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Abstract 

Exercise has been linked to a reduced cancer risk in animal models. However, the 

underlying mechanisms are unclear. This study assessed the impact of exercise with 

dietary consideration on the phospholipid profile in TPA-induced mouse skin tissues. 

CD-1 mice were randomly assigned to one of the three groups: ad libitum-fed sedentary 

control, ad libitum-fed treadmill exercise at 13.4 m/min for 60 min/d, 5 d/wk (Ex+AL), 

and treadmill exercised but pair-fed with the same amount as the control (Ex+PF). After 

14 wks, Ex+PF but not Ex+AL mice demonstrated ~25% decrease in both body weight 

and body fat when compared to the controls. Of the total 338 phospholipids determined 

by electrospray ionization tandem mass spectrometry, 57 were significantly changed, and 

25 species could distinguish effects of exercise and diet treatments in a stepwise 

discriminant analysis. A 36-75% decrease of phosphatidylinositol (PI) levels in Ex+PF 

mice occurred along with a significant reduction of PI3K in TPA-induced skin epidermis, 

as measured by both western blotting and immunohistochemistry. In addition, near 2-fold 

increase of the long chain polyunsaturated fatty acids, docosahexaenoic and 

docosapentaenoic acids, in phosphatidylcholines, phosphatidylethanolamines, and 

lysophosphatidylethanolamines wasobserved in the Ex+PF group. Microarray analysis 

indicated that the expression of fatty acid elongase-1 increased. Taken together, these 

data indicate that exercise with controlled dietary intake but not exercise alone 

significantly reduced body weight and body fat as well as modified the phospholipid 

profile, which may contribute to cancer prevention by reducing TPA-induced PI3K and 

by enhancing ω-3 fatty acid elongation. 
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Introduction 

Overweight or obesity, which may be due to a life style of over consumption or 

less expenditure of energy, has become a major public health problem associated with 

increased risk of many chronic diseases including cancer (1). Physical activity as a major 

factor in energy expenditure has been suggested for cancer prevention by both human and 

animal studies. A large cohort study including 42,672 US postmenopausal women 

recently reported that light and moderate physical activities were associated with a 

reduced risk of endometrial cancer (2). Another large cohort study including 79,771 

Japanese men and women found that a decreased cancer risk was related to increased 

daily physical activity (3). A population-based study from the 2005 Canadian Community 

Health Survey showed physical activity was associated with a high survival rate in the 

skin cancer patients (4). 

The cancer-inhibitory activity of weight loss by calorie restriction and/or exercise 

has been well documented in many animal models, including the skin carcinogenic model 

(5). A relationship between reduced dietary energy intake and decreased tumor rates has 

been established in rodents (6). The molecular targets in response to energy balance for 

prevention of skin carcinogenesis has also been suggested (7). Michna et al. demonstrated 

that voluntary wheel running exercise inhibited UVB-induced skin tumorigenesis in mice 

(8). The exercise-induced skin cancer inhibition was further associated with enhanced 

apoptosis in the epidermis via a p53-independent mechanism (9). Most studies from 

animal models suggest physical activity inhibits carcinogenesis; however, the exercise-

induced inhibition appears less consistent or less potent than calorie restriction (10). 

Research by the Hursting group suggested it is negative energy balance rather than 
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exercise alone that inhibited the development of intestinal polyps in APCMin mice (11). 

By means of dietary regimens in both of high fat and calorie restricted diet, the groups of 

DiGiovanni and Hursting recently concluded that the dietary energy balance might 

modulate IGF-1 and IGF-1 receptor signaling (12). This reduction is due to both reduced 

total levels of IGF-1 and a reduction in bioavailability due to an increase in levels of IGF-

1 binding proteins. Similarly, our previous studies found that exercise with pair feeding, 

but not exercise alone, was effective in controlling body weight and selectively 

abrogating the tumor promoter-induced PI3K-Akt pathway in the skin epidermis, 

resulting in enhanced apoptosis and reduced proliferation (13). 

Many studies have investigated the molecular mechanism of cancer prevention by 

physical activity. However, the underlying mechanisms of this phenomenon are not clear. 

Physical activity has been proposed to prevent cancer through deletion of reactive oxygen 

species and an increase in antioxidant status (14), reduction of sex hormone levels (15), 

reduction of the metabolic hormones insulin, IGF-1 and/or leptin (16-18), and 

improvement in immune function (19). Hormone-related signaling alterations, especially 

of IGF-1, seem to be an important factor in weight-control for cancer prevention. 

Phosphatidylinostiol 3-kinase (PI3K) is one of the targets activated by IGF-1. Activated 

PI3K usually phosphorylates phosphatidylinositols (PIs)1 in the cell membrane to 

produce PI phosphates or phosphotinositides. PI(3,4,5)P3, a major product of PI3K, is 

able to bind and activate Akt, therefore activating many downstream signaling proteins 

that regulate cell survival and cell cycle progress. Elevated levels of PI(3,4,5)P3 and 

upregulation of Akt are found to be oncogenic and promote the transition to malignancy 

(20-22). Therefore, in addition to being membrane structural building blocks, PIs and 
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their derivatives phosphoinositides, have been found to play an important role in cellular 

signaling and intracellular trafficking as well as in the cancer disease process (23). 

Among the phospholipids, some lysophosphatidylcholines (LysoPC) may activate 

phospholipase C, leading to the production of diacyglycerols and inositol triphosphate, 

activation of protein kinase C, release of and intracellular Ca2+, and activation of MAP 

kinase signaling (24). In addition to the signaling, processes involving specific lipid head 

group classes, alterations in the membrane lipid fatty acid composition may also be 

involved in cancer progression. For example, breast cancer patients were found to have a 

higher risk of early occurrence of visceral metastasis when they had a lower level of 

polyunsaturated fatty acids in phosphatidylethanolamines (PE) (25). Decreased levels of 

stearic acid in phosphatidylcholine (PC) were found in breast cancer patients with 

metastasis compared to those who remained metastasis-free (26). Recent studies by the 

Pougnoux group showed that a lipid profile, rather than a single fatty acid, could be 

important; they showed that decreased linoleic acid, increased cis-monounsaturated fatty 

acids, and a low ω6/ω3 fatty acid ratio, was associated with lower risk of breast cancer 

(27). Very long chain ω-3 fatty acids, such as docosahexaenoic acid (DHA), are well 

known to have a preventive effect on cardiovascular disease and cancer and may be 

involved in alterations of membrane structure and function, eicosanoid metabolism, gene 

expression, and inhibition of lipid peroxidation (28).  

