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INTRODUCTION 

A review of the development of scientific measurements 

and measuring instruments indicates a constant attempt for 

greater improvement, an improvement, whereby instruments 

and apparatus will be easier to manipulate, where data can 

be collected easier, and where a very small amount of error 

will be involved. 

This development is revealed in the constantly improVed 

methods involved in the measurement of the velocity of 

light. 

Galileo failed completely when he attempted to detect 

an interval of time for light to travel from one hill to 

another. 

Roemer obtained a close approximation of its velocity 

in his famed observations taken of the satellite of Jupiter 

as it was eclipsed by the planet. By noting the period of 

the eclipses from opposite positions on the earth's orbit he 

made a fair computation of the velocity of light. 

Greater accuracy in this measurement was obtained by 

Fizeau, Foucault, and later worked out with a very small 

amount of error (12), 

In the field of photometry there has been a decided 

change from the very crude methods of Measurement in which 

the eye played an important part, to more accurate and more 
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efficient methods of measurements. It was from this study 

that measurements of density, or densitometry, developed. 

Its development has been slow and since measurements all 

had to be done through the judgment by the eye, large errors 

have resulted. 

With the development of the photoelectric cell a new 

method of measurement by the use of light has been made 

possible. This method indicates the intensity of radiant 

energy which is transmitted to the cell while the earlier 

photometric method depended upon the eye of the individual 

to detect different degrees of light intensity. Photo- 

electricity marks a new era in the study of light transmis- 

sion. Its uses in densitometry are presented here. 

STATEMENT OF PROBLEM 

Examination of previous work in the study of transmis- 

sion and absorption of light suggested the use of a densi- 

tometer involving the application of the photoelectric cell. 

The measurement of light transmission and absorption 

through both solid and liquid media has been measured by 

photometric methods but the presence of error has been largo. 

It was suggested that a densitometer be constructed 

which involved the application of the photoelectric cell, 

that a number of measurements of the coefficient of absorp- 

tion and transmission of light through different media be 
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made, and that other applications of the densitometer be 

tested. 

DESCRIPTION OF D'ZSITOMETER 

A thirty-two candle power automobile lamp was used in 

the densitometer as a light source. It was enclosed in a 

bullet-shaped brass shell with openings for ventilation and 

a pin-hole opening in the front for emitting a beam of 

light to the cell. In order to direct this beam of light 

through a definite portion of the media examined, and to 

eliminate as much scattering by diffusion as possible, a 

condensing lens was placed between the pin-hole and the 

photoelectric cell in such a position as to make the pin- 

hole and cell at conjugate roci. By bringing the light to 

a focus on the cell or near the cell makes it easier to 

eliminate any stray light. Most stray light is eliminated 

by placing a lark paper cover with a small punch-hole in it 

directly over the face of the cell so that the punch-hole 

comes directly in line with the converging beam. There was 

also a dark paper box placed over the densitometer to ex- 

clude all foreign light which might affect a galvanometer 

reading. 

Five lead storage batteries, an ammeter, a carbon 

plate rheostat, and a knife switch were placed in series 

with the lamp. Thus the current could be kept constant at 
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some desired amount and make the light source a constant 

factor. 

The media to be tested were placed in front of the 

photoelectric cell and held in a constant position. They 

could be moved by means of a micrometer screw from a 

traveling microscope which made it possible to adjust the 

media so that any portion of it could be placed in the line 

of the beam of light. A sensitive Galvanometer was con- 

nected in series with the photoelectric cell. Readings 

were taken through a telescope on a circular scale placed 

50 centimeters from the galvanometer mirror. A deflection 

of 1 millimeter on the scale was equivalent to 9.8 micro- 

amperes. A calibrated resistance box was placed in series 

with the galvanometer which made it possible to keep all of 

the readings within the range of the scale. The galvanome- 

ter used was of the De Arsonval table type. Its readings 

were a linear function of the electromotive force generated 

by the photoelectric cell. Its action was deadbeat thus 

making it possible to make rapid as well as accurate read- 

Inge. 

A diagram of the densitometer is shown in Figure 1, and 

Plates I and II show photographs of the instrument and set 

up, respectively. 
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Fig. 1. A diagramatic drawing of the densitometer apparatus. 



PLATE I 

Photoelectric densitometer. 



PLATE I 



PLATE II 

Densitometer set up 
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One of the earliest pieces of work in measuring optical 

density was that of Hurter and Driffield, according to 

Neblette (7). Their work consisted in determining the den- 

sities of photographic films and plottin the density of 

the films against the time of exposure. Their light source 

for exposing the films 1712 fairly constant but their den- 

sitometer consisted rarely of a Bunsen photometer of the 

grease spot type. After a balance was made by equal il- 
lnmination of the grease spot, the silver deposit to be 

measured was inserted in the path of one of the beams of 

light and the grease spot indicator again shifted until a 

balance is secured. The difference between the first and 

last readings is a measure of the opacity of the silver 

deposit. 

Some other methods to determine the density were used. 

Instead of varying the distance between the light source 

one of the beams of light could be polarized. Or, once of 

the beams of light may be made weaker by the use of some 

absorption material placed in its path. 

