
DISTRIBUTED PARALLEL SYMBOLIC EXECUTION

by

ANDREW KING

B.S., Kansas State University, 2005

A THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

College of Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

2009

Approved by:

Major Professor
Robby

Copyright

Andrew King

2009

Abstract

Software defects cost our economy a significant amount of money. Techniques that

can detect software defects before the software begins its operational lifecycle are therefore

highly valuable. Unfortunately, as software is becoming more ubiquitous, it is also becoming

more complex. Static analysis of software can be computationally intensive, and as software

becomes more complex the computational demands of any analysis applied increase also.

While increasingly complex software entails more computationally demanding analysis, the

computational capabilities provided by computers have increased exponentially over the last

half century of computing. Historically, the increase in computational capability has come

by increasing the clockspeed of the computer’s central processing unit (CPU.) In the last

several years, engineering limitations have made it increasingly difficult to build CPU’s with

progressively higher clock speeds. Instead, processor manufacturers now provide increased

capability in the form of ‘multi-core’ CPUs; where each processor package contains two

or more processing units, enabling that processor to execute more than one task concur-

rently. This thesis describes the design and implementation of a parallel version of symbolic

execution which can take advantage of modern multi-core and multi-processor systems to

complete analysis of software units in a reduced amount of time.

Table of Contents

Table of Contents iv

List of Figures vii

Acknowledgements xi

1 Introduction 1
1.1 Contributions . 3
1.2 Thesis Structure . 3

2 Background 5
2.1 Program Analysis Background . 5
2.2 Soundness and Completeness . 5

2.2.1 Soundness . 5
2.2.2 Completeness . 6

2.3 Kripke Structures . 6
2.4 Explicit State Model Checking . 6
2.5 Symbolic Execution . 9

2.5.1 Symbolic Execution of Imperative Programs with Heap Objects - Lazy
Initialization . 12

2.5.2 Lazier Initialization . 15
2.5.3 Lazier] Intialization . 17

2.6 Structure Analysis for Testing . 18
2.7 Parallel and Distributed Computation . 19
2.8 Distributed Bag of Tasks / Coordinator-Workers 20
2.9 MapReduce . 20

3 Parallel Symbolic Execution 23
3.1 Paralellization . 23
3.2 Parallelism in Symbolic Execution . 24

3.2.1 Parallelization . 25
3.2.2 Parallelization - Load Balancing . 27
3.2.3 Execution Tree Structure . 28

3.3 WorkUnits . 31
3.3.1 State Based Workunits . 31
3.3.2 Schedule Based Workunits . 32

3.4 Coordinator Process . 33

iv

4 Implementation Details 34
4.1 Kiasan/Bogor . 34

4.1.1 Kiasan/Bogor - Pull Mode coordination 35
4.1.2 Kiasan/Bogor - Schedule Encoded Work-Unit 35
4.1.3 Kiasan/Bogor - State Encoded Work-Unit 35
4.1.4 Kiasan/Bogor - Asynchronus Work Unit Commits 37

4.2 Kiasan/Sireum . 38
4.2.1 JMLk . 38
4.2.2 KiasanVM . 39
4.2.3 Semanggi . 39

4.3 Kiasan/Sireum Core Components . 40
4.3.1 KVMExplorer . 40
4.3.2 State . 40
4.3.3 KVMModelManager . 42
4.3.4 KVMSchedulingStrategist . 42
4.3.5 KVMInterpreter . 43

4.4 Additional Details . 43
4.4.1 Kiasan/Sireum - Push Mode Coordination 43
4.4.2 Kiasan/Sireum - XStream State Snapshot 44
4.4.3 Kiasan/Sireum - Intra-Unit Parallelization 44
4.4.4 Kiasan/Sireum - Inter-Unit Parallelization 45
4.4.5 Kiasan/Sireum- Front-end client . 45
4.4.6 Kiasan/Sireum - Coordinator Server 45

5 Experiments and Evaluation 49
5.1 Kiasan 1 Experiments . 49
5.2 Results . 50

5.2.1 State Snapshot Work Units . 50
5.2.2 Schedule-based Work Units . 51

5.3 Kiasan 2 Experiments . 53
5.3.1 Throughput . 53
5.3.2 Worker idle time . 53
5.3.3 Factorizations . 54
5.3.4 Serialization time . 54

5.4 Experimental Setup . 54
5.5 Errata . 55
5.6 Results . 56

5.6.1 ArrayPartition.partition(), k=7, ab=100 56
5.6.2 BinaryHeap.findMin(), k=7, ab=100 59
5.6.3 BinarySearchTree.insert(), k=7 . 61
5.6.4 DisjSet.union() k=7, ab=100 . 62
5.6.5 GC.mark(), k=4 . 64
5.6.6 AvlTree.insert() k=7 . 67

v

6 Related Work 71
6.1 ESC/Java . 71
6.2 Parallel ESC . 75
6.3 JPF . 77
6.4 Structure Analysis for Testing . 77
6.5 Korat . 79

6.5.1 Korat - Walkthrough . 80
6.5.2 Distributed Korat . 83

6.6 Concolic Testing . 84
6.7 jCUTE . 85
6.8 Theoremprovers / SMT Solvers . 85

6.8.1 CVC3 . 86
6.8.2 Yices . 86

6.9 JUnit . 87

7 Conclusion 89

8 Future Work 90
8.0.1 Root-closest Parallelization . 90
8.0.2 Parallel Report Generation . 90
8.0.3 Kiasan on Map Reduce . 92

Bibliography 96

A Root Closest Parallelization 97

vi

List of Figures

2.1 A simple FSM that could represent some Kripke structure, where A is the
initial state, and the transition relations are defined by the arcs between the
states (nodes) . 7

2.2 A FSM representation of a specification. I is the initial state, states 3 and 4
are ’bad’ states, and the labels of the arcs are from the state labels of figure 2.1 8

2.3 Execution tree for code fragment 1 . 11
2.4 Visual comparision of Lazy and Lazier Initialization1 15
2.5 Lazy Symbolic Execution Tree and An Example Trace (3-33-334-3341 and

Sibling States) . 17
2.6 Lazier Symbolic Execution Tree and An Example Trace (2-22-223-2231 and

Sibling States) . 17
2.7 Lazier] Symbolic Execution Tree and An Example Trace (1-11-112-1121 and

Sibling States) . 18
2.8 Three structures generated by a structure analysis on LinkedNode 19

3.1 A small execution tree. The sub-trees with roots C and D do not overlap
and are therefore independent from one another. 24

3.2 Execution tree for some hypothetical program 26
3.3 Parallelization hueristics . 28
3.4 ’Optimally’ shaped execution trees for parallelization 28
3.5 ’Realistically’ shaped execution trees for parallelization 29
3.6 A ’dense’ execution tree . 30
3.7 A ’sparse’ execution tree . 31
3.8 A small execution tree with each choice labeled by its index 32

4.1 Kiasan’s pipelined architecture . 38

5.1 Analysis time vs. number of worker processes, using the CVC3 theorem prover. 50
5.2 Analysis time vs. number of worker processes, using the Yices theorem prover. 50
5.3 Analysis time vs. number of worker processes, using the Yices theorem prover. 51
5.4 Analysis time vs. number of worker processes, using the CVC3 theorem

prover. The k-bound was set to 200 in order to force a long analysis time. . . 52
5.5 Analysis time vs. number of worker processes, using the Yices theorem prover.

The k-bound was set to 200 in order to force a long analysis time. 52
5.6 ArrayPartition.partition() state-paths explored per minute 56
5.7 ArrayPartition.partition() total state paths explored over a 20 minute span . 56
5.8 ArrayPartition.partition() scale factor over a 20 minute window 57
5.9 ArrayPartition.partition() parallelizations per minute over a 20 minute span 57

vii

5.10 ArrayPartition.partition() time spent serializating/deserializing workunits per
minute over a 20 minute span . 58

5.11 ArrayPartition.partition() total time workers spent idle per minute over a 20
minute period . 58

5.12 BinaryHeap.findMin() state-paths explored per minute 59
5.13 BinaryHeap.findMin() time to finish complete analysis in minutes 60
5.14 BinaryHeap.findMin() scale factor derived from time to complete analysis . . 60
5.15 BinarySearchTree.partition() state-paths explored per minute 61
5.16 BinarySearchTree.insert() total state paths explored over a 20 minute span . 61
5.17 BinarySearchTree.insert() scale factor over a 20 minute window 62
5.18 DisjSet.union() state-paths explored per minute 62
5.19 DisjSet.union() total state paths explored over a 20 minute span 63
5.20 DisjSet.union() scale factor over a 20 minute window 63
5.21 GC.mark() state-paths explored per minute 64
5.22 GC.mark() scale factor over a 20 minute window 65
5.23 GC.mark() parallelizations per minute over a 20 minute span 65
5.24 GC.mark() time spend serializating/deserializing workunits per minute over

a 20 minute span . 66
5.25 GC.mark() total time workers spent idle per minute over a 20 minute period 66
5.26 AvlTree.insert() state-paths explored per minute 67
5.27 AvlTree.insert() total state paths explored over a 20 minute span 68
5.28 AvlTree.insert() scale factor over a 20 minute window 68
5.29 AvlTree.insert() parallelizations per minute over a 20 minute span 69
5.30 AvlTree.insert() time spent serializating/deserializing workunits per minute

over a 20 minute span . 69
5.31 AvlTree.insert() total time workers spent idle per minute over a 20 minute

period . 70

6.1 Parallel ESC Time(seconds) vs. Number of Cores2 76
6.2 Three structures generated by a structure analysis on LinkedNode 78

A.1 The fully expanded execution tree for intTest(x), The nodes with drop shad-
ows represent the state if the symbolic execution after a certain choice has
been followed. The arcs represent a choice. A trace from the root of the tree
to a leaf represents a path through the method intTest(x), as determined by
symbolic execution. 98

A.2 The partially expanded execution tree for intTest(x) at time t(x). The covered
choices are annotated by what worker explored them (in this case worker w1).
There are three choices that may be distributed to another worker at t(x). . 99

A.3 The partially expanded execution tree for intTest(x) at time t(x + c). The
covered choices are annotated by what worker explored them (in this case
worker w1 and w2). Here, eager parallelization has been applied to parallelize
the immediate choice from the previous state of w1. 99

viii

A.4 A possible fully expanded execution tree for intTest(x), which has been ex-
plored by two workers with eager parallelization. In this scenario, w1 has
completed the initial path it explored and backtracked to the first choice
in the tree while w2 was busy finishing. When w2 becomes idle again, w1
generates a workunit from w1’s current state. 100

A.5 The partially expanded execution tree for intTest(x) at time t(x + c). Here,
root-closest parallelization was used to parallelize; w1 looked in its history to
discover a choice that was closer to the root of the execution tree and then
generated a work unit from that choice. 101

A.6 A possible fully expanded execution tree for intTest(x), which has been ex-
plored by two workers with root-first parallelization. Here, the load was much
more evenly balanced between the two workers vs. eager parallelization. Also
note that less inter-worker communication had to take place, which would
have a positive impact on parallelization efficiency. 101

A.7 The fully expanded execution tree for intTest(x) each choice is annotated
with its numerical index. 103

ix

List of Algorithms

1 DFS model checking algorithm . 9
2 Lazy Initialization3 . 13
3 Distributed Bag of Tasks Coordinator Process 20
4 Distributed Bag of Tasks Worker Process . 20
5 Map function for word frequency counting in a document 21
6 Reduce function for word frequency counting in a document 21
7 Kiasan/Bogor Coordinator Server worker thread process; used to manage a

connection between a worker process and the server 36
8 Kiasan/Bogor worker process implementing pull mode 37
9 explore() method for Kiasan . 40
10 explore() method for parallel Kiasan . 41
11 shouldDistribute() without worker load balancing 41
12 shouldDistribute() for load-balanced Lazy Parallelization 41
13 Kiasan/Sireum Coordinator Server worker thread process; used to manage a

connection between a worker process and the server 46
14 Kiasan/Sireum worker process implementing push mode 46
15 Kiasan/Sireum Coordinator Server workunit dispatch thread. This thread

blocks until the work unit queue has contents, deqeues a work unit, then
assigns the work unit to an idle worker process. 47

16 Kiasan/Sireum Coordinator Server job management connection thread . . . 48
17 Any time report merge algorithm . 91
18 Parallel report merge worker process . 92
19 Map function for emitting the successor states of a state 93
20 Reduce function Map Reduce kiasan. Simply passes through input. 93
21 Iterate MapReduce to explore a symbolic execution tree breadth-first 93
22 explore() method for root-closest parallelization 103
23 shouldDistribute() for root-closest parallelization 104
24 checkUncovered() for root-closest parallelization 104
25 sendScheduleWU() for root-closest parallelization 104

x

Acknowledgments

This thesis would not have been possible without all my teachers, family, and friends

that have supported me during the development of the many versions of distributed Kiasan

and the writing of this thesis. First of all I want to thank my advisor Robby for putting

up with all the times I wandered into his office to ask him questions about how different

modules in Bogor or Kiasan actually worked, not to mention the multiple hour debugging

sessions where he helped me quash particularly stubborn programming bugs. Next I want

to thank my family for understanding when I would spend more time on family vacations

working on my project than interacting with the rest of the family. Finally, I’m glad my

friends put up with me when I was much more focused on this project than spending time

with them.

xi

Chapter 1

Introduction

Computing systems are pervasive in modern society. Computers are intimately involved

with everything from the micro-controller in a high-end electric shaver to the autopilot of a

commercial jet airliner. Computers can be used for entertainment (video games, streaming

video). Computers are also used for standard day-to-day business dealings (digital database

systems, word processors, video teleconferencing).

What every computer needs in order to operate is software, which is the logical descrip-

tion of some process or calculation. It is no surprise then, that the production of software is

big business. The 2007 total revenue for the Software 500, a list of the largest 500 software

companies, exceeded 394 billion U.S. dollars, and continues to grow each year4. Software

defects have been calculated to cost the United States’ economy $59.5 billion.5 As the de-

mand for software grows, so has the demand for techniques to reduce software defects. A

software defect can be loosely defined as an aspect of a software system that causes it to

behave in a way contrary to its specification.

Amongst software professionals (developers, engineers, academic researchers) there has

always been an intense interest in figuring out how to detect and correct (or mitigate) defects

in software systems before those systems go live: defects that have gone undetected end up

costing money and in some cases even human lives. The many techniques developed are

quite varied both in their scope and in their depth. Each approach has different strengths

and weaknesses. The techniques, just to name a few, include: weakest-precondition analysis,

1

abstract interpretation, model-checking, information-flow analysis, software testing, etc.

A popular approach in the industrial setting has been software-testing. Software testing

is simply where software engineers develop a corpus of test cases (a set of inputs to the

software). Developers run the software against each test case. If the software produces

unwanted output then a defect has been detected, and an engineer will attempt to correct

the defect. A recent incarnation of software testing is known as unit testing. Unit tests

conceptualize a software system as interconnected discrete units. Software engineers give

each unit some functional specification (formally or informally). Unit tests are designed to

exercise the functionality of each unit. As with software testing unit testing requires the

investment of developer time; a human must come up with the test cases. For a complex

unit, a large number of test cases may be required to exercise enough of the unit to detect

any defects.

Coinciding with the increased demand for software, computational capabilities in hard-

ware are also growing. While for much of the time since the 1950’s computing power has

increased primarily through higher clockspeed central processing units, recently semicon-

ductor companies have had difficulty increasing the clockspeed at the same rate. Instead

of increased clockspeed, processor manufacturers are leveraging better manufacturing tech-

niques to put more than one processing unit in a single processing package. As of the

writing of this thesis, mid-range server class systems commonly have up to 24 processors

spread across 4 CPU packages (4 processor Dunnington series Xeon machine.) Major CPU

manufacturers have CPU packages on their road maps that will contain 100 or more pro-

cessors sometime in the next 10 years6.

