting values to other three values converges to the maximum of a non-flat log-likelihood
function. The log-likelihood LRE does not seem as sensitive as coefficient and standard error
minimum LRE to changing starting values. In Limdep, for the BHHH algorithm, minimum
coefficient LREs of starting from zero estimation are the smallest for dataset multil. In the
BHHH algorithm, no consistently best starting value can be found for all coefficients, but
it never reaches the smallest LRE in starting with the closest points in all multicollinearity
datasets and only reaches the smallest coefficient LRE in cut-off4 of multivariate and cut-off
datasets. For the BFGS algorithm, the smallest minimum coefficient and standard error
LREs locates amoung starting from default, zero, closest and OLS sets depends on which

dataset is used, but all multicollinearity, multivariate, and cut-off (except cuto2) datasets
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end up with the smallest coefficient and standard error LREs when starting from OLS and
zero starting points.

When using different starting values during estimation, the results in Statal(O Binreg are
invariant to the change of starting values in Tables 9.9 and 9.19.

Minitab LREs are very insensitive to changing starting values. In Table 9.13 and Table
9.23 some datasets are insensitive to changing starting values, e.g. the log-likelihood LRE
of most datasets, coefficient LRE of base, mvarl, 3, cutol, 2, 3, multil, 4, 6, and 7, and
standard error LRE of base, mvar3. Other datasets are sensitive to changing starting values.
In Minitab, starting from default, zero, and a closer set provide higher and identical coeffi-
cient LREs than starting from OLS. However, starting from a closer starting point provides
the highest standard error LREs, followed by the default then zero with OLS performing
the worst. An interesting finding is that the standard error LREs are differently ranked
from coefficient LREs. For different datasets, the LREs for different starting values are in
different magnitude ranges.

In Tables 9.13 and 9.23, the dependence of R on starting values changes with each test
case. For multi7, the coefficient LREs do not depend on starting values, but for cuto3, the
default starting values provide the largest minimum coefficient LRE than the other three
independent starting values. R with default starting values is the best in providing the
largest coefficient and standard error minimum LRE for base, multil-6, mvar4, cuto3, and
closer or OLS starting values improve the LREs compared to starting from zero.

In Table 9.14, when Eviews starts from zero it improves coefficient LREs over the default
setting on multi6 and multi3, but decreases coefficient LREs when the Newton-Raphson
algorithm is used with starting values (with multi5 as an exception). Changing starting
values to zero impacts the standard error LREs, but not always in the same direction as the

coefficient LREs.
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9.6 Comments on Dependence on Convergence Level

In SAS, in Tables 9.6 and 9.16 decreasing the convergence level for relative parameter
convergence “Xconv” or absolute function value “ABSFconv” improves the LREs of the
results starting at OLS to the maximum extreme. Changing the convergence level of gradient
“Geonv” enhances the LREs of coefficients as well, but with less magnitude. In both changes,
LREs of the standard errors in “Proc Catmod” can also be enhanced by changing the log-
likelihood “Epsilon”. “Proc Catmod” is sensitive to the starting values, with the default
and OLS providing the largest LREs compared to starting from zero and closer points.

In Tables 9.9 and 9.19, for Limdep, changing convergence level can improve the LREs
for the BFGS and BHHH algorithms.

In Tables 9.9 and 9.19, for Stata, changing convergence level can improve the LREs in
Binreg for all datasets and GLM algorithms only for some datasets (e.g. GLM for multi2
and multi4), but not to the maximum level LRE equal to 11.

In Tables 9.14 and 9.24, for Eviews, BHHH estimates smaller coefficient and standard
error LREs than the default setting and Newton-Raphson algorithm. Changing convergence
levels improves coefficient and standard error LREs from the default setting significantly
for some coefficients, but influences all standard error LREs except cutol. It does not im-
prove the log-likelihood LRE, when changing the convergence level. FOR Newton-Raphson,
changing the convergence level improves coefficient and standard error LREs, but does not
improve log-likelihood LREs. For BHHH, changing the convergence level improves coeffi-
cient LREs, but does not improve standard error and log-likelihood LREs.

In Tables 9.12 and 9.22, for Shazam, changing the convergence level to 1E-11 improves
coefficient and standard error LREs to 11, except coefficient LREs of cutol. The exact
convergence level of obtaining LRE=11 depends on the dataset.

In Tables 9.12 and 9.22, for SPSS, changing convergence levels to the maximum does
not improve coefficient and standard error LREs.

The impact from the number of observations, covariates, and degree of multicollinearity
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are as follows.

9.7 Tests Based on Datasets Multil-7

SPSS provides high LREs (10 to 11) for the datasets with a high degree of multicollinearity
and/or multiple functional covariates (multi 3 to 7). However, it provides lower LREs (less
than 10) for the datasets with less observations and relatively low degree of multicollinearity
(multil and multi2). SPSS provides very close values between standard error LREs and
coefficient LREs (Table 9.11).

Matlab’s performance is very steady for all datasets and provides consistently high (more
than 10) LREs for coefficient and standard error except multil. The coefficient and standard
error LRE magnitudes are very close (Table 9.11).

In R, the coefficient LREs are very high (above 10) for almost all multicollinearity
datasets except multi5. R can not provide an equivalently high LRE for standard errors,
which can only achieve about 6 or 7 as the maximum for multicollinearity datasets and 4
to 5 for multivariate datasets in Table 29. Because the threshold is 4 as problematic, the
inaccuracy is tolerable. Because all standard error LREs are more than 4, and they dont
indicate any problematic information (Table 9.11).

Shazam provides the most variation in coefficient LREs from high (above 10) multi2,
and multil, to relatively low (above 5) for other datasets (e.g. multi4). For all parameters
in one model, the coefficient LREs are very closely aligned. The standard error LREs are
only about half of the coefficient LREs (Table 9.11).

In Minitab, the deviation in LREs shows up in the different parameters in one model
and between coefficients and standard errors, but not among different datasets. For the
multi7 dataset, the coefficient LREs range from 9 to 11, which has a difference up to 2.
In some datasets the difference between coefficient and standard error LREs are minor,
such as in multil, where the difference is only 1, but in other dataset with high degree of

multicollinearity the difference is very significant up to 5 or 6 in multi3, and 4 in multi6.

64



orpewa[qoad aq Aewr § wey)
SS9] YT Uy "0ASIYdR UeD UOIJRIUIISS Y] YR} AN[IQRI[AI JO [0Ad] 1S0YSIY oY) sopraoid Y] WNWIXeU o], "IN} 8} SARM[R J0U ST 91 Inq ‘HY]
WNUWIXRUW 98IR] © [[IIM PaJRIDOSSe AJ[ensn sI {7 WNWIUI 831e] ¥ ‘aseyored aIem)jos [oes 10J Sul}jes JNejop Ul osed Y] I0lle pIepuer)s pue
Iojourered Jo o3URI 9Y) UO 9OUR[S ® S8 PopIaoid oIe SHY] WNWIXRU PUR WNWIUIW YjOg UOIRUIIISS Ul 98I9AU0D } useop aseyoed ol T, SN,

65

1811 0 63 1T 0 zeTT 60 1T 6211 LN
G0'cT 0 96'TT 50°0 91’1 96'TT 96'TT UM\
PT'TT 0 86'8 LT0 PTTT 3G'8 3G'8 GUMN
ST'TT 0 2801 020 011 ze 0T ze 0T PN
Zr 1T 0 G011 0 AR G011 G011 e
zL 01 0 LL6 0 gL 01 LL6 LL6 ZIMIN
18701 0 er's SN 180T ¢y’ e’ TN
€e0T S0'T 7G0T 61°0 €601 7G0T 7G0T oseq

S9RWIIISH POOYI[NI[-F0]

