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Abstract 

Corncobs were used as the feedstock to investigate the effect of operating conditions and 

crude glycerol (solvent) on bio-oil production. The highest bio-oil yield of 33.8% on the basis of 

biomass dry weight was obtained at 305°C, 20 min retention time, 10% biomass content, 0.5% 

catalyst loading. At selected conditions, bio-oil yield based on the total weight of corn cobs and 

crude glycerol increased to 36.3% as the crude glycerol/corn cobs ratio increased to 5. 

Furthermore, the optimization of operating conditions was conducted via response surface 

methodology. A maximum bio-oil yield of 41.3% was obtained at 280°C, 12min, 21% biomass 

content, and 1.56% catalyst loading. A highest bio-oil carbon content of 74.8% was produced at 

340°C with 9% biomass content. A maximum carbon recovery of 25.2% was observed at 280°C, 

12min, 21% biomass content, and 1.03% catalyst loading.  

The effect of biomass ecotype and planting location on bio-oil production were studied 

on big bluestems. Significant differences were found in the yield and elemental composition of 

bio-oils produced from big bluestem of different ecotypes and/or planting locations. Generally, 

the IL ecotype and the Carbondale, IL and Manhattan, KS planting locations gave higher bio-oil 

yield, which can be attributed to the higher total cellulose and hemicellulose content and/or the 

higher carbon but lower oxygen contents in these feedstocks. Bio-oil from the IL ecotype also 

had the highest carbon and lowest oxygen contents, which were not affected by the planting 

location.  

In order to better understand the mechanisms of hydrothermal conversion, the interaction 

effects between cellulose, hemicellulose and lignin in hydrothermal conversion were studied. 

Positive interaction between cellulose and lignin, but negative interaction between cellulose and 

hemicellulose were observed. No significant interaction was found between hemicelluose and 

lignin. Hydrothermal conversion of corncobs, big bluestems, switchgrass, cherry, pecan, pine, 

hazelnut shell, and their model biomass also were conducted. Bio-oil yield increased as real 

biomass cellulose and hemicellulose content increased, but an opposite trend was observed for 

low lignin content model biomass. 
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Abstract 

Corncobs were used as the feedstock to investigate the effect of operating conditions and 

crude glycerol (solvent) on bio-oil production. The highest bio-oil yield of 33.8% on the basis of 

biomass dry weight was obtained at 305°C, 20 min retention time, 10% biomass content, 0.5% 

catalyst loading. At selected conditions, bio-oil yield based on the total weight of corn cobs and 

crude glycerol increased to 36.3% as the crude glycerol/corn cobs ratio increased to 5. 

Furthermore, the optimization of operating conditions was conducted via response surface 

methodology. A maximum bio-oil yield of 41.3% was obtained at 280°C, 12min, 21% biomass 

content, and 1.56% catalyst loading. A highest bio-oil carbon content of 74.8% was produced at 

340°C with 9% biomass content. A maximum carbon recovery of 25.2% was observed at 280°C, 

12min, 21% biomass content, and 1.03% catalyst loading.  

The effect of biomass ecotype and planting location on bio-oil production were studied 

on big bluestems. Significant differences were found in the yield and elemental composition of 

bio-oils produced from big bluestem of different ecotypes and/or planting locations. Generally, 

the IL ecotype and the Carbondale, IL and Manhattan, KS planting locations gave higher bio-oil 

yield, which can be attributed to the higher total cellulose and hemicellulose content and/or the 

higher carbon but lower oxygen contents in these feedstocks. Bio-oil from the IL ecotype also 

had the highest carbon and lowest oxygen contents, which were not affected by the planting 

location.  

In order to better understand the mechanisms of hydrothermal conversion, the interaction 

effects between cellulose, hemicellulose and lignin in hydrothermal conversion were studied. 

Positive interaction between cellulose and lignin, but negative interaction between cellulose and 

hemicellulose were observed. No significant interaction was found between hemicelluose and 

lignin. Hydrothermal conversion of corncobs, big bluestems, switchgrass, cherry, pecan, pine, 

hazelnut shell, and their model biomass also were conducted. Bio-oil yield increased as real 

biomass cellulose and hemicellulose content increased, but an opposite trend was observed for 

low lignin content model biomass. 
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Chapter 1 - Introduction* 

Abstract 

Biofuels have received great attention due to the rapid depletion of crude oil and 

environmental problems associated with fossil fuel use. Biofuels derived from lignocellulosic 

biomass are promising alternatives to fossil fuel. Lignocellulsic biomass can be converted to 

biofuels by gasification, pyrolysis, and hydrothermal conversion, whose advantages and 

disadvantages were summarized. Among these technologies, hydrothermal conversion of 

lignocellulosic biomass to bio-oils offers major economic, environmental, and strategic benefits. 

The general background of hydrothermal conversion and problems associated with hydrothermal 

conversion were reviewed. The objectives of this dissertation also were listed in this chapter.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*1.1 and 1.2 have been published in a review paper.  

Gan, J., Yuan W. 2012. The Effect of biomass on bio-oil production via hydrothermal conversion. Xiu S.N., Oil:  

         production, consumption and environmental impact. NOVA Science Publishers, Inc., NY.  
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 1.1 General background 

According to International Energy Outlook 2008, the world liquid fuel consumption in 

2030 could increase to 113 million barrels per day from 84 million barrels per day in 2005. The 

United States currently consumes more than 140 billion gallons of transportation fuels annually. 

The burning of fossil fuels significantly increases the level of CO2 in the atmosphere. The 

transportation sector was responsible for about 25% of worldwide CO2 emissions and it will 

increase to nearly 50% of the total emissions by 2030. Therefore, it is necessary to produce 

alternatives to fossil fuels. Biofuels have received great attention due to the rapid depletion of 

crude oil and environmental problems associated with fossil fuel use. Biofuels play an increasing 

role to reduce CO2 emissions since CO2 can be fixed by photosynthesis during biomass growth.  

Global biofuels production increased rapidly over the last decade. Around 68 billion liters 

bioethanol and 15 billion liters biodiesel were produced globally in 2008, which are typical first 

generation biofuels (IEA, 2009). Bioethanol is mainly derived from corn and sugar cane through 

starch or sugar fermentation. Biodiesel is produced through transesterification of vegetable oils, 

residual oils and fats (Naik et al., 2010). The commercial first generation biofuels can offer some 

CO2 benefits and reduce stress of energy security. However, they face heavy criticism now 

because they compete with food production. Therefore, second generation biofuels produced 

from lignocellulosic biomass is a good option because they do not compete with food crops, 

could significantly reduce CO2 production, and have abundant feedstock. DOE and USDA 

projected that the U.S. biomass resources annually could provide around 1.3 billion dry tons of 

lignocellulosic biomass for biofuels production, which would meet about 40% of the annual U.S. 

fuel demand for transportation. The biomass includes agricultural residue, forestry residue, and 

perennial grass (Perlack et al., 2005).  

Conversion of lignocellulosic biomass to biofuels offers major economic, environmental, 

and strategic benefits. As shown in Figure 1.1, there are two primary routes in such a project: the 

sugar platform (or biochemical processing) and the thermochemical platform. Cellulosic ethanol 

falls into the sugar platform, wherein biomass is hydrolyzed to fermentable sugars which are 

further processed to ethanol or chemicals. In the thermochemical platform, biomass is converted 

into synthesis gas through gasification or bio-oils through pyrolysis and hydrothermal conversion 

(HTC), which can be further upgraded to liquid fuels (e.g., gasoline and diesel fuel) and other 

chemicals.  
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Figure 1.1 Primary routes for biofuels conversion 

(Huber and Dumesic, 2006) 

 1.2 Hydrothermal conversion 

Among these technologies, HTC of biomass possesses some special features and 

advantages. HTC is a chemical reforming process, in which organic matters are depolymerized 

and reformed to bio-oil, gases, char, and water-soluble matters in a heated, pressurized, and 

oxygen-absent enclosure (Ocfmia et al., 2006). HTC is also called hydrothermal/direct 

liquefaction or hydrothermal upgrading/depolymerization, which is conducted under elevated 

pressure (50 to 200 atm) and at low temperature (200°C to 400°C) to keep water in either liquid 

or supercritical state. The use of water as a solvent obviates the need to dry biomass and permits 

reactions to be carried out at lower temperatures in comparison with other thermo-chemical 

technologies, such as gasification and fast pyrolysis.  

The primary product of HTC is an oily organic liquid called bio-oil or bio-crude, and the 

main by-products are solid residue (also called bio-char), aqueous products, and gases. Bio-oils 

can be used as a fuel for burners, boilers, stationary diesel engines, or turbines (Czernik and 

Bridgwater, 2004). They may also serve as a starting material for valuable petroleum-based fuels 

(e.g., gasoline and diesel) and products such as polymers, aromatics, lubricants, and asphalt 
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(Zhang et al., 2007; Peterson et al., 2008). For comparison, bio-oils can also be made by fast 

pyrolysis, which occurs at atmospheric pressure under higher temperatures (~500 ºC) with very 

short residence times (<2 s). Although fast pyrolysis oils have the advantage of short residence 

times and lower capital costs (Huber et al., 2006), oils produced from HTC typically have more 

desirable qualities than fast pyrolysis oils. As shown in Table 1.1, HTC oils typically have much 

lower oxygen and moisture contents, and consequently much higher energy value, as compared 

to oils from fast pyrolysis. Moreover, both dry and wet biomass can be used as feedstock in 

HTC. Drying the feedstock is not needed in HTC, which makes it especially suitable for 

naturally wet biomass. In addition, HTC is a net energy process. The energy balance of swine 

manure HTC by a continuous reactor system has been calculated by Kim (2006). The energy 

gain based on bio-oil heating value and energy consumption for reactants heating is about 3 

without energy loss, and 1.2 with energy loss.  

 

Table 1.1 Property comparison between pyrolysis oil and HTC oil 

(Huber et al., 2006) 

Property Pyrolysis oil HTC oil 

Moisture content, wt% 15-30 5.1 

Specific gravity 1.2 1.1 

Carbon (wt%) 54-58 73 

Hydrogen (wt%) 5.5-7.0 8 

Oxygen (wt%) 35-40 16 

Elemental composition: 

High heating value (MJ kg-1) 16-19 34 

 

Many types of lignocellulosic biomass such as wood, straws, stalks, shells, and husks 

have been successfully converted into bio-oils through HTC. Table 1.2 summarizes the yield and 

quality of bio-oils from HTC of some common types of lignocellulosic biomass. Yield ranged 

from 6.5% to 28.8%, while H/C ratio and O/C ratio were in the range of 0.96 to 1.45 and 0.11 to 

0.72, respectively. Large variances of bio-oil yield and quality indicate that either biomass type 

or operating conditions, or both, significantly affect biomass HTC. However, it is still not clear 

which factor is dominant and how they affect the process.  
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Table 1.2 Hydrothermal conversion of common types of lignocellulosic biomass 

Raw 

material 

Temperature 

(ºC ) 

RT 

(min) 

Catalyst 

 

Oil 

yield 

(%) 

O/C H/C 

Heating 

value  

(kJ/g) 

Reference 

Corn 

stalk 
300 30 

5% 

Na2CO3 
28.3 0.21 1.01 29.7 

Minowa et 

al., 1998 

300 30 
5% 

Na2CO3 
28.8 0.22 1.12 30.8 

Minowa et 

al., 1998 
 

Rice 

husk 280 15 No 6.5 - - - 
Karagöz et 

al., 2005 

300 30 
5% 

Na2CO3 
22.5 0.17 1.20 29.8 

Minowa et 

al., 1998  

Rice 

straw 

 
260-340 3/5 No 10-40 

0.11-

0.72 

1.14-

1.45 

27.55-

37.17 

Li et al., 

2009;  

Yuan et al., 

2007 

Beech 

wood 
277-377 25 No 

16.8-

28.4 
0.19 0.96 

27.6-

31.3 

Demirbaş et 

al., 2005 

Spruce 

wood 
277-377 25 No 

13.8-

25.8 
0.19 0.97 

28.3-

33.9 

Demirbaş, 

2005 

Sawdust 280 15 No 7.2 - - - 
Karagöz et 

al., 2005 

 1.3 Problem statement 

The yield and quality of the target product of biomass HTC (bio-oil) is significantly 

affected by the operating parameters, such as reaction temperature, retention time, biomass 

loading, catalyst and solvent used etc. However, the effects of the operating parameters and the 

interactions between them have not been fully investigated. 

Bio-oil production from lignocellulosic biomass HTC is affected by the type of biomass 

due to their different chemical compositions and physical structures (Minowa et al., 1998; 

Bhaskar et al., 2008). However, little information is available to relate biomass type and 
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characteristics to HTC performance. Chemical reactions in HTC process mainly include 

hydrolysis, solvolysis, cracking, depolymerization, hydrogenation, decarboxylation, 

condensation, and repolymerization etc. (Chornet and Overend, 1985; Zhang et al., 1999).  But 

the mechanisms and kinetics of HTC process are not well understood yet. 

Bio-oil made through lignocellulosic biomass HTC usually has high viscosity, poor 

quality and are of low yield, which limit the application of this technology. Bio-oil production 

from lignocellulosic biomass can be improved by using organic solvents. Researchers have 

generated bio-oils with low viscosity and high yield from organic solvents, especially crude 

glycerol (Demirbas, 2000; Xiu et al., 2010, 2011). Xiu and coworkers (2010, 2011) have 

reported that bio-oil yield dramatically increased and its quality was improved by the use of 

crude glycerol in swine manure HTC process. But the effectiveness and mechanisms of crude 

glycerol on the bio-oil production from gnocellulosic biomass have not been studied. Crude 

glycerol is a low-value (e.g., <2 cents per pound) by-product of biodiesel production and is 

sometimes treated as waste. Because of the rapid growth of the biodiesel industry, the quantity of 

crude glycerol produced is becoming considerable (e.g., >200 million lb per year); treatment and 

possible use of this by-product are topics of urgent importance. 

 1.4 Research objectives 

The goal of this research is to improve the yield and quality of bio-oil produced from 

hydrothermal conversion (HTC) of lignocellulosic biomass, which is affected by operating 

conditions (temperature, retention time, biomass content, and catalyst loading), solvent, biomass 

ecotype and planting location, as well as biomass chemical and elemental compositions. Specific 

objectives and approaches are as follows: 

1) To investigate the effect of operating conditions and crude glycerol on the yield and quality 

of bio-oil produced from corncobs HTC. 