Physical activity has been found to affect membrane phospholipids. For example, 

it is reported that particular types of exercise increase sphinganine and sphingosine in rat 

skeletal muscle (29) and reduce total content of ceramide in rat heart muscle (30). 

Regular exercise was also found to significantly increase oleic acid 18:1 (ω-9) and DHA 
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22:6 (ω-3) in human muscle (31). However, previous lipid composition studies related to 

cancer were usually focused on total cholesterol, lipoproteins, and triglyceride (32-33). 

The overview of membrane phospholipid profile and the response to exercise-induced 

weight control has not been studied yet. 

With the development of recent lipid analysis, phospholipid compositional 

profiles can be determined by electrospray ionization tandem mass spectrometry 

(ESI/MS-MS). The technique is highly sensitive, accurate, and reproducible (34-36). 

In this study, we measured 338 membrane phospholipid species in the skin tissues 

of mice whose body weights were controlled via moderate treadmill exercise. The impact 

of exercise-induced weight loss upon the phospholipid profile was further evaluated for 

potential cancer prevention mechanisms. The significant changes in certain species of 

phospholipids, especially PI3K-related PIs and ω-3 fatty acid-containing PCs, PEs and 

lysoPE, might suggest novel cancer preventive mechanisms by exercise-induced weight 

control. 

Materials and Methods 

Animals and animal treatments: Female CD-1 mice (Charles River Lab, Wilmington, 

MA) at eight week old were housed individually at 24 ± 1 ºC and 80% relative humidity 

with 12-hr light/12-hr dark cycle. They were randomly assigned into one of three groups: 

ad libitum feeding sedentary control, exercise and ad libitum feeding (Ex+AL), and 

exercise but pair feeding (Ex+PF). Ad libitum feeding groups were allowed to freely 

access the basal diet (AIN-93), while the pair-fed group was fed daily the same amount as 

the sedentary control.  
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A zero-grade adjustable-speed rodent treadmill (Boston Gears, Boston, MA) was 

used to exercise the mice. After a two-week training period, mice performed treadmill 

exercise at 13.4 m/min for 60 min/d, 5 d/week for 14 weeks. This exercise was 

recognized as moderate, based upon the intensity at 65-70% of the maximal oxygen 

uptake calculated by the predicting regression equation of Fernando et al (37). To take 

into account the biological clocks of nocturnal rodents, the light cycle was adjusted for 

mice to exercise at nigh. The mice were fed until the last day, but exercise was stopped 

24 hrs after the last bout to measure the effect of exercise training rather than acute 

exercise. At the end of experiment, the dorsal skin of the mice was shaved and topically 

treated once with TPA at 3.2 nmol in 200 μL of acetone. Mice were sacrificed two hrs 

after TPA treatment. The dorsal skin samples were snap-frozen in liquid nitrogen and 

kept at -70 ºC until further analyses.  

Body fat analysis: In the last week, the body composition of the mice was determined by 

a dual-energy X-ray absorptiometer (DXA) using the small animal software (v5.6, 

Prodigy GE, Lunar-General Electric, Milwaukee, WI).  

Phospholipid measurments and profiling: Each skin sample was ground with liquid 

nitrogen. After 2 mL of solvent (chloroform: methanol 1:2 + 0.01% butylated 

hydroxytoluene) were mixed with 1 g of tissue, 1 mL of chloroform and 1 mL of water 

were added; the mixture was centrifuged at 1,000 rpm for 15 min, and the lower layer 

was collected. Then, 1 mL of chloroform was added to the tissue, the mixture was 

centrifuged and the lower layer was removed and combined with the previously removed 

lower layer. The combined extract was analyzed for phospholipids using an automated 

electrospray ionization-tandem mass spectrometry approach. Data acquisition and 
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analysis for acyl group identification were carried out as described previously (35-36). 

Twelve phospholipid classes or subclasses, including phosphatidic acid (PA), PI, PC, 

lysoPC, alk(en)yl/acyl phosphocholine (ePC), PE, lysoPE, alk(en)yl/acyl 

phosphoethanolamine (ePE), phosphatidylserine (PS), alk(en)yl/acyl phosphoserine 

(ePS), sphingomyelin (SM), and ceramide phosphoethanolamine (PE-cer) were 

determined.  Identification of phospholipid molecular species was based on total 

mass/charge and the presence of a fragment of mass/charge consistent with the head 

group class. For 40:5-PC or PE and 40:6-PC or PE acyl composition analysis, four 

samples chosen randomly from each group were further analyzed. Acyl ions of PE 

species were identified after collision induced dissociation of the [M-H]- ions, and acyl 

ions of PC species were identified following collision induced dissociation of the [M + 

OAc]- ions. 

PI3K expression detected by western blotting: As described in our previous 

publication (13), skin tissue was homogenized in Mg2+ lysis/wash buffer and the lysate 

was collected after centrifugation at 12,000 g at 4 °C for 15 min.  Protein concentration 

was measured by the Bio-Rad protein assay (Bio-Rad, Hercules, CA). After running on 

12% SDS-PAGE gel, the proteins were transferred to a nitrocellulose membrane. PI3K at 

110 kDa and the internal loading control β-actin at 43 kDa were bound to their 

monoclonal antibodies (Santa Cruz Biotechnology Inc., Santa Cruz, CA). After 

incubation with HRP-conjugated secondary antibody (Santa Cruz Biotechnology Inc., 

Santa Cruz, CA), the blot was visualized by the FluorChemTM 8800 Advanced Imaging 

System (Alpha Innotech, San Leandro, CA). The relative density of the target PI3K band 
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was normalized to the loading control β-actin and then expressed as a percentage of the 

controls. 