Hurter and Driffield were the first to introduce the 

idea of optical density. The optical density of a certain 

medium expressed mathematically was 

k = log10 I 6" 1°g10 Ix 
(a) 

MX 

where k is the coefficient of density, I the incident light, 

I x the transmitted light, u the concentration and x the 
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thickness of the medium. It is noted that according to 

Hurter and Driffield density is the logarithm of the opecity 

or the negative logarithm of the transmitted light. 

By plottire2 a logarithmc3tric curve of the opacity they 

found what is termed the characteristic curve of films. 

This curve is shown in Figure 2. 

DEFINITION OF DTNSITY 

The term "density" or "opacity" as used here represents 

a logarithmic ratio between the incident light and the 

transmitted light. 

Mathematically, the density of a certain substance of 

unit thickness is the logarithm of the intensity of the 

incident light divided by the intensity of the transmitted 

light (7). 

k = logio I 
It 

If I is the intensity of the incident light and It is 

the intensity of the transmitted light then 

transparency It 

r 
and density 

where both the incident and transmitted light intensities 

are expressed in some practical unit such as the foot 

candle. 
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Fig. 2. The "characteristic" curve obtained by Hurter and Driffield. 
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Density, when taken over a vide range of values, is a 

logarithmetic function instead of a linear function (7). 

If the absorption coefficient of a particular sub- 

stance is represented by k, under the assumption that each 

molecule of the substance has a particular absorption or 

transmission effect, then 

It 
iT 

and if x is the thickness of the medium then 

It m 1 

and if m is the number of molecules per unit volume of the 

concentration then 

(b) 

or changing to logarithms 

log It m -kmx log I 

kmx m log I - log It 

k m log I - log It 

mac 

Here k is the density of the medium. 

If k is the coefficient of absorption of a certain 

medium of thickness x and concentration m, then kt is the 

coefficient of absorption of the same medium of thickness xt 

and concentration m. 
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The relationship between k and kt is 

log I - log It 
k = mx 
kt log I - log Itt 

mixt 

o r k w xf (log I - log It) 
KT 

or k a xi log (I/It) 
kt x log (I/Itl) 

or kin k x log (I/Itt) - x' log (I/It) 

EXPLANATION OF THE THEORY OF PHOTOELECTRIC PatifhOT 

In order to measure light intensities or intensities 

of illumination, it was suggested that the photoelectric 

cell be employed to determine the transmission through the 

medium. Light is a form of energy. Whether it is prowl 

gated in the form of waves or moves as quanta it possesses 

a quantity of energy which if placed under a certain condi- 

tion will produce a certain result. Now when this energy, 

whether it be visible or invisible, strikes the sensitive 

surface of any metal such as we find in the photoelectric 

eell it discharges electrons from the atoms of this surface. 

A sufficient amount of energy must impinge this surface be- 

fore an electron will be discharged. According to Slater 

and Frank (10) if v is the energy in ane quantum and the 
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frequency of the energy radiated, then 

by ergs (c) 

where h is considered as a universal constant and spoken of 

as Planck's constant. From the general formula where V is 

the velocity, v the frequency, and X the wave length we 

have 

V sivA or v VA (d) 

which also gives the frequency. 

From these formulas two empirical laws can be stated: 

First, the number of electrons released per unit time at a 

photoelectric surface is directly proportional to the inten- 

sity of the incident light. And second, the maximum energy 

of electrons released at a photoelectric surface is inde- 

pendent of the intensity of the incident light, but is 

directly proportional to the frequency of the light. 

The quantum necessary to release an electron is very 

small being of the order of about one millionth of an erg. 

Part of each quantum received by an electron from the radia- 

tion of light or other forms of radiant energy is used in 

pulling the electron away from the surface. The rest of the 

energy is used to determine the speed of the electron. This 

surface attraction is so Beat for some metals that in order 

for the electrons to be pulled away from their respective 

atoms a larger quantum is necessary. 

According to the previous formula, the energy in one 
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quantum varies with the frequency so in order to got a 

larger quantum a higher frequency must be used. Such fre- 

quencies as those of the ultra-violet and X-rays are used 

for this purpose. Each metal that is used for photoelectric 

effect has a sharply defined characteristic minimum fre- 

quency to which it will respond. If electrons are to be 

torn from the metal, then it is necessary to increase the 

frequency above the characteristic frequency. 

According to Einstein's photoelectric equation the 

energy required to overcome the surface attraction of the 

metal for the electron is one quantum and may be stated, 

W = hv 1/2 mv2 (e) 

where 1/2 mv2 is the kinetic energy of the electron, v its 

velocity, m its mass, and W the energy required to overcome 

the surface attraction of the metal surface for the electron. 

The Weston Photronic cell used in this densitometer is 

a dry photo-voltaic cell. Although the methods of its manu- 

facture are still unknown to the public some information re- 

garding its construction and operation is published in our 

literature (9).. This cell is of the iron-selenium type and 

is both sensitive and permanent. Its photo-active parts 

consist of iron selenide or iron coated with a thin film of 

silver. It has a rating of approximately 1.4 microamperes 

per foot candle with a surface of 1.7 square inches. This 

would give it about 120 microamperes per lumen. It is not 
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damaged by exposure to stray illumination even When short- 

circuited. Haeing once reached equilibrium under a given 

illumination it will remain constant for a very long period 

of time. Its color curve is similar to that of the eye but 

is shifted slightly toward the red end of the spectrum with 

respect to visual sensation. This curve with its relative 

visibility curve is shown in Figure 3. 