2) To optimize the operating conditions for bio-oil production from corncobs HTC via 

response surface methodology, and investigate the interaction effects among these 

operating conditions. 

3) To study the effect of biomass ecotype and planting location on bio-oil production. Three 

ecotypes (CKS, EKS, IL) and one cultivar (KAW) of big bluestem (Andropogon gerardii) 
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that were planted in three locations (Hays, KS; Manhattan, KS; and Carbondale, IL) will be 

converted to bio-oil via hydrothermal conversion. 

4) To investigate the effect of biomass chemical compositions on bio-oil production. 

Lignocellulosic biomass is mainly composed of cellulose, hemicellulose and lignin. 

Decomposition behaviors of the three compounds and their interactions in HTC process 

will be investigated using pure cellulose, hemicellulose, lignin and their mixtures as 

feedstock. Then, HTC of typical real lignocellulosic biomass and their model biomass will 

be carried out. 
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Chapter 2 - Literature Review* 

Abstract 

Bio-oil production from lignocellulosic biomass via hydrothermal conversion (HTC) was 

studied widely. Bio-oil production from lignocellulosic biomass HTC was significantly affected 

by the operating conditions (temperature, retention time, biomass content, catalyst used) and 

solvents used, which were reviewed in this chapter. Hydrothermal conversion of lignocellulosic 

biomass was also affected by biomass chemical compositions, whose main compounds are 

cellulose, hemicellulose and lignin. The conversion processes of cellulose, hemicellulose, and 

lignin, and their effects on bio-oil production were reviewed, separately.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*2.2 has been published in a review paper.  

Gan, J., Yuan W. 2012. The Effect of biomass on bio-oil production via hydrothermal conversion. Xiu S.N., Oil:  

         production, consumption and environmental impact. NOVA Science Publishers, Inc., NY.  
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 2.1 Effects of operating parameters on lignocellulosic biomass HTC 

The operating parameters of HTC include reaction temperature, retention time, biomass 

loading, pressure, carry gas, catalyst and solvent used, in which reaction temperature, retention 

time, catalyst and solvent used have significant effects on biomass HTC. Their effects on bio-oil 

yield and quality will be discussed respectively. 

    2.1.1 Effect of temperature on HTC 

Many researchers have studied the influence of temperature on biomass HTC. Bio-oil 

formation from lignocellulosic biomass mainly occurred at the temperature range of 200 to 

420℃, in which bio-oil yield increased with increasing reaction temperature, and then decreased 

as temperature increased further (Ogi et al., 1994; Minowa et al., 1998a; Zhong and Wei, 2004; 

Qian et al., 2007; Yuan et al., 2007; Xu and Lad, 2008; Xu and Lancaster 2008; Liu and Zhang, 

2008). It should be interpreted by a competition between depolymerization and repolymerization/ 

condensation during lignocellulosic biomass HTC. As temperature increased, the 

depolymerization of the polymers into a liquid oil-rich phase would become easier. But a further 

increase of the temperature might promote the decomposition of these fragments into gaseous 

products and repolymerization/ condensation of the intermediates into char. It was confirmed by 

many researchers. Yuan et al., (2009) found that bio-oil formation from straw HTC without 

catalyst mainly occurred between 250℃ and 300℃, but high molecular compounds were 

produced by repolymerization when temperature further increased to 310℃. When pure cellulose 

was used as HTC feedstock, the maximum oil yield occurred at 300℃ (Minowa et al., 1998). 

Moreover, Xu and Lancaster (2008) proposed that water soluble oil was converted into heavy oil 

as temperature increased from 250℃ to 350℃. As the temperature increased further to 380℃, 

heavy oil yield decreased, but more char and gas were produced might due to the condensation, 

repolymerization or cracking reaction of the intermediates. Thus, below a critical temperature, 

the decomposition reaction is dominant. Above this critical temperature, it is the other way 

round, repolymerization becomes predominant. 

The optimum temperature for bio-oil production from lignocellulosic biomass HTC 

varied case by case because the different chemical composition and operating conditions. Zhang 

and Wei (2004) found that the optimal temperature of wood HTC shifted to a higher value as the 

lignin content increased due to the good thermal stability of lignin.  
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     2.1.2 Effect of retention time on HTC 

Reaction retention time is another important operating parameter. Most researchers 

agreed that there was a critical retention time for the highest oil yield from biomass HTC. Bio-oil 

yield decreased at a prolonged retention time, which could be explained by the cracking of bio-

oil or intermediate products to gases and formation of chars by condensation, cyclization, and 

repolymerization (Xu and Etcheverry, 2008; Li et al., 2009).  

 2.1.3 Effect of catalyst on HTC 

Biomass HTC was significantly affected by the kinds of catalyst and catalyst loading. 

Alkali catalysts and iron-based catalysts have been widely in biomass HTC to enhance the bio-

oil yield. The effect of alkaline catalysts on lignocellulosic biomass HTC has been studied by 

many researchers (Song et al., 2004; Tomoko Ogi et al., 1985; Selhan Karagoz et al., 2004; 

2005a; 2005b; Xu and Lad, 2008). Ogi et al. (1985) investigated the effect of nine catalysts 

(CaCO3, Ca(OH)2, Na2CO3, NaOH, HCOONa, NaCl, K2CO3, KOH and HCOOK) on HTC of 

woody biomass at 300°C with 2.0MPa initial pressure. The results indicated that alkali and 

alkaline earth salts except chloride promoted wood HTC. Potassium and sodium salts had no 

significant difference on the bio-oil yield. Karagoz et al. (2004; 2005a; 2005b) also found that 

the alkali and alkaline salts enhanced bio-oil formation from wood HTC at 280°C for 15min, but 

they suggested that catalytic activity of these catalysts shown a priority sequence of  

K2CO3>KOH> Na2CO3>NaOH >RbOH>CsCO3>RbCO3>CsOH based on heavy oil yield. HTC 

of woody biomass in sub- and super-critical ethanol with 5 wt% FeS or FeSO4 as catalyst was 

conducted by Xu and Etcheverry (2008). They found that both catalysts improved the bio-oil 

formation when temperature increased from 220°C to 350°C. The highest bio-oil yield of 63% 

was obtained at 350°C for 40min with 5 wt% FeSO4 and 5MPa initial pressure of H2. These 

catalysts used in biomass promoted the bio-oil formation by suppressing the char formation from 

oil (Minowa et al., 1998a). 

Furthermore, the catalytic activity of catalysts was dependent on reaction temperature. 

Xu and Etcheverry (2008) found that iron-based catalyst were more active at higher temperature. 

The optimum reaction temperature for woody biomass HTC was dropped from 350°C to 300°C 

by Ba(OH)2, Ca(OH)2 and FeSO4 (Xu and Lad, 2008).  
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Alkali salts promoted the conversion of biomass to bio-oil through HTC, but the bio-oil 

yield decreased with the addition of an excessive amount of catalyst. Ogi and his co-workers 

(1985) used Quercus serrata thunb as feedstock, and K2CO3 as catalyst to study the effect of 

catalyst loading on wood HTC. They found that the bio-oil yield increased from 5.0% to 26.2% 

as alkali catalyst loading increased from 0 to 1.4%. However, when the catalyst loading further 

increased, the bio-oil yield decreased. This phenomenon also observed by other researchers 

(Bhaskar et al., 2008) when cypress was used as feedstock with alkali salt catalyst. Contrarily, 

the char yield of cypress HTC decreased firstly and then increased as the increasing alkali 

catalyst loading (Bhaskar et al., 2008). It indicated that severe alkali condition suppressed the 

bio-oil production from lignin, but promoted the char formation from the intermediate products 

of lignin decomposition by condensation and repolymerization. 

Suzuki and Nakamura (1988) proposed the following reasons to explain this 

phenomenon: (1) high alkali concentration accelerated the formation of solids from some oil 

fraction through repolymerization; (2) alkali salts that generated by the reaction of catalyst and 

some oil fraction dissolved in an aqueous phase; (3) high pH also enhanced the formation of 

materials that was easily soluble in an aqueous phase.  

     2.1.4 Effect of solvent on HTC 

Water is the cheapest and most common medium in HTC, but the bio-oil obtained from 

lignocellulose HTC with water is a viscous tarry lump with high oxygen content and low heating 

value, which can not be utilized directly. Fortunately, Researchers have generated bio-oils with 

low viscosity and high yield by using organic solvents such as ethyl acetate (Demirbas, 2000a), 

acetone (Heitz et al., 1994; Liu and Zhang, 2008), 2-propanol (Ogi et al., 1994), and butanol 

(Ogi et al., 1993), but these solvents are expensive. Glycerol (glycerine) can be used as an 

organic solvent for biomass delignification (Demirbas, 1992; 2008; Demirbas and Celik, 2005; 

Kücük, 2005) and to significantly improve the performance of liquefaction in the conversion of 

biomass into bio-oil (Demirbas, 2000b; Xiu et al., 2010).  

The HTC of pinewood in the presence of three solvents (water, acetone and ethanol) was 

studied in a 200mL autoclave by Liu and Zhang (2008) in the conditions of temperature rang 

250°C to 450°C, starting pressure 1MPa with argon, and retention time 20min. Their results 

showed that the behaviors of biomass HTC in organic solvents were similar with that in water, 
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and the solvent efficiency in pinewood HTC was in an order of: ethanol>acetone>water. 

Furthermore, Yao et al. (1994) reported that biomass liquefaction with mixed solvent was more 

significantly promoted than that with sole solvent because the mixed solvents had a synergistic 

capability to enhance the biomass liquefaction and suppress the solid residue formation.  

 2.2 Effects of lignocellulosic biomass components on its HTC 

 2.2.1 Cellulose HTC 

Cellulose is a long linear chain polymer of glucose, which was strung together by ß-

glycosidic linkages. The structure of cellulose is presented in Figure 2.1.  The high degree of 

hydrogen bonding between cellulose chains makes cellulose more stable and resistant to 

chemical attack in comparison with hemicellulose.  

 

Figure 2.1 Structure of cellulose 

Cellulose is converted into bio-oil by HTC through hydrolysis and decomposition. 

Glucose is the main product of cellulose hydrolysis (Bobleter, 1994). Then, glucose is 

decomposed to organic acid (i.e. acetic acid, formic acid, lactic acid, levulinic acid), aldehydes 

and aromatic chemicals by Retro Aldol reaction, Dehydration, Benzilic acid rearrangement and 

hydration (Antal et al., 1990a; 1990b; Kabyemela et al., 1997;1999; Srokol et al., 2004; Aida et 

al., 2007; Takeuchi et al., 2008; Kishida et al., 2006; Girisuta et al., 2006; Luijkx et al., 1993). 

The conversion pathways of cellulose changed with acidic, neutral and alkaline conditions. 

Under acidic conditions, 5-HMF (5-Hydroxymethyl-furfural) and levulinic acid are the main 

products of cellulose HTC. levulinic acid is produced from 5-HMF by hydration. Under alkaline 

conditions, the main conversion products are formic acid, acetic acid and lactic acids, which are 

produced from the intermediates glycolaldehyde, glyceraldehydes, and pyruvaldehyde. Under 

neutral conditions, both acidic and alkaline pathway exist (Yin and Tan, 2012). 

When pure cellulose was used as HTC feedstock without catalyst, it was found to 

decompose quickly between 240 and 270°C. The formation of bio-oil from cellulose HTC 
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started at 240°C, and bio-oil yield reached its highest level at 300°C, but then decreased as 

temperature further increased. With 5% alkali catalyst, cellulose is decomposed quickly between 

260 and 300°C, and bio-oil yield almost kept constant when temperature was higher than 300°C 

(Minowa, et al., 1998a).  

 2.2.2 Hemicellulose HTC 

Hemicelluloses are polysaccharides which are generally heterogeneous, built up of D-

xylose, L-arabinose, D-galactose, D-glcose, D-mannose) and uronic acid. Compared with 

cellulose, hemicelluloses have a lower degree of polymerization. They are largely soluble in 

alkali, and also more easily hydrolyzed. Solvolysis of hemicellulose began at 190°C, and it 

completely dissolved in the water at 220°C (Allen et al., 1996). D-xylose and xylan are alway 

used as the model compound to investigate hemicellulose HTC (Sasaki et al., 2003; Pińkowska 

et al., 2011). They proposed the main reaction pathways of hemicellulose HTC as shown in 

Figure 2.2. 
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Figure 2.2 Hydrothermal conversion pathways of xylan 

(Pińkowska et al., 2011) 
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 2.2.3 Lignin HTC 

The chemical structure of lignin is more complex than cellulose and hemicelluloses. It is 

composed of paracoumaryl alcohol, confieryl alcohol and shinapyl alcohol, which were 

presented in Figure 2.3. These three units are crossing linked by ether (Bobleter, 1994).  
O H

O H

O H

O H

O

CH 3

O H

O H

O

CH 3

O

CH 3

 

          Paracoumaryl alcohol    Confieryl alcohol     Shinapyl alcohol 

Figure 2.3 Structure units of lignin 

The reaction pathways of lignin were investigated in supercritical water (Fang et al., 

2008). They proposed that the dissolved lignin was homogeneously converted to single-ring 

phenolic oil first, which were further hydrolyzed and dealkylated into gas, aqueous products and 

char. On the other hand, the non-dissolved portion was converted to gas, hydrocarbons, water-

soluble products, phenolic char and polyaromatic char via free-radical and concerted 

mechanisms or acid-catalyzed decomposition.  