(6z°9)sge | (s170)600 | (@6DLFO | (9¢1)990 | (60°9)09°¢ (8¢'9)88°¢G (8€'9)88°G LU
(cLe)¥ve | (L80)6¥0 | (F72)LET (0)o (81°0)00°0 (61°9)10°9 (61°9)10°9 9UIMN
(96°9)9F | (83°0)¥E0 | (LOT)ETT (0)o (817)98¢ | (PE¥)20¥ (7€¥7)20F GO
(87°9)9L¥ | (7120 | (I8 DITT (0)o (ceg)oLw (7S¢ 167 (75°¢)16F PN
(80°¢)g0¢ | (601)960 | (T 1)1TT (0)o (687)68°F (70 5)¥0°¢C (F0°9)¥0°G ey
(98'7)89F | (OF'T)S0'T | (96 T)LET (0)o (997)85¥ (e87)GLY (687)SLF ZHMN
(L09)erg | (@F1)S0T | (P DIFT (0)o eIy (csv)eey (csm)ze ¥ TN

(07'8)66L | (c72)680 | (F8T1)LET (0)o (819)6L°¢ (79'9)€2°9 (79°9)€2°9 oseq

mwpﬁaﬁwm ,HO.EHH .@M@.@Q@nm

(79°9)0e9 | (5€1)99°0 | (88°9)eT'9 85 (F€21)65°0T | (88°9)€T°9 (88°9)€T°9 LN
(6v'8)11'8 | (080)120| (289)99°¢ | (080)1L0| (F10)0 (28°)99°G (28°6)99°¢ 9UIMIN
(92'8)20'8 | (66:0)eL0 | (66€)1L¢ | (66°0)¢L0 | (97°L)0T L (66°€)1L°¢ (66°¢)1LE G
(e7'6)L8L | (80T)oF0 | (eFS)er ¥ | (80°T)0v0 | (GL6)IL'8 (ere)ery (zre)er¥ PN
(coop)ese | (6epeet | (6zg)Lee | (6e1eet | (8001966 | (62°9)LT¢C (62°G)LTC enmN
(coom)teor | (orm)geT| (297097 | (9r1)8e1 | (00°6)86'8 (297)09% (29'%)09°F ZUMN
(056)s08 | (s172)e91 | (8e)ose | (12)z90 | (19°L)15°L (78°¢)08°¢ (78°¢)0s°€ MmN

(¢82)er9 | (oot | (Lo9)wse | (9e1)zr T | (L6°01)98°0T | (L9°9)¥S¢ (L9°9)¥G'G oseq

mwﬁwaﬁwm H@pwadpd&
wi®) 7 XTWUWITX) 7 O1)SISO[AoAING 7 pouruon) 7 pourje)) 7 (MN)o1IsI80T 7 (107ST] )o13S180T-S VS 7 001

fiyamaugyjoonmy buysay, 4of Sys ur sburppag ynofaq
buisn uowoun,y pooynayboT puv SL0LLY PADPUDIS ‘SIIDULYST LIJPUIDIDT 40f ST (Wnuuarvpy) wnwiulpy :G'6 S[qelL



"sa[qe} SUIMOT[0} a3} I0J Sp[oY NI auues oy, ‘Jutod Surirels () S9IOUSP g YIM WILIoS e 10 puewitiod pue jutod Suryrels oroz
S90USp T YJM WHIIOS[e I0 PURTIWIOD ‘d[qe} oY) ul dn Moys sonjes SUIIR)s JO $198 0M) AJUO USYA\ "O[qeuoI)senb sT 00ua810AU0D oY, "GT-HT
JO JTWII] 9T} U} I0YRAIS ST ¢T-HFGI0CTH T JO UOLIDILID 9OUASIOATOD URISSOF OAIR[AI YT, "UOIIRIIISO Ul 98I0AT0D ) usoop adexoed oy TSN,

011 011 01T 01T 01T 0TI 01T 01T SN SN 011 01T 01T 011 LININ
011 011 01T 01T 01T 01T 011 011 10 1°0 101 011 011 011 9N
011 01T 011 011 011 0TI 01T 01T z0 zo0 101 01T 10T 01T SUMA
011 01T 011 011 011 01T 01l 01T z0 zo0 011 66 01T 66 PN
01T 01T 0TI 0TI 0TI 01T 01T 0TI SN SN 01T 901 0TIl 901 M
L01 L01 L0T 20T 20T L0T 201 20T SN SN 901 g6 901 g6 CHIMA
601 60T 60T 60T 60T 601 60T 60T SN SN L6 60T L6 6701 TIHNIA
901 901 901 901 901 90T 901 901 z0 z0 901 901 901 901 oseq
SOYRUII}SF POOYI[ANI[-807]
g0 0TI 60T 60T 60T 60T 6'G 6'G SN SN 7’9 9'G 79 9'g LUININ
A 0 86 66 66 00T [ 8y 0 0 TL 8'g Tl 8'g 9NN
I'T gL .01 201 201 .01 9'9 9'9 0 0 Ly G LY gL SUMN
I'T z6 101 201 201 L0T 1L gL 0 0 8'G LY 8'G LY PN
T1 86 011 011 011 011 LG LG SN SN g'g 6% g'g 67 M
i 16 6°0T 60T 601 6701 1) T SN SN 7 9F v 9¥ [ASLN
! 08 0TI 0TI 0TI 01T 29 79 SN SN 0¢ 08 6F 08 TIHNIA
A 01T 0TI 01T 0TI 01T 98 L 0 0 [ 8'g gL 8'g oseq
wwudgﬁmm .HOH.Hm ﬁh,ﬁﬁgdum

G0T G0t S0t S 0T S0T G0T €9 1) SN SN 99 8'G 99 8'g LN
601 0 801 80T 801 801 9'8 L8 L0 L0 69 g'g 6°9 g'g 9NN
gL TL G01 G0T1 G01 G01 18 z'8 L0 L0 7y TL vy TL SN
16 88 701 70T 70T 701 7’8 9L ) +V°0 €¢ Ty e [ PINDIN
zoI1 801 801 801 801 801 g6 69 SN SN 8¢ 1 8'g 1°G M
€6 06 011 011 011 011 €01 00T SN SN (e a4 TS i 48N
6L ja 701 70T 70T 70T T8 0'g SN SN a4 <9 vy gL TIHNIA
01T 01T 0TI 0TI 0TI 01T 79 69 I'T I'T 9'9 1°g 99 T'g oseq

SoyewI)sy] Iojourered

‘LOTS | dF'LvD | XouUN | XTUN | XeHHEHSIA | XTHEHSLI | eNITO | TANITO | eNED | INAD | (@uN)IOHT | (TUN)LOT | (g0usid)LoT | (10ustd)LoHT | 20id

fipruvauggjoonnpy buysay, wof Sy G ur sburggag
ynofoq burbuvyy) wuowOUNY PooyLaybOTT PUD SLOLLG PADPUDLS ‘SIIDUILISH APOUDID 40 SHYT wnuwuipy :9°6 S[qel.

