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Abstract

The reliability of nine software packages using the maximum likelihood estimator for the

logistic regression model were examined using generated benchmark datasets and models.

Software packages tested included: SAS (Procs Logistic, Catmod, Genmod, Surveylogistic,

Glimmix, and Qlim), Limdep (Logit, Blogit), Stata (Logit, GLM, Binreg), Matlab, Shazam,

R, Minitab, Eviews, and SPSS for all available algorithms, none of which have been previ-

ously tested. This study expands on the existing literature in this area by examination of

Minitab 15 and SPSS 17. The findings indicate that Matlab, R, Eviews, Minitab, Limdep

(BFGS), and SPSS provided consistently reliable results for both parameter and standard

error estimates across the benchmark datasets. While some packages performed admirably,

shortcomings did exist. SAS maximum log-likelihood estimators do not always converge to

the optimal solution and stop prematurely depending on starting values, by issuing a “flat”

error message. This drawback can be dealt with by rerunning the maximum log-likelihood

estimator, using a closer starting point, to see if the convergence criteria are actually satis-

fied. Although Stata-Binreg provides reliable parameter estimates, there is no way to obtain

standard error estimates in Stata-Binreg as of yet. Limdep performs relatively well, but did

not converge due to a weakness of the algorithm. The results show that solely trusting the

default settings of statistical software packages may lead to non-optimal, biased or erroneous

results, which may impact the quality of empirical results obtained by applied economists.

Reliability tests indicate severe weaknesses in SAS Procs Glimmix and Genmod. Some soft-

ware packages fail reliability tests under certain conditions. The finding indicates the need

to use multiple software packages to solve econometric models.
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Chapter 1

Introduction

When doing research, researchers may face discrepancies among the estimation results from

different software packages. One of the reasons for these discrepancies may be the numerical

accuracy of the software. Testing numerical accuracy can benefit both software users and

developers. Benchmark tests used to analyze numerical accuracy of algorithms implemented

by software packages are available on the website of the National Institute of Standards and

Technology (NIST 2010). Using this information, estimates can be compared to a known

level of accuracy for univariate descriptive statistics, analysis of variance, Markov Chain

Monte Carlo models, as well as nonlinear and linear regression problems. The performance

of a package based on estimating different models allows researchers to understand the

strengths and weaknesses of alternative econometric software. Properties of the data may

also affect the choice of a suitable package, e.g. the degree of multicollinearity and the

number of covariates, because some packages may handle certain statistical issues better

than others.

For example, previous research has found that the instability of data is not reflected in

small standard errors, even if covariates are highly multicollinear. For nonlinear models,

the Jacobian matrix of the K×X covariate matrix is calculated based on the 1st derivative

of the covariate matrix with respect to X. For linear models, conditioning, defined as how

close a linear regressor matrix X ′X is to singularity and explained in detail in Section 7,

is one important factor in accuracy, but it is not the only one. Well-conditioned data are
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defined with respect to the model and the more pervasive problems of near-multicollinearity

are associated with X̂ ′X̂ being ill-conditioned, X̂ is the predicted value of X. The inverse

of X̂ ′X̂ induces numerical instability into estimates of β̂. The accuracy of the estimate is a

function of the model, data and the algorithm (Altman, Gill and McDonald, 2004).

Benchmark tests are designed to investigate specific weaknesses of statistical software

algorithms. The StRD contains multiple problems for testing various aspects of each algo-

rithm. Since the release of the StRD, many reliability tests of statistical packages have been

facilitated by running the specified analysis and comparing the results with certified values.

It has become a widely used benchmark test for reviewers of software packages (NIST 2010).

A summary of reliability tests (Univariate Statistics; ANOVA; Linear Regression; Non-

linear Regression) have been conducted by researchers for major commercial econometric

software packages (Altman et.al., 2004, Chp.3). A reliable package needs to pass all the

benchmarks or provide clear error messages when inaccuracy occurs. Out of eleven pack-

ages (Limdep, Shazam, TSP, SAS, SPSS, S-Plus, Excel, Gauss, SST, Stata, and Eviews),

none of them fails all the benchmark tests (Altman et.al., 2004, Chp.3 Table 3.2). A few

packages perform badly on highly difficult nonlinear models (5 out of 11, Eviews, Limdep,

Shazam, TSP, SPSS) and in the tails of statistical distributions (4 out of 9) (Gauss 3.2.6,

Excel, Shazam, and TSP) (McCullough 1999a p.196, McCullough 1999b p.152-156, p.157,

Knuesel 1995).

The type of algorithm chosen and settings used can affect the outcomes of the benchmark

tests. When solving the same StRD problem, solvers may yield different results. Nonlinear

solvers can be geared to solving nonlinear least squares, maximum likelihood estimation

(MLE) and constrained maximum likelihood estimation. The nonlinear benchmark problems

in the StRD are formulated as nonlinear least squares problems.

Maximum likelihood problems can be used as generalized formulations in nonlinear re-

gression problems under the assumptions of a known model, a distributional error term and

no observation error in the data. Altman et.al. (2004) argue that the nonlinear bench-
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marks can be used for maximum likelihood search algorithms, but they are not designed

specifically for them ( pp. 52). The application of the maximization likelihood function to

nonlinear least squares was completed by McCullough and Renfro (2000), which explained

the numerical sources of inaccuracy of the nonlinear solver. Different software packages deal

with nonlinear regression and maximum likelihood estimation differently. Eviews and TSP

have separate least squares routines from using the maximum likelihood procedure. Thus

separate tests are needed for each maximization routine. Limdep and Shazam combine the

two routines (McCullough 1999a pp.198). McCullough and Renfro (2000) suggest that the

reason MLE solvers perform worse in solving StRD problems is that nonlinear least squares

solvers overtake maximum likelihood solvers by using algorithms with the more restricted

structure of the original problem (i.e. Levenberg-Marquardt algorithms), and the MLE re-

formulation requires additional estimation of the sigma parameter for the variance of the

errors.

Logistic regression is one of the most commonly used models using the MLE approach in

applied economics. The conventional approach for logistic regression is based on asymptotic

maximum likelihood inference. Due to the fact that nonlinear least squares and maximum

likelihood estimators are not equivalent in many software packages, the reliability of MLE

solvers is not been examined. Greene (2002 Chp.17 pp.496) indicated that the nonlinear least

squares estimator ignores the Jacobian of the transformation. In a nonlinear least squares

model, nonlinearity in the parameters appears entirely on the right-hand side of the equation

in functions of the dependent variable. For the model where parameters are nonlinear

functions of dependent variable, the nonlinear least squares estimator is inconsistent due

to the ignorance of the Jacobian of the transformation. However, the MLE of this type of

model is consistent. If Jacobian terms involve the parameter of the nonlinear dependent

variable θ, the least squares is not same as the maximum likelihood.

This study will perform benchmark tests following the reliability evaluation procedures

outlined in McCullough (1998, 1999) for logistic regression econometric software packages.
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The well-accepted logistic model has important implications for economists in binary choice

decisions.

The reliability of logistic regression procedures are tested in SAS, STATA, MATLAB,

R, SHAZAM, EVIEWS, MINITAB, SPSS, and LIMDEP, using benchmark datasets devel-

oped to test the accuracy and reliability of econometric and statistical software packages in

estimating logistic regression models.
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Chapter 2

Literature Review

This section analyzes literature related to software reliability. It covers three aspects that

impact the reliability of logistic regression models: functional form, cut-off point, and mul-

ticollinearity, contributed by authors in the literature in chronological order.

Longley (1967) provides a benchmark for linear regression and compares it to hand

calculation results with coefficients produced by the program BMD on IBM 7094; program

NIPD on IBM 7094; NIPD’ on IBM 7094; ORTHO subroutine of OMNITAB on IBM 7094;

IBM 360 CORRE and MULTR subroutines; IBM 1401 Program; IBM 7070/7074 Stepwise

Regression Program; and FORTRAN-IV double precision on a IBM 7094 mainframe. The

micro-computer linear regression results conclude that these computer programs are not

accurate to more than one or two significant digits.

McCullough (1998) provides the foundation for reliability testing that goes beyond the

entry-level tests of accuracy for statistical software to provide a collection of intermediate-

level tests for linear and nonlinear estimation, random number generation, and statistical

distributions. The benchmarks for linear procedures, univariate statistics and analysis of

variance are used to test the quality of the software. Before the NIST benchmarks, several

researchers provided benchmarks to measure the reliability of software on microcomputers.

McCullough (1999b) discusses the reliability of all packages on all data sets listed in Longley

(1967). Besides describing the components of the NIST data, McCullough (1999b) raises the

importance of testing random number generators, which are important for bootstrapping
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and Monte Carlo studies, but has not been improved in statistical software.

McCullough (1998) also provides guidelines for assessing the accuracy of statistical dis-

tributions, where the crude approximation for calculating p-values requires several digits of

accuracy. The computation of a desired probability needs to be accurate up to at least six

significant digits, with a relative error smaller than 1E-6. Each distribution has a different

numerical underflow limit. The p-values obtained from the lower tail probability may be

inaccurate due to cancelation errors. An approach for assessing the statistical distribution

is introduced by comparing program results with the Double Precision Cumulative Distri-

bution Function LIBrary (DCDFLIB) and ELV program (for Elementary Distributions, in

German: ELementare Verteilungen) critical values.

McCullough (1999b) discusses Marsaglia’s (1996) “DIEHARD Battery of Randomness

Tests” for random number generators. The DIEHARD tests assume the random number

generators tested can produce 32-bit random integers, but a random number generator

with enough period length needs to be much greater than 200n2 where n is the number of

calls to the random number generator. A good random number generator needs to have

approximately n = 1000 with 231 as its period and will pass almost all 18 randomness tests,

some with many variations.

McCullough (1999b) applies his reliability assessment methodology in SAS, SPSS, and S-

Plus for estimation, random number generation, and calculation of statistical distributions.

Weaknesses are identified in all the random number generators, the S-Plus correlation pro-

cedure, one-way ANOVA, and nonlinear least squares problems in SAS and SPSS. SAS

correctly solves 20 out of 27, and SPSS solves 26 out of 27 nonlinear problems for the first

set of starting values. All random number generators are inadequate because the number

of calls made to the random number generator before its repetition is not large enough.

Finite precision cannot be obtained numerically. McCullough and Vinod (1999) argue

that some acquaintance with how computers handle numbers is necessary for software users.

Computation errors caused by two algebraically equivalent methods may have different

6



effects on computer implementation. Small differences in inputs or algorithms may cause

significant differences in estimation results.

McCullough and Vinod (1999) show that the numerical accuracy of econometric software

cannot be taken for granted. By surveying five journals that publish reviews of economet-

ric software, they conclude that authors do not consider numerical accuracy. They find 120

econometric software reviews that appeared from 1990-1997 in the Journal of Applied Econometrics,

American Statistician, Journal of Business Economics Statistics, Economics Journal, and

Econometrica. Benchmarking has no history in the economics profession. A useful bench-

mark collection for testing general routines is suggested, especially for economists. More

replications are suggested to improve software development, because bugs have been dis-

covered in the full information maximum likelihood estimation of Klein’s model, fitting a

Cochrane-Orcutt AR(1) correction model, and producing a correlation matrix for indepen-

dent variables of a multiple regression. The study assesses software packages but leaves

the original assessments to the published reviews. The priorities of a software package

are providing accuracy, speed and user-friendliness. McCullough and Vinod (1999) argue

that improving software is a joint responsibility of the users, developers, and the economics

profession.

Nonlinear least squares regression packages obtain different number of accurate digits

for estimation for different statistical packages(McCullogh and Renfro, 2000). The FCP

(Fiorentini, Calzolari and Panattoni 1996) program, as a benchmark software package, its

output is correctly described as possessing both a stopping rule and a test for successful

convergence in McCullough and Renfro (1999). Reasons for the differences in results can

be explained by the step-length, stopping rule, convergence criterion and method of deriva-

tive calculation used by the modelers. Inaccurate estimates are produced by the failure of

modelers to implement algorithms properly, e.g. poor implementation of the termination

criteria that can be remedied by the gradient evaluation at the maximum. Reliability as-

sessments (McCullough 1999a, b, 2000 and McCullough and Wilson 1999) reveal that false

7



maxima occur when software procedures find a non-maximum solution. Two general re-

sults are obtained for nonlinear regressions in SAS, SPSS, and S-plus: analytic derivatives

are preferable to numerical derivatives and default estimation is not reliable (McCullough

1999b). Default numerical derivatives must be replaced by analytic derivatives to achieve

more digits of accuracy. McCullough (1999a) reports that TSP has the least amount of

zero digits of accuracy solutions in 27 StRD tests of nonlinear regression problems with

the default options when compared to Limdep, Eviews, and Shazam, indicating TSP has

a higher reliability than the rest. Because it takes time to test a package and the general

unawareness of pitfalls by the users, sufficient prior testing of algorithms under a variety

of different conditions should be widely implemented. The lack of a general appreciation

of the circumstances under which an implemented algorithm may fail, contributes to the

under-testing of software and the lack of user aids for evaluating these packages.

McCullough and Vinod (2003) propose critical examinations of optimal solutions pro-

duced by nonlinear solvers. They study Excel, TSP, Gauss, R and S-Plus and advocate a

four-step process for addressing numerical accuracy issues:

1. Examine the gradient by checking if the norm of the gradient is zero. The convergence

of the function value and the Hessian should be evaluated at the optimal solution. Relying

on nonlinear solver defaults may lead to false convergence.

2. Solution path (i.e. Trace)- Does the solution path exhibit the expected rate of conver-

gence? When the trace of quadratic convergence algorithms exhibit linear convergence in

its last few iterations, problems may exist. A solver permitting the user to access the func-

tion value along with the estimated parameters can be used to evaluate whether significant

changes occur as the solver ceases iterating.

3. Evaluate the Hessian using an eigenvalue-eigenvector analysis to determine if it is

negative (or positive) definite for a maximization (or minimization) problem and if it is

well-conditioned. If the Hessian is ill-conditioned, the step direction may be unreliable due

to round-off error. The largest eigenvalue should be examined as a rule of thumb, because

8



negative eigenvalues ensure a negative definite Hessian. Bates and Watts (1988, pp. 80) state

that the stationary point of a nonlinear minimization problem requires a positive definite

Hessian. Multicollinearity analysis is examined using eigen-systems in Vinod and Aman

Ullah (1981, sec. 5.3). If the Hessian is ill-conditioned, the difference between the infinitely

precise solution and the available precise solution may be large, especially in the direction of

the eigenvector associated with the largest eigenvalue of the Hessian at the optimal solution.

If the local maximum of the likelihood occurs in a flat region of the log likelihood function

surface, then small changes in the log likelihood function may be associated with a large

difference in the optimal solution.

Gill et al. (1981, pp. 313) found that if the first three conditions hold, a solution has

probably been found, regardless of whether the program has reported convergence. The last

step justifies the use of the usual t-statistics for coefficients reported by most packages.

4. The measure of variability of the point estimates are reflected in the standard errors

that can be produced by nonlinear routines as t-statistics, or more formally Wald statistics.

The validity of profiling the likelihood to assess the adequacy of the quadratic approximation

method is based on the shape of the objective function in the neighborhood of the solution.

Researchers should examine whether the shape of the objective function is locally quadratic

at the solution because a valid Wald test is based on a quadratic functional form.

When a software package declares convergence, researchers should verify the solution

to safeguard against false convergence. Software packages differ in both accuracy and the

ability to verify a potential solution. A brief review of articles using nonlinear estimation

published in the scholarly journals, suggests that published researchers often run solvers

with the default settings, that are often found to be less accurate (McCullough and Vinod

2003).

Oster (2002) indicates that the conventional approach for logistic regression is asymp-

totic maximum likelihood inference. Most software packages use a normal or a chi-square

distribution approximation to perform statistical hypothesis testing, under which exact and
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approximate test results are similar. Conventional approximations do not work well when

the data are sparse among categories or unbalanced. The results are not correct when there

is a close relation between two or more independent variables (i.e. multicollinearity) or

the number of independent variables is too many with respect to the sample size under

study. Oster (2002) reviews three statistical software packages (i.e. StatXact, LogXact, and

Stata) for analyzing categorical data by using exact methods. StatXact 5, LogXact 4.1, and

categorical and nonparametric procedures of Stata 7 are developed for the purpose of per-

forming exact statistical tests for nonparametric statistical inference on either categorical or

continuous data. Oster (2003) tests two additional software packages, Testimate 6 and SAS

8.2. Software rating criteria include: installation, interface, ease-of-use, organization and

completeness of the documentation, the statistical quality of the documentation, data entry

and management, categorical, nonparametric and exact statistical tests, accuracy and reli-

ability aspects. None of the software packages received poor ratings for any of the criteria.

Each of them received excellent ratings for at least some of the criteria. Oster (2003) found

that researchers performing categorical and/or nonparametric statistical analysis may pre-

fer StatXact due to the limited capability of LogXact. A routine user of logistic regression

and/or Poisson regression may choose LogXact because StatXact does not provide relevant

capabilities. StatXact and LogXact contain capabilities (exact tests for logistic regression

and general linear models) unavailable in other software packages, e.g. Stata and SAS. A

number of asymptotic and exact categorical and nonparametric procedures have been added

to the most recent releases of SAS and Stata, but Oster (2003) argues that supplementing

them with StatXact and LogXact is a wise choice because SAS and Stata are limited in

their abilities to do exact tests.

Stokes (2004) investigates potential problems of relying on just one software package

in solving a probit model. Quite different results can be obtained using various software

packages. The difference can be traced to the default convergence tolerance built into

software packages. The nonexistence of MLE probit results can be detected only by changing
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convergence tolerances. In the iterative process of MLE, if the algorithm can not find an

acceptable step to increase the value of the given objective function before the next step, the

process may fail to improve the current iteration. A maximum obtained repetitively from

increasing the convergence tolerance tests whether the solution is a maximum. It turns

out that quasi-complete separation, which occurs when there exists some coefficient vector

such that b′Xi ≥ 0 if Yi = 1; b′Xi ≤ 0 if Yi = 0 and occurs when a linear function of x

can generate almost perfect predictions of Y . Quasi-complete separation causes estimation

difficulties only in small sample cases, in which case the MLE may not exist; see Albert and

Anderson (1984) for more details. The increased condition number of the Hessian matrix

when lowering the tolerance necessitates further checking as to whether the Hessian matrix

is becoming singular, a symptom of quasi-complete separation.

Stokes (2004) provides an example of an undetected underlying problem in a nonlinear

probit/logit model that had been widely published in various places for many years. The

model problems are detected accidently during a routine replication exercise. Only by

varying the convergence tolerance is it possible to determine the nonexistence of maximum

likelihood solution to the model, as a undetected quasi-complete separation problem. The

analysis suggests the constant coefficient assumption implicit in the traditional probit model

is not met. A less restrictive model can outperform the probit model with more covariates.

Stokes (2004) suggests using more than one software package to solve the same problem and

to verify the reliability of the nonlinear solver of probit models in SAS, RATS, Limdep, and

Stata.

Keeling and Pavur (2007) compare the relative accuracy of nine software packages (SAS,

SPSS, JMP, EXCEL, Minitab, R, Splus, Stata, and StatCrunch) using certified statistical

values from NIST. The work contributes by introducing a method for visually plotting the

principal components of the correct number of significant digits to reveal how these pack-

ages tend to be plotted in a cluster for ANOVA and nonlinear regression. Few substantive

improvements have occurred in the area of nonlinear regression procedures in software pack-
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ages except SAS, whereas the ANOVA procedure has seen the most dramatic improvement

in accuracy from the correction of previous inaccuracies. Later versions of SAS, SPSS,

Splus, and Excel have demonstrated improvements in their accuracy of statistical analysis

compared to prior reliability studies for ANOVA routines.

Keeling and Pavur (2007) indicate that accuracy and convergence are impacted by the

default or user selected options in nonlinear regression procedures. The verification of these

solutions includes calculating a “profile” function and printing the gradient, Hessian, and

function value at every iteration. Finding an appropriate combination of options including

convergence criteria, tolerance, method of solution and form of derivative (analytic or nu-

merical) may yield better results than the default settings. A warning or error message is

better than a far from optimal solution with no descriptive message for lack of convergence.

Yalta (2007) conducts comprehensive tests of Gauss 8 for estimation, statistical distribu-

tions, and random number generation. He shows that statistical distributions and random

number generation procedures have serious problems.

Yalta (2007) uses the NIST certified values computed with Bailey’s multiple precision

FORTRAN preprocessor and NETLIB subroutine library with 500 digits of accuracy for

reading and representing data that are rounded to 15 significant digits for numerical tests

of linear least squares and 11 significant digits for nonlinear least squares (NIST 2010). In

the numerical test of nonlinear least squares, the testing is completed using the “curve fit”

package module, which employs the Levenberg-Marquardt algorithm. The primary method

for determining convergence is the relative gradient using a default tolerance equal to 1E-5.

The regression coefficients and standard errors are calculated in three different ways. For the

problems that could not be solved using numerical approximation of derivatives, analytical

derivatives were able to solve with more accuracy. The performance of the curve fit module

with the default settings is rather poor.

Yalta (2007) performs numerical tests of statistical distributions, using Knsel’s (2003)

ELV program. The ELV program enables the exact values of nine elementary statistical dis-
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tributions for probabilities to be calculated as small as 10−100. Generally speaking, GAUSS’

performance on statistical distributions is unacceptable, because the comparison between

the critical values provided by GAUSS 3.2.6, GAUSS 8, and GNU-R 2.5 and the “exact”

counterparts computed by ELV for the F , beta, noncentral chi-square, noncentral F , and

noncentral t-distributions shows that the F and Beta distributions are unstable in GAUSS

8, and the noncentrality parameters for the chi-square and the F -distribution need to be

revised to comply with the program ELV and GUN-R statistical packages.