PI3K expression in situ detected by immunohistochemistry: As described in our 

previous publication (13), the frozen dorsal skin tissues of mice 2-hr after TPA treatment 

were fixed in -70 ºC absolute ethanol and rinsed with PBS before adding 10% 

formaldehyde. The skin tissues were sectioned and the slides were exposed to steam in 

the target retrieval solution (Dakocytomation, Carpinteria, CA). The monoclonal 

antibody against mouse PI3K (Santa Cruz Biotechnology, Santa Cruz, CA) was used as a 

primary antibody, and the secondary antibody was BioGenex QP900 SS multilink HRP 

kit (BioGenex, San Ramon, CA). Slides were counterstained with Gills hematoxylin 

followed by dehydration in alcohol and xylene. Staining was developed with 

diaminobenzidine chromogen and the density of the stain for each section was scored by 

a pathologist. Ten to 15 sections for each group were blindly graded using computer 

standards. The standards of staining intensity were established at 400x by grading up to 

40 cells in 5 unit increments from 3-5 mice per group. Data were statistically analyzed 

and group scores with p ≤ 0.05 were considered significantly different. 

Microarray and data analyses: As described in our previous publications (13, 38), the 

skin samples from 4 mice in each group were analyzed by a GeneChip Mouse Genome 

430 2.0 Array (Affymetrix, Santa Clara, CA). The intensities of probe sets were 

quantified by GeneChip operating software 1.0 (GCOS 1.0; Affymetrix). One–way 

ANOVA and False Discovery Rate (FDR, Benjamini, p < 0.1) were applied to identify 

the gene expression difference between the treatment and control group. Then the data 

were filtered using 1.5 fold change as a cutoff. The intensities of various probe sets for 
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each gene expression of six fatty acid elongases (Elovl) were averaged and reported in 

this study. 

Statistical analysis: Phospholipid data outliers were detected using a Q test and 

statistical analyses were performed using SAS (SAS Institute Inc., Cary, NC). Results of 

phospholipid profiling between mice to which acetone-vehicle and to which TPA was 

applied were found not significantly different, and the data for these groups were thus 

pooled. Phospholipid levels among the three treatment groups were compared using a 

one-way ANOVA and an F-test for significance, followed by pairwise comparisons by 

LSD method. To determine which variables that may discriminate the three treatment 

groups and generate linear combinations, allowing the classification of unknown samples, 

an automatic backward stepwise discriminant analysis was performed using 57 

phospholipid species that were significantly different among three treatment groups. Thus 

these discriminating variables could be considered putative biomarkers for the effects of 

diet and exercise on skin polar lipidome. 

Results 

Body weight and body fat change: Body weights of mice during the total 14 wks of 

experimentation are shown in Fig. 1A. Adult CD-1 mice in the sedentary control group 

gained weight gradually. No significant difference was found between Ex+AL mice and 

sedentary controls. However, the body weight of Ex+PF mice was significantly lower 

when compared with either sedentary or Ex+AL mice, beginning in the fifth week of the 

experiment. As shown in Fig. 1B, when compared to the sedentary controls, the 

percentage of body fat was significantly lower in Ex+PF mice down to ~25% of the 

control but not in Ex+AL mice. The average food intake for sedentary control and 
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Ex+AL group are 3.43±0.28 g/day and 3.67±0.18 g/day, respectively. The food intake for 

Ex+PF group is same as the control. Although no significant difference of food intake is 

observed between sedentary control and Ex+AL, exercise alone did not prevent weight 

gain, as compared to sedentary controls, which may be due to a slight increase in food 

consumption. 

Impact of exercise with or without controlled diet intake on phospholipid profile: A 

total of 338 phospholipid species were measured and 57 of them were found to be 

significantly different among the treatment groups.  

Among the phospholipids, PC was the most abundant head group class in mouse 

skin, and it represented 45.5% of the total phospholipids analyzed (Table 1).  Compared 

to other classes, PC has the largest amount of shorter chain species, with species with 28, 

30 and 32 acyl carbons in the two chains making up 9.1% of diacyl PCs, while species 

with 38 or more acyl carbons made up about 26.7% of diacyl PC. Some PCs with short 

chain fatty acids, including 30:0-PC, 32:0-PC, and 32:1-PC, were significantly lower in 

Ex+PF mice than in either group of ad libitum-fed or control mice. However, 40:4-PC, 

40:5-PC and 40:6-PC were significantly higher in Ex+PF mice up to 2-fold when 

compared to sedentary control as well as Ex+AL mice.  

The second most abundant head group of phospholipids in mouse skin samples is 

PE, which accounts 31.5% of the total phospholipids. PE has less short chain species, 

with only 0.5% of diacyl PEs having 28, 30 or 32 total acyl carbons and over 68% of 

diacyl PE having 38 or more carbons. The levels of 40:5-PE, 40:6-PE, and 40:7-PE of 

Ex+PF mice tended to be higher than that of sedentary mice, although they were not 
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significantly different (4.99±0.63 vs. 3.13±0.51, 5.94±0.82 vs. 4.17±0.90, 1.48±0.22 vs. 

1.10±0.15, respectively).  

PS diacyl species are 4.6% of the total phospholipids and only 40:6-PS was 

significantly higher in Ex+PF mice compared with Ex+AL mice (40.71±0.09 vs. 

0.58±0.11).  

Acyl composition analysis was conducted to identify the fatty acid species in 

40:5-PC and PE and 40:6-PC and PE. The data in Figure 2A suggest that 40:5-PC is 

primarily 18:0-22:5 with small amounts of 18:1-22:4 and 20:1-20:4. The 40:6-PC 

includes primarily 18:0-22:6 and also 18:1-22:5 species (Fig. 2B). For 40:5-PE, the acyl 

composition was mainly 18:0-22:5 and also 18:1-22:4 (Fig. 2C), while for 40:6-PE, the 

acyl composition was mainly 18:0-22:6 with small amounts of 18:1-22:5 and 18:2-22:4 

(Fig. 2D). The 18:0-22:5 and 18:0-22:6 pair species of PC and PE were similar between 

Ex+AL and control groups, but significantly higher in Ex+PF mice (p < 0.001) (Fig.2E). 