66




"TOT)RII)SO UL 9SISAU0D 1, Uso0p a8esprd oY T,:SNyp

0'TT 0'TT O0'TT 0'TT SN SN SN 0 0'TT 0'TT 0'TT 0'TT LUMIN
0'TT O'TT 0'TT O'TT 0 0 0 0 0'TT 0'TT 0'TT 0'TT IUNIN
01T 01T 0'TT 01T 0 ¢0 0 0 0°0T L6 01T 9'8 SN
01T 01T 01T 0'TT 0 ¢0 0 0 01T G0t 66 €01 PUMIN
01T 01T 0'TT 0'TT SN SN SN 0 0'TT 01T 90T 0'TT EUMIN
01 20T 01 L°0T SN SN SN 0 00T 90T g6 8'6 SN
6°0T 6°0T 60T 6°0T 10 SN SN 10 L6 g8 6°0T '8 TN
90T 901 901 901 0 0 0 0 90T 90T 90T 901 osed
sojyewI1)sy pooyIeyI[-30]
Ve Ve Ve L€ SN SN SN 0 7’9 09 9'¢ 6'¢ PARIL A
Ve v'c ¥'e Ve 0 0 0 0 'L 'L 8'¢ 09 IUMIN
9V 97 97 97 0 0 0 0 LY 97 Gl 0y SN
8V 87 87V 87 0 0 0 0 8'¢ 0’ LY 67 PUMIN
'€ e '€ '€ SN SN SN 0 0'¢ g'g 67 0'¢ CUMIN
LY LY 4 LY SN SN SN 0 6V Vg 97 A4 SN
99 99 7’9 0L 0 SN SN 0 6V vy 0’8 €V TN
9'8 €8 L4 '8 0 0 0 0 €L Vg 8¢ 9 osed
sojew1}sy JI01IY plepuris

€9 8L LG €9 SN SN SN 20 99 €9 8¢ 19 LUMIN
R 9'8 '8 '8 20 L0 20 20 69 L9 g LG IUININ
'8 06 c'8 '8 20 L0 20 20 vy €y [ L€ SN
L'L L 9L 6°L 70 70 70 70 €'q N4 [ vy PUMIN
€01 g'6 69 g'6 SN SN SN €1 €'q 8¢ I's €q EHUMIN
€01 €L 00T €01 SN SN SN 7'l LY [ vy 97 SN
¢'8 L' 0'¢ 0'8 90 SN SN 90 vy 8¢ Gl 8'¢ TN
7’9 €8 6'9 7’9 T T T I'T 99 N4 I’ g¢ osed

SOJRWIIISH] IojoureteJ
©mrd | @nrtd [ (Mmwrad [ Gep)nrtd | (g)powwen | (g)powmen [ (ppowuen [ (3ep)powwen [ (6)1DT | (@)1o71 | (DIOHT | GPP)LOHT | 201

figrimouzyjoonnpy bunsay, 4of Sy§ ut sangA
burgumyg burbunyy) woroUNy PooyLaYyboTT PUD SLOLLY PLOPUDIS ‘SIIDULISH JIIUWDID LOf SITYT WNWIULY :L°6 O[qQelL

67




-oqeoridde jou:y N,

879 €e9 VN €e'9 79 ze 1T zeTT LN
98'9 98°9 VN 98'9 98'9 G0'CT G0'CT 9UIMIN
7L 1L VN 7', 7L PTTT PTTT ¢TI\
oLl ¢l VN gLl oLl ST'TT ST'TT PIMIN
9.9 zL9 VN 9.9 9.9 CI1l 4R eI\
LTS 318 VN LTS 318 cL0T zL 0T ZIMIN
07’8 €68 VN 7G'S 768 18°0T 180T TN
06'L 06°L VN 06'L 06'L LG0T €G0T oseq

SoYRWIISH POOYI[RNI[-807]

(18°9)70°¢ (1L2)€2°0 (79°9)80°G¢ | (££9)60°¢ | (829)£0°9 (78°8)8L "L (6G'11)06°'0T | LI

(6£°9)06°¢ (£672)99T (67°9)1€9 | (87°9)1€9 | (9%°2L)s€9 (L101)£€°6 (FL°6)sG'6 | 9NN

(¢6'9)1¢°C (IT2)61'T (L09)82¥ | (70°2)0L9 | (LOL)TL (81°8)68°L (F1'8)€8°L G

(2079)86% (¥0°2)0z'1 (09°9)z6'¢ | (298)LTL | (¥56)06F (8%°6)00°6 (9¢°01)79°6 | PN

(L6°9)96°G (Froort (c69)v6's | (569)1c9 | (F09)V0°¢S (eg L)ze L (08°6)9.°6 enMmN

(01°9)56°G (1rm1et (21°9)209 | (e89)1zL | (£8¥7)CL¥ (06'8)08°8 (75°6)97'6 ZHIMN

(887)eL¥ (05 1)9g'T (669)8L°9 | (79°9)LLL | (£L°6)88°L (PP ID)TT 1T (09°8)1¥'8 TN

(gL L)€0L (7£'8)GL°L (16'9)269 | (pg8)eLL | (8¢'9)¢T9 (16°L)8G°L (z8cl)zhel | oseg

wwpﬁaﬂwm .HO,H,Hm @Mﬁ.@gdpm

(8°9)99°F (9z7)ele (979)ez9 | (97'9)¢z9 | (S1°9).6°G (80°8)zL "L (19TDPS 0T | LM

(08°6)6¢F (09°7)eC ¥ (88°9)¥F'e | (969)67'G | (88°GQ)F¥'G (98'8)75°S (I8'T1)68°0T | 9NN

(90°9)9T°¥ (197)207 (co'L)1z9 | (70°2)12°9 | (€0°2)1T°9 (L9°8)€0"L (8L72)TG L G

(6L°6)59°¢ (92°¢)59°€ (L6°2)6L9 | (8L°L)679 | (86°2)6L9 (06'8)zL8 (czoT)eT'6 | PN

(£2°9)12°9 (1z7)e1v (1£2)90°L | (689)8L9 | (12°2)00°L (LG L)7G L (80°01)96'6 | €MIMIN

(08°6)9¢¢ (F97)5C¥ (es L)zl | (peLvol | (25°2)0T L (59:8)ge'8 (2€'6)0¢'6 g

(617)2LC (08 7)79°¢ (LL2)68G | (LL2)69s | (LL2)6SS (e1°21)6€°01 (L6°L)88°L MmN

(£59)8%°9 (82°8)59°L (06°L)svL | (82'8)69°L | (82'8)¢9L (66°9)29°9 (G8'TT)TL'TIT | oseg

S9)RWI)SH IojoureIe J

(sD.9)Seurg-eress | (HHHE)Soturg-eiels | Seaurg-eress | (w1o-eyess | wsor-eyess | (HHHG)depurg | (sHag)depunr [ ooig

figruwou)joounpy buysa 4of 0av3g pun dopwiry ur sburag Ynvfa(J
buisn uo1oun,y pooyyayboT pub S40LiH PADPUDIS ‘SIIDUWISH L2JIWDIDG 40f STYT (Wnwarvpy) wnwiut)y 86 O[qel,

68



R NCH!

pue GI-HT 9Ie S[0AS] 90UASISAUO)) :¢]- PUR G- SW)HLIOS[R 9IeM)JOS SUIMO[[O] SPIIPU] 'S9IRUII)SO JUSLIND O] e JR[ ST POOYI[NI] SO O T yxop

€9 €9 €9 €9 €9 01r 0TI 0TI 0TI 0Ir | 0TI | 0TI 01T LN
6'9 6'9 69 69 69 01r 0TI 0TI 0TI 0Tr | 0TI | 011 01T UM
T TL T'L TL TL 40 TT 011 0TI 011 01T | OT1 | 011 01T guINy
L L) L L L 01T 011 011 01T 011 | 011 | 011 01T PN
89 89 89 L9 L9 01T 011 011 01T 011 | 011 | 011 01T enmp
'8 '8 '8 '8 '8 L0T L 0T L01 L0T L01 | Lot | Lot 101 SN
g 7’8 7’8 s g8 #%6°0L | %6701 6701 601 60l | 601 | 60T 601 TN
6L 6L 6L 6L 6L #x90T | %x9°01 901 901 901 | 901 | 901 901 oseq]
sojew1)sy pooyIeyI[-30]
RS 0g 0g z0 20 60T 6701 6701 801 V'S 6 | 801 0TI LN
29 6g 66 91 91 €01 101 €01 86 66 '8 gL 00T UM
L9 g g z1 g1 sl 0T L0T L0T 10T a6 'S €6 gl guNN
gl 0¢ 0g Tl Tl 10T L0T L01 10T V6 L6 | 90T 76 PN
89 09 09 TT 1 #x1'8 4506 011 011 T8 06 | 801 86 g
gL 09 0'9 £1 g1 601 90T 601 601 06 | 901 | gor1 16 GUNIA
8L LF LF €1 g1 #x0°TT w18 011 01T 0T | T8 L6 0’8 TN
L TL TL vl vl 01l +0°6 01l 0TI 3L 06 [ 0TI oseq]
S9)eWI)SH JIOII ﬁh@ﬁgdpw