Yalta (2007) also mentioned that in comparison with the GNU/Linux version, the

Windows version has identical source code for the calculations. For some datasets, the

GNU/Linux version of the program fails to converge with analytical derivatives requiring a

better set of starting values to converge with the default settings. The producer of Gauss-

Aptech’s curve fit module was developed for the MS Windows platform and is suspected to

be the reason for the greater difficulty in converging for only 11 datasets out of 27 in the

GNU/Linux version in comparison with the case 8 out of 27 in the Windows version. Re-

search replication is important in science and needs to cover the data programming code, the

software version and the operating system. Algorithms have indicated a trade-off between

accuracy and efficiency. Although the high speed is the main advantage of Gauss, modifying

the Gauss language to keep its high speed advantage becomes Aptech’s main concern. The

modification is designed to increase computing costs but gain greater accuracy of the output

after iterations by using the premier module “Curve Fit” package rather than using its of-

ficial “Constrained Optimization” module for solving a constrained nonlinear programming

problem.

Bangalore et.al. (2009) assess the tail areas of statistical distributions needed for hypoth-

esis testing, because the accuracy of these areas is important for scientific judgments. In

contrast to previous work evaluating statistical softwares’ accuracy of tail areas in statistical

distributions, Bangalore et.al. (2009) provide guidance on evaluating the accuracy of small

tail areas from the cumulative density function (CDF) of the Chi-square and t-distribution,
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which are important distributions for hypothesis testing. The evaluation is fulfilled by com-

paring commercially licensed numerical libraries in Java (SSJ, Colt, JSci, Jakarta Math,

SOCR, and JMSL), C (GSL) and R (Package Stats) to the accepted standards of ELV and

DCDFLIB.

The importance of accuracy of a distribution in the tails and percentiles in statistical

distribution using the ELV program by Knuesel (2003) and the DCDFLIB library by Brown

et al. (1997) is discussed by McCullough (1998). In Bangalore et.al. (2009), the numerical

accuracy compares the tail areas of statistical distributions to exact tail areas of distributions

to calculate a Logarithm Relative Error (LRE). The methods used in assessing accuracy

are based on guidelines in McCullough (1998) and McCullogh and Vinod (1998). The

testing focused on the upper tail of the statistical distribution using the p-values for typical

hypothesis testing. When using the complementary lower tail probability to obtain the

upper tail, estimating the outcome may be inaccurate because the lower tail probability is

near one. At the same time, cancellation errors occurring due to the underflow of floating

point representation indicates that complementation (defined as the probability of small tail

is equal to one minus the rest area in the CDF) will not work well. Complementation erodes

accuracy with an increasing cutoff point. C libraries and R functions have six significant

digits of accuracy. Colt is the most accurate of the Java libraries. GSL and R are as accurate

as ELV and DCDFLIB and can be used with equal appropriateness as alternative standards

of comparison.

Odeh et.al. (2010) investigate the reliability of selected econometric packages (Mathe-

matica, SHAZAM, Microsoft EXCEL, SAS, GAUSS, STATA, MATLAB, R, and GAMS).

Accuracy of the estimated results and software operations (including whether errors are

correctly identified and reported during estimation) of these packages are studied using the

National Institute of Standards and Technology (NIST) benchmark data sets. The accura-

cies of regression estimates and standard errors are examined for both linear and nonlinear

regression problems to investigate econometric software commonly used in economic stud-
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ies. This article examines whether observed inadequacies in earlier editions of software have

been corrected in later versions. They find that the earlier inadequacies have not always

been corrected.

Though reliability tests motivate software developers to improve these packages, many

deficiencies still exist. Specific studies on the reliability of econometric software for estimat-

ing logistic regression models have not been completed to the author’s knowledge.
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Chapter 3

Logistic Regression Model

The generalized linear model allows for estimating regression models with response data (Y )

from the exponential family of distributions:

f(y; θ, φ) = exp
[yθ − b(θ)]

a(φ)
+ c(y, φ) (3.1)

which includes the normal, binomial, Poisson, geometric, negative binomial, exponential,

gamma, and inverse normal distributions (Myers et.al. 2002 pp. 157). With the normal

distribution, θ = µ, b(θ) = µ2

2
, φ = σ2, a(φ) = φ, c(y, φ) = −1

2
[ y

2

σ2 + ln(2πσ2)], E(y) = µ,

V ar(y) = σ2, identity link η = µ.

For a binary response variable y P (y = 1) = P , and y is distributed Bernoulli with

ηi = θ = ln(P/(1− P )), b(θ) = nln(1 + eθ), φ = 1, a(φ) = 1, c(.) = ln(n
y
).

3.1 Model Assumptions and Definition

Assuming independence, the Generalized Linear Model (GLM) includes three components

(McCullagh and Nelder 1983 pp. 19):

1. Random Component: This component is the response variable distribution (or called

the error structure). For the logit model, Y follows an independent Bernoulli distribution.

2. Systematic Component: For the logit model, a linear predictor, ηi = β′h(Xi) =

ln(P/(1 − P )), is the log odds ratio and P is defined as the expectation of y. h(Xi) is a
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function of the explanatory variables X, and β′h(Xi) is linear in the parameters.

3. Link Function: A link function connects the linear predictor to the natural mean

of the response variable, i.e. g(µi) = g[E(yi)] = ηi. In GLMs, it may be any invertible

monotonic differentiable function within range (0,1). For the logistic regression model, it

is the logit link: ηi = g(µi) = ln µi
1−µi , making E(yi) = 1

1+e−ηi
= F (x), h(ηi) = pi, and

ηi = g(pi). h(ηi) is the inverse function of g(pi) specified as the logit link. The link function

maps the unit interval (0,1) onto the real line (−∞,∞).

Statistical software programs provide different choices of link functions. For example,

Minitab provides binary and ordinary two options for the logit regression. Limdep separates

logit and probit model estimation commands.

3.2 Model Estimation

Based on the assumptions and definition, the logit model can be estimated using the maxi-

mum log-likelihood method (Gourieroux 2000). The likelihood function for the logit model

takes the form:

L(y; b) =
n∏
i=1

{F (Xiβ)yi [1− F (Xiβ)]1−yi} (3.2)

Maximizing the likelihood function is equivalent to maximizing the log-likelihood, where F

is the logistic cumulative density function. The log-likelihood function is nonlinear in the

parameters.

The log-likelihood can be obtained using the likelihood function in the above equation.

That is:

ln(L) =
n∑
i=1

{yiln[F (Xiβ)] + (1− yi)ln[1− F (Xiβ)]} (3.3)

=
∑
i:yi=1

ln[F (Xiβ)] +
∑
i:yi=0

ln[1− F (Xiβ)] (3.4)

When equation 3.3 is strictly concave, a unique global maximum exists. Because the like-

lihood is a probability between 0 and 1. The ln(L) is always negative (Train 2003 pp.
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190).

Differentiating the log-likelihood given by equation 3.3 with respect to the parameter

vector β and setting the derivatives equal to zero, yields the gradient or score vector:

gi =
∂ln(L)

∂β
=

∑
i:yi=1

f(Xiβ)

F (Xiβ)
X
′

i −
∑
i:yi=0

f(Xiβ)

1− F (Xiβ)
X
′

i = 0 (3.5)

=
n∑
i=1

(yi − F (Xiβ))

F (Xiβ)[1− F (Xiβ)]
f(Xiβ)X

′

i (3.6)

n∑
i=1

yiX
′

i =
n∑
i=1

F (Xiβ)X
′

i (3.7)

The final expression for obtaining the parameter set b is based on equation 3.7 or score

function, which is a nonlinear equation.

Because the likelihood function is nonlinear in the parameters, closed-form expressions of

the MLEs are not available. Thus, the problem must be optimized using iterative numerical

methods. The most frequently used methods are discussed in Chapter 4. One such method

is the Newton-Raphson (NR) method (McCullough and Renfro 2000 pp. 65, Train 2003 pp.

190). This method finds β∗ as follows:

• Begin with the starting value β0. (The maximum can be traced along the likelihood

function surface iteration by iteration until no further increase in the loglikelihood

function is found.)

• t iterations later, β reaches its current value βt.

• After taking a “ step”, the best value for βt+1 will be attained.

• The direction of the step is determined by the gradient gi (or the slope of the log-

likelihood function) evaluated at βt i.e. gt, and the length of the iteration is measured

by the Hessian Ht, the curvature of the log-likelihood function (i.e. the second deriva-

tives measured at βt), where Ht = ∂2log(L)

∂β∂β′
|βt .
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Fisher information about the unknown parameters β is the expected value of the negative

Hessian, which provides information about the curvature and the readiness of discriminating

a good parameter estimate, indicated by a small variance.

The MLEs obtained from optimization has the properties:

1. MLEs are either unbiased or asymptotically unbiased with the minimum variance,

and additional assumptions are needed for the MLE under certain regularity conditions to

ensure this behavior.

2. Global concavity of the likelihood function ensures the existence and uniqueness of

MLEs, when the logit model has linear-in-parameters, however, not a guaranteed, functional

form (Amemiya 1998 pp.203).

3. Asymptotically normally distributed with mean b and covariance equal to the inverse

of the Fisher information matrix (expected value of the negative Hessian) I−1: βML ∼

N(b, {E[−∂2log(L)

∂b∂b′
]}−1).

4. MLEs form a set of sufficient statistics, i.e. all information about the parameters in

the sample is contained in the MLEs.

3.3 Model Predictive Ability

For a binary variable Y with two potential outcomes, the predicted value Ŷ = F (Xiβ̂) =

1

1+e−Xiβ̂
may not be consistent with the observed values Y . This inconsistency results in

prediction error. Type I prediction error occurs when the wrong observation is predicted

incorrectly to be true. Type II prediction error occurs when the correct observation is

predicted incorrectly to be wrong. At this point, the cut-off point for classifying the predicted

value is very important, because it is used as a threshold to determine the prediction. After

the predicted value is compared with the cut-off point, the outcome becomes a binary

function of the predicted value. The 2 way contingency table or prediction success table is a

way to express this predicted versus observed probabilities, which displays counts of correct

and wrong predicted outcomes Ŷij, i, j = 1, 2 in the cells.
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Predicted Value
Actual Value 0 1 Total

0 Ŷ11 Ŷ12 Ŷ1.

1 Ŷ21 Ŷ22 Ŷ2.

Total Ŷ.1 Ŷ.2 Ŷ..

Table 3.1: Prediction Success Table

A typical prediction success table can be expressed in the same way as in Table 3.1.

Some software packages (Limdep, Eviews, and Shazam) provide an actual versus pre-

dicted contingency table. Limdep provides an actual probability versus predicted probability

as well, but the probability of the cut-off point is 0.5 not the actual success probability, which

is changeable to the actual success probability. Eviews uses the actual success probability to

determine the percentage of success. Shazam reports this information in Hensher-Johnson

Prediction Success Table, which differs from results in other software packages due to its

usage of the DFP algorithm. Other software packages output the predicted values after

estimation, upon which the prediction success table can be formed based on the predicted

value. This prediction success probability is a test statistic depending on the MLE as a

function of the probability of conditional mean and its reliability can be evaluated.

3.4 Model Diagnostics

To determine whether a statistical model fits the data adequately, logistic regression uses

chi-square statistics to assess the fit of the model. The usual statistics -2 Log Likelihood

under null hypothesis provides chi-square statistics. Akaike Information Criterion (AIC)

is another way to measure the model fit in many software packages, adjusting the -2 Log

Likelihood statistic for the number of terms in the model and the number of observations

used. In R, when Log Likelihood is unavailable in the output, AIC becomes a substitute

statistic for the Log-Likelihood. If the p-value associated with a chi-square statistic is less

than the selected tolerance level, the test rejects the null hypothesis that the model fits the
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data (The R Book).

McCullough and Vinod (2003) argue that in nonlinear estimation, testing hypotheses,

using a Wald-type statistic (with the concomitant asymptotic normal approximation) that is

based on a quadratic approximation to the likelihood function maybe invalid. However, one

needs to understand the substantial differences between the two approaches. For example,

Walter W. Hauck-Allan Donner (1997) mentioned that the Wald test is convenient because

it requires fitting the model only under the alternative hypothesis, but the Likelihood ratio

test requires fitting the model both under the null and alternative hypothesis. Venables and

Ripley (1999, pp. 225) argue that Wald test has a definite advantage over likelihood ratio

test, because the maximum likelihood estimation has an iterative nature in approaching an

optimum as explained in section 3.2 and Wald test requires a quadratic functional form.

Fitting the model twice for the iterative maximum likelihood estimation causes redundant

calculations for the computer, which may be unnecessary in the Wald test. McCullough

(2004) examined a nonlinear least-squares model with a non-straight line (i.e. not approxi-

mately quadratic) profile, and found using Monte Carlo analysis that the likelihood intervals

provided better coverage than the Wald intervals. When the Wald statistic interval is valid,

so is the likelihood ratio interval, but the Wald statistic interval is valid only if the objective

function is quadratic. The likelihood ratio interval is not restricted to the functional form.

Collinearity among the covariates in the logit model is a data problem and not a statisti-

cal problem, resulting from ill conditioning in the explanatory variable matrix X. However,

collinearity can cause statistical problems. The collinearity problem can be studied by look-

ing at the log-odds equation ln(P/(1 − P )) = ηi = β′h(Xi) (McCullagh and Nelder 1983

pp. 19). The presence of collinearity may degrade the parameter estimates and identifying

the affected estimates requires the information only on the data matrix X or the Jacobian.

Examining the harm of collinearity requires information on the response variable and/or the

variance σ of the error term, because the systematic influence of the explanatory variables

on the response variable is swamped by the model’s random error term. For a real symmet-

21



ric matrix X ′X, its singular values are also its eigenvalues. As the collinearity of columns

of any matrix X increases, the matrix tends toward perfect singularity, and eventually, one

zero eigenvalue is associated with each pair of exact linear dependency columns. In this

way, one small singular value in comparison with the maximum singular value indicates a

near dependency among columns of X. The estimated variance of each regression coefficient

may be decomposed into a sum of terms each of which is associated with a singular value.

This decomposition is a way to determine the degree of near dependencies, indicated by

a high condition index. The variance-covariance matrix of the least-squares estimator can

be decomposed as var(b) = σ2
∑

j v
2
kj/µ

2
j , where µj are eigenvalues, vkj are elements of the

orthogonal matrix diagonalizing the squares of the eigenvalue matrix of X ′X, i.e. the p

eigenvectors of X ′X associated with nonzero eigenvalues (Belsley, Kuh and Welsch 1980).

The eigenvalue decomposition is used to motivate the condition number as a way to detect

near-multicollinearity (Spanos and McGuirk 2002).

In any regression, including logistic regression, multicollinearity refers to predictors that

are correlated with other predictors. In the logit model, the linear predictor is linear in the

parameters and are functions of the explanatory variables. The relationship of the explana-

tory variables in the above linear model discussion can be applied in evaluating the linear

predictor or log odds ratio and therefore the logit model. Moderate multicollinearity may

not be problematic. However, severe multicollinearity is problematic, because it can increase

the variance of the regression coefficients, making them unstable and difficult to interpret.

To measure multicollinearity, examine the correlation structure of the predictor variables

and review the variance inflation factor (VIF), which measures how much the variance of

an estimated regression coefficient increases if the predictors are correlated (McCullagh and

Nelder 1983 pp. 125).

Model validation (Harrell 2001 pp. 91) is used to determine if a model accurately pre-

dicts responses on future subjects or subjects not used to develop the model. The quantities

used in validation are pseudo R2 (predictor within-sample), which is a biased measure of
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model’s predictive ability, and the adjusted pseudo R2, which resolves dramatic overfitting.

The unbiased estimates of R2 can be obtained using data splitting, cross-validation, or the

bootstrap. The bootstrap provides the most precise estimates. Two major aspects of predic-

tive accuracy can be assessed by calibration or reliability. Validation of the model ensures

that the model is not overfitted. In the logistic regression, calibration can be assessed by

plotting Y against the predicted Y. Discrimination is assessed by R2, which drops in training

sample (the full sample less the test sample) from test sample and indicates overfitting. The

absolute R2 in the test sample is an unbiased estimate of predictive discrimination.

Algorithm choice and implementation will impact accuracy. The algorithm is inde-

pendent of the statistical description of the model and a particular computer program or

language. An algorithm includes the choice of mathematical approximations for elements

of the model and the method used to find the estimates.
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Chapter 4

Alternative Numerical Algorithms

Optimization algorithms are iterative. They begin with an initial estimate of the solution

β and generate a sequence of improved estimates (iterations) until they terminate with an

“optimal” solution. The strategies used to move from one iteration to the next are different

for alternative algorithms. A good algorithm possesses the properties of robustness, effi-

ciency and accuracy, which is defined as the dissimilarity between estimates and output.

Robustness requires the algorithm to perform well on a wide variety of problems, for all

reasonable starting points. The efficiency criteria indicates the algorithm does not require

excessive computer time or storage. There is a trade-off between accuracy and efficiency. In

addition, identifying a precise solution without being over-sensitive to errors in the data or

arithmetic rounding errors is required for the accuracy criteria. The properties are conflict-

ing: trade-offs exist between convergence rate and storage, as well as robustness and speed

(Nocedal and Wright 2000 pp. 8).

An algorithm includes several components: search rule, step length, and termination cri-

teria, and/or stopping rule. Algorithms require information to guide the numerical analysis

(Train 2003 pp. 191. and Chapter 8 of Altman et. al. 2004). The stopping rule is needed to

determine the necessary conditions for a maximum or minimum. Usually the termination

criteria includes one or more of the following conditions:

1. |Log(L(βt+1))−Log(L(βt))| < εs; that is, successive changes in the log-likelihood function

is less than some small value, called the convergence criterion. Finding a flat region of the
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Log-likelihood function may indicate an optimum is found, which is associated with a rela-

tively small change in parameter values. When the parameter changes very significantly on

a flat surface, the parameter value can not be approached in limited steps. However, when

the parameter values change significantly, it becomes a problem indicated by the software

output, for example, in Limdep, by outputting “Flat”. Software packages can specify this

value in the command options, for example, in SAS “Proc Catmod”, Epsilon is set at 1E-8

as the default value.

2. maxi[|βit+1 − βit|] < εp; when the largest successive change in the coefficients is less than

the convergence criterion.

3. g
′
H−1g < ε, where ε is the value of tolerance(), used to compare with the current value

of the Hessian-scaled gradient, g
′
H−1g. This is the most commonly used stopping rule.

4. ||g(βt)|| < εg, sets the magnitude of the gradient to be less than the convergence

criterion to check whether the gradient is close to zero. For example, in SAS “Proc Logistic”

and “Proc Surveylogistic”, “Gconv”, the relative gradient convergence criterion, is set at

1E-8 as the default.

The convergence criteria are used to determine if a candidate point is a maximum.

Next, the sufficient condition for the maximum is evaluated. The Hessian must be negative

definite. This must be done manually and can be only determined locally.

McCullough and Renfro (2000) indicate that some software packages use a single criterion

(e.g. stopping rule) for both the stopping rule and convergence criterion. In these cases, the

optimization process may find a flat region of the log likelihood function, without checking

whether the gradient is close to zero. The negativeness of the Hessian is not guaranteed

at the round optimum, possibly indicating a maximum has not been found. McCullough

and Renfro (2000) recommend using a software package with an explicit calculation of the

Hessian, e.g. Newton Raphson.

Considering that a maximum may occur in a flat region of the parameter space, succes-

sive changes in the log-likelihood function could be small at points that are far from the

25



maximum. The gradient may be very close to zero, which is numerically equivalent to zero

given the inherent inaccuracy of finite precision computation. The parameters also may not

be changing much in such a region.

In the convergence criterion, convergence is defined as the different ratio change of log-

likelihood function, as McCullough and Renfro (2000) mentions that it is to locate the flat

region of the log-likelihood function between two steps by examining:

ht = βt − β∗, where β∗ is a local maximum. Using this, the following sequences can be

constructed:

Linear: ||ht+1||
||ht|| ≤ c, ht+1 = O(||ht||), e.g. convergence rates e-04, e-04, e-04.

Superlinear: ||ht+1||
||ht|| → 0, ht+1 = o(||ht||), e.g. convergence rates e-03, e-04, e-06.

Quadratic: ||ht+1||
||ht||2 ≤ c, ht+1 = O(||ht||2), e.g. convergence rates e-02, e-04, e-08.

If ht = log(L(βt))− log(L(β∗)), where log(L(β∗)) is the value at the maximum, the rate

of convergence applies to the value of the objective function.

First derivative methods and second derivative methods can both be applied in finding

an optimum solution. The main difference between them is that first derivative methods do

not use Hessian matrix and second derivative methods need to compute the Hessian matrix,

or an approximation to it. Therefore, first derivative methods are usually, but not always

faster than second derivative methods in finding the optimal solution. In second derivative

methods, the Hessian is expensive to compute, but results may be more reliable.

4.1 First and Second Derivative Methods

1. Newton-Raphson (NR): According to numerical theory, parameter estimation can use the

Newton-Raphson method with the second-derivative matrix being replaced by its expected

value, where the search or iterative rule is derived from the log(L)’s second-order Taylor’s

series expansion around βt: Log(L(βt+1)) = Log(L(βt)) + (βt+1 − βt)gt + 1
2
(βt+1 − βt)2Ht.

This gives the first-order Taylor approximating score function g(b) about the starting value
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β0,

g(β) = g(β0)− I(β0)(β − β0) (4.1)

β = β0 + I−1(β0)g(β0) (4.2)

where I(β0) denotes the observed information matrix evaluated at β0.

In an iterative manner, the i+1th estimate is obtained based on: βi+1 = βi+I−1(βi)g(βi).

The algorithm iterates until the -2 Log Likelihood changes by only a small amount from the

previous iteration, when any of the stopping rules mentioned above are satisfied (Harrell

2001 pp. 192).

The value of βt+1 maximizing Log(L(βt+1)), i.e. a search rule can be found by setting

first derivative to zero:

∂Log(L(βt+1))

∂βt+1

= gt +Ht(βt+1 − βt) = 0 (4.3)

βt+1 = βt + (−H−1
t gt) (4.4)

−H−1
t valued at β0 is equal to I−1(β0) in equation 4.2. When the log-likelihood function

is quadratic, it takes only one step to reach the maximum. However, because most log-

likelihood functions are not quadratic, it takes more than one step to reach the maximum.