For PIs, only seven species were detected and they comprise about 4.6% of the 

total phospholipids. The major molecular specie is 38:4 PI, which represents 91.4% of the 

total PI. Most PI species (five out of seven) showed a significant ~ 36-75% decrease in 

the Ex+PF mice compared to sedentary control or Ex+AL mice (Table 1). 

Table 1 also shows the profile of ePC and ePE, which represent 3.0% and 2.3% of 

total phospholipids, respectively. Most of the ePCs in the Ex+PF mice significantly 

decreased compared to the two ad libitum-treated groups. Two ePEs (36:2 and 38:2) 

significantly increased in Ex+AL mice, but not in Ex+PF mice. The 38:5-ePE was 

significantly lower in Ex+PF mice compared to the Ex+AL mice. 
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LysoPC, lysoPE and SM compromise only a small percentage of total 

phopholipids, with 1.2%, 0.4%, and 3%, respectively. The data on lysoPC and lysoPE are 

shown in Table 1. For lyso PC, 16 and 18 carbon species are the predominant species. 

The lysoPC in Ex+AL mice were not significantly different compared to the sedentary 

control. In Ex+PF mice, however, 16:0-lysoPC, 18:1-lysoPC, 18:2-lysoPC, and 20:4-

lysoPC were decreased significantly when compared to the control or the Ex+AL group. 

Near half (51%) of lysoPE was species with 20 or 22 carbons. The 22:6 and 22:5 lysoPE 

significantly increased in Ex+PF mice. Two major specie that make up 70% of total SM, 

16:0 and 24:1 SM, were reduced in Ex+PF (Table 1).  

Discriminant analysis: An automatic backward stepwise discriminant analysis generated 

two discriminant functions using 25 phospholipid variables. The variables selected are 

listed in Figure 3. The three treatments (sedentary, Ex+AL, Ex+PF) were significantly 

distinguishable (Wilks' lambda = 0.001 at p<0.00001) using the two discriminant 

functions. DF1 represented the effect of diet and DF2 the effect of exercise. 

PI3K protein expression detected by western blotting and immunohistochemistry: 

The western blot showed that class I PI3K expression was significantly decreased in 

Ex+PF but not Ex+AL mice (Fig. 4). The image in Figure 5 depicts the median 

expression score of class I PI3K as measured by immunohistochemistry. In sedentary 

control mice, the expression of PI3K in epidermal cells (arrows) was higher in TPA-

treated mice (Fig. 5B, scored as 10) than in acetone-vehicle treated mice (Fig. 5A, scored 

as 5). As the PI3K expression increased in Ex+AL mice (Fig. 5C, scored as 15), the 

expression level of PI3K in Ex+PF mice decreased to the same level as that of the 

acetone-vehicle sedentary mice (Fig. 5D, scored as 5). 
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Gene expression of the Elovl family: All six members of Elovl gene family are 

detectable in mouse skin tissues by microarray analysis with various probe sets (up to 11 

for each Elovl gene). As the Elovl2 is specifically expressed in the liver, it is not 

unexpected that the expression level was lowest in skin, as shown in Figure 6. Among the 

other 5 Elovl members, only Elov11 expresssion increased significantly in Ex+PF mice 

when compared to either the sedentary control or Ex+AL group. Elov15 expression 

appeared to be enhanced in Ex+PF mice with comparison to the EX+AL group only but 

not the sedentary controls. One of four probe sets for Elov16 indicated over-expression; 

this was confirmed by a real-time PCR analysis. However, the average of Elov16 

expression as measured by all the four probe sets was not significantly different among 

the groups.  

Discussion 

This study showed that exercise with controlled dietary intake successfully 

prevented body weight gain and reduced body fat in the CD-1 mice. It also modified the 

phospholipid profile significantly in the skin tissues, by decreasing some lysoPCs, most 

PIs and ePCs as well as decreasing PI3K protein expression in the skin epidermis, and 

increasing long chain polyunsaturated PC, PE, and lysoPE species containing 22:6 and 

22:5 that are likely to be ω-3 fatty acids. 

The results demonstrated that exercise with ad libitum feeding did not effectively 

decrease body weight and body fat. Similar results are also observed by Mehl et al. in 

APCMin mice and Michna et al., in SKH mice (39, 8). A moderate increase of food intake 

from 3.43±0.28 g/day for the control to 3.67±0.18 g/day for Ex+AL mice may 

compensate, at least in part, the exercise-induced energy expenditure. Furthermore, the 
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dietary energy increase in Ex+AL might not necessarily match the treadmill exercise-

induced energy expenditure, since the energy expenditure could have been altered due to 

the changed spontaneous activity in the cage and/or resting energy metabolism. In 

addition to physical activity, Badman and Flier (40) have suggested that the total energy 

expenditure should also consist of adaptive thermogenesis and obligatory energy 

expenditure. It is interesting to compare our results with Huffman’s study (41). The 

exercise training protocol appears a little bit different between two studies. In our 

experiment, the mice run treadmill at zero grade for 13 weeks, but Huffman’s mice were 

exercised at 8% grade for 24 weeks. The most significant difference is due to strain- and 

diet-related phenomena. We used a lean mouse model that fed a normal AIN-93 diet (5% 

of calories from fat), but Huffman et al. (41) used C57BL/6 strain, a classic high-fat diet-

induced obese model. To induce weight gain, Huffman’s mice were fed a moderately 

high-fat diet (35% of calories from fat). Therefore, the average of body weights for the 

control mice in Haffman’s study was about 30 g in the beginning of experiments and 46 g 

in Week 14. In contrast, the average of body weight for our control mice is ~26 g in the 

beginning and 32 g in Week 14. It is no doubt that the moderately high-fat diet-induced 

overweight C57BL/6 strain in Haffman’s study should be much more susceptible to 

exercise-induced weight loss than our lean CD-1 strain. Actually, our data from the lean 

CD-1 strain are consistent with what we observed in another lean SENCAR strain (Xie et 

al., 2007). When compared with Haffman’s study, our contradictory data may provide a 

diverse phenomenon for a lean strain model with normal diet treatment.  