This means that while computing systems will continue to grow in terms of absolute

power, software developers will need to write programs that take advantage of parallelism

in order to harness that new power. Not only will that make software more complex in

general, it also means that some algorithms probably won’t be able to take direct advantage

of more processing cores if those algorithms are inherently serial.

2

One research question is can the computing power of highly parallel systems be exploited

for software verification? This thesis explores an analysis technique, symbolic execution, that

is particularly amenable to parallelization.

Symbolic execution is a type of static analysis that exhibits a certain form of parallelism.

As a symbolic execution analyzes a program; it will explore different possibilities of program

execution. These explorations are independent once they bifurcate from one another. In

theory, this means that individual explorations can be executed by different processors in

parallel once the explorations become independent.

1.1 Contributions

The contributions of this thesis are as follows:

1. A high-level description of how symbolic execution can parallelized.

2. A discussion of how parallel symbolic execution was implemented in Kiasan, a symbolic

execution tool for Java.

3. Experimental data and evaluation that captures the range of performance exhibited

by parallel Kiasan.

1.2 Thesis Structure

This thesis is organized into 8 chapters. Chapter 1 is this introduction. Chapter 2 contains

a survey of techniques that are either commonly used, have been implemented as a parallel

algorithm, or are directly relevant to the proceeding sections. Chapter 3 describes paral-

lel symbolic execution and some observations on how it will perform in certain instances.

Chapter 4 contains details on how parallel symbolic execution was implemented in Kiasan.

Chapter 5 is dedicated to experiments: it contains both the experiment descriptions and the

experimental data. Chapter 6 reviews related work; it describes tools that implement the

3

techniques from Chapter 2. Chapter 7 contains the conclusion. Finally, Chapter 8 describes

some possible future directions for parallel symbolic execution.

4

Chapter 2

Background

This chapter contains an overview of some selected static analysis techniques. Of most

direct relevence to the following section are the descriptions of the various forms of sym-

bolic execution. Other techniques are described for purposes of comparison, and because

they relate to tools described in later chapters. This chapter also summarizes some basic

approaches to distributed or parallel processing in addition to some basic terms.

2.1 Program Analysis Background

The first half of this chapter describes various program analysis techniques that are relevent

to symbolic execution, including various terms commonly used when discussing these tech-

niques.

2.2 Soundness and Completeness

In this document the terms soundess and completeness are used to describe certain properties

of the various analysis. This usage in formal methods is directly related to these term’s usage

in the domain of mathematical logic.

2.2.1 Soundness

An analysis is sound if it demonstrates that a program has no bad (contrary to expectation

or specification) behavior when it specified or implied preconditions are true.

5

2.2.2 Completeness

If some program has an error, a complete analysis will find it.

2.3 Kripke Structures

A Kripke structure is a 4-tuple M = (S, I, R, L)7 where

1. S is a finite set of states.

2. I ∈ S is the set of initial states.

3. R is a transition relation, such that R ⊆ S × S and ∀s ∈ S and ∀s′ ∈ S ∃(s, s′) ∈ R

4. L is a labeling function of type: S → 2AP

Kripke structures can be used to formally specify a finite state system. Kripke structures

support the specification of non-determinism by allowing multiple transition relations from

the same state s, (e.g. (s, s′) ∈ R and (s, s′′) ∈ R but s′ 6= s′′).

2.4 Explicit State Model Checking

Model checking is a computationally expensive formal analysis technique used to verify that

some system is correct with respect to some specification. A model checker takes as input

some model of a finite-state system M , and a specification S for the correctness of the

system. The model checker is then used to exhaustively explore all states of the system. If

the model-checker encounters a state deemed ‘bad‘ by the specification, the model-checker

can produce a counter-example, or trace of states that illustrates how the system could

evolve to violate the specification7.

More formally, the model checking problem can be described as: Given some Kripke

structure M = (S, I, R, L) which represents a finite state system, and some specification

formula F , find all sets in S that satisfy f : {s ∈ S |M, s |= f}7.

6

Figure 2.1: A simple FSM that could represent some Kripke structure, where A is the
initial state, and the transition relations are defined by the arcs between the states (nodes)

Generally, the logic formula f is compiled into another state machine7. Techniques exist

to do this conversion from formulas in Linear Temporal Logic (LTL), CTL or others but

describing those techniques are beyond the scope of this thesis. Instead, for the following

example, imagine that the specification has already been compiled into the finite state

machine of figure 2.2.

7

Figure 2.2: A FSM representation of a specification. I is the initial state, states 3 and 4
are ’bad’ states, and the labels of the arcs are from the state labels of figure 2.1

Figure 2.2 represents the specification that our system should not have a state transition

trace that contains < C,B,C > or < B, C,B >. The following is the depth first model

check of the system M (Figure 2.1) with specification f , represented by FSM S (Figure 2.2):

1. Both FSM are in their initial states.

2. M transitions A→ B.

3. The model checker pushes A onto its backtracking stack. The stack contents are

< A >

4. S has a transition from I labeled B, so S transitions I → 1.

8

5. M transitions B → C. B is pushed onto the stack, and S transitions 1→ 2, following

the arc labeled C. The stack contents are < A, B >

6. M has two choices from C, either to B or to D. Assume M transitions C → B. I

transitions 2→ 3. C is pushed onto the stack yielding: < A, B, C >.

7. M transitions B → C, but there is no corresponding label that would allow S to

transition from 3, which is a bad state. The model checker detects that S is stuck.

The stack is used to construct the counter-example ABCB.

8. The model checker will then backtrack M to state C (where there was another unex-

plored choice) and then continue the search by exploring the transition C → D.

Algorithm 1 DFS model checking algorithm

procedure DFS(s)
markAsSeen(s)
l← getSpecLabel(s)
specState← transitionSpecFSM(l)
push(traceStack, s)
if badState(specState) then

addToCounterExamples(traceStack)
return

end if
successors← successorStates(s)
for all succ ∈ successors do

if notSeen(succ) then
DFS(succ)

end if
end for
return

2.5 Symbolic Execution

Symbolic execution is a static program analysis approach initially described in Symbolic

Execution and Program Testing 8. Symbolic execution reasons about a program symbolically

9

instead of concretely. For instance, given a small program consisting of one statement S:

x = y + 3 where (x ∧ y ∈ Z) In the concrete case, if y == 0 prior to the execution of S

then it is the case that x == 3 after the execution of S.

Since the statement S under consideration is ideal (both x and y are real life integers,

or x∧ y ∈ Z) it is straightforward to reason about the affect of executing S on the program

state symbolically. Before S is executed we know that y = α where α is some unknown value

from Z. After executing S, then it is the case that y = α ∧ x = α + 3. Program statements

involving other (subtraction, multiplication, division, etc) arithmetic can be coupled with

symbolic semantics in a similar way. The collection of symbolic relations that are true at a

given stage of program execution is known as a path condition (PC).

Program control statements (such as if-else blocks and loops) can also be reasoned about

symbolically. Consider the small program from listing 2.1.

int x , y , z ;
i f (x > y)

z = x + y ; //S1
else

z = x − y ; //S2

Listing 2.1: Program fragment p1

Prior to the if-else branch y = α ∧ x = β ∧ z = γ ∈ PC. PC does not contain any

information that can be used to determine if the true branch of the if-else will be followed

or if the false branch will be followed because the values of x and y are unknown. This

means that both branches will be explored by a symbolic execution. When the case x > y

is explored, the path condition is ammended to y = α ∧ x = β ∧ z = γ ∧ β > α after

S1 is executed then the PC becomes y = α ∧ x = β ∧ z = α + β ∧ β > α. When the

case x ≤ y is explored PC becomes y = α ∧ x = β ∧ z = γ ∧ β ≤ α before S2 and

10

y = α∧ x = β ∧ z = β = α∧ β ≤ α after. During an analysis the symbolic execution engine

will generate (and store) a path condition for each program path explored.

x = α, y = β, z = ϒ
PC = {true}

x = α, y = β, z = ϒ
PC = {α > β}

x = α, y = β, z = π
PC = {α > β, π = α+β}

x = α, y = β, z = ϒ
PC = {α ≤ β}

x = α, y = β, z = π
PC = {α ≤ β, π = α-β}

x > y x ≤ y

z = x + y z = x - y

Figure 2.3: Execution tree for code fragment 1

A symbolic execution has the property that if each symbol in a PC is instantiated in

such a way that satisfies the PC, then the instantiated values are equal to the values that

would be produced in a normal, concrete execution when the input variables are assigned

the same values as in the a posteri instantiation. For example, if for program above α, β,

and γ are instantiated such that α = 2∧β = 1 then γ = 3, which is equivalent to concretely

executing the program where x = 2 ∧ y = 1 resulting in z = 3. Satisfying assignments to

each PC will result in a collection of program inputs that can be used as program or unit

test cases.

11

2.5.1 Symbolic Execution of Imperative Programs with Heap Ob-
jects - Lazy Initialization

The method of executing a program symbolically described in the previous section is ade-

quate when the program being checked is written in a language whose data storage (program

variable) constructs are clearly bounded in size. (For example, a simplified version of Ada

or Pascal where dynamically allocating memory from the heap is disallowed.) Modern pro-

gramming languages such as Java make heavy use of heap allocated objects and arbitrarily

sized and structured datatypes. In the purest sense, the conceptually unbounded heap in

the computation model of these languages poses a problem: How can the infinite number

of possible heap configurations be characterized symbolically?

A proposed solution (or concession to, depending on your perspective) for this problem,

is Lazy Initialization, which was first implemented in conjunction with symbolic execution

in JPF9 (Lazy initialization used in this manner to analyze structured data was first done

with the abstract interpretation tool TVLA10). Lazy Initialization provides a method for

systematically exploring heap configurations in a language like Java that enforce disciplined

manipulation of the heap. In Java a variable may be a container for some numerical value

(such as float, integer, double, boolean) or a reference to an address in the heap where a

structured object is stored. A structured object is a composition of some number of named

simple values and some number of named references to other objects. Lazy Initialization

semantics for heap object reference access and manipulation is as follows (see algorithm 2

for a more formal description):

1. If a named variable is dereferenced for the first time, non-deterministically consider

each possible object that that reference could refer to, append that assignment to the

current PC and proceed.

2. If a new object is allocated during the consideration of potential derefence possibilities,

add it to the symbolic heap for future considerations on that symbolic path.

12

Algorithm 2 Lazy Initialization3

input(f) {f is the field variable under inspection.}
if unintialized(f) then

if isType(f , T) then
choose(initialize(f , null)

∨
initialize(f , new(T))

∨
initialize(f , priorObject())

end if
if preconditionViolation() then

backtrack()
end if

end if
if isPrimitive(f) then

initPrimitive(f)
end if

Of course, recursively defined object types and array based datastructures allow for

unbounded heap graphs, so a bound on the heap graph can (and should, since it is often

the case that software contains inductively defined data structures) be artificially imposed.

Different approaches to bounding have been used. Such approaches include bounding the

number of objects in the heap directly, bounding the number of method invocations and

loop iterations, and bounding the length of a heap reference chain (known as the k-bound,

where k is the maximal length of any given reference chain in the heap graph) Imagine the

linked-list implementation from listing 2.2.

13

public class LinkedNode{

private LinkedNode next ;
private Object va lue ;

public void add (Object o){
i f (next == null){

LinkedNode n = new LinkedNode () ;
n . setValue (o) ;
this . next = n ;

}
else {

next . add (o) ;
}

}

public void setValue (Object o){
this . va lue = o ;

}
}

Listing 2.2: Simple linked list implementation

This data-structure is inductively defined, and is unbounded in length. A lazy initial-

ization symbolic execution of the add method with a k-bound of 2 would not consider any

heap configurations larger than the ones visualized in figure 2.4(a).

This arbitrary bound on the heap means that in general k-bounded symbolic execution is

not considered sound because all possible heap configurations will not be considered during

the analysis. However a k-bounded symbolic execution is sound for all heap configurations

that have been explored so k-bounded symbolic execution is considered ‘relatively sound.‘

Also, as an added benefit, Lazy initialization and its derivatives (lazier and lazier], explained

later) will only explore non-isomorphic heap configurations.

14

n

NULL

LinkedList

LinkedNode

(a) Linked list non-
deterministic choices
with Lazy Initializa-
tion

LinkedNode

LinkedList NULL

n c

(b) Linked list non-
deterministic choices with
Lazier Initialization

(c) execution trace for lazy ini-
tialization

(d) execution trace for lazier
initialization

Figure 2.4: Visual comparision of Lazy and Lazier Initialization1

2.5.2 Lazier Initialization

While lazy initialization provides a technique to systematically explore all possible heap

configurations relevant to a given program, its inherent non-determinism can result in a

significantly expensive analysis as the number of potential heap objects grows. In order

to reduce the degree of exponential blowup created by the non-deterministic choices Lazy

Initialization was refined by Deng, et al1 into Lazier Initialization.

The purpose of the original Lazy Initialization was the systematic unfolding of possible

heap configurations as the enumeration of those possibilities became needed by the under-

lying symbolic execution. As it turns out, Lazy Initialization non-deterministically unfolds

heap configuration possibilities too early. For a given object reference o that has field f ,

Lazy Initialization will non-deterministically choose among all possibilities for f the first

time f is accessed in any way. In fact, it is possible to delay the expansion of the possibilities

for o.f until either o.f is used in a non-primitive field access (such as o.f .g), an equality test

(o.f = z) or as a receiver object in a method call. The initialization of o.f to a concrete

15

heap object is delayed by instead temporarily initializing o.f to a symbolic object place

holder until any of the previously described three conditions are met.

A beneficial consequence of this delay is that the symbolic computation tree becomes

thinned out at a given height, greatly reducing the total number of symbolic states that must

be explored during the course of the analysis. The following example was first presented in

Towards A Case-Optimal Symbolic Execution Algorithm for Analyzing Strong Properties of

Object-Oriented Programs 11:

public class Node<E>{
private Node<E> next ;
private E data ;
//@ensuresdata == \ o ld (n . data) && n . data == \ o ld (data) ;
public void swap (@NonNull Node<E> n){

E e = data ;
data = n . data ;
n . data = e ;

}
}

Listing 2.3: Simple swap example

Figures 2.5 and 2.6 compare the execution trees for the symbolic execution of the swap

unit from figure 2.3. Using standard lazy initialization the symbolic execution must explore

more heap configurations than with lazier initialization. When using lazier initialization

symbolic execution has fewer possibilites for reference assignment at each nondeterministic

choice. As the tree is explored more deeply, the difference in the number of current choices

resulting from the decrease in past choices is dramatic. For example, in lazy initialization

the analysis starts with 3 choices, while with lazy initialization there is two. At the last

level there are 20 choices with lazy initialization but only 6 with lazier!

16

Figure 2.5: Lazy Symbolic Execution Tree and An Example Trace (3-33-334-3341 and
Sibling States)

Figure 2.6: Lazier Symbolic Execution Tree and An Example Trace (2-22-223-2231 and
Sibling States)

2.5.3 Lazier] Intialization

Lazier Initialization is not optimal with respect to the number of heap configurations ex-

plored11. It prematurely expands certain heap configurations leading to an unecessarily

17

bloated computation tree. The cause of the inefficiency is Lazier Initialization’s handling of

the initialization of null values. Once one of the three initialization conditions is met (see

section 2.5.1) Lazier Initialization immediately initializes the accessed field to either null

or any of the other type correct objects in the heap. In many situations during execution

it is inconsequential whether the object in question is null or not, and this choice may be

deferred until later.

