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I

INTRODUCTION

Many advances in the application of electronics to medicine
have been made in recent years. Devices for the measurement and
modeling of physiological events have enhanced the understanding
of the events studied. The computer has also played a very im-
vortant role in the rapid processing of physiological data.

A computer can be programmed to perform a given analysis of
physiological data and to arrive at a conclusion which in many
cases would be a suggested diagnosis. 1o do this the computer
must be programmed such that it makes use of the vast amount of
past medical experience.

The electrocardiographic signal is one type of physiological
data which can be analyzed using a digital computer., Before the
computer can be used to analyze the ECG, the ECG data must be
put into the appropriate digital (i.e., sampled) form. Fig. (1-1)
The sampled data is then used to represent the continuous ECG
signal.

Computer analysis of ECG's is usually carried out in two
steps. The first step involves a pattern recognition program
which extracts features associated with the ECG signal which are
used to identify it as a normal or an abnormal ECG. The second
step involwves the use of a program which uses these features to
classify an ECG as belonging to the normal or abnormal class.

There are basically three approaches to the solution of the
above problem, These are: (i) time-domain approach, (ii) cross-

correlation approach, and (iii) frequency analysis approach.
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i. Time Domain Apprcach

The time domain approach uses features similar to those that
the cardiologist uses to distinguish a normal ECG from an abnormal
ECG, The steps involved in this process include [40]:

1. location of the QRS complex

2. QRS envelope pattern determination

3. recognition of the T wave and the S-T segment, and

4. detection of the P wave.

This approach is called the "time domain approach" since
the ECG signal (which is a function of time) is processed di-

rectly to extract the desired features.

ii. Cross Correlation Approach

In this approach the incoming ECG signal is cross correlated
with standard ECG patterns whose classifications are known. The
classification is made on the basis of the degree of correlation
between the incoming signal and the known signals. The pattern
with the highest correlation to the incoming signal is chosen.
Cross correlation represents the degree to which two patterns
or signals represent each other. The cross correlation of two

identical signals would be unity.

iii, Frequency Analysis Approach.

In this approach the ECG is represented in terms of a class
of functions consisting of the Fourier and Walsh Functions {4].
These functions characterize the ECG by their ability to show

the distribution of power in the ECG signal.



Much previous work has been done using the time domain ap-
proach [34,36]. This approach, however, has disadvantages
associated with measuring the wvarious time intervals of the ECG
and automatically recognizing the different segments of the ECG.
The programs usually used for the time domain analysis are usually
cumbersome and require a special purpose or general purpose com-
puter to implement.

Relatively little has been reported using the cross correla-
tion approach or the frequency approach. The difficulties that
the cardiologst encounters when attempting to interpret the
significance of the frequency domain signal characteristics con-
tributes to this fact. For example, an ECG characteristic such
as notching in the time domain signal is easier to evaluate than
a correlation coefficient or frequency component.

In this study the frequency domain approach was investigated.
Canine ECG signals were used and were classified as normal or
abnormal by a trained cardiologist. The Bifore (Binary Fourier
Representation) was used to characterize the ECG signal [4].

The features obtained from the ECGs using the Bifore power
spectrum were then used to train a classifier. The trained
classifier was then used to classify unknown ECG signals as normal
or abnormal.

This study, it is hoped, has shown that the frequency domain
and the BRifore power spectrum can be used successfully in the

analysis of electrocardiographic data.
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TERMINCLOGY

An algorithm is a rule for computation.

An arrythmia is an irregular heart action causing the
absence of rhythm.

The atrium is one of the upper chambers of the heart.

An augmented pattern vector is obtained from a d-

dimensional pattern vector by adding a (d+1) st. com-
ponent equal to -1.
Bifore - Binary Fourier Representation

The confusion matrix is a summary of the results of the

classification process. The off diagonal terms indi-
cate errors made in classification.

Correlation is a measure of the degree of relationship

between two signals.

Decision numbers are the numbers used in the classifi-

cation process derived from the training set.

Depolarization is the reduction of the potential across

a membrane with respect to the resting membrane poten-
tial.
DFT - Discrete Fourier Transform

Distortion is error in representation. In signal pro-

cessing this error is seen in the waveform character-
istics being analyzed.

The electrocardiograph signal ECG, is the record of the

electrical activity of the heart measured on the body

gurface.
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An electrolyte is a substance which in solution con-

ducts an electric current.

The FBT or Fast Bifore Transform is an algorithm for
the computation of the Bifore Transform.

The FFT or Fast Fourier Transform is an algorithm for
the computation of the Discrete Fourier Transform.

The freguency response of a system is a measure of its

reaction to signals with different rates of variation,

Hypertrophy is the increase in size of an organ or of

a structure.

An infarct is an area of tissue in an organ or part
which undergoes necrosis following cessation of blood
supply.

Ischemia is local and temporary anemia due to obstruc-
tion of circulation to segments of the body.

An ilteration is a step of a repeated procedure.

A lead system refers to a well defined method for

positioning of electrodes on the surface of the body
for recording of the ECG.

The method of least squares is a method of arriving

at a mean value in such a way that the mean of the

error squared is minimized.

Mass screening refers to the testing of large numbers

of individuals for ECG abnormalities,.

The membrane resting potential is the potential across

a membrane in the absence of electrical activity.
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Metabolism refers to energy and material transforma-

tions occurring in living cells.
A mode consists of a group of characteristics belong-
ing to the same category.

Myocardial refers to the muscle of the heart.

Myocardium - the heart muscle.

Orthogonality is the property of having a rectangular

coordinate system,

A pattern vector is a vector composed of numbers de-

rives from the characteristics of a given signal.

Pericarditis is the inflammation of the pericardium,

or heart sac.

The power spectrum is a measure of the energy content

in different portions of the frequency domain.

Repolarization is the process by which the membrane

returns to its resting potential after being depola-
rized.

Serial electrocardiography is the system of recording

a subject's ECG for comparison to ECGs to be taken at
a later time, It is valuable in detecting changes in
an individuals ECG.

shift Invariance is the property of periodic signals

which states that a given shift invariant measurement
is unaffected by the point in the signal where the

measurements begin.
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Systemic refers to the blood flow from the left ventricle
through the arteries, arterioles, capillaries, venules,
and venous system which empties into the right atrium.

2 threshold unit is a detection device which switches

from one state to another when a preset value is reached.

A training set is a group of known signals used to

generate the decision numbers of a classifier.
A transform is a mathematical method of changing one
representation of a signal to another.

The ventricles are the pumping chambers of the heart.

The left ventricle pumps into the aorta and the right

vectricle pumps into the pulmonary artery.
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INTRODUCTION TO ELECTROCARDIOGRAPHY

3.1 Membrane Potential

The electrocardiogram is an indication of the electrical
events taking place in the myocardium. The electric potential
is generated by the depolarization and repolarization of the
muscle cells, Contraction of muscle mass is a consequence of
the depolarization of the muscle cell membrane. In non-contract-
ing muscle cells there is a potential gradient due to the greater
concentration of positive ions outside of the cell as compared to
inside of the cell. The potential so developed is called the
membrane resting potential and is approximately -90 mv, This
potential is primarily due to the ionic gradient. The de-
polarization of the cell membrane to both sodium and potassium ions
Movement of sodium ions into the cell and the potassium ions out
of the cell results in the membrane potential increasing to
approximately +20 mv, A simplified explanation of muscle re-
polarization is the following: the sodium and potassium iocns
return to their original concentrations inside and outside of
the cell resulting in the return of the membrane resting potential.
Fig., (3-1) shows this sequence of events for a single ventricular
muscle cell. Again, the electrocardiogram is the electric signal
measured at the body surface, and represents the depolarization

and repolarization of the myocardium tissue,
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3.2 Overview of Circulatory System

The heart 1s a cyclic pump, that is, there are events which
cycle each time that the heart pumps blood to the body. In
tracing a drop of blood through the circulatory system, the
following events would be encountered. Blood enters the right
atrium of the heart from the vena cava. Generally speaking this
blood is deficient in oxygen and heavily laden with carbon dioxide.
Contraction of the right atrium forces the blood through the
tricuspid valve into the right ventricle. The right ventricle
aids the passage of the blood through the semilunar valve into
the pulmonary artery which carries it to the lungs. The capillary
system of the lungs provides for the exchange of carbon dioxide
for oxygen. The oxygenated blood then travels to the left atrium
via the pulmonary vein. The left atrium again contracts and the
blood enters the left ventricle through the mitral valve. Here
it should be noted that the left and right chambers of the heart
function almost simultaneously. When the ventricles contract, the
blood is pumped out of the left ventricle into the aorta from whenc
it is distributed to the body by the arterial system. After passin
through the arterial and capillary systems the blood again enters

the wvenous system and the cycle is repeated.