A successful algorithm uses a local quadratic approximation to capture the shape of the

function to estimate the next step. To allow for the possibility of stepping past the maximum

to a lower Log(L(βt+1)) for a global maximum, the second term on the right hand side is

multiplied by the step size λ, which becomes: βt+1 = βt + λ(−H−1
t )gt. If the approach ends

up with a tiny λ, it safe-guards that a different iteration procedure-“line search” should

be used. If a rising λ is arrived at in approaching the maximum, it reduces the number

of iterations needed. Adjusting the value of λ instead of recalculating the Ht and gt, can

quicken the search for the maximum in each iteration. Line search starts by fixing a search

direction dt and then identify an appropriate distance λ to move along (Train 2003 pp. 194;

McCullough 2004 pp. 201). The speed of convergence is quadratic.
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If the log-likelihood function is globally concave, the Newton-Raphson method guaran-

tees an increasing likelihood function at the next iteration with −H−1
t being positive definite.

To guarantee an increase at each iteration even if in convex regions of the log-likelihood func-

tion are encountered, a reconstruction of −H−1
t is necessary to make calculation easier and

ensure that the Hessian is positive definite (Train 2003 pp. 196).

The estimated covariance matrix of the parameter estimators using the Newton-Raphson

method is based on the observed information matrix.

2. Weighted Least Squares Estimate

An alternative estimator to MLE as a solution to the score equation is weighted least

squares. The Newton-Raphson method can be used to solve the score equation. The first

order Taylor expansion around the parameter vector β can be rewritten to arrive at: yi−µi ≈

var(yi)(Xiβ
∗−Xiβ), with var(η∗i ) ≈ 1

var(yi)
, ηi = X ′iβ, where β∗ is the value that solves the

score function, η∗i is the value of ηi evaluated at β∗. µi = nipi is the binomial mean and yi is

the binomial response variable. Assuming m denotes the number of independent binomial

observations, V = diag(eXiβ), giving:

m∑
i=1

var(yi).(η
∗
i − ηi) = 0 (4.5)

X ′V (η∗i − ηi) = 0 (4.6)

X ′V (η∗i −Xβ) = 0 (4.7)

β̂ = (X ′V X)−1X ′V η∗ (4.8)

Standard errors of the estimated coefficients can be estimated using Cov(β) = (X ′V̂ X)−1,

which replaces β with MLE b in V .

yi/ni − Pi ≈ (∂Pi/∂ηi)(η
∗
i − ηi); η∗i ≈ ηi + (yi/ni − Pi)(∂ηi/∂πi); b = (X ′V X)−1X ′V z.

IRLS and MLE are equivalent asymptotically. This can be proven from the following

steps:

1). The IRLS algorithm (or maximum quasi-likelihood) based on the Newton-Raphson

method uses ordinary least squares to obtain an initial estimate of β0 2). uses β0 to then
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estimate V and π; 3). lets η0 = Xβ0; 4). bases z1 on η0; 5). obtains a new estimate β1, and

iterates until convergence (Myers, Montgomery and Vining 2002 pp. 326).

3. Quadratic Hill-Climbing (Goldfeld-Quandt): As a straightforward variation of Newton-

Raphson, this method modifies the Newton-Raphson algorithm by adding a correction ma-

trix to the Hessian. The updating algorithm is given by

βt+1 = βt − H̃t

−1
gt (4.9)

−H̃t = −Ht + αI (4.10)

where I is the identity matrix and α is a positive number chosen by the algorithm when

refitting. The asymptotic standard errors are always computed from the unmodified (Gauss-

Newton) Hessian after convergence. This modification will push the parameter estimates

in the direction of the gradient vector. The idea is that when the solution is far from the

maximum, the local quadratic approximation to the function may be a poor guide to its

overall shape, so one may be better off following the gradient. The correction may provide

better approximation at locations far from the optimum, and allows for computation of the

gradient vector in cases where Hessian is near singular with a improved convergence rate

(Eviews 3 Manual User’s Guide 2002 pp. 620).

4. Method of Scoring or Fisher Scoring (or Iteratively Reweighted Least Squares (IRLS):

This method is performed by taking the expectation of the Hessian conditional on x, to form

the expected information matrix (EIM). This method just replace the Hessian matrix with

I−1
t using the score function in the estimator. It is an optimization of the deviance not of

the log-likelihood. The deviance is defined in Goodness-of-fit tests, one of which uses the

likelihood ratio criterion to define this concept. Deviance allows one to determine if the fitted

logistic model is significantly worse than the saturated (or full) model. E(yi) = Pi, i = 1, 2

the saturated model has yi the binary observation as the estimator P̂i. The saturated

model requires estimation of two parameters independent of regressor information. The

deviance is defined as twice the difference between the maximum attainable log likelihood

(i.e. the full model L(P )) and the log likelihood of the model under consideration (i.e.
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the reduced model L(β)). The deviance is often used as a measure of goodness of fit.

Thus, the deviance is D(β) = −2ln[L(β)/L(P )], where L(β) is the likelihood for the fitted

logistic model with parameter replaced by MLE and L(P ) is the likelihood for the saturated

model with 2 parameters estimated as before. For formal testing, one makes use of the

fact that asymptotically D(β) ∼ χ2
2−p, where p is the degree of freedom. The maximum

attainable log likelihood is achieved with a model that has a parameter for every observation.

The estimated covariance matrix of the parameter estimators in Fisher scoring is based

on the expected information matrix. It has good asymptotic properties. The weighted

least-squares estimation is identical to the method of scoring (Gourieroux 2000 pp. 18).

In the case of a binary logit model, the observed and expected information matrices are

identical and resulting in identical estimated covariance matrices for both Newton-Raphson

and Fisher Scoring algorithms, although empirically, this does not always work out. The

equivalence of IRLS and MLE has been verified to obtain a significant estimated of β for

infinite observations.

5. Berndt, Hall, Hall, Hausman (BHHH): Called the Gauss-Newton for general nonlinear

least squares with a line search, this method is based on the Newton-Raphson algorithm.

The BHHH method can take more iterations to obtain the optimum than the Newton-

Raphson method, but each iteration is simpler computationally and less time-consuming

(Fiorentini et.al. 1996). In comparison with the Newton-Raphson, the −H−1
t is replaced

by Bt. The score is defined as Sn(βt) = ∂lnPn(β)
∂β
|βt . Pn is the independent probability of

each observation. Thus, the gradient is the average score gt =
∑
n Sn(βt)

N
. At the optimal

parameter values, the average score is zero. The outer product of the Jacobian of the

score is a K × K matrix, where K is the dimension of parameter β. Bt =
∑
n Sn(βt)Sn(βt)

′

N

approximating I−1
t , is the covariance matrix of scores averaging the outer product of the

gradient (OPG), which is necessarily positive definite. When the negative of the Hessian is

replaced by summing up OPG vectors for each observation’s contribution to the objective

function, the approximation is asymptotically equivalent to the actual Hessian evaluated at

30



the optimal parameter values.

At the maximizing values of the parameters, Bt is the variance of scores. Similar to

the Hessian, the variance of scores provides a measure of the curvature of the log-likelihood

function. The relationship between the variance of the scores and the curvature of the

log-likelihood function is stated as the information identity: the covariance of the scores

evaluated at the true parameters is asymptotically equivalent to the negative of the expected

inversed Hessian. This identity holds at the maximum of the log-likelihood function. When

the values of β are farther from the true values, the approximation is poorer.

6. Berndt, Hall, Hall, Hausman 2 (BHHH-2) At non-optimal parameter values, the log

likelihood is not at a maximum and the average score is non-zero. This variant of the

BHHH is determined by subtracting the mean score before taking the outer product. The

matrix Wt =
∑

n
(Sn(βt)−gt)(Sn(βt)−gt)

′

N
represents the covariance of the scores around their

mean. When Wt is taken as Bt, the iteration reaches the maximum for the parameters.

Wt and Bt are identical at the optimal value of β. The maximization procedure becomes:

βt+1 = βt + λ(W−1
t )gt. λ is a line search and is used to catch the difference between Wt and

Bt without actually adjusting the value of Wt.

7. Steepest Ascent. When the identity matrix is used in place of W−1
t , an increasing

iteration is guaranteed: βt+1 = βt + λgt. The gradient gt provides the direction of greatest

increase in the log-likelihood function. It moves from an initial stating point β0 in the

direction of gt. Usually, the step size is small. This method requires only the function and

the gradient values to conduct a search. The speed of the convergency is slow, which needs

more iterations than other algorithms, exhibiting linear convergence. As the algorithm

approaches the optimum, the procedure will produce shorter moves with a zig-zag behavior

(Nocedal and Wright 2000 pp. 43).

8. Broyden-Fletcher-Goldfarb-Shanno (BFGS) is a Quasi-Newton Method or Variable

Metric, Secant Method, which uses a sequence of approximations to the Hessian matrix. At

the t + 1 iteration, the approximation of the Hessian matrix depends on the approximated
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Hessian matrix at tth iteration and on the gradient at the current iteration gt+1. The

quantity (gt+1 − gt)T (Xt+1 − Xt) approximates the curvature and the Ht+1 determined in

this way is not unique. The approximation of the Hessian is symmetric and positive definite.

It is generally agreed that the best overall performance is achieved by the BFGS update:

Ht+1 = Ht−Htst(Htst)
T/sTt Htst+yty

T
t /y

T
t st, where (st = Xt+1−Xt, yt = gt+1−gt). BFGS

update is a rank-two modification of the current approximated Hessian and is superior in

computation without a precise reason (Fraley 1989). BFGS is the default algorithm for

the optimization in many software packages. The underlying difficulty is the use of only

gradient information, which may not detect a saddle-point (McCullough and Renfro 2000

pp. 71).

The update preserves positive definiteness of Ht whenever yTt st is positive, a condition

that automatically holds in a line search method satisfying |g(xt+αtpt)
Tpt| ≤ −ηgTt pt as the

termination criterion. (αt is the sufficiently small value as a step-length, pt is the direction

of an iterative process, η ∈[0,1) keeps the step-length bounded away from zero by forcing it

to approximate a local minimum of F along the direction of pt, and gt is the gradient.)

9. Davidon-Fletcher-Powell (DFP) is a Conjugate Gradient method that uses informa-

tion at more than one point βt on the likelihood function to calculate the approximate

Hessian. Information at one point βt can determine the shape of the function. In the place

of equation 9, a substitution of Ht by Qt, and Qt is constructed so as to be negative definite

at any βt ensuring the convergence properties to be independent on the starting values. The

main point of the substitution is to update the matrix Qt by a low-rank matrix iteratively

and eventually attain the convergence to the Hessian. To solve the problem of negative

definiteness center around replacing Hessian in Newton-Raphson with a matrix Qt to form

the quasi-Newton (variable metric) method, where Qt is constructed by the function F and

gt. Ht is approximated in several iterations by Qt at the convergence. At each iteration,

Qt is updated by Qt+1 = Qt + Ut. Ut is a low-rank updating matrix. Both approaches are

based on rank two (Ut has rank two) updates, and build up curvature information slowly.
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When convergence is not attainted before the iteration ends, the coefficient estimates may

be good, but the standard errors will not be as good, because Qt is not a good approxi-

mation to Ht. The arc Hessian can be used to approximate the Hessian, which reflects the

change in gradient that occurs for accrual movement along the log-likelihood function curve.

The Hessian reflects the change in slope for infinitesimally small steps around the point βt.

Different rules for constructing Ut make the BFGS different from DFP (see Fletcher 1987

pp.55 for more details). The later is a refinement of DFP which adds another rank one

term (thus making in a rank three update)(McCullough Renfro 2000). Broyden-Fletcher-

Goldfarb-Shanno (BFGS) for the detail on how to calculate Qt. The speed of convergence

is superlinear.

10. Grid Search simply computes the objective function on a grid of parameter values

and chooses the parameters with the highest values. It is computationally costly especially

for multi-parameter models. It is used together with the other derivative methods to search

for the optimum solution in some statistical packages(Eviews 3 Manual pp. 620).

4.2 Algorithm Comparison

See Table 4.1 for detail on comparison among Newton Raphson, Berndt-Hall-Hall-Hausman,

Berndt-Hall-Hall-Hausman2, Steepest Ascent, Davidon-Fletcher-Powell, and Broyden-Fletcher-

Goldfarb-Shanno. The Gauss Newton’s method is a special case of the Newton-Raphson

method. The first order condition of log-likelihood function with respect to the parameter

vector b can be approximated by a first-order Taylor expansion around an initial value b0.

The bn+1 can be solved iteratively based on bn (Gourieroux 2000 pp. 17).

Generalized or weighted least squares are very important methods for estimating the

parameters in GLM. It is shown that the (iteratively) reweighted least squares and maximum

likelihood score equation are asymptotically the same (Myers 2002 pp. 106 and pp. 325).

In weighted least squares, H = −X ′W0X(minitab), where X is the design matrix. W0 is

a diagonal matrix with its ith diagonal element equal to weight on log-likelihood. (SAS 9.
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Table 4.1: Comparison of Algorithms

Newton Raphson BHHH BHHH2 Steepest Ascent DFP and BFGS
PROS

More Bt is calculated Wtis necessar- Works best Uses information
dependent on faster than H ily positive when the at

choice of definite, which starting point several points
starting value. ensures an is far to obtain
than Quasi- increasing from the curvature of

Newton log-likelihood optimum. the function.
across

iterations.
Calculates Hessian Bt Information Numerically Works well

directly, necessarily identity holds, evaluates even if the
standard errors positive when the model only function function is

are more definite is specified and gradient. nonquadratic.
exact. at the true No use DFP:Conjugate

parameters. of Hessian. Gradient BFGS:
Quasi-Newton

Convergence

Speed:
quadratic in

final iterations quadratic quadratic linear superlinear
CONS

Calculation When the itera- Wt is not Converges Uses approximate
of H is tion is far from the variance of slower Hessian.

computation- the maximum, it scores. than BFGS:Best for
ally- gives small steps BHHH median-sized

expensive that increases the and problems.
log-likelihood in BHHH2. DFP: best for

small increments. larger problems.
Does not Uses outer Approximates Requires Standard errors

guarantee an product of the inverse more are not as good
increased itera- gradient to Hessian by iterations. as actual using
tion if the log approximate demeaning OPG Zigzaging H−1, if

-likelihood is not negative of with the close convergence
globally concave. Hessian. gradients.At to is not
If the function the places other optimum attainted.
is highly non- than maximum,
quadratic, it Wt is not

does not same as
work well. inverse Hessian.
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GENMOD command reference).

Algorithm robustness depends not only on the problem, stopping rules, and step length,

but on the amount of derivative information required on the gradient, or gradient and

Hessian, and the method of determining derivatives (i.e. numerical or analytic) (McCullough

and Renfro 2000).
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Chapter 5

Software Methods and Reliability

Learning computer software languages and how the computer manipulates real numbers,

provides assistance for evaluating software reliability. Computational results rely on both

hardware and software, distinguishing their difference and impacts on reliability can provide

value in assessing software reliability.

A computer uses finite discrete approximation to deal with real numbers instead of using

real numbers themselves; therefore, real number arithmetic is the heart of software comput-

ing and understanding the function of algorithms. Reliability involves the interplay between

the hardware, compiler, and algorithms. Sawitzki (1994a) found that truncation error is the

only error caused by limitation of the software. The study shows that a relative change

in the data on order of 10−3 in his example can produce a change of order of 10−4 in the

coefficients of the normal equation. Truncation error may be considered as an approxima-

tion error. When iterative algorithms are subject to truncation error, the algorithm will

provide the correct answer after an infinite number of iterations. However, the iterations of

most MLE algorithms converge after a finite time of iterations, which makes investigating

incorrect answers caused by the truncation error in finite MLE iterations important.

Monahan (2001) indicates that there are two ways to represent numbers in computers:

one is fixed numbers for representing integers, and another is using floating point numbers

for representing real numbers. Early computers used fixed point representation and some

used floating point. By the late 1950s, the range limitations of fixed point restricted its
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practice, and floating point was shown to be more versatile and efficient. The fixed point

representation had been criticized for using bits to store the exponent, which is seen as a

waste when they could be used to extend the precision of the significand.

In fixed point representation, three fields are used to store a number: one 1-bit field for

the sign of the number, a field of bits for the binary representation of the number before the

binary point, and one field of bits for the binary representation after the binary point. The

fixed point system is limited by the size of the numbers it can store, therefore it is rarely

used for numerical computation (Monahan 2001).

Floating point representation is based on exponential (or scientific) notation, where a

nonzero real number x is expressed in decimal as ±S× 10E, where 1 ≤ S < 10, and E is an

integer. S and E are called the significand and the exponent. A normalized number can be

stored in three fields: one for the sign, one for the exponent E and one for the significand S.

A real number is called a floating point number if it can be stored exactly on the computer

using the floating point representation. Base 2 is preferred to base 10 (Monahan 2001).

Overton (2001) indicates the precision of the floating point system is the number of

bits in the significand (including the hidden bit). Usually precision is denoted by p. In a

computer system with p = 24 (i.e. single precision), 23 bits are used to store the fractional

part of the significand with 1 leading hidden bit. Storage ε (machine epsilon) is the unit of

roundoff, which is the gap between 1 and the next largest floating point number.

Any positive number z can be expressed as a base-B number with a set of digits {0, 1, B−

1}, for example, with base B=2, the set of digits being used to express any positive number

is just {0, 1}. Using a converging series, a real number can be expressed as:

z = akB
k + . . . a1B

1 + a0 + a−1B
−1 + a−2B

−2 + . . . (5.1)

The coefficients aj are integers in the set of digits {0, 1, B−1}, which give the expression

of the real number as the list of digits: z = (ak . . . a1a0a−1a−2 . . .)B. The radix point or base

point denotes the period in this representation. The following example shows how the base
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2 and base 10 representations are inter-changeable. When z is expressed in base 2, a3 = 1,

a2 = 0, a1 = 1, and a0 = 1 in equation 5.1, the representation is 1011. If using base 10 as the

base number, a1 = 1, and a0 = 1 in equation 5.1, the representation is 11. The intermediate

expressions are derived based on equation 5.1.

z = 10112 = 123 + 022 + 121 + 120 = 1110 = 1101 + 1100

Because the exponent E is bounded for floating point numbers, a finite number of values

with floating point notation compose a finite set of representable numbers V , which can be

used to approximate any real number. One can represent a real number z lying between

two representative numbers, (S,E, F ) and (S,E, F + B−d). For example, a real number

3.23571023 becomes a choice between (+, 24, .323) and (+, 24, .324) depends on the methods

of rounding being chosen. This type of error due to finite precision is rounding error, and it

is a function of hardware. Rounding to the closest digit gives (+,24, .324); and chopping or

dropping the last coefficient gives (+, 24, .323). The choice between rounding and chopping

(or dropping) affects the result of analysis on accuracy.

Second, there are multiple representations for the same number in floating point nota-

tion. The value 6 can be expressed by (+,1,.6000) or (+,2,.0600), or (+,4,.0006). The first

expression is preferred due to its correct conveyance of the accuracy of the number. The

last can express any number in the interval (5.5, 6.5), for example, 5.8 can be expressed as

(+,4,.0006) by rounding up the last number after the decimal point to 1. The representations

with the most significant (the leading or leftmost) digit is nonzero are called normalized. The

inaccuracy of the computation is caused by the misuse of the interchangeable un-normalized

floating point notations in computer memory.

Most microcomputers and workstations follow the IEEE binary floating point standard,

which was a milestone in computer arithmetic in recent years. A single-precision floating

point number is typically stored using 32 bits. A computer uses 23+1 bits to store the

significand S, 8 bits for the exponent, unit roundoff is 2−24 ≈ 5.96 × 10−8, with range

of 10±38. A double-precision floating number uses double the storage of a single-precision
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number, i.e. 64 bits. The computer uses 52+1 bits to store the significand, 11 bits for the

exponent, 2−53 ≈ 1.11×10−16 for unit roundoff with range of 10±308 (Higham 2002). “Double

precision” has been adopted by most software package and provides greater accuracy by

avoiding the perils of floating point arithmetic and roundoff error.

Quadruple precision uses 128 bits as storage for floating point numbers. Higher precision

arithmetic is implemented using arrays of double precision variables. A “Double-double”

format uses two double precision variables to represent a variable with twice the precision,

leading digits in the first array, and trailing digits in the second array (Overton 2001 pp.

23).

The arrangements for storing single and double precision numbers are different. Thus,

it takes twice the storage to store a double precision number. In addition, it takes three or

four times longer to finish a multiplication or division with double precision numbers.

McCullough (1998) points out that single precision is only accurate up to six or seven

digits, while double precision has 15 to 16 digits of accuracy. McCullough (1998) also

emphasizes the importance of the combination of using appropriately accurate programs

with a good algorithm in passing reliability tests. The infiniteness of the floating point

expressions of some numbers leads to either rounding or truncation errors at the last stored

bit (Altman, Gill, and McDonald 2004 pp. 25).

In addition to rounding and overflow, operations in floating point are problematic due

to underflow. Underflow occurs when a number is smaller than the smallest value capable

of being represented by the computer: the unit of roundoff or machine epsilon ε. In the

double precision computer system, when the number is smaller than 2−52, underflow will

occur. The smallest quantities between machine epsilon and one are subnormal numbers

(McCullough and Vinod 1999 pp. 643 and Altman et. al. 2004 pp. 24), and when they

are added, they do not have full precision. If two nearly equal numbers are subtracted,

cancelation may occur, and as a result, rounding error is left (Higham 2002, pp. 493).

As a result of the inaccuracy, floating point arithmetic does not obey the algebraic

39



associative law: if a list of numbers is summed up in different order, a different sum may

be computed. In floating point expression, the addition of 1 to 10000 (+,5,.1000) does not

increase the sum, and the sum is (+,5,.1000). Similarly, the addition of 1 to 2 and then to

1000, gives a different result from addition of 1 to 1000 and then of 2. To avoid the more

serious violation in the case of mixed sign numbers, two rules are followed: 1). add numbers

of like magnitude together, 2). add small numbers together, 3). add the larger ones.

