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CHAPTER I
INTRODUCTION

Scheduling is one of the critical problems in management. The
scheduling problem may be classified into three categories: Production
scheduling, Project scheduling and Job scheduling. This report is
concerned with the job scheduling problem.

The job scheduling problem consists of processing J jobs on M
machines such that a certain criterion is optimized. Some of the cri-
teria are: (1) minimization of the total time required to process all
jobs; (2) minimization of the total idle time on all the machines; (3)
minimization of the time required for each machine, starting from the
first job to the last job; and (4) maximization of the profit by meeting
of cdue dates. However, the criterion considered in this report is that

£

of minimizing the schedule time.

The job scheduling problem is of interest because of its diversity,
complexity and magnitude. For example, consider a problem of six jobs
to be: processed on each of three different machines. The possible number
of sequences is (J!)M or (6!)3 = 373,248,000. A complete enumeration
of these sequences would require years on a high speed computer. Many
of these sequences are technologically non-feasible. An exhaustive

eénumeration must consider all segquences to eliminate the non-feasible

and then select the optimal sequence.



1.1. Problem Formulation:*

Consider a job scheduling problem which consists of a certain
number of jobs to be processed on various machines in a specified machine
ordering. The optimal sequence of the jobs is to be determined so as to
minimize the schedule time - the total time of processing all jobs.

The job scheduling problems are generally classified into: (1)
Flowshop - where all jobs have the same machine ordering, and (2) jobshop -
where each job has a different machine ordering.

The notations which have been used to formulate the problem mathe-

matically are given below:

J total number of jobs
M total number of machines
j job designation, j =1, 2, . . ., J
m machine designation, m =1, 2, . . ., M
jm operation designation
jxm sequence of jobs through machine m, x =1, 2, . . ., J
jm order of machines for job j. y -1, 2, . . ., M
jxmy a specific operation

i processing time of job j on machine m
T* processing time matrix of the original problem.
Mj* machine ordering vector for job j
M* machine ordering matrix of the original problem
Sm* job sequencing vector through machine m

S* job sequencing matrix of the original problem

T schedule time

*sdapted from Ashour, S., "A Decomposition Approach for the Machine Sched-
uling Problem," The International Journal of Production Research, Vol. 6,
No. 2, 1967.



The numbering of jobs and machines is preconcieved and not necessarily
correspond to the sequence in which jobs are processed on each machine or
to the order in which the machines process each job. Thus, the sequence
o; the jobs will be designated as jl, j2, i w5 jx’ & % e jJ and the
order of the machines as Mys Wos o = o) my, e ey MM' The term jx
indicates that job j in position x; and the term my means that machine
m in position y.

The machine ordering for each job is designated as follows:
M* ={ jm eM  and jim ) < (jm } ,3=1,2, .. ., J
; jmo |y (my) < (myy) j
where,

" (jmy) < (jmy+l) indicates that the operation of job j on machine
my directly preceeds the operation of the same job on machine my+l'

The above relation may be written as follows:

'* = i I - - - j - - L] i | = - - - -
My { jmy Jm, jm_ img b, i=1,2, , J

The machine ordering vector for each job can be combined in a (JxM

matrix called the machine crdering matrix denoted by M¥*,

¢m1 lm2 ¢ % lmy o ¥ lmM

2ml 2m2 . e . 2my - & 5 ZmM
Mk = .

Jml sz e e e me « . . JmM




The processing time of each job on each machine is designated

by T*.
Bjg, Bgp  mE e B sim tIM
t2l 222 . . . tzm L] . - t2M
. ) i .
t_']l t_]2 W tjm « s . tjM
LtJl i~ L e b Fan |

It should be pointed out that the processing time matrix, T*, does

not imply any ordering of the operations. If a job is not to be

processed on a particular machine, a zero processing time is placed in

the processing time matrix.

The sequencing of jobs on each machine are designated by Sm*.

S % = {

" jm | xeJ  and

G < Gom 1, m=1,2,. M

where

: & i . . . . ; ;
(3xm) (Jx+1)m indicates that job J directly preceeds job j ; on
machine =.

The above relation may be rewritten as follows:



* = - 3 = 3 =
Sm { Jqmd,m e oo jmo. . im }, m=1, 2, . . ., M.

The above job sequencing vectors can be combined in a (M x J)

matrix., known as the job sequencing matrix and denoted by S*.

il il . i1 ijl
312 322 e i sz G ¥ JJ2
g= Jlm sz . Jxm « . e JJm
EFU P B M w5 g it

In summary, the job scheduling problem may be stated such that: given
the machine ordering matrix M* and the processing time matrix T#, find
the optimal job sequencing matrix S*which minimizes the schedule time T.

In the machine ordering matrix M*, the element Jjm for example,

l’
incdicates that job j must be processed on machine m first. The element

jm2 means that job j must be performed on machine m second, which is not

the same as that in element jm Also in the job sequencing matrix S,

1
the element jlm, for example, indicates that machine m processes job j

first. The element j,m means that machine m performs job j secomnd, which

2

is not the same job as that in the element jlm. As mentioned earlier,

the subscript here indicates the position of job j in the job sequencing



or position of machine m in the machine ordering.
An example may clarify the above formulation. Consider a jobshop
problem of four jobs and two machines. The machine ordering matrix is

given below:

1mg 1m, 11 127
= Zml 2m2 ) 22 21
3ml 3m2 31 32
4my 4w, | (42 41

This indicates that jobs 1 and 3 are to be processed on machine 1 first
and machine 2 last; however, jobs 2 and 4 are to be performed on machine
2 first and machine 1 last.

One of the feasible sequences which must be consistent with the

above machine ordering matrix is shown below

4 5 5
i Jll 321 331 341 11 31 21 41
S = =
o] : . 3 F
lez 152 g 32 12 22 32 42

This particular job sequencing matrix indicates that machine 1 processes
the jobs in the sequence { 1 3 2 4 } and machine 2 performs the jobs
in the sequence {12 3 4}

A simple formulation is given below to the flowshop problem where

all jobs have the same machine ordering.



Given the machine ordering matrix

ME = [jm1 jm2 ¢ 5 @ jmx i ij], dml, 2 o o wy Jy
and the processing time matrix

X = il
T [tjl tj2 e e . tjm . .. tjM]’ j

find the optimal sequence, represented by the job sequencing matrix
S* = [j.,m j.,m j.m ¥ j.m] = Ry 2y e e owy M
L 1 2 LI % C . J ’ ’ ’ » »

which gives the minimum schedule time T.

In the machine ordering matrix, M*, the element jml, for example,
indicates that job j must be processed on machine m first. The element
jm2 means that job j must be performed on machine m second, which is not

the same machine as that in the element jm Also in the job sequencing

1°
matrix, S; the element jlm, for example, indicates that machine m processes
job j first. The element jzm means that machine m performs job j second,
which is not the same job as that in the element jlm.
The job scheduling problem as formulated above is restricted to the
following assumptions:
1. Assumptions regarding jobs:
1.1 A job may not be processed by more than one machine at a time.
1.2 Each job must follow a specified machine ordering.

1.3 A job is processed as soon as possible, subject to the

machine ordering.

bt
o~

All jobs are equally important; i.e., no priorities, due

dates, or rush orcders.



2. Assumptions regarding machines:
2.1 Yo machine may process more than one jéb at a time.
2.2 Once started, each operation must be completed.
2.3 There is only one machine from each type.
2.4 Yo job is processed more than once by any machine.
3. Assumptions regarding processing times:
3.1 The processing time of each job on each machine does not
depend on the sequence in which the jobs are processed.
3.2 The processing time of each job on each machine is determinate
and integer.
3.3 Transportation times between machines and set-up times, if

any, are included in the processing times.

1.2. Literature Review:

Considerable research has been done in the field of job scheduling
problem. However, an optimal solution for practical problems have not yet
been obtained except for small size problems. The approaches available
to solve the job scheduling problem are: (1) Combinatorial Amnalysis,

(2) Integar-Linear Programming, (3) Graphical, (4) Graphical-Dynamic
Programming, (5) Schedule Algebras, (6) Simulation. -

Some of the researchers have concentrated on generating the feasible
sequences only, for the job scheduling problem. A Boolean Algebra
approach has been developed by Akers and Friedman (4) which eliminate
initially a great number of sequences. Certain decision rules have been

developed for minimizing the schedule time. An illustration has been made



by solving two—job and M-machine problem.

Giffler and Thompson (55) have developed an algorithm in which
they suggested to search for optimal sequences over only feasible
schedules referred to as active feasible schedules. They have defined
an active feasible schedule as a feasible schedule having the property
that no operation can be made to start sooner by permissible left
shifting. In their paper, it has been proved that the subset of active
feasible schedule contains a subset of optimal schedules; and every
optimal schedule is equivalent to an active optimal solution. Equivalence
means that one schedule can be obtained from the other by a sequence of
permissible shifts. The main reasons for concentrating on the active
schedules are: (1) they contain a subset of optimal sequences; (2) they
are superior to the inactive schedules; and (3) their number is usually
very small compared to the number of all schedules. For smaller problems,
it is possible to generate the complete set of active schedules and then
pick-up the optimal. However, in large problems, it is impractical to
generate all active schedules. Therefore, a random sample is generated
from the set of all active schedules and the optimal schedule(s) may be
obtained with some probability close to one as desired.

Using the linear graphs, Heller and Logemann (68) have developed an
algorithm to generate feasible schedules and compute the corresponding
schedule time. An operation of processing job j on machine m for the
return i is referred to as a node (mji). These appropriate nodes are
linked as per the machine ordering. One of the available nodes is chosen

and scheduled. This process is continued until all operations are
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scheduled. The result is one feasible schedule and the corresponding
schedule time.

Furthermore, ﬁhere exists several scheduling algorithms for obtain-
ing a solution to the scheduling problem.

For J-jobs and two-machine flowshop problem, Johnson (80) has
developed a simple algorithm to determine an optimal schedule for
minimizing the schedule time. He also extended his algorithm to cover
a special case of the three-machine problems. For jobshop problems,
however, Jackson (71) extended Johnson's results.

Dudek and Teuton (38) have extended Johnson's algorithm to solve
the flowshop problems of J-job and M-machine. The algorithm involves
the minimization of the cumulative idle time on the last machine. Although
they have claimed that optimality is guaranteed, Karush (82) has formulated
a counter example of three-job and 3-machine. Smith and Dudek (156) have
revised the above algorithm to obtain the optimal solution.

Another approach which gives optimal or near optimal solution after
the generation of only a small subset of the possible sequences. This is
referred to as branch-and-bound technique which has been developed by
Little et. al. (92) to solve the travelling salesman problem. Ignall
znd Scharge (70) have applied the above technique to the two-and three-
machine flowshop problem. Their computational experience involves up to
nine jobs. Brown and Lomnicki (27) have generalized the branch-and-bound
algorithm developed by Lomnicki (93) for three machines to arbitrary
cumber of machines. McMaaon and Burton (99) have applied branch-and-

bound technique for the three-machine problem, giving a new method of
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obtaining the bound and utilized the fact that scheduling problems are
symmetrical and with respect to time-reyersal. Their computational
experience on CDC 3600 computer involves up to 45 jobs and three-machines.
They concluded that the use of the composite bound (machine based bound
and job based bound) decision rule is more efficient.

Brooks and White (26) have modified Giffler and Thompson's (54)
algorithm using the lower bound as a decision rule for developing an
optimal or near optimal solution. Since practical problems are much
larger than could be solved economically by this procedure, they used
lower bound as a decision rule for developing a near optimal solution.

Integar-Linear programming approach has been utilized for job
scheduling problem. Up to this time, three different formulations
developed by Bowman (25), Wagner (165) and Manne (95) are available.
However, the computations are not feasible. Dantzig (35, 36) formulated
the job scheduling problem as an ordinary linear programming problem by
neglecting the integar constraints. The drawback of this method is that
it may give fractional optimal solution. To overcome this problenm,
Giglio and Wagner (57) have solved 100 flowshop problems of six-job and
three-machine using an ordinary linear programming and rounding off
the final solution. However, computations were not encouraging.

In his investigation, Heller (53) has shown that the limit distri-
bution of the schedule times is asymptotically normal as the number of
jobs increases.

Ashour ( 6) has developed a decomposition approach to the job

scheduling problem. In this approach, the problem is decomposed to a
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smaller, more manageable problems which requires less computational
effort. In his investigation, Ashour has found that the schedule

time distribution obtained by decomposition shifts toward the minimum
value. Furtherﬁore, the shift increases as the number of jobs in each
subgroup increases. His computational ekperiment consists of six to
40 jobs and three to ten machines.

Hardgrave and Nemhauser (62) and Akers (3) have developed a graphical
approach for two—job and M-machine problem. Graphical-Dynamic programming
approach has been presented by Held and Karp (64) for J-job and one-
machine problem. Szwarc (160) has given a solution for a problem of
two-job and M-machine by a combination of dynamic programming and
graphical methods. Szwarc has also developed a technique for the job-
shop problem, but it does not guarantee optimality.

In practice, the job scheduling problem is dynamic in nature. The
break-down of machines, efficiency of the labor, quality of the products
make the scheduling problems quite complicated. For such complex problems,
a computer simulation is used. Eilon and Hodgson (40) have developed a
simulation model for jobshop scheduling problems consisting of two iden-
tical machines operating in parallel. Conway et. al. (33) have simulated
jobshop problem of five-machine and 100 arriving jobs to test the priority
rules. Gere (47) has studied the performance of a number of combinations
of priority rules and heuristics for several criteria such as due dates,

ninimization of the sum of latness.
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1.3. Proposed Research:

Several techniques have been suggested for the solution of job
scheduling problems. In general, these techniques are practical for
small size problems. A little progress has been made toward the develop-
ment of efficient algorithms.