3.3 Generation of ECG Signal

The electrocardiograph signal shows the sequence of events
of this heart cycle. The initiating pulse is generated in the
sino-atrial node and triggers the depolarization and contraction
of the atria. This depolarization is shown as the "P" segment

of the ECG. The bioelectric signal then travels to the atrioc-



12

ventricular node where it is slowed down before being transmitted
to the ventricles. The impulse is transmitted first to the

Bundle of His, a group of special conducting nerve fibers which
"short circuit" the triggering pulse to the apex of the heart.
While the ventricles are contracting the atria are repolarizing or
returning to their resting potential. The repolarization of the
atria which occurs approximately at the initial phase of the de-
polarization of the wventricles is masked by the latter event due

to the relatively large muscle masses of the ventricles as compared
to the atria. The depolarization of the ventricles is shown in the
"ORS" segment of the ECG, After this depolarization and contractio
of the ventricles they repolarize to return to their resting po-
tential. The repolarization of the ventricles begins at the apex
of the heart and travels towards the base, This repolarization
manlfests itself as the "T" segment of the ECG. Figure (3-2)

illustrates this process.

3.5 Recording the ECG

There are several different accepted lead systems used to
record the ECG. The one most commonly used is the so-called
standard lead system. This system consists of three leads or
pairs of connections. Its configuration is that shown in Fig.
(3-3) . Another useful lead system is the orthogonal lead system.
This system measures the heart's electrical activity in three
dimensions. Its advantage is that these three dimensions are
nearly orthogonal to each other yielding a maximum amount of

information about the ECG and the corresponding electrical
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Fig. 3-3. The Standard Lead System Configuration

Fig. 3-4., The X Y Z Lead System Configuration.
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activity of the heart. Figure (3-4) shows the McFee orthogonal

XYZ lead system configuration used in this study.

3.6 Diagnostic Significance of ECG

The information obtained from the ECG is useful in the
diagnosis of the following conditions [20]:

A. Atrial and ventricular hypertrophy

B. Myocardial infarction

C. Arrhythmias

D. Pericarditis

E. Systemic diseases affecting the heart

F. Effect of cardiac drugs on the heart

G. Disturbances in the electrolyte metabolism

In observing an ECG the given signal is compared to a nor-
mal signal. It would be very easy to diagnose any of the above
conditions if a normal signal meant that only one possible wave-
form was present, This is not the case. The normal ECG signal
consists of a range of signals. Both the period and the ampli-
tude of the normal signal may vary within limits, with the signal
being classified as normal. Even the shape of the waveform may
vary among healthy subjects. Such factors as the orientation of
the heart and the physical size of the subject may cause the ECG
to vary from that of the so-called normal, This variation must
be kept in mind when trying to analyze the ECG to ascertain the
condition of the subject's heart. For a complete diagnosis of
cardiac abnormalities information in addition to the ECG is utili z

The ECG, however, is probably the most significant.
References: [14,18,22,35,40].
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LITERATURE SEARCH

4,1 Frequency Response of ECG Monitoring System

The development of a system to automate electrocardiographic
data analysis is dependent upon the choice of a suitable set of
specifications for the system. In electrocardiography, one of
the most important specifications for the system to be used is that
of its frequency response,

Berson and Pipberger [8] studied the low frequency response
needed for accurate reproduction of the ECG, 1In that study, it
was shown that errors due to inadequate low frequency response were
evidenced in distortions in the S-T segment and the T wave. These
segments and the T wave are important in recognizing acute myo-
cardial infarctions, myocardial ischemia, the effects of exercise
and many other conditions. Eleven abnormal and twenty four normal
ECGs were studied. It was found that the abnormal waveforms
were more readily distorted due to inadequate low freguency charac-
teristics of the recording system than the normal waveforms. It
was suggested that low frequency characteristics of a 3 db. cutoff
frequency at .05 Hz, and 6 db. per octave roll off would give
better accuracy and that this increased accuracy would be desirable
with the advent of better recording systems and the introduction
of computer analysis,.

In a later study Berson and Pipberger [7] studied the effects
of inadequate high frequency response of recording devices. It

was found that the QRS complex is the most affected part of the
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ECG when the recording device does not have sufficient high fre-
quency characteristics. The amplitude characteristics of the
QRS complex were found to be directly related to the high frequen-
cy response characteristics of the recording device, while the
QRS time durations were affected relatively little by its high
frequency performance. Both normal and abnormal records were
similarly affected. It was suggested that in order to reduce the
QRS amplitude errors to less than .10 mv a 3 db. cutoff fre-
quency greater than 100 Hz. was required. To reduce these errors
to below .05 mv a 3 db. cutoff frequency greater than 200 Hz.
was suggested.

écher and Young [34] suggested that the contributions by
frequencies greater than 100 Hz. are less than ten per cent of
the amplitude of the fundamental component of the QRS complex.

Langner and Geselowitz [25] also studied the high frequency
characteristics of the ECG, In that study it was found that in
post-coronary subjects there was increased notching and slurring
in the ECG. These effects increase the high frequency energy of
the ECG. Substantial 1000 Hz. components were often observed
and it was suggested that a system with a frequency response of
500 Hz, - 1000 Hz. would be adequate to record most of the high
frequency information contained in the ECG. Although the high
frequency components may be less than ten per cent of the ampli-
tude of the original waveform, these high frequency components
may be of great clinical value in diagnosis. Franke et al [19]
also supported the importance of these high frequency components

in diagnosis,.
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4,2 Sampling Rate and Leads Necessary for Reproduction of the ECG
In a paper discussing the use of computers in analyzing ECG
data, Pipberger [30] pointed out several observations in the use
of the computer in electrocardiography. It was found that a high
sampling rate is desired for numerical reproduction of the ECG,
This study found that a three lead system is sufficient for
computer ECG analysis and that a set of spatial ECG measurements
proved to be superior to those measurements obtained from a scalar

lead system.,

4.3 Systems in Use

Whiteman et al reported on an automated system used for
more than two years in processing over 50,000 twelve lead ECGs
[41]. The processing consisted of three steps., The first step
was to condense the data and to pick out the most significant
data for diagnosis. The second step was that of combining the
data, It was necessary to combine these data in such a way that
a given combination would show a particular abnormality. The
third and final step was that of diagnosis., The most general
diagnosis was used. For example, if the criteria for two ab-
normalities were met but one was contained in the other, the most
general category would be chosen as the diagnosis, It was also
emphasized that the computer was to aid the physician and to call
his attention to possible conditions of abnormality, but that
the physician was the ultimate decision maker.

Cooper et al [16] used the digital computer analysis of

15CGs in a community health department. It was felt that the
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computer would f£fill the need of such an organization since rapid,
low-cost medical diagnostic procedures were needed. The ECGs
were recorded during the day and then sent to a computing center
in the evening for interpretation. The results were classified

as normal, minor abnormal, and major abnormal. The patients in
the third class and their physicians were notified., The patient's
physicians in the second class were also notified. In addition,
this computer analysis was used successfully in routine screen-

ing and in home care,

4.4 Time Domain Approach

Most of the applications of computers to electrocardiography
have involved studying the ECG in the time domain [5-16,18,28-33,
36,37,41]. The procedures used include the measurement of slope,
amplitude and time intervals within and for the complete ECG.
The computer is then programmed to recognize these characteris-
tics in much the same way that a cardiologist intreprets the ECG
recording. A range of acceptable characteristics is developed
and then used as a basis for classification of the ECG signal.
One of the most difficult problems in the above time domain
approach encountered was that of recognizing the different seg-
ments of the ECG [40,42]. The QRS complex seemed to provide the
most accurate reference point in determining which point of the
ECG was being sampled. The positive and negative slopes of this
complex were the most often used characteristics for identifica-

tion of this segment of the ECG,
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4.5 Defining the Range of Normal ECGs

Another difficulty encountered in the classification of
ECGs is that of defining the range of normal for ECGs. Wartak
[40] pointed out that the normal values of the ECG components
are usually obtained by the statistical analysis of the data from
a large number of normal individuals. A normal subject was de-
fined as one who has been in the past and is presently free from
overt cardiovascular diseases or any condition which frequently
results in some form of cardiovascular disease. The statistical
distribution of most normal ECG parameters was found to be
skewed to the right. In the case of this asymmetrical distribu-
tion, it was suggested that the limits of normal be defined using
the ninety-six percentile range with two per cent eliminated from
both the minimal and maximal ends of the distribution. If the
ECG parameter in question does have a normal (symmetrical) dis-
tribution, it was suggested that the range of normal be defined
as the mean plus or minus two standard deviations to include
ninety-five per cent of this normal population.