 2.2.4 Effect of cellulose content on bio-oil production at neutral conditions 

Correlations between cellulose content and bio-oil yield at different reaction temperatures 

are shown in Figure 2.4. Research data (Demirbaş, 2005; Demirbaş et al., 2005) showed that at 

neutral conditions, bio-oil yield generally increased with increasing cellulose content. However, 

correlation coefficient R2 of the linear regressions were low, ranging from 0.66 to 0.87 indicating 

that there must have some factors other than cellulose content affecting bio-oil yield. It is also 

evident from Figure 2.4 that reaction temperature had significant positive effect on bio-oil 

production in HTC. As reaction temperature increased from 277°C to 377°C, bio-oil yield 

generally increased from 12% to 28% depending on the type of biomass.  
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Figure 2.4 Effect of cellulose content on bio-oil yield at neutral conditions  
(Data were adopted from Demirbaş, 2005; Demirbaş et al., 2005; spruce wood, beech wood, 

hazelnut shell, tea waste, and quersus pedunculate were used as the HTC feedstock in the 

temperature range of 277°C to 377°C without catalyst) 

 2.2.5 Effect of hemicellulose content on bio-oil yield at neutral conditions 

Correlations between hemicellulose content and bio-oil yield at different reaction 

temperatures are shown in Figure 2.5. Research data (Demirbaş, 2005; Demirbaş et al., 2005) 

showed that at neutral conditions, bio-oil yield generally increased with increasing hemicellulose 

content. However, correlation coefficient R2 of the linear regressions were low, ranging from 

0.70 to 0.74 indicating that there must have some factors other than hemicellulose content 

affecting bio-oil yield. It is also evident from Figure 2.4 and 2.5 that hemicellulose has similar 

effect on lignocellulosic biomass HTC with cellulose at neutral condition. 
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Figure 2.5 Effect of hemicellulose content on bio-oil yield at neutral conditions 

(Data were adopted from Demirbaş, 2005; Demirbaş et al., 2005; spruce wood, beech wood, 

hazelnut shell, tea waste, and quersus pedunculate were used as the HTC feedstock in the 

temperature range of 277°C to 377°C without catalyst) 

 2.2.6 Effect of lignin content on bio-oil yield at neutral conditions 

Lignin is composed of paracoumaryl alcohol, confieryl alcohol and shinapyl alcohol. 

These three components are cross-linked by ethers (Bobleter, 1994). Compared to cellulose, 

lignin content has opposite effect on bio-oil production. Research results showed that bio-oil 

yield decreased with increasing lignin content without catalyst (Demirbaş, 2005; Demirbaş et al., 

2005), which are shown in Figure 2.6 by correlations between lignin content and bio-oil yield. 

The correlation coefficients were in the range of 0.84 to 0.96, indicating a strong negative 

correlation between lignin content and bio-oil yield. In addition, Zhong and Wei (2004) found 

that the yield of bio-oil produced from woody biomass HTC generally decreased with increasing 

lignin content in the temperature range of 280°C to 340°C without catalyst. Bhaskar et al. (2008) 

also found that cherry with higher lignin content produced less bio-oil than cypress with lower 

lignin content at 280°C without catalyst.  



19 

 

10

15

20

25

30

20 25 30 35 40 45
Lignin content (%)

B
io

-o
il 

yi
el

d 
(%

)

277℃ 302℃ 327℃ 352℃ 377℃

 

Figure 2.6 Effect of lignin content on bio-oil yield at neutral conditions 

 (Data were adopted from Demirbaş, 2005; Demirbaş et al., 2005; Beech wood, spruce wood, 
quersus pedunculate, hazelnut shell and tea waste used as feedstock in the temperature range of 

277°C to 377°C without catalyst) 
The above analyses indicate that cellulose rather than lignin in lignocellulosic biomass 

dominates bio-oil production at neutral conditions. Lignin is difficult to be converted into bio-oil 

at neutral conditions due to its thermal stability and complex structure. Lignin is physically and 

chemically stable until high temperatures above 350°C (Bobleter, 1994), which was also 

confirmed by some other researchers that the decomposition of lignin or lignin rich biomass in 

HTC was relatively less than cellulose or cellulose rich biomass (Bhaskar et al., 2008;  Karagöz 

et al., 2005c). 

 2.2.7 Effect of cellulose content on bio-oil yield at alkaline conditions 

At alkaline conditions, the effect of cellulose content on bio-oil yield becomes more 

complex as compared to that at neutral conditions. The relationship between bio-oil yield and 

cellulose content depends on the type of biomass feedstock. For low cellulose content 

(30%~40%) biomass, bio-oil yield decreased with increasing cellulose content. In contrast, bio-

oil yield increased as cellulose content increased for high cellulose content biomass (40%~55%). 

Correlations between bio-oil yield and cellulose contents are shown in Figure 2.7. Although 

general trends seem clear, R2 of linear regressions were low (0.52 and 0.64 for low cellulose and 

high cellulose content biomass feedstocks, respectively), indicating that there must have some 

other factors affecting bio-oil yield. 
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Figure 2.7 Effect of cellulose content on bio-oil yield at alkaline conditions 

 (Data were adopted from Minowa et al., 1998b. All experiments were operated at 300°C with 

5% sodium carbonate) 

 2.2.8 Effect of hemicellulose content on bio-oil yield at alkaline conditions 

At alkaline conditions, the relationship between hemicellulose content and bio-oil yield is 

totally different from that at neutral condition. For both low cellulose content biomass and high 

cellulose content biomass, bio-oil yield decreased with increasing hemicellulose content, which 

is shown in Figure 2.8.  
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Figure 2.8 Effect of hemicellulose content on bio-oil yield at alkaline conditions  

(Data were adopted from Minowa et al., 1998b. All experiments were operated at 300°C with 5% 

sodium carbonate) 
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 2.2.9 Effect of lignin content on bio-oil yield at alkaline conditions 

At alkaline conditions, the relationship between lignin content and bio-oil yield is totally 

different from that at neutral conditions. A study showed that bio-oil yield increased with 

increasing lignin content at alkaline conditions (Minowa et al., 1998b) which is presented in 

Figure 2.9. The high values of R2 (about 0.95) indicate a strong positive correlation between 

lignin content and bio-oil yield. This was also confirmed by others. For example, Zhong and Wei 

(1994) found that the maximum bio-oil yields of four kinds of woody biomass generally 

increased as lignin content increased with 10wt% catalyst over 280°C. Bhasker et al. (2008) 

found that cherry with higher lignin content produced more bio-oil than cypress with lower 

lignin content at 280°C with alkali catalyst. 
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Figure 2.9 Effect of lignin content on bio-oil yield at alkali conditions 

(Data were adopted from Minowa et al., 1998b. All experiments were operated at 300°C with 5% 
sodium carbonate) 

 
It can also be seen from Figure 2.9 that bio-oil yields obtained from high-cellulose 

content biomass were higher than those from low-cellulose content biomass at the same lignin 

content, which cannot be explained by the sole effect of cellulose content. This is possibly due to 

the difference in the physical structure of the two categories of biomass feedstocks. Low-

cellulose biomass (e.g., leaves) may have a cellulose-lignin structure that is difficult to be broken 

up at alkaline conditions for bio-oil formation. They may also contain cellulose and/or lignin that 

are not appropriate for bio-oil production. Vice versa, high-cellulose biomass (e.g., hard wood) 
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may have a physical structure or cellulose/lignin that are suitable for bio-oils. More 

investigations are needed to understand these phenomena.  

The effect of cellulose, hemicellulose and lignin content on bio-oil production via HTC 

summarized above is based on a few researches. It might be just fit for special conditions. Thus, 

more work needs to do to figure out the common influence. In addition, there is little literature 

on interactions between cellulose-derived chemicals, hemicellulose-derived chemicals and 

lignin-derived chemicals. Thus, the decomposition behaviors of cellulose, hemicelluloses, lignin, 

and many kinds of natural lignocellulosic biomass will be studied in this project. 
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Chapter 3 - Hydrothermal Conversion of Corn Cobs and Crude 

Glycerol* 

Abstract  

The effect of operating parameters including reaction temperature, retention time, 

biomass content, and catalyst loading on bio-oil yield from hydrothermal conversion of corn 

cobs was investigated. The highest bio-oil yield of 33.8% on the basis of biomass dry weight was 

obtained at 305°C, 20 min retention time, 10% biomass content, and 0.5% catalyst loading on a 

total reactant weight basis. At selected conditions, the effect of crude glycerol on bio-oil yield 

and quality was studied. Bio-oil yield based on the total weight of corn cobs and crude glycerol 

remained almost constant at approximately 24% when the ratio of crude glycerol/corn cobs was 

below 3. When more crude glycerol was added, bio-oil yield dramatically increased to 36.3%. H2 

molar percentage in the gas product increased from 11.1% to 27.5% as the crude glycerol/corn 

cobs ratio increased from 0 to 5. Bio-oil quality in terms of density and viscosity was also 

enhanced; however, oxygen content in bio-oil increased from 15.5% to 19.9%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

* Results have been published.  

Gan, J., Yuan W., Nelson N. O., Agudelo S. C. 2010. Hydrothermal conversion of corn cobs and crude glycerol. 

Biological Engineering 2(4):197-210. 
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 3.1 Introduction 

Hydrothermal conversion (HTC), also called hydrothermal/direct liquefaction or 

hydrothermal upgrading/depolymerization, is a promising method for converting biomass into 

bio-oil. It is a chemical reforming process in which organic matters are depolymerized and 

reformed in a heated, pressurized, oxygen-free enclosure. The process is usually conducted under 

elevated pressure (700 to 3,000 psi) and at lower temperatures (200°C to 400°C) than other 

thermochemical conversion methods, such as gasification and fast pyrolysis. Use of water as a 

solvent in HTC obviates the need to dry biomass and permits reactions to be carried out at lower 

temperatures. Moreover, both dry and wet biomass can be used as feedstock in HTC. The 

primary product of HTC is an oily organic liquid called bio-oil or bio-crude, and the main by-

products are solid residue (also called bio-char), aqueous products, and gases. Bio-oils can be 

used as a fuel for burners, boilers, stationary diesel engines, or turbines (Czernik and Bridgwater, 

2004). They may also serve as a starting material for valuable petroleum-based fuels (e.g., 

gasoline and diesel) and products such as polymers, aromatics, lubricants, and asphalt (Zhang et 

al., 2007; Peterson et al., 2008). For comparison, bio-oils can also be made by fast pyrolysis, 

which occurs at atmospheric pressure under higher temperatures (~500 ºC) with short residence 

times (<2 s). Although fast pyrolysis oils have the advantage of short residence times and lower 

capital costs (Huber et al., 2006), oils produced from HTC typically have more desirable 

qualities than fast pyrolysis oils. As shown in Table 1.1, HTC oils typically have much lower 

oxygen and moisture contents, and consequently have higher energy value and better stability, as 

compared to oils from fast pyrolysis. Moreover, drying the feedstock is not needed in HTC, 

which makes it especially suitable for naturally wet or high moisture content biomass. 

Corn-based products or by-products are usually a good source for second generation 

biofuels production because corn is one of the most widely planted crops in the world. Annual 

worldwide corn production is about 6.95 × 1011 kg, and approximately 50% of that is produced 

in the United States, mostly in the central states (FAO, 2008). Corn cobs are an important by-

product of corn production. About 18 kg of corn cobs are produced from every 100 kg of corn 

grain (Chiellini et al., 2009). Although corn cobs have been studied as a feedstock for HTC (Yu 

et al., 2007; Zhang et al., 2008), bio-oil production from corn cobs HTC has not been fully 

investigated or optimized. Considering that the yield and quality of bio-oil are strongly 

dependent on factors such as feedstock characteristics, operating temperature, retention time, and 
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biomass content, it is necessary to study how these factors can affect bio-oil production via HTC 

processes.  

Bio-oils obtained from biomass HTC are usually very viscous, which makes them 

difficult to transport, handle, and use. Researchers have generated bio-oils with low viscosity and 

high yield by using organic solvents such as ethyl acetate (Demirbas, 2000a), acetone (Heitz et 

al., 1994; Liu and Zhang, 2008), 2-propanol (Ogi et al., 1994), and butanol (Ogi and Yokoyama, 

1993), but these solvents are expensive. Glycerol can be used as an organic solvent for biomass 

delignification (Demirbas, 1992; 2008; Demirbas and Celik, 2005; Kücük, 2005) and to 

significantly improve the performance of liquefaction in the conversion of biomass into bio-oil 

(Demirbas, 2000b; Xiu et al., 2010). Crude glycerol is a low-value by-product of biodiesel 

production and is sometimes treated as a waste. Approximately 0.8 lb of crude glycerol is made 

for each gallon of biodiesel produced. Because of the rapid growth of the biodiesel industry, the 

quantity of crude glycerol produced is becoming considerable (e.g., >200 million lb per year); 

treatment and possible use of this by-product are topics of urgent importance. 

With the final goal of improving the yield and quality of bio-oil from HTC of corn cobs, 

the objective of this study was to understand the effect of HTC operating parameters including 

reaction temperature, retention time, and biomass content and using crude glycerol as an organic 

solvent on bio-oil production from corn cobs. This work is distinguished from previous work on 

corn cobs HTC (Yu et al., 2007; Zhang et al., 2008) in that the bio-oil yield instead of 

liquefaction yield was studied under various operating conditions. Liquefaction yield simply 

calculates the fraction of biomass that is converted into liquid products, which does not reflect 

how much bio-oil is actually made. In this study, major products including bio-oil, biochar, and 

gas were separated and characterized. Moreover, crude glycerol was used as a unique solvent and 

feedstock for bio-oil production. 

 3.2 Materials and Methods 

 3.2.1 Materials 

Commercially available corn cobs were obtained from Kaytee Products, Inc. (Chilton, 

Wisc.). Before the experiments, corn cobs were ground in a rotary cutting mill (model SM2000, 

Retsch, Inc., Newtown, Pa.) with a 1.0 mm screen. In order to keep all samples free of moisture, 

corn cobs were dried at 49°C overnight before grinding and HTC experiments. 
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Crude glycerol was made via transesterification of food-grade vegetable oil in the 

laboratory. A premixed solution containing 7 g of NaOH and 200 mL of methanol was added to 

each liter of oil. The mixture was continuously agitated and heated (50°C) for 1 h. The products 

(biodiesel and glycerol) were transferred to a separating funnel and let stand for 5 h for more 

complete reaction and separation. Crude glycerol in the bottom layer (pH ~9) was then drained 

from the funnel and used in the experiments. Such lab-scale biodiesel production and glycerol 

separation processes are commonly used (Thompson and He, 2006; Coronado et al., 2008) and 

generate a crude glycerol that contains 63 to 68 wt% glycerol (from pure vegetable oils), with the 

rest being mainly soap, methanol, and small amounts of catalyst whose concentrations may vary 

(Thompson and He, 2006; Xiu et al., 2010). 