Among the promising techniques, which are used to solve the flowshop
problem are: (1) Direct technique reported by Smith and Dudek (136);
(2) Branch-and-bound techmique developed by Brown and Lomnicki (27); and
(3) lower bound modified by Brooks and White (26). 1In reviewing the
literature, it appears that no comparison among these procedures has been
made. The purpose of this report is to investigate the solution obtained
by different procedures. Thus the techniques are compared considering
basically the following: (1) the relative efficiency of the different
solutions to the optimal value; (2) the statistical characteristics of
the distinct schedule times; and (3) the computational efficiency. To
obtain adequate comparison among these techniques and to minimize the
variations, considerable experiments were conducted. In this report, the
solution by Branch-and-bound and Direct algorithms are compared to the
complete enumeratiocn.

In the next chapter, the scheduling techniques are discussed and
illustrated by a sample problem. Chapter III is devoted to the experi-
mental investigation designed to compare the performance of the scheduling
techniques. The results of these computational experiments and the conclu-

sions are reported in Chapter III and IV.
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CHAPTER II

COMPUTATIONAL SCHEDULING ALGORITHMS

This chapter includes clear presentation of various algorithms
for the solution of the flow shop scheduling problem, such as (1)
Linear graph algorithm by Ashour ( 6) which is used in this report
to obtain the complete enumeration; (2) Direct algorithm by Smith
and Dudek (156); and (3) Branch-and-bound algorithm by Erown and
Lomnicki (27). A sample problem of flow shop having six jobs and
three machines is solved by the above various techniques to illus-

trate these algorithm step-by-step.

2.1. Complete Enumeration Technique *

The linear graph algorithm which has been developed by Ashour (6)
to generage feasible sequences and compute the schedule time for flow
shop problems is used to obtain the complete enumeration solutions.
This algorithm is based on linear graph theory presented by Heller
(67). An operation of processing job j on machine m is represented
by node (jm). Important features of the algorithm are: (1) it can
permute a complete set of sequences or generate, at random, a subset
of all sequences. Thus the algorithm is flexible in the sense that
any number of sequences can be conmstructed and evaluated; (2) it
constructs and evaluates a sequence of J jobs in exactly J iteratioms
regardless of the number of machines involved. As a result, the

algorithm schedules m nodes in one iteration and a sequence is eval-

*Adapted from Ashour, S., "A Decomposition Approach for the Machine
Scneduling Problem," Ph.D. Thesis, University of Iowa, 1967.



15

uated immediately; and (3) the machine ordering can arbitrarily be
assigned but the same for all jobs. For example, in the case of three
machines, the machine ordering could be that all jobs are processed
on machine 3 first, machine 1 second and machine 2 last. These
features enables the algorithm to compute quite easily and quickly the
schedule time as well as the construction of a sequence.

Consider the processing time and machine ordering matrices
appeared on page 16 of this report, the initial schedule table is

constructed. This table Includes the following columns
Ql: node designation, (jm),
Q,: processing time, tjm’
Q3: index of the sequence of job j on machine m
Qé: starting time of node (jm)
QS: finishing time of node (jm)
The following algorithm evaluates the schedule time for the
sequence 1j1 Jop v o s JJ}
Step 1: Construct the initial scheduling table, by setting:
1.1. the nodes (jm) in column 1 of the machine ordering matrix
under Ql, first, those in column 2 second, . . , and those
in column M last,

1.2. the corresponding processing times tjm under QZ’ and by

leaving
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1.3. Q4 (Gm), Q, (jm) and’Q5 (jm) blank.

Step 2: LetU=1, and X =1
Step 3: Set j = jx

Step 4: Index the job sequence in all machines by setting:

I

«

Il
|
o]
=

Qy (m,)
Step 5: Check U
5.1. 4if U =1, go to step 6.

5.2. 4f ¥ » 1, let jo= j and replace Q, (jmﬁ)

x=1

by

maXx [Q4 (ij)’ Q5 (jomy)]a l, 2, <. .y M
Step 6: Compute the finishing time:
6.1. Compute QS (jml) = Q4 (jml) + Q2 (jml)
6.2. replace Qg (jmy) by max [Q, (my), Q5 (m_;)]
and compute
Qg Umy) = Q. Gmy) + Q) (Gmy)
y=2,3, ..., M
Step 7: Increase both x and U by one. Then repeat step 3 through 6

until all jobs are scheduled.

Step 8: TFind the schedule time such that T* = max IQS (Gm)]

The following is a sample problem, which has been solved. The

processing time and machine ordering matrices are
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F4 5 57 T11 12 137
2 17 7 21 22 23

|

2 10 4 31 32 33

T* = i M* =

{10 8 2 41 42 43

] 7 15 6 51 52 53

|

L9 4 11 | | 61 62 63

Let the sequence {3 6 2 5 1 4} is there and by applying the above
algorithm, the schedule time can be found.

According to step 1.1. at the algorithm, initial scheduling table
is constructed by writing nodes (jm) in the first column as shown in
the table I and according to step 1.2. correspcnding processing times
are filled in the second column. It is a point to be noted in this
table that nodes under Ql are arranged in three groups such that
those in column 1 of the machine ordering matrix are set first, those
in column 2 second and those in column 3 last. In table I, nodes
(j1) are set in the first group, nodes (j2) in the second, and nodes
(j3) in the third, where j =1, 2, . . ., 6.

In order to compute the schedule time of the sequence {3 6 2 5 1 4}
one first schedules job 3 on all machines by setting Qg (3D, Q3 (32)
and Q3 (33) equal to one in the schedule table. Since Q4 (31) = 0,

the completion time of the node 31 in the unit of time is

Q; (31) = q, BL) +Q, (31) =0+ 2 =2
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Job 3 cannot be processed on machine 2 unless it is has been processed

on machine 1. Therefore, Q4 (32) is replaced by
max [Q4 (32), Q5 (31)] = max [0, 2] = 2.
The finishing time of this node is
QSI(BZ) =Q, (32) +Q, (32) = 2 + 10 = 12.
In order to process job 3 on machine 3, replace Q4 (33) by

max [Q4 (33), Q5 (32)] = max [0, 12] = 12,

and compute the completion time as

Q5 (33) = Q4 (33) Q2 (33) = 12 + 4 = 16

Now job 3, has been scheduled on machines 1, 2 and 3. The updated

values are in Table 2.1.

Table 2.1
Initial Scheduling Table
11 4
21 2
31 2
41 10
51 7
61 9
12 5
22 17
32 10
52 8
52 15
62 4
13 3
23 7
33 4
43 2
53 6
63 11
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Table 2.2
Scheduling Table

% % % % %
11 4

21 2

31 2 1 0 2
41 10

51 7

61 g

12 5

22 12

32 10 1 2 12
42 8 '

52 15

62 4

13 5

23 7

33 4 1 12 16
43 2z
©53 )

63 L

Next, job 6 is scheduled on all machines by setting Q3 (61),
Q3 (62) and Q3 (63) equal to two. This indicates that job 6 is the
second job to be scheduled on all machines. Obviously, job 6 cannot
be processed on machine 1 before job 3 is completed on that machine.

Therefore, to avoid conflict or overlapping, Q4(6l) is replaced by
max [Q, (61), Qg (31)] = max [0, 2] =2
For the same reason, also replace Q4 (62) with
max IQ¢ (62), Q5 {(32)] = max [0, 12] = 12,

and Q& (63) with



max _[Q4 (63), Q4 (33)] = max [Q, 16] = 16.
The completion time of node 61 is
Q5 (61) = Q4 (61) + Q2 (61) = 2 + 9 = 11.

Again, job 6 cannot be processed on machine 2 before job 3 is com—

pleted on that machine. Therefore, Q4(62) is replaced by

max [Q4 (62), QS (61)] = max [12, 11] = 11

Table 2.3

Scheduling Table

Q Q, Q5 Q, Q5
11 4
21 2
31 2 1 0 2
41 10
51 7
61 9 2 2 11
12 5
22 17
32 10 1 2 12
42 g
52 15
62 4 2 12 16
13 5
23 7
33 % 1 12 16
43 2
53 6
63 11 2 16 27
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Then the finishing time of job 5 on machine 3 is

Qg (62) = Q, (62) +Q, (62) = 12+ 4 = 16

4

Further, replace Q4 (63) by

max [Q4 (63), Q5 (62)] = max [16, 16] = 16
and the completion time of node {63} is

Qg (63) = q, (63) +Q, (63) = 16 + 11 = 27

The updated schedule table shows that jobs 3 and 6 are scheduled on
all machines and appear as Table 2.3.

Now job 2 is the third job to be scheduled according to the
sequence.of {362514}. Table 2:4 shows the updated scheduling
table by proceeding as before. Finally, when jobs 5, 1 and 4 are
scheduled in this sequence, the final scheduling table of the six
jobs is obtained as shown in Table 2.3.

For convenience, Table 2.6shows the arranged scheduling table.
This table is the final scheduling table after its row in each group
have been arranged in ascending order according to Q3 (jm). The
schedule time for the sequence {3 6 2 5 1 4} is the maximum entry

under QS’ which is 63.

22
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2.2. Direct Technique:

The basic concept of the direct technique for the flowshop schedul-
ing problem involves decision rules to help fill each sequence - position
by one of the candidate jobs. This procedure is directed to find the
complete sequence which minimize the idle time. Johnson (80) has
developed an algorithm for two-machine flow shop problem based on the
above concept. The algorithm minimizes the accumulated idle time on
tﬁe last machine, in processing each job which is similar to minimize
the schedule time. Dudek and Teuton (38) have devised an algorithm
based on Johanson's approach for the M-machine problem; however, counter-—
exzample has been given by Karush (82). The drawback is that the
possible partial sequences have not been checked for dominance, while
constructing the feasible sequences. Smith and Dudek (156) have
modified the above algorithm, which overcomes the drawbacks to
guarantee an optimal for the flow shop problem with arbitrary number
of jobs and machines.

In order to discuss the basic idea of this algorithm, the following
definitions and notations are used.

1. Candidate sequences are those partial sequences, which are

generated through filling sequence position x except the last.

2. Dominated jobs are those jobs which are eliminated from

further consideration as a possible candidate for a sequence-
position x.
3. Dominated sequences are those partial sequences eliminated

from further consideration.
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4. A candidate set of jobs are those jobs which: (1) are not in
the pre-scquence being considered; (2) have not been domin-
ated; and (3) have not been used yet for dominance check.

5. Two or more partial sequences are considered equivalent when

they have the same combinations of jobs but with different

permutations.

The notations considered are

S5 Complete sequence, i, consisting of J jobs, jl j2 i & B jJ
s pre-sequence consisting of x-1 scheduled jobs,

(SPEEPRCEERENS WSS,
S partial sequence, 1 = Y, 2, & % ay H
s set of unscheduled jobs, jx’ jx+l’ e v ey jJ
a;s a, jobs included in s and competing for the sequence position X
Ei, gé represent all possible exclusive subsets of s excluding

jobs 2y and 2,

I(m, s) total idle time resulting from the processing of the
pre-sequence s on machine m
k(m, sa) total processing time resulting from the processing of
the pre-sequence s on machine m.
To clarify some of the above notations consider an example of
nine jobs 1, 2, . . ., 9. Let s = {2, 5} , then s consists of the
jobs 1, 3, 4, 6, 7, 8 and 9. Let jobs a; and a, be 1 and 9 respectively.

The remaining jobs in the set s are then 3, 4, 6, 7 and 8. Consequently,

one may consider two subsets, s, and s such that

1 2



— consists of jobs 3 and 6,
1
gﬁ consists of jobs 4 and 8.

According to the above notation, s, consisting of the same jobs in s

1

may have the sequence {5, 2}, thus 81 and s, are equivalent.

This algorithm is based on two dominance checks:

1. Job dominance: consider the two sequences

Sl = saja,s;s, and 52 = sa,s,a;s,
Since the presequence s consists of x - 1 jobs, jobs al and a, are
competing for the sequence position x. Job a, is eliminated from
further consideration for this position in favor of job a1 if the M-1
conditions
k (m, 532) > max [k(m, sa; a,), k(m, sal)], s s om oW s owowow & o8 (L)

m= 2y 35 « o wy e

are satisfied. If any of the above conditions is not satisfied, jobs
a2y and a, are retained for further consideration. The job dominance

will ensure that no set of sequences {sa,} is discarded unless one

2

equally good or better {salaz} is retained.

2. Sequence dominance: Consider the two sequences

S. = s.s and S, = s

1 1 2 g5

where the partial seguences $1 and s, are equivalent. The partial sequence
s, is eliminated from further consideration in favor of the partial

sequence Sl’ if the M - 1 conditions
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T ey &) £ L m, sg), O 79

1
moE 25 3 ow ow syl

are satisfied. 1If any of the above conditions is not satisfied, both
partial sequences are retained for further consideration. The sequence
dominance will ensure that no partial sequence {52} will be discarded
unless an equally good or better sequence {sl} is retained. It should
be pointed out that this sequence dominance check has been also used
by Ignall and Schrage (68).