Graybiel et al [21] studied the ECGs obtained from 100
young, healthy aviators with a mean age of 23.7 years. It was
shown that there is a considerable overlap between the normal and
abnormal range for the ECG . After noting the great variation
between normal ECGs, it was suggested that serial electrocardio-
graphy would be of great value to the physician in detecting a

subject's change in ECG.
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THE FREQUENCY APPROACH

To classify a given ECG signal its signature must be ascer-
tained. A signature is a group of features or attributes which
serve to distinguish a normal ECG from one that is abnormal. The
signature used in this study for the classification of normal
and abnormal ECGs is that of the power spectral points of the
signal's Bifore transform.

The BT transforms the time domain signal into the frequency
domain., It belongs to a family of transforms which are known as
orthogonal transforms. Such transforms have a unique property
in that they yield the distribution of power (i.e. the rate of
change of energy) in an ECG signhal. Such distributions are used
as signatures to help determine the classification of an incom-
ing ECG., A brief description of two members of this family of
orthogonal transformsfollows. A more complete description of

these transforms is avallable in references [2-4].

5.1 Discrete Fourier Transform (DFT)
Definition:
Iet [X(m)], m=0,1,...,(N-1) denote a sequence of N-
periodic real numbers obtained by sampling an ECG signal as shown

in Fig. (5-1). The DFT corresponding to the ECG is defined as

N-1
c, (k) = 1% 2 xmwW®, =0,1,..., N-1) (5-1)
m=0
where 2T

W=e_lTT', i = ¥=T and the Cx(k) are the DFT copef-

ficients,
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The ECG sampled values [X(m)] can be recovered from the
transform coefficients Cx(k) by using the inverse discrete

Fourier transform (IDFT) which is defined as

N-1
X(m) = > ¢ (W™, n=0,1,2,...,(N-1) (5-2)
k=0

The physical significance of the DFT is that each |Cx(k)|2
represents the power (i.e.,, the rate of change of energy) in the

kth

frequency component of a sampled ECG, The distribution
|cx(k)]2, k=0,1,...,(N-1) is called the DFT power spectrum. For
a given ECG the power spectrum has (§-+ 1) independent points
given by !CX(k)|2, k=0,l,...,(§ + 1). Subsets of this set of

(g + 1) power spectrum points may be used as ECG signatures,

This spectrum can be computed rapidly using an algorithm called

the Fast Fourier Transform (FFT) [4].

5.2 Binary Fourier Representation (Bifore)

The Bifore transformation is another orthogonal transforma-
tion in which square waves are used in contrast to the exponential
functions ka [See 5.1] used in the DFT. These square waves are
called Walsh functions. Bifore resembles the Fourier harmonic
analysis in geometrical and analytical characteristics. Since
the Walsh functions are square waves, they take only two values,
namely +1 or -1 as shown in Fig. (5-2) where the first five Walsh
functions are pictured. By appropriately sampling Walsh functions,
a class of matrices known as Hadamard matrices can be obtained.
The elements of these matrices are +1. Using these matrices

it can be shown that [3,37] a transform which is analogous to
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DFT can be developed. This transform is known as the Bifore or

Walsh-Hadamard transform and is defined as

(B, (m} = & [H(n)] {X(m)} (5-3)
where

n = logZN

{Bx(n)}is a (Nx1l) wvector whose components BX(k), E=0,1 ;.00
(N-1) are the BT coefficients
and,

[H(n)] is an NxN Hadamard matrix, and {X(m)} represents the
sampled values of an ECG in the form of an Nxl vector.

Again, the ECG can be recovered from the transform ccefficient

Bx(k), k=0,1,...,(N-1) using the inverse BT (IBT) defined as

{X(m)} = [H(n)] {Bx(n)} (5-4)
The BT corresponding to an ECG can be computed rapidly using

an algorithm called the Fast Bifore Transform (FBT) which is
analogous to the FFT. The FBT for the case N=8 (i.e., 8 sampled

values of an ECG) is shown in Fig. (5-3).

5.3 Bifore Transform Power Spectrum
The Bifore transform power spectrum is defined as follows
[3,4]:

— R
P = BX(O)

Zs-l 2 S=l,2,...,n

P = B_" (k) (5-5)
B 225:;1 * n=log2N
k=2%"
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Iteration #1 Iteration #2 Iteration #3

X (0) xl(O)xz(O) 4(0) ———8_(0)
1

1 2 3
NN
X (6) x, (6) N x, (6) ,6 —85m (6)
X(7) X, (7) X, (7) S —Es ()
Notation:

X, (p)7 Xi,1(®) = X5(p) + X;(@)
Xyla)
X, (p)
X, (q)L Xipp(@ = X50@) - Xy(@)

Fig. 5-3. FBT signal flow graph, N=8.
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where P. are the power spectrum points and consist of log,N+l

points.
For the example of N=8 the BT spectrum obtained from (5-5)

is as follows:

P, = B, (0)
P, = sz(l)

p, =B 2(2) +B(3)

P, = B 2(4) + B _2(5) + B 2(6) + B 2(7)

The spectrum defined in (5-5) can be computed rapidly as shown
in Fig. (5-4) for the case N=8.

The BT spectrum has two basic propertiés which are also
possessed by the DFT power spectrum. These are as follows:

1. The spectrum points Pi’ i=0,1,...,log2N are invariant

to shifts of a sampled ECG signal [X(m)].

2. Each P, represents the distribution of power in an ECG.,

On the other hand, while the DFT power spectrum point
]Cx(k)l2 yvields the distribution of power in an ECG at the fre-
gquencies k=0,f0;2f0,..., g fO' (f0 being the fundamental fre-
quency*) the BT power spectrum Pi represents the power in a group
of frequencies. However, this grouping is not arbitrary. 1In
fact, it can be shown that [2,4] the BT power spectrum is related

to the DFT power spectrum as follows:

*Tf T is the duration of an ECG, then the fundamental frequency

. : 1
fb is given by f0 = F Hz.
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X (0) B_(0) 50 P,
X(1) B (1) —SQ . Py
X (2) B, (2) 5Q
. P
2
X130 FAST B, (3) 5
X (4) BLFORE B, (4) 5Q
TRANSFORM
X (5) B, (5) SQ
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X (6) B, (6) SQ
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Notation: 80 denotes "square".

Fig. 5-4, Computation of the power spectrum, N=8.
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_ .2
Py = C,.°(0)
_ A 2,N
Pl = Cx (f)
2524 :
P, =2 :E:: |, 1277 (2k+1) 1 | (5-6)
k=0

8 = 2,305l

n = logzN

From (5-6) it is evident that an inherent property of the
BT power spectrum is data compression, That is, while the DFT
power spectrum yields a distribution of power which consists of
(g + 1) points, the BT power spectrum yields one that consists

of (log2N+l) points.
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VI

THE CLASSIFICATION PROCESS

After the Bifore power spectrum for the ECGs studied has
been computed using the methods outlined in the previous chapter,
there remains the problem of classification. A classifier is a
device which makes decisions as to what group a given signal

HE and jth gsignals of the normal

belongs. For example, if the i

and abnormal ECGs are denoted by X n(t) and Xj a(t) respectively,
L4 r

then the task of the classifier was to assign all the X5 n(t) to

’

the class of normals and all the X',a(t) to the class of abnor-
mals. The means by which this task is accomplished will be dis-
cussed in this chapter., In what follows, the terms "class 1"
(C;) and "class 2" (C,) will denote the classes of normals and

abnormals respectively,.

6.1 Training a classifier

To classify a signal, it first must be identifiable. The
characteristics which serve to identify a given signal are part
of its signature. In this study, the signature used for the pur-
pose of accomplishing this classification is obtained from the
Bifore power spectrum., The signature may be thought of as a
vector and each vector may be thought as geoing from the origin
to some point in space. Ideally, a given class would be repre-
sented by one point in space. If the signature of a waveform
coincided with the point representing Cl' that signature would
be said to have come from a signal belonging to Cl. As usual,

the real life situation differs from the ideal and we have a
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range or group of points which belong to a given class. It then
seems logical that some sort of mean, i.e. an average ar center
of gravity, should be computed for each class. Thus, if fl and
Ké denote the mean vectors corresponding to Cl and C2, then an
incoming signature X would be classified as belonging to Cl or
C, depending upon whether it is closer to fl or ié respectively.
The process by which the mean of a class is determined is called

training, while the group of signals used to generate this mean

is called the training set. Thus, to train, for example, on the

basis of twenty signals, ten known signals belonging to C1 and
ten known signals belonging to C2 would be used. These twenty
signals constitute the training set for the classifier being
trained. After the training of the classifier is completed and
the means computed, the classifier would be able to make deci-

sions on incoming unknown signatures.