9 LY LY Le Le ¢ o1 g 01 g 01 g 01 6L 76 | S0r 90T LN
Vg i vy zv oV L0T 801 801 801 66 6L 69 80T 9uN
29 zv oy 0 0F 80T g o1 g o1 g o1 '8 8L 06 zL FTeT
89 Le Le 9¢ 9¢ VoI Vol 7ol Vol '8 s | vor L8 PN
T z9 z9 Ty (R '8 €6 801 801 £ g6 | L0T 00T EIMN
zL 9g 9g ay oy 011 011 011 011 68 | 901 | gor 06 guINN
9g L LG 9¢ 9¢ 701 T'L 701 701 01 | 0L 16 gl TN
gL ¢9 c9 67 67 01l 08 011 01T 99 08 9'9 601 oseq]

SoyewI)sy] Iojourered

1-(ymepop)Sorutg- | (grg)Serutg- | (1yg)Serutg- | (gug)Seawig- [ (tug)Sermig-erers | ¢T-gHA- | ST-THA- | ¢T-odd- | SI-144- | ¢HI- | THG- | gdd- | 1dg-depur | 201

ynofoq burbuvy) worIUNY PooYLPYYbOT PUD SLOLLF PIDPUDIS ‘SOIDUILISH SPOULDID 40f ST WNWIUL)] :6°6 °[qel

figravaurgoouynpy buisa 4of vivig puv dopwny ur sbuog

69



"TOI)RIUI)SO UT 98IOAT0D J,Uso0p o8esrd oY T,:SN,p

011 01T 011 011 01T 011 011 011 LN
011 011 011 011 011 011 011 011 ouIN
011 011 011 011 011 011 011 01T GUnIN
01T 01T 01T 01T 01T 01T 01T 01T PN
01T 0'TT 01T 01T 01T 01T 01T 01T £
L 0T L 0T L 0T L 0T L0t L 0T L 0T L 0T ZHIN
601 60T 60T 601 60T 60T 60T 601 IO
901 9°01 901 901 901 901 901 901 oseq

SoYRWIISH POOYI[ONI[-S0T]
V'S 76 16 8L 801 601 011 60T LN
66 0°0T 8’8 €6 &) 70T 0°0T 96 U\
G'6 7' I8 6'L €6 6'S ) ) U
76 €01 L6 06 90T 66 6 96 PN
06 1’8 06 ) 0°01 801 8°6 001 N
06 €01 901 8’8 01T L6 16 G'6 CHININ
011 011 I8 011 L6 g's 0’8 7’8 BN
8L 011 06 9. ¢l 601 011 011 oseq
mwpdaﬁpmm _HOM.Hm UH@UQ@@@
6L 96 76 Ll G01 G'01 G01 G01 LN
66 8°6 6L g8 69 801 80T 60T U
z'S 92 I8 T 06 9'S ) gL G
g's 9'8 I8 L8 701 76 L8 16 PN
6 €S €6 gL 01 L 0T 001 01 £
6'S 01 90T g's G01 96 06 €6 ZHINN
70T 01 02 70T 16 6L gL 6L TTE
99 01T 0'8 L9 99 00T 60T 01T oseq
SoYeWI)SH JojoureIe
(e)unnd | (@HHHg | (DHAH | G°P)HHHG | (£)sodd | (o)sndd | (1)sodd | (Jop)sodd-depury | 201g

fiyramaunjoonnpy bungsag, 1of JAANIT U soMVA
buanyg burbuvyy) worpoung pooyraYyboT puD SAO0LLE PADPUDIS ‘SIIDUILISH LIPOUDID A0f ST wnuwuipy 0T°6 Olqel

70



71

ze 1T RC'TT RC'TT ee0T ceTl 09'L zeTT LN
G0'gT 00'TT 00'TT 9201 c0'zT 18°L G0'CT 9UMIN
ann ST'TT ST'TT €z 0T PI1T 186 PT1T cIMIN
QT'TT 6111 6111 1701 ST'TT 679 QT'TT PIMIN
AR 111 111 98'6 AR 19°9 er 1T el
gL 0T LL0T LL0T 1201 cL 0T Vo 1T zL 0T ZUMIN
180T 980T 980T ¢L'6 180T cL'6 L8°0T TOMIN
LG0T 0501 0501 00T LG0T 929 €607 oseq
SoYRWIISH POOYI[ONI[-S0T]
(16'11)06°0T | (52°2)9L9 (L879)8¢9 (8¢'9)88°¢ | (17°L)z6'9 | (96¢)or'e | (89°T1)S8 0T | LB
(7e01)50°01 | (L&°L)6T'L (gvg)ogs (61°9)109 | (10°2)8'9 | (er¢)zse | (S¥11)95°0T | 9N
(9rz)12°0T | (F€9)T0°G (61°9)19°G (F1°8)98° L | (90¢)vLy | (667)29F | (98°T1)0L0T | CHININ
(¢€21)69°0T | (26°9)62°9 (56°9)€T°S Fso)er | (ce9)t6s | (19¢)e6c | (6221)69°0T | PN
(1111 | (£8°9)€8°¢G (86°'7)8S ¥ F0'9)r0¢ | (109)109 | (162)06C | (8LT1)99°0T | eI
(L8°6)676 | ($0°9)96°G (88°7)6LF (e8P)PLy | (619909 | (ce)r's | (IF21)99°01 | eHMIN
(€08)¥7's | ($9°9).£9 (75°L)29°9 (LL8)168 | (66'9)6L9 | (0z9)86F | (8T°01)L66 | THININ
(ere)¥r 1T | (8T°2)9L9 (8L°9)7¥°9 (79°9)¢2'9 | (86'9).6°9 | (9¢¢)ere | (IFG1)09FT | osed
m@pdaﬁmm HO:GE @Hdﬁgﬁpm
(09 1TD)FS0T | (0¢TD)es 0T | (ze1r)esor | (9F°1D)ze 0T | (0gT11)ec 0T | (16°2)c0°2 | (IS T1)EC0T | LM
(12°21)e8°01 | (0£721)e8 01 (02'8)08°L (£2°01)08°6 | (¢z21)e80T | (699)1¢9 | (62°21)E80T | 9MIMIN
(z0'z1)sv 01 | (6L6)25°6 (29°6)6L°L Frovere | (€26).68 | (188)¢98 | (20°21)9F 0T | SHININ
(TP 2)er ot | (6221)Th 01 (98°2)0¢°L (86'6)9L8 | (PO TDIF 0T | (£2°9)80°S | (€7°21)EF 0T | PHIMIN
(LZTDPR0T | (6£ 111801 (76'8)26'8 (60'11)99°6 | (2&T11)e8°0T | (8019)209 | (ELT1)GL0T | EBIMIN
(¢e6)ee6 | (PSTIDEOTT (egL)1¥°L (7€6)02°6 | (OF'T1)90°TT | (GL°01)8S°0T | (ST'TT)0L0T | ZHIMIN
(008)16°L | (2&'21)0F 01 (67°6)62°9 (096)706 | (6021)6£0T | (L1°6)L06 | (8¢°6)SF6 | THNIN
(T 11)25°0T | (61°CT)89TT (67°6)00°6 (0 TT)SS0T | (10°2T)89°TT | (L9°9)¥s's | (S6°€T)18 €T | oseq
m@u@&ﬂmm H@pmadmdﬁ
SSdS | (MN)smorag | (ymegoq)smorar | qeyurpy | N | wezeyg | qepepy | ooig

fiyravauagjoonnpy busag, Lof GGG puv ‘smaras ‘qpuipy Y “wwzyg ooy u sbugag ymofoq
buasn uowoun, pooyiayyboT pun SL0LLT PADPUDIS ‘SIIDULISH LIJPWDIDG 40f ST (wnwurvpy) wnwiuipy T1'6 9qel,