 3.2.2 Biomass chemical composition analysis 

Compositions of corn cobs were determined according to laboratory analytical 

procedures developed by the National Renewable Energy Laboratory (Sluiter et al., 2005; Sluiter 

et al., 2008). All data are on the biomass dry weight basis. Briefly, after water and ethanol 

extraction, the sample was soaked in 72% sulfuric acid at 30 °C for 1 h with constant stirring, 

followed by dilution to a 4% acid solution and heating for another hour at 120 °C. The aqueous 

products and solid residue of the pretreatment process were separated by vacuum filtration. The 

filtrate was adjusted to neutral by calcium carbonate, then the sugar contents of the filtrate were 

measured by high-performance liquid chromatography (Shimadzu, Kyoto, Japan), and acid-

soluble lignin content in the filtrate was detected by a UV-visible spectrophotometer (BioMate 3, 

Thermo Electron Corporation, Madison, WI). The solid residue was dried and combusted. The 

weight difference between the dry residue and combustion residue was reported as acid-insoluble 

lignin. Corn cob contains 35.6% cellulose, 29.9% hemicellulose, 14.2% lignin, and 12.8% 

extractive.  

 3.2.3 Apparatus and process 

A 1.8 L high-temperature high-pressure reactor (model 4578, Parr Instrument Co., 

Moline, Ill.) equipped with a magnetic stirrer, serpentine cooling coil, reflux/take-off condenser 

assembly, and bottom drain valve was used for all experiments. The reactor was made of T316 

stainless steel with an extreme operation capability of 5,000 psi and 500°C. 
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In a typical HTC experiment, the reactor was loaded with 500 g of reactants, which 

included corn cobs, catalyst (sodium hydroxide), deionized water, and crude glycerol (if 

applicable). The dosage of each reactant depended on biomass ratio and solvent ratio. The 

reactor was then sealed and flushed with nitrogen gas for a few minutes to remove air. After 

being flushed, the reactor was initially pressurized to approximately 100 psi by using a high-

pressure nitrogen gas cylinder and heated to the desired temperature. The desired operating 

temperature was kept constant for the desired retention time. Afterward, the reactor was cooled 

to room temperature with cooling water. Initial and final temperature and gauge pressure were 

monitored and recorded before heating and after cooling. A typical temperature profile when the 

reactor is loaded with 50 g biomass and 450 g water is shown in Figure 3.1. It can be seen that it 

generally takes 2 h for the reactor to be heated to 350°C during the heating cycle and nearly 2.5h 

to return to room temperature during the cooling cycle.  

 

 

Figure 3.1  Temperature profile for hydrothermal conversion  

 

The procedure for product separation is illustrated in Figure 3.2. First, gaseous products 

were vented or collected in sampling bags for analysis. If no floating bio-oil was produced, the 

solid and aqueous products were separated by filtration and collected from the reactor. The solid 

products along with water-insoluble products attached on the wall of the reactor and the cooling 

coil, dip tube, stirrer shaft, and stirrer blades were dipped in acetone for 1 h and then separated 
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by vacuum filtration with Whatman No. 1 filter papers (25 µm nominal pore size). The solvent-

soluble portion was then evaporated in a rotary evaporator at 60°C to remove solvent (Xiu et al., 

2010). The remaining product was solvent-soluble heavy oil. The solvent-insoluble portion was 

oven dried to obtain residual solid, called bio-char. If floating heavy bio-oil was generated, the 

oil was decanted before separation of residual solids and liquid products. The following 

separation process was the same as that without floating bio-oil. The aqueous products were not 

considered as bio-oil and were not separated or characterized in this study. All experiments were 

performed in duplicate, and data were expressed as average values. 

 

 

 

Figure 3.2  Procedure for hydrothermal conversion product separation  

 

Definitions of bio-oil and yield measurement methods differ among laboratories. 

Sometimes liquefaction rate is used; in other cases, water-soluble light oil, water-insoluble heavy 

oil, free-floating oil, or their combinations are taken into account. In this article, the term “bio-
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oil” refers to water-insoluble heavy oil and floating oil when applicable. Yields of products were 

defined as follows: 

                                         
Gas+Aqueous product yield (% ) =           

W eight of (feedstock-char-biooil)
       100%

W eight of (corn cobs+crude glycerol)
×

                         (3-1) 

                                         
Bio-oil yield (% )=                

W eight of b io-oil
     100%

W eight of (corn cobs+crude glycerol)
×

                           (3-2) 

                                    
Char yield (% )=      

W eight of char
        100%

W eight of( corn cobs+crude glycerol)
×

                        (3-3) 

 3.2.4 Product analysis 

Gas in the reactor was collected from the outlet of the sampling valve with a 500-ml 

Tedlar sampling bag (CEL Scientific Corporation, Santa Fe Springs, CA). Molar concentrations 

of H2, CO2, CO, and CH4 were analyzed using an SRI 8610s gas chromatograph equipped with a 

thermal conductivity detector and a HAYESEP T 90/80 column (SRI Instruments, Torrance, 

CA). Helium was used as the carrier gas. Temperature programmed step-heating was performed 

as follows: 30°C for 2 min, then 10°C/min to 120°C, and 120°C for 2min. The elements of bio-

oil (CHNOS) were determined by Columbia Analytical Services (Kelso, WA) via standard 

Ultimate analysis. 

 Four char samples were collected from independent HTC experiments conducted at 

selected conditions and analyzed for chemical components.  Total P, K, Ca, Mg, S, Fe, Mn, Zn, 

and Cu were determined in char through HNO3 – H2O2 digestion according to EPA method SW-

848 3050B (USEPA, 1996).  Each char was analyzed five times with 95% confidence intervals 

of < 10% for the duplicate analysis of all elements (< 5% for most).  The digest solution was 

analyzed with inductively coupled plasma optical emission spectroscopy.  Total C and N in the 

char were determined through combustion with an EA 1110 CN elemental analyzer (CE 

Instruments, Rodano, Italy). Three samples of aqueous products and feedstock were similarly 

analyzed for total elemental analysis.  



35 

 

 3.3 Results and Discussion 

 3.3.1 Effect of operating temperature 

Operating temperature is one of the most important factors in HTC. In this experiment, 

HTC of corn cobs without crude glycerol was conducted for 40 min with 20% corn cobs (total 

reactants weight basis; biomass + water + catalyst) and 2% sodium hydroxide (biomass dry 

weight basis). When operating temperature increased from 280°C to 350°C, the corresponding 

pressure in the reactor increased from 1210 to 2720 psi. Yields of products are presented in 

Figure 3.3. Bio-oil yield initially slowly increased with increasing reaction temperature and then 

slightly decreased when reaction temperature increased further. Other researchers have also 

observed similar phenomenon when woody biomass (Ogi et al., 1994; Qu et al., 2003; Zhong 

and Wei, 2004; Qian et al., 2007; Liu and Zhang, 2008; Xu and Lad, 2008), rice straw (Yuan et 

al., 2007), cellulose (Minowa et al., 1998), algae (Zhou et al., 2010; Brown et al., 2010; Jena et 

al., 2011), secondary pulp/paper sludge (Xu and Lancaster, 2008), swine manure (He et al., 

2001) and cattle manure (Yin et al., 2010) were used as feedstock. This result should be 

interpreted as a competition between depolymerization and repolymerization or condensation 

during HTC. As temperature increases, depolymerization of the polymers into a liquid oil-rich 

phase would become possible. But as temperature further increased, the bio-oil yield began to 

decrease duo to the formation of char by repolymerization/ condensation of bio-oil (Xu and 

Lancaster, 2008) and gas production from bio-oil steam reforming (Aktaş et al., 2009; Xu and 

Lancaster, 2008; Jena et al., 2011; Zhou et al., 2010). 

As temperature increased from 280°C to 320°C, gas and aqueous products yield 

increased from 57.4% to 62.3%, but char yield decreased from 16.6% to 10.2%. However, when 

reaction temperature further increased from 320°C to 350°C, yield of gas and aqueous products 

decreased to 62.1% but char yield increased to 20.8%. These results indicate that the 

intermediates were repolymerized into char at higher temperatures. Similar phenomenon was 

also observed by other researches (Xu and Lancaster, 2008; Zhong and Wei, 2004). In this study, 

the maximum bio-oil yield of 28.1% was obtained at a reaction temperature of 305°C.  
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Figure 3.3  Effect of reaction temperature on corn cob hydrothermal conversion  

(20% corn cobs, 2% sodium hydroxide, 40 min, 1210 to 2720 psi) 

 3.3.2 Effect of retention time 

In this experiment, HTC of corn cobs without crude glycerol was conducted at 305°C 

with 20% corn cobs and 2% sodium hydroxide. The corresponding pressure increased from 1560 

to 1680 psi. Effects of retention time on product yields are shown in Figure 3.4. Gas and aqueous 

products yield increased from 56.2% to 63.9% when retention time increased from 10 min to 60 

min. However, char yield decreased from 18.6% to 13.0% when retention time increased from 10 

min to 30 min and then slightly decreased when retention time increased further. Oil yield did 

not change significantly although the maximum oil yield of 28.2% was obtained at 20 min. Bio-

oil yield seemed to slightly decrease at a prolonged retention time, which could be explained by 

the cracking of bio-oil or intermediate products to gases and formation of chars by condensation, 

cyclization, and repolymerization (Xu and Etcheverry, 2008; Li et al., 2009).  
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Figure 3.4  Effect of retention time on corn cob hydrothermal conversion 

 (20% corn cobs, 2% sodium hydroxide, 305°C, 1560 to 1680 psi) 

 3.3.3 Effect of biomass content 

In this experiment, the reactor was loaded with 500 g of reactants, which included corn 

cobs, catalyst (sodium hydroxide), and deionized water. Biomass content (5% to 20%) was 

determined based on total reactants weight, and 2% catalyst loading on the biomass dry weight 

basis was used. When biomass content increased, water content decreased. The reaction 

conditions were set at 305°C for 20 min retention time. The effect of biomass content on product 

yields is shown in Figure 3.5. When biomass content increased from 5% to 10%, gas and 

aqueous products yield decreased from 70.7% to 59.1% and bio-oil yield increased from 26.2% 

to 31.8%. As biomass content further increased, gas and aqueous products yield and bio-oil yield 

changed only slightly. Char yield steadily increased from 3.2% to 15.1% when biomass content 

increased from 5% to 20%. It is speculated that higher water content improves gas and aqueous 

products formation and biomass depolymerization, and vice versa. Previous researchers reported 

that liquefaction yield decreased as biomass content increased because of the decreasing water 

content (Aida et al., 2002; Park and Gloyna, 1997; Mausumura et al., 1999; Yu et al., 2007). In 

this study, the highest bio-oil yield of 31.8% was obtained at 10% biomass content.  

However, different conclusions were obtained by other research. When woody biomass 

HTC occurred at neutral condition, similar phenomenon was observed in the temperature range 
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of 340 to 360°C. Bio-oil yield increased firstly and then decreased as woody biomass content 

increased from 7.4% to 11%. However, bio-oil yield decreased with increasing biomass content 

at low temperature (≤320°C) (Qu et al., 2003). When secondary pulp/paper sludge powder was 

used as feedstock at 280°C without catalyst, bio-oil yield increased as biomass content increased 

from 4.8% to 16.7% (Xu and Lancaster, 2008). For cattle manure, bio-oil yield decreased as 

biomass content increased to15.8% (Yin et al., 2010). However, biomass content had no 

significant effect on bio-oil yield as algae content was more than 20% at 350°C without catalyst 

(Jena et al., 2011). The effect of biomass content on bio-oil yield depended on biomass species 

and operating conditions. 
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Figure 3.5  Effect of biomass content on corn cob hydrothermal conversion 

 (2% sodium hydroxide, 305°C, 20 min, 1450 to 1710 psi) 

 3.3.4 Effect of catalyst loading 

In this experiment, the reactor was loaded with 500 g of reactants, which included 50 g 

corn cobs (10% biomass content on a total reactant weight basis), 0 to 20% sodium hydroxide as 

catalyst (on biomass dry weight basis), and deionized water (changed accordingly with catalyst 

loading). The reaction conditions were set at 305 °C for 20 min retention time. Catalyst loading 

had significant effect on bio-oil yield as shown in Figure 3.6. Without catalyst, the bio-oil yield 

was low as 13.1%. When catalyst loading increased to 5%, the bio-oil yield sharply increased to 

33.8%. Research showed that the alkali catalyst inhibited the formation of char from bio-oil 
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(Karagöz et al., 2006; Minowa et al., 1998). Thus, bio-oil yield increased as catalyst loading 

increased to 5%. However, the bio-oil yield decreased when catalyst loading further increased, 

which might due to the enhanced cracking and dehydration of the bio-oil to gases and water 

soluble products with excessive alkali catalyst. In this study, the highest bio-oil yield of 33.8% 

was obtained with 5% catalyst loading on a biomass dry weight basis or 0.5% on a total reactants 

weight basis. Similar results were reported in previous studies on the woody biomass HTC with 

alkali catalyst (Ogi et al., 1985; Karagöz et al., 2006; Bhaskar et al., 2008), as well as sewage 

sludge (Yokoyama et al., 1987; Suzuki et al., 1988), and barley stillage (Dote et al., 1991). 

However, Alkali catalyst had little catalytic effect on bio-oil production from alage HTC, 

because alage contained a considerable amount of sodium (Dote et al., 1994; Minowa et al., 

1995; Zhou et al., 2010).  
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Figure 3.6  Effect of catalyst loading on corn cob hydrothermal conversion 

 (305°C, 10% biomass content, 20 min, 1470 to 1510 psi) 

 3.3.5 Products under selected conditions 

Products of corn cob hydrothermal conversion obtained at 305°C reaction temperature for 

20 min retention time with 10% biomass content (on a total reactant weight basis) and 2% 

catalyst loading (on biomass dry weight basis) were analyzed in this section. At these conditions, 

gas and aqueous products, bio-oil, and char yields were 63.3%%, 33.8%, and 2.9%, respectively. 