For the dominance checks, the terms, I (m, s), K (z, sa), and
R(m, sa) are presented below in mathematical forms. The idle time

I (s 8}y m=1y 2, « .« »y M is

u u-1
I (2, s) = max [Z ¢ 1 z

: t. ol
I<u<x-1 k=1 7k

- L .
k=1 9k

u u-1
I (3, s) = max { £ t, A = +
Icusx-1 k=1 32 = pei A3
v v-1
max [ £ t 1 - I t 2 1t ,

lvev-1 k=l k' k=1 Jk

I (4, s) = max { Z t, .- F t. ,
Ikusx-1 k=1 Jx° k=1 Jk



v v-1 w w-1
Tax [ & &, 2 " L ot + max [ L t 1~ Lt 2 113
Lovs -1 k-1 9k° kel JK° 1ew< -1 k=l kT k=1 Jg
u u-1
I(M,s) = max { t. . - t, +
lcusx-1 k21 T a1 3 M

u v-1
- -

max [ - I t, +
M-2 k=1 Jk,M—3

O,
l<v<u-1 k=1 JK°

w-1
tj,. 1= I t. .1 . .00 .. (3
g ® el AR

£

e . . +max [
l<w<t k

I ™

Consequently, the terms k(m, sa) and R(m, sa) which will be used for

job dominance checks are

K(m, sa) = Z ¢, - I t, +

j€ sa Jaties s Inm

max [I (@1, s), K1, sa)l, . .« . « « + . . . (&)

where
K (0, sa) = 0,

I (0, s) =20,



29

and

Hlm, ma) = L fn, s&) + £ E. = B & ; « % s+ ¢ & % ¢« » 5w v L5
jcs Im jes I1

In considering the job dominance check mentioned in (1), the M-1

conditions may be simplified to the following:
4 (m, saz) > max [H (m, sal), H (m, sa; az)] N ()

m= 2,3, . . ., M
where

H (m, sa2) =

|
=~
L)
=}
[0
P
o
N~
+
~
ot
I
™
rt

= L L + € = T 2
j,m-1 ay,W 1 jes

max [I (m-1, s), K(m-1, Saz)] +

z t.m— z t'l
jes J jes J
= I t, + it = L B <+
ive j,m-1 a,,m 1 es jm

~max [R(m-1, s), H(m-1, saz)] - I tj,m-1+
jes

= taz,m—l + max [R(m-1, s), H(m-1, 532)] e . D
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E(m, sal) = K (m, sal) + 'Z tjm - .L tjl
jes jes
= t. + t - L t., +
o8 j,m=1 al,m—l jea jm
max [I (m-1, s), K(m-1, sal)] + z tjm - I tjl
jes jes
= T £ t - z T, +
se8 j.m-1 a;,m 1 jes jm
max [R(m-1, s), H (@m-1, sa ;)] - .L tjm ¥
’ 2 ? 1 j€s
L t + Z t,m - I t'l
jes . jes J jes J
= tal,m—l + max [R (m-1, s), H (mn-1, sal)] e e .. (8)
n=2, 3 5 a; M
and
E (m, sa; az) = K (m, sa, az) + I t - .E tjl
jes jes



-t + max [R (m-1, s), H (m-1, sa.), H (m-1, sa
aqm 1
+ I t.. - L t. + I t, - I
: 1 ; j,m-1 ; jm :
jes jes jes jes
=t + t -t _+
al,m—l az,m—l alm

1 %2

31

)]

max [R (m-1, s), H(m-1, sal), H (m-1, sa; az)] o e ()

Accordingly, the following M-l conditions are stated with those simpli-

fications achieved above:

Conditicn 1
For condition 1, Formula (6) becomes
E (2, saz) > max [H (2, sal), H (2, sa; a2)]

where

H (2, 882) =K (2, saz) + L tj2 - I t,

jes jes i1
= t'l + ¢t - I t_2 + I t
jes J 2 jes J jes
= ta21,
s a = : B -
B (2, s 1) XK (2, sal) + & tj2 .Z tjl
JEs JEs
= _§ tJl + ta1l - .é tJ + ‘5 3
JLS 4 JI‘_S JES

jes

jl



= tall,
and
] = ¥ - - -
H (2, sa; 32) K (2, sa, az) +'L tjm z tjl
jes jes
= I t + t & £ - I -t
jes 3 al1 a21 jes a12
+ o t..* I Ot
jes J jes 3L
= ta,l + ¢ -t
1 azl alZ.
Thus
ta,l > max [t . 16E + t -t ]
v
2 all all azl al2

Condition 2

For condition 2, Formula (6) becomes
H(3, saz) > max [H (3, sal), H (3, sa; az)],

which may be simplified as done condition 1 to

t, o * omax [R(2, s), H (2, saz)} > max t o, + max [R (2, s),

2 2.

2 (2, salj], ta12 + ta22 - ta13

+ max [R (2, s), H (2, sa;

Condition M-1

For condition M-1, Formula (6) becomes

ta?,M-l + max [R (-1, s), H(M-1, s), HQM-1, saz)] >

(10)

), H(2, say az)],

(11)



= Mo
max [}al,M—l + max [R (M-1, s), H (M-1, sal)],

tal’ y-1 T taZM—l - talM + max [R (M-1, s),

H (M1, sal), H (M-1, salaz)]:] i om o ow 5 w owm w8 v (LZ)

The following algorithm, which will generate an optimal solution is
stated step by step:
Step 1: Let the sequence-position x = 1
Step 2: Check the presequence s, § = {jl j2 .« e s jx—l}
2.1, if the presequence is empty, let
R (m, 8) = 0, and go to step 3
27.2. if the presequence consists of one or more jobs, compute

R (m, s) =1 {m, s)+ t.m - I t.
jes I 3es

m=2, 3, .. ., M

Step 3: Select a job, ay and check condition 1 as follows:

3.1. select a job to be referred to as a,, from the set of

1)
the unscheduled jobs, s such that

t, 1= min [t.l]

1 jes
where j is not previously selected for sequence position x.

3.2. check condition 1 such that
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3.2.1. if condition 1 is satisfied, go to step 4.
3.2.2. if condition 1 is not satisfied, return to
step 3.
Step 4: Select a job a, and check conditions 2 through M-1 as
follows:
4,1. select a job, to be referred to as as, from the set of
unscheduled jobs, s such that a, # a;
4.2. check all the M-2 conditioms, such that
E (m, saz) >max [ E (m, sal), H (m, sa; az)],
m=3 4 ¢« s us Ms
4.2.1. if any one of the M-2 conditions is not satis=
fied, retain jobs 2, and a, as candidates for
the sequence-position x. Go to step 5.
4.2.2. if all the M-2 conditions are satisfied, eliminate

job a, from further consideration for the sequence-

2
position x. Go to step 5.
Step 5: Repeat steps 3 and 4 for all possible combinations of a;
and 2, in order to fill the sequence-position x.

Step 6: Check x

6.1. if x =1, go to step 10

6.2. if % > 1, develop a number of candidate sequences

{jl j2 g v jx} by repeating steps 2 through 5 for

all obtained pre-sequences having x-1 sequence-positions.

Step 7: Select a candidate seguence, to be referred to as Sq-

Step 8: Select e candidate sequence s, and check conditions 2



thirough

S.1. Select

from the set of all candidate sequence such that s

and 52

S.1.1.

8.1.2.

M-1 as follows:

a candidate sequence, to be referred tc as 855
L
are equivalent:

if such sequence exist, go to step 8.2.

if such sequence does not exist, retain candi-

date seguence s Go to step 9.

1

8.2. Check all the M-1 conditions such that

I (m, sl)il (m, S0, m=2, 3, .. ., M

§.2.1.

Buidnls

8.2.3.

if any of the conditions is not satisfied, retain

candidate seguences, s; and Sy- Go to step 9.

if 211 conditions are satisfied, candidate
sequence s, is dominated. Retain candidate

sequence s Go to step 9.

1
if none of the conditions are satisfied, candi-

date sequence S is dominated. Retain sequence

s Go to step 9.

2"

Step 9: Repeat steps 7 and & for all possible combinations of the

equivalent candidate sequences Sq and s

Step 10: Check x

Step 11: Compare

2"

x <J -2, let x =x+ 1. Go to step 6.
x>J -2, go to step 1l.

the candidate sequences for the condition:

I say a2) <I (M, sa, al)

11.1. If this condition is satisfied, the sequence'{saq al}
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is eliminated.
11.2. If this condition is not satisfied, the sequence
sa; a, 1s eliminated.
Step 12: Find the optimal sequence(s) by the following:

12.1. Evaluate each of the sequences retained in step 11

such that
J
T = 2 tj g T omax [T (M, sal), K (M, saz), X M, say 32)]
x=1 X
JES
X

12.2. Selecting the sequence(s) which has the minimum

schedule time.

The same flowshop problem of six jobs and three machines discussed
in section 2.1, is solved to illustrate the direct technique. For
convenience, the processing time and machine ordering matrices are

reproduced below:

_ ~ o
4 5 5 11 12 13 |
2 17 7 21 22 23
2 10 4 31 32 33
T® = M=%
10 8 5 41 42 43
7 15 6 51 52 53
9 &4 11 61 62 63|

The computation is carried out step-by-step to illustrate the above

i | SET e ARy
algorithm.,



For scquence - position 1, there Is no pre-sequence. In other
words the pre-sequence is empty. Therefore
R (m, s) =0, m= 2, 3.
Following the step 3, job 2 is selected as as

since

= min [t t

21 110 t120 130 ti40 Erse Tpp!

min [4, 2, 2, 10, 7, 9]

= 2

Thus, condition 1 is satisfied.

Fog & Egp

Consider job 1 as a, according to step 5 and check job 2 versus

job 1 for condition 2 such that

E (2, 532) > max [H (2, sal), H (2, sa; az)]

whare
H (2, saz) = ta 9 + max [R(2, s), 1:a l]’
2 2
H (2, sal) = ta12 + max [R(2, s), t, 1],
and
B (2, sa; az) =t 5t ta12 - T, q®
1 1 1
max [R(2, s), t . + t -t 1,
11 all azl al2

or
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(2, sa,.) 5 4+ max [0, 4] = 9,

]

]

u (2, sal) 17 + max {0, 2] = 19,

and

H (2, saj a2) =17 + 10 - 7 + max [0, 2, 2 + 2 - 17] = 22

Accordingly, 9 # [19, 22]. Since condition 2 is not satisfied, job 1
is retained for further consideration. Similarily, job 2 is checked

versus the remaining jobs. The results are summarized below

Sequence - position 1 Pre-sequence {-}
2y versus a, Condition 2 Results
2 1 ] i_max [19, 17] not satisfied
2 3 12 i_max [19, 22] not satisfied
2 4 18 t_max [19, 20] not satisfied
2 5 22 i_max [19, 32] not satisfied
2 6 13 i‘max f19, 161} not satisfied

Upon examining the above results, job 2 does not dominate any of the

remaining jobs for the first position, and, thus any of the jobs 1,

2, 3, 4, 5 or 6 may fill the pre-sequence position. Following step 5,
; s ; 5 . - .

consider job 3 as a;, since t,, tag Therefore, condition 1 is

satisfied. Similarily, job 3 is checked versus the remaining jobs.

The results are summarized below:



Sequence-position 1 Pre-sequence {-:

a, versus a, Condition 2 Results
3 1 9 | max [12, 13] not satisfied
3 2 19 k_max [12, 25] not satisfied
3 4 18 > max [12, 16] satisfied
3 5 22 i_max [12, 23] not satisfied
3 6 13 > max [12, 12] satisfied

From the above table, job 3 dominates jobs 4 and 6, and, therefore

they are eliminated from further consideration for the first sequence-
position. Accordingly, jobs 1, 2, 3 or 5 may fill the first sequence
position. Repeating the above computation for the each of the remain-

ing jobs as a the results are summarized in the following tables.

1,

Sequence-position 1 Pre-sequence {-;
a, versus a, Condition 2 Results

1 2 18 i_max [9, 21] not satisfied

1 3 12 t max [9, 14] not satisfied

1 4 18 > max [9, 12] satisfied
1 5 22 > max [9, 21] satisfied

1 6 13 > max [9, 8] satisfied

This tzble shows that 3obs 1, 2 or 3 may fill the first sequence

positien.



40

Sequence-position 1 pre-sequence {-;
8y versus ia, Condition 2 Results

5 1 9 L_max {22, 21] not satisfied

5 s lQ_ﬁ max [22, 26] not satisfied

5 3 12 i'max [22, 26] not satisfied

5 4 18 ¢ max f22, 22] not satisfied

5 6 13 i_max [22, 20] not satisfied

This table shows that jobs 1, 2, 3, 4, 5 or 6 may fill the first se-
guence position., In checking the job dominance for all possible combin-—

ations of a, and a it is concluded that jobs 1, 2, or 3, may fill

1 27
the first sequence-position. This is because these jobs dominate the
others. The seguence position is 1, x becomes 2, according to step 10.
The resulting pre-sequences are then {1}, {2}, and {3}.