CT-AT PUR ‘TI-HT6-HI LHT ‘GHT ‘¢-HT o8 S[oAd]
9OUDSISATIOD JRT[) 9J0USD 9IRMIJOS o) SUIMO[[0] €T~ PUR ‘TT-'6-‘L-‘G-‘g-‘() S9OIPU] "SUISRAIOSP ST UOIJOUN] POOYI[SNI[-SO0] :9FeSSOUT SUIUIRAA .,y

01T 0°LT €01 €01 0Tl [ 0TI 0'LI 0'LT 0'LT 01T 9L LN
01T 0°LT €01 €01 0Ll | 01T 0'LL 0°LT 0°LT 01T 8L MM
01T 0°LT z 0l 0L 0Tl | 01T 0°LI 0'LT 0°LT 01T 66 gUIN
01T 01T ¥01 V01 0Tl | 011 4O'TT 0°TT 01T 01T g9 PO
011 01l 66 66 01L | 01T 4O'TT 011 011 0TI 99 eI
10T 40T g0l T 01 L0L | 201 011 01L 01l 01T 011 gHIN
60T 601 L6 L6 6'0L | 601 K0'TI 0TI 0TI 01T L6 TN
90T 90T 00T 00T 9'01 | 901 01T 0TI 0TI 01T zL oseg
SOYRTISH POOYIENI[-507]
60T 601 7’9 ¥9 | 9¢ 01T 0TI 01T 89 Ve LN
oL 101 8¢ Le | 8¢ 0'LI 0°LT 01T 69 ge MM
101 101 LY Ly | 6¢ 0'LI 0°LT 06 06 9% gUIN
101 I 8¢ 8G | LV 0'LT 0°LT 0°LT 9'g 6T PN
01T 0°LT ag 67 gs | 61 0'IT 0TI 01T 86 6T eI
a6 ¢'6 LY LY vs | 9F 011 101 101 g Qg ZHIIN
V'8 7’8 0g T8 67 | Iv 011 0IL L6 L6 0 TN
011 0TI gL g gL | 89 01l 0TI 0TI zL 9¢ oseg
w@udgﬂpwm ,HO.Hhm ﬂvhﬂwﬂvgﬁﬂm
g0I ¢01 <6 c'6 g'0r | 901 0TI 0TI 01T 01T TL LN
80T 80T 86 86 69 | g01 01T 0TI 01T 01T g9 9NN
g0I ¢01 06 76 06 | o2 01T 0TI 01T 01T L8 gUIN
701 701 9'8 L8 oL | L8 0'LI 0°LT 0'LT 01T Tg PN
801 801 86 96 L0 | 00T 0'LI 0°LT 0'LT 01T 9 eI
£'6 €6 z6 76 gor | 06 0'LL 0°LT 01T 901 901 ZHIIN
6L 6L 06 06 6 | gL 011 01T 01T 011 6 TN
01l 01l 88 88 01I | 601 011 01I 011 0TI v oseg
mwuﬁgﬂumm H@u@gﬁhﬁﬁﬂ
01-'8-6-SSdS | 8-'9-‘0SSds | gaesunn [ tqesuin | gy | 19 | T1-wezeyg | g-wezeyg | L-wezeyg | g-wezeyg | g-wezeyg | 001 g

fiypavaun) ooy busay, 4of SSAS puv ‘qupruipy Y “wozvyg ui sbuipiag
ynofo burbunyy) worpouny pooyLaYbo PUD SUOLLF PADPUDLS ‘SIIDUIISH AIJIUWDIDJ LOJ SHYT WNUulpy Z1°6 Olqel

72



"TOI)RIUI)SO UT 98IOAT0D J,Uso0p o8esrd oY T,:SN,p

€01 €01 €01 €01 01T [ 0TT [ 0T [ 011 [ 20m
€01 €01 €01 €01 OTT | OTT | 0TT | 0T | 96N
201 201 201 0T 0T | 0T | 0TT | 0T | SO
V0T 70T V0T V0T 0TI | OTT | 0TT | 0TT | PN
66 66 66 66 0TI | 0TI | 0TI | 0TT | €9
201 Z 01 201 Z 01 LOT | L0T | L0T | 20T |gumpn
L6 L6 L6 L6 60T | 601 | 60T | 601 | TN
0°0T 001 001 001 901 | 901 | 901 | 901 | oseg
SoYRWIISH POOYI[ONI[-S0T]
79 09 9°¢ 6'¢ 79 [ 09 [ 9¢ | 69 [inmp
L Il 8¢ 09 Le |12 | 8g | 89 [onmp
87 97 gL 6L Ly | ov | ee | v | cnmw
8¢ 06 LY 67 8¢ | 0G| v | 6¢ |ynmi
0°¢ gg 67 0°¢ 0¢ | ¢¢ | 67 | 09 |enmpy
VG 67 97 LY pe | 67 | LT | 19 |enmN
67 9'8 z8 a8 67 | vy | TP | L9 | InmpN
29 29 29 29 ¢l | ve | 89 | 99 | eseg
S9jewI}sy JIOLIH UH@UQ@@@
¢'6 g6 ¢'6 ¢'6 cor [ gor [ 901 [ cor [Zumpw
86 86 86 86 69 | 80T | 80T | 80T | 9nm
06 9'8 76 76 06 | 98 | 2 | 06 |eompN
L8 L8 L8 88 POT | 76 | L8 | 70T | pomN
L6 86 96 L6 01 | L01 | 001 | 801 |enmp
L6 76 6'8 z6 ¢0T | 96 | 06 | 0TT | gWInIN
6'8 06 06 0'6 16 | 62 | 9L | vor | mwmpw
88 88 88 88 01T | 001 | 601 | 011 | oseg
SOjRMIISH IojoUIRIR ]
(e)qeymy | (@)qeyrmy | (Daeamany [ (gep)qerray [ ()4 [ (@)u | (Da [ (p)u | 2014

figaouyoounpy bunsa g, Lof gYIININ Puv Y ut sanvA
bugan)g burbuvyy) woroung pooyraYyboT puD SAO0LLE PADPUDIS ‘SIIDUILISH LIPOUDID LOf ST wnuwuipy €1°6 Olqel

73



L-HT Pue ‘G-HT ‘G-HT 9Iv S[OAJ] 9OUASIOAUO)) :)- PUR ‘G- ‘@- WIILIOS[R dIRMIJOS SUIMO[[O] SOOIPU] "SUOIIRINT ()T URY) IO 4y

L9 L9 01T 01T 01T 01T 01T 01T LN
01T e 01 01T 01T 01T 01T 01T 01T QUM
01T 011 01T 011 011 01T 01T 01T CHMN
01T 011 011 01T 01T 01T 01T 01T PN
01T ) 01T 01T 01T 011 01T 011 CHMN
80T 901 80T 801 80T 801 80T 801 CHMIN
60T 601 60T 601 601 601 60T 601 TN
90T 90T 90T 90T 90T 901 90T 901 oseq
S9YRUII)SH POOYI[AYI[-F07]
z°0 z0 80T 89 89 60T 7' 79 LOMIN
G'T 971 L0T zL zL 10T G eq 9N
z'1 z1 86 86 06 L01 ¢’ 96 CMN
z'1 z1 L 0T L0T €9 'S 'S zS PN
I'T T'T 01T 8¢ 8°G L8 L8 9F SN
! ! 80T 80T 09 L0T L) 8F CHMIN
i i 01T 01T 79 01T 68 99 TIHNIN
! i 01T 89 89 101 10T 79 oseq
m@pdaﬂmm .Hoim ﬁmd_ugﬁpm

8¢ 8¢ «S°0T ¢G0T ¢01 «S°0T ¢G0T ¢01 LN
L9 Ly 80T 80T 80T +8°0T 60T 8L UM\
69 eg ¢6 ¢6 ¢6 ¢0T1 o) 8L CTyMIN
gL 0°G 70T ]! 70T ) ) ) PN
09 0¥ 80T 80T 80T 80T 80T 68 cnmp
zL e 01T 01T 011 801 80T i M
8. LG 70T 70T 701 70T z6 €9 IO
9/ 9L 88 88 88 88 8’8 98 oseq

SOIRUIT)SH 19)oUIRIR ]
THHE | £-HHHE | L-uosydey uoimoy | g-uosydey uomoy | g-uosydey] uoymay | L-mepp | g-amepp( | g-mejo-smorag | 001g

fipravaurgjoowynpy buysa 4of smaws ur wyiob)y
ynofocq burbuvyy) uorgoung pooyay1-bo T puv ‘SL0LLH PADPUDLS ‘SIIDUIISH LIJQULDIDJ 40f ST wnuwuly F1'6 Olqel

74



This decreasing trend of LRE accompanying with the increasing degree of multicollinearity
implies the higher the degree of multicollinearity, the less reliable the standard error LREs
(Table 9.11).