The main elements in bio-oil obtained at the selected conditions were C, H, and O 

(77.5%, 8.44%, and 13.76% weight percentage, respectively). Elliott and Schiefelbein (1989) 
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found 72.6% C, 8.0% H, and 16.3% O in high-pressure liquefaction bio-oil. The bio-oil in our 

study contained slightly higher C but lower O, perhaps because we used different feedstock and 

operating conditions. 

Applying the char or aqueous product to soils from which the feedstock was removed can 

potentially return nutrients and C, thus avoiding soil degradation from biomass removal and 

potentially increasing C sequestration.  The concentration of all elements except K was greater in 

the char than in the feedstock (Table 3.1). Potassium was contained primarily in the aqueous 

products along with small amounts of other nutrients.  Other studies have also shown that the 

majority of nutrients from the feedstock are concentrated in char (Mullen et al., 2010).  Char C 

content in the present study was relatively high compared with that observed in other studies, 

which has ranged from 390 to 820 g C kg-1 char depending on feedstock and combustion 

processes (Mullen et al., 2010; Gaskin et al., 2008).  Because of its high C content, char from 

HTC may be beneficial for C sequestration if land applied (Laird, 2008), but this would be 

dependant on long-term stability of the char-based C.  Because nutrients are concentrated in the 

char, it may be a beneficial nutrient source depending on availability of the nutrients once char is 

placed in soil.  

Table 3.1 Chemical content of feedstock (corn cobs) compared with that of char and 

aqueous products resulting from HTC at 305°C, 20 min retention time, 10% biomass 

content, and 2% catalyst loading 

 C[a] N[a] P K Ca Mg S Fe Mn Zn Cu 
feedstock 442 5.8 332 6,848 135 253 179 19 4.5 13.1 1.6 

char 811 6.9 937 899 1,191 486 575 164 55.1 161 24.3 
aqueous 19 0.6 33 2,081 31 43 30 85 0.9 3.9 0.0 

 [a] C and N are in units of g kg-1; all other chemicals are in units of mg kg-1. 

Gas obtained at the selected conditions contained carbon dioxide, carbon monoxide, 

hydrogen, and methane. Carbon dioxide was the dominant gas (80.9% mole percentage), 

followed by hydrogen (11.1%) and carbon monoxide (7.7%). Methane was the least prevalent 

gas (0.47%).  

 3.3.6 Effect of crude glycerol 

Glycerol is a trihydric alcohol that boils with decomposition at 290°C under normal 

pressure and is miscible with water and ethanol (Perry and Green, 1997). Experiments in this 

portion of the study were all conducted at 305°C reaction temperature, 20 min retention time, 
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10% biomass content (on a total reactants weight basis), and 2% NaOH (biomass dry weight 

basis). Less catalyst was used duo to the alkali crude glycerol. Water was substituted with an 

equivalent amount of crude glycerol. The ratio of glycerol to corn cobs increased from 0 to 5. 

 3.3.6.1 Effect of crude glycerol on product yields 

When crude glycerol was used as feedstock without corn cobs, only aqueous and gaseous 

products were produced. Kishida et al. (2005) and Shen et al. (2009) studied HTC of glycerol 

with an alkaline catalyst. They found that glycerol was easily converted into lactic acid, 

pyruvaldehyde, acetic acid, and formic acid by alkaline HTC at 300°C, and a very high lactic 

acid yield of 90% was obtained. No heavy oil was produced from glycerol-only HTC because 

final products are water soluble short-chain chemicals. 

The effect of crude glycerol on product yields and weights is shown in Figure 3.7. The 

weight of bio-oil increased as the increasing ratio of crude glycerol/corn cobs, which indicates 

that crude glycerol also contributed to bio-oil formation in the HTC process. However, crude 

glycerol had no significant effect on bio-oil yield when the ratio of crude glycerol/corn cobs was 

below 3. Then, bio-oil yield dramatically increased to 36.3% when the ratio increased to 4 or 

above. The reasons for the rapid rise of bio-oil yield at high crude glycerol/corn cobs ratios are 

not clear. One possible explanation is that when crude glycerol concentration is high enough 

(e.g. at crude glycerol/corn cobs ratios of 4 or above), it might serve as a solvent or delignifier to 

damage/destroy the physical structure of the biomass and consequently enhance bio-oil yield. 

The water-soluble intermediates of glycerol and corn cobs HTC might also cross-react with each 

other. Such interactions might improve bio-oil formation when appropriate amounts of crude 

glycerol are used. This hypothesis was tested true on a different biomass, swine manure, in 

studies performed by Xiu and colleagues, who found that cross-reactions between swine manure 

and crude glycerol significantly affected the HTC process (Xiu et al., 2011) and use of crude 

glycerol dramatically increased bio-oil yield (Xiu et al., 2010). Although corn cobs are different 

from swine manure, a similar effect of crude glycerol on the HTC process may exist and needs to 

be further investigated.  

No solid residue or char was found when crude glycerol was used, which implies that 

crude glycerol improved the conversion of corn cobs. Demirbas (1985) also found that the 

liquefaction yield of wood was 100% at temperatures greater than 600 K when glycerol was 

used. Glycerol used as an organic solvent improved biomass liquefaction via dilignification 
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(Demirbas and Celik, 2005; Kücük, 2005). In addition, unlike the bio-oil produced without crude 

glycerol, the bio-oil produced with crude glycerol floated on the aqueous products and showed 

better flowability at room temperature based on our observation. This indicates that use of crude 

glycerol decreased the density and viscosity of the bio-oil, thus improving oil quality. 

 

Figure 3.7 Product distribution of hydrothermal conversion of corn cobs with crude 

glycerol at the selected operating conditions  

 3.3.6.2 Effect of crude glycerol on gas composition 

The gas produced consisted mainly of carbon dioxide, hydrogen, carbon monoxide, and 

methane. Mole percentages of the gas are shown in Figure 3.8. Carbon dioxide decreased from 

80.9% to 61.2% as the ratio of crude glycerol/corn cobs increased from 0 to 5. Other researchers 

also found that HTC produced carbon dioxide in the gas (Yu et al., 2007; Zhang et al., 2008; 

Minowa et al., 1998), which might result from deoxygenation reactions in HTC. Crude glycerol 

had no significant effect on carbon monoxide and methane yields. The mole percentage of 

carbon monoxide ranged from 8.4% to 11.4%. The mole percentages of methane in all 

experiments were less than 1%. The mole percentage of hydrogen increased from 11.1% to 

27.5% as the ratio of crude glycerol to biomass increased, which is consistent with results from 

Kishida et al. (2005). They found that a large amount of hydrogen was formed in a hydrothermal 

reaction of glycerol with NaOH. 
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Figure 3.8 Effect of crude glycerol on mole percentage of gases produced at the selected 

operating conditions 

 3.3.6.3 Effect of crude glycerol on bio-oil elements 

Bio-oil produced from corn cobs and crude glycerol HTC contained mainly C, O, and H 

(Figure 3.9). As glycerol/corn cobs ratio increased from 0 to 5, the amount of H did not change 

significantly. Carbon decreased from 77.5% to 65.8%, whereas O increased from 13.8% to 

19.9%, resulting in greater ratios of O/C. It is well known that bio-oil heating value decreases as 

oxygen content increase (Kotz and Treichel, 1996; He, 2000; Xiu et al., 2010). Thus, crude 

glycerol had a negative effect on bio-oil quality from the standpoint of oxygen content and 

heating value.  

 

Figure 3.9  Effect of crude glycerol on bio-oil elements at the selected operating conditions 
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 3.4 Conclusions 

Without adding crude glycerol, maximum bio-oil yield of 33.8% was obtained at 305°C 

reaction temperature, 20 min retention time, 10% biomass content, and 0.5% catalyst loading (on 

total reactants weight basis). The effect of crude glycerol on corn cob HTC was investigated at 

305°C for 20min with 10% corncobs and 0.2% catalyst loading. Bio-oil yield based on the total 

weight of corn cobs and crude glycerol almost remained constant when the ratio of crude 

glycerol/corn cobs was below 3 but dramatically increased to 36.3% when the crude glycerol 

ratio increased to 4. H2 in the gas product also increased from 11.1% to 27.5% as the crude 

glycerol to biomass ratio increased from 0 to 5. In addition, the bio-oil with better flowability 

floated on the aqueous products once crude glycerol was added, indicating reduced oil density 

and viscosity, and thus better quality. As the crude glycerol to biomass ratio increased from 0 to 

5, oxygen content in bio-oil increased from 13.8% to 19.9%, carbon decreased from 77.5% to 

65.8%, and hydrogen had no significant change. Thus, crude glycerol had at least two effects on 

biomass HTC: It increased bio-oil yield and quality in terms of low viscosity and density, but the 

oxygen content of bio-oil slightly increased as more crude glycerol was used. 
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Chapter 4 - Operating Conditions Optimization for Bio-oil 

Production from Corn Cobs Hydrothermal Conversion  

Abstract  

The effects of reaction temperature, retention time, biomass content, and catalyst loading 

on bio-oil yield, carbon content, and carbon recovery of corn cobs hydrothermal conversion were 

investigated and optimized via response surface methodology. Higher bio-oil yield and carbon 

recovery could be obtained at low temperature for short retention time with high biomass content 

and moderate alkaline catalyst loading. A maximum bio-oil yield of 41.3% was obtained at 

280°C, 12min, 21% biomass content, and 1.56% catalyst loading. A maximum carbon recovery 

of 25.2% was observed at 280°C, 12min, 21% biomass content, and 1.03% catalyst loading. Bio-

oil carbon content was only affected by temperature and biomass content. A highest bio-oil 

carbon content of 74.8% was produced at 340°C with 9% biomass content. The predicted bio-oil 

yield, carbon content and carbon recovery were confirmed well by the validation experiments. 2-

Ethylhexyl mercaptoacetate and 1-Hexanol, 2-ethyl- were the dominant compounds of bio-oil. 
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 4.1 Introduction  

Biofuels have attracted more and more attention in the past decades due to the depletion 

of crude oil and carbon dioxide emission from fossil fuel combustion. However, the 

sustainability of the first generation biofuels (sugarcane ethanol, starch-based or ‘corn’ ethanol, 

biodiesel and pure plant oil) has faced heavy criticism because they might endanger food 

production (IEA, 2010). Therefore, the second generation biofuels produced from lignocellulosic 

biomass is a good option, which also called lignocellulosic biofuels. They do not compete with 

food production, and have abundant feedstock. In the US, about 1.3 billion dry tons of 

lignocellulosic biomass can be sustainably produced annually (Perlack et al., 2005).  

Hydrothermal conversion (HTC) is a promising method to convert lignocellulosic 

biomass to the second generation biofuels or valuable chemicals, in which biomass is 

depolymerized to gaseous, aqueous, bio-oil (or biocrude), and solid products in a heated, 

pressurized, and oxygen-free reactor at the presence of water or other solvents. Compared with 

other thermochemical conversion technologies, like gasification and fast pyrolysis, HTC is 

conducted at lower temperature, and does require feedstock drying owe to the use of water or 

solvents. Important chemicals, like furans, phenol, acetic acid, and levulinic acid can be 

separated from HTC aqueous products (Luo et al., 2010; Shen et al., 2011; Wang et al., 2012). 

HTC bio-oil can be used as a fuel for stationary diesel engines, burners, boilers, or turbines 

(Czernik and Bridgwater, 2004), or further upgraded to liquids similar to diesel and jet fuel via 

hydrodeoxygenation (Demirbas, 2011). It also can serve as a starting material for valuable 

chemical products such as polymers, aromatics, lubricants, and asphalt (Peterson et al., 2008). 

Furthermore, HTC oils typically have much lower oxygen and moisture contents, higher 

hydrogen content, and consequently much higher heating value than pyrolysis oils (Huber and 

Dumesic, 2006).  

Dedicated energy crops and residues are the main categories of feedstocks for 

lignocellulosic biofuels production (IEA, 2010). Conversion of agricultural residues to biofuels 

offers major energy security, environmental, and strategic benefits because they are compatible 

with food production. In addition, production of second-generation biofuels based on agricultural 

residues would add value to the agricultural by-products, and then could be beneficial to farmers. 

Currently, around 5.1 billion dry tons of agricultural residues are produced globally (IEA, 2010). 

Corn cobs are usually a good source for second generation biofuels production because corn is 
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one of the most widely planted crops in the world. Corn cobs are an important by-product of corn 

production. Every 100 kg of corn grain can produce about 18 kg of corn cobs (Chiellini et al., 

2009). Annual worldwide corn production is about 6.95 × 1011 kg, and approximately 50% of 

that is produced in the United States, mostly in the central states (FAO, 2008).  

The effects of operating conditions including temperature, retention time, biomass 

content, and catalyst loading on gaseous, aqueous, and solid products production from corn cobs 

HTC have been studied (Yu et al., 2007; Zhang et al., 2008). However, the optical operating 

conditions for bio-oil production from corn cobs HTC and the interaction effects between these 

factors have not been fully investigated. Response surface methodology (RSM) is an effective 

optimization tool to identify the effect of many factors and their interactions on the response 

using relatively few experiments. The objectives of this study are to optimize the operating 

conditions including temperature, retention time, biomass content, and catalyst loading on bio-oil 

production from corn cobs HTC via RSM in terms of bio-oil yield, bio-oil carbon content, and 

carbon recovery, and to investigate the interactions between these factors.  

 4.2 Materials and Methods 

4.2.1. Materials 

Commercially available corn cobs were obtained from Kaytee Products Inc. (Chilton, 

WI) and ground using a Retsch SM2000 rotary cutting mill (Retsch Inc., Newtown, PA) with a 

1.0 mm screen. Before experiment, the ground corn cobs were dried at 105 ºC for 24h.  

4.2.2 Apparatus and process 

A 1.8 L Parr model 4578 high-temperature high-pressure reactor (Parr Instrument 

Company, Moline, IL) was used for all experiments. In a typical HTC experiment, the reactor 

was loaded with 500 g of reactants, which included corn cobs, catalyst (sodium hydroxide), and 

deionized water. The dosage of each reactant depended on biomass content and catalyst loading 

(on a total reactant weight basis). The reactor was flushed and initially pressurized to 100 psi by 

using a high pressure nitrogen gas cylinder after the reactant load. Then, the reactor was heated 

to the desired temperature, and kept for the desired retention time. Afterward, the reactor was 

cooled to room temperature with cooling water.  
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After the HTC experiment, gaseous products were vented. The solid and liquid products 

were collected from the reactor and separated by filtration. Bio-oil was separated from the solid 

products via acetone wash. The solvent soluble portion is then evaporated in a rotary evaporator 

at 60 °C to remove acetone, and the remaining product is bio-oil. More details of the 

experimental apparatus and procedure can be found in Chapter 3.  