For sequence position 2, the pre-sequences exist, and, therefore

step 2.2 is computed for each of the above pre-sequences. In consid-

ering the pre-sequences {1},

k k-1
R(2, 1) = max [ £ ¢, ,- 2 ¢, ,] + 2 t,,- I ¢,
1<k<x-1 x=1 IxT x=1 sz jes 32 jes i
=ty Tt Tty
=44+ 5-4



Now repeating steps 3-4, conside
since

Bra 7 Top»

condition 1 is satisfied. Consi
such that

H(2, saz) > max [H(2, s

where
H(2, saz) = ta22 + max
H(Z, sal) = talz + max
and
H(Z, sa; az) = ta12 + t
max [R(2
or
H(2, 13) = 10 + max [5,
H(2, 12) = 17 + max [5,
and
H(2, 123) = 17 + 10 - 7
=17 + 10 - 7
= 25

Accordingly, 15 # max [22, 25].

job 3 is retained for further co

r job 2 as a,

der job 3 as a, and check condition 2

al), H(2, say a2)]

[R(zs S): ta l]:

(R(s, s), talll‘

-t o, +
a22 alB

> S)s Ty 1 tall’ + ta21 - t312]

2] = 15,

2] 22,

+ max [5, 2, 2 + 2 - 17]

+ 5

Since condition 2 is not satisfied,

nsideration. Similarly, job 2 is

41



checked versus the remaining jobs. The results are summarized below

Sequence-position 2 Pre-sequence {1-}
a, versus a, Condition 2 Results

2 3 15 i_max [22, 25] not satisfied

2 4 18 #_max [22, 23] not satisfied

2 5 22 k_max (22, 30] not satisfied

2 6 13 t_max [22, 19] not satisfied

Upon examining the above results, job 2 does not dominate any of the
remaining jobs for the second sequence position, and, thus any of the

jobs 2, 3, 4, 5 or 6 may fill the pre-sequence position. Following

>

32 t31, therefore, condition 1

step 5, consider job 3 as a,, since t

1

is satisfied. Similarly, job 3 is checked versus the remaining jobs.

The results are summarized below:

Sequence-position Pre-sequence {1-}
a, versus a, Condition 2 Results

3 2 22 i_max [15, 28] not satisfied

g 4 18 71»_ max [15, 19] not satisfied

3 5 22 }_ max [15, 26] not satisfied

3 6 13 i_max [15, 15] not satisfied

From the above table, job 3 also does not dominate any of the jobs

for the second sequence-position. Accordingly, jobs 2, 3, 4, 5 or 6
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may £ill the sccond sequence-position. Repeating the above computa-
tion for the each of the remaining jobs as ajs the results are sum-

marized in the following table.

Sequence-position 2 Pre-sequence {1-}
a, versus a, Condition 2 Results

5 2 22 i_max [22, 33] not satisfied

5 3 15 #_max [22, 26] not satisfied

5 4 18 k_max [22, 24] not satisfied

5 6 14 kﬁmax [22, 20] not satisfied

This table shows that job 5 does not dominate any of the jobs for the
second sequence position. Since condition 1 is not satisfied for jobs
4 and 6, so they cannot be taken as a,. In checking the job dominance
for all possible combinations of a; and ay» it is concluded that jobs
2, 3, 4, 5 or 6 may fill the second sequence-position. The resulting
possible candidate sequences are {12}, {13}, {14}, {15} and {16}.
Accordingly, steps 2 through 5 are executed for the other pre-
sequences {2} and {3}, the candidate sequences cbtained for the

pre-sequences {2} and {3} are {21}, {26} and {31}, {36}, respectively.

Finally the candidate sequences are

{12}, {13}, {14}, {15}, {16},
{21}, {26}, {31} and {36}

Before filling the sequence-position 3, the sequence dominance is checked.



Following step 7, consider sequence {12} as s Since sequence {21}

1"
is equivalent to {12}, the former sequence is considered as s,. For

both s, and s,, the M-1 conditions are checked according to the step

4 2
8.2,
k k-1
EC2, 42) m max [ B, « = T By & ]
1<k<2 x=1 Jxl x=1 sz
4= 0
= max [ 6 - 17]
4
= max [_1l ]
= &
Similarly,
I(2, 21) = 2;
k k-1
I(3, 12} » max [ X t, Tt +
1ck<2  x=l Ax°  x=l %0
h h-1
max { I t, I ot 2}]
I<h<k x=1 9% x=1 Ix

t
12 11
= max [ 11
5 + t t + max | 1]
2 - P
12 22 13 11 + t21 'c12
S5+ 4
= max I {4 }]
5+ 17 - 5 + max 6 - 1
9
= max [22]

44



Similarly,
I(3, 21) = 17.

Then, condition 1

1(2, 12) < I(2, 21)
or

4 % 2

and condition 2

I(3, 12) < I(3, 21)
or

22 § 17

are not satisfied. As a result, the candidate sequence {12} is elim-
inated from further consideration. Similarly, candidate sequences

13} as 5. end {31} as s, are checked for the sequence dominance.

1

Conditions 1 and 2 are not satisfied since

1(2, 13) = &,
I(2, 31) = 2,
I(3, 13) = 14,
1(3, 31) = 13

for condition 1,



and for condition 2,

14 ¢ 13.

Therefore, the candidate sequence {13} is eliminated from further con-
sideration. Since these are the only equivalent candidate sequences,
the remaining ones are retained. Consequently the pre-sequences

retained for further consideration are,

{14}, {15}, {16}, {211},

{26}, {31}, and {36}

Since, sequence-position 2 is less than J-2 or &4, according to step

10, steps 2 through 9 are repeated to fill the sequence-position 3.
For sequence-position 3, the pre-sequences exist, and, therefore

step 22 is computed for each of the above pre-sequences. In consid-

ering the pre-sequence {14}

2 2
R(2, 14) = 1(2, 14} + I =, - Ity
x=1 Jx x=1 Jx
by
= max | ] +¢t + t -t -t
:11 + tAl - ch 12 42 11 41
= max | 4 ]+5+8-4-10
§ 14 - 5

I

R [g] 2% 3.8 = 4w G0

9 +5+8-4-10

Il
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Now repeating steps 3 through 4, consider job 2 as aps since

tag 7 E33»

Condition 1 is satisfied. Consider job 3 as a, and check the condition

2 such that

E(2, saz)_i max [H(2, sal), H(2, sa, 32)]

where
B(2, sa£:= t, o+ max [R(2, s), t, l]’
2 2
H(2, sal) = E. 5 + max [R(2, s), t, l],
1 1
and
H(2, sa, a,) = t + t -t +
172 312 a22 al3
max [R({2, s5), t , t + t - t_ 5]
all all 321 a12
or
(2, 143) = 10 + max [8, 2] = 18,
H(2, 142) = 17 + max [8, 2] = 25,
and
H{(2, 1423) = 17 + 10 = 7 + max [8, 2, 2+ 2 - 17]

17 + 10 - 7 + 8

If

28

Accordingly, 18 i_max {25, 28]. Since condition 2 is not satisfied,

job 3 is retained for further consideration. Similarly, job 2 is
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checked versus the remaining jobs. The results are summarized below.

Sequence-position 3 Pre-sequence {14~}
a; versus a, Conditien 2 Results

2 3 18 #_max [25, 28] not satisfied

2 5 25 } max [25, 33] not satisfied

2 6 13_k max [25, 22] not satisfied

upon examining the above results, job 2 does not dominate any of the
remaining jobs for the second sequence position, and, thus any of the
jobs 2, 3, 5 or 6 may fill the empty pre-sequence position. Repeating
the above combination for each of the remaining jobs as a, the

results are summarized in the following table.

Sequence-position 3 Pre-sequence {14-;
a, versus a, Condition 2 Results

3 2 25 i_max [18, 31] not satisfied

3 5 23 t_max [18, 29] not satisfied

3 6 lB‘i max [18, 18] not satisfied

This table shows that job 3 cdoes not dominate any of the jobs for the

third sequence-position.



49

Sequence=-position 3 Pre-sequence {l4-}
a; Versus a, Condition 2 Results

5 2 25 i_max [235, :35] not satisfied

5 3 18 i_max [23, 28] not satisfied

5 6 13 *_max [23, 22) not satisfied

This table shows that job 5 does not dominate any of the remaining jobs

for the sequence-position 3, and, thus any of the jobs 2, 3, 5 or 6 may
fill the pre-sequence. Jobs & and 6 cannot be taken as a1 since condition
1 is not satisfied for them. The resulting possible candidate sequences
are {142}, {143}, {145} and {1561}.

Accordingly, steps 2 through 5 are executed for the other pre-sequences
{15}, {16, {21}, {26}, {31}, and {36}, the results of these computations
shows for pre-sequence {15}, the candidate sequence are {152}, {153}, {154}
zné {156}, for the presequence 16 , the candidate sequence is {163}, for
the pre-sequence {21}, the candidate sequences are {213}, {214}, {215} and
{216}, for the pre-sequence, {26}, the candidate sequence is {261}, for the pre-
sequence, 131}, the candidate sequences are {312}, {314}, {315} and {3161
and for the pre-sequence 36 , the candidate sequence obtained is {361},

A1l the candidate sequences are

{142}, {143}, {145}, {146},

{152}, {153}, {154}, {156},
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Before filling the sequence-position 4, the sequence dominance is checked.
Following step 7, consider sequence {142} as Sq- Since sequence {214} is
equivalent to {142}, the former sequence is considered as Sy For both

;1 and Sy the M-1 conditions are checked according to the step 3.2.

k k-1
I(2, 142) =max [ I t, ;- I ¢t 2]
1<k<3  x=1 Jx°  x=1 JIx
C 4 L
= max tla = 13 ‘
|
116 - 13 |
7
L
= max i i 1
S I
= 4
Similarly,
I(2, 214) = 2
k k-1
{3, 142) =max [ £ ¢, 2~ § % +

= max 13 - 5 + max |
14 - 5

*\14-5
16 - 13

| 30 - 7 + max / *
i
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32

Similarly,
I1(3, 214) = 32
Then, condition 1

I(2, 142) < I(2; 214)

or

and condition 2
1(3, 142) < I(3, 214)

or

32 ¢ 22

are not satisfied. As a result, the candidate sequence {142} is elimin-
ated from further consideration. Similarly considering {143} as Sy»
and its equivalent candidate sequence {314} as Sy5 the candidate sequence
{143} is eliminated from further comsideration, candidate sequence {145} is
elininated when checked against its equivalent candidate sequence {154},
candidate secuence {152} is eliminated when checked against its equivalent

candidate sequence {215}, candidate sequence {153} is eliminated in favor

of its equivalent candidate sequence {315}, the candidate sequence {163}is



n
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eliminated when checked against its equivalent sequence {316}, however,
1316} is eliminated when checked against its equivalent candidate sequence
{361}, candidate sequence {261} its eliminated when checked against {216}
however, for the equivalent candidate sequences {213} and {312} one condi-
tion is satisfied and other is not, therefore, both the sequences are
retained. Since these are the only equivalent candidate sequences, the
remaining ones are retained. Consequently, the pre-sequences retained
for further consideration are:

{146}, {154}, {156}, {213},

{214}, {215}, {216}, 4312%

1314}, {315}, {316}.

Proceeding as in the algorithm, the first J-2 sequence-positions
are filled. Once this is done, the last two positions are filled, and
then the complete sequences are checked according to step 1ll. Finally
the retained sequences are evaluated. The following are the complete

sequences generated by the algorithm and the corresponding schedule

times.
Sequence No. Sequence Schedule Time
1 {31562%4} 63%
2 156423 69
3 362514 63%
4 213465 67
5 314625 67
6 361524 64
7 215364 66
8 216534 63%
9 315462 68
10 361425 71
11 215463 66
12 216453 65

#*The optimal schedule time
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Upon examining the above schedule times, sequences 1, 3 and 8 have
the minimum schedule time 63. It is interested to note that 28 sequences

gave the optimal when solved by complete enumeration.

w



2.3. Branch-and-bound technique:

Branch-and-bound technique provides a systematic search for a
subset of feasible segquences, from which one or more may yield the
optimal. This procedure may best be i{llustrated by a scheduling tree
which consists of nodeé, each representing a partial sequence
{jl ig » oo jk}’ where k < J. At level 1, the scheduling tree is
initialized by J nodes, each of which consists of a partial sequence
having one job, {jl}. Each of these nodes may further be branched
into a number of node, at level 2, each consisting of a partial se-
quence {j, jz}. As one moves down the tree, the number of nodes
branched from a node is decreased by one than that of the preceding
level; and the number of jobs in each node (partial sequence) is
increased by ome.

Reduction in the generation of nodes at each level can be achieve

through a bounding approach. In this approach, a lower bound for each

node is computed. A particular branch is then considered from a node

d

which has the minimum lower bound on the schedule time. Obviously, the

power of the branching procedure depends heavily on the quality of the

lower bound, particularily those used in the early stages of branching.

Various bounding procedures have been proposed by several investigators.

The following notation is considered to discuss those lower bounds:

1, level of the scheduling tree; L=1, 2, . . ., J-1
n node consisting of a partial sequence of scheduled jobs,

il
-

2 - . . JkJ

I
L_]l



- set - . . . . . . 3
n set of unscheduled jobs, Sir1 Jt2? » 35
L
cm’n completion time, at level L, for node n on machine m. It
is also the earliest possible start time for the first
unscheduled job.
L.,n .
dw same as above but computed differently
L
ﬂ,n bound on the schedule time, at level L, for node n, on
machine m
L,n ;
G lower bound on the schedule time, at level L, for the
node n
L
G minimum lower bound on the schedule time at level L

The following lower bounds developed by various investigators may be
considered:

1. Machine-based bound reported by Brown and Lomnicki (27), and

McMahon and Burton (99) is computed as follows:

At level L, the bound for each node n on machine m is

J M
L Lyn .
Gr’n = cr’ + I t + min 3 t. T . mow w e
: B x=1 “x jx m'=m+l Jx
_‘]En . _
n
JXE
x=1, 2, . ey J
mE Ly 25 ¢ 5 =5 M s
and
min z t, =20 for m = ¥,
jom
b m'=mtl X

.
™

(1)
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where for node n which consists of a partial sequence {jl j2 T jL},

the completion time on machine m is

e o pax [l d1 2 v 0 ¢ I, e 3y 3y e s d] 4+ ot
m m-1 m

where
c;:ljl j2 T jL =0 form=1
and
L drdy st di1 20 forr-1

Formula (1) states that at level L, the schedule time of each node n,
machine m is bounded from below by the sum of three terms: the total
processing times of the scheduled jobs on rachine m (those jobs which

are included in the partial sequence of node n) plus the total processing
times of the unscheduled jobs on machine m (those jobs which are not
included in the partial sequence of node n) plus the minimum of the

total processing times required to perform the unscheduled. jobs on
machines =+1, =2, . . ., ¥. It should be noted that the last term
becomes zero when the bound is computed on machine M.