Thus Lazier] Initialization improves upon Lazier Initialization by returning a temporary

place holder that indicates a given reference may be null when one of the three conditions

from section 2.5.1 are met. Later, if the nullness of the object is in question (for instance

in a nullness test) then the symbolic execution can non-deterministically choose whether

the reference is null or not according to the constraints in the current PC.

As with Lazier Initialization this heap configuration unfolding delay results in a sparser

computation tree and less symbolic cases to explore. In Deng, et al11 it was shown that

Laziest Initialization is case optimal. Figure 2.7 shows the execution tree of 2.3 when

analyzed with lazier] initialization.

Figure 2.7: Lazier] Symbolic Execution Tree and An Example Trace (1-11-112-1121 and
Sibling States)

2.6 Structure Analysis for Testing

Structure analysis for testing is a technique that aids in the creation of unit test cases.

Given some complex type definition (e.g., a Java type), structure analysis will automatically

generate object graphs according to that type specification up to a certain bound. Sometimes

18

a representation predicate is used to prune test cases from the test corpus that are not

relevant to the unit’s functional behavior (i.e. the test case in question does not conform to

the units pre-condition).

LN LN

NULL

(a) next for both nodes is NULL

LN LN

NULL

(b) One node points to the other, the
last points to NULL

LN LN

(c) Nodes are in a cycle

Figure 2.8: Three structures generated by a structure analysis on LinkedNode

Consider the LinkedList from listing 2.2. Based on LinkedNode’s type specification,

there are 3 possible non-isomorphic LinkedList structures with 2 LinkedNodes (assuming

the generation does not allow self-cycles) Refer to figure 6.2. If the representation predicate

returns false when there is a cycle 6.2(c) would be pruned from the test corpus.

2.7 Parallel and Distributed Computation

The remainder of this chapter describes different forms of distributed and/or parallel com-

putation that are most relevent to my implementation of parallel Kiasan.

19

Algorithm 3 Distributed Bag of Tasks Coordinator Process

while true do
workerConn← receiveCon()
req ← reqType(workerConn)
if req = getTask then

send(workerConn, getTaskFromBag())
else

putTaskIntoBag(getTaskFromConn(workerConn))
end if

end while

Algorithm 4 Distributed Bag of Tasks Worker Process

while true do
task ← getTaskFromCoord()
result← execute(task)
if containsTask(result) then

sendTaskToCoord(result)
end if

end while

2.8 Distributed Bag of Tasks / Coordinator-Workers

The ’Distributed Bag of Tasks’12, also known as Coordinator-Worker, is a programming

pattern that can be used to implement parallel algorithms. The coordinator is a special

process that maintains a collection of independent tasks. One or more workers are connected

to the coordinator, either via shared variable or some message passing framework. A worker

retrieves a task from the coordinator, executes the task, and then possibly adds more tasks

to the bag.

2.9 MapReduce

MapReduce is a simple low level programming model developed at Google to support mas-

sively parallel programming13. MapReduce requires that programmers factor computation

into two distinct phases: A Map phase, and a Reduce phase:

1. Map(k1,v1)→ list(k2, v2)

20

2. Reduce(k2,list(v2))→ list(v3)

Each of these phases are loosely14 inspired13 by the Map and Reduce operators provided

by functional programming languages like LISP or Haskell. In Google’s MapReduce, the

programmer implements a Map function, which takes as input some key value pair, (k1,v1),

and then emits one or more intermediate key value pairs: list(k2, v2). The programmer

must also implement a Reduce function, which takes as input some (k2,list(v2)) and returns

some list(v3). A MapReduce framework applies the Map function in parallel to all input

(k1,v1). The resulting intermediate list(k2, v2) is then grouped by keys into a collection

of list(k2, v2), which is then processed by the Reduce function in parallel. The following

pseudo-code demonstrates how a an algorithm for counting the frequency of words in a

collection of documents could be implemented in MapReduce.

Algorithm 5 Map function for word frequency counting in a document

input (name, document)
for each word w in document do

EmitIntermediate(w,1)
end for

Algorithm 6 Reduce function for word frequency counting in a document

input (word, list(counts))
for each count in list(counts) do

result← result + count
end for
Emit(result)

In addition to the programming model described here, MapReduce also is a framework

designed to support the programming model. The framework is responsible for determining

how to partition the input data and the intermediate keys, as well as how to dispatch

data to the various Map or Reduce functions. There are no stringent requirements on

how to implement a MapReduce framework except that it must support the MapReduce

programming model.

21

The MapReduce programming model is particularly straightforward to use if the algo-

rithm the developer is trying to implement can easily be conceptualized as working on a

large set of initial data.

22

Chapter 3

Parallel Symbolic Execution

3.1 Paralellization

Symbolic execution as described in 2.5 can be very effective in uncovering bugs and gen-

erating test cases for a wide range of complex code. The practicality of applying symbolic

execution is dependent on the bounding settings required to achieve sufficient code coverage

(the loop call, method call, and k-bound). It is not uncommon that some examples of real

world code won’t be fully covered by an analysis with conservative bound settings. For ex-

ample, during the symbolic analysis of the redblacktree.put() unit, serial symbolic analysis

is capable of exploring all 12,000 heap configurations that are possible with k=4 in under 2

minutes on a reasonably powerful workstation (i.e. 3Ghz Core2 Xeon.) This bound is not

adequate for complete code coverage, and there could still be unfound programming errors.

For k=5, there are more than 170 million possible heap configurations. The amount of time

required to complete a k=5 analysis is more than 3 orders of magnitude greater than a k=4

analysis. The lower bound on the time required for a k=5 analysis is on the order of several

days, which is too long to integrate into something like a nightly build process.

While previously implemented versions of symbolic execution have been engineered as

serial algorithms, there exists inherent parallelism in the symbolic execution algorithm. It

makes sense to leverage this inherent parallelism to take advantage of the recent move to-

wards multi-core (multi CPU) systems and clusters of computers a software development

23

organization may have at its disposal. In the following sections I will discuss how sym-

bolic execution can be processed by a parallel system. Chapter 4 will contain the details

concerning the implementation of parallel Kiasan.

3.2 Parallelism in Symbolic Execution

A nice characteristic of any symbolic execution tree is that any two non-overlapping sub-

trees in the larger tree are completely independent from one another. Effectively this means

that each path condition PC for a given program is independent from any other PC for that

same program. Essentially, each PC represents a different causally independent execution

of that program. Therefore each PC for some program p can be explored independently by

separate processors or computers.

A

��

B

~~}}
}}

}}
}}

 B
BB

BB
BB

B

C

~~}}
}}

}}
}}

��

D

�� !!B
BB

BB
BB

B

E F G H

Figure 3.1: A small execution tree. The sub-trees with roots C and D do not overlap and
are therefore independent from one another.

Unfortunately, each PC is not known a priori to the analysis, so there is not a straight

forward way to assign the analysis of independant PC to separate processors; The number

of PC that will result from a given analysis is unknown. Instead, other techniques must be

employed in order to exploit symbolic execution’s parallelism while still making efficient use

of multiple processors.

24

3.2.1 Parallelization

While the total work set of a given analysis is not known a priori, symbolic execution can be

parallelized when it becomes clear that the current path condition being developed bifurcates

into two independent path conditions. For example, refer to the program in listing 2.1 and

its execution tree in figure 2.3. Informally, parallelization occurs as follows.

1. Symbolic execution starts in the initial state. The shape of the tree is unknown. (Only

the root node in figure 2.3 exists)

2. Symbolic execution proceeds and uncovers a non-deterministic choice (either x > y or

x ≤ y.)

3. With more than one non-deterministic choice, check to see if any workers are idle. If

there are idle workers, then one choice is assigned to an idle worker. The other choice

is taken by the current worker.

In this way, different sub trees of a given program’s symbolic execution tree can be

assigned to different processors.

Consider figure 3.2. Each node of the tree represents a location of non-deterministic

choice. Each arc leaving a node represents a choice in particular. Imagine the symbolic

execution of a program whose execution tree is structurally similar to the one represented in

figure 3.2. If the symbolic execution had just uncovered the first location of non-deterministic

choice (the root node of the tree) then it would know that there are three non-deterministic

choices that could be made. Any two of those choices could be assigned to other free workers,

and the remaining choice would be computed by the current worker. However, the size and

structure of the sub-trees are unknown (the symbolic state space has not been sufficiently

unfolded yet.)

25

Figure 3.2: Execution tree for some hypothetical program

26

3.2.2 Parallelization - Load Balancing

Like any parallel algorithm, parallel symbolic execution incurs processor and memory over-

head managing the parallelization of the analysis. Because the cost (in processing time) of

any subtree of the execution tree is not known in advance there is no guarantee that a given

analysis will benefit from parallelization. In fact, there are some situations where paralleliz-

ing the analysis will increase the amount of time required to complete that analysis. These

situations occur when the cost of coordinating the parallelization of a subtree dominates the

cost of simply performing symbolic execution on that subtree. Less obviously, attempting

to parallelize every non-deterministic choice will result in a drastic slowdown of the total

analysis as the sum of the resources expended during coordination activities will always

exceed non-parallel analysis time.

While there is no known way in general to predict the computational resource demands

of a given symbolic execution, simple commonsense heuristics can be used to choose when

to parallelize a non-deterministic choice, especially if it is likely the symbolic execution as a

whole will be very computationally intensive.

Instead of choosing when to parallelize based on the structure of the symbolic execu-

tion tree, the analysis could instead parallelize when computational resources become free.

Imagine some computer that is able to run 8 threads simultaneously (e.g. An 8-CPU com-

puter.) Prior to analysis the machine has the capacity to analyze 8 subtrees concurrently.

Once analysis begins but before the first non-deterministic choice location, 1 processor is

involved in the analysis and 7 are free. If the program from 3.2 is under analysis, then 2 of

the three choices from the root node may be assigned to other workers (the current worker

continues processing one of the choices.) At this stage there are 3 threads active and 5

threads free. If the thread executing the left-most or right-most subtrees encounters one of

the two remaining non-deterministic choice locations they will be able to parallelize up to

three of those choices. If any worker thread completes its analysis of its assigned sub-tree

then that thread becomes idle, and can later be assigned a different subtree. Equations 3.1

27

and 3.2 formalize these different parallelization conditions.

| remainingChoices |> 0 (3.1)

| remainingChoices |> 0 ∧ | idleWorkers |> 0 (3.2)

Figure 3.3: Parallelization hueristics

(a) Good parallelization (b) poor parallelization

Figure 3.4: ’Optimally’ shaped execution trees for parallelization

3.2.3 Execution Tree Structure

As alluded to in the previous section, the structure of the symbolic execution tree can have

a large impact on the effectiveness of load-balanced parallelism. Two major properties of

the symbolic execution tree will affect how effective parallelization will be:

28

(a) Good parallelization

(b) poor parallelization

Figure 3.5: ’Realistically’ shaped execution trees for parallelization

29

1. Compute time between non-deterministic choice.

2. The density of ’extremely’ inner nodes.

1 simply means that if parallelization can only occur at a non-deterministic choice, if

it takes less time to compute the sub-tree for that choice than to parallize it then the

parallelization is probably wasted effort. 2 is a little more subtle. Optimally, one would

want to parallelize subtrees whose cost to analyze is high, or whose cost is such that the

new work-unit will complete when other active workers complete. This implies that trees

who have lots of inner nodes near the root(Figure 3.6) will probably parallelize much better

than trees with ’sparse foliage’ (Figure 3.7.)

1

2 3 4 5

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Figure 3.6: A ’dense’ execution tree

30

1

2 3 4 5 6

19 21 25

89 72

Figure 3.7: A ’sparse’ execution tree

3.3 WorkUnits

What defines a work unit? Remember that a work-unit might contain an analysis where the

analysis engine will have to start somewhere in the middle of an execution tree. Therefore the

work unit needs to contain enough information that a worker could reconstruct an internal

state appropriate to the parallelization point of that workunit. This section describes two

ways of encoding work units.

3.3.1 State Based Workunits

Each worker carries some state S which describes the state of the model it is analyzing.

Typically S contains a collection of information such as:

31

1. H is the model’s heap.

2. S is a stack of StackFrames.

3. PC is the current Path Condition.

4. Sym is the set of symbolic variables used.

A state based workunit is the more conceptually simple method of encoding a workunit.

A state based work unit encodes the relevant state S of a worker at the time of parallelization.

When a worker first receives a state based workunit it must appropriately initialize its

symbolic execution core with the encoded state information.

3.3.2 Schedule Based Workunits

Another way of encoding a work unit is to simply carry the execution schedule for a particular

point of the execution tree.

A

0
��

B

0~~}}
}}

}}
}} 1

 B
BB

BB
BB

B

C

0~~}}
}}

}}
}}

1
��

D

0
��

1

!!B
BB

BB
BB

B

E F G H

Figure 3.8: A small execution tree with each choice labeled by its index

Refer to the simple execution tree in figure 3.8. Imagine that a worker is in state D and

wants to parallelize. The worker could parallelize choice 0 or choice 1. Let’s say that the

worker parallelizes choice 1. This means the workunit will contain the execution schedule:

< 0, 1, 1 >. To reconstruct the model state H, the other worker simply needs to choose the

choice defined to the encoded execution schedule rather than what the symbolic execution

32

would normally provide. While this approach yields a very simple workunit, the longer the

execution schedule is the longer it will take a worker to reconstruct the appropriate state.

3.4 Coordinator Process

Parallel symbolic execution is implemented using the Bag of Tasks distributed programming

model of section 2.8. Thus, a central coordination process is required to manage the ’task

bag’, as well as perform any other accounting tasks relevant to the overall analysis. At its

simplest, the coordinator should be able to:

1. Manage the bag of tasks

2. Detect when a given analysis is complete.

Detecting the completion of the analysis is not straight forward as the workers themselves

do not know anything about the analysis as a whole, only the suubtree they are currently

processing. Instead, a simple invariant can be used to describe the state of the analysis

at a high level: If numWUCheckedOut > 0
∨
‖WUQueue‖ > 0 then the analysis is not

complete. Thus, in addition to the task queue, a distributed symbolic execution coordinator

needs to maintain the number of work units that are checked out.

33

Chapter 4

Implementation Details

Over the course of this project there have been two major versions of Kiasan: Kiasan/Bogor

and Kiasan/Sireum. Kiasan/Bogor was developed first. Kiasan/Bogor extended the Bogor

model checking framework. Kiasan/Sireum is a fresh implementation of symbolic execution

for Java. Kiasan/Sireum is the most recent version of Kiasan and is still under development

as of the writing of this thesis.

The ability to parallelize analyses was added to both Kiasan/Bogor and Kiasan/Sireum.

The basic conceptual machinery underlying each implementation is equivalent, however Ki-

asan/Sireum is much more optimized and generally exhibits drastically better performance

characteristics.

4.1 Kiasan/Bogor

Distributed symbolic execution was first implemented on Kiasan/Bogor. Kiasan/Bogor is

an implementation of symbolic execution for Java built on top of the Bogor model checking

framework. Bogor implements a Java byte-code interpreter that directly model-checks Java

bytecode. Kiasan/Bogor directly extends the built in interpreter component to operate with

symbolic semantics. Kiasan/Bogor also does not fully support symbolic execution of multi-

threaded programs, as the symbolic interpreter did not have semantics for the MONITORENTER

and MONITOREXIT bytecodes. Kiasan/Bogor was used as a testbed for the distributed anal-

ysis concepts that are the basis of this thesis and were implemented in a much more robust

34

fashion for Kiasan/Sireum.