6.2 The Decision Rule Concept
Suppose each signature of class 1 and class 2 is in the
X
form of a 2-dimensional X = [X%J. For example, if the signature

of class 1 (C;) and class 2 (C,) are given by

5 6 6 6 7
Cp: Xyp = [g)s Xyp = [gls Xy3 = [gly X3y = [5], Xy = (5]

0 o -2 -3 -4
Crz Xpq = [3)r Xy = [ 3] X3 = D31, X5, = [ 31, X5 = [ 3]

they can be plotted as in Fig. (6-1). A reasonable boundary to
separate the two classes could be the perpendicular bisector of

the line joining the means (i.e., the averages) of the signatures
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of C1 and C2. The equation of this line is derived as follows.
let X be a point on the boundary and El and ié be the means
of class 1 and of class 2 respectively. Then from Fig. (6-1)

it follows that:

| 1%-%, ] = [[x-X,]] (6-1)
_ 2 L 2
”X-Xlll = ||X"X2H (6-2)
where,
| |X|| denotes the norm. of X. That is,
2
[1x]] = x'x
where,
X' denotes the transpose of X.
Using the above it can be shown that [4]
2 2
5 e 1,7 e - 6-3
(X -X,0 % = SR I - TIE L ) L=
For the example of Fig., (6-1) the following results are
obtained.
o ow i — =2
X, = [5,6] and X2[ 3]
Equation (6-3) yields
Bxl + 2.6x2 = 27.1 (6-4)
Referring to (6-3) the quantity
1.0 2 2
f{”XlH - X ¥y =27.1 (6-5)

is referred to as the threshold of the classifier.
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Fig. 6-1. The two dimens.onal feature space

associated with Cl and C,-
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Again, the discriminant function (i.e., a function which helps

discriminate between Cy and Cz) is given by

g(X) = 8X, + 2,6X, - 27.1 (6-6)

1 2

g(X)=0 in (6-6) gives the equation to the "decision boundary"
which separates Cl and C2 as shown in Fig. (6-1). If g(X)<0,
then, point X lies to the "right" of the boundary and thus be-

longs to C If g(X)<0, then X lies to the "left" of the

1
boundary and thus belongs to C2. If g(X)=0, the point lies on
the boundary and the investigator must decide to which class

such points should be assigned. A block diagram which implements
(6-6) is shown in Fig. (6-2). The unit making the decision on

the basis of the above inequalities is called a linear threshold

unit and is shown in Fig. (6-2}.

6.3 d-Dimensional Measurements [4]

In the previous section, the signature was in the form of
a vector which consisted of two components. In general, however,
it can consist of d-components. It can then be shown that the

discriminant function corresponding to (6-6) is given by
g(X) = wyXy + WoXy + L.+ Waxg - B, (6-7a)

The wvalues Wi i=l,2,;..;d and 6 are the "weights" of the classi-
fier, The weight 6 is designated as the threshold of the classi
fier. For this d-dimensional case, the block diagram which imple-
ments (6-7) is shown in Fig. (6-3). It follows that (6-7a can

be written as " %
g(X) = W'X (6~-7h)



X, 8 ’
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Fig. 6-2. Implementation of classifier for (6-6).
X
1 wl
%5 W
. ! +l

fes

Fig. 6-3. Two class classifier for d dimension pattern vector.
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where,

W' = (w w )

1 chnnvoowd

and

X! = (X7 Xy.e.....%Xq -1) 1s called the augmented

vector corresponding to X.

6.5 A Least Squares Classifier [4]

In the above discussion it was tacitly assumed that the
signatures pertaining to Cl and C2 form tight clusters about their
means. In a practical situation, however, this is generally not
the case. Thus, to minimize the "spread" of the signatures be-
longing to Cl and C2, an additional transformation is needed.

This transformation is illustrated for the case where 2-dimensional
signatures are used. Each signature vector in the "signature
space" is augmented with a -1 component [see (6-7)] to cbtain an
"augmented signature space". It can be shown that the desired

additional transformation A is obtained by means of the calcula-

tion
_ o _ = n.a. "'l _
A= [Xl X2][XX ] (6-8)
where, N2
-~ _ l ~
Xy = ﬁlZ X34
j=1
= l Nz ~
%2 TN, %23
j=1
2 N,
J\l\' _ l l ~ A [ ]
[XX'] = ﬁ—(XlJ Xij ) ’
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and N. and N, are the number of training signatures belonging

1 2

to C1 and C, respectively.
Note that A in (6-8) is a (1x3) wvector when X is 2-dimen-—

sional. In general, when X is d-dimensional
A= Wy Wy.e....wWy 9] (6-9}

then A is a [lx(d+1l)] row vector of the form (6-9).

In essence, the matrix A maps (using the least square
error criterion) the augmented signatures ﬁij' j=1,2,...Nl and
in the vicinities of the points V,=+1 and

ij
\Y%

;351,200 N, 1

2=—l in the decision space as shown in Fig. (6-4)C. The process

of training is merely one where the Wi g i=1,2,...d and ¢ in (6-9)

are computed to determine A,

Once A has been obtained, a signature X' = [x1 X, x3...xd]
is identified with Cl or C2 as follows:
~ ) _
1. X' = [xlxz....xd 1] is formed
2. g(X) = Ax=wlx1 + WX, ot oL + wdxd—l is computed

3. If g(X)<0, it is decided that Xecl

If g(X)>0, it is decided that XEC2

In essence, ¢g(X)>0 implies that Z=Aﬁ which represents the
mapping of X in the decision space (see Fig. (6-4)C) is closer
to Vl=+1. Conversely,lg(X)<0 implies that the mapping of Q falls
closer to V2=—l. The implementation of this classifier is
identical to that shown in Fig. (6-3). As mentioned previously,

the parameters w,, i=1,2,.,.,d and & are obtained during the

training process.
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Fig. 6-4. Signature space, augmented signature
space and decision space for a least-
squares minimum distance classifier.
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VII

EXPERIMENTAL RESULTS

The purpose of this study was to demonstrate the feasibility
of automatically classifying ECG signals using a frequency analysis
approach., This study was made using ECG data from the canine,

This animal was chosen for study of the ECG because of the
similarities between its heart and that of the human. This
similarity would then allow the extension of the procedures de-
veloped in this study to the human signals. Another reason for
the choice of the canine was that it is a readily obtainable lab-

oratory animal and much work has been done with its ECG [18].

7.1 Experimental Procedure

The experimental procedure consisted of anesthesising the
canine whose ECG was to be taken to minimize muscle artifact
and to make the animal easier to position for the monitoring of
its ECG, The X Y Z lead system was chosen since it is a corrected
orthogonal lead system which yields a maximum amount of informa-
tion about the electrical activity of the heart [35]. Two leads
were chosen out of these three leads for further study, the X
and the Y leads.

The system used to record the data is shown in Fig. (7-1).
It consisted of an Electronics for Medicine model DR-8 recording
system. This unit contained the necessary ECG amplifiers, a
cathode ray display, balancing amplifiers for recording and a
photographic paper recorder. A Hewlett Packard model 3960A

tape recorder was used to record the data. This recorder was
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of the four channel, FM type. It was used at 7 1/2 ips (inches
per second) to record and 3 3/4 ips to play back. The recorded
signals were then played back through the Electronics for Medicine
system and recorded on light sensitive photographic paper. The
frequency response of this system was more than adequate for
minimizing distortion of the ECG signal. [L7,23]

It was desired to record both normal and abnormal ECGs
from the same three experimental animals. The determination of
normal and abnormal was made by the veterinary cardiologist at
Kansas State University's Dykstra Veterinary Hospital. The
normal ECG for the animal under study was first recorded. By
mechanical and chemical stimuli, this normal ECG was altered.
These altered or abnormal ECGs were then recorded. By recording
the data in the above manner, it was possible to study the charac-
teristics of normal vs. abnormal ECGs in two ways. First, ECGs
from the three dogs could be mixed and the characteristics of
normal vs. abnormal ECGs in this mixed population could be studied.
Secondly, the relationship between normal and abnormal ECGs in
a given subject could be studied.

The QRS complex of the ECG was chosen as the characteristic
of the ECG to be used to claSsify the signals. This segment was
chosen because it is one of the easier segments of the ECG for
an automated system té recognize due to its large positive and
negative slopes [40,42]. It was also chosen since many common
abnormalities may be recognizable due to their QRS configurations
[18,22]. In using this one segment, problems of recognizing the

other segments of the ECG and of the varying time durations be-
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tween segments could be avoided.