To assess software reliability, first one must understand the concepts of accuracy and

precision. Accuracy and precision are different concepts. Following Altman et.al. (2004

pp. 20), accuracy refers to “the absolute or relative error of an approximation quantity,”

or the dissimilarity (or distance) between estimates and output. Referring to measurement,

precision “refers to the degree of agreement among a set of measurements of the same

quantity-the number of digits that are the same across repeated measurements,”(Altman

et.al. 2004 pp. 15) or in another way “the number of bits in the significand (including the

hidden bit)” (Overton 2001 pp. 14). For a single scalar value output, the log relative error

(LRE) can be used as a measure of the number of correct digits in the output with respect

to estimates.

LRE = −log10|output−ee
|, where e is the benchmark estimate. In the test framework, the

comparison to the benchmark needs to be set up in order to obtain the highest possible LRE

value. An LRE value close to 0 indicates very inaccurate estimates. A less than 4 LRE may

be problematic.

Significant digits of a number are defined as the first non-zero and succeeding digits.

Doubling the number of zeros of the convergence tolerance (from 0.001 to 0.00001) can be

used to increase the number of accurate digits i.e. the LRE. The StRD can be used to find

the existence of a set of options producing better non-linear results than software defaults

(McCullough 1999).
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Chapter 6

Software Assessment

The content of the software assessment covers: estimator, algorithms, line search procedure,

standard error estimation, tolerance level, and precision aspects.

These contents are compromised in the results given by software packages commands.

The commands provided in software packages are listed in Tables 6.1-6.3.

SAS details are found in Table 6.1: in the “Proc Glimmix” command of SAS, Tech-

nique=NEWRAP denotes Newton-Raphson optimization combining a linear-search with

ridging; Technique=CONGRA denotes conjugate-gradient optimization; Technique=QUANEW

represents quasi-newton optimization (SAS Manual). This command fails many reliability

tests and can be used as an alternative estimator.

In a model sentence of SAS commands, /Gconv denotes relative gradient criterion, and a

value of 1E-8 are the default settings in the “Proc Logistic” and “Proc Surveylogistic” com-

mands. In addition, in these two Procs “Absfconv”, “Xconv”, “Gconv” and “Fconv” denote

absolute function convergence criterion, relative parameter criterion, gradient convergence

criterion, and relative function convergence criterion respectively (SAS Manual).

In the “Proc Catmod” command, the log likelihood change can be specified by “Epsilon”

in model sentence and a value of 1E-8 is the default setting.

In the model sentence of “Proc Genmod” command, the parameter estimate converge

has its default value 1E-4 using “Converge=1E-4”; relative Hessian convergence can be set

using “Convh=1E-4”; profile likelihood confidence interval is specified by “CIConv=1E-4”.
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See manual for the sequence of the convergence levels. This command has been proved to

be extremely disable in reliability tests. This GEE can be used as alternative estimate.

In table 6.2, R and Minitab use iteratively reweighted least squares (IWLS) to estimate

the model.

In table 6.3, Stata commands use observed information matrix (OIM) in calculating

standard errors. Newton-Raphson steps should use the Fisher scoring Hessian or expected

information matrix (EIM) before switching to the observed information matrix (OIM). Some

commands use outer product of the gradient (OPG) vectors to calculate standard error.

An algorithm may prove to work properly only for a subset of the data and model.

Therefore, the existence of benchmark data is rationalized for the reason of consistent work-

ing for all data and models. To look for a “preferred combination” of options, reporting the

estimation results with more significant digits is necessary.

The software packages have respective advantages: R and Matlab are good at graphic

narrative. Minitab, Eviews, and SPSS have well build-in functional icons, which facilitate

the implementing the functions. Stata and SAS are very multi-functional in employing

various estimators in logistic modeling. Shazam and Limdep have very powerful nonlinear

solvers and MLE.
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Chapter 7

Data Properties and Benchmark Data
Generation

According to the literature introduction on benchmark data suites, StRD includes five main

suites: univariate summary statistics, analysis of variance, linear regression, Markov chain

Monte Carlo, and nonlinear regression (Table 7.1). Within each suite, NIST has created

problems with three different levels of difficulty: low, average, and high. NIST provides

certified values computed with multiple precision in 500 digits of accuracy (Yalta 2007),

rounding to 15 significant digits for linear regression and 11 significant digits for nonlinear

least squares. In nonlinear regression data sets, starting values near and far from the solution

are provided. The nonlinear problems are solved using quadruple precision (128 bits) on

two public domain programs, using only double precision, with different algorithms and

different implementations. The convergence criterion is the residual sum of squares with a

1E-36 tolerance level.

Low LREs indicate that a package might use a less robust solution method. To look for

a “preferred combination,” the NIST nonlinear benchmarks should be run using the first

set of starting values and report the LREs of any solution. When no solution is produced,

tinker with the preferred combination to find a solution from the first set of starting val-

ues by varying the tolerance, switching algorithms, or changing default derivatives from

numerical to analytic. For the last trial, the second set of starting values can be used. In
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Table 7.1: Comparison of NIST Benchmark Datasets

Properties Univariate ANOVA Linear Regression Nonlinear Regression
Number of Datasets 9 11 11 27

Lower Difficulty 6 4 2 8
Average Difficulty 2 4 2 11
Higher Difficulty 1 3 7 8

Certified Value Digits 15 15 15 11
Observation Number 3-5000 5-2001 3-82 6-250
Coefficient Number 1-11 2-9

assessing numerical accuracy, nonlinear benchmarks can be used to answer two questions

in nonlinear estimation: whether the default options should be relied on? The combination

of convergence tolerance, the method of solution, and the convergence criterion can change

the solution. Are analytic derivative worth the effort? The answer is yes, because ana-

lytic derivatives are more accurate than their finite-difference approximations (McCullough

1998).

Forty years ago, Longley (1967) and Anscombe (1967) pioneered generating benchmark

data sets for validating software in multiple linear regression procedures and standard devi-

ation calculations. Algorithms were biased towards overstating numerical accuracy because

benchmarks use integer values. Anscombe’s benchmark shortcomings originate from using

integer values with an exact binary representation, whose magnitudes can be stored with-

out truncation in a computer. The exact benchmark omits the likelihood of existence for

the inexact binary representation. Modifying the integers by dividing them by ten gives

the inexact binary representation, which allows a study of their implications in algorithms.

Alternative benchmarks in Simon and Lesage (1988) containing flexible control parameters

provide a more realistic assessment of numerical accuracy with different ill-conditioned data

sets.

Prior benchmarks (e.g. Lesage and Simon 1985) for testing the accuracy of matrix de-

composition algorithms for solving the least squares problem in comparison with procedures
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used in many microcomputer statistical packages regression is pertinent to reliable results

in the face of ill-conditioned data. The benchmark data set is made with an increasingly

ill-conditioned manner that allows the continuum of the numerical accuracy to range from

mild to extreme. Wampler (1980) uses the proposed matrix size and a small deviation from

zeros, ε, on the (j,j)th place as the design regressor matrix. When the ε is zero, the X ′X

matrix is singular, and when ε is close to zero, the X ′X matrix is near singular. When

the relationship between the condition number and ε is formulated, the condition number

increases with a decreasing ε (Wampler 1980).

The condition number is a concept defined in the numerical literature, as the product

of matrix norms ‖X ′X‖.‖(X ′X)−1‖ of the linear regressor matrix (Sawitzki 1994), and

regression problems are well-known to be potentially ill-conditioned (i.e. the X ′X matrix

is close to singularity). The condition number is defined as “the ratio of the largest to the

smallest singular values of X or the square root of the ratio of the largest to the smallest

eigenvalues of X ′X (Lesage and Simon 1985 pp. 49). It measures to what extent the

matrix is ill-conditioned: the larger a condition number is, the closer the matrix X ′X is

to singularity. The behavior of an ill-conditioned situation results in inherent instability of

the regression results, because any algorithm becomes affected by the ill-conditioned data.

“The error from truncation or rounding of input data is the same order of magnitude as the

estimated standard error of coefficients” (Sawitzki 1994 pp. 275).

Following Higham (2002 Secs. 1.5-1.6), conditioning is defined in the most general way

as “the sensitivity of the model to perturbations of the data” (pp. 9). Condition numbers

indicate the conditioning of a problem using a particular set of inputs. (McCullough 2004).

The consequences of ill-conditioning may lead to a putative solution in a “flat” region of the

parameter space: some parameter values change by large amounts without any change of the

objective function. Therefore the verification of the maximum of the log-likelihood problem

is difficult. Ill-conditioning leads to serious accumulative rounding error and inaccuracy in

computation. McCullough and Vinod (2003) show that for an ill conditioned Hessian, the
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quadratic approximation fails to hold in at least one direction. The Wald inference will be

unreliable for at lease one of the coefficients.

fY |X(Yi|Xi; β)fX(Xi; θj) = fX|Y (Xi; θj)fY (Yi; p) = f(Yi, Xi;ϕ) (7.1)

The data used in this study are generated using the inverse conditional distributions of X

on Y with parameter θ to recover the joint distribution of X and Y depending on parameter

ϕ, including β and θ, or conditional distribution of Y on X, depending on β. The parameters

θ (including µ, σ, and ρ) used in generation are functions of Y . µ and σ are the means

and standard errors of the distributions of covariates Xi/Yi. ρ is the correlation among

covariates (Bergtold et al. 2010). The above equation denotes the relationship described

above for the simulation process (Scrucca and Weisberg 2004). It includes two steps: first

generate the inverse conditional distribution of X conditional on Y , choosing parameters θ

and P . Second, generate the conditioning binary Y with a Bernoulli distribution depending

on parameter P .

fY |X(Yi|Xi; β) is the conditional distribution that is of interest. By re-expressing it with

the equation after the first equality, the relationship on X can be obtained. fX|Y (Xi; θj)

is the inverse conditional distribution that can be simulated. fY (Yi; p) is the unconditional

probability density of Yi. The data generation process takes these parameter values as given

and the β of the conditional mean can be recovered using these selected parameters. Instead

of using X to cover Y , one can use fX|Y (Xi; θj) to cover θj and p the probability of Y = 1,

and therefore obtains fY |X(Yi|Xi; β).
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Chapter 8

Experiments

To test the impact of different errors on the reliability of logistic regression estimation,

experiments are constructed for multicollinearity, cut-off point, and functional form.

First, to test the effect of different degrees of multicollinearity and the impact on logistic

regression reliability, this study performs tests by generating data with different numbers of

observations (e.g. 200 to 20000) with up to 5 covariates, changing the amount of correlation

between any two covariates with correlation from 0.75 to 0.995.

Next, the study examines the cut-off point. By changing the cut-off (i.e. P(Yi = 1))

from 0.01% to 50% with different numbers of observations (e.g. 32 to 20,000), the study

assesses the effect of changing the cut-off ratio on reliability.

Finally, the study examines how functional forms affect reliability. To examine the effect

of functional form has on the reliability of the logistic regression software packages, the forms

of the predictor or index function in logistic model will be varied from linear in parameters,

logarithm form, and quadratic.

The description of the datasets used to fulfill these experiments are presented in Table

8.1. The variance(X) denotes the variance of each covariate used in the simulation. The

details of the performed experiments to fulfil testing the impact of convergence, algorithms,

and starting values on the software reliability are in Table 8.2. All options evaluating from

these three perspectives are tested throughout. The options are evaluated with each other

as many combinations as possible in order to achieve a maximum LRE. The content on how
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default starting value of each software command is set will be described in the next section.

The closest starting values are found by comparing an assumed closest certain value with

respect to OLS and zero with the expected parameter values to determine which one is the

closest.
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Chapter 9

Results and Comments on Software
Reliability

To test the impact of starting value on the estimation, four sets of starting values are used

in estimating the results. The first is the default settings of the software, the second are

starting from the zero vector (in most cases it is farther from the estimates), the third are

relatively closer than zero starting values, and last are the ordinary least squares. The

starting value can be specified in some logistic regression commands(e.g. Logistic, Genmod,

and Qlim procs in SAS, Limdep, R, Minitab, Binreg in Stata, Eviews and their starting

values are specified in next subsection) but in Catmod, Surveylogistic, and Glim procs in

SAS, Matlab, Shazam, SPSS, GLM and Logit commands in Stata, only the default starting

values can be used in estimation.

9.1 Dependence on Starting Values

For most software packages the default starting value for MLE estimation uses ordinary

least square parameter estimates, while others use different methods (e.g. null vector). In

Shazam, starting values for the slope coefficients of the index function or predictor are equal

to zero, and the intercept is obtained by solving: 1
1+exp(−β0

1)
= S/N , where N is the number

of total observations; S is the number of observations with dependent variable Y = 1; S/N

is the probability that Yt = 1 for all observations.
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In Limdep, starting values are either computed internally - OLS values are a frequent

choice - or set to zero when the starting values do not matter (rarely).

During optimization, one may converge to a local maximum rather than a global one.

One may avoid local maxima by running the estimation with different starting values or

with a different maximization technique. The “START=” option in “Logit” and “Blogit”

commands can be used to automatically perform a grid search to aid in the search for a

global maximum.

In Eviews, a built-in algorithm using specific information about the objective function

is used to determine the starting values.

In SAS, for “Proc Logistic”, starting values can be specified in the logit regression by

using “INEST= data set” to specify the input data set containing the initial estimates for all

parameters. For the “Proc Qlim” command, “INIT” initializes the specification of starting

values for each parameter estimates of a logistic regression model.

In nonlinear optimization, convergence can be expected only with fully identified param-

eters, adequate data, and starting values sufficiently close to solution estimates.

“Convergence and the rate of convergence may depend primarily on the choice of starting

values for the estimates. This does not mean that a great deal of effort should be invested

in choosing starting values” (SAS 9.1 online on starting value). It is suggested by SAS to

try the default values first and if the estimation fails with these starting values, examine

the model, data and re-estimate using reasonable starting values. It is usually not necessary

that the starting values are very good, just that they are not very bad; choosing values that

seem plausible for the model and data is helpful in obtaining convergence.

If the procedure fails to converge because it is unable to find a vector that improves the

objective value, check the model and data used to ensure that all parameters are identified

and data values are reasonably scaled. Then, re-estimate the model with different starting

values. Consider using the Marquardt method if Gauss-Newton fails, because the Gauss-

Newton method may fail if the Jacobian matrix is nearly singular or ill-conditioned. A
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nonlinear model may be well-identified and well-conditioned for parameter values close to

the solution values but unidentified or numerically ill-conditioned for other parameter values.

The choice of starting values may make a difference (SAS 9.1 online).

9.2 Software Reporting

To obtain estimation output with more significant digits, different software packages use

different methods.

Table 9 shows, how to obtain more significant digits in software output, using commands

in the different software packages examined.

The following commands can change the starting value (in Table 9.2), algorithms (in

Table 9.3), and convergence level (in Table 9.4) for optimization estimation of the logit

model.

SAS: “Proc logistic” has an option for changing the starting values by specifying the

name in “INSET” with the imported and named vector of starting values in an individ-

ual dataset. Its default algorithm, fisher scoring, can be changed to Newton by setting

“Technique=Newton”. In “Proc Surveylogistic”, the model sentence can be changed with

“Fconv”: relative function convergence criterion, “Gconv”: 1E-8 as the default relative gra-

dient convergence criterion, “Xconv”: relative parameter convergence criterion, “Absfconv”:

absolute function convergence criterion to change consequent criteria. In “Proc Genmod”,

the starting value can be changed by setting “initial= starting value vector”. In the model

sentence, “converge”: 1E-4 as the default parameter estimates, “convh”: 1E-4 as the default

relative hessian convergence, “CIconv”: 1E-4 as the default profile likelihood confidence in-

terval. In “Proc Catmod”, the “Epsilon” has a default of 1E-8 in model sentence to denote

the change in log likelihood.

Limdep: “Matrix ; Peek” ; Changing Starting value: “Start=0,0”; Changing algorithms:

“Alg=BHHH”; “BFGS”: rank 2 update; “NEWTON”; “DFP”: rank 1 update ; “SteDes”.

LIMDEP will choose either “Broyden” (BFGS) or “Newton” as the default. The value of
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convergence can be set in the model sentence, by using “Tlg” to denote value of change

gradient with a default 1E-6, “Tlb” to denote value of parameter change with a default

0, “Tlf” to denote value of function change with a default 0. One can prevent any rule

from being met by changing the tolerance to 0.0 by not including the “=value” part of the

command. User supplied starting values are never necessary for the models estimated by

LIMDEP. Iterative routines in LIMDEP normally require from 5 to 25 iterations. A large,

complex problem can require many more. The default settings for maximum iterations

are 25 for Newton’s method and 100 for Quasi-Newton. One can change the maximum

iterations with “; Maxit = value” in any model command. Note, as well, that “; Maxit =

0” is a special command that requests computation of a LM statistic (as well as all other

results) at the starting values (Limdep 9 Manual).

Moreover, the success of an algorithm depends on the data. Usually the default set-

ting - “BFGS” and Quasi-Newton are the most reliable. In large datasets, “NEWTON”

or “BHHH” may perform better, and “BFGS” or “DFP” if they fail to find the maximum.

Newton’s method is best for logit model, because the objective function is globally concave.

When the “BHHH” estimator is used to estimate the covariance matrix and fails to con-

verge, Newton’s method will be used. Steepest descent is not suggested for use, because its

convergence speed is slow and tends to fail (Limdep 9 Manual).

R-2.10.1: Unless the convergence criteria are made fairly tight, different algorithms will

often provide with fifth or sixth significant digit answers. “options(digits = 15)” controls.

Changing starting values can be realized by specifying “start=c(starting values)”.

Shazam, STATA, and Matlab: “Format” is used to specify the number of significant

digits in output.

Stata10 “Binreg” can change the starting value and algorithms in estimation, using the

“init(vector of starting value)” or “tech(name of the algorithm)”. Need to import and name

a vector of starting values in the dataset. The tolerance level of change in log likelihood

(“ltol”) has a default of 1E-7, change in gradient relative (“gtol”) to the coefficients does
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not have a value as default, and change in scaled gradient (“nrtol”) has a default of 1E-5.

Minitab : One can follow the following steps to fulfill the testing: first use “File-

Open worksheet- CSV file” to open the data, and then use “Stat-Regression-Binary lo-

gistic regression-Storage” to specify the information needed from the regression result; after

that use “Editor - Format column - Numerical - Fixed decimal” - built-in icons, to obtain

the number of precision digits one wishes to obtain. To specify starting value: first, one

needs to change the icon in “Stat-Regression-Binary logistic regression”-Option and then

import and name a vector of starting values in the dataset.

Eviews 3.1: After loading the data through “New-workfile- input time period”, use

“Procs-import” to input the data with relative names of variables and use “Genr” enter

equation “z=1”. Use icon “File-open-Program” to type in command “logit Y Z X”, and run:

in the equation: untitled, and workfile-untitled. Use the set icon “Stat-copy-unformatted”

to reach the maximum precision. The starting points and algorithms can be changed using

the estimate option icon-option, where one can change from the default “quadratic climbing

hill” to “Newton” and “BHHH”. The starting point can be changed from “Eviews provided”

to “0.3×Eviews” and “zero”. The convergence level can be changed by using different icons.

SPSS 17-“ordinal regression” default: “Maximum iterations”: 100, “log-likelihood con-

vergence”: 0 (1E-5 is the maximum), “parameter convergence”: 1E-6 (1E-8 is the maxi-

mum), and “Singularity tolerance”: 1E-8 (1E-10 is the maximum). Threshold V1=0 inter-

cept has a wrong sign, because it measures the probability of Y = 0 by default. Double click

each coefficient in the output provides numbers with more significant digits. Transform the

variables using icon in transform - calculate variables.

9.3 Comments on Dependence on Algorithms

During estimation, algorithms can be changed from defaults to other algorithms (e.g. “Proc

Logistic” in SAS, Limdep, Eviews, “Binreg” in Stata), but algorithms may not be changed

in other software packages; such as “Catmod”, “Genmod”, “Surveylogistic”, “Glimmix”,
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and “Qlim” procs in SAS, “Logit” and “GLM” in Stata, Minitab, SPSS, R, Matlab, and

Shazam.

Based on the minimum coefficient LREs, the ranks of all commands for dataset1 (multi7)

with 1000 observations and dataset2 (cuto3) with 5000 observations are in Figure 9.1. The

legend for this figure is: SASlgt, Gen, Glim, Cat, Slgt, Qlim: SAS Logistic, Genmod,

Glimmix, Catmod, Surveylogistic, Qlim; Stbrd, Stbrbh, Stbrbf, Stlgt, Stglm: Stata Binreg

Default, BHHH, BFGS, Logit, and GLM; Sha: Shazam; Mint: Minitab; LdpBF, BH: Limdep

BFGS, BHHH; Evd, EvNr: Eviews Default, NR; Mat: Matlab. Figure 1 summarizes the

sensitivity of the commands depending on the change of number of observation. The left plot

is for dataset multi7 with 1000 observations and the right plot is for dataset cuto3 with 5000

observations. As the number of observations increases, the performance of Eviews-Newton

Raphson, Eviews-Default, Minitab, R, Shazam, Stata-Binreg(BFGS and BHHH), Limdep-

Logit, Blogit (BFGS), SAS-Qlim Glimmix worsened. Whereas, SAS-Logistic Surveylogistic

Limdep-Logit, Blogit (BHHH) improve their performance. SAS-Catmod can not estimate

the larger dataset.

Identical algorithm provides the same results for the Limdep Logit and Blogit commands.

In Table 9.5, Stata, Logit GLM Binreg(default) can estimate coefficients of datasets

multi1-7 up to the same reliable level but Binreg (BHHH and BFGS) does a worse job.

In Table 9.8, however, for datasets mvar1-4 and cuto1-4, the coefficient LREs of Logit,

GLM, Binreg (default) are greater than Binreg (BHHH), and Binreg (BFGS) with mvar3

as an exception. In Stata, Logit, GLM, Binreg(default), and Binreg (BFGS) can estimate

standard errors reliably, but they are greater than standard error LREs provided by Binreg

(BHHH) for all datasets except base. Log-likelihood LREs are relatively invariant to choice

of algorithms.