Thus the lower bound at level L and for each node n is such that



2. Machine-based bound reported by Ignall and Schrage (70) is similar
to that of Brown and Lomniki (27) except the first term. This

bound is computed such that

J M
Gi,n = dj;l’n + " t -+ min E t‘ m‘, » e &« s 83 ® e =®
' x=1_ Ix jx_ m'=m+l Jx
Jx"n J_en
x=1,2, . . .,J
m=1, 25 « + .5 M
and
M
min z t. v = 0 form=M
i m'=mrl Ix
}-_.
£l
Ix

where for each node n, the completion time is

; m—-1
dL’n = max [CL’n, cL’n +min [ I |
m m =~k TR i j.m
k j.en m'=m-k “~x
X
xim Ly 25 o w0 oy ody
m=1, 2, . . ., M,
k=1, 2, . . ., m1,
where
-1
min [ I t. ,1 =20 form= 1
jen m'=m-k Jm



Formula (2) states that.at level L, the schedule time of each node n,
machine m is bounded from below by the sum of three terms: the total
processing times of the scheduled jobs on machine m plus the total
processing times of the.unscheduled jobs on machine m plus the minimum
of the total processing times required to perform the unscheduled jobs
on machines mt+l, m+2, . . ., M. As in Formula (1), the last term
becomes zero when the bound is computed on machine M.

Thus the iower bound at level L and for each node is such that

GL’n = max [GL’
m

m

™

3. Job-based bound reported by McMghon and Burton (99) expresses the
fact that the schedule time may be determined by the total processing
time for a job, rather than by the total processing time on one machine.

These bounds are computed such that

Gi’n = ci’n +max_ [ E t, oo + I min (t. o. Cs K)]’ . .. (3)
jen m'=m Jx =1 Ity
jken :
3 734
x=1, 2, . iy s
m=1, 2, . . ., M,
where
r min (t, 28 tj M) =0 for m = M
k=1 K K
jkan
i, #3

L
o
»
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Formula (3) states that, at level L, the schedule time of each node n,
on machine m, is bounded from below by the sum of the following terms:
the total processing times of the scheduled jobs on machine m plus

the maximum of the values, each of which is computed for each unsched-
uled job. Each of these values is expressed as the total processing
time for an unscheduled job, say Ex’ on machines m, m#¥l, . . ., M

plus the sum of the minimum of the processing times required to perform
the unscheduled jobs excluding ix on machine m and that on machine M.

Thus the lower bound, at level L, for each node n is such that

Lin ,0
1.

G = max [GL
m

m

4. Composite-bound reported by McMohon and Burtonm (99), is defined

as the maximum of that of machine-based bound and job-based bound. It
has been claimed that the composite-bound is more efficient than either
machine-based bound or the job-based bound. The number of nodes to be

explored is considerably reduced.

5. A lower bound reported by Ashour (10) is defined as the time required
to process all jobs on the last machine without conflict or overlapping
of jobs on that machine. This lower bound is a simplified version of
that developed by Brooks and White (26). To obtain this lower bound,

at level L and for each node n, the completion time c%’n is computed

Jx
such that

33 =3 91®



These J values

|
3
rt

= I t,
x=1 Jxl

a vector u such that

U= [U1 U2 ¥ u

M-1
+ I
m=1

. U, .
J

t. ?
Ik

. . U

k

are then arranged in an

i

1}
!
.+.
|
=
[S)
o

ascending order and placed in

consequently, the corresponding processing times on machine M are

placed in a vector v such that

Ve[V V

9 -

o ¥, .
J

- o B

9

Thus, the lower bound GL’n is computed such that

where

L,n _

G = DJ
DJ = max [DJ—l’
DJ-l = max [DJ_

UJ] +

U
27 J-1

A
J

]+ Vv

J-1

60
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In applying the branch-and-bound technique to the flowshop problem,
Brown and Lomnicki (27) have considered arbitrary number of machines.
However, Ignall and Schrage (70), and McMohon and Burton (99) have
considered problems having up to three machines following theorems
5-1 and 5-2 appeared in Conway et. al. (32, pp. 81).

As mentioned above, the branching is considered from the node
which has the minimum lower bound. However, sometimes there is a tie.
This tie may be broken by: (1) branching off all the nodes labeled
with the minimum lower bound; (2) selecting a node by random to be
branched; or (3) branching off at the dominating node.

It should be pointed out that lower bounds never decrease as one
moves down the scheduling tree; however, it may or may not increase.
Therefore at each level L, except the first one, the minimum lower
bound is compared with that of the preceding level. 1If it is
greater, the branching process is taken place from the node, at the
preceding level, which has the second minimum lower bound. Although
this is in contradiction to the fact that no further branching is done
from a node, which has a higher value than the minimum lower bound at
first level.

Using the machine-based lower bound reported by Brown and Lomnicki
(27) and breaking a tie (if any) by random, the basic steps of the
branch-and-bound algorithm are stated below as they are implemented on
the computer. However, it should be pointed out that this algorithm
is general in the sense that step 2 may be replaced if other lower

bound is considered. Step 6.2 may also be replaced according to the
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procedures considered for breaking a tie (if any).
The algorithm may now be stated as follows:
Step 1l: Set L =1
Step 2: At level L, compute the lower bound for each node n as follows

; : L,n .
2.1. compute the completion time cm’ on each machine such that

Fr 3y dg v 3 Cpag el drda e 3, (I3 e - dig 4
m m-1 m

t,m
JL’

where
FrJydag -3 20 form=1,
m=-1

and

c;_l’ 3133 -+ 31 =0 forl =1l

2.2, Compute the bound, Gi’n on each machine such that

T M
G;’n = c;’n + I t, _+min 7 By o
3= 1 9% j. m'=mtl Ay
jen jen

x
n
L
i
“
3
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and

min z t =0 for m = M.

2.3. Find the lower bound GL’n such that

Step 3: At level L, find the node(s) which has the minimum lower bound

GL such that
G~ = min [G "]

Step 4: Check L
4,1, If L =1, go to step 6

4.2. If L > 1, go to step 5

Step 5: Check the minimum lower bound
5.1, If ¢F = GL“l, go to step 6.
L L-1 . . . N
5.2. If G7 > @G , terminate the search in this direction.

Branch the node, at level L-1, having the second minimum,

go to step 2.

Step 6: Determine the node(s) having the minimum lower bound:
6.1. 1If a tie does not exist, branch that node, go to step 7.
6.2. If a tie exists, resolve it by random and branch the

selected node.



Step 7: Check L
7.1. If L < J-1, set L = L+1 and go to step 2.

7.2. 1If L = J-1, go to step 8.

Step 8: Select the node which represents the minimum lower bound.

This is the schedule time of the sequence shown in this ncde.

A sample flowshop problem of six jobs and three machines is solved
to illustrate the above algorithm. The processing time and machine

ordering matrices are given below:

"4 5 5] 11 12 13]
2 17 7 21 22 23
2 10 4 31 32 33

T* = M* =
10 8 2 41 42 43

7 15 6 51 52 53
9 4 11 61 62 63

| i L d

The computation is carried out step-by-step to illustrate the branch-
and-bound algorithm.
At level 1 and for the node n which consists of {jl} or {1}, the

completion time on each machine is computed such that

11 1,1 0,0
¢;’" = max [co > € ] + t11
1,1 1,1 0,0
c,’" = max [c1 » C 1+ tlZ,



c%’l = max [c%’l, Cg’ol T ty3s
or

c;’l =max [0 , 0] + &4 = 4,

c;_"l = max [4, 0] + 5 =09,
and

¢yt = max [9, 0] + 5 = 14.

The bound for the above node is then computed on each machine such

that
6 3
Gi’l = ci’l + I t.l + min I tom
j=2 J 3 m=2 3
j#1
1,1 1,1 &
G2’ = cz’ + I tj2 + min t.3,
j=2 g -
- j#l
and
6
Gé‘}l = c;-’]. + Z t'3’
=2

or



(]
[
I

b+ (2+2+ 10+ 7+ 9) + min [24, 14, 10, 21, 15]

B

4 + 30 + 10

44,

G%’l=9+(l7+10+8+15+4)+min 17, ¥ 2, 65 LLY
=9+ 54 + 2
= 65,
and
G§’1=14+(7+4+2+6+11)
= 14 + 30
= 44

Thus, the lower bound for this node is

ald

max [44, 65, 44]

65

Similarily, the lower bounds, at level 1, for the nodes having the
partial sequences {2}, {3}, {4}, {5} and {6} are found to be 63, 63,

73, 68, and 70, respectively, see Table 2.7,
Following step 3, the minimum lower bound at this level is such that

1 ; L,n
G = min [G ]
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or

7]
I

min [65, 63, 63, 73, 68, 70]

63.

Since a tie exists between the nodes having the partial sequence iz}
and {3}, the {2} is selected by random. Consequently, the selected
node is branched at level 2 to the nodes having the partial sequences
{31}, {32}, {34}, {35} and {36}.

At level 2 and for the node n which consists of {jl j2} or {21},

the completion time on each machine is computed such that

] = max [c0 s €] 1+ SRR
2,21 _ 2,21 1,2
c, = max [c1 > C ] + tl2’
and
2,21 . 221 1,2
¢y = max [c2 » Cg ] + tl3s
or
ci’zl = max [0, 2] + 4 =6,
c%’zl = max [6, 19] + 5 = 24,



The bounds for the above node is then computed on each machine such

that

and

or

(]
I

1

]
It

max [24, 2,6] + 5 = 31.

6 3
c2’21 + I t.7 + min L E..;
1 . . jm
i=1 3 m=2
j#1,2 j#1,2
6
c“’zl + -E t.o + m?n t.3s
j=1 b
j#l,2 j#1,2
)
2t 5 t.4q,
3 33
5=1
j#1,2

=6+ (2+ 10+ 7+ 9) + min [14, 10, 21, 15]

6 + 28 + 10

4t

24 + (10 + 8 + 15 + 4) + min [4, 2, 6, 11]
24 + 37 + 2

63,

€8
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and

2,21

G3 =31+ {4+ 2+ 6+ 11)
= 31 + 23
= 54,

Thus the lower bound for this node is

6?22Y = nax [44, 63, 54]

= 63
Similarily, the lower bounds, at level 2, for the nodes having the

partial sequence {23}, {24}, {25} and {26} are found to be 63, 65,

63 and 63, respectively, see Table 2.7.

Following step 3, the minimum lower bound at this level is such that

“ min [Gz’n]
n

)
I

min [63, 63, 65, 63, 63]

63.

Since a tie exists among the nodes having the partial sequence {21},
{23}, {25} and {26}, the node {23} is randomly selected. Comsequently,
the selected node is branched at level 3 to the nodes having the
partial sequence {231}, {234}, {235} and {236}.

At level 3 and for the node n which consists of {jl yor {231F,

iz 33



the completion time on each machine is computed such that

3, 231 35231 C2,23

] = max [c:0 > €] 1+ tiys
3, 231 _ 3,231 2,31
¢, = max [c1 > €, ] + tiys
and
3, 231 _ 3,231 2,23
¢y = max [cz s Cq 1+ t13,
or
ci’ eBk. max [0, 4] + 4 = §,
cg’ 2l max [8, 29] + 5 = 34,
and
cg’ 238 o waw {38, 93] 4 5 =39,

The bounds for the above node is then computed for each machine such’

that

6 3
Gi’Bl _ Ci,231 3 = t.; * min It
j=1 J b m=2 3
j#1,2,3 i#1,2,3
3,231 3,231 6
G2’ = cz’ + = tj2 + min tj3’
j=1 k|
j#1,2,3 j#1,2,3

70



and
3231 3,361 ¢
G3’ = Qz, + I t-3’
=1
j#1,2,3
or
Gi,231 =84+ (10 + 7 + 9) + min (lo, 21, 15)
=8 + 26 + 10
= 44,
Gg,z:&l =34+ (8 + 15 + 4) + min (2, 6 11)
= 34 + 27 + 2
= 63,
and
93’231 =39 + (2 + 6 + 11)
= 39 + 19
= 58.

Thus the lower bound for this node is

g3 o s [WE, 63, 58]

63

Similarily, the lower bounds, at level 3, for the nodes having the

71



partial sequences {234}, {235} and {236} are found to be 66, 68 and

63 respectively; see Table 2.7.

The minimum lower bound at this level is such that

min {03'“]
n

[}
It

min [63, 66, 68, 63]

63.

Since a tie exists between the nodes having the partial sequences
{231} and {236} select {231} randomly and branch it, at level 4, to
the nodes having the partial sequences {2314}, {2315} and {2316}.

At level 4 and for the node n which consists of {jl j2 j3 j4}

or {2 3 14}, the completion time on each machine is computed such

that
4,2314 4,2314 3, 231
g = max [co » €4 1+ t41’
42314 06,2316 3,231] 4 gy,
2 1 2

and
4,2314 _ 4,2314 3,231
Cq = max [c2 s C3 ] + t43,

or

72



63’2314 - 43 % (LS % 4) 4 win 16, 1]
= 42 4+ 19 + 6
= 67,
and
93’2314 = 44 + (6 + 11)

61.

Thus the lower bound for this node is

g2k _ oy [49, 67, B1)

67.