The current output of the cell varies with the illumina- 

tion on the face of the cell and also with the external re- 

sistance which is connected in the circuit. lben this ex- 

resistance is low the output is linear. This linear 

response is the sane up to high intensities of light even to 

that of direct sunlight whose intensity of illumination is 

from 10,000 to 15,000 foot candles. 

The total current generated In the cell is a function 

of the radiant flux only, and is proportional to it. This 

current divides between an internal conducting path in the 

cell, and the external circuit if it has one, according to 

the laws of parallel circuits. The internal resistance of 

the cell is not a constant, but varies with the illumination 

or radiant flux, and also upon the leakage current through 

it. The cell resistance acts as a shunt to the external 

circuit. The current and resistances are related in accor- 

dance with the following equation: 

ImE for (f) 
R + r 
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Fig. 3. Spectral sensitivity of Weston Photronic photoelectric cell.T. 



20 

where, I = external current output in microamperes 

E = illumination on cell in foot candies 

ico= total current generated per unit illumination 

r as internal resistance of cell for illumination E 
and external resistance R 

R = external resistance 

The equivalent circuit is shown in Figure 4. The con- 

denser C represents the capacitance between the sensitive 

surfaces in the cell and is in parallel with the internal 

resistance r for currents generated by pulsating light. 

Changes in temperature have very little effect upon 

the current generated in the cell, but the internal resis- 

tance of the cell is greatly affected by changes in tempera- 

ture Which in turn would affect the current output in exter- 

nal circuits having relative high resistances. This also 

affects the voltage and for this reason it is better to use 

the current characteristics of the cell for measuring pur- 

poses rather than voltage or resistance, unless the tempera- 

ture is practically constant. The current characteristics 

of the cell were used entirely throughout the investigations 

with the densitometer by means of low resistant galvanome- 

ter shunt. 

The cell should not be used or exposed to temperatures 

higher than 5000. as changes in its sensitivity would result 

if this temperature is exceeded. If the cell is exposed to 
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radiation containing a very high degree of infra-red or 

heat rays, its temperature might be raised above the "heat 

limit" and damage the cell. 

The cell has an irregularity called "fatigue." This 

is due to exposure and if a very sensitive _measurement is 

to be taken the cell ought to be free from light for a few 

monents before the measurement is taken. 

TESTING THE PHOTOELECTRIC CELL FOR ITS FATIGUE 

The cell was exposed to the direct beam of light for a 

short period of time and then allowed to regain its original 

sensitivity by resting. After each rest period the cell was 

again subjected to the light and each time the deflection on 

the galvanometer read the sane. 

Another test was made by using a constant absorption 

medium in front of the cell. In this test different areas 

of the cellfs face were exposed by varying the sise of a 

slit placed in the beam of light. The slit was one centi- 

meter long and readings were taken with openings varying 

from one-tenth millimeter to 2 millimeters in width. These 

openings were regulated with a micrometer screw. The cur- 

rent was kept constant at 4 amperes art:1 the light conditions 

of the room also kept constant. 

Table 1 shows the results obtained from five different 

trials while each trial included 20 different sizes of open- 
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Table 1. Photoelectric cell response for varying 
areas of illumination. 

"tidth of : Deflection in centimeters 
slit (tnr.):Trial I:Trial 2:Trial 3:Trial 4:Trial 5:Averages 

0.1 1.1 1.1 1.1 1.1 1.2 1.1 
0.2 2.4 2.7 2.7 2.7 3.1 2.7 
0.3 4.9 5.3 5.5 5.5 5.6 5.4 
0.4 7.3 7.6 8.0 8.0 8.3 7.8 
0.5 9.4 10.4 11.0 11.2 11.2 10.7 
0.6 12.3 13.1 14.4 14.2 14.3 13.7 
0.7 15.7 16.3 17.4 17.5 17.7 17.0 
0.8 18.7 19.1 20.3 20.6 21.0 20.0 
0.9 20.8 21.4 22.3 22.7 23.3 22.2 
1.0 22.1 22.5 23.8 24.1 25.1 23.5 
1.1 23.1 25.1 24.3 24.8 25.6 24.2 
1.2 23.3 23.4 25.0 25.3 26.0 24.6 
1.3 24.0 23.5 25.2 25.7 26.5 24.9 
1.4 24.1 23.6 25.4 25.7 26.7 25.1 
1.5 24.1 24.0 25.4 25.7 26.7 25.2 
1.6 24.1 24.5 25.4 25.7 26.7 25.3 
1.7 24.1 24.5 25.4 25.8 26.7 25.3 
1.8 24.1 24.5 25.4 25.8 26.7 25.3 
1.9 24.1 24.5 25.4 25.8 26.7 25.3 
2.0 24.1 24.5 25.4 25.8 26.7 25.3 
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Jags. The table also shows a mean or average deflection of 

all trials made. Figure 5 represents the deflection plotted 

against size of opening. 