When we adjusted the food consumption of the exercised mice to that of 

sedentary control mice, significant effects on body weight and body fat were observed. 
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Studies in the Hursting lab found that voluntary wheel running mice with restricted food 

consumption, a pair-feeding strategy similar to ours, had a significantly lower body 

weight and less intestinal polyp development (12). Overall, this study indicates that a 

negative calorie balance via both increasing energy expenditure and limiting calorie 

intake seems most effective in preventing body weight gain. It should be noted that we 

may not be able to differentiate body weight control from caloric balance. Although 

exercise alone with ad libitum feeding was not sufficient to decrease body weight due to, 

at least in part, the corresponding increase in dietary intake, the lack of an exercise effect 

in AL+Exe mice on the body weight/fat and various phospholipids might be in part due 

to the insufficient magnitude of the calorie deficit. Since the average food intake for three 

treatment groups are comparable, we did not find any significant correlation of calorie 

intake with specific phospholipids, and the caloric deficit via exercise was not matched 

with the diet intake, and thus the results should be interpreted accordingly. 

Although it wonders whether the turnover rate of skin would make it a better 

indicator of subtle changes than other tissues, previous studies by ours and others have 

demonstrated a cancer-inhibitory activity of weight loss by dietary calorie restriction 

and/or exercise in animal skin cancer model (5-8). Furthermore, exercise-induced skin 

cancer inhibition has been linked to apoptosis induction and anti- proliferation in the skin 

epidermis (9, 13). To further evaluate the impact of weight control, lipidomics analysis 

for all the phospholipids in skin tissues 2 hours after TPA treatment was performed. First 

of all, we did not find any significant differences of phospholipids between TPA and 

acetone-vehicle control. The reason related to a lack of a significant impact of TPA on 

the phospholipid profile may be due to a short time exposure to TPA treatment in vivo. 
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The selection of 2-hr period for TPA treatment is based on the previous observation that 

was adequate for a significant activation of Ras and ERK activities in skin epidermis 

(13).  

Furthermore, the finding that the major molecular specie of PI was 38:4 is 

consistent with the typical pattern of PIs found in mammals, and in particular in mouse 

tissues where this major specie has demonstrated to be 1-18:0, 2-20:4 PI (42). The 

observed decrease of the most PI species in the Ex+PF mice led us to measure expression 

of PI3K, a key kinase required for various signaling cascades for cancer-related cellular 

function including cell growth, proliferation, differentiation, motility, survival, and 

intracellular trafficking (13). As expected, we found the decreased PI levels corresponded 

to lowered levels of PI3K protein in the skin epidermis of Ex+PF mice. Skin cancer 

development is usually associated with uncontrolled proliferation of epidermal cells (43), 

so the lower protein expression of class I PI3K in epidermal cells as measured by 

immunohistochemistry may result in less proliferation as found in our previous report 

(13). Furthermore, the increased levels of PI3K staining observed in TPA-treated 

sedentary control when compared with acetone-vehicle control. When compared with 

TPA-treated sedentary control (Fig 5B) but not acetone-vehicle sedentary control (Fig 

5A), no significant difference was found in Ex+AL group. However, TPA-induced 

increase of PI3K protein expression was significantly suppressed by exercise with pair-

feeding, suggesting the direct product of PI3K, the second messenger PI(3,4,5)P3, might 

be reduced. It is well recognized that PI(3,4,5)P3 recruits some signaling enzymes with 

pleckstrin homology domains, such as protein serine-threonine kinases, including Akt 

and adaptor proteins, to the membrane. The activation of these enzymes impacts protein 
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synthesis, cell cycle entry, and cell survival function, etc. (20). Decreased PIs and down 

regulation of PI3K expression observed in this study may imply that body weight control 

through exercise with controlled dietary intake may prevent against TPA-induced cancer 

risk. In addition, many studies by us and others have found that weight control was 

associated with reduced levels of circulating growth hormones or factors such as IGF-1 

(44). Considering the requirement of PI3K activation by IGF-1-dependent signaling, the 

down-regulation of PI3K protein expression, and the reduced PI3K-related PI substrates 

in the exercised but pair-fed mice might be caused by a decrease in plasma IGF-1 levels. 

In our studies, IGF-1 was restored in the exercised and pair-fed mice by either 

intraperitoneal injection at 10 µg/g body weight twice per wk (13) or via osmotic 

minipumps (unpublished data). We have found the reduction of PI3K protein expression 

and the PI species were partially reversed by IGF-1 restoration. 

In addition to PIs, we also found most of the ePCs and LysoPCs were 

significantly reduced in the exercised and pair-fed mice, while 22:6 lysoPE was increased 

in Ex+PF group. The lower levels of ePCs and lysoPCs may prevent cancer by reducing 

cellular damage and proliferation, since ePCs are required for the formation of platelet-

activating-factor and lysoPCs are produced during LDL oxidation within atherosclerotic 

plaques for atherosclerotic lesion development (45-48).  

The impact of weight control via exercise on the PCs and PEs is interesting. 

When compared with the sedentary control, exercise with ad libitum-fed did not change 

the profile of PCs and PEs. However, there are significant changes observed in the 

exercised and pair-fed mice. As some short chain fatty acids of PCs were decreased, the 

long chain polyunsaturated fatty acids, i.e., 40:5 and 40:6, increased significantly in 
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Ex+PF mice in comparison with either control or Ex+AL group. A similar impact was 

found on PEs (data not shown). By means of product ion analysis, the increased 

polyunsaturated 40:5 and 40:6 fatty acids in PCs and PEs were further discovered to 

contain a combination of either 18:0-22:5 or 18:0-22:6. The 22:6 fatty acid is 

undoubtedly DHA. The 22:5 fatty acid, i.e., docosapentaenoic acid (DPA), could be 

either ω-6 adrenic acid or ω-3 clupanodonic acid. As one of the three major ω-3 long 

chain polyunsaturated fatty acids, clupanodonic acid could be intermediary between 

eicosapentaenoic acid (EPA) and DHA (49). It should be noted that ω-3 22:6 DHA was 

found to be elevated significantly in the exercised and pair-fed mice not only for PCs and 

PEs, but also for lysoPEs. It is well known that the mammals can make DHA and EPA 

through desaturation and elongation of essential ω3-linolenic acid (50-51). Our 

microarray data further confirmed that elongation of (very) long chain fatty acid-like 

elongase gene 1 (Elvol1) was expressed significantly more in Ex+PF as compared to the 

Ex+AL group. Elevation of DHA by exercise has been reported by others in human 

studies (31, 52). Considering the general health benefits of ω-3 fatty acids (53-56) and a 

specific inhibitory role in TPA-induced signaling activation (28, 57), the increase of ω-3 

fatty acids found in this study may provide a novel approach to understand the 

mechanisms by which exercise with controlled calorie intake may protect against cancer. 