Since the digital computer was to be used in the classifica-
tion of the data, it was necessary to digitize the data. Using
the data obtained from the X and Y leads this was done in the
following manner. The ECG which had been recorded on photo-
graphic paper was photographed on 35 mm Kodak Tri X negative film
using a Nikon F camera with a 50 mm £ 2.0 Nikkor lens and Nikkor
K1 and K2 extension tubes. The resulting negative was processed
and projected onto the screen of a microfilm reader, On the
screen of this reader was a grid designed to sample the QRS com-
plex 32 times. The values of the amplitude of each of these
samples were then entered on standard IBM data cards for pro-

cessing by the IBM 360 computer.

7.2 Fregquency Analysis of ECG Data

Figure (7-2) shows the two channels of information used
in this study. The QRS portion of the ECG was sampled 32 times
and each sample consisted of two components Xl(i) and Xz(i)

th

where i=1,2,...,32, Xl(i) is the wvalue of the i sample from

kB sample from the

the X channel while Xz(i) is the value of the i
Y channel. The two channels were sampled simultaneously thus,
' Xl(i) and Xz(i) were determined at the same point in time, The
result of this sampliﬁg of the X and Y leads of the ECG is a

2 % 32 matrix of the form

X, (1) X, (0) X,(1) X,(2)....%,(31)
1 o 1 1 1 1 . (Fesl]

xz(i) xzw) Xz(l) x2(2)....x2(31)
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Fig. 7-2.

Sampled QRS segments obtained
from leads X and Y.

lead X

lead Y
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The two~dimensional form of the Bifore transform discussed
in Chapter 5 was used. The application of the two dimensional
BT is exactly equivalent to applying the one dimensional BT to
the sum of channels X and Y and then applying it to the difference
of channels X and Y. Since each of these applications will in-
volve 32 data points each will yield a 6 component power spectrum,
The total result for the two dimensional BT power spectrum will

be 12 components as shown by Fig. (7-3).

7.3 Selection of BT Spectrum Points as Signatures

The next step towards the goal of automating the analysis
of the ECG was to choose the characteristics from the power
spectrum obtained and shown in Table (7-1) to be used in the
classification process. Upon examination of the data of Table
(7-1) , it was decided that much of the wvariation between normal
and abnormal ECGs is contained in components 5,6,11, and 12 of
the Bifore power spectrum. It was further decided that these
components would be used in the classification process. These
components are the onés that combine the high frequency DFT
power spectrum points, as discussed in Chapter 5. Figures (7~4)
and (7-5) show the two dimensional plots of component 5 vs. 6
and component 11 vs. 12. The separation of normal from abnormal
in both plots suggested that two or more components would charac-
terize the signal for classification purposes. The least squares
classifier discussed in Chapter 6 (sectioﬁ 5) was used to classi-
fy normal and abnormal ECGs. The classifier was trained with a

known set of ten signals belonging to the normal class and ten
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signals belonging to the abnormal class. It was then tested as
to how well it classified this training set. The resultant was
the so-called confusion matrix in which the diagonal terms show
correct decisions and the off diagonal terms show the incorrect

decisions. The general form of this matrix is shown in Flg. (71=6}.

7.4 Significance of the Confusion Matrix

Tables (7-2), (7-3) and (7-4) show the results of the dif-
ferent training sets used in the training of the two-class classi-
fier. Normals were obtained only from dogs #1 and #3. Table
(7-2a,b) and (7-3¢,f) show the correct classification of all
normals and abnormals within a given dog. This suggested the
possibility of applying this technique to a monitoring situation.
The two components used as a result of the two channels of in-
formation X and Y were more successful in this classification
process than the two components obtained with the one dimensional
transform using the X lead only. This result can be seen by com-
paring Tables (7-2a,b,c) and (7-3a,b,c).

The three dog's ECGs were then mixed. The problem at this
point involved finding the best combination of the Bifore power
spectrum points to separate the normals from abnormals for this
mixed case. Tables (7-2c,e,f} and (7-3c) show the results of
these attempts. Using the X lead only as in Table (7-3c) results
in eight abnormals baing classed as normal. When the two channels
of ECG data are used, the results in Table (7-2c¢,d,e,f) are ob-
tained. Table (7-2¢) shows six errors of the abnormal type being

classed normal type using components 11,12, In Table (7-24),
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N(1,2)

N(2,2})

N(i,j) indicates that a signal from class "3j" has

been classed as belonging to class "i".

Fig.

7-6.

The confusion matrix.
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six errors were again made but only four were abnormals classed
as normal and two were nbrmals classed abnormal. These results
were obtained using components 5 and 6 for the classification
process. In the next step, three components were used and the
results are shown in Table (7-2e). Only four errors were made,
three of the abnormal classed normal type and one of the normal
classed abnormal type. To further reduce the number of errors
being made, the four power spectrum components 5,6,11, and 12
were used and the results are shown in Table (7-2f). The number
of errors was reduced to three of the abnormal classed normal
type. The abovelresults were all obtained by using ten normal
and ten abnormal ECGs to train the classifier and then using the
trained classifier to classify these same training signals. The
actual classification is made by taking the dot product of the
pattern vector in question with the decision numbers obtained in
this training process. _Chapter 6 discusses this process,

The errors in classification seemed to be caused by the
existence of two modes of normal, one for dog #1 and one for
dog #3. The bimodal effect was eliminated by using the normals
from one dog at a time with one set of abnormals at a time. The
results are shown in Table (7-4). The normals from one dog
separate well from the abnormals of each of the oﬁher dogs and
of the given dog as shown by the combinations studied. These
confusion matrices again came from the training set as previously
described.

Once the decision numbers are obtained, it is possible to

take signals from outside of the training set, obtain their
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pattern vector, form their Bifore power spectrum and then use the
decision numbers from the training set to c¢lassify these signals.
Table (7-5) shows the results obtained using the decision numbers
from the training process to classify the complete set of signals.
In Table (7-5a) the three components used were 6, 11, and 12,
Eleven errors were made out of fifty-four signals being classi-
fied. In Table (7~5b) the four components 5, 6, 11 and 12 were
used and the results were eight errors of the abnormal classed

normal type for an efficiency of better than eighty-five per cent.
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VIII

CONCLUSIONS

The result of this study suggest three plausible uses for
the application of Bifore frequency analysis to ECG data. First
of all, in patient monitoring one normal or acceptable ECG would
be obtained for the individual being monitored. This "normal"
might actually be an abnormal signal but would be an acceptable
steady state signal for the individual at that time. This "normal"
would be compared to a large class of previously collected ab-
normal signals continuously and'any change from the "normal"
would be detected. This application is strongly supported by
the success of the classifier in separating normal and abnormal
ECGs in a given dog. A second, related, application would be
to use the techniques developed in serial electrocardiography.
Serial electrocardiography involves the taking of the individual's
ECG while he is in the normal state for comparison at a future
time. It would become part of his medical history. Any changes
would signify the onset of heart malfunctionings. Mass screening
is the third application. In this case large amounts of normal
and abnormal ECGs would be collected for use in training a classi-
fier which would be used in any situations where mass screening
would be necessary.

In any of the above applications an alternate approach to
the least square error classifier should be investigated. This
alternate approach would use the cross correlation between a

known and an unknown signal's Bifore power spectrum as a basis
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for classification. The unknown signal would be classed as a
member of the group to which it had the highest correlation,

This approach should alsoc be compared to the straightforward cross
correlation of the time domain samples to determine whether the
Bifore power spectrum is more "sensitive" to changes in the ECG.

The implementation of the procedures described above would
be as shown in Fig. (8-1). The screening system would consist
of one box with the decision numbers wired into it, 1In the patient
monitoring or the serial application this box would consist.of
adjustable decision parameters. These parameters would be ob-
tained by running a few traces of the individual's ECG through
the system in Fig. (8-2). Thus, the monitoring facility would
need only one large system to determine the parameters to be used
in the classifier. The classifier itself would be small and
relatively inexpensive enabling a large number to be economically
used in the examining facility. These same monitoring devices
could be used for mass screening or the simpler "hard wired" units
could be used.

The classifier used in this study was of the least squares
linear type. Possibly correlation or nearest neighborhood type
classifiers could be used instead. These alternate approaches
to the classifier would still use the data from the frequency
analysis as features or characteristics. In future work, it is
suggested that larger guantities of data be collected to further
support the results of this preliminary study. An automated
system to take the data from the tape recorder to the computer

would be of great value in amassing this data. It possibly would
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give better results with the elimination of the human sampling
errors. This device then would be incorporated into the final
data processing system. One of the most serious problems en-
countered was due to the multi-modal character of both the normal
and the abnormal signals, A further study should determine‘if
there are a finite number of these modes and what they represent.
The classifier would then be multi-modal in nature and perhaps
with a correlation or nearest neighbor classifier the different
abnormalities could be c¢lassified as subclasses of the abnormal.
The same could be done for the different normal modes.