Since the spot of light directed on the slit was an 

image of the filament of the light source it would not have 

constant intensity throughout but would vary with the inten- 

sity of a particular portion of the source. This factor ac- 

counts for the fact that the deflection does not increase in 

proportion to the area of the opening. After the opening 

became one and one-half millimeters wide the whole spot of 

light could enter and any further increase in width would 

cause no change in the amount of deflection on the galvanome- 

ter scale. 
The most interesting and unanticipated results of this 

test showed that there was a continued rise in the deflec- 

tion for most of the succeeding trials although the area of 

the opening remained the same. 

The cause of the gradual increase of deflection on the 

whole can be accounted for by the fatigue of the cell. From 

the theory of the cell once the "surface pressure" holding 

the electrons in their positions is broken some heat is 

generated (4). This accumulation of heat assists the ra- 

diant energy falling on the surface and causes an accumula- 

tive photoelectric reaction which gives the some results as 

would be obtained if the intensity of illumination were in- 



Figure 
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creased. 

TESTING THE PHOTOELECTRIC CELL POil ITS SENSITIV=SS 
TO DirrERFNT "AVE i LENGTHS 

This test was made to show the sensitivity of the 

photoelectric cell to light transmitted through different 

colored media. These results were obtained by using the 

direct rays of the sunlight as a light source since it con- 

tained all the visible wave lengths. The sky was clear and 

the observations were taken between one and two o'clock when 

the intensity of the aunlight was nearly uniform. 

A sunmary of the results, Table 2, shows the relative 

transmission intensities of varied thicknesses of blue, 

green, and red cellophane. Blue showed the greatest inten- 

sity of transmission. Red cellophane transmitted a greater 

intensity of illumination than green. When the thickness 

of the cellophane was doubled the intensity of transmitted 

light did not diminish to one-half. In the teat with the 

blue cellophane doubling the thickness would decrease the 

intensity one-third, while if the thickness of the green 

cellophane was doubled the transmission intensity was de- 

creased about one-sixth. This shows that for different 

colors the coefficient of absorption and thickness show a 

different relationship. 

It must be considered that with a certain color, blue 

for example, that the first thickness absorbs most all the 



Table 2, Response of cell to various wave lengths of light. 

Media 
:2.M.X. through :101P 
:55 ohms rg 

: E.M.F. of cell 
: open circuit 

Power 
output 
(watts) 

Atmosphere (direct sunlicht) 0.31475 0.00571 0.33970 0.00194 

Green colloPhane 1 thickness 0.25032 0.00477 0,27940 0.00124 

Green cellophane 2 thicknesses 0.21200 0.00385 0.23753 0,00091 

Red cellophane 1 thickness 0.25282 0.00459 0.27036 0.00124 

Blue cellophane 1 thickness 0.29350 0.00554 0.30600 0.00163 

Blue cellophane 2 thicknesses 0.18960 0.00344 0.29161 0.00100 

Blue cellophane 4 thicknesses 0.12179 0,00221 0.26346 0.00058 
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colors except the blue. If the blue rays that have pene- 

trated the first thickness are taken as the maximum it is 

found that over half of this intensity will penetrate the 

next layer. This shows that the transmission intensity is 

not a direct function of the thickness but is a function 

Which deponls on a certain constant for each different color. 

It was also found that one thickness of any of the 

three colors used would not absorb half of the light inten- 

sity which could be obtained without the colored medium. One 

thickness of the green cellophane absorbed about 20 per cent 

of the sun's intensity. One thickness of the blue cello- 

phane absorbed about 7 per cent of tho sun's intensity. 

Since all three of these colors are prominent in the 

sensitive curve of the photoelectric cell these results are 

therefore the corresponding transmission intensities for 

each of the colors used. 

MEASURING THE hietACT OF ULTRA-VIOLET LIGHT 
ON 'UTMAN DYE 

A 10 per cent solution of Putman dye was placed in a 

shallow pan and exposed to the ultra-violet light to dater- 

mine the ability it possessed to retain its color under this 

bleaching influence. The pan of solution was placed 24 

inches from the mercury vapor lamp and left for intervals of 

30 minutes each. 
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At the end of each period of 30 minutes the dye was 

made up to its original volume by adding water. A portion 

of the solution was placed in a small rectangular glass con- 

tainer with parallel sides and placed in the beam of light 

in front of the face of the photoelectric cell. The light 

penetrated the solution and the transmitted intensity which 

affected the photoelectric cell was recorded by the 

measured electromotive force indicated by a potentiometer. 

Table 3 gives the results of the effect of bleaching on 

Putman dye and Figure 6 shows the bleaching curve for this 

particular dye. 

Table 3. Changes of Putman dye due to bleaching. 

Time, of exposure 
AMOINIMIIINIM.111110INIM 

Voltage recorded 

0 minutes 0.10955 
30 minutes .11255 
60 minutes .11315 
90 minutes .11492 

120 minutes .11552 
180 minutes .11723 
160 minutes .12057 
210 minutes .12310 

The curve shows that in general the bleaching effect 

is almost a direct function of time. Bleaching takes place 

a little more rapidly at first, then diminiahes up to about 

two hours and for the next hour or more it is bleached 

directly proportional to the time exposed. 
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'come fast dyes like Diamond dye, for example, have a 

very slow bleaching effect and not until long exposures to 

intense li ht will they show any increase in their trans- 

parency. The plateau on this curve which occurs between 

one-half hour and two hours represents a period of fastness 

where the dye Shows a resistance to being bleached. 