Similarily, the lower bounds, at level 4, for the nodes having the
partial sequences {2315} and {2316} are found to be 68 and 63 respect-

ively, see Table 2.7.The minimum lower bound at this level is

min {Gé’n]
n

(9]
It

min [67, 68, 63]

63.

Since, the ncde having the partial sequence {2316} has the minimum
lower bound; therefore, it is branched at level 5 to the nodes having

partial sequences {23164}, and {23165}.
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c1’2314 = max [0, 8] + 10 = 18,

c;’ 2314 | ae [18, 34] + 8 = 42,
and

e2? P < max [42, 39] + 2 = 44,

The bounds for the above node is then computed on each machine such

that
6 3
G4,23l4 = c4’2314 + T t, + min L t.ms
l 1 . Jl s .]m
J=l | m=2
3#1,2,3,4 j#1,2,3,4
4,2314 4,2314 6
G’ = ¢ °? + I t.o + min t.3
2 2 . J ; J
j=1 J
3#12,3,4 j#1,2,3,4
and
4,2314 4,2314 6
G3’ = CB, + Z t-3!
3=1 !
j#1,2,3,4
or
Gi=2314 = 18 + (7 + 9) + min [21, 15]
= 18 + 16 + 15



At level 5 and for the node n which consists of {jl j2 j3 j4 jS}

or {23164}, the completion time on each machine is computed such that

c5,23164 5,23164 c4,2316

1 = max [cO > 1+ ty1

c5,23164 - max [C5,23164, c4,2316] Ft,.,

2 1 2 42
and

cg,zslea - ax [cg,23164, cg’2316] bty
or

ci’23164 = max [0, 17] + 10 = 27,

c3 23104 < max [27, 38] + 8 = 46,
and

e32 23184 - max [46, 50] + 2 = 52.

The bounds for the above node is then computed on each machine such

that

3

) 6
5,23164 _ 5,23164 _ ey * min -
#

1 1

'
1 3 m=2
Ls2s 34,0 3#1,2,3,4,6



) 6
¢3-23164 _ cg,zalsa . . ., + min ‘s
- j=1 e )
j#1,2,3,4,6 j#1,2,3,4,6
and
5.23164  5,23164  °
G3’ = c3’ + I t.3
j=1 .
j#l,2’3’4’6
or
Gi’23164 =27 + 7 + 21 = 55,
93’23164 =46+ 15+ 6 = 67,
and
cg’23164 w 50k G - 58.

Thus the lower bound for this node is

c2»36251 _ Ly [55, 67, 581

67

Similarily, the lower bound at level 5 for the other node having the
partial sequence {23165} is 63. The minimum lower bound at this level
is

wis [67°%

[}
w
i

76
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min [67, 63]

63

and the node is {2 3 1 6 5}. The unscheduled job for this node is job 4.
Thus the feasible sequence is {2 3 1 6 5 4} with a schedule time of 63.
It is of interest to note that this problem has been solved by complete

enumeration and direct technique and the optimal solution is 63.



CHAPTER III

COMPUTATIONAL EXPERIMENTS

This chapter deals with the computational experiments conducted to
establish a fair comparison among Complete Enumeration, Direct method
and Branch-and-Bound method.

Experiment I consists of 100 flowshop problems each consisting of
six jobs and three machines. Experiment II consists of tem flowshop
problems, each of which has eight jobs and three machines. Experiment III
consists of ten flowshop problems. Each of these problems has six jobs
and five machines. Experiment IV consists of one problem having 12 jobs
and three machines.

For comparison, several statistics such as the efficiency of each
technique, the frequency of the minimum schedule time and the execution

time spent by the computer to obtain the various solutioms as computed.

3.1 Experiment I

This experiment was designed to compare results with those obtained
from a similar experiment by Decomposition (6) and Rounded linear
programming (57). The experiment consists of 100 Flowshop problems, each
consisting of six jobs and three machines.

The entries of the processing time matrices were generated uniformly
at randon between one and 30, inclusive. For each problem, the solution
was obtained by enumerating all the 6! or 720 sequences, using the sub-
routine ENUMER and the execution time spent to obtain the solution was
recorded by the computer. Out of these 720 sequences, the minimum schedule

time was printed out with the corresponding sequence(s). Furthermore, by
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calling the STAT subroutine, various statistics were computed. Similarly,
all the problems were solved by the Direct method and the Branch-and-
bound technique according to the algorithms discussed in section 2.2 and
2.3, respectively. Various statistics similar to those obtained from

the complete enumeration solution were computed for the Direct Method -
only, since one sequence was generated by the Branch-and-Bound technique.

The objective was to observe the statistical distribution of the
minimum schedule times and the mean schedule times obtained from the
100 problems by different approaches. Thus in the case of complete enum-—
eration, Direct method and Branch-and-bound method, the frequencies were
tabulated as shown in Table A.1l. The observed relative cumulative
frequencies, appeared in Table A.2, were then plotted on normal probability
paper as shown in Figure 3.1. The plot of the Complete Enumeration and
Direct method are the same, since they have the same optimal values.

In this report, the Branch-and-Bound algorithm in which all nodes at
all levels are generated is referred to as Branch-and-Bound I; and that
in which only one node at each level is generated is referred to as
Branch-and-Bound II.

The sample average and the standard deviation of the optimal schedule
times and the mean schedule times by various approaches appear in Table 3.1.
Upon examining this table, the mean and standard deviation computed for
the minimum and mean schedule times obtained by these investigators are
approximately the same. Therefore, it would be somewhat safe to compare
the other approaches to each other. Furthermore, the Direct method and

Branch-and-Bound I generate optimal. It should be noted that the later
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generate all nodes regardless to the lower bound computed. In this expe-
riment, these approaches are ranked in superiority from the point of view
of the optimal schedule time as follows: Direct, Branch-and-Bound I,
Decomposition, Branch-and-Bound II and Rounded Linear Programming.

For further comparison, the efficiencies of various apprcaches are
computed. The results of these efficiencies are tabulated in Tables 3.2,
3.3. This shows that the number of problems of which the optimal values
obtained by Direct, Branch-and-Bound I and II, Decomposition and Rounded
Linear Programming are 100, 100, 45, 43 and 8 respectively. However, the
number of those having efficiencies greater than or equal to 0.95 is 100, 100,
73, 92 and 27.

The general results observed from experiment I tabulated in various

tables are:

1. The subset of the optimal sequences is very small in most of the
problems. In 50 percent of the problems solved, the number of optimal
sequences is less than or equal to 5. Furthermore, as the number of
optimal sequences in each problem increases, the number of problems
decreases exponentially, see Table 3.4. This decreases the probability of
obtainirg the aptimal sequences by the Branch—-and-Bound algorithm as

programmed in this report.

2. The combinatorial techniques reduce the problem of constructing and
evaluating feasible sequences to a limited number of sequences. For
example, in the sample problem solved in chapter 2, the number of sequences
generated and evaluated by complete Enumeration, Direct, Decomposition and

Branch-and-Bound II is 720, 12, 20 and 1, respectively. See Table 3.6.
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Table 3.2

Efficiencies of Different Approaches in Experiment I

Efficiency Direct Branch-and- Branch-and- Decomposition
' Bound I Bound II with K = 3

1.00 100 160 48 43
0.99 8 19
0.98 7 5
06.97 4 10
0.96 7 6
G.95 5 5
0.94 4 2
0.93 4 1
0.92 3 1
0.91 2 1
0.90 2 1
0.89 2
0.88 2 1
0.87 1
0.86 1
0.85 1 1
0.84
0.83
0.82 1
0.81
0.80
0.79

100 100 100 100

3. The number of distinct schedule times in the scheduling problem is
much less than the number of sequences generated. For example, Table 3.6
shows that thé number of distinct schedule times obtained by complete
enumeration, Direct, Decomposition and Branch-and-Bound II is 21, 8, 10

and 1 respectively.



Table 3.3

Efficiencies and Corresponding Number of Problems
Solved by Different Approaches

Efficiency Direct Branch-and- Branch-and- Decomposition Rounded
Bound I Bound II with K=3 Linear
Programming
1.00 100 100 45 43 8
06.95 31* 49 19
0.90 15 6 22
0.85 7 2 26
0.80 1 11
0.75 1 8
0.70 4
0.65 N
0.60 - . - - 1
100 100 100 100 100

%#I1lustration: The number of problems solved by Branch-and-Bound method
having efficiency such that 0.95 < efficiency < 1.00 is 31.

4. The distinct schedule times obtained by the various combinatorial
methods have lower frequencies of cccurances than those from complete
enumeration. Therefore, these procedures reduce the redundancies of the

sequences. See Table 3.6 as an example.

5. As in all problems solved, Table 3.6 shows that these combinatorial
techniques produces schedules times very close to the optimal schedule

time.
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Table 3.4

Frequencies of Optimal Sequences Obtained By
Complete Enumeration Technique and Direct Method

No. of Problems Range of the no. of Optimal Sequences

Complete Enumeration Direct -
50 1-5 1-3
16 6 - 12 1-4
8 13 - 19 2 -3
8 20 - 25 2 -6
6 26 - 41 3 -6
5 43 - 60 1l -7

6 68 - 110 3 -10

1 120 8
Table 3.5

Frequencies of Generated Sequences Obtained by Direct Method

No. of Problems Range of the no. of Range of the no. of
Generated Sequences Optimal Sequences
28 3 - 10 1 -10
49 11 - 20 : 1-8
16 21 - 27 1-7
4 31 - 37 1 -4

3 40 - 47 1-9
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Table 3.6

Frequency Table of Distinct Schedule Times Obtained
by Different Approaches

Distinct Complete Direct Decomposition Branch-and-
Schedule Enumeration Method K=3 Bound II
63 28 3 1 1

64 2 1

64 26 1 A
66 19 2

67 , 62 2 3
68 52 1 2
69 26 il 4
70 b 2
71 26 8

72 54 4
73 67 1
74 71 1
75 56

76 51

77 71 i
78 19

79 13

80 33

81 12

82 12

83 10

720 12 - 20 1

6. The number of optimal sequences generated by the Direct algorithm incr-
eases as the subset of the optimal sequences become larger, See Table A.3.
7. The Direct algorithm and the Branch-and-Bound algorithm II generates
optimal solution for all the problems. See Table 3.3.

8. The number of sequences generated by the Direct algorithm is indepen-
dent of the size of the subset of optimal sequences. See Table 3.7.

9. The efficiency of the Branch-and-Bound II method increases as the
subset of the optimal sequences becomes larger. See Table 3.7.

10. Since the branching in the Branch-and-Bound technique II, is
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done from only one node at each level, the execution time spent to obtain

the solution remains nearly the same. See Table 3.7.

3.2 Experiment II

This experiment included ten problems taken from Ashour (6). Each
problem has eight jobs and three machines. The processing times were
generated at random from a uniform distribution between 1 and 30, inclusive.

The solution of these ten problems were obtained by partial enumer-
ation. In sampling with replacement, which is more convenient on the
computer, the probability of obtaining a minimum schedule time in a

sample of size n is
1-@a-m°

with a selection of p as 0.001 and a probability of 0.95 of obt#ining the
minimum schedule time, the sample size, n is aboﬁt 3000 sequences. The
partial enumeration was done by ENUMER and the execution time spent to
obtain the solution was recorded. Out of the 3000 sequences, the minimum
schedule time was printed out with the corresponding sequence(s). Simi-
larly, the above problems were solved by the Direct method and the Branch-
and-Bound II method. The result obtained by the above technique and
Decomposition are summarized in Table 3.8. For comparison among these
procedures and the Decomposition approach, Table 3.9 shows the minimum
schedule times obtained by the various methods for all the problems.

The values between parentheses show the efficiencies of the corresponding
minizum schedule time wnich are not optimal. Thus the number of problems

for which the optimal solutions were obtained are 10, 3, 9 and & for



Table 3.8

Results Obtained from LExperiment II

90

Problem Partial Direct Branch—and- Decomposition
No. Enumeration Method Bound Method with K=4
1 Number of Seguences generated 3000 26 1 70
Number of Distinct Schedule Times 69 14 I 32
Number of Optimal Sequences 9 3 1 7
Execution Time* 339 7.82 5.31
2  Number of Sequences Generated 3000 37 1 70
Number of Distinct Schedule Times 58 13 1 24
Number of Optimal Sequences 3 8 1 2
Execution Time® 339 30.55 5.28
3  Number of Sequences Generated 3000 67 1 70
Number of Distinct Schedule Times 33 8 1 17
Number of Optimal Sequences 24 22 1 8
Execution Time* 339.00 44,48 5.95
4 Number of Sequences Generated 3000 47 1 70
Number of Distinct Schedule Times 52 18 1 24
Number of Optimal Sequences 3 2 3
Execution Time 339.00 60.37 5:25
5  Number of Sequences Generated 3000 15 1 70
Number of Distinct Schedule Times 79 13 1 30
Number of Optimal Sequences 3 2
Execution Time * 339.00 4,56 g.02
6 Number of Sequences Generated 3000 15 L 70
Number of Distinct Schedule Times 60 8 1 20
Number of Optimal Sequences 30 1 9
Execution Time* 339.00 3.99 5.56
7 Number of Sequences Generated 3000 28 1 70
Number of Distinct Schedule Times 46 13 1 15
Number of Optimal Sequences 27 3 1 18
Execution Time* 339.00 30.28 4.86
8 Xumber of Sequences Generated 3000 12 1 70
Number of Distinet Schedule Times 50 4 1 33
Number of Optimal Sequences 5 2
Execution Time® 339.00 2..28 5.41
9 Xumber of Seguences Generated 3000 23 1 70
Number of Distinct Schedule Times 76 10 1 39
Number of Optimal Sequences 1 9
Execution Time 339.00 533 6.93
10 Yumber of Sequences Generated 3000 58 1 70
Number of Distinct Schedule Times 53 18 1 23
Number of Optimal Sequences 30 7 20
Time¥® 339.00 91.79 5.93

Execution

% Execution Time in seconds



Table 3.9

The Schedule Time Solutions and their Efficiencies
Obtained by Different Techniques in Experiment II

Problem Direct Branch-and- Decomposition Partizal
No. " Method Bound II With K=3 Enumeration
1 157 157% 157 157
2 130 138 130 130
(0.95)
3 195 195 195 195
4 145 148 145 145
(0.98)
5 157 162 159 159
(0.97) (0.99)
6 160 174 160 160
(0.92)
7 173 173 173 173
8 191 196 191 196
(0.98) (0.98)
9 122 136 122 . 126
(0.96) (0.98)
10 172 185 172 172
(0.93)

*Those values without efficiencies indicated between parantheses are
optimal
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Direct, Branch-and-Bound II, Decomposition and Partial Enumeration,
respectively. The execution time spent to obtain these solutions are
28.14, 5.85, 50.12, 339.00 seconds, respectively. In general, the

results obtained from Experiment II are as follows:

(1) In the case of Direct method, the optimal sequence is obtained for

all the problems, but the execution time spent is considerably increased.
(2) It is observed that in some problems the execution time is increased
regardless to the number of the sequences generated by the Direct algor-
ithm. The obvious reason is that comsiderable number of pre-seguences

are checked for dominance. For example, in problems 3, 4 and 1G, the
number of sequences generated are 67, 47 and 58, respectively and the
corresponding execution time is 44,48, 60.37 and 91.72 seconds respectively.
(3) The execution time spent by the Branch-and-Bound method II is consid-
erably low, but it generated optimal sequences in only three problems out
of ten. The solutions of the other seven problems have efficiencies ranged
from 0.92 to 0.98.