The classifier is dependent on the choosing of the most
significant characteristics as a basis for classification, In
future studies, the intermediate invariants might be studied
in an attempt to choose more significant characteristics than
those presented in this study. Perhaps these results could be
combined with the present characteristics for even better classi-
fication results,

Preprocessing would also make the classification process
more efficient by filtering out some more obvious abnormal re-
cordings. The limits of the normal QRS interval could be set
and those signals outside of these set normal limits would be
declared abnormal in this first step. Any additional information
is of great value to the classifier. For example, in the case
of the monitoring device, often times the physician expects
certain abnormalities to occur after a certain type of illness,
In the training of the classifier, this would enable it to

eliminate some modes from its training set making the classifier



59

more efficient.

In summary, this study has demonstrated the feasibility of
using frequency domain characteristics to analyze electrocardio-
graphic data. Further studies should include the analysis of
more data, searching for other significant features of the QRS
complex, preprocessing and using any other available information
to improve the efficiency of the classification process. The
goal is to develop a system that will efficiently, economically,

and conveniently analyze electrocardiographic data.
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Introduction

The notion of binary Fourier representation (BIFORE)
was introduced by Ohnsorg [1]. BIFORE resembles the
Fourier harmonic analysis in both geometrical and analytical
charecteristics. While the Fourier bases are sinusoids with
harmonic frequencies, the BIFORE bases are Walsh func-
tions. Since the Walsh functions are square waves, they take
only two values, namely, 41 or —1. Thus, in the case of
finite systems, these square waves are represented by binary
n-tuples. The simplicity of square waves or binary n-tuples
relative to sinusoids or sampled sinusoids permits relatively
easy information processing in several applications which
include signal representation and classification [2], image
coding [3], spectral analysis of digital systems [4], speech
processing [5], and sequency analysis and synthesis of voice
signals [6]. Since only real number operations are involved,
BIFORE transform (BT) can save additional computer time.
Other advantages are possibly data compression, tolerance
to channel errors, and reduced bandwidth transmission [3].

Walsh Functions

Walsh functions [7] are best introduced by referring to the
following Fourier sinusoids.

Ue®) =1
Upal) = cos (2armt)

Up.2(t) = sin (2rmi), m=123, - .. (1)

The first five of the Fourier sinusoids are shown in Fig. |
over the interval (0, 1). The corresponding Walsh functions
{¥m(?)} are shown in Fig. 2. Superimposition of these figures
leads to the fact that:

1) ¥ot)=U0);

2) the zero crossings of the remaining pairs of pictured

functions are identical.

“This seems to indicate that the Walsh functions are an

infinitely clipped version of the sinusoids. In general this is
not the case, as the sign changes are not equidistant (Fig. 3).
The total number of zero crossings of Walsh functions and
corresponding sinusoids, however, are the same. Walsh
functions can be generated recursively, are orthogonal, and
form a closed set [7]-[9]. Signal analysis and synthesis can
be carried out by expanding functions in Walsh series [6]. An
expository article on applications of Walsh function has
appeared recently [11].

Hadamard Matrices

Sampling of the Walsh functions shown in Fig. 3 at 2°
equally spaced sample points fy, fs, - - -, ta in (0, 1) results
in an 88 array of +1's and —1's. As each sample repre-
sents a constant section of the Walsh function, the informa-
tion content is preserved. The rows of any array obtained by
this method can be rearranged to form a particular matrix of
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the type studied by Hadamard [12]. One such rearrangement

Thus, the periodic sampling of Walsh functions yielc
after rearrangment of the rows, Hadamard matrices whit

is

-1 1 1 1¢ 1 1717 17 can be recursively generated as follows:
1—-1 1—=1( 1-1 1~-1 [H©O)] = (1]
1 1 -1-1 1 1 1 -1-1 |
f el sl L] 3 =11 I (] | ()]

HB3)] =| ~—————— ‘: ———————— 0] Hk+ 1] = —[f}“;l—l-——ﬂl;-k—)l—" '
1 1 1 11-1-1-1-1 @] 1 —H¢
|

1 -1 1 -1 : -1 1 -1 1 k=0’1"2l...,g;g=10g=u_ (
1 1-1-11-1-1 11
1 -1 -1 1 bl L Lo If {H(g. D}, I=1,2, -+ -, n, g=log n, denotes the !

= ! - column of [H(g)], then its rows | H(g, DT serve as a ha

where [TH(D] is n 2020 Hadamard matrix.

set in the finite dimensional vector space of dimension
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These matrices possess transform properties since [//(g)] is
both symmetric and orthogonul, i.e.,

@) 1] = [1@)]
where [#(g)] is the #Xn identity matrix,

BIFORE or Hadamard Transform

BIFORE or Hadamard transform (BT or HT) of an a-

periodic sequence [x(k)} = {x(0), x(1), - -+, x(n—1)} is
defined as

1
{B.(g)} = . (H)]{x(@)} )

- x(n—1)} is the vector repre-

where {x(g)}7= {x(0)x(1) - -

sentation of the sequence {x(k)} and {B.(g)}”
= [ BA0)B.(1) - - - B{n—1)}, the B.( ) being the BT coeffi-
cients.

The signal can be recovered uniquely from the inverse
BIFORE transform (IBT), i.e.,

{x(@)} = [H@)){B:(a)}. (5)

Fast BIFORE Transform (FBT)

Using matrix factoring [13] or matrix partitioning [14],
algorithnis for fast and efficient computation of BT can be
developed. Similar techniques are applicable to discrete
Fourier and other orthogonal transforms [13]-[17]. As an
example, for n=8, (4) can be expressed in matrix form as

by

ITERATION NO.i ITERATION NO.2 ITERATION NO. 3

X(0) -t X,(0) X2(0) X3(0) —+2— B0}
X0 Xl X201} Xlx 2 g

x(%)

xsi2} By(2)

./\

.’.___,-
bt

Xz(2)
Ny 2(3) ><
Xz 14)
X 2(5) X

x;l:)-——-——ﬂ,m

x;(-ﬂ-—--—— Byl4)

X3(8) —--b— By(5)

X(6) - X2 (6) —v— X3(6) — 52— Byl6)
:25: g
X7 Xy (1) " g (7} " X3 7] —— By (7}

Fig. 4. Signal flow graph illustrating the computation of BT coefficients
for n=8.

1) The total number of iterations is given by g=log, n.
Thus, if r is an iteration index, then r=1,2, - - -, g.

2} The rth iteration results in 2! groups with n/2~!
members in each group. Half the members in each group are
associated with an addition operation while the remaining
half are associated with a subtraction operation.

follows: 3) The total number of arithmetic operations to compute
’B,(O)} (l 1) !I (1 1) (1 1) ! (1 l) 1 (z(0)
R VT VN S VA N St VA MO Vo0 £
B:(2) (1 1) I ~1 (1 1) (1 1) || . (l 1) x(2)
B.(3) ) 1 -1 l 1 _--1 1 -1 |I 1 -1/ | |=(3)
] | | — O
B.(4) (1 1‘) : (1 l) i (1 1) : _j (1 1) z(4)
B,(5) 1 -1/ | 1 -1 1 =1/ 1 =1 z(5)
I ahy e e ) =
B.(7) 1 =1/ | 1 -1 1 -1/ | 1 -1 z(7)

The structure of (6) suggests repeated applications of
matrix partitioning, and the related sequence of computa-
tions is shown in the signal flow graph in Fig. 4. Apart from
the 4 multiplier, the total number of arithmetic operations
(real additions and subtractions) required for computing the
BT is §X3=24.

Generalizations

The peneralizations pertinent to the FBT are straight-
forward, The overall structure of the signal flow graph for
amy i simikar o that ol Fig, 4. For the [ast algorithm the
followiny abservitions can be made.

all the transform coefficients is approximately n log: n,

compared to #* as implied by (4).
4) The algorithm can also be used to compute the IBT
by merely omitting the constant multiplier 1/n.

BIFORE Power Spectrum [18]

To entertain the idea of a BIFORE power spectrum,
Parseval's theorem is developed. The trunspose of (4) yiclds
(7)

1
{ BT = i [x@)} W]
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From (4) und (7) it follows that

1
B | T Bulg)] = = @) H@ I [HE@ ] x@)},

1
|BA9)} 7| B.9)} = - {x@]r{x@], 8)
or
lw*-l n—1i
— hzo k) = 2. B(h). (9)
o ! o |
| |
s omo—s]
0 | -2 |
| |
——l=——1
i
g oo !
[A(3)].“—2“ I
0

Thus, if the sequence {x(k)} represents the sampled values
of a current or voltage signal x(#) and a 1 Q pure resistive load
is assumed, then the left-hand side of (9) represents the aver-
age power dissipated. The summation on the right-hand side
of (9) implies that the signal power is conserved in the trans-
form domain. The set { B,%(k)}, however, does not represent
the individual spectral points as it is not invariant to the
shift of the sampled data.