 To overview the effects of exercise with or without consideration of diet intake 

upon the phospholipid profiling, we applied a discriminant function analysis to the 57 

significantly changed phospholipids. Twenty-five of the total 57 phospholipids were able 

to distinguish the treatment groups with 92% classification efficiency. These 25 

phospholipids are possible candidates for biomarkers to distinguish the effects of diet 
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regiments and exercise in mice. It should be noted that the most 25 phospholipids 

selected are PCs, ePC, or lysiPCs. The functional impact of these PC-related species 

changes and how such changes might afford protection from cancer warrant further 

studies. 

Taken together, these data indicate, for the first time, that exercise with controlled 

diet interventions, but not exercise alone, significantly reduced body weight and body fat 

as well as modified the phospholipid profile. This modified profile might provide 

potential cancer prevention benefits, perhaps via reducing TPA-induced PIs and PI-

related PI3K expression and by enhancing ω-3 PC, PE  and/or lysoPE elongation 

mechanisms. 

Acknowledgments 

The authors thank Ms. Mary Roth for assistance in lipidomics analysis and Dr. 

Mark Haub for assistance in body fat analysis by DXA. 

 

References 

1. Ogden CL, Carroll MD, Curtin LR, McDowell MA, Tabak CJ.  Flegal KM. 

Prevalence of overweight and obesity in the United States, 1999-2004. JAMA 

2006;295:1549-55. 

2. Patel AV, Feigelson HS, Talbot JT, et al. The role of body weight in the relationship 

between physical activity and endometrial cancer: results from a large cohort of US 

women. Int J Cancer 2008;123:1877-82.     



22 

3. Inoue M, Yamamoto S, Kurahashi N, et al. Daily total physical activity level and total 

cancer risk in men and women: results from a large-scale population-based cohort 

study in Japan. Am J Epidemiol 2008;168:391-403. 

4. Courneya KS, Katzmarzyk PT, Bacon E. Physical activity and obesity in Canadian 

cancer survivors: population-based estimates from the 2005 Canadian Community 

Health Survey. Cancer 2008;112:2475-82. 

5. Kritchevsky D, Klurfeld DM. Influence of caloric intake on experimental 

carcinogenesis: a review. Adv Exp Med Biol 1986;206:55-68. 

6. Kritchevsky D. Caloric restriction and experimental carcinogenesis. Adv Exp Med 

Biol 1992;322:131-41. 

7. Birt DF, Przybyszewski J, Wang W, Stewart J, Liu Y. Identification of molecular 

targets for dietary energy restriction prevention of skin carcinogenesis: an idea 

cultivated by Edward Bresnick. J Cell Biochem 2004;91:258-64. 

8. Michna L, Wagner GC, Lou YR, et al. Inhibitory effects of voluntary running wheel 

exercise on UVB-induced skin carcinogenesis in SKH-1 mice. Carcinogenesis 

2006;27:2108-15. 

9. Lu YP, Lou YR, Nolan B, et al. Stimulatory effect of voluntary exercise or fat 

removal (partial lipectomy) on apoptosis in the skin of UVB light-irradiated mice. 

Proc Natl Acad Sci USA 2006;103:16301-6. 

10. Rogers CJ, Colbert LH, Greiner JW, Perkins SN, Hursting SD. Physical activity and 

cancer prevention: pathways and targets for intervention. Sports Med 2006;38:271-

96. 



23 

11. Colbert LH, Mai V, Tooze JA, Perkins SN, Berrigan D, Hursting SD. Negative 

energy balance induced by voluntary wheel running inhibits polyp development in 

APCMin mice. Carcinogenesis 2006;27:2103-7. 

12. Moore T, Beltran L, Carbajal S, et al. Cancer Prev Res 2008;1:65-76. 

13. Xie L, Jiang Y, Ouyang P, et al. Effects of dietary calorie restriction or exercise on 

the PI3K and Ras signaling pathways in the skin of mice. J Biol Chem 

2007;282:28025-35. 

14. Ji LL. Exercise-induced modulation of antioxidant defense. Ann NY Acad Sci 

2002;959:82-92. 

15. Stoll BA. Adiposity as a risk determinant for postmenopausal breast cancer. Int J 

Obes Relat Metab Disord 2000;24:527-33. 

16. Giovannucci E. Insulin, insulin-like growth factors and colon cancer: a review of the 

evidence. J Nutr 2001;131:3109S-20S. 

17. Yu H, Rohan T. Role of the insulin-like growth factor family in cancer development 

and progression. J Natl Cancer Inst 2000;92:1472-89. 

18. Polak J, Klimcakova E, Moro C, et al. Effect of aerobic training on plasma levels and 

subcutaneous abdominal adipose tissue gene expression of adiponectin, leptin, 

interleukin 6, and tumor necrosis factor alpha in obese women. Metabolism 

2006;55:1375-81. 

19. Karacabey K. Effect of regular exercise on health and disease. Neuro Endocrinol Lett 

2005;26:617-23. 

20. Cantley LC. The phosphoinositide 3-kinase pathway. Science 2002;296:1655-7. 



24 

21. Engelman JA, Luo J, Cantley LC. The evolution of phosphatidylinositol 3-kinases as 

regulators of growth and metabolism. Nat Rev Genet 2006;7:606-19. 

22. Manning BD, Cantley LC. AKT/PKB signaling: navigating downstream. Cell 

2007;129:1261-74. 

23. Krauss M, Haucke V. Phosphoinositide-metabolizing enzymes at the interface 

between membrane traffic and cell signalling. EMBO Rep 2007;8:241-6. 