If the measurements of the liquid are made accurately 

and the sane section of the container examined each time 

there is little chance of error in this test. The diffusion 

of the molecules of dye throughout t e a ater would give it 

en equally distributed absorption effect. 

MEASMINC THE CONCENTRATION OF A SOLUTION 
BY MEANS OF TM DEISITOMETER 

This test 'zas made in order to find out how sensitive 

the photoelectric cell of the densitometer was in its 

detection of the densities of diluted dye solutions. 

A 1 per cent solution of Putman dye was placed in a 

small rectangular container with parallel glass sides. This 

medium was placed in front of the photoelectric cell and a 

beam of light was passed through it. The response of the 

photoelectric cell to the intensity of the transmitted light 

was received by a potentiometer and the voltage recorded. 

The dye was then diluted to one-half its original con- 

centration or to 0.5 per cent by nakinL it up to twice its 

original volume by addition of water. A portion of this 



32 

solution was tested for its ability of transmission as in 

the previous ease. The solution was diluted again and again 

by making a portion of each concentration up to twice its 

volume. Thus the per cent was halved each time. This 

process was carried out until a dilution of one part in 

two-hundred million was reached, or until the cell would no 

longer give a response which differed from that of tap 

water. 

When the solution had been diluted to one part in 

thirteen thousand it was impossible to detect it from tap 

water by direct observation. Table 4 shows the voltages 

obtained for each dilution. Figure 7 is a curve where con- 

centration is plotted against transmission which is con- 

verted into voltage. 

It will be noted that at first an increase in trans- 

mission or a decrease in absorption is rapid but during the 

next three dilutions the increase in transmission intensity 

was slow. Then during the fifth, sixth, and seventh dilu- 

tions the rate of increase in transmission intensity was in- 

creased again. After the eighth dilution the transmission 

intensity was increased very slowly until the twenty-second 

dilution was reached. The transmission intensity of the 

solution at this stage was the same as that obtained by us- 

ing tap water. 



Table 4. Voltages obtained by transmitted light 
through different dilutions. 

Per cent concentration : 1?elative volts. -e of transmission 

1 0.061 

5 x 10 i .114 

2.5 x 10 
1 

.127 

1.25 x 10-1 .138 

6.25 x 10 -2 .151 

3.12 x 10 
-2 

.171 

1.56 x 10 -2 .201 

7 81 x 10 .232 

3.90 x 10 -3 .246 

1.95 x 10 -3 .248 

9.76 x 10 -4 .249 

4.88 x 10 -4 .250 

2.44 x 104 .252 

1.22 x 10 -4 .252 

6.10 x 10 
-5 

.253 

3.05 x 10 .255 

1.52 x 10 -5 .256 

7.62 x 106 .258 

3.81 x 10 .260 

1.91 x 10-6 .263 

9.53 x 10-7 .264 
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According to equation (b) where =is the concentration 

I t 1/Ikmx 

According to Preston (8) 

It lax 

where 11 is the intensity after transmission, I is the inc i- 

dent light, a is a proper fraction and depends upon the 

nature of the substance, and x is the thickness. 

If we substitute concentration m for thickness x the 

equation will read 

21 im a cr m 

which shows that the intensity of the transmitted light is a 

logarithmic function of the concentration. 

The fact that the curve isn't smooth shows that at cer- 

tain concentrations there must be margins of transmission 

where a decrease in concentration does not give a similar 

decrease in photoelectric response. This shows that the in- 

tensity of transmission is not a linear function of the 

concentration. 

PENETRATING POWER OF X-RAY'S THROUGH METALS 

It was suggested that the direct rays from the 7-ray 

tube be allowed to strike the sensitive face of the photo- 

electric cell and find out if this action would produce a 

galvanometer deflection. 

The galvanometer was connected to the photoelectric 
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cell and the latter placed under the X-ray tube. After 

covering the cell with dark paper to eliminate any visible 

rays, the X-rays were applied. A considerable deflection 

from the galvanometer showed that invisible rays would af- 

fect the cell. Applying the X-rays at different times 

showed that the cell did not become damaged in any way due 

to the invisible rays. 

The response of the cell varied inversely as the square 

of the distance it was placed from the source of the rays. 

Since the behavior of the cell was fairly constant 

under the influence of invisible rays it was suggested that 

the cell be shielded and different thicknesses of metals be 

placed over it. This would involve a new method of finding 

the penetrating power of the X-rays. 

A shield of lead 5 millimeters thick was made which 

would completely exclude from the cell all diffused or stray 

rays which might come from any direction and influence the 

reading on the cell. 

Different thicknesses of lead, copper, iron, and alumi- 

num were placed over the cell. The X-rays were applied and 

the deflection recorded. As was expected the deflection 

decreased as the thickness of the metal placed over the cell 

was increased. It was also expected that when a certain 

thickness was reached, depending on the metal, that the cell 

would cease to respond. This, however, was not the case. 
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But on the other hand after a certain thickness was reached 

the deflection remained the same no matter how great a 

thickness of metal was placed over the cell. A piece of 

lead 10 centimeters thick was placed over the cell and 

still there was a response as great as when 1 centimeter of 

lead was used. 