Development of the Spectrum

The development of the power spectrum is best illustrated
by considering the case when n=8. Let {x9(k)} denote
{ x(k)} shifted to the left by / positions. That is,

[x®0E)T = (el L 1o 2o = DY,

=1,2---,7
which with /=1 yields
[x2@)} = [ME){x@)] (10)
where
0 1 0 0 0 0 0 07
00100000
0 001 0CO0O0O0
[M(3)]u 6 0 06 01 0 00 ()
00000100
noo0OODO0OCO0I100
000 0O0O0TD0 1
.1 00 0 0 0 0 04
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BT of {x'(3)} is

B} = HE@II@ )] SR
That is,
{B. @)} = [A@ N B.(3) (L)
where
[A@®)] = [ @ HEB)). (1)
Evaluation of the shift matrix [4(3)] in (13) results in
.'
o
|
|
______ : 0
—2 |
0 |
2 (13)
b el sl sl
11 11
11 1 -1
O
Repetitive application of (14) yields
(B.o@)}) = [A@]B.B)}, =127 (6

[A4(3)] is made up of square matrices of increasing order
along the diagonal. From the “block diagonal® structurc of
[4(3)] and (16), the following set of equations is obtained:

B,"(0) = B.(0)
B.(1) = (—~1)'B.(1)

[Bx“)(2)] _ [D(l)]I[B'(z)]

B.'""(3) B.(3)
and
B.e[”(‘l’) Bx(l)
B.(5) 1 B,(5) -
B.O®@) | 2 D) B.(6) )
B.“YT) BT
where
0 -1
[b(v] = [1 o]
and
1 -1 -1 —1
1 1 -1 1 1 ;
I e - I~
1>2)] 2 | S R ‘
-1 -1 1 -1
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are orthogonal. That is, [D(1)]T[D(1)]=[X1)] and
[P [D@)]= 1)),
Equation (17) implics that
(B.D() =B2(k), k=01,
2 (B.(k)* = 30 BA(K) (19)

ke k=l

and

7 7
T (BE): = T BAK), 1=1,2--,7.
k=1

k=4

The set of invariants defined in (19) represents the power
spectrum. In general, denote this spectrum as follows:

Pa = B,*0)

8=123, - -.,9. (20)

-
I
™
&
£

Fast Algorithm for Power Spectrum

By suitably modifying the FBT approach, the power spec-
trum can be computed without having to actually compute
all the coeflicients B.(k). The modification is best illustrated
for the case when n=8§,. '

From the signal flow graph in Fig. 4, it follows that

B,(0) = x4(0)/8

B:(l) = Ia(l)/g

[ai0] =11y

and
B,(4) z1(4)
Bz(s) 3:1(5)
=3 H(2 . 21
B.(6) }H@)] 24(6) (21)
B.(7) z:(7)
As [H(g)] is orthogonal, one can obtain from (21)
Shw Y e
k=2 mm2
and
7 4 7
PBAE) = — 2 aim). - . (22)
kensd 32 m=q

The power spectrum then is

1

Py = -8_5 1‘32(0)
1

Pl = g‘; .l'ue(l)

) ]
Iy = =3 Y xa3(m)

M

and

29

91 1
Py = ?3-‘ 2 x¥(m), (23)

T me
The generalization of the above FBT modification to compulte
the power spectrum is straightforward as indicated below,
Py = 1,40)/n?

Qa1 21

P="- ¥
n

" mmpe-l

Tomam), 8=1,2, . +,g (24)
The signal flow graph corresponding to (24) is shown in

Fig. 5.

Physical Interpretation of the BIFORE Power Spectrum

BIFORE power spectrum has dual significance. The
spectrum points P, represent the average powers in a set of
(g-+1) sequences. Each spectral point also represents the
power content of a group of frequencies rather than that of
a single frequency. The a-periodic sequence {x(k)} can be
decomposed into an a/2-periodic sequence | Fi(k)] and an
n/2-antiperiodic? sequence {Gy(k)} as follows:

[z} = {Fi®)] + {Gub)}

where

(PR} = é—{x(k) Ty (k + %)}

(Gy(k)) = ?lé-{z(k) - ;(fc + 1;-)} .

{Fi(k)} can be further decomposed into an n/4-periodic
sequence | Fy(k)} and an n/4-antiperiodic sequence [G.(k)},
i€, Fiky={Fyk)}+{Gyk)} where

{MM=%%m+m@+9}

and
(25)

and
1 n
{mm=5&mmn0+7».<m

Continuing this process, it follows that the given n-periodic
sequence {x(k)} can be decomposed into the following
(g+1) subsequences:

te(®)} = {Foh)} + {Gok)}

+{Gu®} + -+ -+ [} @D
where {F,(k)} is a I-periodic sequence and {G,_(k)} is a
2r-antiperiodic sequence, r=0, 1, - - -, (g—1).

This process of decomposition is illustrated in Fig. 6 for
N=8. Thus the sequence {x(k)} can be decomposed to
obtain ]

{x@®) ) = (M) + {Gaby) + LG+ (Gl @8)
where {Fy(k)} is I-periodic, while {Gy(k)}, |GAk)|, and

YA sequence [o(R)] is said to be Af-antiperiodic iF x(m) -
~-x{A4-m).
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ITERATION NO.I  ITERATION NO. 2 ITERATION NO. 3

2 IIG'
Oy BENE T
2
8
X3t x’,m L/ s

Fig. 5. Signal low groph Illustrating the computation of BT power spectrum,

ITERATION NO. | ITERATION NO. 2 ITERATION NO. 3
tr2 1 172

2
X(0) # F,(0) 0 F5 (0} Fi0)
\ / P} ] \/ 12 z :i_ (V7]
x{n o> —F)(h 5 o Fa(l) : G3(0)

xi8)

£
-0 G, (3)

X7

Fig. 6.- Flow graph Hlustrating the decomposition of lxlk}] into subsaquences.

| Gy(k)) are respectively 1-, 2-, and 4-antiperiodic. Therefore, these sequences can be denoted by vectors as follows:
[F@))7 = {5000 500 5.0 B0) B.(0) b0 b0) B0}
[Ga@)]T = [b.(1) = ba(1) (1) = 1) Be(1) = Du(1)  Be(1) = bu(D)} -
[Ge@]T = {6:2) (@) = ba(2) = 1B)  0a2)  0u(B) = bu(D) = bu(B)} )
[Gi@]T = [b(d)  WalB)  B0)  ba(T) — Dal) = B(5) — b(6) — ba(D)}
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where the coeflicients b,(k) will be expressed in terms of the
BIFORE coeflicients B.(k) at a later stage.

Inspection of the vectors in (29) shows that they are all
mutually orthogonal and hence it follows that:

[Hx@ e = [{F@) ]2 + [ st

+{{e.® +[{a@l* ©o)
where
[Gs(3) ] = 8b:3(1)
Hau@)le = 4 2 b2)
and
l{G:3) ][ = 2 ?_jb,!(k). (31)
The average power of {x(k)} is
u=~§ﬂm——MMMP
From (30) and (31), there results
1 ]
Pu’ = bzg(o) + b=2(1) + - beg(k)
2 i
] 7
+ = 2 bk).  (32)
4 323

In terms of the decomposed sequences of {x(k)}, its BT can
be expressed as

23
TABLE |
Frequen:y-Sequeﬂcy Compotition of BIFORE Coefficlents
BIFORE o -
Component Frequency Sequency
B,(0) 1] 0
B.(1) 4 4
B:(2) 2 2
#(3) 2 2
B.(4) 1 1
B(5) 3 3
B:(6) 1 1
BAT) k] 3
):b k) = 2 ZB ()
k=1
and
7 7
2 b2(k) = 4 32 BA(K).
ket ke
Thus
3 7
P, = B2(0) + B.*(1) + 2 B:X(k) + 2 B.X(k)
k=2 ked
=Py+ Py + Py + Ps. (35)

P, represents the average power in the l-periodic sequence
{ Fa(k)}, while Py, Py, and P; represent the average powers in