 4.2.3 Product Analysis 

The chemical composition of corn cobs used in this study was determined according to 

laboratory analytical procedures developed by the National Renewable Energy Laboratory 

(Sluiter et al., 2005; Sluiter et al., 2008). Briefly, after water and ethanol extraction, the sample 

was soaked in 72% sulfuric acid at 30 °C for 1 h with constant stirring, followed by dilution to a 

4% acid solution and heating for another hour at 120 °C. The aqueous products and solid residue 

of the pretreatment process were separated by vacuum filtration. The filtrate was adjusted to 

neutral by calcium carbonate, then the sugar contents of the filtrate were measured by high-

performance liquid chromatographic, and acid soluble lignin content in the filtrate was detected 

by UV-visible spectrophotometer. The solid residue was dried and combusted. The weight 

difference between the dry residue and combustion residue was reported as acid insoluble lignin. 

All data are on the biomass dry weight basis. Corn cob contains 35.6% cellulose, 29.9% 

hemicellulose, 14.2% lignin, and 12.8% extractive.  

The elemental compositions of feedstock and produced bio-oils were analyzed by a 

CHNS/O elemental analyzer (Elmer Perkin 2400, CT, USA). Each sample was placed in a tared 

tin capsule (PerkinElmer, N2411255) and precisely weighed using a PerkinElmer AD6 

Autobalance. The weight of each sample was around 2 mg. samples encapsulated in tin were 

then inserted to the combustion zone automatically from the autosampler.  

The heating values of feedstock and bio-oil were determined by a calorimeter (IKA, 

C200, NC, USA). After weighing out about 1g feedstock or bio-oil directly into a crucible with 

an accuracy of 0.1mg, the crucible was inserted into the crucible holder of the decomposition 

vessel. The sealed decomposition vessel was filled oxygen for approximate 30s at 30bar by 

oxygen station, and then be placed into the inner vessel of calorimeter for fully automatic 

measurement.  
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Bio-oil chemical compounds were analyzed by a gas chromatograph equipped with a 

mass selective detector (Agilent 5975C GC-MS with HP-5MS column, Agilent Technologies 

Inc., Santa Clara, CA). The temperature was kept at 40°C for 1min, then increased to 300°C  

with 10°C /min heating rate, and hold for 5min. The inlet temperature of the GC-MS was 280°C. 

Compounds in the bio-oil were identified by means of the NIST08 library (Agilent Technologies 

Inc., Santa Clara, CA). 

4.2.4 Experimental design, analysis and model fitting 

The influence of temperature, retention time, biomass content, and catalyst loading on 

bio-oil production from corn cobs HTC, and the interactions between the four variables were 

studied by a small central composite rotatable design (CCRD). Each variable was at 5 levels: -

1.682, -1, 0, 1, and 1.682 as shown in Table 4.1. 

 

Table 4.1 Experimental range and levels of independent variables  

Level of response surface 
Variable 

-1.682(-α) -1 0 1 1.682(α) 

X1: Temperature(ºC) 260 280 310 340 360 

X2: Retention time (min) 0 12 30 48 60 

X3: Biomass content (%) 5 9 15 21 25 

X4: Catalyst loading (%) 0.25 0.76 1.5 2.25 2.76 

 

The experimental design was developed using Design Expert 8.0.5 Trial (Statease, 

Minneapolis, MN, USA), which resulted in 19 tests (8 star points, 8 factoral points, and 3 central 

points). Table 4.2 shows the complete design matrix and actual bio-oil yield, bio-oil carbon 

content, bio-oil carbon recovery. 

The bio-oil yield (Y) and carbon recovery of bio-oil (Crecovery) were defined as follows:  

                                   

Weight of bio-oil
Y= 100%

Weight of dry corn cobs used
×

                                  (4-1) 

                  recoveryC =Bio-oil yield bio-oil carbon content 100%× ×
                    (4-2) 
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The data were then fit to the following second-order polynomial equation to investigate 

the effect of independent variables in terms of linear, quadratic and interactions: 

                 

4 4 4
2

0
1 1 1

i i ii i ij i j
i i i i j

Y X a X a X a X X
= = = <

= + + +∑ ∑ ∑∑
                                         (4-3) 

where Y is bio-oil yield (%), bio-oil carbon content (%) or bio-oil carbon recovery (%); X0 

stands for the model intercept; X1, X2, X3, X4 are the levels of temperature, retention time, 

biomass content, and catalyst loading, respectively; ai…aij are the regression coefficients. The 

Design Expert 8.0.5 software was used to analyze the data. The significance of each model 

parameter was determined by an F-test with α=0.05 level. 

 4.3 Results and discussion 

4.3.1. Model equations for bio-oil yield, carbon content and carbon recovery 

The results of experimental runs are presented in Table 4.2. At different combinations of 

the variables, bio-oil yield varied between 16.1% and 39.2% (dbw), bio-oil carbon content 

increased from 58.9% to 75.6% (on a bio-oil weight basis), and bio-oil carbon recovery lay 

between 11.3% and 25.2%. 
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Table 4.2 Small central composite design matrix with actual response for bio-oil yield, bio-

oil carbon content, and bio-oil carbon recovery 

Variables 

Run 
X1: 

Temperature 

(°C) 

X2: 

Retention 

time (min) 

X3: 

Biomass 

content 

(%) 

X4: 

Catalyst 

loading 

(%) 

Bio-oil 

yield 

(%) 

Bio-oil 

carbon 

content(%) 

Bio-oil 

carbon 

recovery 

(%) 

1 +1 +1 +1 -1 22.80 71.04 16.20 

2 +1 +1 -1 -1 21.60 75.56 16.32 

3 +1 -1 +1 +1 21.46 69.97 15.02 

4 +1 -1 -1 +1 19.04 74.15 14.12 

5 -1 +1 -1 +1 17.36 70.38 12.22 

6 -1 +1 +1 +1 33.35 64.85 21.63 

7 -1 -1 +1 -1 39.18 64.29 25.19 

8 -1 -1 -1 -1 28.09 65.80 18.48 

9 -1.682 0 0 0 31.42 58.90 18.51 

10 +1.682 0 0 0 22.81 73.00 16.65 

11 0 -1.682 0 0 29.90 70.13 20.97 

12 0 +1.682 0 0 21.40 65.30 13.97 

13 0 0 -1.682 0 16.80 75.08 12.61 

14 0 0 +1.682 0 29.36 60.78 17.85 

15 0 0 0 -1.682 16.08 70.32 11.31 

16 0 0 0 +1.682 18.36 66.08 12.13 

17 0 0 0 0 25.89 66.50 17.22 

18 0 0 0 0 26.93 68.05 18.33 

19 0 0 0 0 27.20 66.05 17.97 
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Based on the experimental data, the developed quadratic or linear models for bio-oil 

yield, bio-oil carbon content, and bio-oil carbon recovery in terms of coded variables are given in 

Eq. (4-4), (4-5), and (4-6), respectively, where X1, X2, X3, X4 represent temperature, retention 

time, biomass content, and catalyst loading, respectively.  

     
2

1 2 3 1 2 1 3 4Yield 26.55 3.50 1.98 3.81 2.56 2.93 2.60X X X X X X X X= − − + + − −        (4-4) 

                         1 3Carbon content 68.22 3.61 2.92X X= + −                                           (4-5) 

   
2

recovery 2 3 1 2 1 3 2 4 4C 17.79 1.33 1.88 1.65 1.92 1.98 1.56X X X X X X X X X= − + + − + −
   (4-6)      

The analysis of variance (ANOVA) with F- and P-values for the models is presented in 

Table 4.3. For bio-oil yield, regression analysis of the experimental design demonstrated that the 

linear model terms (X1, X2, and X3), interactive model terms (X1X2, X1X3), and quadratic model 

terms (X4
2) were highly significant (P<0.05).  However, the other terms did not depict significant 

effects on bio-oil yield, which were deleted. Similarly, a linear model in Eq. (4-5) was developed 

for bio-oil carbon content, which was only affected by temperature and biomass content. Bio-oil 

carbon recovery was strongly affected by the linear model terms (X2, and X3), interactive model 

terms (X1X2, X1X3, X2X4), and quadratic model terms (X4
2). The P-values of the models were 

less than 0.001, which indicated that these models were highly significant. The insignificant lack 

of fit (P>0.05) indicated that the models were adequate and reliable.  

 

 

 

 

 

 

 

 

 

 

 

 

 



58 

 

Table 4.3 Analysis of variance for the regression models 

Bio-oil yield 
Source Sum of squares DF Mean square F value P value 
Model 632.52 6 105.42 17.81 < 0.0001 

X1 165.95 1 165.95 28.04 0.0002 
X2 53.09 1 53.09 8.97 0.0112 
X3 196.67 1 196.67 33.23 <0.0001 

X1X2 52.33 1 52.33 8.84 0.0116 
X1X3 68.80 1 68.80 11.63 0.0052 
X4

2 95.68 1 95.68 16.17 0.0017 
Residual 71.01 12 5.92 - - 

Lack of fit 70.06 10 7.01 14.64 0.066 
Pure error 0.96 2 0.48   

Corrected total 703.54 18    
R2 0.90 

Bio-oil carbon content 
Source Sum of squares DF Mean square F value P value 
Model 291.93 2 145.96 27.02 <0.0001 

X1 176.40 1 176.40 32.65 <0.0001 
X3 115.53 1 115.53 21.39 0.0003 

Residual 86.43 16 5.40 - - 
Lack of fit 84.23 14 6.02 5.47 0.1652 
Pure error 2.20 2 1.10   

Corrected total 378.36 18    
R2 0.77 

Bio-oil carbon recovery 
Source Sum of squares DF Mean square F value P value 
Model 189.96 6 31.66 9.26 0.0006 

X2 24.29 1 24.29 7.11 0.0206 
X3 48.41 1 48.41 14.16 0.0027 

X1X2 21.78 1 21.78 6.37 0.0267 
X1X3 29.41 1 29.41 8.61 0.0125 
X2X4 31.44 1 31.44 9.20 0.0104 
X4

2 34.62 1 34.62 10.13 0.0079 
Residual 41.01 12 3.42 - - 

Lack of fit 40.37 10 4.04 12.59 0.076 
Pure error 0.64 2 0.32   

Corrected total 230.97 18    
R2 0.82 
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4.3.2. Response surface analysis for bio-oil yield 

The program of response surface method restricts factor ranges to factorial levels (plus 

one to minus one in coded values) – the region for which this experimental design provides the 

most precise predictions. Thus, all variables were limited in the factorial levels in this study. 

Temperature increased from 280°C to 340°C, retention time lay at 12-48 min, biomass content 

was 9% to 21%, and catalyst loading ranged from 0.76% to 2.25%.  

Bio-oil yield was significantly affected by the linear terms of temperature and retention 

time. As can be seen in Eq. (4-4), temperature and retention time showed a negative relationship 

with bio-oil yield, which indicated that higher bio-oil yield was obtained at lower temperature for 

shorter retention time. Corn cobs used in this study contained high contents of cellulose (35.5%) 

and hemicellulose (29.9%), but low content of lignin (14.2%). It has reported that cellulose and 

hemicellulose could be converted to bio-oil in hot-compressed water at relatively low 

temperatures (260 to 300 °C) (Minowa et al., 1997; Pińkowska et al., 2011). Generally, the 

maximum bio-oil yield was obtained at lower temperature when biomass with lower lignin 

content was used as feedstock (Zhong and Wei, 2004). Our recent study (Gan et al., 2010) also 

found that corn cobs can be converted to bio-oil via HTC at low temperature for short retention 

time. The bio-oil yield began to decrease at higher temperature duo to the formation of char by 

repolymerization/ condensation of bio-oil (Xu and Lancaster, 2008) and gas production from 

bio-oil steam reforming (Aktaş et al., 2009; Xu and Lancaster, 2008; Jena et al., 2011; Zhou et 

al., 2010). The bio-oil yield decreased at a prolonged retention time would due to the cracking of 

bio-oil or intermediate products to gases and char formation by condensation, cyclization and 

repolymerization (Qu et al., 2003; Xu and Etcheverry, 2008; Li et al., 2009). The interaction 

term of temperature and retention time showed a significant effect on bio-oil yield, which is 

illustrated in Figure 4.1 at zero level of biomass content (15 wt%) and catalyst loading (1.5 

wt%). The contour lines indicated that bio-oil production from corn cobs HTC favored low 

temperature and short retention time, which was consistent with Eq. (4-4). At any retention time 

between 12 and 48 min, bio-oil yield decreased with increasing temperature. Similarly, bio-oil 

yield also decreased with increasing retention time at any temperature. 
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Figure 4.1 Contour plot for the effects of temperature and retention time on bio-oil yield 

(15% biomass content and 1.5% catalyst loading) 

Figure 4.2 explains the interaction between temperature and biomass content at zero level 

of retention time (30 min) and catalyst loading (1.5 wt%). As presented in Figure 4.2, higher bio-

oil yield was obtained at low temperature with more biomass. Bio-oil yield increased with 

increasing corn cobs content at any temperature. Researches have found that 10% biomass 

content was the best loading for corn cobs HTC at neutral condition or with 0.2% NaOH (Yu et 

al., 2007; Gan et al., 2010). However, this study used more NaOH (0.76% to 2.25%). Yin and 

coworkers (Yin et al., 2011; Yin and Tan, 2012) have reported that reaction pathways of biomass 

HTC were significantly affected by the initial pH value of the reaction medium. Under initial 

strong alkaline conditions with final pH greater than 7, only alkaline pathway occurred. Under 

weak initial alkaline or neutral conditions with final pH less than 7, biomass was converted by 

both alkaline and acidic pathways. Previous studies showed that bio-oil yield of biomass HTC 

increased as alkaline catalyst loading increased to 0.5%, but decreased as catalyst loading further 

increased with constant biomass content (Ogi et al., 1985; Karagöz et al., 2006; Bhaskar et al., 

2008; Yokoyama et al., 1987; Suzuki et al., 1988; Dote et al., 1991). Alkali catalyst inhibited the 

formation of char from bio-oil (Karagöz et al., 2006; Minowa et al., 1998), but with excessive 

alkali catalyst, bio-oil might be cracked and dehydrated to gases and water soluble products. 