Table 5 shows the results from experiments with lead 

and copper. Figures 8, 9, and 10 are curves showing the 

deflection plotted against thickness. Figures 9 and 10 are 

results obtained from two different cells. 

Why does the cell continue to respond after a maximum 

thickness of lead is reached? 

The response of the cell is immediate so the assumption 

that the cell responds because heat is transmitted through 

the metal is therefore void. 

This reaponse might be caused by the transformer settine 

up a small induced current in the circuit of the cell and 

galvanometer. Since the cell could act as a rectifier and 

allow electrons to flow unidirectional a deflection might be 

produced. 
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Table 5. Intensity of X-ray transmission 
through metals. 

Cell 292 Cell L 292 

Thickness 
(Pb) 

: Deflection 
cm. 

: Thickness 
: (Pb) 

: Deflection 
: cm. 

0.07 (mm.) 9.4 0.07 (mm.) 9.3 
0.45 6.6 0.14 6.0 
0.55 5.5 0.21 4.7 
0.95 4.2 0.28 4.2 
1.50 3.5 1.15 3.2 
2.00 3.3 2.90 3.1 
2.50 3.0 4.60 3.0 
3.25 3.0 6.00 2.9 
9.00 3.0 8.00 3.0 

12.00 3.0 
18.00 3.0 
26.00 3.0 

Thickness 
(cu) 

: Deflection 
cm. 

0,45 (mm.) 6.6 
0.55 5.5 
0.95 4.2 
1.50 3.5 
2.00 3.3 
2.50 3.0 
3.25 3.0 
9.00 3.0 

Zero reading 39.5 Zero reading 27.5 



Figure 8 

Penetration of X-rays through copper. 
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Figmre 9 

Penetration of T-rays through leai (cell 292). 
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Figure 10 

Penetration of Xrays through lead (cell 1,290. 
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MEASUREMENTS OF THE RELATIVE INTENSITY OF THE 
VARIOUS LINES OF A SPECTRUM 

Reference is given here to the lines photographed on 

a film by a mercury art after its light had passed through 

a quartz prism. Their relative intensities will depend upon 

the ability of the various wave lengths produced to cause 

photographic fogging of the film. 

This test demanded very accurate manipulation of the 

densitometer and the plates had to be developed exactly 

alike if any duplicate results were to be obtained. So much 

chance of error was encountered in developing the plates 

exactly alike that the tests made show only the relative 

densities of the most prominent lines in individual plates. 

With each trial the plates had to be placed with a certain 

spectral line directly behind a micrometer slit. This slit 

was about half as long as the line to be measured so error 

duo to a slight change vertically was very small. The 

width of the micrometer slit was kept constant at one- fourth 

millimeter. 

In order to insure constant illumination through the 

slit, the latter was kept stationary. The plate however 

could be moved back and forth until minimum deflection was 

obtained. This would indicate that the darkest portion of 

the line was directly behind the slit opening. Since the 
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darkest portion of the lines is their center it can be con- 

cluded that the line is directly behind the slit. 

If a reading is to be repeated, the same position can 

be located by observing the deflection until a minimum is 

reached and this deflection recorded. Table 6 represents 

the results obtained from 16 lines of the spectrum. The 

number of the lines were photographed on the plate through 

a scale with transparent divisions. With each spectrum that 

was photographed this scale was photographed adjacent to it 

for an identification of the lines. 

Table 6. Relative intensity of lines in 
ultra-violet spectrum. 

...1101MOMIIMI. 

Line number 

Deflection mm, 

Trial I ; Trial II 
27,4 70 70 
25.2 17 17 
26.4 32 32 
27,9 48 47 
28.7 58 57 
29.0 201 201 
29.5 25 24 
30.0 23 23 
31.0 15 14 
33.2 39 39 
36.4 11 10 
40.0 8 7 
40.1 34 34 
43.5 7 6 
54.0 6 5 
58.0 7 6 

Plain film 790 790 
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The photographic plates were exposed for 2 seconds in 

the spectwaaaph and placed in the developer for 1 minute. 

A current of 3.5 amperes supplied the illumination for the 

densitometer. This could be kept constant by rulans of a 

low ranged ammeter. 

The range of the results sho'v that for the more trans- 

parent lines the anta could be repeated with more accuracy 

than Ath lines of greater density. No lines below a de- 

flection of 17 indicate exactly the same deflection for the 

two trials 77hile most all the lines of less density could 

be repeated with greater accuracy. In the case of line 29 

which was the most transparent the data was repeated 

exactly. 7ith the plain film the repetition was also exact. 

Other films were examined which were exposed longer to 

the ultra-violet spectrum. The results from these indicate 

the sane ranking but show a chance in the relative densi- 

ties. This might be explained on the basis of previous work 

conducted. by Hurter and Driffleld who found that an inversion 

point was obtained by some waves such as the rod, sooner 

than that reached by shorter waves. 