[B.(0)"] 1 111 11 } 1} 1 17 lb(O)Il Il b(l): Ir :(2)11 : b,(4)|1“
—_—— — ] ——— | —— = | e — | —— ——-——-l ——
B.(1) 1 f—lf 1 :——11[1 l—ll 1 }-1 fb(O); i (1); ; b(3)= ! b;(5)=
PSS — _..._I_...... ——— | — e | e | ———
B.(2) ] AN :0)] eIl e I st
B.(3 1 —[HQ —[HQ |b0| [=ba(1) | |—=3)| I be(T)i
ol P _~-—L-[-g—)lil-f—m~—|~—[_-(—)—] o (Il : | + : P ) 1] (33)
B.(4) 8 | lb (0)| | (1): | b=(2){ :—b;(4)l|
|
B.(5 l lb= 0 1 1=b(1)1 1 (@)1 1—b(8)
©) [H(2)] l [H(2)] I e I | i
B.(6) ! -|b=(0)| | b (l)l :—b=(2)1 }“bz(6)=
| B.(7)_ L | dLb@) 1-nm) -h@] 16O 1
From (33) it follows that {Ga(k)}, [Gg(k)}, and {Gl(k)} which are respectively 1-,
_ _ ' 2., and 4-antiperiodic. In general, P, (r=1, 2,- -+, g)
B:(0) = b:(0),  Bo1) = b:(1); represents the average power in { G,y (k)}.
[B.(2)7 LHW) [0:(2) An additional interpretation of the power spectrum is
| B,(3) = slH( L 1.(3) found in Table I which gives the frequency-sequency?
B.(4 b, (4) structure of BIFORE transform derived from Fig. 3.
’_ A1) * Denoting the frequency content of the spectral point P, by
f_, o I; 3 A i 0
B.) | _ )] 0+(3) 39) F(P,), from Table I it follows that
Hi18 b(6) F(P) = 0; F(P) =1,3; F(P) =2; F(P) =4.
L B.(7) L baT)

Since the matrices [H(1)] and [H(2}] are orthogonal, it
follows that

¢ “Sequency” is defined as one-half the average number of zero-
crossings per unit time {11].
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ITERATION NO.2 ITERATION NO. 3

ITERATION NO. 1

X{0)
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A
NOTATION: 3%)—»—
8

Fig. 7. Signal flow graph for computation of BIFORE power and phase spectra.

In general, then
F(P)) =0; F(Py) =n/2;
§=23,---,9 k=0,1,---,(2"2—1). (36)
Clearly, each spectral point represents the power content of
a group of frequencies rather than that of a single frequency
as in the case of the Fourier transform. This frequency group-
ing, however, is not arbitrary, Each group contains a funda-
mental and the set of all odd harmonics relative to that
fundamental. This corresponds to half-wave symmetry

structure., Furthermore, there is a one-to-one correspon-
dence between the F(P,) and the sequences {G,,_,(k)}.

BIFORE Phase Specirum [19]

Analogous to the power spectrum, a phase spectrum of
BT can be developed Using the concepts ol average power
and phase angle, the phase spectrum is defined in multidi-
mensional space in terms of a reference vector,

Average Power and Phase Angle

The average power Py, of and the angle 8 between two
n-dimensional vectors {x(g)} and {x«(g)} are defined as

Pay = —Ux@}, (@}
n

= = e | e} cos

{({xi(@)}], (@}
| {xu M I x: (@)

where the notation {+) denotes the inner product.

(37)

cosd =

and F(P,} = 2(2k + 1),

Following the decomposition of {x(k)} as in (27), the
BIFORE phase spectrum can be developed [19] to yield

B.(0)
.COS ﬂo = P—o”—{
£—1
> B(k)
w2~
cosﬁ.=m; s=12---,9. (38)
For n=8, (38) reduces to
B,(0)
CcO8s 30 = —I;U—J; ]
B.(1)
costh = pan )
3
2 B.()
k=l
cosfy = ———
@P)n
and
T
3 B(k)
[T
cos 0y = ary

This phase spectrum together with the power spectrum can
be evaluated rapidly using the signal flow gruph shown in
Fig. 7. The phase spectrum is invariant to multiplication of
the data sequence {x(k)} by a real number but changes as
the sequence is shifted. In fact it can be shown that the
spectrum point cos @, is 2 '-antiperiodic. Clearly, these
properties are anilogous to those of the DFT phase spec-
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trum. However, the concept of phase is defined for groups of
frequencies whose composition is the same as that of the
power spectrum. Because of this frequency grouping and
consequent data compression, the original sequence { x(k)}
cannot be recovered from the phase and power spectra as
summarized in (20) and (38). This is in contrast to the DFT
where the phase and power spectra are defined for individual
frequencies and wkere the time signal can be reconstructed
through them. Another phase spectrum based on sequency is
devcloped by Boeswetter [6]. ' '

Multidimensional BT [20]

Analogous to DFT, BT can be generalized to any number
of dimensions. The r-dimensional BT is defined as

)
r Ny—1I

= H Z.f(xh X2y *

=1 pj=l

Bf(u-ll Uz

- (=1 (39)

where

By(u, s, - + -, us) is the transform coefficient.

f(xhle"
ul:xi"—“o:ljzn"':Nt'_‘l:

., %,) is an input data point.
k; = logy N.

(I, u) = i (Ij, u.i)'

J=1
ki—1

(i, wi) = 2 @lm)uym),

ma=0

i=1,2---,r

The terms #(m) and x{m) are the binary representations of
u; and x;, respectively, i.e.,
[ui]d:ciml) = [ui(ki - I)) ui(kf - 2)1 Tty
Uc‘(l): u:’(o)]binary'

f(x1, X2, + -+, x) can be recovered uniquely from the
inverse BT, i.e.,

f(xlx Ty =y 1:;)
) I Ni—1
T H E By(uy, usy - - -, u)(=1)=  (40)
N fml uj=0
where
N = IIJ?V.‘.

i=1

Power Spectra

An extension of the power spectra of the 1-dimensional
BT to the multidimensional case leads to the following:

'nzr);ItI

t=] uge

24§

Y B uy

at; -1

<u) (41

P(-‘:‘\. Lyt

where 2,=0, 1, 2, - - +, ki. The total number of spectrul
points are ][/, (14+k). The frequency composition of the
power spectra consists of all possible combinations of the
groups of frequencics based on the odd-harmonic structure

(half-wave symmetry) in cach dimension. For example, the
frequency grouping in the sth dimension is

As an illustration, the frequency content for Ny =8, Na=16,
and N;=32 consists of all possible combinations of the
following groups.

N: N: Nl
0 0 0
1,3 1,3,57 1,3,57,911,13,15
2 2,6 2,6,10, 14
4 4 4,12
8 L]
16

The total number of spectral points is []{.; (14k:)=120.
The power spectra defined in (41) is invariant to cyclic shift
of the sampled data in any or all dimensions,

Properties

Other properties of the multidimensional BT can easily be
derived. Some of thesec are listed as follows.
Parseval's Theorem:

1 r Ni—1
MH Zfz(ih, Ty =+ va)
N =1 zj=0 Y Wi
=TT X Buy, usy - - <, %), (42)
Vel wj=0
Convolution: If
1 - Ny=1
v(my, may ¢ ¢ -, M) EEH Zf(;,;h Ta, c o, @)
] =m0

h{my — Ty, Me = Ty, - o, me — %) (43)

where m;=0, 1, 2, - - -, N;—1, then

r  2%i-1

II X Boww, -, u)
=l ug=gti=1

r o 2fi-1
=11 2

frl g pem2¥e

Brlun e« -y u) Baluyy usy - - vu). ()
Relationships similar to (44) are valid for cross correlation

and autocorrelation.

Conclusions

The BIFORE transform and several of its propertics are
developed. These propertics have been summarized and
compared with those of DFT [21]. Fast algorithms for
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aluation of BT, power and phase spectra are also devel-
ed. FBT can save computer time and result in reduced
orage space as it requires about u logs i arithmetic opera-
s to evaluate all the BT coefficients. Although the anal-
is in this paper has been restricted to real-valued sequences
¥(k)}, it can be easily extended to complex-valued se-
lences.

The BT has already found applications in several areas of
formation processing [11]. Greater utilization and exploi-
tion of the BT, however, requires recognition of the ease
id efliciency offered by the fast algorithms and develop-
ent of methods for signal recovery from the spectra. This
n lead to evolution of special purpose digital hardware
ilored to specific application areas.
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ABSTRACT

A plausible method for classification of electrocardio-
graphic data as coming from a normal or an abnormal subject using
the Bifore transform is demonstrated. Several types of ECG sig-
nals were obtained from research canines., These signals were
declared normal or abnormal by the wveterinary cardiologist at
Kansas State University's Dykstra Veterinary Hospital. The
Bifore (Binary Fourier Representation) power spectrum* of these
signals was then obtained and four of these spectral points were
used to train a specific pattern classifier., The results of us-
ing the classifier show perfect classification of the normal and
abnormal signals from a given subject. In the case of signals
from a mixed population, a population consisting of éamples from
all subjects, the classifier proved to be eighty-five per cent
correct.,

The results suggest that the Bifore power spectrum could
prove useful in characterizing ECG's for the purpose of automatic
classification., Thus, recommendations for future work along

these lines are included.

*Also known as the Walsh-Hadamard power spectrum.