More corn cobs could be decomposed to bio-oil with high alkaline catalyst loading in this study.  
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The effect of biomass content on bio-oil yield also depended on biomass species and 

other operating conditions. When woody biomass HTC was conducted at neutral condition, bio-

oil yield increased firstly and then decreased as woody biomass content increased from 7.4% to 

11% in the temperature range of 340 to 360°C. However, bio-oil yield decreased with increasing 

biomass content at low temperature (≤320°C) (Qu et al., 2003). When secondary pulp/paper 

sludge powder was used as feedstock at 280°C without catalyst, bio-oil yield increased as 

biomass content increased from 4.8% to 16.7% (Xu and Lancaster, 2008). For cattle manure, 

bio-oil yield decreased as biomass content increased (Yin et al., 2010). Biomass content had no 

significant effect on bio-oil yield of algae HTC at 350°C without catalyst when the solid content 

was in the range of 20% to 50% (Jena et al., 2011).   
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Figure 4.2 Contour plot for the effects of temperature and biomass content on bio-oil yield 

(30min and 1.5% catalyst loading) 

 

4.3.3 Response surface analysis for bio-oil carbon content 

As shown in Eq. (4-5), bio-oil carbon content was only affected by the linear terms of 

temperature and biomass content. The effect of temperature and biomass content on bio-oil 

carbon content is presented in Figure 4.3. It increased with increasing temperature and 

decreasing biomass content. Other researchers also observed that bio-oil carbon content 



62 

 

increased as HTC temperature increased (Ocfemia et al., 2006; Yu et al., 2011; Garcia Alba et 

al., 2012). The major elements of bio-oil are carbon and oxygen, whose contents are in inverse 

proportion. High temperature promoted dehydration and decarboxylation reactions to remove 

oxygen from biomass in the form of H2O and CO2 in HTC. Gaseous products from biomass HTC 

primarily comprised of CO2, CO, H2, and CH4, in which CO2 was the major component (Gan et 

al., 2010; Zhang et al., 2008; Yu et al., 2007). With CO2 and CO formation, both carbon and 

oxygen are removed from biomass. However, the loss of oxygen is higher than carbon because 

the two gases contain more oxygen than carbon. Yu and co-workers (2007) reported that more 

CO2, CO and aqueous products were formed from corn cobs liquefaction at higher temperature, 

which indicated that more oxygen was removed in the form of H2O and CO2. Therefore, bio-oil 

carbon content increased as temperature increased. As biomass content increased, bio-oil carbon 

content decreased. It might because CO2 yield decreased as increasing corn cobs content (Yu et 

al., 2007). 
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Figure 4.3 Contour plot for the effects of temperature and biomass content on bio-oil 

carbon content 

(30min retention time and 1.5% catalyst loading) 
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4.3.4 Response surface analysis for bio-oil carbon recovery 

The effect of the 4 variables on bio-oil carbon recovery was more complex because it was 

obtained by multiplying bio-oil yield and bio-oil carbon content. Bio-oil carbon recovery from 

corn cobs HTC was affected by three interactive terms, temperature and retention time, 

temperature and biomass content, retention time and catalyst loading, which were presented in 

Figure 4.4, 4.5, and 4.6, respectively. As can be seen in Figure 4.4, when retention time was less 

than 30 min, like bio-oil yield, bio-oil carbon recovery also decreased as temperature increased. 

However, bio-oil carbon recovery increased with increasing temperature at prolonged retention 

time, which was consistent with bio-oil carbon content. Similarly, Figure 4.5 also showed that 

the effect of temperature on bio-oil carbon recovery was dependent on biomass content. As 

temperature increased, bio-oil carbon recovery increased when biomass content was less than 

15%. But it decreased with high biomass content within the range of 15-21%. It indicated that 

bio-oil yield was the main factor influencing bio-oil carbon recovery at shorter retention time and 

higher biomass content, but bio-oil carbon content became the dominant factor at long retention 

time and lower biomass content. As shown in Figure 4.6, bio-oil carbon recovery increased as 

catalyst loading increased, and then decreased when catalyst loading further increased, which 

was consistent with bio-oil yield. Summarily, higher bio-oil carbon recovery was obtained at low 

temperature, short retention time, high biomass content, and moderate catalyst loading. The 

effect of the 4 variables on bio-oil carbon recovery was similar to that on bio-oil yield, which 

indicated that bio-oil carbon recovery mainly depended upon bio-oil yield rather than bio-oil 

carbon content.  
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Figure 4.4 Contour plot for the effects of temperature and retention time on bio-oil carbon 

recovery 

(15% biomass content and 1.5% catalyst loading) 
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Figure 4.5 Contour plot for the effects of temperature and biomass content on bio-oil 

carbon recovery 

(30min and 1.5% catalyst loading) 



65 

 

12 18 24 30 36 42 48

0.76

1.13

1.50

1.88

2.25
Bio-oil carbon recovery (%)

Retention time

C
at

al
ys

t l
oa

di
ng

15.80

16.80

16.80

17.79

18.79

18.27

17.40

 

Figure 4.6 Contour plot for the effects of retention time and catalyst loading on bio-oil 

carbon recovery 

(310°C and 15% biomass content) 

 

4.3.5 Optimization and validation 

The optimal operating conditions and validation experiment results for bio-oil yield, bio-

oil carbon content, and bio-oil carbon recovery are summarized in Table 4.4. A maximum bio-oil 

yield of 41.3% was predicted at 280°C, 12min, 21% biomass content, and 1.56% catalyst loading 

by Design Expert software. The accuracy of the model was validated under these optimal 

conditions. A bio-oil yield of 39.5% was achieved, which confirmed the validity of the predicted 

model. Retention time and catalyst loading had no significant effect on bio-oil carbon content, 

the highest bio-oil carbon content of 74.8% could be obtained at 340°C with 9% biomass 

content, which was confirmed by experiments operated at the same temperature and biomass 

content, but different retention time and catalyst loading. Similarly, the maximum carbon 

recovery of 25.2% was predicted at 280°C, 12min, 21% biomass content, and 1.03% catalyst 

loading. The predicted result was confirmed well by the validation experiment.  
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Table 4.4 Optimization and validation for bio-oil yield, bio-oil carbon content, and carbon 

recovery 

Bio-oil yield optimization and validation 

Experiment 
Temperature 

(°C) 

Retention 

time (min) 

Biomass 

content (%) 

Catalyst 

loading (%) 
Bio-oil yield (%) 

CCRD 280 12 21 1.56 41.3 

Validation 280 12 21 1.56 39.5 

Bio-oil carbon content optimization and validation 

Experiment 
Temperature 

(°C) 

Retention 

time (min) 

Biomass 

content (%) 

Catalyst 

loading (%) 

Bio-oil carbon 

content (%) 

CCRD 340 - 9 - 74.8 

Validation 340 48 9 0.76 75.6 

Validation 340 12 9 2.25 74.2 

Carbon recovery optimization and validation 

Experiment 
Temperature 

(°C) 

Retention 

time (min) 

Biomass 

content (%) 

Catalyst 

loading (%) 

Bio-oil carbon 

recovery (%) 

CCRD 280 12 21 1.03 25.2 

Validation 280 12 21 1.03 25.2 

- mean retention time and catalyst loading had no effect on bio-oil carbon content. 

4.3.6 Bio-oil properties 

Elemental composition and heating value of corn cobs and bio-oil1 obtained from the 

optimal operating condition for bio-oil yield are presented in Table 4.5. Bio-oils produced in this 

study contained higher carbon content and lower oxygen content than corn cobs because oxygen 

was removed from biomass in the form of H2O and CO2 via internal dehydration and 

decarboxylation reactions in HTC. However, bio-oil1 included lower carbon content and higher 

oxygen content than most bio-oils in this study, because it was obtained at low temperature with 

high biomass content. The heating value of bio-oil1 (25.4 MJ/kg) was also lower than generally 

HTC oil (34.0 MJ/kg) (Huber et al., 2006) duo to its lower carbon content and higher oxygen 

content.  
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The chemical compounds of bio-oil1 included ketones, alcohols, esters, and long chain 

alkane hydrocarbons, in which 2-Ethylhexyl mercaptoacetate and 1-Hexanol, 2-ethyl- were the 

dominant compounds, followed by 2-Pentanone, 4-hydroxy-4-methyl-, Nonadecane, and Diethyl 

Phthalate. 2-Pentanone, 4-hydroxy-4-methyl- was considered as the decomposed product of 

benzene derivatives from lignin (Bhaskar et al., 2008).  Other compounds might be derived from 

cellulose and hemicellulose in corn cobs because it is believed that cellulose and hemicellulose 

are decomposed to straight chain hydrocarbons. No phenol or its derivatives were found in  

bio-oil1, which might because phenolic derivatives was concentrated in aqueous products with 

strong alkali solution (Bhaskar et al., 2008). 

 

Table 4.5 Elemental composition and heating value of corn cobs and bio-oils 

Sample C H N S O* Heating value 

(MJ/kg) 

Corncobs 53.48±0.45 5.09±0.52 0.52±0.11 0.89±0.17 40.03±0.35 18.32±0.25 

Bio-oil1 63.0±1.57 6.87±0.57 0.42±0.01 1.31±0.10 28.82±2.23 25.41±0.73 

* Calculated by difference. 
Bio-oil1 was obtained from the validation experiment at 280°C for 12min with 21% biomass 
content and 1.56% catalyst loading on a total reactant weight basis.  
 

4.4 Conclusion 

Second order polynomial models were developed to predict bio-oil yield and carbon 

recovery, and first order linear model was developed to evaluate bio-oil carbon content. The 

models were adequate enough owe to the low P value (<0.001), and insignificant lack of fit 

(P>0.05). The results showed that higher bio-oil yield and carbon recovery could be obtained at 

low temperature for short retention time with high biomass content and moderate alkaline 

catalyst loading. However, bio-oil carbon content increased as temperature increased, but 

decreased as biomass content increased. A maximum bio-oil yield of 41.3% was obtained at 

280°C, 12min, 21% biomass content, and 1.56% catalyst loading. The experimental bio-oil yield 

of 39.5% was well consistent with the predicted one. A highest bio-oil carbon content of 74.8% 

was produced at 340°C with 9% biomass content. A maximum carbon recovery of 25.2% was 

observed at 280°C, 12min, 21% biomass content, and 1.03% catalyst loading. The predicted bio-

oil carbon content and carbon recovery also were confirmed well by the validation experiments. 
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The properties of the bio-oil obtained at the optimal conditions for bio-oil yield were 

measured. The heating value of the bio-oil was low as 25.41MJ/kg due to its low carbon content 

(63%) and high oxygen content (28.8%). The chemical compounds of the bio-oil included 

ketones, alcohols, esters, and long chain alkane hydrocarbons, in which 2-Ethylhexyl 

mercaptoacetate and 1-Hexanol, 2-ethyl- were the dominant compounds. 
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Chapter 5 - Hydrothermal Conversion of Big Bluestem for Bio-oil 

Production: the Effect of Ecotype and Planting Location* 

Abstract 

Three ecotypes (CKS, EKS, IL) and one cultivar (KAW) of big bluestem (Andropogon 

gerardii) that were planted in three locations (Hays, KS; Manhattan, KS; and Carbondale, IL) 

were converted to bio-oil via hydrothermal conversion. Significant differences were found in the 

yield and elemental composition of bio-oils produced from big bluestem of different ecotypes 

and/or planting locations. Generally, the IL ecotype and the Carbondale, IL and Manhattan, KS 

planting locations gave higher bio-oil yield, which can be attributed to the higher total cellulose 

and hemicellulose content and/or the higher carbon but lower oxygen contents in these 

feedstocks. Bio-oil from the IL ecotype also had the highest carbon and lowest oxygen contents, 

which were not affected by the planting location. Bio-oils from big bluestem had yield, elemental 

composition, and chemical compounds similar to bio-oils from switchgrass and corncobs, 

although mass percentages of some of the compounds were slightly different.  
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 5.1 Introduction 

Andropogon gerardii Vitman, commonly known as big bluestem, is a dominant grass in 

the tallgrass prairies of North America (Weaver and Fitzpatric, 1932; Knapp et al., 1998). Big 

bluestem is widely distributed on loamy soils in Midwest United States grasslands and comprises 

up to 80% of prairie biomass (Knapp et al 1998). Although photosynthesis in C4 grasses is highly 

sensitive to water stress (Ghannoum, 2009), big bluestem is capable of maintaining high 

photosynthetic rates during periods of water shortage (Knapp, 1985) owning to its efficient water 

usage and resource allocation (Johnson and Matchett, 2001). Conversion of native perennial 

grasses such as big bluestem to biofuels offers major economic, environmental, and strategic 

benefits. Compared with switchgrass, the first-generation dedicated bioenergy species, big 

bluestem was found to produce three times more biomass (Epstein et al., 1998) with less (or no) 

irrigation or nitrogen fertilizers needed. Moreover, big bluestem was found to have higher 

cellulose and lignin contents and greater fermentability than switchgrass (Jung and Vogel, 1992), 

which are important qualities for biofuel conversion.  

McMillan conducted early studies investigating the ecotype effects of several grasses, 

including big bluestem. Six ecotypes of big bluestem were collected across the United States 

from north to south and were planted in Texas (McMillan, 1965a) or in growth chambers with 

temperature and light-period controls (McMillan, 1965b). Results indicated that vegetation of big 

bluestem was affected by its ecotype and growth climate. Jefferson and co-workers (2002, 2004) 

also found that planting location had significant effects on big bluestem biomass production and 

its cellulose and hemicellulose contents in the Canadian prairie provinces. They found that big 

bluestem could not be well cultivated at sites above 51ºN latitude in western Canada, and its 

cellulose and hemicellulose contents were lower than in lower latitude areas.  