In Eviews, the difference between coefficient LREs and standard error LREs are signifi-
cant, although this is not formally tested. The LRE results are less sensitive to the change of
algorithm from default to Newton Raphson in the high multicollinearity, 2 covariate linear
predictor case (multi5). The default algorithm - quadratic climbing hill depends on the func-
tional form, because changing from quadratic, logarithm to pure linear setting enhances the
LREs (i.e. multi6 vs. multi7, multi4 vs. multi5). However, the Newton Raphson algorithm
results do not depend on the functional form. The reliability increases with the increase
in the degree of multicollinearity, but an exception is that the Newton Raphson algorithm
provides less accurate LREs for multi5 than multi4, although multi5 has a higher level of
multicollinearity. This increasing trend of LRE is not causally related to the increase on
degree of multicollinearity increases, although the covariates coherently contribute to the
accurate estimations in this case. The loglikelihood LREs are independent of different algo-
rithms used at different starting values, but does depend on the convergence criterion. The
loglikelihood LREs increase from Multil to 3 (Table 9.11).

In Stata, “Binreg-BHHH” has unreliable standard error LREs. When estimating multi7
LREs go as high as 2 but are about 1 for many datasets. The Outer Product of the
Gradient (OPG) standard error is different from Observed Information Matrix (OIM) in
ML or Expected Information Matrix (EIM) of Maximum Quasi-likelihood (MQL). The
MLE output of Newton Raphson is different from that for the BFGS algorithm. BFGS
tends to provide the same LREs for standard error as Newton Raphson does in multi6
and even better than what Newton Raphson does in multi4. Binreg QML provides the
best coefficient LREs for the multil,2,3, but it loses its advantage to Logit and GLM MLE
in multi4,5,6,7. MLEs of Logit and GLM provide the maximum standard error LREs for
datasets multil-5, but are lower than Binreg-BFGS for multi7 and Binreg-QML for multi6.
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LREs depend on commands, estimators, and algorithms for different commands. For all
Procs the Log-likelihood LREs decline from Multil to 3 and from Multi4 to 7 (Table 9.8).

In Limdep, although it has a central optimization routine for all procs, the LREs do
not depend on the commands, but depend on the algorithm used. BFGS provides greater
coefficient LREs than BHHH, except for multil; and provides greater standard error LREs
for multi2,3,4,7. When the degree of multicollinearity increases from multil to multi3, BFGS
provides increasing LREs and BHHH produces decreasing LREs. When multiple functional
forms are incorporated in the model, this relationship does not always hold. For example,
from multi4 to multi5 the degree of multicollinearity increases, but the LREs decrease in
BFGS; and with increasing multicollinearity from multi5 to multi6, LREs increase for the
algorithm BHHH (Table 9.8).

In SAS, Logistic and Surveylogistic provide the same coefficient and Loglikelihood LREs,
but different standard error LREs. The two Procs have the same coefficient estimator-
MLE, but different standard error estimators: Logistic uses EIM but Surveylogistic uses
linear approximation of estimator. Coefficient, standard error, and Loglikelihood LREs for
the “Proc Logistic” “Proc Surveylogistic” and “Proc Catmod” increase with the increasing
degree of multicollinearity from Multil-3, but this relationship does not hold for multiple
functional forms and models with more observations (e.g. Multi4-6). In model Multi4-6, the
coefficient and standard error LREs decrease with an increasing degree of multicollinearity
when the “Proc Catmod” is used. In the “Proc Genmod”, the coefficient maximum LREs
increase in Multi4-6, but the difference among coefficients decreases and standard error
LREs are zero for Multil-6. Coefficient minimum LREs for the “Proc Qlim” increase, but
standard error minimum LREs decrease with an increasing degree of multicollinearity. “Proc
Glimmix” provides zero Loglikelihood LREs for all datasets and the maximum coefficient
LREs decrease with an increasing degree of multicollinearity from Multil-3 and Multi4-6.
Minimum standard error LREs increase and maximum standard error LREs decrease with

an increasing degree of multicollinearity from Multi4-6 (Table 9.5).
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9.8 Summary of Tests Based on Datasets Mvarl-4

SPSS provides the highest LREs (10 to 11) only for the Mvarl but lower LREs (less than
10) for Mvar2-4. In Mvar3, the standard error LREs are greater than coefficient LREs. For
Mvar4, the LREs improve when changing the convergence criterion. From Mvar2 to Mvar4,
the loglikelihood LREs decrease. In all datasets, the coefficient LREs and standard error
LREs are closely aligned (Table 9.21).

Matlab’s performance is very steady for all datasets and provides consistently high (more
than 10) LREs for coefficients and standard errors. A consistent result (as in SPSS) is that
the LRE of the natural logarithm form of covariate is the largest for all coefficient LREs of
Mvarl (Table 9.21).

In R, the coefficient LREs are less than 10 except Mvar3. R does not provide an equiva-
lently high LRE for standard errors, and only achieves a LRE value of 6 or 7. The Loglike-
lihood LREs are more than 10 (Table 9.21).

In Shazam, the coefficient LREs are very closely aligned with each other in one dataset
estimation except in Mvar2. The standard error LREs are only about half of the coefficient
LREs. From Mvar3 to Mvar4, all LREs decrease. From Mvarl to Mvar2, most LREs
increase (Table 9.21).

In Minitab, the deviation in LREs shows up in the different parameters of the models
(e.g. Mvarl). The deviation in LREs also shows between coefficient and standard error
LREs (e.g. Mvard). Coefficient LREs are double the standard error LRE, but in certain
datasets (e.g. Mvarl-3) the difference is not exaggerated. From Mvar3 to Mvar4, the
maximum coefficient LRE, standard error and loglikelihood LREs decrease. From Mvarl
to Mvar2, the minimum coefficient LRE, standard error and loglikelihood LREs increase,
but maximum coefficient LREs decrease. The loglikelihood LREs are very high regardless
of the dataset (Table 9.21).

In Eviews, the difference between coefficient LREs and standard error LREs are sig-

nificant, although it is not the main purpose of testing and been formally tested. LRE
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results are less sensitive to the change of algorithm from default to Newton Raphson in
Mvar4. Newton Raphson provides higher LREs than the default in datasets Mvar2,3, and
4. The reason for default setting’s extraordinary performance in Mvarl needs to be inves-
tigated. After investigation, Mvarl is a good benchmark model, which can be estimated
reliably across all reasonable software packages (i.e. except SAS Glimmix Genmod, which
are alternative estimates). The loglikelihood LREs are very high independently of choice of
algorithms, but does depend on the convergence criterion. The loglikelihood LREs decrease
from Mvar3 to 4 (Table 9.21).

In Stata, the standard error LREs are not reliable for Binreg-BHHH, (i.e. they are less
than 4 in some cases). The OPG standard error is different from OIM in ML or EIM of
MQL. In the same MLE output, NR is different from that of the BFGS algorithm. BFGS
never provides the same standard error LREs as NR does for the Mvar datasets. Binreg
MQL never provides the largest minimum coefficient LREs for the Mvar dataset, as it does
in the Multicollinearity datasets. MLE of GLM provides the largest minimum coefficient
and standard error LREs for datasets Mvarl,2 and 3, but they lose their advantage to MLE
of Logit for Mvar4. LREs depend on commands and estimators, and the same algorithm
for MLE for different commands provides different LREs. In all procs, the loglikelihood
LREs for BHHH in Mvar2, 4 are the smallest. Logit GLM Binreg(BFGS) provides the same
loglikelihood LREs, except in Mvar4 (Table 9.18).