(4) The Decomposition technique produces nine optimal schedule times out

of ten. The solution of problem 5 has efficiency 0.99.

3.3 Experiment III

In order to investigate the effects of the changes in the number of
machines, Experiment III has been conducted. This experiment consists of
ten flowshop problems, each having six jobs and five machines. The processing
times were generated at rancdom from z uniform distribution between 1 and 30,
inclusive. This experiment has been conducted in the same manner as

Experiment I. The results are tabulated ‘in Table 3.10.
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The general results observed from Lxperiment III are:

i,
problems.

is less than or equal to 4.

the optimal solution by the Branch-and-Bound algorithm II.

The subset of the optimal sequences is very small in most of the
In six problems out of 10, the number of optimal sequences

This reduces the probability of obtaining

On examining

Table 3.10, it is clear that Branch-and-Bound II generated optimal

solution in only two problems.

2. The Direct technique generated optimal sequences for all problems.

-
D

The exectuion time spent by the Direct method has high variability

because of the different number of sequences generated.

4., Since the branching process in the Branch-and-Bound technique II

is done from only one node at each level, the execution time spent to

obtain the solution remains nearly the same.

3.4 Experiment IV

Further experiment has been
One problem is solved by Partial
ITI. The execution time spent by
311.81 and 38.59 seconds and the

respectively. These results are

See Table 3.10.

conducted with 12 jobs and three machines.
Enumeration, Direct and Branch-and-Bound
the above techniques are found to be 594.81,
efficiencies are 1.00, 1.00 and 0.96,

summarized in Table 3.11.

Table 3.11

Efficiency and Execution Time of Experiment IV

Complete
Enumeration
Efficiency 1.00
Execution Time#* 594.81

#Execution time in seconds.

Direct Branch-and-
Bound II
1.00 0.96
311.81 38.59



Another problem of the same size was generated by random from a
uniform distribution between 1 and 30, inclusively, the Direct method
could not generate the solution because of excessive dimension require-
ment. This is because the number of pre-sequences increases very rapidly

through the process of filling the sequence-positions.
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CHAPTER IV

RESULTS AND CONCLUSIONS

The basic objective of this report is to compare various algorithms
for the solution of flowshop scheduling problems in which the minimum
schedule time is considered as a criterion. The various algorithms
considered are Complete or Partial Enumeration, Direct, and Branch-and-
Bound II. The results obtained from these techniques are compared with
those obtained by Decomposition (6), Branch-and-Bound I (27); and Rounded
Linear Programming (57).

In order to study the merits of these techniques, several computa-
tional experiments have been performed and various results such as the
efficiencies, the statistical characteristics, and the execution time
spent to obtain solutions have been compared.

The most significant results of the computational experiments are
summarized as follows:

1. From all experiments, it is revealed that the subset of the optimal
sequences is very small with respect to the set of feasible sequences.
Furthermore, the number of the distinct schedule times is very small
compered to the number of sequences generated and evaluated.

2. The feasible sequences generated and evaluated by Direct, Branch-
and-Bound I, Branch-and-Bound II, Decomposition and K equaling J/2
appeared to be closer to the minimum schedule times. In other words,
generally speaking, the feasible sequences which have larger schedule
times, i.e. close to the maximum schedule time, are discarded. For

example, see Table 3.6. ;
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3. The solutions obtained in the experiments conducted in this report and
obtained by Direct and Branch-and-Bound I are optimal. However, not all
the solutions obtained by Branch-and-Bound II, Decomposition, and Rounded
Linear Programming are optimal. The number of optimal soluticn varies
with the various techniques employed.

4. 1In analyzing the procedure of obtaining the solutions by Direct method,
the effects of the change in the number of machines and jobs are as follow:
4,1. The number of conditions computed to be used in job and sequence
dominance increases as the number of machines increases. However,

the number of partial sequences may or may not increase as the number
of machine increases. For example, the average executicn time for
solving a problem of six jobs and three machines in Experiment I was
1.92 seconds. However, the computer spent on the average 8.43 seconds
for solving a problem of six jobs and five machines in Experiment III.
In other words, the execution time spent increases approximately five
times as the number of machines increases from three to five with the
same number of jobs. See Tables 4.2 ?ndr4.6. CP *f,f &

4.2. The numbers of job dominance check and sequence dominance check
increase as the number of jobs increases. TFor example, the average
execution. time for solving a problem of six jobs and three machines

in Expgriment I was 1.92 seconds. However, the computer spent on the
average 28.42 seconds for solving a problem of eight jobs and three
machines in Experiment II, i.e. the execution time spent increases
epproximately 14 times as the number of jobs increases from six to

eight jcbs with the same number of machines. See Tables 4.2 :nd AL
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4.3. The number of feasible sequences increases as the number of
machines increases. The results of Experiments I and III shows that the
average number of feasible sequences generated for problems of three

and five machines with the same number of jobs are 15 and 44.6,
respectively. These averages are computed from Tables 3.5 and 3.10.
4,4, The number of feasible sequences increases as the number of

jobs increases. From Experiments I and II, it appears that the

average number of feasible sequences generated from problems of six

and eight jobs with the same number of machines are 15 and 35.8,
respectively. These averages are computed from Tables 3.5 and 3.8.

4.5, The number of partial sequences depends upon the processing times

of the jobs on the machines. Therefore, the complete sequences

generated for the same size problems varies as the processing times
change. Consequently, there is a high fluctuation in the execution
times spent for the various problems in each of the experiments. This
is shown in Tables 4.1, 4.3, and 4.5, where the ranges of the execution
times are 0.28 - 8.17 seconds in Experiment I, 3.99 - 91.79 seconds in
Experiment II; and 2.83 - 13.43 seconds in Experiment III, respectively.

In the Direct method, the number of optimal sequences generated

decreases as the number of those obtained by Complete Enumeration decreases.

Furthermore, the Direct method produces very few optimal sequences. Table

4.7 shows the frequencies of the optimal sequences obtained by Direct method

in Experiment I.

6.

In Branch-and-Bound method II, the minimum number of nodes are explored.

In other words, only one node is explored at each level of the scheduling



Table 4.5
Ranges of Efficiencies and Execution Time Obtained in

Complete Branch-and-

Enumeration Direct Bound I
Efficiency 1.00 1.00 1.00
Execution® 96.57 2.83 - 13.43 1.30-22.30
Time
Table 4.6

101

Experiment III.

Branch-and-

Bound II
0.30 - 1.00-
1.01 - 2.30

Average Values of Efficiencies and Execution Time Obtained in

Experiment III

Complete Branch-and-
Enumeration Direct Bound I
Efficiency 1.00 1.00 1.00
Execution# 96.57 8.43 6.50

Time

*Execution time in seconds.

Branch—and-
Bound II

0.94

1.71
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Table 4.7

Frequencies of Optimal Sequences Obtained by Direct Method

No. of Optimal No. of - No. of Optimal No. of
Sequences Problems Sequences Problems

1 40 6 _ 2

2 16 % 4

3 19 8 2

4 13 9 1

5 2 10 1

tree. This method does not produce the optimal solution in all problems,
since the bounds, computed for each node, upon which the branching is
based, are not powerful enough to guarantee optimality. However, to
obtain the optimal solution, more nodes should be explored. For example,
Table 4.8 shows the size of the scheduling trees for problems having six
and eight jobs, with three machines and for problems of six jobs with five
machines. The number of nodes explored in the experiments conducted by

Brown and Lomnicki (27) using Branch-and-Bound I are shown in the same

table.
Table 4.8
Number of Nodes in Various Problems Solved
by Branch-and-Bound I
Size of the Problem {(J x M) (6 x 3) (6 x 5) (8 x 3)

Total no. of nodes (Size of Scheduling 1236 1236 69,280

Tree)
Maximum no. of nodes explored 375 343 4,300
Minimum no. of nodes explored a0 20 32
Average no. of nodes explored to get - 67 100.5 408.7

one solution
Average no. of nodes explored to get 143.8 = =

all solutions
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From the above table, it appears that the execution time spent for solving
the problems by Branch-and-Bound technique I vary according to the number
of nodes explored. However, in Branch-and-Bound technique II, the execution
times remain approximately the same, since only the minimum number of nodes
are explored.
7. On examining the results of Branch-and-Bound technique I, the effects
of changes in the number of machines and jobs are as follows:
7.1. The execution time spent should increase as the number of
machines increases. It should be pointed out that the lower bound at
each node is selected as the maximum value of the bounds of all machines.
Therefore, the execution time spent to compute the lower bound at each
node depend on the number of machines. For example, the average
execution time for solving a problem of six jobs and three machines
is 5.69 seconds as shown in Table 4.1; and on the average 6.5 seconds
are required for solving a problem of six jobs and five machines as
shown in Table 4.6.
7.2. The execution time spent increases as the number of jobs
increases. For example the average execution time for solving a
problem of six jobs and three machines is 5.69 seconds, see Table 4.1.
However, on the average 57.26 seconds are spent for solving a problem
of eight jobs and three machines as tabulated in Table 4.4.
8. It has been reported by Brown and Lomnicki (27) that for the same
number of jobs with increasing the number of machines, the additional
execution time in obtaining all the optimal sequences instead of one
should decrease. Although, they have not stated any reason for this conclu-

sion, it seems, from the logical point of view, that the number of optimal
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sequences decreases as the number of machines increases. Tables 3.10

and A.l may support this reasoning.

2.

In analyzing the results obtained by the Branch-and-Bound technique II,

the effects of the change in the number of machines and jobs are as

follows:

10.

9.1. Table 4.2 shows that the average execution time spent to obtain
the solution for a proﬁlem of six jobs and three machines in Experiment
I is 2.12 seconds. However, the computer spent on the average in
Experiment III 1.71 seconds for solving a problem with six jobs and

five machines, see Table 4.6. The reascn might be that in Experiment I,
more than one node at each level were explored due to step 5 of the
Branch-znd-Bound II, section 2.3.

9.2. The execution time spent increases approximately twice as the
number of jobs increases from six to eight jobs with the same number

of machines,

In comparing the various methods used in all experiments conducted

in this report and those reported by other investigators whose results

appear in Tables 4.1 - 4.6, the conclusions may be as follows:

10.1. The Direct method guarantee optimality; however the execution
time required increases rapidly with the increase of problem size.
10.2. 1In general, the Branch-and-Bound technique can produce the
optimal solutions depending on the computed time available. This
technique is flexible, since any number of nodes can be explored.
Many variations can also be embodied in the algorithm.

10.3. The decomposition approach with k equaling J/2 increases the

I
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capability of the Direct and Branch—and-Bound methods for solving
larger or more practical scheduling problems!

10.4. Although the linear programming technique has a potentiality
in the future, the resulting solutions do not seem sufficiently close
to the optimal values to warrant the amount of the computational

effort involved, as reported by Giglio and Wagner (57).

<



APPENDIX A

TABULATED RESULTS

his appendix includes various results of Experiment I. Table A.l
shows the frequency of the minimum schedule time obtained by different
approaches. The relative cumulative frequency of the minimum schedule
times obtained by various approaches appear in Table A.2. A summary of

the computational results is shown in Table A.3.