In Table 9.14, for Eviews, BHHH has smaller coefficient and standard error LREs than

the default setting and the Newton-Raphson option.
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Figure 9.1: The Rank of Software Commands-Minimum Coefficient LRE of Parameter
Estimates for Multi7 (on the left with 1000 observations) and Cuto3 (on the right with 5000
observations) (Refer to List of Acronyms)

SASlgt
Cat
Gen
Slgt
Glim
Qlim
LdpBF
LdpBH
Stlgt
Stglm
Stbrd
Stbrbh
Stbrbf
Mat
Sha
R
Mint
Evd
EvNr
SPSS

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 2 4 6 8

SASlgt
Cat
Gen
Slgt
Glim
Qlim
LdpBF
LdpBH
Stlgt
Stglm
Stbrd
Stbrbh
Stbrbf
Mat
Sha
R
Mint
Evd
EvNr
SPSS

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 2 4 6 8

58



9.4 Comments on Dependence on Observation Num-

ber

Tables 9.5, 9.8, 9.11, 9.15, 9.18, and 9.21 provide the LREs, on which figure 9.1 is based.

SAS “Catmod” provides the highest coefficient LRE of 10.59 (12.34)1 for multi7, but its

performance depends on the number of observations of the dataset. For cuto3, that has

a larger number of observations, it does not converge at all. The maximum LRE for SAS

“Qlim” increases and minimum LRE decreases with an increasing number of observations,

i.e. 6.30 (6.64) in multi7, and 5.68 (7.67) in cuto3. SAS “Logistic” and “Surveylogistic”

LRE increases with an increasing number of observations, i.e. 6.13 (6.88) in multi7, and 6.75

(7.32) in cuto3. Limdep- Logit or Blogit “BFGS” LREs decreases with an increasing number

of observations, i.e. 10.54 (11.61) in multi7, and 9.07 (9.47) in cuto3. Limdep “BHHH” LRE

increases as the number of observations increases, i.e. 7.72 (8.08) in multi7, and 9.64 (10.92)

in cuto3. Shazam LRE decreases with an increasing number of observations, i.e. 7.05 (7.91)

in multi7, and 5.23 (5.71) in cuto3. Stata “GLM” maximum LRE increases and minimum

LRE decreases with an increasing number of observations, i.e. 6.23 (6.46) in multi7, and

5.81 (7.19) in cuto3.

9.5 Comments on Dependence on Starting Values

Figures 9.2 and 9.3 describe how the starting values impact the coefficient and standard

error LREs in Tables 9.7, 9.10, and 9.13.

SAS “Proc Logistic” is sensitive to starting values. Starting with the closest and OLS

points provide larger LREs, while default starting values or zero provide smaller LREs. For

multi7, Table 9.7 shows coefficient minimum LRE changes from closest (6.3) and OLS (6.6)

to default (6.1) and zero (5.8). Standard error minimum LRE changes from closest (6.0)

and OLS (6.4) to default (5.9) and zero (5.6). For cuto3, Table 9.17 shows the coefficient

1The number in parentheses besides the minimum LRE is the maximum LRE. This convention is used
throughout the remainder of the dissertation.
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Figure 9.2: Comparison of the minimum Coefficient LREs for Different Starting Values
for datasets Multi7 and Cuto3 - Refer to List of Acronyms
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Values for datasets Multi7 and Cuto3 - Refer to List of Acronyms
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minimum LRE changes from zero (7.3), closest (7.3), and OLS (7.3) to default (6.7). Stan-

dard error minimum LRE changes from zero (7.5), closest (7.5), and OLS (7.5) to default

(7.0). Log-likelihood LRE does not seem to be as sensitive as coefficient and standard error

minimum LREs to changes in starting values.

SAS “Proc Qlim” is sensitive to changing starting values and starting with the null and

closest starting values providing the highest LREs, but this depends on the dataset. For

multi7, zero provides the smallest LRE (5.7) while the closest starting values provide the

largest LREs (7.8), with default LRE and OLS LRE values in-between. However, for cuto3,

starting from zero provides the largest LRE (7.8), but default LRE is the smallest with zero

and OLS in-between.

Limdep-BHHH provides the most variation in LREs depending on the starting values.

Table 9.10 shows, for multi7, coefficient minimum LREs change from 7.7 (default) and 7.9

(OLS) to 9.6 (closest) and 9.3 (zero), and standard error minimum LREs change from 7.8

(default) and 8.4 (OLS) to 9.4 (closest) and 9.1 (zero). As Table 9.20 shows, for cuto3,

changing from the default starting values to other values shows a problem of convergence

to the maximum of the log-likelihood function, and in the latter three cases estimators fail

to provide a non-flat log-likelihood function. However, for cuto1, changing from default

starting values to other three values converges to the maximum of a non-flat log-likelihood

function. The log-likelihood LRE does not seem as sensitive as coefficient and standard error

minimum LRE to changing starting values. In Limdep, for the BHHH algorithm, minimum

coefficient LREs of starting from zero estimation are the smallest for dataset multi1. In the

BHHH algorithm, no consistently best starting value can be found for all coefficients, but

it never reaches the smallest LRE in starting with the closest points in all multicollinearity

datasets and only reaches the smallest coefficient LRE in cut-off4 of multivariate and cut-off

datasets. For the BFGS algorithm, the smallest minimum coefficient and standard error

LREs locates amoung starting from default, zero, closest and OLS sets depends on which

dataset is used, but all multicollinearity, multivariate, and cut-off (except cuto2) datasets
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end up with the smallest coefficient and standard error LREs when starting from OLS and

zero starting points.

When using different starting values during estimation, the results in Stata10 Binreg are

invariant to the change of starting values in Tables 9.9 and 9.19.

Minitab LREs are very insensitive to changing starting values. In Table 9.13 and Table

9.23 some datasets are insensitive to changing starting values, e.g. the log-likelihood LRE

of most datasets, coefficient LRE of base, mvar1, 3, cuto1, 2, 3, multi1, 4, 6, and 7, and

standard error LRE of base, mvar3. Other datasets are sensitive to changing starting values.

In Minitab, starting from default, zero, and a closer set provide higher and identical coeffi-

cient LREs than starting from OLS. However, starting from a closer starting point provides

the highest standard error LREs, followed by the default then zero with OLS performing

the worst. An interesting finding is that the standard error LREs are differently ranked

from coefficient LREs. For different datasets, the LREs for different starting values are in

different magnitude ranges.

In Tables 9.13 and 9.23, the dependence of R on starting values changes with each test

case. For multi7, the coefficient LREs do not depend on starting values, but for cuto3, the

default starting values provide the largest minimum coefficient LRE than the other three

independent starting values. R with default starting values is the best in providing the

largest coefficient and standard error minimum LRE for base, multi1-6, mvar4, cuto3, and

closer or OLS starting values improve the LREs compared to starting from zero.

In Table 9.14, when Eviews starts from zero it improves coefficient LREs over the default

setting on multi6 and multi3, but decreases coefficient LREs when the Newton-Raphson

algorithm is used with starting values (with multi5 as an exception). Changing starting

values to zero impacts the standard error LREs, but not always in the same direction as the

coefficient LREs.
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9.6 Comments on Dependence on Convergence Level

In SAS, in Tables 9.6 and 9.16 decreasing the convergence level for relative parameter

convergence “Xconv” or absolute function value “ABSFconv” improves the LREs of the

results starting at OLS to the maximum extreme. Changing the convergence level of gradient

“Gconv” enhances the LREs of coefficients as well, but with less magnitude. In both changes,

LREs of the standard errors in “Proc Catmod” can also be enhanced by changing the log-

likelihood “Epsilon”. “Proc Catmod” is sensitive to the starting values, with the default

and OLS providing the largest LREs compared to starting from zero and closer points.

In Tables 9.9 and 9.19, for Limdep, changing convergence level can improve the LREs

for the BFGS and BHHH algorithms.

In Tables 9.9 and 9.19, for Stata, changing convergence level can improve the LREs in

Binreg for all datasets and GLM algorithms only for some datasets (e.g. GLM for multi2

and multi4), but not to the maximum level LRE equal to 11.

In Tables 9.14 and 9.24, for Eviews, BHHH estimates smaller coefficient and standard

error LREs than the default setting and Newton-Raphson algorithm. Changing convergence

levels improves coefficient and standard error LREs from the default setting significantly

for some coefficients, but influences all standard error LREs except cuto1. It does not im-

prove the log-likelihood LRE, when changing the convergence level. FOR Newton-Raphson,

changing the convergence level improves coefficient and standard error LREs, but does not

improve log-likelihood LREs. For BHHH, changing the convergence level improves coeffi-

cient LREs, but does not improve standard error and log-likelihood LREs.

In Tables 9.12 and 9.22, for Shazam, changing the convergence level to 1E-11 improves

coefficient and standard error LREs to 11, except coefficient LREs of cuto1. The exact

convergence level of obtaining LRE=11 depends on the dataset.

In Tables 9.12 and 9.22, for SPSS, changing convergence levels to the maximum does

not improve coefficient and standard error LREs.

The impact from the number of observations, covariates, and degree of multicollinearity

63



are as follows.

9.7 Tests Based on Datasets Multi1-7

SPSS provides high LREs (10 to 11) for the datasets with a high degree of multicollinearity

and/or multiple functional covariates (multi 3 to 7). However, it provides lower LREs (less

than 10) for the datasets with less observations and relatively low degree of multicollinearity

(multi1 and multi2). SPSS provides very close values between standard error LREs and

coefficient LREs (Table 9.11).

Matlab’s performance is very steady for all datasets and provides consistently high (more

than 10) LREs for coefficient and standard error except multi1. The coefficient and standard

error LRE magnitudes are very close (Table 9.11).

In R, the coefficient LREs are very high (above 10) for almost all multicollinearity

datasets except multi5. R can not provide an equivalently high LRE for standard errors,

which can only achieve about 6 or 7 as the maximum for multicollinearity datasets and 4

to 5 for multivariate datasets in Table 29. Because the threshold is 4 as problematic, the

inaccuracy is tolerable. Because all standard error LREs are more than 4, and they dont

indicate any problematic information (Table 9.11).

Shazam provides the most variation in coefficient LREs from high (above 10) multi2,

and multi1, to relatively low (above 5) for other datasets (e.g. multi4). For all parameters

in one model, the coefficient LREs are very closely aligned. The standard error LREs are

only about half of the coefficient LREs (Table 9.11).

In Minitab, the deviation in LREs shows up in the different parameters in one model

and between coefficients and standard errors, but not among different datasets. For the

multi7 dataset, the coefficient LREs range from 9 to 11, which has a difference up to 2.

In some datasets the difference between coefficient and standard error LREs are minor,

such as in multi1, where the difference is only 1, but in other dataset with high degree of

multicollinearity the difference is very significant up to 5 or 6 in multi3, and 4 in multi6.
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This decreasing trend of LRE accompanying with the increasing degree of multicollinearity

implies the higher the degree of multicollinearity, the less reliable the standard error LREs

(Table 9.11).

In Eviews, the difference between coefficient LREs and standard error LREs are signifi-

cant, although this is not formally tested. The LRE results are less sensitive to the change of

algorithm from default to Newton Raphson in the high multicollinearity, 2 covariate linear

predictor case (multi5). The default algorithm - quadratic climbing hill depends on the func-

tional form, because changing from quadratic, logarithm to pure linear setting enhances the

LREs (i.e. multi6 vs. multi7, multi4 vs. multi5). However, the Newton Raphson algorithm

results do not depend on the functional form. The reliability increases with the increase

in the degree of multicollinearity, but an exception is that the Newton Raphson algorithm

provides less accurate LREs for multi5 than multi4, although multi5 has a higher level of

multicollinearity. This increasing trend of LRE is not causally related to the increase on

degree of multicollinearity increases, although the covariates coherently contribute to the

accurate estimations in this case. The loglikelihood LREs are independent of different algo-

rithms used at different starting values, but does depend on the convergence criterion. The

loglikelihood LREs increase from Multi1 to 3 (Table 9.11).

In Stata, “Binreg-BHHH” has unreliable standard error LREs. When estimating multi7

LREs go as high as 2 but are about 1 for many datasets. The Outer Product of the

Gradient (OPG) standard error is different from Observed Information Matrix (OIM) in

ML or Expected Information Matrix (EIM) of Maximum Quasi-likelihood (MQL). The

MLE output of Newton Raphson is different from that for the BFGS algorithm. BFGS

tends to provide the same LREs for standard error as Newton Raphson does in multi6

and even better than what Newton Raphson does in multi4. Binreg QML provides the

best coefficient LREs for the multi1,2,3, but it loses its advantage to Logit and GLM MLE

in multi4,5,6,7. MLEs of Logit and GLM provide the maximum standard error LREs for

datasets multi1-5, but are lower than Binreg-BFGS for multi7 and Binreg-QML for multi6.
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LREs depend on commands, estimators, and algorithms for different commands. For all

Procs the Log-likelihood LREs decline from Multi1 to 3 and from Multi4 to 7 (Table 9.8).

In Limdep, although it has a central optimization routine for all procs, the LREs do

not depend on the commands, but depend on the algorithm used. BFGS provides greater

coefficient LREs than BHHH, except for multi1; and provides greater standard error LREs

for multi2,3,4,7. When the degree of multicollinearity increases from multi1 to multi3, BFGS

provides increasing LREs and BHHH produces decreasing LREs. When multiple functional

forms are incorporated in the model, this relationship does not always hold. For example,

from multi4 to multi5 the degree of multicollinearity increases, but the LREs decrease in

BFGS; and with increasing multicollinearity from multi5 to multi6, LREs increase for the

algorithm BHHH (Table 9.8).

In SAS, Logistic and Surveylogistic provide the same coefficient and Loglikelihood LREs,

but different standard error LREs. The two Procs have the same coefficient estimator-

MLE, but different standard error estimators: Logistic uses EIM but Surveylogistic uses

linear approximation of estimator. Coefficient, standard error, and Loglikelihood LREs for

the “Proc Logistic” “Proc Surveylogistic” and “Proc Catmod” increase with the increasing

degree of multicollinearity from Multi1-3, but this relationship does not hold for multiple

functional forms and models with more observations (e.g. Multi4-6). In model Multi4-6, the

coefficient and standard error LREs decrease with an increasing degree of multicollinearity

when the “Proc Catmod” is used. In the “Proc Genmod”, the coefficient maximum LREs

increase in Multi4-6, but the difference among coefficients decreases and standard error

LREs are zero for Multi1-6. Coefficient minimum LREs for the “Proc Qlim” increase, but

standard error minimum LREs decrease with an increasing degree of multicollinearity. “Proc

Glimmix” provides zero Loglikelihood LREs for all datasets and the maximum coefficient

LREs decrease with an increasing degree of multicollinearity from Multi1-3 and Multi4-6.

Minimum standard error LREs increase and maximum standard error LREs decrease with

an increasing degree of multicollinearity from Multi4-6 (Table 9.5).
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9.8 Summary of Tests Based on Datasets Mvar1-4

SPSS provides the highest LREs (10 to 11) only for the Mvar1 but lower LREs (less than

10) for Mvar2-4. In Mvar3, the standard error LREs are greater than coefficient LREs. For

Mvar4, the LREs improve when changing the convergence criterion. From Mvar2 to Mvar4,

the loglikelihood LREs decrease. In all datasets, the coefficient LREs and standard error

LREs are closely aligned (Table 9.21).

Matlab’s performance is very steady for all datasets and provides consistently high (more

than 10) LREs for coefficients and standard errors. A consistent result (as in SPSS) is that

the LRE of the natural logarithm form of covariate is the largest for all coefficient LREs of

Mvar1 (Table 9.21).

In R, the coefficient LREs are less than 10 except Mvar3. R does not provide an equiva-

lently high LRE for standard errors, and only achieves a LRE value of 6 or 7. The Loglike-

lihood LREs are more than 10 (Table 9.21).

In Shazam, the coefficient LREs are very closely aligned with each other in one dataset

estimation except in Mvar2. The standard error LREs are only about half of the coefficient

LREs. From Mvar3 to Mvar4, all LREs decrease. From Mvar1 to Mvar2, most LREs

increase (Table 9.21).

In Minitab, the deviation in LREs shows up in the different parameters of the models

(e.g. Mvar1). The deviation in LREs also shows between coefficient and standard error

LREs (e.g. Mvar4). Coefficient LREs are double the standard error LRE, but in certain

datasets (e.g. Mvar1-3) the difference is not exaggerated. From Mvar3 to Mvar4, the

maximum coefficient LRE, standard error and loglikelihood LREs decrease. From Mvar1

to Mvar2, the minimum coefficient LRE, standard error and loglikelihood LREs increase,

but maximum coefficient LREs decrease. The loglikelihood LREs are very high regardless

of the dataset (Table 9.21).

In Eviews, the difference between coefficient LREs and standard error LREs are sig-

nificant, although it is not the main purpose of testing and been formally tested. LRE

77



T
a
b
le

9
.1

5
:

M
in

im
u

m
(M

ax
im

u
m

)
L

R
E

s
fo

r
P

ar
am

et
er

E
st

im
at

es
,

S
ta

n
da

rd
E

rr
or

s
an

d
L

og
li

ke
li

ho
od

F
u

n
ct

io
n

u
si

n
g

D
ef

au
lt

S
et

ti
n

gs
in

S
A

S
fo

r
T

es
ti

n
g

M
u

lt
iv

ar
ia

te
an

d
C

u
t-

O
ff

D
at

as
et

s

P
ro

c
S
A

S
-L

og
is

ti
c(

F
is

h
er

)
L

og
is

ti
c(

N
R

)
C

at
m

o
d

G
en

m
o
d

S
u
rv

ey
lo

gi
st

ic
G

li
m

m
ix

Q
li
m

P
ar

am
et

er
E

st
im

at
es

M
va

r1
6.

62
(6

.8
7)

6.
62

(6
.8

7)
10

.6
1(

12
.9

0)
1.

25
(1

.9
4)

6.
62

(6
.8

7)
1.

25
(1

.9
4)

7.
96

(8
.1

9)
M

va
r2

3.
31

(5
.1

8)
3.

31
(5

.1
8)

6.
90

(8
.7

7)
0.

42
(1

.6
2)

3.
31

(5
.1

8)
0.

43
(1

.6
2)

7.
09

(7
.9

9)
M

va
r3

3.
62

(3
.8

2)
3.

62
(3

.8
2)

7.
28

(7
.5

1)
1.

21
(2

.6
3)

3.
62

(3
.8

2)
1.

21
(2

.6
3)

8.
30

(9
.1

0)
M

va
r4

4.
18

(5
.1

8)
4.

17
(5

.1
8)

7.
70

(8
.6

8)
N

S
4.

18
(5

.1
8)

0.
05

(0
.2

0)
7.

74
(7

.9
6)

C
u
to

1
2.

42
(4

.2
6)

2.
42

(4
.2

6)
0(

0.
62

)
0.

32
(0

.4
0)

2.
42

(4
.2

5)
0.

32
(0

.4
0)

4.
87

(6
.9

9)
C

u
to

2
5.

46
(6

.8
3)

5.
46

(6
.8

3)
10

.7
7(

11
.5

5)
0(

0)
5.

46
(6

.8
3)

0(
0)

5.
28

(6
.7

7)
C

u
to

3
6.

75
(7

.3
2)

6.
75

(7
.3

2)
N

P
0(

0)
6.

74
(7

.3
2)

0(
0.

07
)

5.
68

(7
.6

7)
C

u
to

4
7.

59
(8

.6
0)

7.
59

(8
.6

0)
N

P
N

P
7.

59
(8

.6
0)

0(
0)

7.
82

(8
.8

5)
S
ta

n
d
ar

d
E

rr
or

E
st

im
at

es
M

va
r1

7.
08

(7
.2

9)
7.

08
(7

.2
9)

6.
73

(6
.9

3)
0(

0)
1.

24
(1

.9
2)

1.
26

(2
.2

6)
5.

37
(6

.5
9)

M
va

r2
4.

01
(4

.8
2)

4.
01

(4
.8

2)
3.

89
(4

.7
0)

0(
0)

1.
04

(2
.1

7)
0.

86
(1

.3
0)

4.
50

(7
.2

2)
M

va
r3

4.
59

(4
.9

5)
4.

59
(4

.9
5)

7.
97

(8
.3

3)
0(

0)
1.

87
(2

.7
2)

1.
37

(2
.5

3)
5.

68
(7

.4
6)

M
va

r4
3.

90
(4

.6
5)

3.
90

(4
.6

5)
3.

73
(4

.4
8)

N
S

0.
16

(1
.5

4)
0(

0)
3.

89
(4

.7
6)

C
u
to

1
4.

38
(4

.7
8)

4.
38

(4
.7

8)
0.

07
(0

.2
5)

0(
0)

0.
10

(0
.1

4)
0.

16
(0

.1
6)

4.
34

(4
.5

4)
C

u
to

2
6.

22
(6

.8
4)

6.
22

(6
.8

4)
6.

64
(7

.2
5)

0(
0)

0.
45

(0
.9

2)
0(

0)
4.

91
(5

.6
9)

C
u
to

3
7.

01
(7

.4
9)

7.
01

(7
.4

9)
N

P
0(

0)
0(

1.
20

)
0(

0)
4.

08
(4

.8
2)

C
u
to

4
7.

55
(7

.6
6)

7.
55

(7
.6

6)
N

P
N

P
0.

19
(0

.8
8)

0(
0)

4.
58

(4
.9

4)
L

og
-l

ik
el

ih
o
o
d

E
st

im
at

es
M

va
r1

10
.5

6
10

.5
6

10
.5

6
0.

05
10

.5
6

0
10

.5
6

M
va

r2
8.

45
8.

45
11

.6
3

0
8.

45
0

11
.6

3
M

va
r3

8.
90

8.
90

11
.3

2
0.

24
8.

90
0

11
.3

2
M

va
r4

8.
93

8.
93

11
.1

7
N

S
8.

93
0

11
.1

7
C

u
to

1
9.

41
9.

41
2.

22
0

9.
41

0
11

.6
0

C
u
to

2
11

.0
4

11
.0

4
11

.0
4

0
11

.0
4

0.
12

11
.0

4
C

u
to

3
10

.8
0

10
.8

0
N

P
0

10
.8

0
0

10
.7

9
C

u
to

4
11

.2
9

11
.2

9
N

P
N

P
11

.2
9

0
11

.3
1

a

a
N

S
:n

ot
co

n
v
er

ge
,

N
P

:c
an

n
ot

so
lv

e.