4.1.1 Kiasan/Bogor - Pull Mode coordination

The ’pull-mode’ coordinator is the lightest weight coordinator, and most closely resembles

the bag of tasks model as workers are completely responsible for connecting and retrieving

tasks. The coordination server maintains a queue of pending work units, tracks the number

of threads that are idle, and a ‘completion condition‘ which is a boolean expression that

becomes true when the total symbolic analysis is complete. In Pull-Mode coordination each

worker thread is assigned the same program to analyze. Instead of commencing analysis, the

workers communicate amongst one another and elect the ‘start worker.‘ The start worker

then commences analysis. When the start worker encounters a point of parallelization, it

generates a work unit and transmits it to the coordination server. One of the other workers

will pull that workunit from the queue and do likewise until all workers are not idle.

4.1.2 Kiasan/Bogor - Schedule Encoded Work-Unit

Kiasan/Bogor supported schedule-based workunits: schedules were encoded and decoded

using a simple hand tuned serializer/deserializer into and from comma delimited integer

lists. As a performance increasing measure, Kiasan/Bogor would disable the theorem prover

while it was replaying a schedule (The theorem prover would not be needed to make decisions

that had already been made.)

4.1.3 Kiasan/Bogor - State Encoded Work-Unit

Kiasan/Bogor supported state-based workunits: a large portion of the Kiasan/Bogor im-

plementation was the creation of hand tune serializers and deserializers for the state-based

work units. These hand tuned serializers provided low-latency serialization and deserializa-

tion compared to general frameworks like XMLBeans at the time but they tended to be

very complicated. (The fully implemented serializer/deserializer consisted of over 1000 lines

35

Algorithm 7 Kiasan/Bogor Coordinator Server worker thread process; used to manage a
connection between a worker process and the server

input(workerConnection)
id← getNextAvailableWorkerID()
addWorkerToSystem(id, workerConnection)
addToIdleQueue(workerConnection)
runLoop← true
while runLoop do

workerMessage← blockForMessage(workerConnection)
if workerMessage = PING then

enterMonitor(idleWorkerQueue)
if numIdleWorkers() > 0 then

sendMessage(workerConnection, IDLE)
else

sendMessage(workerConnection, NOTIDLE)
end if
exitMonitor(idleWorkerQueue)

else if workerMessage = CLIENT-COMPLETES-WORKUNIT then
taskId← getTaskIdFromWorker(workerConnection)
task ← getTask(taskId)
enterMonitor(task)
checkInWU(task) {synchronized on the individual task datastructure}
exitMonitor(task)

else if workerMessage = GET-WORKUNIT then
enterMonitor(wuQueue) {idle workers can continue to poll asking for tasks creating
some contention on the wuQueue}
workUnit← dequeue(wuQueue)
exitMonitor(wuQueue)
sendMessage(workerConnection, workUnit)

else
skip

end if
end while

36

Algorithm 8 Kiasan/Bogor worker process implementing pull mode

serverConnection← connectToServer()
while true do

workUnit← getWorkUnit(serverConnection)
while !received(workUnit) do

workUnit← getWorkUnit(serverConnection) {Poll server for workunit}
end while
setWorkerState(workUnit) {initialize worker with either state or schedule}
explore()
sendMessage(serverConnection, CLIENT-COMPLETES-WORKUNIT)

end while

of Java string-manipulation code). This made it very difficult to change the structure or

contents of the workunits as Kiasan/Bogor evolved.

4.1.4 Kiasan/Bogor - Asynchronus Work Unit Commits

Late in the development of Kiasan/Bogor asynchronous commits were added as an opti-

mization to the coordinator server. This optimization was primarily designed to aid in the

scalability of the coordinator system. The coordinator contains several data-structures and

variables that are used to account for the overall progress of a parallel symbolic execution.

These variables and data-structures are guarded by monitors, a basic concurrent locking

mechanism provided by the Java run-time. As the number of worker threads increase, the

contention for these shared resources also increases. If a worker is committing a workunit

to the coordination system and becomes blocked while waiting for access to a resource, then

the worker thread will idle wait until the resource is free, preventing it from working on its

subtree.

In order to reduce the need for direct locking on the shared queue, each worker is paired

with a thread running in the coordinator server. This coordinator thread, and the worker

thread share a local queue. Instead of posting work unit commits to the central shared

queue, the worker thread posts the commit to the local queue. Once the size of the local

queue is greater than 0, the coordinator thread comes alive, and transfers the workunits

37

from the local queue to the shared queue, performing all changes to the accounting variables

previously driven by the worker thread.

4.2 Kiasan/Sireum

Sireum

Kiasan

JMLK KiasanVM Semanggi

Pilar Topi

Eclipse JDT Core

JML4

Java Library Models
and Extensions

JML Extensions

Util Base

External Libraries SMT Solvers

CVC3 STP YicesXStreamANTLR ...

Profile: JVM

State Concretizer

HTML Renderer

.java

.class

report

Figure 4.1: Kiasan’s pipelined architecture

Kiasan/Sireum is a fresh implementation of the algorithms and ideas that were proto-

typed in Kiasan/Bogor. Kiasan/Sireum improved upon Kiasan/Bogor by having a more

robust facility to deal with unit specifications written in the JML specification language

(including a compiler that will compile JML annotations into a form Kiasan can check

against), by improving integration with various theorem provers (Kiasan/Sireum communi-

cates via the Yices and CVC3 theorem provers via native binary calls as opposed to a UNIX

pipe.) a comprehensive HTML report generator that summarizes code coverage and errors

discovered, and a much more streamlined implementation of parallel symbolic execution.

Kiasan consists of 4 main modules: (1) JMLk, (2)KiasanVM, and (3) Semanggi. The

modules process a program for analysis in a pipeline as visualized in figure 4.1.

4.2.1 JMLk

JMLk is a customized version of JML4 (a Java unit contract specification language) for

Kiasan. Given a unit’s Java source code and its corresponding bytecode, it translates the

JML specifications in the sourcecode to a Kiasan-amenable and executable code (Java source

38

code) and then JMLk compiles it to Java bytecode form. Both the unit and its specification

bytecode (as well as some configuration options, e.g., for contract- code substitutions) are

then given to KiasanVM for analysis.

4.2.2 KiasanVM

KiasanVM is a symbolic virtual machine for symbolically executing Java bytecode. As it ex-

ecutes and analyzes the code, KiasanVM notifies users about possible safety violations and

points to program locations where such violations may occur. In addition, KiasanVM mea-

sures the code instruction and branch coverage as well as other statistics such as execution

times. At the end of execution, KiasanVM generates a (XML formatted) report consisting

of execution statistics as well as representative (abstract) pre-/post-states of the unit to

illustrate the behaviors the analysis has covered. KiasanVM then forwards the generated

report to Semanggi for processing.

As of this writing, some Java byte cores are not implemented in KiasanVM: LDC (used

for class loading), NEWMULTIARRAY (allocates memory for multidimensional arrays), and the

concurrency operations MONITORENTER and MONITOREXIT. In practice this limits KiasanVM’s

ability to find bugs that may arise from errors in concurrency, and may even result in

false-positives in situations where the programmer intended to use concurrency monitors to

guard against unwanted program states. KiasanVM is the main module that was modified

to support parallel symbolic execution.

4.2.3 Semanggi

The Semanggi component of the Kiasan pipeline processes the raw XML unit reports gen-

erated by KiasanVM and renders a human readable analysis report in HTML/Javascript.

Semanggi’s output contains analysis and coverage information such as package level, class

level, and method level statistics as well as highlighted source code that visualizes what

program statements were analyzed. In addition to coverage statistics, Semanggi uses a con-

straint solver to construct graphical visualizations of pre-method call and post-method call

39

heap configurations for each path explored through the unit.

4.3 Kiasan/Sireum Core Components

This next section describes in some detail the main core components of KiasanVM. These

components are directly involved with the symbolic execution and are therefore central to

the implementation of a parallel version.

4.3.1 KVMExplorer

The KVMExplorer directly controls the search of the symbolic state space. KVMExplorer

implements a depth first search (DFS) of the symbolic state space. The KVMExplorer will

symbolically execute the instructions of a Java program via the step() method until no

progress can be made (step() returns false). If step() returns false then KVMExplorer

will repeatedly backtrack the search until it can step again (i.e. explore a different non-

deterministic choice). Refer to algorithm 9.

Algorithm 9 explore() method for Kiasan

while !shouldTerminate do
unCovered← false
if !step() then

if !backtrack() then
break

end if
end if

end while

Algorithm 9 has been extended into algorithm 10 in order to support parallelism.

4.3.2 State

State objects describe the current state of a model under analysis. Kiasan/Sireum main-

tains some extra information in the state in order to support the construction of test cases

efficiently after the end of a path condition is reached. Implemented as a Java class named

State, a state can be thought of as a tuple < S, H, Hp, S, PC > where:

40

Algorithm 10 explore() method for parallel Kiasan

while !shouldTerminate do
unCovered← false
if !step() then

if !backtrack() then
break

end if
end if
while shouldDistribute() do

sendWU()
backtrack()
step()

end while
end while

Algorithm 11 shouldDistribute() without worker load balancing

checkUncovered()
if shouldBacktrack then

ret← false
else

ret← true
end if
return ret

Algorithm 12 shouldDistribute() for load-balanced Lazy Parallelization

checkUncovered()
if shouldBacktrack then

ret← false
else

if pingServer() then
ret← true

else
ret← false

end if
end if
return ret

41

1. S is a map String → V alue of static field names to their values.

2. H is the model’s heap.

3. Hp is the pre-heap (the heap before the method being analyzed is invoked).

4. S is a stack of StackFrames.

5. PC is the current Path Condition.

4.3.3 KVMModelManager

The KVMModelManager maintains the state of the model < S, I id, Lid, F id, Did, Rid, T id, SF >

where:

1. S is the current model state.

2. I id is the last used symbolic integer Id.

3. Lid is the last used symbolic long Id.

4. Did is the last used symbolic double Id.

5. Rid is the last used symbolic reference (Object) Id.

6. T id is the last used symbolic type variable Id.

Whenever the KVMInterpreter symbolically executes an instruction that operates on

a symbolic value it uses the KVMModelManager to either locate the correct symbol, or

instantiate a new value.

4.3.4 KVMSchedulingStrategist

The KVMSchedulingStrategist chooses what non-deterministic choice the exploration will

follow. Choices available at a given state are deterministically indexed (same choices in the

same state will always have the index.) The default KVMSchedulingStrategist will always

return the next available uncovered choice (lastChosenIndex + 1).

42

4.3.5 KVMInterpreter

The KVMInterpreter implements the symbolic semantics of the Java byte-code. The KVMInter-

preter interacts with Topi (the theorem prover), the KVMSchedulingStrategist and the

KVMModelManager to symbolically interpret a Java byte-code given the current path con-

dition.

4.4 Additional Details

Parallel symbolic execution in Kiasan/Sireum is much more refined than in Kiasan/Bogor.

Distributed Kiasan/Sireum includes:

1. Pull Mode Coordination - The same coordination style that appeared in Kiasan/Bogor.

2. Push Mode Coordination - A simpler, more flexible, and efficient style of central

coordination.

3. Xstream State Snapshot - Uses the Xstream library for serializing and deserializing

work units.

4. Intra-Unit Parallelization - parallelizes the analysis of a single unit

5. Inter-Unit Parallelization - parallelizes the analysis of a collection of units.

6. Front-end client - takes raw java source code, leverages JMLk to compile contracts,

and submits an analysis task to the coordination server.

4.4.1 Kiasan/Sireum - Push Mode Coordination

‘Push Mode Coordination‘ was motivated by the desire to let the coordination server exercise

more control over work unit dispatch. In Push Mode Coordination the coordination server

maintains a queue of idle workers, as opposed to a queue of work units. As new work-

units are generated by the workers, the coordinator will de-queue an idle worker and assign

43

it the new work unit. In this way, some of the synchronization overhead of pull mode is

avoided because only a single internal coordinator thread is polling a queue, as opposed to

an arbitrary number of worker threads. In addition, the worker thread logic is reduced, as

worker threads no longer need to vote a lead worker.

4.4.2 Kiasan/Sireum - XStream State Snapshot

XStream, a library for serializing plain old java objects (POJOs) into XML has performance

that is acceptable for use in state snapshot encoded parallelization. All worker to coordinator

and coordinator to worker messages are encoded into XML via the XStream library. These

AnalysisStateMessages contain:

1. < S, I id, Lid, F id, Did, Rid, T id, SF > from the KVMModelManager

2. M the model method being analyzed

3. T the current task id. See 4.4.4

4. J the current job id. See 4.4.4

As of the writing of this thesis, the performance of XStream is very good; it approaches

the performance of the hand-tuned serializers of Kiasan/Bogor.

4.4.3 Kiasan/Sireum - Intra-Unit Parallelization

Kiasan/Sireum will perform two types of parallelization and load balancing of a Kiasan clus-

ter. An Intra-Unit Parallelization is when the analysis of a unit (in this case Java a method.)

Kiasan/Sireum performs parallelization of unit analyses the same way Kiasan/Bogor does,

at the points of non-determistic choice in the execution tree. Kiasan/Sireum only uses the

’state snapshot’ method to communicate the work units between the workers.

44

4.4.4 Kiasan/Sireum - Inter-Unit Parallelization

Inter-unit Parallelization is type of parallelization not present in Kiasan/Bogor. The coordi-

nation server can accept analysis tasks from an arbitray clients, and each client can submit

an analysis task that is composed of multiple units. The server will automatically prioritize

Inter-unit parallelization of tasks over intra-unit parallelization of tasks in order to more

efficiently use cluster resources.

4.4.5 Kiasan/Sireum- Front-end client

The front end client allows a user to submit a unit, or set of units, for analysis in the Kiasan

cluster. The front end takes source, compiles it, and then transmits it to the coordination

server which then unpacks the task bundle and parallelizes it across the cluster according

to available computational resources. If there are any JML contracts annotating the units

under analysis, the front end client will compile the contracts into Kiasan executable code

and bundles the contract into the task.

4.4.6 Kiasan/Sireum - Coordinator Server

The Kiasan/Sireum coordinator provides push mode coordination (See section 4.4.1) to

Kiasan/Sireum worker processes. The coordinator server supports both state snapshot (see

section 4.4.2) and schedule encoded (see section 3.3.2) work units. In fact, schedule encoded

and state snapshot workunits can be used at the same time. The coordinator server also

supports both intra-unit (section 4.4.3) and inter-unit (section 4.4.4) parallelization. The

coordinator can manage the analysis of different units simultaneously.

The coordinator server maintains one thread per worker process to manage communica-

tion between the server and the worker. A worker management thread is spawned when a

worker process connects to the server. Refer to algorithm 13, which highlights the control

loop of such threads.