24. Xu Y. Sphingosylphosphorylcholine and lysophosphatidylcholine: G protein-coupled 

receptors and receptor-mediated signal transduction. Biochim Biophys Acta 

2002;1582:81-8. 

25. Chajès V, Lanson M, Fetissof F, Lhuillery C, Bougnoux P. Membrane fatty acids of 

breast carcinoma: contribution of host fatty acids and tumor properties. Int J Cancer 

1999;63:169-75. 

26. Bougnoux P, Chajes V, Lanson M, et al. Prognostic significance of tumor 

phosphatidylcholine stearic acid level in breast carcinoma. Breast Cancer Res Treat 

1992;20:185-94. 

27. Bougnoux P, Giraudeau B, Couet C. Diet, cancer, and the lipidome. Cancer 

Epidemiol Biomarkers Prev 2006;5:416-21. 

28. Chapkin RS, Seo J, McMurray DN, Lupton JR. Mechanisms by which 

docosahexaenoic acid and related fatty acids reduce colon cancer risk and 

inflammatory disorders of the intestine. Chem. Phys. Lipids 2008;153:14-23. 

29. Dobrzyń A, Górski J. Effect of acute exercise on the content of free sphinganine and 

sphingosine in different skeletal muscle types of the rat. Horm Metab Res 

2002;34:523-9. 



25 

30. Dobrzyń A, Knapp M, Górski J. Effect of acute exercise and training on metabolism 

of ceramide in the heart muscle of the rat. Acta Physiol Scand 2004;181:313-9. 

31. Helge JW, Wu BJ, Willer M, Daugaard JR, Storlien LH, Kiens B. Training affects 

muscle phospholipid fatty acid composition in humans. J Appl Physiol 2001;90:670-

7.  

32. Markopoulos C, Polychronis A, Zobolas V, et al. The effect of exemestane on the 

lipidemic profile of postmenopausal early breast cancer patients: preliminary results 

of the TEAM Greek sub-study. Breast Cancer Res Treat 2005;93:61-6. 

33. Veena K, Shanthi P, Sachdanandam P. The biochemical alterations following 

administration of Kalpaamruthaa and Semecarpus anacardium in mammary 

carcinoma. Chem Biol Interact 2006;161:69-78. 

34. Forrester JS, Milne SB, Ivanova PT, Brown HA. Computational lipidomics: a 

multiplexed analysis of dynamic changes in membrane lipid composition during 

signal transduction. Mol Pharmacol 2004;65:813-21. 

35. Welti R, Li W, Li M, et al. Profiling membrane lipids in plant stress responses. Role 

of phospholipase D alpha in freezing-induced lipid changes in Arabidopsis. J Biol 

Chem 2002;277:31994-2002. 

36. Bartz R, Li WH, Venables B, et al. Lipidomics reveals that adiposomes store ether 

lipids and mediate phospholipid traffic. J Lipid Res 2007;48:837-47. 

37. Fernando P, Bonen A, Hoffman-Goetz L. Predicting submaximal oxygen 

consumption during treadmill running in mice. Can. J Physiol Pharmacol 

1993;71:854-57. 



26 

38. Lu J, Xie L, Sylvester J, et al. Different gene expression of skin tissues between mice 

with weight controlled by either calorie restriction or physical exercise. Exp Biol Med 

2007;232:473-80. 

39. Mehl KA, Davis JM, Clements JM, Berger FG, Pena MM, Carson JA. Decreased 

intestinal polyp multiplicity is related to exercise mode and gender in ApcMin/+ 

mice. J Appl Physiol 2005;98:2219-25. 

40. Badman MK, Flier JS. The gut and energy balance: visceral allies in the obesity wars. 

Science 2005;307:1909-14. 

41. Huffman DM, Moellering DR, Grizzle WE, Stockard CR, Johnson MS, Nagy TR. 

Effect of exercise and calorie restriction on biomarkers of aging in mice. Am J 

Physiol Regul Integr comp Physiol 2008;294:R1618-27. 

42. Postle AD, Dombrowsky H, Clarke H, Pynn CJ, Koster G, Hunt AN. Mass 

spectroscopic analysis of phosphatidylinositol synthesis using 6-deuteriated-myo-

inositol: comparison of the molecular specificities and acyl remodelling mechanisms 

in mouse tissues and cultured cells. Biochem Soc Trans 2004;32:1057-9. 

43. Dwivedi C, Maydew ER, Hora JJ, Ramaeker DM, Guan X. Chemopreventive effects 

of various concentrations of alpha-santalol on skin cancer development in CD-1 mice. 

Eur J Cancer Prev 2005;14:473-6. 

44. Jiang Y, Wang W. Potential mechanisms of weight control for cancer prevention. 

Biophys Rev Lett 2008;421-37. 

45. Quinn MT, Parthasarathy S, Steinberg D. Lysophosphatidylcholine: a chemotactic 

factor for human monocytes and its potential role in atherogenesis. Proc Natl Acad 

Sci USA 1998;85:2805-9. 



27 

46. Chai YC, Howe PH, DiCorleto PE, Chisolm GM. Oxidized low density lipoprotein 

and lysophosphatidylcholine stimulate cell cycle entry in vascular smooth muscle 

cells. Evidence for release of fibroblast growth factor-2. J Biol Chem 

1996;271:17791-7. 

47. Kugiyama K, Kerns SA, Morrisett JD, Roberts R, Henry PD. Impairment of 

endothelium-dependent arterial relaxation by lysolecithin in modified low-density 

lipoproteins. Nature 1990;344:160-2. 

48. Sidik K. Smerdon MJ. Bleomycin-induced DNA damage and repair in human cells 

permeabilized with lysophosphatidylcholine. Cancer Res 1990;50:1613-9. 

49. Beare-Rogers J, Dieffenbacher A, Holm JV. Lexicon of lipid nutrition. IUPAC Pure 

Appl Chem 2001;73:685-744. 

50. Vance DE, Vance JE. In: Vance JE, Vance D, editors. Biochemistry of lipids, 

Lipoproteins and Membranes, 4th Edition. Burlington: Elsevier; 2002. p.192-7.  