78



T
a
b
le

9
.1

6
:

M
in

im
u

m
L

R
E

s
fo

r
P

ar
am

et
er

E
st

im
at

es
,

S
ta

n
da

rd
E

rr
or

s
an

d
L

og
li

ke
li

ho
od

F
u

n
ct

io
n

C
ha

n
gi

n
g

D
ef

au
lt

S
et

ti
n

gs
in

S
A

S
fo

r
T

es
ti

n
g

M
u

lt
iv

ar
ia

te
an

d
C

u
t-

O
ff

D
at

as
et

s

P
ro

c
S

A
S

-L
o
g
is

ti
c(

F
is

h
er

1
)

L
o
g
is

ti
c(

F
is

h
er

2
)

L
o
g
is

ti
c(

N
R

1
)

L
o
g
is

ti
c(

N
R

2
)

G
E

N
1

G
E

N
2

Q
L

IM
1

Q
L

IM
2

F
IS

H
E

R
1
X

F
IS

H
E

R
2
X

N
R

1
X

N
R

2
X

C
A

T
,E

P
S

L
G

T
,G

P
a
ra

m
et

er
E

st
im

a
te

s
M

v
a
r1

6
.3

7
.2

6
.3

7
.2

N
S

N
S

1
0
.2

8
.0

1
0
.6

1
0
.6

1
0
.6

1
0
.6

1
0
.6

1
0
.6

M
v
a
r2

6
.9

4
.0

6
.9

4
.0

N
S

N
S

7
.0

7
.1

1
0
.7

1
0
.7

1
0
.7

1
0
.7

1
0
.7

1
0
.7

M
v
a
r3

7
.0

3
.4

7
.0

3
.4

1
.2

1
.2

6
.2

8
.2

1
0
.5

1
0
.5

1
0
.5

1
0
.5

7
.3

8
.1

M
v
a
r4

4
.0

4
.3

4
.0

4
.3

N
S

N
S

6
.7

7
.0

1
0
.9

1
0
.9

1
0
.9

1
0
.9

1
0
.9

8
.0

cu
to

1
2
.0

2
.0

2
.0

2
.0

0
.3

0
.3

5
.9

5
.0

9
.2

9
.2

9
.2

9
.2

0
.0

6
.6

cu
to

2
5
.9

5
.9

5
.9

5
.9

0
0

5
.7

5
.3

1
0
.8

1
0
.8

1
0
.8

1
0
.8

1
0
.8

1
0
.7

cu
to

3
7
.3

7
.3

7
.3

7
.3

0
0

7
.8

6
.1

1
0
.7

1
0
.7

1
0
.7

1
0
.7

1
0
.7

1
0
.7

cu
to

4
6
.8

6
.8

6
.8

6
.8

N
S

N
S

5
.8

7
.4

1
0
.8

1
0
.8

1
0
.8

1
0
.8

N
P

7
.6

S
ta

n
d

a
rd

E
rr

o
r

E
st

im
a
te

s
M

v
a
r1

6
.7

7
.7

6
.7

7
.7

N
S

N
S

8
.0

8
.2

1
0
.5

1
0
.5

1
0
.5

1
0
.5

1
0
.5

1
.2

M
v
a
r2

7
.6

4
.7

7
.6

4
.7

N
S

N
S

7
.1

7
.1

1
0
.0

1
0
.0

1
0
.0

1
0
.0

7
.6

1
.0

M
v
a
r3

8
.0

4
.4

8
.0

4
.4

0
0

8
.3

8
.5

1
1
.0

1
1
.0

1
1
.0

1
1
.0

8
.0

1
.9

M
v
a
r4

3
.7

4
.0

3
.7

4
.0

N
S

N
S

6
.0

6
.8

1
0
.4

1
0
.4

1
0
.4

1
0
.4

7
.4

0
.2

cu
to

1
3
.9

3
.9

3
.9

3
.9

0
0

6
.4

5
.3

1
0
.4

1
0
.4

1
0
.4

1
0
.4

0
.1

0
.1

cu
to

2
6
.6

6
.7

6
.6

6
.7

0
0

6
.7

6
.4

1
0
.6

1
0
.6

1
0
.6

1
0
.6

1
0
.6

0
.5

cu
to

3
7
.5

7
.5

7
.5

7
.5

0
0

4
.1

4
.1

1
0
.4

1
0
.4

1
0
.4

1
0
.4

1
0
.4

0
.2

cu
to

4
6
.7

6
.7

6
.7

6
.7

N
S

N
S

4
.6

4
.6

1
0
.6

1
0
.6

1
0
.6

1
0
.6

N
P

0
.2

L
o
g
-l

ik
el

ih
o
o
d

E
st

im
a
te

s
M

v
a
r1

1
0
.6

1
0
.6

1
0
.6

1
0
.6

N
S

N
S

1
0
.6

1
0
.6

1
0
.6

1
0
.6

1
0
.6

1
0
.6

1
0
.6

1
0
.6

M
v
a
r2

1
1
.0

9
.9

1
1
.0

9
.9

N
S

N
S

1
1
.0

1
1
.0

1
1
.0

1
1
.0

1
1
.0

1
1
.0

1
1
.0

1
1
.0

M
v
a
r3

1
1
.0

8
.5

1
1
.0

8
.5

0
.2

0
.2

1
1
.0

1
1
.0

1
1
.0

1
1
.0

1
1
.0

1
1
.0

1
1
.0

1
1
.0

M
v
a
r4

8
.6

9
.1

8
.6

9
.1

N
S

N
S

1
1
.0

1
1
.0

1
1
.0

1
1
.0

1
1
.0

1
1
.0

1
1
.0

1
1
.0

cu
to

1
8
.6

8
.6

8
.6

8
.6

0
.0

0
.0

1
1
.0

1
1
.0

1
1
.0

1
1
.0

1
1
.0

1
1
.0

2
.2

1
1
.0

cu
to

2
1
1
.0

1
1
.0

1
1
.0

1
1
.0

0
0

1
1
.0

1
1
.0

1
1
.0

1
1
.0

1
1
.0

1
1
.0

1
1
.0

1
1
.0

cu
to

3
1
0
.8

1
0
.8

1
0
.8

1
0
.8

0
0

1
0
.8

1
0
.8

1
0
.8

1
0
.8

1
0
.8

1
0
.8

1
0
.8

1
0
.8

cu
to

4
1
1
.0

1
1
.0

1
1
.0

1
1
.0

N
S

N
S

1
1
.0

1
1
.0

1
1
.0

1
1
.0

1
1
.0

1
1
.0

N
P

1
1
.0

a

a
N

S
:T

h
e

p
ac

ka
ge

d
o
es

n
’t

co
n
ve

rg
e

in
es

ti
m

a
ti

o
n

.
N

P
:

C
a
n

’t
so

lv
e

th
e

p
ro

b
le

m
.

79



T
a
b
le

9
.1

7
:

M
in

im
u

m
L

R
E

s
fo

r
P

ar
am

et
er

E
st

im
at

es
,

S
ta

n
da

rd
E

rr
or

s
an

d
L

og
li

ke
li

ho
od

F
u

n
ct

io
n

C
ha

n
gi

n
g

S
ta

rt
in

g
V

al
u

es
in

S
A

S
fo

r
T

es
ti

n
g

M
u

lt
iv

ar
ia

te
an

d
C

u
to

ff
D

at
as

et
s

P
ro

c
S

A
S

-L
o
g
is

ti
c(

d
ef

)
L

o
g
is

ti
c(

1
)

L
o
g
is

ti
c(

2
)

L
o
g
is

ti
c(

3
)

G
en

m
o
d

(d
ef

)
G

en
m

o
d

(1
)

G
en

m
o
d

(2
)

G
en

m
o
d

(3
)

Q
L

IM
(d

ef
)

Q
L

IM
(1

)
Q

L
IM

(2
)

Q
L

IM
(3

)
P

a
ra

m
et

er
E

st
im

a
te

s
M

v
a
r1

6
.6

6
.3

6
.6

7
.2

1
.3

N
S

N
S

N
S

8
.0

9
.8

6
.5

8
.0

M
v
a
r2

3
.3

6
.6

3
.3

4
.0

0
.4

N
S

N
S

N
S

7
.1

7
.0

7
.6

7
.1

M
v
a
r3

3
.6

7
.0

7
.1

3
.4

1
.2

1
.2

1
.2

1
.2

8
.3

6
.2

8
.1

8
.4

M
v
a
r4

4
.2

4
.0

4
.4

4
.3

N
S

N
S

N
S

N
S

7
.7

6
.1

7
.3

8
.4

cu
to

1
2
.4

2
.0

2
.0

2
.0

0
.3

0
.3

0
.3

0
.3

4
.9

3
.7

6
.0

3
.7

cu
to

2
5
.5

5
.9

5
.9

5
.9

0
0

0
0

5
.3

5
.7

6
.2

5
.3

cu
to

3
6
.7

7
.3

7
.3

7
.3

0
0

0
0

5
.7

7
.8

6
.6

6
.1

cu
to

4
7
.6

6
.8

6
.8

6
.8

N
S

N
S

N
S

N
S

7
.8

5
.8

5
.7

7
.4

S
ta

n
d

a
rd

E
rr

o
r

E
st

im
a
te

s
M

v
a
r1

7
.1

6
.7

7
.0

7
.7

0
N

S
N

S
N

S
5
.4

5
.4

5
.4

5
.4

M
v
a
r2

4
.0

7
.6

4
.0

4
.7

0
N

S
N

S
N

S
4
.5

4
.5

4
.5

4
.5

M
v
a
r3

4
.6

8
.0

8
.1

4
.4

0
0

0
0

8
.3

6
.2

8
.1

8
.4

M
v
a
r4

3
.9

3
.7

4
.1

4
.0

N
S

N
S

N
S

N
S

3
.9

3
.

3
.9

3
.9

cu
to

1
4
.4

3
.9

4
.0

3
.9

0
0

0
0

4
.3

4
.3

4
.3

4
.4

cu
to

2
6
.2

6
.6

6
.7

6
.7

0
0

0
0

4
.9

4
.9

4
.9

4
.9

cu
to

3
7
.0

7
.5

7
.5

7
.5

0
0

0
0

4
.1

4
.1

4
.1

4
.1

cu
to

4
7
.6

6
.7

6
.7

6
.7

N
S

N
S

N
S

N
S

4
.6

4
.6

4
.6

4
.6

L
o
g
-l

ik
el

ih
o
o
d

E
st

im
a
te

s
M

v
a
r1

1
0
.6

1
0
.6

1
0
.6

1
0
.6

0
N

S
N

S
N

S
1
0
.6

1
0
.6

1
0
.6

1
0
.6

M
v
a
r2

8
.4

1
1
.0

8
.4

9
.9

0
N

S
N

S
N

S
1
1
.0

1
1
.0

1
1
.0

1
1
.0

M
v
a
r3

8
.9

1
1
.0

1
1
.0

8
.5

0
.2

0
.2

0
.2

0
.2

1
1
.0

1
1
.0

1
1
.0

1
1
.0

M
v
a
r4

8
.9

8
.6

9
.3

9
.1

N
S

N
S

N
S

N
S

1
1
.0

1
1
.0

1
1
.0

1
1
.0

C
u

to
1

9
.4

8
.6

8
.6

8
.6

0
0

0
0

1
1
.0

1
1
.0

1
1
.0

1
1
.0

C
u

to
2

1
1
.0

1
1
.0

1
1
.0

1
1
.0

0
0

0
0

1
1
.0

1
1
.0

1
1
.0

1
1
.0

C
u

to
3

1
0
.8

1
0
.8

1
0
.8

1
0
.8

0
0

0
0

1
0
.8

1
0
.8

1
0
.8

1
0
.8

C
u

to
4

1
1
.0

1
1
.0

1
1
.0

1
1
.0

N
S

N
S

N
S

N
S

1
1
.0

1
1
.0

1
1
.0

1
1
.0

a

a
N

S
:T

h
e

p
ac

ka
ge

d
o
es

n
’t

co
n
ve

rg
e

in
es

ti
m

a
ti

o
n

.

80



T
a
b
le

9
.1

8
:

M
in

im
u

m
(M

ax
im

u
m

)
L

R
E

s
fo

r
P

ar
am

et
er

E
st

im
at

es
,

S
ta

n
da

rd
E

rr
or

s
an

d
L

og
li

ke
li

ho
od

F
u

n
ct

io
n

u
si

n
g

D
ef

au
lt

S
et

ti
n

gs
in

L
im

de
p

an
d

S
ta

ta
fo

r
T

es
ti

n
g

M
u

lt
iv

ar
ia

te
an

d
C

u
t-

O
ff

D
at

as
et

s

P
ro

c
L

im
d
ep

(B
F

G
S
)

L
im

d
ep

(B
H

H
H

)
S
ta

ta
-L

og
it

-G
L

M
-B

in
re

g
-B

in
re

g(
B

H
H

H
)

B
in

re
g(

B
F

G
S
)

P
ar

am
et

er
E

st
im

at
es

M
va

r1
10

.6
1(

12
.6

2)
10

.6
0(

12
.2

7)
7.

61
(8

.3
4)

7.
62

(8
.3

2)
7.

62
(8

.3
1)

4.
21

(5
.0

6)
4.

60
(5

.7
2)

M
va

r2
7.

14
(9

.0
2)

8.
78

(1
0.

05
)

7.
09

(8
.6

5)
7.

17
(8

.8
7)

7.
10

(8
.6

6)
3.

08
(5

.2
2)

4.
54

(6
.3

4)
M

va
r3

8.
15

(8
.3

9)
9.

09
(9

.4
4)

7.
29

(7
.9

8)
7.

29
(7

.9
8)

7.
29

(7
.9

8)
3.

94
(4

.7
9)

9.
37

(9
.6

5)
M

va
r4

8.
05

(9
.0

2)
6.

55
(7

.7
7)

5.
26

(6
.0

0)
4.

58
(5

.4
8)

4.
55

(5
.4

3)
2.

61
(3

.8
9)

4.
45

(5
.7

3)
C

u
to

1
5.

80
(7

.6
2)

0.
16

(0
.0

0)
*

3.
49

(5
.6

2)
3.

49
(5

.6
2)

3.
49

(5
.6

2)
1.

15
(3

.3
9)

2.
56

(4
.6

5)
C

u
to

2
5.

46
(6

.8
3)

5.
60

(6
.5

4)
6.

13
(8

.0
7)

6.
12

(8
.0

7)
6.

11
(8

.1
3)

1.
84

(3
.5

7)
4.

74
(5

.6
7)

C
u
to

3
9.

07
(9

.4
7)

9.
64

(1
0.

92
)

5.
54

(6
.4

2)
5.

81
(7

.1
9)

5.
81

(7
.1

9)
2.

54
(5

.2
3)

4.
07

(5
.6

9)
C

u
to

4
8.

31
(9

.0
8)

8.
32

(9
.6

4)
5.

45
(5

.9
6)

5.
67

(6
.2

5)
5.

66
(6

.2
5)

2.
90

(4
.3

5)
5.

08
(6

.9
8)

S
ta

n
d
ar

d
E

rr
or

E
st

im
at

es
M

va
r1

10
.4

8(
12

.3
3)

10
.4

8(
12

.3
1)

6.
97

(7
.3

8)
7.

48
(7

.7
4)

4.
91

(5
.1

5)
1.

14
(2

.7
5)

5.
32

(5
.5

9)
M

va
r2

7.
84

(8
.6

5)
9.

13
(1

1.
39

)
7.

64
(8

.7
7)

7.
70

(9
.5

1)
4.

70
(5

.5
2)

0.
90

(1
.5

0)
5.

36
(5

.8
6)

M
va

r3
9.

15
(9

.5
2)

10
.1

8(
10

.6
7)

7.
43

(9
.4

4)
7.

44
(9

.4
7)

6.
39

(6
.7

4)
1.

98
(2

.8
8)

7.
59

(9
.0

6)
M

va
r4

7.
78

(8
.5

2)
6.

50
(8

.3
0)

3.
98

(4
.6

5)
3.

69
(6

.0
2)

3.
65

(5
.5

5)
0(

0)
3.

61
(4

.4
7)

C
u
to

1
7.

75
(8

.1
6)

0.
30

(0
.5

9)
6.

04
(7

.0
2)

6.
02

(6
.9

2)
4.

99
(5

.3
2)

0(
0)

5.
03

(5
.8

0)
C

u
to

2
6.

22
(6

.8
4)

6.
38

(7
.2

0)
6.

11
(6

.7
3)

6.
74

(8
.5

1)
4.

24
(4

.8
5)

0(
0.

17
)

4.
81

(5
.8

3)
C

u
to

3
9.

16
(9

.6
3)

10
.3

3(
11

.3
3)

5.
69

(7
.0

3)
5.

82
(7

.1
9)

4.
80

(5
.3

3)
0(

0.
61

)
5.

07
(5

.3
2)

C
u
to

4
8.

28
(8

.4
0)

8.
55

(8
.5

7)
4.

14
(4

.2
2)

5.
23

(6
.6

7)
4.

36
(4

.5
5)

0(
0)

5.
16

(6
.9

3)
L

og
-l

ik
el

ih
o
o
d

E
st

im
at

es
M

va
r1

10
.5

6
10

.5
6

7.
52

7.
52

N
/A

7.
52

7.
52

M
va

r2
11

.6
3

11
.6

3
8.

16
8.

16
N

/A
7.

55
8.

16
M

va
r3

11
.3

2
11

.3
2

7.
41

7.
41

N
/A

7.
41

7.
41

M
va

r4
11

.1
7

11
.1

7
6.

65
6.

12
N

/A
5.

64
6.

12
C

u
to

1
11

.6
0

0.
24

*
6.

99
6.

99
N

/A
6.

26
6.

99
C

u
to

2
11

.0
4

11
.0

4
7.

56
7.

56
N

/A
6.

45
7.

55
C

u
to

3
10

.8
0

10
.8

0
6.

81
6.

70
N

/A
6.

50
6.

70
C

u
to

4
10

.9
7

10
.9

7
6.

70
6.

79
N

/A
6.

39
6.

79

a

a
*W

ar
n

in
g

of
fl

at
lo

g-
li

k
el

ih
o
o
d

fu
n

ct
io

n
su

rf
a
ce

,
N

/
A

:
n

o
t

a
p

p
li

ca
b

le
.

81



T
a
b
le

9
.1

9
:

M
in

im
u

m
L

R
E

s
fo

r
P

ar
am

et
er

E
st

im
at

es
,

S
ta

n
da

rd
E

rr
or

s
an

d
L

og
li

ke
li

ho
od

F
u

n
ct

io
n

C
ha

n
gi

n
g

D
ef

au
lt

S
et

ti
n

gs
in

L
im

de
p

an
d

S
ta

ta
fo

r
T

es
ti

n
g

M
u

lt
iv

ar
ia

te
an

d
C

u
t-

O
ff

D
at

as
et

s

P
ro

c
L

im
d

ep
-B

F
1

-B
F

2
-B

H
1

-B
H

2
-B

F
1
-1

3
-B

F
2
-1

3
-B

H
1
-1

3
-B

H
2
-1

3
S

ta
ta

-B
in

re
g
(B

h
1
)

-B
in

re
g
(B

h
2
)

B
in

re
g
(B

f1
)

B
in

re
g
(B

f2
)

B
in

re
g
(d

ef
)-

1
3

G
L

M
-1

3
P

a
ra

m
et

er
E

st
im

a
te

s
M

v
a
r1

1
0
.6

7
.2

1
0
.6

1
0
.6

1
0
.6

1
0
.6

1
0
.6

1
0
.6

4
.2

4
.2

4
.6

4
.6

7
.6

7
.6

M
v
a
r2

7
.0

8
.6

8
.7

9
.6

1
0
.7

1
0
.7

1
0
.7

1
0
.7

3
.1

3
.1

4
.5

4
.5

7
.1

7
.1

M
v
a
r3

7
.0

7
.7

7
.5

9
.8

1
0
.5

1
0
.5

7
.5

*
1
0
.5

3
.9

3
.9

6
.0

6
.0

7
.3

7
.3

M
v
a
r4

7
.7

8
.2

7
.6

9
.8

1
0
.9

1
0
.9

1
0
.9

9
.8

*
2
.6

2
.6

4
.5

4
.5

4
.6

4
.6

C
u

to
1

5
.7

5
.7

7
.4

7
.0

9
.2

9
.2

9
.2

9
.2

1
.1

1
.1

2
.6

2
.6

3
.5

3
.5

C
u

to
2

5
.9

5
.9

6
.9

6
.4

1
0
.8

1
0
.8

1
0
.9

*
1
0
.8

1
.8

1
.8

4
.7

4
.7

6
.1

6
.1

C
u

to
3

7
.3

7
.3

0
*

0
*

1
0
.7

1
0
.7

0
*

0
*

2
.5

2
.5

4
.1

4
.1

5
.8

5
.8

C
u

to
4

6
.8

6
.8

7
.8

7
.7

1
0
.8

1
0
.8

1
0
.8

*
1
0
.8

*
2
.9

2
.9

5
.5

5
.1

5
.7

5
.7

S
ta

n
d

a
rd

E
rr

o
r

E
st

im
a
te

s
M

v
a
r1

1
0
.5

7
.7

1
0
.5

1
0
.5

1
0
.5

1
0
.5

1
0
.5

1
0
.5

1
.1

1
.1

5
.3

5
.3

7
.5

7
.5

M
v
a
r2

7
.6

9
.3

9
.3

1
0
.0

1
0
.0

1
0
.0

1
0
.0

1
0
.0

0
.9

0
.9

5
.4

5
.4

7
.7

7
.7

M
v
a
r3

8
.0

8
.7

8
.4

1
1
.0

1
1
.0

1
1
.0

8
.4

1
1
.0

2
.0

2
.0

7
.6

7
.6

7
.4

7
.4

M
v
a
r4

7
.4

8
.0

7
.8

9
.9

1
0
.4

1
0
.4

1
0
.4

9
.9

0
0

3
.6

3
.6

3
.7

3
.7

C
u

to
1

7
.7

7
.7

8
.8

8
.7

1
0
.4

1
0
.4

1
0
.4

1
0
.4

0
0

5
.0

5
.0

6
6

C
u

to
2

6
.6

6
.7

8
.1

6
.8

1
0
.6

1
0
.6

1
0
.6

1
0
.6

0
0

4
.8

4
.8

6
.7

6
.7

C
u

to
3

7
.5

7
.5

0
0

1
0
.4

1
0
.4

0
*

0
*

0
0

5
.1

5
.1

5
.8

5
.8

C
u

to
4

6
.7

6
.7

7
.8

7
.7

1
0
.6

1
0
.6

1
0
.6

1
0
.5

0
0

5
.2

5
.2

5
.2

5
.2

L
o
g
-l

ik
el

ih
o
o
d

E
st

im
a
te

s
M

v
a
r1

1
0
.6

1
0
.6

1
0
.6

1
0
.6

1
0
.6

1
0
.6

1
0
.6

1
0
.6

7
.5

7
.5

7
.5

7
.5

7
.5

7
.5

M
v
a
r2

1
1
.0

1
1
.0

1
1
.0

1
1
.0

1
1
.0

1
1
.0

1
1
.0

1
1
.0

7
.5

7
.5

8
.2

8
.2

8
.2

8
.2

M
v
a
r3

1
1
.0

1
1
.0

1
1
.0

1
1
.0

1
1
.0

1
1
.0

1
1
.0

1
1
.0

7
.4

7
.4

7
.4

7
.4

7
.4

7
.4

M
v
a
r4

1
1
.0

1
1
.0

1
1
.0

1
1
.0

1
1
.0

1
1
.0

1
1
.0

1
1
.0

5
.6

5
.6

6
.1

6
.1

6
.1

6
.1

C
u

to
1

1
1
.0

1
1
.0

1
1
.0

1
1
.0

1
1
.0

1
1
.0

1
1
.0

1
1
.0

6
.3

6
.3

7
.0

7
.0

7
.0

7
.0

C
u

to
2

1
1
.0

1
1
.0

1
1
.0

1
1
.0

1
1
.0

1
1
.0

1
1
.0

1
1
.0

6
.5

6
.5

7
.6

7
.6

7
.6

7
.6

C
u

to
3

1
0
.8

1
0
.8

0
0

1
0
.8

1
0
.8

0
*

0
*

6
.5

6
.5

6
.7

6
.7

6
.7

6
.7

C
u

to
4

1
1
.0

1
1
.0

1
1
.0

1
1
.0

1
1
.0

1
1
.0

1
1
.0

1
1
.0

6
.4

6
.4

6
.8

6
.8

6
.8

6
.8

a

a
*w

ar
n

in
g

m
es

sa
ge

:
lo

g-
li

ke
li

h
o
o
d

is
fl
at

at
cu

rr
en

t
es

ti
m

a
te

s.
*
:L

in
e

se
a
rc

h
d

o
es

n
o
t

im
p
ro

ve
fu

n
ct

io
n

,
es

ti
m

a
te

s.