The server maintains a single ‘work unit dispatch thread‘, which handles assigning and

45

Algorithm 13 Kiasan/Sireum Coordinator Server worker thread process; used to manage
a connection between a worker process and the server

input(workerConnection)
id← getNextAvailableWorkerID()
addWorkerToSystem(id, workerConnection)
addToIdleQueue(workerConnection)
runLoop← true
while runLoop do

workerMessage← blockForMessage(workerConnection)
if workerMessage = PING then

enterMonitor(idleWorkerQueue)
if numIdleWorkers() > 0 then

sendMessage(workerConnection, IDLE)
else

sendMessage(workerConnection, NOTIDLE)
end if
exitMonitor(idleWorkerQueue)

else if workerMessage = CLIENT-COMPLETES-WORKUNIT then
taskId← getTaskIdFromWorker(workerConnection)
task ← getTask(taskId)
enterMonitor(task)
checkInWU(task)
exitMonitor(task)

else
skip

end if
end while

Algorithm 14 Kiasan/Sireum worker process implementing push mode

serverConnection← connectToServer()
while true do

workUnit ← getWorkUnit(serverConnection) {worker blocks until server pushes a
work unit down}
setWorkerState(workUnit) {initialize worker with either state or schedule}
explore()
sendMessage(serverConnection, CLIENT-COMPLETES-WORKUNIT)

end while

46

Algorithm 15 Kiasan/Sireum Coordinator Server workunit dispatch thread. This thread
blocks until the work unit queue has contents, deqeues a work unit, then assigns the work
unit to an idle worker process.

while true do
enterMonitor(blockingWUQueue)
workUnit← dequeue(blockingWUQueue)
enterMonitor(blockingWUQueue)
task ← getTaskForWU(workUnit)
enterMonitor(blockingIdleWorkerQueue)
idleWorkerConnection← dequeue(blockingIdleWorkerQueue)
exitMonitor(blockingIdleWorkerQueue)
enterMonitor(task)
checkOutWU(task)
exitMonitor(task)
sendMessage(idleWorkerConnection, workUnit)

end while

transmitting work units to idle workers. Refer to algorithm 15 for pseudocode of the dispatch

thread. The use of the dispatch thread reduces contention for shared data-structures, like

the work unit and task queues, which have to be read frequently in pull mode coordination.

In order to fully support inter-unit parallelization, the server must maintain a database

of the transitive closure (source code and dependencies) of the units that will be analyzed.

Each full analysis constitutes a job, which includes the relevant source-files, JML contracts,

and analysis options. The server spawns a job management thread on demand whenever

a FrontEndClient (section 4.4.5) connects to submit a job to the server, or worker process

connects to retrieve a job file.

47

Algorithm 16 Kiasan/Sireum Coordinator Server job management connection thread

input(clientConnection)
while true do

clientRequest← getMessage(clientConnection)
if clientRequest = GETJOB then

jobId← getJobId(clientConnection)
jobData← getJobData(jobId)
sendMessage(clientConnection, jobData)

else
jobId← nextAvailableJobId()
jobData← getJobDataFromConnection(clientConnection)
putJobData(jobId,jobData)
task ← generateTask()
initializeTask(task)
workUnit← generateInitialWU(task)
enqueue(workUnit) {add fresh work unit to the central work unit queue}

end if
end while

48

Chapter 5

Experiments and Evaluation

This section evaluates the distributed Kiasan with respect to scalability. In theory, the best

scalability one can expect is when actual compute throughput scales commensurate with

the the addition of compute nodes. For instance, if a given analysis takes 2 minutes with 1

processor, a perfectly scalable distributed analysis will at best return a result in 1 minute.

In practice, this level of efficiency may not be achievable due to a number of factors, such as

hardware concerns (processor interconnect speed, hardware interuppt management, etc) or

software concerns (thread synchronization, operating system thread management, the level

of parallelism present in the conceptual problem, message serialization overhead). These

experiments show how distributed Kiasan behaves when it is used to analyze different types

of program units with different analysis (k-bound, array-bound) options.

5.1 Kiasan 1 Experiments

The Kiasan 1 experiments measure how long an analysis takes as the number of worker

processes are increased. These experiments were run on nodes isolated from Kansas State

Universities Beocat cluster. The configuration of each node consisted of:

1. 2 AMD Opteron 875 Processors (8 cores total)

2. 32 Gigabytes of RAM

3. 2.6 series Linux kernel (Gentoo Linux)

49

4. Sun JRE 1.6 (64-bit mode)

The number of workers were varied between 1, 2, 4, 6, and 8 for each experiment.

5.2 Results

5.2.1 State Snapshot Work Units

0

1000

2000

3000

4000

5000

6000

0 1 2 3 4 5 6 7 8 9

se
co
nd

s

Worker Processes

BinaryTree.insert, k=4, CVC3

Figure 5.1: Analysis time vs. number of worker processes, using the CVC3 theorem prover.

0

200

400

600

800

1000

1200

1400

1600

1800

0 1 2 3 4 5 6 7 8 9

Se
co
nd

s

Worker Processes

BinaryTree.insert, k=4, Yices

Figure 5.2: Analysis time vs. number of worker processes, using the Yices theorem prover.

50

Figures 5.1 and 5.2 illustrate how inter-choice computation time can have a significant im-

pact of the scalability of distributed Kiasan. Both of those experiments were identical except

for the difference in theorem prover. Yices is clearly much faster than CVC3, yielding a dra-

matic decrease in analysis time regardless of the number of workers. However, even though

total analysis time decreased, the amount of computation time between possible paralleliza-

tions also decreased, reducing the computation vs. coordination ratio which resulted in

much worse scalability as the number of workers were increased.

5.2.2 Schedule-based Work Units

0

2000

4000

6000

8000

10000

12000

14000

16000

0 1 2 3 4 5 6 7 8 9

Se
co
nd

s

Workers Processes

TreepMap.put, k=4, Yices

Figure 5.3: Analysis time vs. number of worker processes, using the Yices theorem prover.

Figure 5.3 shows the scalabilty of distributed Kiasan analyzing the TreeMap.put unit. The

TreeMap tends to be fairly computationally heavy, so even with the use of Yices as the

theorem prover the computation vs. coordination ratio stayed large enough to show a

general trend of speed-up as the number of workers were increased.

51

0

500

1000

1500

2000

2500

3000

3500

0 1 2 3 4 5 6 7 8 9

Se
co
nd

s

Worker Processes

Liststack.put, k=200, CVC3

Figure 5.4: Analysis time vs. number of worker processes, using the CVC3 theorem prover.
The k-bound was set to 200 in order to force a long analysis time.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 1 2 3 4 5 6 7 8 9

Se
co
nd

s

Worker Processes

ListStack.put, k=200, Yices

Figure 5.5: Analysis time vs. number of worker processes, using the Yices theorem prover.
The k-bound was set to 200 in order to force a long analysis time.

Figures 5.4 and 5.5 demonstrate how some units don’t exhibit much parallelism. The

liststack is a collection from the java.util libraries that uses a linked list to store data for a

stack. While the execution tree for this unit and large k-bound is fairly tall, most branches

52

in this tree are not. This means that there is a high probability that a parallelization may

generate a work unit for a computationally light tree. In these situations the computation

vs. coordination ratio can drop dramatically as can bee seen in the experimental results.

5.3 Kiasan 2 Experiments

These Kiasan 2 experiments measure, for each unit, computational throughput per minute,

total computation completed over a 20 minute period, worker idle time, number of parallel

factorizations the occured during the experiment for a given program unit, and total message

marshalling time.

5.3.1 Throughput

Computational throughput is measured by the number of ’state-paths’ explored per unit

time. A state path is simply a trace through the computation tree of the analyzed unit

from its root to some leaf. As some of the results will show, the amount of computation

time per state-path is not fixed for a given unit. (i.e. some state-paths will take longer to

explore than others.) This means that the throughput for a given analysis can’t necessarily

be used to predict how long a complete analysis will take, however, higher throughput even

in a small window of time does represent a real world increase in capability because analysis

data can be collated in real time. (More code coverage will be obtained over that window.

More test cases will also be generated in that same amount of time.)

5.3.2 Worker idle time

Total worker idle time is the sum of the time each worker is spent in a blocked or non-

running state. (The worker is not engaged in any sort of computation, analysis or message

serialization.) Both hardware and software limitations will increase the worker idle time.

The largest contributor of worker idle time in this system tends to be when worker threads

a blocked while accessing shared data-structures, or waiting for those data-structures to

53

become populated with workunits.

5.3.3 Factorizations

A factorization occurs when analysis parallelism is detected by the system and one or more

workunits are generated. More factorizations result in more communications overhead (mes-

sage serialization/deserialization, shared data structure accesses, network protocol overhead)

which may end up dominating useful computation.

5.3.4 Serialization time

The serialization time is the sum total of time across all worker threads spent either serial-

izing a coordination message into a wire ready format or deserializating a wire data stream

into a coordination message. Each coordination message contains some basic accounting in-

formation (what unit is being analyzed, etc) and a snapshot of the symbolic state including

the associated path condition PC. Larger and more complicated messages will require the

worker thread to devote more computational time to serializing or deserializing the message.

5.4 Experimental Setup

Each of the 6 Java program units were tested with various analysis options as specified. The

large scale (large k- or array bound) experiments, were run for at least 20 minutes each,

varying the number of workers for each 20 minute run. During each 20 minute span, the

state paths explored during each 1 minute interval was tabulated, resulting in state path

per minute throughput numbers for each minute of the 20 minute span. The sum of these

are used to calculate the 20 minute totals for each experiment.

The number of workers used for each unit are 1,2,4,6, and 8. The coordinator server

was run on the same machine as the worker processes. Each worker is contained in its

own JVM. Sun’s JRE 1.6.0 update 7 was used in each experiment (JIT was enabled, and

each JVM allocated 768 megabytes for heap, and 128 megabytes for MaxPermGen). Yices

54

was used as the theorem prover. The computer system was a dual processor 2.33 GHz

Intel Xeon Harpertown 5140 (8 cores total, 24 MB of L2 cache total). The computer was

equipped with 8GB of RAM. The operating system used was Ubuntu 8.04 LTS (Kernel

version 2.6.24-22-generic SMP.)

5.5 Errata

Some experiments are missing data-points. At the time the experiments were run, particular

experimental configurations would cause one or more of the worker JVMs to crash with bus

errors or segmentation faults. The cause of these errors were never discovered, but it is likely

that certain expression being pushed to the theorem prover in certain orders were causing

memory access problems in the native theorem prover bindings Kiasan provides.

55

5.6 Results

5.6.1 ArrayPartition.partition(), k=7, ab=100

0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

st
at
e
pa

th
s
/
m
in
ut
e

minute

ArrayPar11on.par11on() k=7, ab=100

1 worker

2 workers

4 workers

6 workers

8 workers

Figure 5.6: ArrayPartition.partition() state-paths explored per minute

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

1 worker 2 workers 4 workers 6 workers 8 workers

total state path / 20 minute

state paths

Figure 5.7: ArrayPartition.partition() total state paths explored over a 20 minute span

56

1.00

1.87

3.25

4.03
3.66

1

2

4

6

8

0

1

2

3

4

5

6

7

8

9

1 worker 2 workers 4 workers 6 workers 8 workers

scale factor

poten:al

Figure 5.8: ArrayPartition.partition() scale factor over a 20 minute window

The ArrayPartition tests show good scaling as the number of workers are increased. Figures

5.9, 5.10, and 5.11 show why the scaling is so good. All parallelizations occured within the

first minute of the analysis regardless of the number of workers. This means that at least

8 of the work-units assigned during the first minute of the analysis were computationally

intensive enough that the workers could not complete them in under 20 minutes.

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

pa
ra
lle
liz
a(

on
s

minute

Paralleliza(ons / minute

1 worker

2 workers

4 workers

6 workers

8 workers

Figure 5.9: ArrayPartition.partition() parallelizations per minute over a 20 minute span

57

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m
s

minute

Total Serializa0on Time (ms)

1 worker

2 workers

4 workers

6 workers

8 workers

Figure 5.10: ArrayPartition.partition() time spent serializating/deserializing workunits per
minute over a 20 minute span

0

2000

4000

6000

8000

10000

12000

14000

16000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m
s

minute

Total Blocked Worker Time (ms)

1 worker

2 workers

4 workers

6 workers

8 workers

Figure 5.11: ArrayPartition.partition() total time workers spent idle per minute over a 20
minute period

58

5.6.2 BinaryHeap.findMin(), k=7, ab=100

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10

st
at
e
pa

th
 /
 m

in
ut
e

minute

BinaryHeap.findMin() k=7, ab=100

1 workers

2 workers

4 workers

6 workers

8 workers

Figure 5.12: BinaryHeap.findMin() state-paths explored per minute

The BinaryHeap experiments are of interest because they show a unit which is both par-

allizable and can be analyzed in under 20 minutes even with aggressive bound settings. In

figure 5.12 we see that increasing the number of workers will decrease the analysis time.

Like with the ArrayPartition experiment 6 workers gave the best benefit on this computer.

59

0

2

4

6

8

10

12

1 worker 2 workers 4 workers 6 workers 8 workers

minutes to comple-on

minutes

Figure 5.13: BinaryHeap.findMin() time to finish complete analysis in minutes

1.00

1.43

2.00
2.27

2.00

1

2

4

6

8

0

1

2

3

4

5

6

7

8

9

1 workers 2 workers 4 workers 6 workers 8 workers

scale factor

poten:al

Figure 5.14: BinaryHeap.findMin() scale factor derived from time to complete analysis

60

5.6.3 BinarySearchTree.insert(), k=7

0

1000

2000

3000

4000

5000

6000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

st
at
e
pa

th
 /
 m

in

minute

BinarySearchTree.insert(int), k=7

1 workers

2 workers

4 workers

6 workers

8 workers

Figure 5.15: BinarySearchTree.partition() state-paths explored per minute

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

1 worker 2 workers 4 workers 6 workers 8 workers

State Path / 20 minute

total

Figure 5.16: BinarySearchTree.insert() total state paths explored over a 20 minute span

61

1.00

1.68
1.87

3.75

0.00

1

2

4

6

8

0

1

2

3

4

5

6

7

8

9

1 worker 2 workers 4 workers 6 workers 8 workers

scale factor

poten:al

Figure 5.17: BinarySearchTree.insert() scale factor over a 20 minute window

5.6.4 DisjSet.union() k=7, ab=100

0

1000

2000

3000

4000

5000

6000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

st
at
e
pa

th
 /
 m

in
ut
e

minute

DisjSet.union() k=7,ab=100

1 workers

2 workers

4 workers

6 workers

8 workers

Figure 5.18: DisjSet.union() state-paths explored per minute

62

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

1 worker 2 workers 4 workers 6 workers 8 workers

total

total

Figure 5.19: DisjSet.union() total state paths explored over a 20 minute span

1.00

2.22

4.68

0.00 0.00

1

2

4

6

8

0

1

2

3

4

5

6

7

8

9

1 worker 2 workers 4 workers 6 workers 8 workers

scale factor

poten:al

Figure 5.20: DisjSet.union() scale factor over a 20 minute window

In the DisjointSet.union experiments the addition of workers somehow resulted in more

throughput than the performance target! How could this happen? The answer is that all

execution sub-trees are not equal. Some sub-trees are just shorter than others. Some sub-

63

trees produce theorem prover queries which are easier than others. In DisjointSet.union() it

is likely that sub-trees farmed out to the additional workers could be processed (i.e. reach

the end of the paths) faster than the first choice, yielding more throughput than might be

naively expected.