T7STIWG THE D'NSITIES OF FILMS EXPOSED 
TO ULTRA-VIOLET LIGHT 

The transmission of light through a developed photo- 

graphic film or plate can easily be determined by the densi- 

tometer. The film was placed against the photoelectric cell 
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with the portion to be tested directly in line with the beam 

of light from the light source. It was held in position by 

holders. The micrometer screw made it possible to move it 

to various positions desired. 

If the films are too dense and only a small amount of 

.light is transmitted the deflection will be too small to 

show a reasonable amount of accuracy. In this case the 

light source can be intensified by closing the rheostat and 

allowing more current through the filament. If there is a 

resistance in series with the galvanometer this may be re- 

duced in order to produce a greater deflection. 

By means of an especially constructed apparatus 35 cir- 

cular exposures could be made on a 5"x7" film plate. The 

essential parts of the apparatus are shown in Figure 11. 

Part (a) is a square board 213E21 with guides to hold the 

film. Part (b) is a smaller board 111211 raised by means 

of edge strips so as to clear the film. These edge strips 

are faced on the lower side with black felt to prevent any 

light from entering around the edges. This part can move 

over part (a) and allow the opening 0 to expose any portion 

of the film. The opening 0 is three-fourths of an inch in 

diameter and is closed by means of a camera shutter 3 which 

has a constant shutter opening of three-fourths of an inch. 

In order to prevent lapping of exposures the apparatus was 

checked off by means of horizontal lines. By keeping; (b) 
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(A) Film Holder 

?\1 

/8" 

Camera 
shutter 

(13.) Shutter 

Fig. 11. Apparatus for exposing the films. 
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stationary and moving (a) or by keeping (a) stationary and 

moving (b) with reference to the horizontal lines regularly 

spaced exposures can be made. 

When exposures are made close up to the light, part (b) 

is kept stationary. This keeps the position of the opening 

constant in relation to the light. This however is not 

necessary ;hen exposures are made at longer distances since 

the light will have approximately the sane intensity for a 

small change of lateral position. 

The shutter .S taken from a camera will produce the fol- 

lowing intervals: 1/100, 1/75, 1/50, 1/25, 1/10, 1/5, 1/2, 

and 1 second. If longer intervals for exposure are desired 

a stop watch may be used. 

Exposures were made with both the filtered and unfil- 

tered nercury arc at 115 volts and in each case both the in- 

tevval of time and the distance were varied. These nega- 

tives were developed as nearly the same as possible and each 

exposed section tested with the densitometer for its ability 

to transmit light. Table 7 shows the results obtained in 

three particular instances. Figures 12, 13, and 14 are the 

curves of the results where time of exposure is plotted 

against deflection. 

In general the results obtained by using the mercury 

are are similar to these obtained by Hurter and Driffield 

when light similar to sunlight was used. According to 
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Table 7. Relation between the time a film is exposed 
to ultra-violet light, and its density. 

Light 60 Inchee from film Light 26 feet from film 

:Deflection:Deflection 
Time (mm.) ( un') 
25th of :without :sith 
a sec. :filter :filter 

:Deflection: 
. (mn.) :Log of 

:Time :sithout :deflection 
:(sec.):filter : (um.) 

1/4 220 38 1/100 188 2.2741 
1/3 107 15 1/ 75 191 2.2810 
1/2 78 17 1/ 50 190 2.2787 

1 30 12 1/ 25 168 2.2253 
0 15 10 1/ 10 178 2.2504 
3 34 11 1/ 5 78 1.8921 
4 17 11 1/ 2 78 1.8921 
5 10 9 1 85 1.9294 
6 8 11 2 100 2.0000 
7 7 16 3 89 1.9493 
8 19 13 4 64 1.8062 
9 10 12 5 77 1.8865 

10 10 12 6 86 1.9345 
11 10 14 7 86 1.9345 
12 10 15 8 83 1.9191 
13 19 15 9 53 1.7243 
14 9 16 10 58 1.7634 
15 9 15 11 60 1.7781 
16 12 17 12 60 1.7781 
17 17 15 13 56 1.7482 
18 14 14 14 48 1.6812 
19 12 16 15 44 1.6434 
20 15 17 16 50 1.6989 
21 CO 18 17 65 1.8129 
22 27 12 18 64 1.8062 
23 26 12 19 56 1.7482 
24 26 16 20 45 1.6532 
25 25 16 21 48 1.6812 
26 32 18 22 60 1.7781 

23 67 1.8261 
30 62 1.7924 
60 72 1.8573 

120 71 1.8512 
180 77 1.8865 
240 100 2.0000 
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filtered mercury arc lamp. 
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Derr (3) when the effect of increasing exposure is studied, 

it is seen that beyond a certain point, varying with the 

kind of plate used, increase of exposure fails to bring an 

increase of density. This point shows a period of over- 

exposure, which may be continued to the point *here increase 

of exposure absolutely fails to produce further increase of 

density. If the exposure is still further increased, a re- 

versal of the preceding action takes place, and the action 

of the light is to produce less photographic reaction, so 

that the image is weaker than before; and thus may be con- 

tinued to the point of complete reversal, the plate develop- 

ing as a positive instead of a negative. 