In Limdep, the LREs do not depend on the commands, but depend on the algorithm
used. BFGS provides larger coefficient LREs; and larger standard error and loglikelihood
LREs in Mvarl,4 than BHHH; however the loglikelihood LRE provided by BFGS is smaller
for Mvarl. When the variance of covariates decreases from 15 in Mvar3 to 1 in Mvar4,
BFGS provides decreasing standard error LREs and BHHH produces decreasing LREs for
coefficient, standard error, and Loglikelihood function. When multiple functional forms are
incorporated in the model, such as from Mvarl to Mvar2, the coefficient and standard error

LREs decrease, but loglikelihood LRE increases for the algorithms BFGS and BHHH (Table
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9.18).

In SAS, “Proc Logistic” and “Proc Surveylogistic” provide the same coefficient and
loglikelihood LREs, but different standard error LREs. Coefficient, standard error, and log-
likelihood LREs for “Proc Logistic”, “Proc Surveylogistic”, and “Proc Catmod” decrease,
when incorporating different functional forms (e.g. Mvarl-2). In models, Mvarl-2, coeffi-
cient, standard error, and loglikelihood LREs of “Proc Logistic”, “Proc Surveylogistic”, and
“Proc Catmod” increase when the variance of covariates decreases from 15 to 1. In “Proc
Genmod”, the loglikelihood LREs decrease for Mvarl-2 and fail to converge for Mvar4. Co-
efficient and minimum standard error LREs in the “Proc Qlim” decrease, but loglikelihood
LREs increase with an increasing number of covariates (Mvarl-2). “Proc Glimmix” provides

zero loglikelihood LREs for all datasets and the decreasing coefficient and standard error

LREs for Mvarl-2 and Mvar3-4 (Table 9.15).

9.9 Summary of All Tests Based on Datasets Cutol-4

SPSS provides high LREs (10 to 11) for the Cuto2-4, but lower LREs (less than 10) for
Cutol. In Cutol, the standard error LREs are greater than the coefficient LREs. From
Cutol to Cuto3, the loglikelihood LREs decrease. In all the datasets, the coefficient LREs
and standard error LREs are closely aligned but have a difference of up to 2 in Cutol (Table
9.21).

Matlab’s performance is very steady for all the datasets and consistently providing high
(more than 10) LREs for coefficients, standard errors, and loglikelihood function, except
the intercept in Cutol. The coefficient and standard error minimum LREs increase, but
coefficient, standard error maximum LREs and loglikelihood LREs decrease from Cutol
to Cuto2. The coefficient, standard error, and loglikelihood LREs increase from Cuto3 to
Cuto4 (Table 9.21).

In R, the coefficient LREs are relatively high about 8 and standard error LREs are not

very high (less than 5). R can not provide an equivalently high LRE for standard error, and
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only achieve LREs of 6 or 7 as a maximum; however the loglikelihood LREs are consistently
high (above 10). The minimum LREs and loglikelihood LRE decrease from Cuto3-4 (Table
9.21).

In Shazam, for all the parameters in the models, the coefficient LREs are very closely
aligned, except in Cutol. The standard error LREs are only about half of the coefficient
LREs. From Cutol to Cuto2, all LREs decrease. From Cuto3 to Cuto4, all LREs in the
models increase (Table 9.21).

In Minitab, the discrepancy in LREs in parameters for Cutol is up to 2. For Cuto4,
coefficient LREs are double standard error LREs, but for Cutol the difference between
coefficient and standard error LREs is very slight. From Cuto2 to Cut4, the minimum
coefficient LRE decrease, and loglikelihood LREs increase. The loglikelihood LREs are very
high regardless of the dataset (Table 9.21).

In Eviews, the difference between coefficient LREs and standard error LREs are signif-
icant for Cuto2-4. LRE results are less sensitive to what algorithm is used (i.e. default or
NR). NR provides higher LREs than the default in datasets Cutol-3, but lower LREs for
Cuto4. The loglikelihood LREs are very high independently algorithmic choice. Loglikeli-
hood LREs decrease from Cutol-3, but increase from Cuto3-4. The minimum coefficient
LREs decrease from Cuto2-4 and minimum standard error LREs decrease from Cutol-4
(Table 9.21).

In Stata, the standard error LREs are not reliable for Binreg-BHHH, because their
magnitudes are mostly zero. As the output of MLESs, the LRE output of NR is different from
that of BFGS algorithm, and even the same NR provides different coefficient LREs in Logit
and GLM for estimating Cuto3-4. Binreg QML provides the highest minimum coefficient
LREs for the Cutol,3 datasets, as it does in the Multicollinearity datasets; and provides
the second lowest standard error LREs, which is only better than what BHHH does. MLE
of GLM provides the highest coefficient and standard error LREs for datasets Cuto3 and

largest standard error LREs for Cuto2. LREs depend on commands and estimators, and the
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same algorithm of MLEs in different commands provides different LREs. Among all procs
the loglikelihood LREs of BHHH are the smallest for all datasets. Logit GLM Binreg(BFGS)
provides the same loglikelihood LREs except for Cuto3,4, where loglikelihood LRESs of Logit
are slightly different from the other two (Table 9.18).

In Limdep, the LREs do not depend on the commands, but depend on the algorithm
used. BHHH provides greater coefficient LREs, greater standard error LREs, and greater
loglikelihood LRE for Cuto3-4 than BFGS; however only greater standard error and log-
likelihood LREs for Cuto2. For Cutol-2, BFGS provides decreasing LREs. For Cuto3-4,
BFGS provides decreasing coefficient and standard error LREs, but increasing loglikelihood
LREs. BHHH produces decreasing coefficient and standard error, but increasing loglikeli-
hood LREs for Cuto3-4. BHHH fails to provide suitable LREs for Cutol and starting with
values other than the default for Cuto3 gives a warning of a “flat” log-likelihood estimate,
which indicates the MLE fails to achieve an optimum within a limited parameter range
(Table 9.18).

In SAS, “Proc Logistic” and “Proc Surveylogistic” provide the same coefficient, and log-
likelihood LREs, but different standard error LREs. Coefficient and standard error LREs of
the Logistic proc, and the “Proc Surveylogistic” increase for Cutol-4. Coefficient, standard
error, and loglikelihood LREs of the “Proc Catmod” increase in Cutol-2. In “Proc Gen-
mod”, the coefficient, standard error, and loglikelihood LRESs are zero, except coefficient
LREs for Cutol. In “Proc Qlim”, coefficient LREs increase for Cuto2-4, standard error
LREs increase from Cutol-2 and from Cuto3-4, but log-likelihood LREs decrease Cutol-4.
Glimmix provides zero log-likelihood LREs in Cutol,3, and 4, zero coefficient and standard

error LREs for Cuto2-4 (Table 9.15).
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Chapter 10

Discussion

SAS - Logistic(Fisher or NR) performs reliably (LREs are more than 4)on 11 out of 16
models (Tables 13 and 23). For 2 out of 7 multicollinearity models, the LREs are less
than 4, but the models do perform better for the null or OLS starting values (Table 15).
Furthermore, increasing the tolerance level of the relative parameter convergence criteria to
1E-15 increases the reliability of these two models (Table 14). For 2 out of 4 multivariate
models, the LREs are less than 4, but the models do better for the null or the closest starting
values (Table 25). Furthermore, increasing the tolerance level of the relative parameter
convergence criteria to 1E-15 increases the reliability for these two models (Table 24). For
1 out of the 4 cutoff models (i.e. Cutol), the LREs are less than 4, and the model does not
perform better by changing starting values (Table 25). However, increasing the tolerance
level of the relative parameter convergence criteria to 1E-15 increases the reliability of Cutol
(Table 24). SAS - Logistic estimates very well the standard error for all models except one
multivariate model (i.e. Mvard). SAS - Logistic estimates very well log likelihood function
for all the models.