5.6.5 GC.mark(), k=4

0

20000

40000

60000

80000

100000

120000

140000

160000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

st
at
e
pa

th
 /
 m

in
ut
e

minute

GC.mark() k=4

1 worker

2 workers

4 workers

6 workers

8 workers

Figure 5.21: GC.mark() state-paths explored per minute

64

1.00 1.04 1.11
1.43

1.28
1

2

4

6

8

0

1

2

3

4

5

6

7

8

9

1 worker 2 workers 4 workers 6 workers 8 workers

scale factor

poten:al

Figure 5.22: GC.mark() scale factor over a 20 minute window

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m
s

minute

Paralleliza.ons / minute

minute

1 worker

2 workers

4 workers

6 workers

8 workers

Figure 5.23: GC.mark() parallelizations per minute over a 20 minute span

65

0

10000

20000

30000

40000

50000

60000

70000

80000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m
s

minute

Total worker ser/deser 2me (ms)

minute

1 worker

2 workers

4 workers

6 workers

8 workers

Figure 5.24: GC.mark() time spend serializating/deserializing workunits per minute over
a 20 minute span

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m
s

minute

Total Blocked Worker Time (ms)

minute

1 worker

2 workers

4 workers

6 workers

8 workers

Figure 5.25: GC.mark() total time workers spent idle per minute over a 20 minute period

66

5.6.6 AvlTree.insert() k=7

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

sa
te
 p
at
hs

minute

State path / min

1 worker

2 workers

4 workers

6 workers

8 workers

Figure 5.26: AvlTree.insert() state-paths explored per minute

Both the AvlTree.insert (figure 5.26) and GC.mark experiments demonstrate very poor

scaling as the number of workers are increased. For both experiments there was a large

amount of coordination activity taking place over the whole 20 minute period. While the

GC.mark experimet did show some miniscule improvement with more than one worker

operating in parallel, there was no discernible benefit from parallelization. Certainly, the

execution tree for a particular analysis defines the amount of potential parallelism present.

However, even highly parallel execution trees may have many (even a majority) of choices

for which the parallelism is very poor. If this is the case, as lazy parallelization generates

work units along the fringe of the execution tree, the workers assigned to those work units

will finish quickly, become idle, and request more work units. If this process continues,

then a sort of thrashing is happening and an inordinate amount of time will be spent on

worker coordination activities. Section 8.0.1 I explain this problem in more detail and offer

a possible solution.

67

0

10000

20000

30000

40000

50000

60000

1 worker 2 workers 4 workers 6 workers 8 workers

total

total

Figure 5.27: AvlTree.insert() total state paths explored over a 20 minute span

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5

scale factor

best

Figure 5.28: AvlTree.insert() scale factor over a 20 minute window

68

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

pa
ra
lle
liz
a(

on
s

minute

Paralleliza(ons / minute

1 worker

2 workers

4 workers

6 workers

8 workers

Figure 5.29: AvlTree.insert() parallelizations per minute over a 20 minute span

0

20000

40000

60000

80000

100000

120000

140000

160000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

(m
s)

minute

Serializa0on 0me

1 worker

2 workers

4 workers

6 workers

8 workers

Figure 5.30: AvlTree.insert() time spent serializating/deserializing workunits per minute
over a 20 minute span

69

0

5000

10000

15000

20000

25000

30000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

(m
s)

minute

Blocked worker 3me (ms)

1 worker

2 workers

4 workers

6 workers

8 workers

Figure 5.31: AvlTree.insert() total time workers spent idle per minute over a 20 minute
period

70

Chapter 6

Related Work

6.1 ESC/Java

1 : class Bag{
2 : int s i z e ;
3 : int [] e lements ;
4 :
5 : Bag(int [] input){
6 : s i z e = input . l ength ;
7 : e lements = new int [s i z e] ;
8 : System . arraycopy (input , 0 , e lements , 0 , s i z e) ;
9 : }
10 :
11 : int extractMin () {
13 : int min = In t eg e r .MAX VALUE;
14 : int minIndex = 0 ;
15 : for (int i = 0 ; i < s i z e ; i++){
16 : i f (e lements [i] < min){
17 : min = elements [i] ;
18 : minIndex = i ;
19 : }
20 : }
21 : s i z e −−;
22 : e lements [minIndex] = elements [s i z e] ;
23 : return min ;
24 : }
25 :}

Listing 6.1: Non-annotated Bag implementation in Java

71

ESC/Java (‘Extended Static Checker for Java‘) is a static analysis tool originally developed

at the Compaq Systems Research Center (SRC). ESC/Java is designed to be both lightweight

and usable. ESC/Java is lightweight in that it does not endeavor to apply some of the more

expensive analysis algorithms described later, but instead opts to uncover a certain class of

less subtle programming errors with a minimum of computing resource investment. In this

way ESC/Java does not provide either sound or complete(2.2) analysis (false errors may be

reported, and the tool cannot detect all types of programming errors). ESC/Java’s design-

ers have engineered the tool towards usability by flexibly supporting lightweight program

annotations (users are not required to code difficult to reason about predicate logic style

annotations).

ESC/Java operates as a pipeline similar to how a compiler tool-chain works, but instead

produces error warnings and error traces as opposed to object code. This pipeline takes

annotated Java source code as its input, compiles the source code into a guarded command

language GCs (based off of Dijkstra’s guarded commands). Refer to listing 6.2.

S : : E //an expre s s i on
S1 ; S2 // sta tement S2 execu t e s immediate ly f o l l ow i n g S1
S1 | | S2 // sta tement S1 or S2 execu t e s
assume (E) // b l o c k s u n t i l boo lean E i s t rue

Listing 6.2: Simple guarded command language grammar

the GCs are then used to generate verification conditions (known as V Cs) via weakest

precondition analysis , and finally a theorem prover (in this case Simplify) is used to de-

termine if any of the verification conditions could violated. Because ESC/Java maintains

a relationship between source code locations and particular V Cs, if a V C can be violated

then the user will be presented with a message describing what part of the program is

problematic.

Weakest precondition calculation is a technique for lifting logical formulas directly from

the semantics of a computer program. For a given program, its weakest precondition (wp)

72

is the weakest predicate P over the program’s inputs (both state and parameters) that

guarantees some predicate Q is true after P has finished. Following are basic weakest

precondition rules for a simple language15, where S and T represent statements like those

made in program 2.1:

1. wp (x = E)⇒ Q[x = E]

2. wp (S; T)⇒ wp (S, wp (T, Q)), where S and T are both program statements and T is

executed immediately after S is finished.

3. wp (S||T)⇒ wp (S) ∧ wp (T), where S and T are both statements, and either S or T

could execute.

4. wp (assumeE, Q)⇒ (E ⇒ Q)

The above rules can now be used to compute the weakest precondition for the program

in listing 2.1. What would the weakest precondition be for z! = 0?

1. Unfold the expression wp (p1, z! = 0) according to the above rules into wp (z := x− y, z! = 0)∧

wp (z := x + y, z! = 0)

2. Compute the weakest precondition of the program statement from the true branch:

wp (z := x + y, z! = 0) = x + y! = 0

3. Compute the weakest precondition of the program statement from the false branch:

wp (z := x− y, z! = 0) = x− y! = 0

4. Since there is a guard on the branch, the last rule above needs to be used on each

branch.

5. Combine the predicates for the weakest precondition of p1: x ≤ y ⇒ x− y! = 0∧ x >

y ⇒ x + y! = 0

73

Therefore any assignment of x and y that satisfies the predicate x− y! = 0 ∧ x + y! = 0

will result in a program execution of p1 that satisfies Q = z! = 0.

For an example of the types of errors ESC/Java can uncover, consider the Java Bag class

listing 6.1. ESC/Java will detect that there are several places were a null pointer dereference

may occur (lines 6,16, 17, 22) and array index out of bounds exceptions (lines 16, 17, 22).

Clearly a null pointer dereference could occur at line 6 (a programmer could pass a null

pointer to the constructor) but it looks like an array out of bounds exception would not. If

the programmer annotates the source code (refer to listing 6.3),

1 : class Bag{
1a : // @invar ient 0 <= s i z e && s i z e <= elements . l e n g t h
2 : int s i z e ;
3 : int [] e lements ;
4 : //@requires input != nu l l
5 : Bag(int [] input){
6 : s i z e = input . l ength ;
7 : e lements = new int [s i z e] ;
8 : System . arraycopy (input , 0 , e lements , 0 , s i z e) ;
9 : }
10 :
11 : int extractMin () {
13 : int min = In t eg e r .MAX VALUE;
14 : int minIndex = 0 ;
15 : for (int i = 0 ; i < s i z e ; i++){
16 : i f (e lements [i] < min){
17 : min = elements [i] ;
18 : minIndex = i ;
19 : }
20 : }
21 : s i z e −−;
22 : e lements [minIndex] = elements [s i z e] ;
23 : return min ;
24 : }
25 :}

Listing 6.3: Bag example with JML annotations

(note lines 1a and 4), Then some of the warnings that ESC/Java produced before (the

74

possible null pointer dereference error and the case when size is negative) are no longer

produced when ESC/Java analyzes the annotated code.

As stated earlier, as analysis speed was of prime import during the design of ESC/Java,

ESC/Java is intentionally un-sound and incomplete. In addition to not handling strong

properties with respect to the heap (e.g. heap graph acyclicy), ESC/Java also makes some

concessions in other areas. ESC/Java does not model integer overflow (in order to avoid

spurious warnings) and complete semantics for loops. Precise semantics for loops (weakest

fixpoints) are uncomputable in general and uncomputable in many cases that would occur

during the analysis of common software. Thus, there is not a known easy way to convert

a loop into a V C or set of V C. Instead ESC/Java unrolls the loop some user specified

number of times and then performs analysis on the unrolled version. Any errors that may

have occurred in a loop iteration past the number of unrollings will be missed.

6.2 Parallel ESC

The latest version of ESC, ESC4 supports parallelization of ESC’s analysis2. When ana-

lyzing a program unit, the majority of ESC’s computation is spent discharging the V Cs.

Parallelization of ESC’s analysis involves the discharging of independent V Cs concurrently.

The designers of ESC4 target 3 different levels of parallelism:

1. Program Unit Parallelism - V Cs from different program units are guranteed indepen-

dent from one another and thus can be discharged concurrently.

2. Method Parallelism - V Cs from different Java methods are guranteed independent

from one another and thus can be discharged concurrently.

3. Sub-V C Parallelism - Sometimes a V C can be factored into a set of smaller sub-V Cs.

Each sub-V C represents a single path from a method’s precondition to some assertion.

For example, given some V C: A ∧ B the sub-V Cs would be A and B. A sub-V C is

somewhat analogous to the path conditions from symbolic execution.

75

ESC4 is implemented as an Eclipse plugin that leverages the JDT compiler framework.

Parallelism types 1 & 2 are handled by simply using the JDT framework to apply a different

thread to each unit or method depending on available resources. For type 3, ESC4 offers

two deployment possibilities: Factor the macro V Cs locally into sub-V Cs and then attempt

to discharge those in parallel or offload the macro V C to some service which will then factor

the V C and attempt to discharge the sub-V Cs in parallel. Figure 6.1 contains the results

the authors of ESC4 have presented. The time for the analysis reduces as the number cores

are increased. Like some units analyzed under parallel Kiasan, the analysis doesn’t exhibit

perfect parallelism as the time to complete analysis isn’t 1/numcores.

Figure 6.1: Parallel ESC Time(seconds) vs. Number of Cores2

76

6.3 JPF

Java Path Finder (JPF) is a comprehensive model checker built at NASA Ames. JPF is

used to search the concrete state space of a Java program for errors or specified property vi-

olations. JPF includes what is now considered the defacto standard set of state space search

optimizations: thread symmetric reductions, collapse compression, partial order reduction,

etc. JPF has been leveraged by Khurshid et al9 to perform symbolic execution by way of

instrumented code. Khurshid et al9 has built a system comprised of the code instrumentor

and JPF. Because the instrumented code contains the symbolic semantics of that program, a

symbolic execution analysis of the program is performed when the instrumented code is run

through an explicit state model checker like JPF. As of the writing of this thesis, symbolic

execution on JPF only supports lazy initialization.

6.4 Structure Analysis for Testing

Structure analysis for testing is a technique that aids in the creation of unit test cases.

Given some complex type definition (e.g., a Java type), structure analysis will automatically

generate object graphs according to that type specification up to a certain bound. Sometimes

a representation predicate is used to prune test cases from the test corpus that are not

relevant to the unit’s functional behavior (i.e. the test case in question does not conform to

the units pre-condition).

Consider the LinkedList from listing 2.2. Based on LinkedNode’s type specification,

there are 3 possible non-isomorphic LinkedList structures with 2 LinkedNodes (assuming

the generation does not allow self-cycles) Refer to figure 6.2. If the representation predicate

returns false when there is a cycle 6.2(c) would be pruned from the test corpus.

77

LN LN

NULL

(a) next for both nodes is NULL

LN LN

NULL

(b) One node points to the other, the
last points to NULL

LN LN

(c) Nodes are in a cycle

Figure 6.2: Three structures generated by a structure analysis on LinkedNode

78

6.5 Korat

Korat is another software system designed to automate the testing of Java programs16.

Korat is primarily geared towards generating test input of the complex (heap-object) pa-

rameters of Java units. Korat uses a form of structure analysis to automatically generate

all non-isomorphic relevant heap-graphs up to a certain user provided size when a Java

representation predicate (Java method that returns true when the heap graph is structurally

sound, false otherwise) and JML annotations are available. The predicate is used to prune

the space of possible heap graph permutations so only heap graphs which satisfy a units

preconditions are considered during unit testing. Once the heap configurations that satisfy

the unit precondition are generated, the unit is tested concretely with those configurations

as inputs. Standard testing harnesses then capture any errors that are uncovered by testing.

To my knowledge, Korat only generates structural test inputs (i.e. it does not automatically

give any regard to primitive typed object fields.)

79

6.5.1 Korat - Walkthrough

Listing 6.4: BinarySearchTree and its representation predicate repOK

class BinarySearchTree{
private Node root ;
private int s i z e ;
stat ic class Node{

private Node l e f t ;
private Node r i gh t
public int va l ;

}
. . . .
public void i n s e r t (int i) { }
. . . .
public boolean repOk () {

i f (root == null) return s i z e == 0 ;
Set v i s i t e d = new HashSet () ;
v i s i t e d . add (root) ;
L inkedLis t workList = new LinkedLis t () ;
workList . add (root) ;
while (! workList . isEmpty ()) {
Node cur rent = (Node) workList . removeFirst () ;
i f (cur r ent . l e f t != null) {

// checks t ha t t r e e has no c y c l e
i f (! v i s i t e d . add (cur rent . l e f t))
return fa l se ;

workList . add (cur rent . l e f t) ;
}
i f (cur r ent . r i g h t != null) {

// checks t ha t t r e e has no c y c l e
i f (! v i s i t e d . add (cur rent . r i g h t))
return fa l se ;

workList . add (cur rent . r i g h t) ;
}
}
// checks t ha t s i z e i s c on s i s t e n t
i f (v i s i t e d . s i z e () != s i z e) return fa l se ;
return true ;
}

}

80

A simple data-structure to consider is the binary search tree whose Java source code is listed

above (adapted from the BinaryTree example in Korat: Automated Testing Based on Java

Predicates16). The above example contains the Java type specification of BinarySearchTree

and Node as Java classes. Also included is the repOk() method, which is the Java predicate

used in the precondition expressions.

Korat provides what its authors call a ‘finitization‘ framework which is responsible for

generating all possible heap configurations of objects that are of the appropriate type (in

this case objects of type BinarySearchTree and Node.) From:16

Listing 6.5: Finitization for BinarySearchTree

public stat ic F i n i t i z a t i o n f inBinarySearchTree (int NUM Node, int
MIN size , int MAX size) {

F i n i t i z a t i o n f = new F i n i t i z a t i o n (BinarySearchTree . class) ;
ObjSet nodes = f . c r ea t eOb j e c t s ("Node" , NUM Node) ;
nodes . add (null) ;
f . s e t ("root" , nodes) ;
f . s e t ("Node.left" , nodes) ;
f . s e t ("Node.right" , nodes) ;
return f ;

}

Korat’s finitization framework reflects on the class definition for the unit in question

and emits a Java method called a finitization skeleton. Above is the finitization skeleton for

the BinarySearchTree. This emitted finitization can either be specialized (such as adding

bounds for the primitive type fields to range over.)