106
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Table A.1

Frequency Table of the Minimum Schedule Times Obtained by
Different Approaches

Minimum Complete Direct Branch-and
Schedule Enumeration Method Bound II
Time : .
85 1 1
92 1 1 1
93 1 1 d.
94 1 1
95 1 1 1
38 2 2
99 1 1 1
100 1
101 2 2
102 1 1 2
103 1 1
104 1 I
105 2
106 2 2 2
107 3 3 1
109 1 B i L
1i0 1 1 L
111 2 2 1
112 1 1 3
113 1 1 3
114 4 4 2
1is 3 3
116 2
118 1 1 1
119 2 2 2
120 3 3 1
121 3 3 1
122 2 2 1
123 2 2 1
124 1 1
125 3 3 2
126 3 3 2
127 2
128 1 1 1
129 3 3 1
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Table A.1 (continued)

Minimum Complete Direct Branch-and-

Schedule Enumeration Method Bound II

Time
130 3 3 3
131 3 3 3
132 3 3 6
133 1 1
134 4 4 3
135 3 3 2
136 1
137 2 2 B
138 3
139 2
140 1 1 1
141 2 2 1
142 3 3 3
143 3 3 3
144 2 2 2
145 3
148 1
149 1 1
150 2 2 3
151 1 1 1
152 1 1
153 1
154 1 3
155 2 2 1
157 2 2 1
15 2 2 1
16C 1
i61 1 1
162 1
163 1
165 1 1 1
166 1 4 2
169 1
174 1

100 100 100



Minimum
Schedule
Time

< 89.5

97.5

iis.8
121.5
129.5
157:5
145.5
1585
161.5

1685

Complete
Enumeration

.01
.05

.13

.40
.55
.74
.85
.90
.98
.00

.00

Table A.2

Direct
Method
.01
.05
.13
.24
.40
.55
.74
.85
.90
.98
.00

.00

0.

Relative Cumulative Frequency of the Minimum
Schedule Times Obtained by Different Approaches

Branch-and-
Bound II

00

0.03

0.

0.

09

21

.33

.40

.62

.80

.86

.93

.99

.00

109



116

Table A.3

Computational Results of Experiment I

Problem Complete Enumeration B Direct Branch-and-bound
No. No. of Execution No. of No. of Execution Efficiency Execution
Optimal Time?  Sequences Optimal Timet Timet
Sequences Generated Sequences
2 1 54.68 27 1 2.68 0.7¢9 2.47
1 1 54.67 26 1 3.20 0.87 2.86
30 1 54.56 6 1 0.57 1.00 1.56
38 1 54.74 X3 1 5.83 0.92 2.29
39 1 54.69 21 1 2.65 1.00 1.82
46 1 54.60 15 1 1.52 0.85 2.45
4 1 54.64 42 1 8.24 0.96 2.90
49 1 54.61 17 1 1.61 0.8 2.30
55 X 54,61 31 1 4.64 0.99 1.92
70 1 57.14 1L 1 0.83 0.94 2.81
96 1 56.96 19 1 1.85 0.96 2:15
97 1 56.98 16 1 1.42 0.89 2.58
100 1 57.00 17 1 1.56 1.00 1.63
40 2 54.75 16 2 1.52 0.98 2.09
bl 2 54.77 21 1 1.83 0.99 1.79
45 2 54.73 22 1 3.05 0.85 2.45
&7 2 54.64 18 1 1.93 0.95 2.90
54 2 54.66 21 2 1.73 1.00 1.80
57 2 54.71 26 1 2.67 0.97 1.76
61 2 55.71 47 2 6.87 {.93 2.03
74 2 54,87 23 1 3.74 0.82 2,62
79 2 57.03 21 1 2.18 0.86 2.38
80 2 57.31 20 1 1.93 0.86 3.27
86 2 59.36 24 1 2.13 1.00 2.08
94 2 56.99 17 1 1.64 0.94 251
1 3 54.80 4 1 0.40 0.98 2.13
8 3 58.11 20 2 1.93 0.99 3.04
14 3 54.66 9 1 0.64 1.00 2.39
19 3 54.78 24 2 2.42 0.92 2.84
32 3 54.77 18 1 2.03 1.00 2.61
53 3 54.73 23 2 3.51 0.99 1.98
59 3 54.77 21 1 3.33 0.98 2.33
67 3 54.85 4 1 0.40 1.00 1.81
89 3 57.38 18 1 2.30 0.95 2.00

TExecution time in seconds.



Table A.3 (Continued)

Problem _Complete Enumeration Direct Branch-andé-Lound
No. No. of Ixecution No. of No. of Execution Efficiency Ezecution
COptimal Time Sequences  Optimal Time Time
Seguences Generated Sequences

3 4 57.62 7 il 0.43 0.91 2.20
4 4 59.65 8 2 0.54 0.99 2.44
23 4 54.80 22 1 1.95 0.95 1.76
24 4 54.76 19 3 2:23 0.94 3.02
34 4 54,79 14 1 1.46 1.00 L.53
37 4 54.81 7 1 0.70 0.93 2.29
43 4 54,66 6 3 0.41 1.60 1.5
60 4 54.71 3 2 0.20 1.00 2.065
62 4 56.96 21 1 2.43 1.00 2,38
64 4 54.78 18 2 3.76 1.00 1.53
76 4 54,98 17 2 1.42 0.96 1.74
77 4 54.86 36 1 4.57 0.97 2.48
81 4 58.36 20 1 2.45 0.90 2.53
90 4 57.26 9 1 0.68 0.91 2,21
42 5 54.78 10 3 0.7 0.93 2.12
52 5 54.68 18 2 1.94 0.94 2...38
15 6 54,73 10 3 0.99 1.00 1.53
25 6 54.81 15 2 1.43 0.98 2.81
63 6 56.44 18 2 3.76 0.99 1.31
72 6 57.44 9 3 0.67 1.00 1:.53
88 6 57.66 17 3 1.53 -0.98 3.16
20 7 54.81 16 3 2.56 1.00 2.29
65 7 55.06 11 1 1.07 0.96 3.00
11 8 57.83 11 3 0.96 0.96 2.96
41 8 54.90 9 2 0.63 1.00 152
29 10 54.83 5 3 0.50 1.00 1.56
8¢ 10 57.29 22 1 2.49 0.90 2.10
21 12 55.01 12 4 1.02 1.00 1.51
33 12 55.12 32 4 5.90 0.95 2.10
35 12 54.95 15 4 1.24 1.00 2.42
92 12 57.54 13 4 1.24 1.00 1.52
93 i2 57.94 9 1 0.70 1.00 1.65
22 13 54.97 15 2 1433 1.00 .52
51 13 54.92 13 3 1.40 1.60 2.31
42 14 57.15 15 4 1.08 0.96 2.35
73 14 57.43 7 3 0.63 1.00 1.53
16 16 55,16 21 - 3.15 0.92 o i

26 16 55.24 6 2 0.45 0.95 2.28
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Table A.3 (continued)

Problem Complete Enumeration Direct Branch-and-Bound
No. No. of Execution No. of No. of Execution Efficiency Execution
Optimal Tine Sequences Optimal Time Tirme
Secquences Generated Seguences
3L 18 55.03 5 3 0.28 1.00 1.52
78 19 56.56 15 3 2435 0.99 1.89
82 20 58.12 32 3 1.43 1.00 2.13
5 22 60.29 16 4 2:13 0.99 200
7 22 59.46 6 3 0.47 0.98 237
87 23 58.06 10 6 0.95 1.00 1.61
6 24 61.87 20 4 2.03 0.96 3.23
68 24 59.66 10 2 1.14 0.97 2.20
84 24 €0.60 17 4 3.19 1.00 1.80
71 25 57.69 7 4 0.78 1.00 2,50
50 26 55.51 25 6 2.83 1.00 2.57
58 28 55.56 22 3 1.85 1.00 2,06
95 28 58.01 8 4 0.65 1.00 1,63
75 32 55.96 15 5 1.37 1.00 1.51
56 34 55.78 12 7 1.64 1.00 1.97
83 43 61.14 8 4 0.51 1.00 2.51
69 43 58.06 21 7 2.56 1.00 1.62
91 44 58.56 14 7 1.62 1.00 1.65
13 48 58.37 14 7 2.68 1.00 1.60
25 54 56.25 14 4 1.20 1.00 1.52
36 60 56.38 5 1 0.61 1.00 1.54
18 68 56.75 11 8 1.83 0.89 3.25
27 72 57.12 40 9 8.17 1.00 1.51
10 go 61.72 4 4 0.31 1.00 1.99
25 A 280 61.65 14 5 1.39 1.00 1.76
66 87 57.66 5 3 0.40 0.88 2.66
9 110 61.32 10 10 1.08 1.00 '1.99

98 120 61.11 17 8 1.81 0.97 2.43
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APPENDIX B

CO¥PUTER PROGRAM

This appendix contains a brief description of the subroutines that
have been used and also the computer program. This consists of the main
rourine and five subroutines: ENUMER, DIRECT, BRANCH, STAT, ESTYAT.
ENUMER, STAT and ESTMAT subroutines are taken from Ashour ( 6 ). ENUMER
is same as the FLOSHP, except that the output is slightly changed. For
more detail about STAT and ESTMAT, see Ashour ( 6 ). All subroutines

are written in FORTRAN IV language for the IBM 360/50 system.

MATN Routine

The mezin routine acts as a control program. This routine may read
or randomly generate the processing time matrix. Then, it calls various
subroutines to solve the problem by different methods.

The processing times of each problem are randomly generated as
integar values from a uniform distribution with a finite interval, [z, b].

In the main routine, TIME subroutine, which is embodied in the 360/50
system, is being called before and after the subroutines ENUMER, DIRECT
and BRANCE to determine the time spent in obtaining the solution by

various algorithms.

ENUMER Subroutine

This subroutine constructs and evaluates the feasible schedules for
the flowshon problem. Since the number of the permutations increases
very rapidly as the rumber of jobs increases, the ENUMER routine contains

two phases. The phase I procedure is to enumerate a complete set of
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permutations. This phase is used for problems with maximum of six jobs.
The phase II procedure is to randomly sample a subset from the set of all
permutations. This phase is applied to problems having more than six

jobs.

DIRECT Subroutine

This subroutine is a computer program written by Teuton (164) and
modified by Smith (155) to solve the flowshop scheduling problem by the
direct technique presented in section 2.2,

It consists of the main phases. The first phase checks for job
dominance, the second phase checks for sequence dominance. This is domne
until J-2 sequence-positions are filled. The last two sequences are then
filled by switching the remaining two jobs.and then the total idle time
is checked. Those retained are evaluated to find the corresponding

schedule time.

BRANCEH Subroutine

This subroutine is written to solve the flowshop scheduling problem
by the branch-and-bound algorithm developed by Brown and Lomnicki (27).
In selecting a node, at a certain level, which has the minimum lower
bound, a tie may exist. This subroutine breaks the tie by random.
Furthermore, according to Brown and Lomnicki, the minimum lower bound
at each level is checked against that in the previous level. If it is
greater, a node which has the second minimumr lower bound at the previous
level is comnsidered for branching. However, if it is equal; the branching

will take place from this node to the following level.
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Input Specifications:

The input data deck has two sets of cards for each job scheduling
problems: (1) Control card, (2) Original Data Cards.

The set of the original data cards is omitted when the data of the
original problem is to be generated randomly. The description of the

input data cards is as follows:

1. Control Data Cards: The FORTRAN format for this card is FORMAT(14I5)

Columns Variable Definition
1- 5 JOBS Total no. of jobs
6 - 10 MACEH Total no. of machines
11 - 15 ITYPE Type of Problem
1 = Flowshop;
0 = Jobshop,
16 - 20 IREAD Data origination

1 = Generate randomly;

0 = Read from cards.

21 - 25 IX The starting point for the random no
generator

26 - 30 LIMITI Used only when IREAD = 1; smallest

value in the interval [a, b]

31 - 35 LIMIT2 Used only when IREAD = 1; largest
value in the interval [a, b].
36 - 40 No. of sequences to be constructed and
evaluated for obtaining a complete
or partial enumeration solution

7
e

41 - 45 IAT Maximum no. of jobs to be permuted through
phase I in the ENUMER subroutine.
50 ISWICH Conditional print out,

0
1

I~
On
1

Printout each schedule in detail;
stupress conditicaal printout.
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Columas Variable Definition
51 - 55 IPRINT Conditional printout
0 = Printout;
1 = Supress the conditional printout.

56 - 60 ICARD Conditional punch out

0 = Punch the no. of schedules and
schedule times on cards;

1 = Supress the conditional punch
out.

2. Original Data Cards: When IREAD equals zero, the set of cards

follows the above control card. The processing time matrix is read
such that for each job, the processing times on various machines are
given on one card. The FORTRAN statement for the above data is FORMAT

(16 15).

Qutput Specification:

The most summarized output obtained by each method includes: (1) a
list of the optimal sequences (or the sequences generated) and their
schedule times; (2) Execution time spent to obtain the solution; and

(3) Various statistics (except in Branch-and-Bound II).
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The purpose of this report is to comparc various algorithms for solving
flowshop scheduling problems. The Enumcration, Direct and Branch-and-BEound
II techniques have been considered. The computational algorithms of these
techniques are discussed and illustrated by a sample problem. Several
computational experiments have been conducted.. The results obtained by the
above techniques have been compared with thoseof Decomposition technique
developed by Ashour, the Rounded Linear Programming reported by Giglic and
Wagner and Branch-and-Bound I devised by Brown and Lomnicki. Direct algor-
ithm generated optimal solution in all the problems; however the execution
time spent increased rapidly with the increase in the size of the problem.
For a problem involving twelve jobs and three machines, the storage location
required exceeds the capacity of the computer, IBM 360/50.

The Branch-and-Bound method may or may not produce the optimal sclution
depending upon the number of the nodes to be explored. This technique is
more flexible. The Decomposition approach with K equalling J/2 increases
the capability o the Direct and Branch-and-Bound methods for solving the
larger or more practical scheduling problems. Although the Rounded Linear
Programming technique has a potentiality in the future, the resulting
solutions do not seem sufficiently close to the optimal values to warrant

the amount of the computational effort involved.