82



T
a
b
le

9
.2

0
:

M
in

im
u

m
L

R
E

s
fo

r
P

ar
am

et
er

E
st

im
at

es
,

S
ta

n
da

rd
E

rr
or

s
an

d
L

og
li

ke
li

ho
od

F
u

n
ct

io
n

C
ha

n
gi

n
g

S
ta

rt
in

g
V

al
u

es
in

L
im

de
p

fo
r

T
es

ti
n

g
M

u
lt

iv
ar

ia
te

an
d

C
u

to
ff

D
at

as
et

s

P
ro

c
L

im
d
ep

-B
F

G
S
(d

ef
)

-B
F

G
S
(1

)
-B

F
G

S
(2

)
-B

F
G

S
(3

)
-B

H
H

H
(d

ef
)

-B
H

H
H

(1
)

-B
H

H
H

(2
)

-B
H

H
H

(3
)

P
ar

am
et

er
E

st
im

at
es

M
va

r1
10

.6
10

.6
10

.6
7.

2
10

.6
10

.6
10

.6
10

.6
M

va
r2

7.
1

6.
9

7.
0

8.
6

8.
8

8.
7

8.
8

9.
6

M
va

r3
8.

1
7.

0
7.

1
7.

7
9.

1
7.

5
10

.5
9.

8
M

va
r4

8.
0

7.
7

8.
5

8.
2

6.
5

7.
6

7.
5

9.
8

C
u
to

1
5.

8
5.

7
5.

8
5.

8
F

L
A

T
7.

4
9.

1
7.

0
C

u
to

2
5.

5
5.

9
5.

9
5.

9
5.

6
6.

9
8.

3
6.

4
C

u
to

3
9.

1
7.

3
7.

3
7.

3
9.

6
F

L
A

T
F

L
A

T
F

L
A

T
C

u
to

4
8.

3
6.

8
6.

8
6.

8
8.

3
7.

8
7.

7
7.

7
S
ta

n
d
ar

d
E

rr
or

E
st

im
at

es
M

va
r1

10
.5

10
.5

10
.5

7.
7

10
.6

10
.6

10
.6

10
.6

M
va

r2
7.

8
7.

6
7.

7
9.

3
9.

1
9.

3
9.

3
10

.0
M

va
r3

9.
2

8.
0

8.
1

8.
7

10
.2

8.
4

11
.0

11
.0

M
va

r4
7.

8
7.

4
8.

2
8.

0
6.

5
7.

8
7.

5
9.

9
C

u
to

1
7.

7
7.

7
7.

7
7.

7
F

L
A

T
8.

8
10

.3
8.

7
C

u
to

2
6.

2
6.

6
6.

7
6.

7
6.

4
8.

1
9.

1
6.

8
C

u
to

3
9.

2
7.

5
7.

5
7.

5
10

.3
F

L
A

T
F

L
A

T
F

L
A

T
C

u
to

4
8.

3
6.

7
6.

7
6.

7
8.

6
7.

8
7.

7
7.

7
L

og
-l

ik
el

ih
o
o
d

E
st

im
at

es
M

va
r1

10
.6

10
.6

10
.6

10
.6

10
.6

10
.6

10
.6

10
.6

M
va

r2
11

.0
11

.0
11

.0
11

.0
11

.0
11

.0
11

.0
11

.0
M

va
r3

11
.0

11
.0

11
.0

11
.0

11
.0

11
.0

11
.0

11
.0

M
va

r4
11

.0
11

.0
11

.0
11

.0
11

.0
11

.0
11

.0
11

.0
C

u
to

1
11

.0
11

.0
11

.0
11

.0
F

L
A

T
11

.0
11

.0
11

.0
C

u
to

2
11

.0
11

.0
11

.0
11

.0
11

.0
11

.0
11

.0
11

.0
C

u
to

3
10

.8
10

.8
10

.8
10

.8
10

.8
F

L
A

T
F

L
A

T
F

L
A

T
C

u
to

4
11

.0
11

.0
11

.0
11

.0
11

.0
11

.0
11

.0
11

.0

a

a
N

S
:T

h
e

p
ac

ka
ge

d
o
es

n
’t

co
n
ve

rg
e

in
es

ti
m

a
ti

o
n

.
F

L
A

T
:T

h
e

lo
g

li
k
el

ih
o
o
d

is
fl

a
t

a
t

th
e

cu
rr

en
t

es
ti

m
a
te

s.

83



T
a
b
le

9
.2

1
:

M
in

im
u

m
(M

ax
im

u
m

)
L

R
E

s
fo

r
P

ar
am

et
er

E
st

im
at

es
,

S
ta

n
da

rd
E

rr
or

s
an

d
L

og
li

ke
li

ho
od

F
u

n
ct

io
n

u
si

n
g

D
ef

au
lt

S
et

ti
n

gs
in

M
at

la
b,

S
ha

za
m

,
R

,
M

in
it

ab
,

E
vi

ew
s,

an
d

S
P

S
S

fo
r

T
es

ti
n

g
M

u
lt

iv
ar

ia
te

an
d

C
u

t-
O

ff
D

at
as

et
s

P
ro

c
M

at
la

b
S
h
az

am
R

M
in

it
ab

E
v
ie

w
s(

D
ef

au
lt

)
E

v
ie

w
s(

N
R

)
S
P

S
S

P
ar

am
et

er
E

st
im

at
es

M
va

r1
10

.6
1(

12
.5

8)
7.

62
(7

.9
0)

9.
18

(9
.6

2)
9.

42
(1

0.
61

)
10

.1
60

(1
1.

65
)

8.
58

(9
.0

4)
10

.6
1(

12
.6

0)
M

va
r2

10
.7

1(
11

.8
4)

8.
21

(1
0.

37
)

8.
52

(1
0.

69
)

8.
88

(9
.9

6)
7.

62
(1

0.
25

)
8.

95
(1

1.
31

)
7.

17
(9

.0
4)

M
va

r3
10

.4
5(

11
.8

1)
9.

37
(9

.6
5)

10
.4

4(
11

.8
3)

7.
27

(9
.7

4)
9.

54
(1

1.
48

)
10

.4
5(

11
.8

1)
8.

44
(8

.6
9)

M
va

r4
10

.9
4(

11
.8

5)
4.

80
(5

.9
6)

9.
56

(1
0.

72
)

8.
04

(9
.0

0)
8.

36
(9

.3
5)

8.
81

(9
.8

2)
8.

34
(9

.3
2)

C
u
to

1
9.

18
(1

1.
57

)
6.

67
(8

.7
7)

*
7.

85
(9

.2
8)

8.
67

(1
1.

06
)

9.
18

(1
1.

30
)

9.
18

(1
1.

87
)

6.
27

(8
.0

7)
C

u
to

2
10

.7
7(

11
.5

5)
6.

28
(7

.8
5)

7.
62

(8
.9

8)
9.

41
(1

0.
32

)
9.

54
(1

0.
79

)
9.

60
(1

0.
77

)
10

.7
8(

11
.5

4)
C

u
to

3
10

.6
7(

11
.2

6)
5.

23
(5

.7
1)

9.
42

(9
.8

6)
8.

95
(1

0.
86

)
9.

52
(9

.9
7)

9.
58

(1
0.

02
)

10
.6

7(
11

.2
5)

C
u
to

4
10

.7
8(

11
.3

0)
9.

56
(1

0.
44

)
8.

62
(1

0.
13

)
7.

95
(1

0.
70

)
8.

69
(9

.9
6)

8.
69

(1
0.

17
)

10
.7

8(
11

.2
9)

S
ta

n
d
ar

d
E

rr
or

E
st

im
at

es
M

va
r1

10
.4

8(
12

.3
2)

4.
14

(4
.3

7)
4.

93
(5

.1
6)

7.
08

(7
.2

8)
7.

15
(7

.5
0)

4.
62

(4
.9

0)
10

.4
8(

12
.3

3)
M

va
r2

9.
98

(1
2.

34
)

4.
62

(5
.5

5)
4.

70
(5

.5
2)

7.
90

(8
.6

1)
4.

80
(5

.7
3)

4.
92

(5
.7

4)
7.

86
(8

.6
8)

M
va

r3
11

.1
7(

13
.5

2)
5.

28
(5

.6
9)

6.
39

(6
.7

5)
7.

21
(8

.5
3)

7.
23

(7
.5

8)
8.

11
(8

.4
8)

9.
46

(9
.8

2)
M

va
r4

10
.4

2(
11

.4
3)

2.
26

(3
.1

3)
4.

66
(5

.4
1)

3.
90

(4
.6

5)
4.

06
(4

.8
1)

4.
29

(5
.0

3)
8.

08
(8

.8
3)

C
u
to

1
10

.4
2(

13
.2

4)
4.

57
(5

.0
4)

5.
00

(5
.4

1)
8.

18
(8

.6
3)

10
.3

5(
10

.6
2)

10
.5

7(
10

.8
0)

8.
22

(8
.6

4)
C

u
to

2
10

.6
5(

11
.1

8)
3.

64
(4

.3
5)

4.
25

(4
.8

5)
6.

22
(6

.8
4)

5.
24

(5
.8

4)
5.

25
(5

.8
6)

10
.6

4(
11

.1
7)

C
u
to

3
10

.3
7(

11
.7

2)
2.

77
(3

.3
2)

4.
85

(5
.3

3)
6.

98
(7

.4
6)

4.
90

(5
.3

8)
4.

92
(5

.4
0)

10
.3

7(
11

.7
9)

C
u
to

4
10

.5
9(

12
.1

1)
4.

92
(5

.0
7)

4.
42

(4
.5

5)
4.

09
(4

.2
1)

4.
46

(4
.5

9)
4.

46
(4

.5
8)

10
.6

0(
11

.8
3)

L
og

-l
ik

el
ih

o
o
d

E
st

im
at

es
M

va
r1

10
.5

6
8.

33
10

.5
6

10
.4

5
10

.6
0

10
.6

0
10

.5
6

M
va

r2
11

.6
3

9.
72

11
.6

3
11

.6
3

11
.0

0
11

.0
0

11
.6

3
M

va
r3

11
.3

2
10

.2
4

11
.3

2
10

.4
5

11
.3

4
11

.3
4

11
.3

2
M

va
r4

5.
72

5.
81

11
.1

8
10

.2
2

11
.1

2
11

.1
2

11
.1

7
C

u
to

1
11

.6
0

9.
90

11
.6

0
9.

79
11

.5
0

11
.5

0
11

.6
0

C
u
to

2
11

.0
4

8.
08

11
.0

4
10

.2
0

11
.0

4
11

.0
4

11
.0

4
C

u
to

3
10

.8
0

6.
19

10
.8

0
10

.3
5

10
.7

4
10

.7
4

10
.8

0
C

u
to

4
10

.9
7

10
.2

0
10

.9
7

10
.3

5
11

.0
2

11
.0

2
10

.9
7

84



T
a
b
le

9
.2

2
:

M
in

im
u

m
L

R
E

s
fo

r
P

ar
am

et
er

E
st

im
at

es
,

S
ta

n
da

rd
E

rr
or

s
an

d
L

og
li

ke
li

ho
od

F
u

n
ct

io
n

C
ha

n
gi

n
g

D
ef

au
lt

S
et

ti
n

gs
in

S
ha

za
m

,
R

,
M

in
it

ab
,

an
d

S
P

S
S

fo
r

T
es

ti
n

g
M

u
lt

iv
ar

ia
te

an
d

C
u

t-
O

ff
D

at
as

et
s

P
ro

c
S

h
a
za

m
-3

S
h

a
za

m
-5

S
h

a
za

m
-7

S
h

a
za

m
-9

S
h

a
za

m
-1

1
R

1
R

2
M

in
it

a
b

1
M

in
it

a
b

2
S

P
S

S
0
,-

6
,-

8
S

P
S

S
-5

,-
8
,-

1
0

P
a
ra

m
et

er
E

st
im

a
te

s
M

v
a
r1

7
.6

1
1
.0

1
1
.0

1
1
.0

1
1
.0

1
0
.6

1
0
.6

9
.4

9
.4

1
0
.6

1
0
.6

M
v
a
r2

8
.2

1
1
.0

1
1
.0

1
1
.0

1
1
.0

6
.9

8
.6

9
.3

8
.6

7
.2

7
.2

M
v
a
r3

9
.4

1
1
.0

1
1
.0

1
1
.0

1
1
.0

1
0
.5

7
.7

7
.3

7
.3

8
.4

8
.4

M
v
a
r4

4
.8

9
.3

1
1
.0

1
1
.0

1
1
.0

7
.7

8
.2

7
.7

8
.2

8
.3

8
.4

C
u

to
1

6
.7

1
0
.6

1
0
.6

1
0
.6

1
0
.6

5
.7

5
.7

8
.7

8
.7

6
.3

6
.3

C
u

to
2

6
.3

1
1
.0

1
1
.0

1
1
.0

1
1
.0

1
0
.8

1
0
.8

9
.4

9
.4

1
0
.8

1
0
.8

C
u

to
3

5
.2

1
0
.4

1
1
.0

1
1
.0

1
1
.0

7
.3

7
.3

9
.0

9
.0

1
0
.7

1
0
.7

C
u

to
4

9
.6

1
1
.0

1
1
.0

1
1
.0

1
1
.0

1
0
.8

1
0
.8

9
.9

9
.9

1
0
.8

1
0
.8

S
ta

n
d

a
rd

E
rr

o
r

E
st

im
a
te

s
M

v
a
r1

4
.1

8
.1

8
.1

1
1
.0

1
1
.0

6
.7

7
.7

6
.7

7
.7

1
0
.5

1
0
.5

M
v
a
r2

4
.6

9
.0

9
.0

1
1
.0

1
1
.0

3
.9

4
.7

7
.6

4
.7

7
.9

7
.9

M
v
a
r3

5
.3

1
0
.5

1
0
.5

1
1
.0

1
1
.0

8
.0

4
.4

7
.2

7
.2

9
.5

9
.5

M
v
a
r4

2
.3

4
.5

8
.9

1
1
.0

1
1
.0

3
.7

4
.0

3
.7

4
.0

8
.1

8
.1

C
u

to
1

4
.6

8
.9

8
.9

1
1
.0

1
1
.0

3
.9

3
.9

7
.7

7
.7

8
.2

8
.2

C
u

to
2

3
.6

7
.2

7
.2

1
1
.0

1
1
.0

6
.6

6
.7

6
.6

6
.7

1
0
.6

1
0
.6

C
u

to
3

2
.8

5
.4

1
0
.5

1
0
.5

1
1
.0

3
.9

3
.8

7
.5

7
.5

1
0
.4

1
0
.4

C
u

to
4

4
.9

9
.5

9
.5

1
1
.0

1
1
.0

6
.7

6
.7

6
.7

6
.7

1
0
.6

1
0
.6

L
o
g
-l

ik
el

ih
o
o
d

E
st

im
a
te

s
M

v
a
r1

8
.3

1
1
.0

1
1
.0

1
1
.0

1
1
.0

1
0
.6

1
0
.6

1
0
.5

1
0
.5

1
0
.6

1
0
.6

M
v
a
r2

9
.7

1
1
.0

1
1
.0

1
1
.0

*
1
1
.0

*
1
1
.0

1
1
.0

1
1
.0

1
1
.0

1
1
.0

1
1
.0

M
v
a
r3

1
0
.2

1
1
.0

1
1
.0

1
1
.0

1
1
.0

1
1
.0

1
1
.0

1
0
.5

1
0
.5

1
1
.0

1
1
.0

M
v
a
r4

5
.8

1
0
.3

1
1
.0

1
1
.0

*
1
1
.0

*
1
1
.0

1
1
.0

1
0
.2

1
0
.2

1
1
.0

1
1
.0

C
u

to
1

9
.9

*
1
1
.0

*
1
1
.0

*
1
1
.0

*
1
1
.0

*
1
1
.0

1
1
.0

9
.8

9
.8

1
1
.0

1
1
.0

C
u

to
2

8
.1

1
1
.0

1
1
.0

1
1
.0

1
1
.0

1
1
.0

1
1
.0

1
0
.2

1
0
.2

1
1
.0

1
1
.0

C
u

to
3

6
.2

*
1
1
.0

*
1
1
.0

*
1
1
.0

*
1
1
.0

*
1
0
.8

1
0
.8

1
0
.4

1
0
.4

1
0
.8

1
0
.8

C
u

to
4

1
0
.2

*
1
1
.0

*
1
1
.0

*
1
1
.0

*
1
1
.0

*
1
1
.0

1
1
.0

1
0
.4

1
0
.4

1
1
.0

1
1
.0

a

a
*w

ar
n

in
g

m
es

sa
ge

:
lo

g-
li

ke
li

h
o
o
d

fu
n

ct
io

n
is

d
ec

re
a
si

n
g
.

In
d

ic
es

fo
ll

ow
in

g
so

ft
w

a
re

a
lg

o
ri

th
m

0
,-

3
,-

5
,-

7
,-

9
,-

1
1

a
n

d
-1

3
in

d
ic

a
te

co
n
v
er

g
en

ce
le

ve
ls

ar
e

1E
-3

,
1E

-5
,

1E
-7

,1
E

-9
,1

E
-1

1,
an

d
1E

-1
3
.

85



T
a
b
le

9
.2

3
:

M
in

im
u

m
L

R
E

s
fo

r
P

ar
am

et
er

E
st

im
at

es
,

S
ta

n
da

rd
E

rr
or

s
an

d
L

og
li

ke
li

ho
od

F
u

n
ct

io
n

C
ha

n
gi

n
g

S
ta

rt
in

g
V

al
u

es
in

R
an

d
M

IN
IT

A
B

fo
r

T
es

ti
n

g
M

u
lt

iv
ar

ia
te

an
d

C
u

to
ff

D
at

as
et

s

P
ro

c
R

(d
ef

)
R

(1
)

R
(2

)
R

(3
)

M
in

it
ab

(d
ef

)
M

in
it

ab
(1

)
M

in
it

ab
(2

)
M

in
it

ab
(3

)
P

ar
am

et
er

E
st

im
at

es
M

va
r1

9.
2

10
.6

10
.6

10
.6

9.
4

9.
4

9.
4

9.
4

M
va

r2
8.

5
6.

9
7.

0
8.

6
10

.7
10

.7
10

.7
8.

6
M

va
r3

10
.4

10
.5

10
.5

7.
7

7.
3

7.
3

7.
3

7.
3

M
va

r4
9.

6
7.

7
8.

5
8.

2
8.

0
7.

7
8.

4
8.

2
C

u
to

1
7.

8
5.

7
5.

8
5.

7
8.

7
8.

7
8.

7
8.

7
C

u
to

2
7.

6
10

.8
10

.8
10

.8
9.

4
9.

4
9.

4
9.

4
C

u
to

3
9.

4
7.

3
7.

3
7.

3
9.

0
9.

0
9.

0
9.

0
C

u
to

4
8.

6
10

.8
10

.8
10

.8
7.

9
9.

9
9.

9
9.

9
S
ta

n
d
ar

d
E

rr
or

E
st

im
at

es
M

va
r1

4.
9

6.
7

7.
0

7.
7

7.
1

6.
7

7.
0

7.
7

M
va

r2
4.

7
3.

9
4.

0
4.

8
7.

8
7.

6
7.

7
4.

7
M

va
r3

6.
4

8.
0

8.
1

4.
4

7.
2

7.
2

7.
2

7.
2

M
va

r4
4.