Korat will now perform a backtracking search over all possible configurations defined

by the finitization, using the predicate to prune all parameter input candidates from the

set that will be used in testing. The backtracking search works in the following way: A

given finitization defines an ordering on class domains and field domains. A class domain is

simply the set of all objects in the finitization belonging to a certain class. If, for instance,

the finitization listed above was created with MAX_size = 3, then the class domain for Node

81

would contain N0, N1 and N2. A field domain is simply the ordered union of all the class

domains.

Candidate inputs are encoded as vectors, the length of which is equal to the size of

the field domain, and whose elements are indexes into their respective class domains. For

instance, the following heap state:

BinarySearchTree this ;
Node N0 , N1 , N2 ;
//
root == N0 ;
N0 . l e f t == N1 ;
N0 . r i g h t == N2 ;
N1 . l e f t == null ;
N1 . r i g h t == null ;
N2 . l e f t == null ;
N2 . r i g h t == null ;
}

would be encoded as 1,2,3,0,0,0,0 because index 1 in the Node class domain is the Node

instance N0. (null is the 0th index for all class domains.) The next six elements of the vector

index what members of the Node class domain are to be used for the N0, N1, and N2 left

and right fields.

Korat explores the space of input vectors by systematically incrementing (up to the

size of the relevant class domain) the indexes in each element of the input vector and

testing the heap configuration denoted by that vector against the Java predicate. If the

predicate returns true then that heap configuration is stored for use as a test configuration.

If the predicate returns false then Korat backtracks to the last element incremented and

increments it again. If no increment is possible, Korat backtracks yet again until it finds

the most recently incremented element that can still be incremented. In this way, Korat is

able used the Java predicate as a guide for pruning irrelevant test inputs.

82

6.5.2 Distributed Korat

The authors of Korat have been able to extend Korat to take advantage of Google’s MapRe-

duce framework and distribute both the test case generation process and the testing phase

across a large cluster of machines.17 The authors describe 4 approaches they used to par-

allelize and distribute some aspect of the Korat pipeline17. These approaches are named

SEQ-OFF, SEQ-ON, PAR-OFF, and PAR-ON.

In SEQ-OFF Korat is used in the manner described in the previous section to sequentially

generate test inputs for the unit. These test inputs are stored to disk, and then distributed

evenly by the MapReduce implementation to nodes in the cluster.

In SEQ-ON the first time Korat is every instructed to generate test inputs it does so

sequentially, and testing with the inputs happens as it does in SEQ-OFF. If at some point

in the future a user wishes to generate test inputs again, SEQ-ON will use information

that was stored in the initial sequential test generation to aid in load balancing the current

parallel test generation across nodes in the cluster.

In this example load balancing means that each node in the cluster should be assigned

some start candidate vector that is ‘equidistant’ from candidate vectors assigned to other

nodes, which means that each node explores approximately the same number of candidates.

SEQ-ON records candidates that are equidistant in the first run and uses those in subsequent

runs to ’seed’ explorations of the candidate space.

In PAR-OFF parallelizes all test case generation runs. Because it is not know a priori the

number of test cases to generate (the Java predicate is used to prune test cases from the set

of test candidates, and the test cases it will prune is not cheaply determinable) PAR-OFF

attempts to find equidistant candidate vectors by randomly generating them.

PAR-ON is a combination of SEQ-ON and PAR-OFF; The initial run of test inputs is

generated in parallel in the manner of PAR-OFF, except that true equidistant candidates

are recorded. Then test cases are tested as in PAR-OFF and SEQ-ON. If there are any

subsequent test case generation runs, then the equidistant vectors from the first run are

83

used as node seeds.

Misailovic, et al. shows how a speed-up ratio of approximately 544 was achieved when

test generation was performed using 1024 workers PAR-OFF for a generic graph structure

whose Java predicate required that the graph be acyclic17.

6.6 Concolic Testing

Concolic testing is another modification of symbolic execution for use with heap graphs

developed by Koushek Sen18. Concolic testing hopes to avoid some of the computational

tractability issues that can arise when symbolic execution is generating constraints over a

heap graph. For instance, when testing some real world software it can be the case that

some constraints generated by standard symbolic execution may be too complex for current

theorem provers to efficiently handle. In order to avoid using a theorem prover to primarily

drive the analysis concolic testing instead merges aspects of concrete testing and symbolic

execution.

In concolic testing either the user supplies some input parameters for a unit or some

input is randomly generated. These inputs are stored in some logical input map I. The

program is then executed concretely with the input parameters stored in I. As the program

executes, the concolic execution engine detects what program statements were involved in

the concrete execution. The symbolic semantics are then applied to that particular program

slice and a path condition PC is generated. The concolic algorithm then backtracks, and

negates the PC. A constraint solver is then used to uncover a satisfying assignment of

input parameters for some contradicition of PC. I is replaced with I’, the logical input

map containing the parameters that are a satisfying assignment to the contradiction of PC.

This process of concretely executing the program with the parameters from I and then

replacing I is repeated until some stop condition occurs.

For a brief example consider the program from listing 2.1. This program has 3 input

parameters x, y, z. Randomly assign x = 1014, y = 977, and z = −247. Under concrete

84

execution with these parameters the program flows down the true branch and executes

z := x + y. At this point, the PC for this execution will be generated, namely that

α > β ∧ x = α ∧ y = β ∧ z = γ ∧ γ = β + α. Concolic testing backtracks, negates α > β

into α ≤ β and uses a constraint solver to find a satisfying assignment. That satisfying

assignment will be used in the subsequent concrete execution.

6.7 jCUTE

jCUTE is Sen et al’s19 implementation of concolic testing for Java programs. jCUTE op-

erates in much the same way as JPF, in that it instruments the Java program with library

calls. This library then manages the symbolic state of the symbolic execution. jCUTE

combines concolic testing of sequential programs with explicit state model checking creating

what Sen et al’s19 calls explicit path model checking. The combination of symbolic heap

state and concrete thread schedules allows jCUTE to detect concurrency errors in addition

to the more standard functional errors. jCUTE has been used to discover concurrency errors

in supposedly thread safe classes that make up parts of the Java 1.4 runtime language.

6.8 Theoremprovers / SMT Solvers

The static analysis techniques discussed in this chapter all require some facility to determine

if some logical assertion (such as int x > 0) is either true or possible. This facility is realized

in a class of programs known as theoremprovers. Theoremprovers allow a client (a user or

program) to make logical assertions. Then, the client can query the theoremprover with

some logical statement. The theoremprover will then attempt to decide if the query is true

or possible given the previous assertions. Since theoremprovers attempt at some level to

decide an instance of SAT, in general theorem provers are in the complexity class NP -

complete. Different theorem provers provide different optimizations for different types of

logical assertions. Here I will give a very brief overview of two theorem provers used in

Kiasan.

85

6.8.1 CVC3

CVC3 is an automatic theoremprover for the Satisfiability Modulo Theories (SMT) prob-

lem20. CVC3 is a descendant of the CVC and CVCLite theorem provers, which in turn

descended from the SVC (Stanford Validity Checker). CVC3 provides 3 different interfaces

to its checker; an input scripting language, an interpreter prompt for that language, and

an API for programs written in C or C++. All 3 interfaces allow a client to assert various

logical assumptions and then query the prover for the validity of logical formulas in the

context of those assumptions.

CVC3 includes theory solvers for the following theories:

1. Abstract Data Types - CVC3 can reason about arbitrary recursive and mutually re-

cursive data types. (Similar in expressive power to data types in a functional language

like LISP)

2. Bitvectors - CVC3 has a decision procedure for reasoning over an arbitrary string of

bits.

3. Quantifiers - CVC3 has a separate decision procedure optimized for dealing with quan-

tified formulas.

6.8.2 Yices

Yices is a SMT solver developed at SRI21. Yices employees the Davis-Putname-Logemann-

Loveland (DPLL) algorithm to determine the satisfiability of a first order logic formula. If

the formula contains more complex expressions, then Yices will offload the expression to the

appropriate theory solver module. The standard Yices distribution includes solvers for:

1. Arithmetic - Yices currently includes a solver for linear arithmetic. Non-linear expres-

sion will cause Yices to give up.

2. Bit Vectors

86

3. Arrays

4. Datatypes - Yices supports abstract datatypes, through currently this feature is not

exposed in the programming API, only the interactive command shell and file input

interface.

5. First Order Quantification

In this author’s experience, yices is much faster deducing the satisfiability of the formulas

symbolic execution generates than CVC3. Yices is closed source, so projects like Kiasan

offer the open source CVC3 as an option.

6.9 JUnit

JUnit is a unit testing framework for the Java programming language. JUnit allows program-

mers to create test cases for Java program units (Java methods or classes.) The framework

can then invoke those units with programmer specified mock inputs and then the framework

will automatically compare the output of the unit with expected output. This makes JUnit

particularly useful for regression testing.

Listing 6.6: A Java unit that computes the average of numbers in an array

public class Average{
public stat ic double computeAverage (double [] numArray){

double accum = 0 . 0 ;
for (int i = 0 ; i < numArray . l ength ; i++){

accum += numArray [i] ;
}
return accum / numArray . l ength ;

}
}

87

Listing 6.7: A test case that uses the JUnit framework to perform the test

import org . j u n i t . ∗ ;

public class AverageTest{
@Test
public void tes tAverage () {

Assert . a s s e r tEqua l s (‘ Average ‘ , 2 . 0 , Average .
computeAverage ({1 . 0 , 2 . 0 , 3 . 0}))

}
}

88

Chapter 7

Conclusion

This thesis described both why symbolic execution can be parallelized and how that could

be done. Over the course of this research two major versions of parallel symbolic execution

were implemented; Once on Kiasan/Bogor, and currently on Kiasan/Sireum. These imple-

mentations allowed the exploration of the engineering issues concerning parallel symbolic

execution and performance evaulations of parallel symbolic execution when it is applied to

examples of real-world software units.

The experiments exposed scenarios where the current implementation of symbolic exe-

cution performed very well, scaling linearly as the number of workers were increased (e.g.

BinarySearchTree.insert, section 5.2.1 and ArrayPartition.partition, section 5.6.1). The ex-

periments also demonstrated that some units did not have very parallel execution trees, or

the shape of those execution trees did not lend themselves to parallelization with the cur-

rently applied parallelization hueristics (e.g. ListStack.put, section 5.2.2 and AvlTree.insert,

section 5.6.6). Overall the experiments indicate that in most cases parallel symbolic exe-

cution will provide a substantial speed-up on multi-core systems, which means that this

approach could have immediate utility for software developers.

89

Chapter 8

Future Work

8.0.1 Root-closest Parallelization

As identified in chapter 7, a possible hindrance to distributed Kiasan’s ability to scale is

Kiasan’s eager parallelization. As workers become idle, active workers will begin to generate

work units at the point the active worker is at in the computation tree. This gives rise to

the unfortunate possibility that newly idle workers will get assigned work units that only

encompass a small fraction of the overall computation tree, and which therefore take a

significantly smaller amount of time to compute.

Optimal parallelization occurs when each worker thread is assigned work units that take

a long (relatively) time to compute. Optimal parallelization would require knowlege of the

computation tree apriori so distributed Kiasan could choose the best locations to generate

work units. Unfortunately the computation tree cannot be known a priori (as this is what

the analysis seeks to uncover), however it may still be possible to change the distribution

logic in such a way that would increase the probability that work units are generated from

subtrees that are large (computationally.) See appendix A for a detailed description of how

this approach could be implemented.

8.0.2 Parallel Report Generation

In non-parallel Kiasan, reports are generated from statistics the tool accumulated during

analysis of a particular program unit. These statistics include generated test cases, byte-code

90

instruction coverage information, branch coverage information, and any potential errors the

analysis detected. More formally, the reports contain:

1. Tc, a set of test cases.

2. Ic, the set of indices of instructions covered.

3. Brc, the set of branches covered.

4. E, the set of errors detected.

Since parallel Kiasan could explore different sections of an execution tree independently,

the reports generated from each independent exploration may not have correct information

with respect to the total analysis. In addition, parallel Kiasan may be applied to very

expensive (i.e. long running) analyses, so it would be helpful if Kiasan was able to accu-

mulate report information using some soft of any-time algorithm that could also be easily

parallelized.

What follows is a high level description of a simple any-time report statistics merging

algorithm. Because the algorithm is any time, parallelization is trivial, it simply involves

performing a union over all the sets that comprise the statistics:

Algorithm 17 Any time report merge algorithm

input(< T 1
c , I1

c , B1
rc, E

1 >, < T 2
c , I2

c , B2
rc, E

2 >)
T ret

c ← T 1
c

⋃
T 2

c

Iret
c ← I1

c

⋃
I2
c

Bret
c ← B1

c

⋃
B2

c

Eret
c ← E1

c

⋃
E2

c

return < T ret
c , Iret

c , Bret
rc , Eret >

With the any time algorithm above, it is simple to imagine a ’Bag of Tasks’ algorithm

to merge a collection of reports in parallel, where the collection of initial tasks is configured

at start up:

91

Algorithm 18 Parallel report merge worker process

while true do
report1← getReportWU()
report2← getReportWU()
mergedReport← merge(report1,report2)
putReportWU(mergedReport)

end while

8.0.3 Kiasan on Map Reduce

Map Reduce is a parallel programming framework developed at Google to enable program-

mers to take advantage of massively parallel computer systems or clusters (see section 2.9.)

Other static analysis techniques such as Korat (see section 6.5) have been adapted to the

Map Reduce model and have subsequently taken advantage of the concurrent processing

capability provided by thousands of processors17 It would seem worthwhile to attempt to

adapt Kiasan to the Map Reduce programming model in order to take advantage of the

properties inherent to that platform.

However, it is not clear if the state-space exploration of Kiasan could be easily shoe-

horned into Map and Reduce phases in a way that would take advantage of the massive

parallelism a large cluster could provide. Map Reduce shines for problems where the input

data set is very large a known a priori (e.g. sequencing a genome or sorting Google’s web

page index). With symbolic execution the scope and breadth of the analysis is unknown

before the analysis.

One way to take advantage of Map Reduce could be to iteratively apply a set of special-

ized Map and Reduce functions to grow the set of input data. In this manner, Map Reduce

would provide a parallel breadth-first search (BFS) of the execution tree.

Algorithms 19, 20 and 21 together illustrate this pattern. During the first few phases

of iteration, the MapReduce cluster would be poorly saturated because the width of the

execution tree near the root would be relatively small. However the number of paths through

a large analysis can be quite large (over 170 million for RedBlackTree.insert(), k=7) so there

is a large workload available for parallelization.

92

Algorithm 19 Map function for emitting the successor states of a state

input (parentstate, state)
currentState← state
while multipleChoices == 0 do

currentState← step(currentState)
multipleChoices← countChoices(currentState)

end while
for each state s in currentState do

EmitIntermediate(currentState,s)
end for

Algorithm 20 Reduce function Map Reduce kiasan. Simply passes through input.

input (parentstate, list(states))
for each state in list(states) do

Emit(state)
end for

Algorithm 21 Iterate MapReduce to explore a symbolic execution tree breadth-first

while |inputKeyPairSet| > 0 do
invoke Map phase over inputKeyPairSet
invoke Reduce phase
inputKeyPairSet← generateInputKeyPairs(reduceResults)

end while

93

Bibliography

[1] X. Deng, J. Lee, and Robby, Bogor/kiasan: A k-bounded symbolic execution for

checking strong heap properties of open systems, in ASE ’06: Proceedings of the 21st

IEEE/ACM International Conference on Automated Software Engineering, pages 157–

166, Washington, DC, USA, 2006, IEEE Computer Society.