In the test made with the filtered light, Where only 

the ultra-violet light was allowed to strike the film, the 

reversal came at about one-half of a second. In this test 

as in most all tests observed, the fogging of the film was 

very rapid at first up to about one-fifth of a second and 

from here on the fogging was slow. Figure 12 shows the curve 

with time of exposure plotted against deflection. 

A similar test to the one above was made but this time 

without the filter. In this case the reversal was reached 

at about one-fifth of a second as shown in Figure 13. In 

this case the trough of reversal is more abrupt than when 

the screen was used. The condition of a positive is reached 

much sooner also. 
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Figure 14 (a) shows the results obtained when the film 

was exposed at a distance of 26 feet. In this case the re- 

versal comes at about 6 seconds Which would be expected 

from the law of inverse squares. Figure 14 (b) is taken 

from the same data as (a) but here the logarithmetic coef- 

ficient of absorption is plotted against tiele of exposure. 

This curve is similar to that of Figure 1 obtained by Hurter 

and Driffield and called the "characteristic curve." 

According to Neblette (7) ne photographic process is, 

strictly speaking, free from the effects of reversal, but 

rapid gelatino bromide plates are more subject to the ef- 

fect than a comparatively insensitive plate such as wet 

colodium. It has been determined that atmospheric oxidation 

is probably necessary for reversal but reducing agents 

either prevent it altogether or retard its appearance. 

OTHER SUGGESTED TESTS 

The densitometer of this type can be used in photo- 

graphic printing to determine the amount of time a print 

should be exposed through the negative. One good print 

taken from a certain negative under observed conditions is 

used as the basis. Some region of the film such as the 

averse transparent portion is studied with the densitometer. 

The deflection is recorded and the time of exposure for 

printing compared with it. Now by means of comparing other 
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nei:latives with this one by measuring some of their average 

transparent portions, the tirle of exposure for printing can 

be calculated. This ought to be a solution to economy in 

printing as well as better prints. 

Density and absorption of different kinds of glass 

such as frosted glass, glass of different colors and glass 

of different chemical colapositions. 

Absorption coefficient of textiles, (31-.owing the chance 

due to colors and kinds of material. 

6toppage of light due to piling of Severn' ticknesses 

of a transparent substance and making a comparison to the 

stoppage of light through the same thickness of material 

but only one piece, 

Penetrating power of X-rays under varying voltages and 

currents. 

SUMFan 

Some precautions must be taken in using the densi- 

torneter if the results are to show the lowest possible 

error. It must cnploy a constant current for its li:ht 

source, and s current which is easily and accurately con- 

trolled. Al]. radiation must strike the sate portion of the 

cell so az to eliminate error due to any possible nonuni- 

formity of its sensitive surface, fairly sensitive and 

dead-beat galvanometer rust be used in order that the de- 
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flection mirror may come to "rest" before fatigue or change 

in current can occur. In order to obtain the most accurate 

results, the temperature should not show too groat a vari- 

ation during the test, nor should any foreign light be ad- 

mitted. 

The photoelectric densitometer which employs a dry 

photoelectric cell such as the ';;eston type is dependable 

because it will deliver similar responses when a repetition 

under similar conditions is made. Allowing it to remain at 

rest for a few moments will bring it back to its sensitive 

state. 

It was found that the intensity of the sunlight through 

blue cellophane was greater than the intensity through 

either red or green. Yet red absorbed more of the light 

than green. The intensity of illumination through two 

layers of the colored media was more than half of the inten- 

sity through one layer. This shows that the first layer 

absorbed most of the wave lengths except those of its own 

color, while it transmitted those which could easily be 

transmitted through the second layer. 

This type of densitometer presents a unique method to 

detect the slightest change in density of a solution. In 

the measurements made in this work, it was found that when a 

slight change occurred in a Putman dye solution, due to 

bleaching or dilution, the densitometer indicated a reason- 

able change in deflection. It has been found that this 
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densitometer can detect a dilution of Putman dye of one 

part in two hundred million while the eye can detect one 

part in thirteen thousand. 

When X-rays fall on the densitometer cell, the gal- 

vanometer shows a reasonable deflection. This fact indi- 

cates that the cell is responsive to forms of radiant energy 

other than light. Since this response cannot be literally 

called photoelectric, it might be classified as radiant in- 

tensity response. However, the electrical results produced 

in the cell are the same as those produced by visible radia- 

tion. This gives a new way to determine the penetrating 

power of 7-rays. It is found that when any metal placed 

over the cell is increased in thickness the response of the 

cell decreases. 

The density of the lines in the ultra-violet spectrum 

plate showsa corresponding relationship. Each line has its 

distinctive density if the plate can be exactly duplicated. 

A longer exposure will produce denser lines but will not 

change the corresponding densities of them. The photoelec- 

tric densitometer presents a rapid and accurate way to 

measure the densities of all kinds of photographic films. 

The inversion curve for films exposed to different kinds of 

radiation can be directly obtained by the densitometer 

method. It is found that for ultra-violet radiation there 

are two cycles in the density of the silver salts on the 
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film. 

It night be stated in conclusion that there is a wide 

range of tests which can be made by the photoelectric 

densitometer. Suggested and possible tests are very 

numerous and some are problems which would reveal a quantity 

of information, present many ideas of research and reveal 

hidden facts concerning modern theories of light. 
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