7
3.

7
4.

1
4.

0
3.

9
3.

7
4.

1
4.

0
C

u
to

1
5.

0
3.

9
4.

0
3.

9
8.

2
7.

7
7.

7
7.

7
C

u
to

2
4.

2
6.

6
6.

7
6.

7
6.

2
6.

6
6.

7
6.

7
C

u
to

3
4.

8
3.

8
3.

8
3.

8
7.

0
7.

5
7.

5
7.

5
C

u
to

4
4.

4
6.

7
6.

7
6.

7
4.

1
6.

7
6.

7
6.

7
L

og
-l

ik
el

ih
o
o
d

E
st

im
at

es
M

va
r1

10
.6

10
.6

10
.6

10
.6

10
.5

10
.5

10
.5

10
.5

M
va

r2
11

.0
11

.0
11

.0
11

.0
11

.0
11

.0
11

.0
11

.0
M

va
r3

11
.0

11
.0

11
.0

11
.0

10
.5

10
.5

10
.5

10
.5

M
va

r4
11

.0
11

.0
11

.0
11

.0
10

.2
10

.2
10

.2
10

.2
C

u
to

1
11

.0
11

.0
11

.0
11

.0
9.

8
9.

8
9.

8
9.

8
C

u
to

2
11

.0
11

.0
11

.0
11

.0
10

.2
10

.2
10

.2
10

.2
C

u
to

3
10

.8
10

.8
10

.8
10

.8
10

.4
10

.4
10

.4
10

.4
C

u
to

4
11

.0
11

.0
11

.0
11

.0
10

.4
10

.4
10

.4
10

.4

a

a
N

S
:T

h
e

p
ac

ka
ge

d
o
es

n
’t

co
n
ve

rg
e

in
es

ti
m

a
ti

o
n

.

86



T
a
b
le

9
.2

4
:

M
in

im
u

m
L

R
E

s
fo

r
P

ar
am

et
er

E
st

im
at

es
,

S
ta

n
da

rd
E

rr
or

s
an

d
L

og
li

ke
li

ho
od

F
u

n
ct

io
n

C
ha

n
gi

n
g

D
ef

au
lt

S
et

ti
n

gs
in

E
vi

ew
s

fo
r

T
es

ti
n

g
M

u
lt

iv
ar

ia
te

an
d

C
u

t-
O

ff
D

at
as

et
s

P
ro

c
E

v
ie

w
s-

D
ef

au
lt

-3
D

ef
au

lt
-5

D
ef

au
lt

-7
N

ew
to

n
R

ap
h
so

n
-3

N
ew

to
n

R
ap

h
so

n
-5

N
ew

to
n

R
ap

h
so

n
-7

P
ar

am
et

er
E

st
im

at
es

M
va

r1
10

.2
10

.2
10

.6
8.

6
10

.6
10

.6
M

va
r2

7.
6

10
.7

10
.7

8.
9

10
.7

10
.7

M
va

r3
9.

5
9.

5
10

.5
10

.5
10

.5
10

.5
M

va
r4

8.
4

10
.9

10
.9

8.
8

10
.9

10
.9

*
C

u
to

1
9.

2
9.

2
9.

2
9.

2
9.

2
9.

2
C

u
to

2
9.

5
10

.8
10

.8
9.

6
9.

6
9.

6
C

u
to

3
9.

5
10

.7
*

10
.7

*
9.

6
10

.7
*

10
.7

*
C

u
to

4
8.

7*
10

.8
*

10
.8

*
8.

7
10

.8
*

10
.8

*
S
ta

n
d
ar

d
E

rr
or

E
st

im
at

es
M

va
r1

7.
2

7.
2

10
.3

4.
6

9.
1

9.
1

M
va

r2
4.

8
8.

7
10

.0
4.

9
9.

7
9.

7
M

va
r3

7.
2

7.
2

10
.7

8.
1

8.
1

11
.0

M
va

r4
4.

1
8.

1
8.

1
4.

3
8.

5
8.

5
C

u
to

1
10

.3
10

.3
10

.3
10

.6
10

.6
10

.6
C

u
to

2
5.

2
10

.4
10

.4
5.

2
10

.4
10

.4
C

u
to

3
4.

9
9.

6
9.

6
4.

9
9.

7
9.

7
C

u
to

4
4.

5
8.

6
8.

6
4.

5
8.

6
8.

6
L

og
-l

ik
el

ih
o
o
d

E
st

im
at

es
M

va
r1

10
.6

10
.6

10
.6

10
.6

10
.6

10
.6

M
va

r2
11

.0
11

.0
11

.0
11

.0
11

.0
11

.0
M

va
r3

11
.0

11
.0

11
.0

11
.0

11
.0

11
.0

M
va

r4
11

.0
11

.0
11

.0
11

.0
11

.0
11

.0
C

u
to

1
11

.0
11

.0
11

.0
11

.0
11

.0
11

.0
C

u
to

2
11

.0
11

.0
11

.0
11

.0
11

.0
11

.0
C

u
to

3
11

.0
11

.0
11

.0
11

.0
11

.0
11

.0
C

u
to

4
11

.0
11

.0
11

.0
11

.0
11

.0
11

.0

a

a
*m

or
e

th
an

10
it

er
at

io
n

s.
In

d
ic

es
-3

,-
5,

-7
fo

ll
ow

in
g

ea
ch

so
ft

w
a
re

a
lg

o
ri

th
m

d
en

o
te

co
n
ve

rg
en

ce
le

ve
ls

a
re

1
E

-3
,

1
E

-5
,

1
E

-7
.

87



results are less sensitive to the change of algorithm from default to Newton Raphson in

Mvar4. Newton Raphson provides higher LREs than the default in datasets Mvar2,3, and

4. The reason for default setting’s extraordinary performance in Mvar1 needs to be inves-

tigated. After investigation, Mvar1 is a good benchmark model, which can be estimated

reliably across all reasonable software packages (i.e. except SAS Glimmix Genmod, which

are alternative estimates). The loglikelihood LREs are very high independently of choice of

algorithms, but does depend on the convergence criterion. The loglikelihood LREs decrease

from Mvar3 to 4 (Table 9.21).

In Stata, the standard error LREs are not reliable for Binreg-BHHH, (i.e. they are less

than 4 in some cases). The OPG standard error is different from OIM in ML or EIM of

MQL. In the same MLE output, NR is different from that of the BFGS algorithm. BFGS

never provides the same standard error LREs as NR does for the Mvar datasets. Binreg

MQL never provides the largest minimum coefficient LREs for the Mvar dataset, as it does

in the Multicollinearity datasets. MLE of GLM provides the largest minimum coefficient

and standard error LREs for datasets Mvar1,2 and 3, but they lose their advantage to MLE

of Logit for Mvar4. LREs depend on commands and estimators, and the same algorithm

for MLE for different commands provides different LREs. In all procs, the loglikelihood

LREs for BHHH in Mvar2, 4 are the smallest. Logit GLM Binreg(BFGS) provides the same

loglikelihood LREs, except in Mvar4 (Table 9.18).

In Limdep, the LREs do not depend on the commands, but depend on the algorithm

used. BFGS provides larger coefficient LREs; and larger standard error and loglikelihood

LREs in Mvar1,4 than BHHH; however the loglikelihood LRE provided by BFGS is smaller

for Mvar1. When the variance of covariates decreases from 15 in Mvar3 to 1 in Mvar4,

BFGS provides decreasing standard error LREs and BHHH produces decreasing LREs for

coefficient, standard error, and Loglikelihood function. When multiple functional forms are

incorporated in the model, such as from Mvar1 to Mvar2, the coefficient and standard error

LREs decrease, but loglikelihood LRE increases for the algorithms BFGS and BHHH (Table
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9.18).

In SAS, “Proc Logistic” and “Proc Surveylogistic” provide the same coefficient and

loglikelihood LREs, but different standard error LREs. Coefficient, standard error, and log-

likelihood LREs for “Proc Logistic”, “Proc Surveylogistic”, and “Proc Catmod” decrease,

when incorporating different functional forms (e.g. Mvar1-2). In models, Mvar1-2, coeffi-

cient, standard error, and loglikelihood LREs of “Proc Logistic”, “Proc Surveylogistic”, and

“Proc Catmod” increase when the variance of covariates decreases from 15 to 1. In “Proc

Genmod”, the loglikelihood LREs decrease for Mvar1-2 and fail to converge for Mvar4. Co-

efficient and minimum standard error LREs in the “Proc Qlim” decrease, but loglikelihood

LREs increase with an increasing number of covariates (Mvar1-2). “Proc Glimmix” provides

zero loglikelihood LREs for all datasets and the decreasing coefficient and standard error

LREs for Mvar1-2 and Mvar3-4 (Table 9.15).

9.9 Summary of All Tests Based on Datasets Cuto1-4

SPSS provides high LREs (10 to 11) for the Cuto2-4, but lower LREs (less than 10) for

Cuto1. In Cuto1, the standard error LREs are greater than the coefficient LREs. From

Cuto1 to Cuto3, the loglikelihood LREs decrease. In all the datasets, the coefficient LREs

and standard error LREs are closely aligned but have a difference of up to 2 in Cuto1 (Table

9.21).

Matlab’s performance is very steady for all the datasets and consistently providing high

(more than 10) LREs for coefficients, standard errors, and loglikelihood function, except

the intercept in Cuto1. The coefficient and standard error minimum LREs increase, but

coefficient, standard error maximum LREs and loglikelihood LREs decrease from Cuto1

to Cuto2. The coefficient, standard error, and loglikelihood LREs increase from Cuto3 to

Cuto4 (Table 9.21).

In R, the coefficient LREs are relatively high about 8 and standard error LREs are not

very high (less than 5). R can not provide an equivalently high LRE for standard error, and
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only achieve LREs of 6 or 7 as a maximum; however the loglikelihood LREs are consistently

high (above 10). The minimum LREs and loglikelihood LRE decrease from Cuto3-4 (Table

9.21).

In Shazam, for all the parameters in the models, the coefficient LREs are very closely

aligned, except in Cuto1. The standard error LREs are only about half of the coefficient

LREs. From Cuto1 to Cuto2, all LREs decrease. From Cuto3 to Cuto4, all LREs in the

models increase (Table 9.21).

In Minitab, the discrepancy in LREs in parameters for Cuto1 is up to 2. For Cuto4,

coefficient LREs are double standard error LREs, but for Cuto1 the difference between

coefficient and standard error LREs is very slight. From Cuto2 to Cut4, the minimum

coefficient LRE decrease, and loglikelihood LREs increase. The loglikelihood LREs are very

high regardless of the dataset (Table 9.21).

In Eviews, the difference between coefficient LREs and standard error LREs are signif-

icant for Cuto2-4. LRE results are less sensitive to what algorithm is used (i.e. default or

NR). NR provides higher LREs than the default in datasets Cuto1-3, but lower LREs for

Cuto4. The loglikelihood LREs are very high independently algorithmic choice. Loglikeli-

hood LREs decrease from Cuto1-3, but increase from Cuto3-4. The minimum coefficient

LREs decrease from Cuto2-4 and minimum standard error LREs decrease from Cuto1-4

(Table 9.21).

In Stata, the standard error LREs are not reliable for Binreg-BHHH, because their

magnitudes are mostly zero. As the output of MLEs, the LRE output of NR is different from

that of BFGS algorithm, and even the same NR provides different coefficient LREs in Logit

and GLM for estimating Cuto3-4. Binreg QML provides the highest minimum coefficient

LREs for the Cuto1,3 datasets, as it does in the Multicollinearity datasets; and provides

the second lowest standard error LREs, which is only better than what BHHH does. MLE

of GLM provides the highest coefficient and standard error LREs for datasets Cuto3 and

largest standard error LREs for Cuto2. LREs depend on commands and estimators, and the
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same algorithm of MLEs in different commands provides different LREs. Among all procs

the loglikelihood LREs of BHHH are the smallest for all datasets. Logit GLM Binreg(BFGS)

provides the same loglikelihood LREs except for Cuto3,4, where loglikelihood LREs of Logit

are slightly different from the other two (Table 9.18).

In Limdep, the LREs do not depend on the commands, but depend on the algorithm

used. BHHH provides greater coefficient LREs, greater standard error LREs, and greater

loglikelihood LRE for Cuto3-4 than BFGS; however only greater standard error and log-

likelihood LREs for Cuto2. For Cuto1-2, BFGS provides decreasing LREs. For Cuto3-4,

BFGS provides decreasing coefficient and standard error LREs, but increasing loglikelihood

LREs. BHHH produces decreasing coefficient and standard error, but increasing loglikeli-

hood LREs for Cuto3-4. BHHH fails to provide suitable LREs for Cuto1 and starting with

values other than the default for Cuto3 gives a warning of a “flat” log-likelihood estimate,

which indicates the MLE fails to achieve an optimum within a limited parameter range

(Table 9.18).

In SAS, “Proc Logistic” and “Proc Surveylogistic” provide the same coefficient, and log-

likelihood LREs, but different standard error LREs. Coefficient and standard error LREs of

the Logistic proc, and the“Proc Surveylogistic” increase for Cuto1-4. Coefficient, standard

error, and loglikelihood LREs of the “Proc Catmod” increase in Cuto1-2. In “Proc Gen-

mod”, the coefficient, standard error, and loglikelihood LREs are zero, except coefficient

LREs for Cuto1. In “Proc Qlim”, coefficient LREs increase for Cuto2-4, standard error

LREs increase from Cuto1-2 and from Cuto3-4, but log-likelihood LREs decrease Cuto1-4.

Glimmix provides zero log-likelihood LREs in Cuto1,3, and 4, zero coefficient and standard

error LREs for Cuto2-4 (Table 9.15).
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Chapter 10

Discussion

SAS - Logistic(Fisher or NR) performs reliably (LREs are more than 4)on 11 out of 16

models (Tables 13 and 23). For 2 out of 7 multicollinearity models, the LREs are less

than 4, but the models do perform better for the null or OLS starting values (Table 15).

Furthermore, increasing the tolerance level of the relative parameter convergence criteria to

1E-15 increases the reliability of these two models (Table 14). For 2 out of 4 multivariate

models, the LREs are less than 4, but the models do better for the null or the closest starting

values (Table 25). Furthermore, increasing the tolerance level of the relative parameter

convergence criteria to 1E-15 increases the reliability for these two models (Table 24). For

1 out of the 4 cutoff models (i.e. Cuto1), the LREs are less than 4, and the model does not

perform better by changing starting values (Table 25). However, increasing the tolerance

level of the relative parameter convergence criteria to 1E-15 increases the reliability of Cuto1

(Table 24). SAS - Logistic estimates very well the standard error for all models except one

multivariate model (i.e. Mvar4). SAS - Logistic estimates very well log likelihood function

for all the models.

SAS - Catmod indicates that it is able to estimate successfully 12 out of 16 models

(Tables 13 and 23). For 1 out of the 7 multicollinearity models, the LRE is nearly zero, but

the model does not perform better when changing the tolerance level of the log-likelihood

function to 1E-15. The estimations of standard errors are very reliable, except for 2 models,

only one of which can be improved by changing the tolerance level of the log-likelihood
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function to 1E-15. Only one Log-likelihood function estimation is not reliable, but it can be

improved by changing the tolerance level. For all multivariate models, the LREs are greater

than 4, which means it estimates reliably in this series of model. However the estimation

of standard errors are not as reliable as coefficients, 2 out of 4 models have unreliable

standard error estimates. For 1 out of 4 cutoff models, the LRE is nearly zero and 2 out

of 4 models can not be solved. For 2 out of them, changing the tolerance level of the log-

likelihood function to 1E-15 can solve only one of the unsolved models. The estimation of

log likelihood function is similar to the standard error in these four models.

SAS - Genmod, Glimmix can not reliably estimate any one of the 18 models. The

unreliable result in Genmod can not be improved by changing starting values, because they

use different approximated weight and frequency in the Log-likelihood function.

SAS - Surveylogistic can estimate reliably coefficients in 5 out of 7 multicollinearity

models, 2 out of 4 multivariate models, and 1 out of 4 cutoff models; but the standard

error estimates are not reliable. Changing the relative gradient tolerance level to 1E-15 can

improve the coefficient estimations, but does not improve standard error estimations.

SAS - Qlim reliably estimates all models 16 out of 16 models except the unreliable stan-

dard error estimations 2 out of the 8 multicollinearity models and 1 out of the 4 multivariate

models (Tables 13 and 23). Neither of them can be improved by changing the starting values

from the default.

SAS performs reliably in “Proc Qlim” but not very steadily in “Proc Logistic”, “Proc

Catmod”, and “Proc Surveylogistic”. SAS performs very unreliably in “Proc Genmod”

and “Proc Glimmix”. To achieve a more reliable estimation, changing to OLS or zero

may improve accuracy. Decreasing tolerance level from default to lower levels provide more

reliable coefficient estimation, but does not always provide the the same for standard errors

in “Proc Surveylogistic”.

Limdep - Logit and Blogit (BFGS) estimate all models reliably and they estimate only

cutoff1 unreliably due to a flat functional surface around the optimum. The unreliable
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results can be improved by either using different starting values or decreasing the tolerance

level to 1E-13.

Although Limdep shows some weakness in estimating parameters and standard errors

in model cutoff1 using BHHH algorithm, it performs steadily well on most other models.

Stata performs reliably for all models except parameter estimator in cutoff1 and standard

error in multivariate4. However, Stata Binreg has some estimation deficiency when using

the BHHH algorithm, especially for the multivariate and cutoff datasets.

Stata - Logit, GLM, and Binreg (default) estimate all models reliably except estimations

of coefficients in cutoff1 and standard errors in multivariate4. The unreliable results can

be improved by changing the gradient tolerance level to 1E-13. Binreg (BHHH) reliably

estimates coefficient in 6 (5 in multicollinearity and 1 in multivariate models) out of 16

models, but reliably estimates standard error only in one multicollinearity model. Changing

the tolerance level does not improve either the coefficient or the standard error estimates.

Binreg (BFGS) estimates coefficients in 2 multicollinearity models and cutoff1 model un-

reliably, but standard error only unreliably in the model multivariate4. The result is not

improved by using different starting values. The log likelihood functions can be estimated

reliably in all models.

Shazam estimates the coefficient in all models reliably and the standard error in 8 out of

16 models reliably. In 7 multicollinearity models and one base model, the standard errors of

5 models can not be reliably estimated. In 4 multivariate models, it estimates only 1 model

standard errors unreliably. In 4 cutoff models, standard errors in 2 models are estimated

unreliably. These unreliable standard error estimations can be improved by changing the

convergence level to 1E-5.

Unlike other packages, Shazam does not estimate reliable standard errors when the

parameters are reliably estimated.

The rest of the packages are capable of estimating all models and show high reliability.

Matlab, R, Minitab, Eviews, and SPSS reliably estimate all models.
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Chapter 11

Conclusion

The reliability of nine software packages most commonly used by applied economists was

examined. The packages were SAS 9.2, Limdep 9.0, Matlab 7.0.4, Stata 10, Shazam 10,

R 2.10.1, Minitab 15, SPSS 17, and Eviews 3.1. Logistic regression using maximum log-

likelihood estimation with nonlinear optimization algorithm tests were performed using de-

veloped benchmark datasets. This study expands on the existing literature in this area by

examination of Minitab 15 and SPSS 17. The findings indicate that Matlab, R, Eviews,

Minitab, Limdep (BFGS), and SPSS provided consistently reliable results for both param-

eter and standard error estimates across the benchmark datasets. While some packages

performed admirably, shortcomings did exist. For example, SAS performed better than

past versions, maximum log-likelihood estimators do not always converge to the optimal so-

lution and stop prematurely depending on starting values, by issuing a “flat” error message.

This quirk can be dealt with by rerunning the maximum log-likelihood estimator, using

a closer starting point, to see if the convergence criteria are actually satisfied. Although

Stata-Binreg provides reliable parameter estimates, there is no way to obtain standard error

estimates in Stata-Binreg as of yet. Limdep performs relatively well, but did not converge

due to a weakness of the algorithm. The results show that solely trusting the default settings

of statistical software packages may lead to non-optimal, biased or erroneous results, which

may impact the quality of empirical results obtained by applied economists.

The findings undermine the need to cross-validate empirical research results. The ro-
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bustness and reliability of maximum log-likelihood estimates depend on the algorithm used,

convergence level setting, the choice of starting values, the nature of the problem, and the

datasets used in the problem. Researchers need to evaluate estimation results carefully until

they are proven to be reliable, especially when multicollinearity, cut-off, and nonlinearities

have mixed influences on the results. Learning econometrics requires an understanding of

limitations of each software package and how to improve reliability of estimation results.

Benchmarking and documenting the reliability of software packages are important tasks for

software developers, but as an applied economist, performing reliability tests on the soft-

ware latest versions is important for understanding and assessing a comprehensive software’s

capabilities.
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Appendix A

List of Acronyms

AIC: Akaike Information Criterion

BFGS or BF (in tables): Broyden Fletcher Goldfarb Shanno

BHHH or BH (in tables): Berndt Hall Hall Hausman

CDF: Cumulative Density Function

Cuto: Cutoff Datasets

DCDFLIB: Double Precision Cumulative Distribution Function LIBrary

DEF: Default

DFP: Davidon Fletcher Powell

EIM: Expected Information Matrix

ELV: Elementary Distribution

FCP: Fiorentini, Calzolari and Panattoni

FS: Fisher Scoring

GLM: Generalized Linear Model

EIM: Expected Information Matrix

GEE: Generalized Estimating Equations

IRLS: Iteratively Reweighted Least Squares

IWLS: Iteratively Reweighted Least Squares

LRE: Logarithm Reliable Error

MC: Monte Carlo
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MLE: Maximum Likelihood Estimator

MQL: Maximum Quasi-Likelihood

Multi: Multicollinearity Datasets

Mvar: Multivariate Datasets

N/A: Not Applicable

NIST: National Institute of Standards and Technology

NP: Not Solved

NR: Newton Raphson

NS: Not Converge

OIM: Observed Information Matrix

OLS: Ordinary Least Squares

OPG: Outer Product of the Gradient

QUANEW: Quasi-Newton

SE: Standard Error

VIF: Variance Inflation Factor
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