51. Burdge GC, Jones AE, Wootton SA. Eicosapentaenoic and docosapentaenoic acids 

are the principal products of alpha-linolenic acid metabolism in young men. Br J Nutr 

2002;88:355-63. 

52. Gudbjarnason S. Dynamics of n-3 and n-6 fatty acids in phospholipids of heart 

muscle. J Intern Med 1989;731:117-28. 

53. Mori TA, Beilin LJ.Omega-3 fatty acids and inflammation. Curr Atheroscler Rep 

2004;6:461-7. 

54. Marchioli R. Omega-3 polyunsaturated fatty acids and cardiovascular diseases. 

Minerva. Cardioangiol 2003;51:561-76. 



28 

55. Jho DH, Cole SM, Lee EM, Espat NJ, Role of omega-3 fatty acid supplementation in 

inflammation and malignancy. Integr Cancer Ther 2004;3:98-111. 

56. Hardman WE. (n-3) fatty acids and cancer therapy. J Nutr 2004;134:3427S-30S. 

57. Fan YY, Ly LH, Barhoumi R, McMurray DN, Chapkin RS. Dietary docosahexaenoic 

acid suppresses T cell protein kinase C theta lipid raft recruitment and IL-2 

production. J Immunol 2004;173:6151-60.  



29 

Figure Legends 

Figure 1. Effects of exercise with or without controlled dietary intake on body 

weight and body fat. CD-1 mice at 8 weeks old were fed ad libitum or pair-fed the same 

amount as the sedentary control. They performed treadmill exercise at 13.4 m/min, 60 

min/day, 5 days/week, for 14 weeks.  A: Body weight (A) and body fat (B) were 

significantly lower in exercised and pair-fed mice in comparison with either sedentary 

control mice or exercised mice with ad libitum-feeding. Results are means ± SE, n = 10-

15, *p ≤ 0.05 vs. sedentary control or exercised but ad libitum-fed mice. 

Figure 2. Quantification of 22:5 and 22:6-containing acyl species in PC/PE 40:5 and 

PC/PE 40:6 phospholipids via production spectra for acyl group identification. CD-1 

mice were exercised with controlled dietary intake for 14 weeks. The acyl groups of 

PC/PE 40:5 and PC/PE 40:6 in a lipid extract were identified as acyl anions from the 

appropriate negative ion precursors by ESI-MS/MS. PC and PE were analyzed as [M + 

OAc]- and [M-H]- ions, respectively. The lines show pairs of acyl species consistent with 

the observed PC or PE m/z. These product ion analyses were performed on selected 

molecular ions, indicating three major pairs of acyl composition (18:0-22:5 > 18:1-22:4 

and 20:1-20:4) for PC40:5 (A), two major pairs of acyl composition (18:0-22:6 > 18:1-

22:5) for PC 40:6 (B), two major pairs of acyl composition (18:0-22:5 > 18:1-22:4) for 

PE 40:5 (C), and three major pairs of acyl composition (18:0-22:6 > 18:1-22:5 and 18:2-

22:4) for PE 40:6 (D). The fractions of the 40:5 and 40:6 species (determined from the 

lipid profile) that corresponded to the indicated 22:5 and 22:6-containing species were 

determined from the production spectra analysis (E). The PC/PE 18:0-22:5 and PC/PE 

18:0-22:6 were significantly higher in exercise and pair fed mice, but not in exercise and 
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ad libitum-fed mice when compared with the sedentary control. Results are means ± SE, 

n = 4. Means with different letters differ significantly, p ≤ 0.001. 

Figure 3. Stepwise discriminant analysis of 25 phospholipid variables. CD-1 mice 

were exercised with or without controlled dietary intake for 14 weeks, and then 

quantitative profiling of phospholipids was performed by ESI-MS/MS in mouse skin 

tissues. Total 57 phospholipids were significantly changed among three treatment groups 

and 25 of them are indicated in the inserted table with mol% of total polar lipid content. 

Automatic backward stepwise variable selection in discriminant analysis identified 25 

phospholipids as indicated in the inserted table that could successfully predict a treatment 

group with 92% correct classification (Wilks' lambda = 0.001 at p ≤ 0.00001) based upon 

the first two principal discriminant functions. 

Figure 4. Effects of exercise with or without controlled dietary intake on PI3K 

protein expression in mouse skin tissues. CD-1 mice were exercised with or without 

controlled diet intake for 14 weeks. The level of PI3K protein in skin tissues was 

determined by western blotting and quantified by the FluorChemTM 8800 Advanced 

Imaging System. Results are means ± SE, n = 10-15. Means with different letters differ 

significantly, p ≤ 0.01. 

Figure 5. Effects of exercise with or without controlled dietary intake on PI3K 

protein expression in skin epidermis. CD-1 mice were exercised with or without 

controlled dietary intake for 14 weeks. Representative histological skin sections with 

immunohistochemical staining for p110-PI3K in epidermis in acetone-treated control (A) 

and TPA-treated control (B), exercise with ad libitum-feeding (C), and exercise with pair-
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feeding (D) are shown. The arrows indicate representative staining of the target protein in 

epidermis (n = 3-5). 

Figure 6. Effects of exercise with or without controlled dietary intake on Elovl gene 

expression in skin tissues. CD-1 mice were exercised with or without controlled dietary 

intake for 14 weeks. The expression of six Elovl family genes was measured by 

microarray analysis as described in the Materials and Methods. The accession number for 

these six genes are as follows, including both NM_001039176 (elongation of very long 

chain fatty acids-like 1 isoform 1) and NM_001039175 ( elongation of very long chain 

fatty acids-like 1 isoform 2 for Elovl1, NM_019423 (elongation of very long chain fatty 

acids-like 2) for Elovl2, NM_007703 (elongation of very long chain fatty acids-like 3) for 

Elovl3, NM_001145974 (elongation of very long chain fatty acids-like 4) for Elovl4, 

NM_134255 (elongation of very long chain fatty acids-like 5) for Elovl5, and 

NM_130450 (elongation of very long chain fatty acids-like 6) for Elovl6. Results are 

means ± SE (n = 4). Means with different letters differ significantly, p ≤ 0.05.  
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