[2] P. R. James, P. Chalin, L. Giannas, and G. Karabotsos, Distributed multi-threaded

verification of java programs, in Seventh International Workshop on Specification and

Verification of Component-Based Systems, 2008.

[3] S. Khurzid, C. Pasareanu, and W. Visser, Tools and Algorithms for Construction and

Analysis of Systems , 553 (2003).

[4] J. P. Desmond, SOFTWARE Mag (2008).

[5] NIST, Software errors cost u.s. economy $59.5 billion annually - nist 2002-10, 2002.

[6] B. Gain, WIRED Magazine (2006).

[7] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking, The MIT Press, 2000.

[8] J. C. King, Commun. ACM 19, 385 (1976).

[9] S. Khurshid, C. S. Psreanu, and W. Visser, Generalized symbolic execution for model

checking and testing, in In Proceedings of the Ninth International Conference on Tools

and Algorithms for the Construction and Analysis of Systems, pages 553–568, Springer,

2003.

[10] M. Sagiv, T. Reps, and R. Wilhelm, Solving shape-analysis problems in languages with

destructive updating, in POPL ’96: Proceedings of the 23rd ACM SIGPLAN-SIGACT

94

symposium on Principles of programming languages, pages 16–31, New York, NY, USA,

1996, ACM.

[11] X. Deng, Robby, and J. Hatcliff, Towards a case-optimal symbolic execution algorithm

for analyzing strong properties of object-oriented programs, in SEFM ’07: Proceed-

ings of the Fifth IEEE International Conference on Software Engineering and Formal

Methods, pages 273–282, Washington, DC, USA, 2007, IEEE Computer Society.

[12] G. Andrews, Foundations of Multithreaded, Parallel, and Distributed Programming,

Addison-Wesley, 1999.

[13] J. Dean and S. Ghemawat, Commun. ACM 51, 107 (2008).

[14] R. Lämmel, Sci. Comput. Program. 68, 208 (2007).

[15] K. R. M. Leino, Inf. Process. Lett. 93, 281 (2005).

[16] R. Boyapati, S. Khurshid, and D. Marinov, Korat: Automated testing based on java

predicates, in In Proc. International Symposium on Software Testing and Analysis

(ISSTA, pages 123–133, ACM Press, 2002.

[17] S. Misailovic, A. Milicevic, N. Petrovic, S. Khurshid, and D. Marinov, Parallel test

generation and execution with korat, in ESEC-FSE ’07: Proceedings of the the 6th

joint meeting of the European software engineering conference and the ACM SIGSOFT

symposium on The foundations of software engineering, pages 135–144, New York, NY,

USA, 2007, ACM.

[18] K. Sen, Concolic testing, in ASE ’07: Proceedings of the twenty-second IEEE/ACM

international conference on Automated software engineering, pages 571–572, New York,

NY, USA, 2007, ACM.

[19] K. Sen and G. Agha, Automated systematic testing of open distributed programs, in

95

In Fundamental Approaches to Software Engineering (FASE06), volume 3922 of LNCS,

pages 339–356, Springer, 2006.

[20] C. Barrett and C. Tinelli, Cvc3, in CAV, pages 298–302, 2007.

[21] B. Dutertre and L. D. Moura, The yices smt solver, Technical report, 2006.

96

Appendix A

Root Closest Parallelization

This appendix describes in detail the problem that root-closest parallelization addresses and

how root-closest parallelization could be implemented.

public stat ic int i n tTes t (int x){
i f (x > 10){

i f (x > 20){
return 1 ;

}
else {

return −1;
}

}
else {

i f (x > 5){
return 0 ;

}
else {

return 0 ;
}

}
}

Listing A.1: Java method intTest(int x)

To illustrate the sub-optimal behavior of eager parallelization refer to the simple method

in listing A.1. When Kiasan starts analyzing this method a single worker starts to expand

the execution tree. That worker does not have the full information of the fully expanded

97

execution tree in figure A.1. Instead, the execution tree is gradually expanded as the sym-

bolic state space is explored. Figure A.2 shows the execution tree partially expanded, and

w1’s current symbolic state is the deepest expanded node. If at this point another worker

becomes idle, w1 may parallelize on its current state, assigning the other worker one of the

two choices available. Figure A.3 illustrates the immediate result of this parallelization.

intTest(x)

��
x = α

uukkkkkkkkkkkkkkk

((RRRRRRRRRRRRR

x = α ∧ α > 10

uujjjjjjjjjjjjjjjj

��

x = α ∧ α ≤ 10

��))RRRRRRRRRRRRRR

x = α ∧ α > 20

��

x = α ∧ 20 > α > 10

��

x = α ∧ α > 5

��

x = α ∧ α ≤ 5

��

return1 return− 1 return0 return0

Figure A.1: The fully expanded execution tree for intTest(x), The nodes with drop shadows
represent the state if the symbolic execution after a certain choice has been followed. The
arcs represent a choice. A trace from the root of the tree to a leaf represents a path through
the method intTest(x), as determined by symbolic execution.

98

intTest(x)

w1

��
x = α

w1uulllllllllllll

$$I
IIIIIIIIIII

x = α ∧ α > 10

wwoooooooooooo

��

Figure A.2: The partially expanded execution tree for intTest(x) at time t(x). The covered
choices are annotated by what worker explored them (in this case worker w1). There are
three choices that may be distributed to another worker at t(x).

intTest(x)

w1

��
x = α

w1uujjjjjjjjjjjjjjj

$$I
IIIIIIIIIII

x = α ∧ α > 10

w1ttjjjjjjjjjjjjjjjj
w2
��

x = α ∧ α > 20

��

x = α ∧ 20 > α > 10

��

Figure A.3: The partially expanded execution tree for intTest(x) at time t(x + c). The
covered choices are annotated by what worker explored them (in this case worker w1 and
w2). Here, eager parallelization has been applied to parallelize the immediate choice from
the previous state of w1.

Figure A.4 shows the likely full expansion of the execution tree using two workers and

eager parallelization. Here, there were at least 2 instances of parallelization, and each of

those parallelizations parallelized a subtree of height 2.

99

intTest(x)

w1

��
x = α

w1uukkkkkkkkkkkkkkk
w1

((RRRRRRRRRRRRR

x = α ∧ α > 10

w1uujjjjjjjjjjjjjjjj

w2

��

x = α ∧ α ≤ 10

w1

��

w2

))RRRRRRRRRRRRRR

x = α ∧ α > 20

w1

��

x = α ∧ 20 > α > 10

w2
��

x = α ∧ α > 5

w1

��

x = α ∧ α ≤ 5

w2

��

return1 return− 1 return0 return0

Figure A.4: A possible fully expanded execution tree for intTest(x), which has been explored
by two workers with eager parallelization. In this scenario, w1 has completed the initial path
it explored and backtracked to the first choice in the tree while w2 was busy finishing. When
w2 becomes idle again, w1 generates a workunit from w1’s current state.

If Kiasan would parallelize choices close to the root of the execution tree by default, then

the probability that a subtree assigned to a worker is substantial computationally increases.

How would the previous example play out if Kiasan used a ’root-first’ parallelization? Refer

to figure A.5. At time t(x + c) instead of parallelizing the immediate choice, w1 looked

through the parent states it explored for uncovered choices. Since the parent of w1’s current

state is the state closest to the root with an uncovered choice, w1 parallelized that choice.

100

intTest(x)

w1

��
x = α

w1vvlllllllllllll
w2

((RRRRRRRRRRRRR

x = α ∧ α > 10

wwoooooooooooo

��

x = α ∧ α ≤ 10

�� ''OOOOOOOOOOOO

Figure A.5: The partially expanded execution tree for intTest(x) at time t(x + c). Here,
root-closest parallelization was used to parallelize; w1 looked in its history to discover a
choice that was closer to the root of the execution tree and then generated a work unit from
that choice.

Now, as analysis proceeds, worker w2 has a much more substantial subtree to explore,

resulting in more effective parallelism (figure A.6) because both workers remained actively

analyzing for a longer amount of time.

intTest(x)

w1

��
x = α

w1uukkkkkkkkkkkkkkk
w2

((RRRRRRRRRRRRR

x = α ∧ α > 10

w1uujjjjjjjjjjjjjjjj

w1

��

x = α ∧ α ≤ 10

w2

��

w2

))RRRRRRRRRRRRRR

x = α ∧ α > 20

w1

��

x = α ∧ 20 > α > 10

w1
��

x = α ∧ α > 5

w2

��

x = α ∧ α ≤ 5

w2

��

return1 return− 1 return0 return0

Figure A.6: A possible fully expanded execution tree for intTest(x), which has been explored
by two workers with root-first parallelization. Here, the load was much more evenly balanced
between the two workers vs. eager parallelization. Also note that less inter-worker commu-
nication had to take place, which would have a positive impact on parallelization efficiency.

101

How could this be done? One way to do this would be to have distributed Kiasan workers

remember each time they encounter a non-deterministic choice and store the choices tree-

location in some sort of queue. When one of the system’s workers becomes idle, the active

workers can now generate a work unit from the information stored in that queue as opposed

to the current non-deterministic choice. This would ensure that each work-unit generated

would describe a sub-tree as close to the root as possible given the current system state.

However, engineering this solution is not straightforward. An efficient way of recording

what nodes in a worker’s current subtree are uncovered needs to be used, otherwise any

performance gained by choosing work units in this fashion will be lost. For example, It

would not be efficient to store the analysis state at each uncovered node, because that

will require processor time and a significant amount of system memory. A good choice

instead would be to use the execution schedule Kiasan already stores for each prior non-

deterministic choice. Kiasan maintains this schedule in its stack of backtracking information.

This information is used by Kiasan to rewind the analysis state when Kiasan reaches the

end of a path condition. This means that the backtracking information already contains the

history of non-deterministic choices for a particular worker.

Now, the condition for parallelization is not just if the current state has uncovered

choices, but if any previous state has uncovered choices. Refer to algorithms 23 and 24.

Each time Kiasan has an uncovered choice, the index to that choice is archived in the sendQ,

FIFO, before Kiasan proceeds. Next, when a worker becomes idle, Kiasan only needs to

check the contents of the sendQ to determine what previous choice is still uncovered.

Sending a work unit also becomes slightly more complicated. In eager parallelism, Kiasan

immediately backtracks after sending a work unit. This serves to automatically cover the

choice that was just dispatched to another worker in the local worker. In root-closest

parallelism, a choice from this history of the current state may be parallelized. This means

that the backtracking mechanism is no longer appropriate to cover the parallelized choice.

In root-closest parallelism, Kiasan should check if the parallelized choice is on the fringe or in

102

the history of the state space. If the choice is on the fringe the normal backtracking approach

is used. If the choice is in the history, that choice is covered using the coverSentChoice

method. (Refer to algorithm 25).

intTest(x)

0

��
x = α

0uukkkkkkkkkkkkkkk
1

((RRRRRRRRRRRRR

x = α ∧ α > 10

0uujjjjjjjjjjjjjjjj

1

��

x = α ∧ α ≤ 10

0

��

1

))RRRRRRRRRRRRRR

x = α ∧ α > 20

0

��

x = α ∧ 20 > α > 10

0
��

x = α ∧ α > 5

0

��

x = α ∧ α ≤ 5

0

��

return1 return− 1 return0 return0

Figure A.7: The fully expanded execution tree for intTest(x) each choice is annotated with
its numerical index.

Algorithm 22 explore() method for root-closest parallelization

while !shouldTerminate do
unCovered← false
if !step() then

if !backtrack() then
break

end if
end if
while shouldDistribute() do

sendScheduleWU()
if sentBacktracking = peek(backtrackingInfos) then

backtrack()
unCovered← false

end if
step()

end while
end while

103

Algorithm 23 shouldDistribute() for root-closest parallelization

checkUncovered()
if shouldBacktrack∧size(sendQ) = 0 then

ret← false
else

if pingServer() then
ret← true

else
ret← false

end if
end if
return ret

Algorithm 24 checkUncovered() for root-closest parallelization

checkUncovered()
if isUncovered then

add(sendQ, currentChoiceIndex)
uncoveredCounter ← uncoveredCounter + 1

end if

Algorithm 25 sendScheduleWU() for root-closest parallelization

shortestUncoveredList← buildShortestUncoveredList()
parallelizableBi← getLastElement(shortestUncoveredList)
lastSendBi← parallelizableBi
scheduleList← generateSchedule(shortestUncoveredList)
if lastSendBi ! = peek(biStack) then

archiveSchedule(lastSendBi)
coverSentChoice(lastSendBi)

end if
intList← makeIntListFromSched()
sendIntList← combineLists(currentPrefix, intList)
sendWU(sendIntList)

104

	Table of Contents
	List of Figures
	Acknowledgements
	Introduction
	Contributions
	Thesis Structure

	Background
	Program Analysis Background
	Soundness and Completeness
	Soundness
	Completeness

	Kripke Structures
	Explicit State Model Checking
	Symbolic Execution
	Symbolic Execution of Imperative Programs with Heap Objects - Lazy Initialization
	Lazier Initialization
	Lazier Intialization

	Structure Analysis for Testing
	Parallel and Distributed Computation
	Distributed Bag of Tasks / Coordinator-Workers
	MapReduce

	Parallel Symbolic Execution
	Paralellization
	Parallelism in Symbolic Execution
	Parallelization
	Parallelization - Load Balancing
	Execution Tree Structure

	WorkUnits
	State Based Workunits
	Schedule Based Workunits

	Coordinator Process

	Implementation Details
	Kiasan/Bogor
	Kiasan/Bogor - Pull Mode coordination
	Kiasan/Bogor - Schedule Encoded Work-Unit
	Kiasan/Bogor - State Encoded Work-Unit
	Kiasan/Bogor - Asynchronus Work Unit Commits

	Kiasan/Sireum
	JMLk
	KiasanVM
	Semanggi

	Kiasan/Sireum Core Components
	KVMExplorer
	State
	KVMModelManager
	KVMSchedulingStrategist
	KVMInterpreter

	Additional Details
	Kiasan/Sireum - Push Mode Coordination
	Kiasan/Sireum - XStream State Snapshot
	Kiasan/Sireum - Intra-Unit Parallelization
	Kiasan/Sireum - Inter-Unit Parallelization
	Kiasan/Sireum- Front-end client
	Kiasan/Sireum - Coordinator Server

	Experiments and Evaluation
	Kiasan 1 Experiments
	Results
	State Snapshot Work Units
	Schedule-based Work Units

	Kiasan 2 Experiments
	Throughput
	Worker idle time
	Factorizations
	Serialization time

	Experimental Setup
	Errata
	Results
	ArrayPartition.partition(), k=7, ab=100
	BinaryHeap.findMin(), k=7, ab=100
	BinarySearchTree.insert(), k=7
	DisjSet.union() k=7, ab=100
	GC.mark(), k=4
	AvlTree.insert() k=7

	Related Work
	ESC/Java
	Parallel ESC
	JPF
	Structure Analysis for Testing
	Korat
	Korat - Walkthrough
	Distributed Korat

	Concolic Testing
	jCUTE
	Theoremprovers / SMT Solvers
	CVC3
	Yices

	JUnit

	Conclusion
	Future Work
	Root-closest Parallelization
	Parallel Report Generation
	Kiasan on Map Reduce

	Bibliography
	Root Closest Parallelization