SAS - Catmod indicates that it is able to estimate successfully 12 out of 16 models
(Tables 13 and 23). For 1 out of the 7 multicollinearity models, the LRE is nearly zero, but
the model does not perform better when changing the tolerance level of the log-likelihood
function to 1E-15. The estimations of standard errors are very reliable, except for 2 models,

only one of which can be improved by changing the tolerance level of the log-likelihood
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function to 1E-15. Only one Log-likelihood function estimation is not reliable, but it can be
improved by changing the tolerance level. For all multivariate models, the LREs are greater
than 4, which means it estimates reliably in this series of model. However the estimation
of standard errors are not as reliable as coefficients, 2 out of 4 models have unreliable
standard error estimates. For 1 out of 4 cutoff models, the LRE is nearly zero and 2 out
of 4 models can not be solved. For 2 out of them, changing the tolerance level of the log-
likelihood function to 1E-15 can solve only one of the unsolved models. The estimation of
log likelihood function is similar to the standard error in these four models.

SAS - Genmod, Glimmix can not reliably estimate any one of the 18 models. The
unreliable result in Genmod can not be improved by changing starting values, because they
use different approximated weight and frequency in the Log-likelihood function.

SAS - Surveylogistic can estimate reliably coefficients in 5 out of 7 multicollinearity
models, 2 out of 4 multivariate models, and 1 out of 4 cutoff models; but the standard
error estimates are not reliable. Changing the relative gradient tolerance level to 1E-15 can
improve the coefficient estimations, but does not improve standard error estimations.

SAS - Qlim reliably estimates all models 16 out of 16 models except the unreliable stan-
dard error estimations 2 out of the 8 multicollinearity models and 1 out of the 4 multivariate
models (Tables 13 and 23). Neither of them can be improved by changing the starting values
from the default.

SAS performs reliably in “Proc Qlim” but not very steadily in “Proc Logistic”, “Proc
Catmod”, and “Proc Surveylogistic”. SAS performs very unreliably in “Proc Genmod”
and “Proc Glimmix”. To achieve a more reliable estimation, changing to OLS or zero
may improve accuracy. Decreasing tolerance level from default to lower levels provide more
reliable coefficient estimation, but does not always provide the the same for standard errors
in “Proc Surveylogistic”.

Limdep - Logit and Blogit (BFGS) estimate all models reliably and they estimate only

cutoffl unreliably due to a flat functional surface around the optimum. The unreliable
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results can be improved by either using different starting values or decreasing the tolerance
level to 1E-13.

Although Limdep shows some weakness in estimating parameters and standard errors
in model cutoffl using BHHH algorithm, it performs steadily well on most other models.
Stata performs reliably for all models except parameter estimator in cutoffl and standard
error in multivariated. However, Stata Binreg has some estimation deficiency when using
the BHHH algorithm, especially for the multivariate and cutoff datasets.

Stata - Logit, GLM, and Binreg (default) estimate all models reliably except estimations
of coefficients in cutoffl and standard errors in multivariate4. The unreliable results can
be improved by changing the gradient tolerance level to 1E-13. Binreg (BHHH) reliably
estimates coefficient in 6 (5 in multicollinearity and 1 in multivariate models) out of 16
models, but reliably estimates standard error only in one multicollinearity model. Changing
the tolerance level does not improve either the coefficient or the standard error estimates.
Binreg (BFGS) estimates coefficients in 2 multicollinearity models and cutoffl model un-
reliably, but standard error only unreliably in the model multivariate4. The result is not
improved by using different starting values. The log likelihood functions can be estimated
reliably in all models.

Shazam estimates the coefficient in all models reliably and the standard error in 8 out of
16 models reliably. In 7 multicollinearity models and one base model, the standard errors of
5 models can not be reliably estimated. In 4 multivariate models, it estimates only 1 model
standard errors unreliably. In 4 cutoff models, standard errors in 2 models are estimated
unreliably. These unreliable standard error estimations can be improved by changing the
convergence level to 1E-5.

Unlike other packages, Shazam does not estimate reliable standard errors when the
parameters are reliably estimated.

The rest of the packages are capable of estimating all models and show high reliability.
Matlab, R, Minitab, Eviews, and SPSS reliably estimate all models.
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Chapter 11

Conclusion

The reliability of nine software packages most commonly used by applied economists was
examined. The packages were SAS 9.2, Limdep 9.0, Matlab 7.0.4, Stata 10, Shazam 10,
R 2.10.1, Minitab 15, SPSS 17, and Eviews 3.1. Logistic regression using maximum log-
likelihood estimation with nonlinear optimization algorithm tests were performed using de-
veloped benchmark datasets. This study expands on the existing literature in this area by
examination of Minitab 15 and SPSS 17. The findings indicate that Matlab, R, Eviews,
Minitab, Limdep (BFGS), and SPSS provided consistently reliable results for both param-
eter and standard error estimates across the benchmark datasets. While some packages
performed admirably, shortcomings did exist. For example, SAS performed better than
past versions, maximum log-likelihood estimators do not always converge to the optimal so-
lution and stop prematurely depending on starting values, by issuing a “flat” error message.
This quirk can be dealt with by rerunning the maximum log-likelihood estimator, using
a closer starting point, to see if the convergence criteria are actually satisfied. Although
Stata-Binreg provides reliable parameter estimates, there is no way to obtain standard error
estimates in Stata-Binreg as of yet. Limdep performs relatively well, but did not converge
due to a weakness of the algorithm. The results show that solely trusting the default settings
of statistical software packages may lead to non-optimal, biased or erroneous results, which
may impact the quality of empirical results obtained by applied economists.

The findings undermine the need to cross-validate empirical research results. The ro-
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bustness and reliability of maximum log-likelihood estimates depend on the algorithm used,
convergence level setting, the choice of starting values, the nature of the problem, and the
datasets used in the problem. Researchers need to evaluate estimation results carefully until
they are proven to be reliable, especially when multicollinearity, cut-off, and nonlinearities
have mixed influences on the results. Learning econometrics requires an understanding of
limitations of each software package and how to improve reliability of estimation results.
Benchmarking and documenting the reliability of software packages are important tasks for
software developers, but as an applied economist, performing reliability tests on the soft-
ware latest versions is important for understanding and assessing a comprehensive software’s

capabilities.
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Appendix A

List of Acronyms

AIC: Akaike Information Criterion

BFGS or BF (in tables): Broyden Fletcher Goldfarb Shanno
BHHH or BH (in tables): Berndt Hall Hall Hausman

CDF: Cumulative Density Function

Cuto: Cutoff Datasets

DCDFLIB: Double Precision Cumulative Distribution Function LIBrary
DEF: Default

DFP: Davidon Fletcher Powell

EIM: Expected Information Matrix

ELV: Elementary Distribution

FCP: Fiorentini, Calzolari and Panattoni

FS: Fisher Scoring

GLM: Generalized Linear Model

EIM: Expected Information Matrix

GEE: Generalized Estimating Equations

IRLS: Tteratively Reweighted Least Squares

IWLS: Iteratively Reweighted Least Squares

LRE: Logarithm Reliable Error

MC: Monte Carlo
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MLE: Maximum Likelihood Estimator
MQL: Maximum Quasi-Likelihood
Multi: Multicollinearity Datasets
Mvar: Multivariate Datasets

N/A: Not Applicable

NIST: National Institute of Standards and Technology
NP: Not Solved

NR: Newton Raphson

NS: Not Converge

OIM: Observed Information Matrix
OLS: Ordinary Least Squares

OPG: Outer Product of the Gradient
QUANEW: Quasi-Newton

SE: Standard Error

VIF: Variance Inflation Factor
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