Cellulose, hemicellulose, and lignin are the three major compounds of lignocellulosic 

biomass. Higher cellulose content in biomass generally favors higher ethanol yield in 

biochemical conversion. Thermochemical conversion is another promising technology to convert 

lignocellulosic biomass such as big bluestem into bio-fuels. As one of the thermochemical 

conversion processes, hydrothermal conversion (HTC) has been extensively investigated for the 

production of bio-oil, which can be used as a fuel for stationary diesel engines, burners, boilers 

or turbines (Czernik and Bridgwater, 2004), or can be upgraded or further converted to 

transportation fuels (e.g., gasoline and diesel) and products such as polymers, aromatics, 
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lubricants, and asphalt (Peterson et al., 2008). HTC is a chemical reforming process in which hot 

compressed water (or other solvents) is used as reaction medium with which biomass is 

depolymerized and reformed to gases, water-soluble matters, bio-oil, and char in an oxygen-

absent enclosure. 

However, to the best of our knowledge, little information is available regarding the effect 

of ecotype and planting location of big bluestem on its chemical composition and consequent 

biofuel yield, and no information is available on converting big bluestem to bio-oil via HTC. The 

objective of this study was to understand the effects of big bluestem ecotype and planting 

location on its bio-oil yield and elemental composition. Four ecotypes of big bluestem 

reciprocally planted in three locations (Hays and Manhattan, KS, and Carbondale, IL) were used 

as the feedstock. For comparison purpose, switchgrass and corncobs were also tested.  

 5.2 Materials and Methods 

 5.2.1. Feedstock preparation 

The feedstocks used in this study included big bluestem, switchgrass, and corncobs. 

Three ecotypes of big bluestem, Central Kansas (CKS, Kansas State University Agricultural 

Research Center–Hays, Hays, KS), Eastern Kansas (EKS, USDA Plant Material Center, 

Manhattan, KS), and Illinois (IL, Southern Illinois University Agronomy Center, Carbondale, IL) 

ecotypes were used. In Fall 2008, seeds of the ecotypes from these regions were collected by 

hand from pristine ungrazed prairie within 50 miles of their home sites (Table 1). Seeds of each 

ecotype were collected from two sites in the same region and separately planted in different 

blocks. The Kaw cultivar (KAW) was also used for comparison purpose. KAW is a cultivar bred 

by the USDA Plant Material Center (Manhattan, KS) that is widely used for restoration planting 

in Conservation Reserve Program lands throughout the Great Plains. All three ecotypes plus 

KAW were planted in the three locations, Hays and Manhattan, KS, and Carbondale, IL, in 

August 2009 (Table 1) and were harvested in October 2010. For CKS, EKS, and IL ecotype of 

big bluestem, two samples were obtained for each ecotype. Switchgrass (Panicum virgatum-

Kanlow) was grown and harvested at the Kansas State University Agronomy Farm in Manhattan, 

KS. For big bluestem and switchgrass, the entire plant except for the root was used in this study. 

Commercially available corncobs were obtained from Kaytee Products, Inc. (Chilton, WI). Each 

feedstock sample was ground in a Retsch SM2000 rotary cutting mill (Retsch Inc., Newtown, 
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PA) with a 1.0-mm screen. After grinding, each sample was manually mixed using a glass rod. 

Samples were dried at 105°C for 24h before use in the experiments. 

 

Table 5.1 The seed collection site and planting location of big bluestem 

Location 
Latitude 

(N) 

Longitude 

(W) 

Elevation 

(m) 

2010 annual 

precipitation 

 (cm/year) 

Mean 

annual 

precipitation 

since 1961 

(cm) 

Growing 

degree 

days 

2010  

Soil 

type 

Kansas State 

University 

Agricultural 

Research 

Center–

Hays (Hays, 

KS) 

38o51’ 99o 19’ 603 50.11 58.22 4193 
Roxbury 

slit loam 

USDA Plant 

Material 

Center 

(Manhattan, 

KS) 

39o08’ 96o38’ 315 67.82 87.15 4105 
Sandy 

loam 

Southern 

Illinois 

University 

Agronomy 

Center 

(Carbondale, 

IL) 

37°73’ 89°22’ 127 66.95 116.73 4474 
Stoy silt 

loam 
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 5.2.2 HTC apparatus and experimental procedure 

A 1.8-L Parr model 4578 high-temperature, high-pressure reactor (Parr Instrument 

Company, Moline, IL) equipped with a magnetic stirrer, serpentine cooling coil, reflux/take-off 

condenser assembly, and bottom drain valve was used for all experiments. The reactor is made of 

T316 stainless steel with an extreme operation capability of 5,000 psi and 500 °C. In a typical 

batch test, a 50-g dry sample with 2.5 g sodium hydroxide as the catalyst and 447.5 g deionized 

water were placed in the reactor. Air in the reactor was purged by flushing with nitrogen gas for 

five minutes. The reactor was then pressurized to approximately 100 psi by using a high-pressure 

nitrogen gas cylinder and heated to 280 °C with a heating rate of approximately 5 °C/min. The 

desired temperature was kept for 20 min and the final gauge pressure at the end of the heating 

cycle was around 1,100 psi. After the reaction, the reactor was cooled to room temperature with 

tap water and the gaseous products were vented through the gas outlet valve. The solid and 

aqueous products were collected from the reactor and separated by vacuum filtration with 

Whatman Grad No.1 filter paper. Then, the water-insoluble fraction and the reactor were washed 

with acetone. The solvent-insoluble portion was separated through vacuum filtration, then dried 

to obtain the residual solid called bio-char. The solvent-soluble portion was then evaporated 

using a rotary evaporator (Buchi RE-111, Flawil, Switzerland) to remove acetone, and the 

remaining product was water-insoluble bio-oil. More details about the experimental apparatus 

and procedure can be found in one of our previous papers (Gan et al., 2010). All experiments 

were performed in duplicate, and data were expressed as average values. Bio-oil yield was 

defined as follows: Oil yield (%) = (weight of bio-oil) / (dry weight of feedstock) × 100%. 

 5.2.3 Analytical tests 

Chemical composition of biomass was determined according to the laboratory analytical 

procedures developed by the National Renewable Energy Laboratory (Sluiter et al., 2005; Sluiter 

et al., 2008). Briefly, after water and ethanol extraction, the sample was soaked in 72% sulfuric 

acid at 30 °C for 1 h with constant stirring, followed by dilution to a 4% acid solution and 

heating for another hour at 120 °C. The aqueous products and solid residue of the pretreatment 

process were separated by vacuum filtration. The filtrate was adjusted to neutral by calcium 

carbonate, then the sugar contents of the filtrate were measured by high-performance liquid 

chromatography (Shimadzu, Kyoto, Japan), and acid-soluble lignin content in the filtrate was 
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detected by a UV-visible spectrophotometer (BioMate 3, Thermo Electron Corporation, 

Madison, WI). The solid residue was dried and combusted. The weight difference between the 

dry residue and combustion residue was reported as acid-insoluble lignin.  

The elemental compositions of feedstock and bio-oil products were analyzed by a 

CHNS/O elemental analyzer (PerkinElmer 2400, Shelton, CT). Each sample was placed in a 

tarred tin capsule (PerkinElmer N2411255) and precisely weighed using a PerkinElmer AD6 

Autobalance. The weight of each sample tested was approximately 2 mg. Samples encapsulated 

in the tin were then loaded automatically by an integral 60-position autosampler (Perkin Elmer).  

Bio-oil chemical compounds were analyzed by a gas chromatograph equipped with a 

mass selective detector (Agilent 5975C GC-MS with HP-5MS column, Agilent Technologies 

Inc., Santa Clara, CA). The temperature was kept at 40°C for 1 min, then increased to 300 °C 

with 10 °C/min heating rate and held for 5 min. The inlet temperature of the GC-MS was 280 °C. 

Compounds in the bio-oil were identified using the NIST08 library (Agilent Technologies Inc., 

Santa Clara, CA). 

All statistical analyses were performed using SPSS software (SPSS 17.0, SPSS Inc., 

Chicago, IL). Correlations among big bluestem characteristics (chemical and elemental 

compositions) and bio-oil properties (yield, carbon, and oxygen content) were determined using 

Pearson’s correlation. Effects and interactions of ecotype/cultivar and planting location on bio-

oil yield, carbon, and oxygen content were analyzed using the ANOVA test. Tukey’s HSD test 

was used to check significant differences. For convenience, “cultivar” is not specifically 

differentiated from “ecotype” and are both described as “ecotype” thereafter in this article when 

the effect of ecotype/cultivar is discussed. 

 5.3 Results and Discussion 

 5.3.1 The effect of ecotype and planting location on bio-oil yield 

Bio-oil yields were in the range of 19.5–27.2%, depending on big bluestem ecotype and 

planting location. The data were analyzed separately for each ecotype and planting location and 

are shown in Figure 5.1. In Figure 5.1, letters (a and b) above the standard deviation bars indicate 

that means of bio-oil yields are significantly different based on Tukey’s HSD test (p < 0.05); e.g., 

bio-oil yield of group b is significantly higher than bio-oil yield of group a. We denote 

significant differences in the same manner for all remaining figures. As can be seen from Figure 
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5.1, the effect of big bluestem ecotype on bio-oil yield is dependent on the planting location. 

When planted in Manhattan, KS, or Carbondale, IL, all ecotypes gave statistically similar bio-oil 

yield, indicating that the planting location rather than ecotype may influence bio-oil yield. When 

planted in Hays KS, slight differences in bio-oil yield were found, with KAW the highest and 

EKS ecotype the lowest. The average bio-oil yield at all three locations for each ecotype showed 

the same trend as in Hays, KS. In general, KAW and IL ecotype gave higher bio-oil yield, 

suggesting that they might be the advantageous ecotypes for bio-oil production. 
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Figure 5.1 Comparison of bio-oil yields of different ecotypes in each planting location, 

grouped by planting location  

Different letters (a and b) above the standard deviation bars indicate that the means of bio-oil 

yield are significantly different (b>a), while the same letters indicate that the values are 

statistically the same, based on Tukey’s HSD test (p < 0.05) 

 

The effect of planting location on bio-oil yield can be found in Figure 5.2. KAW and IL 

had no significant differences in bio-oil yield regardless of where they were planted. From 

previous analysis, KAW and the IL ecotype were higher in bio-oil yield, which suggests that 

ecotype is the main factor influencing bio-oil yield for these two advantageous ecotypes in terms 

of bio-oil yield. However, for CKS and EKS ecotypes, Manhattan, KS, and Carbondale, IL, were 
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significantly better planting locations than Hays, KS. These two ecotypes are considered 

relatively disadvantageous in terms of bio-oil yield from previous analysis; therefore, planting 

location became the dominant factor for bio-oil yield for these two ecotypes. These results 

indicate that local ecotypes did not show greater bio-oil production when they were planted in 

their home site. Furthermore, the average bio-oil yield of all ecotypes at each planting location 

also showed that the Illinois and Manhattan planting locations gave higher bio-oil yield than 

Hays. Thus, both ecotype and planting location can affect bio-oil yield. Because the sample size 

was small, looking at average values instead of individual ecotype or planting location would be 

more meaningful. With that in mind, KAW and IL planted in Manhattan or Illinois would be a 

better choice for higher bio-oil yield. 
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Figure 5.2  Comparisons of bio-oil yield in different planting locations, grouped by ecotype 

Different letters above the standard deviation bars indicate that the means of bio-oil yield are 

significantly different based on Tukey’s HSD test (p < 0.05) 

 5.3.2 Effects of ecotype and planting location on bio-oil carbon and oxygen content 

In addition to yield, carbon (C) and oxygen (O) contents of bio-oil are also important. 

Bio-oil heating value increases as C content increases and O content decreases according to the 

Dulong formula (Minowa et al., 1998; Zhong and Wei, 2004). In addition, bio-oil containing less 

O is more stable, and vice versa. In this study, the bio-oil C content ranged from 69.8% to 
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77.9%, and O content was between 14.0% and 22.0%. This was consistent with reports from 

other researchers in which the typical C and O contents of HTC oil were 65%~83% and 

5%~25%, respectively (Huber et al., 2006; Demirbaş et al., 2005; Demirbaş, 2005; Wang et al., 

2008; Gan et al., 2010; Zhang et al., 2011).  

Bio-oil C and O contents are shown in Figure 5.3. From Figure 5.3A, ecotype seems to 

have affected C content of the bio-oil produced for certain locations; however, the trend was not 

consistent for individual ecotypes. For example, the CKS ecotype had the lowest C content in 

Hays, but not in the Illinois location. By averaging all three locations, IL ecotype gave the 

highest C content whereas CKS and KAW gave the lowest. O content showed a similar trend 

(Figure 5.3B), but in an opposite way; that is, IL ecotype gave the lowest O content, and CKS 

ecotype and KAW gave the highest. This suggests a negative correlation between C and O 

contents of the bio-oil. The optimal ecotype of big bluestem to produce bio-oil with high C and 

low O content seems to be the IL ecotype. 
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Figure 5.3  Comparisons of bio-oil carbon (A) and oxygen (B) contents of different ecotypes 

grouped by planting location  

Different letters above the standard deviation bars indicate that the means of C or O contents are 

significantly different based on Tukey’s HSD test (p < 0.05) 
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The effect of big bluestem planting location on bio-oil C and O contents can be seen from 

Figure 5.4. For all ecotypes except the EKS, no significant difference was observed in bio-oil C 

or O contents among different planting locations. Bio-oil produced from EKS ecotype planted in 

Hays, KS, contained more C and less O than that planted in Manhattan, KS, or Carbondale, IL. 

The Hays planting site had significantly lower precipitation than Manhattan and Carbondale 

planting sites in 2010, which might have caused the differences in feedstock chemical 

composition (described in section 5.3.3) and consequently different bio-oils. However, the other 

ecotypes planted in Hays did not yield significantly different bio-oils from other planting 

locations like the EKS ecotype, which suggests that interaction effects may exist between 

ecotype and planting location. In other words, different ecotypes might respond to climate 

changes in different ways. This conclusion might be biased due to small samples sizes in this 

study; therefore, looking at the average elemental compositions of all three ecotypes and KAW, 

which are statistically the same in the three planting locations (Figure 5.4), would be more 

meaningful. 
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Figure 5.4  Comparisons of bio-oil C (A) and O (B) contents in different planting locations, 

grouped by ecotype 

 Different letters above the standard deviation bars indicate that the means of C or O contents are 

significantly different based on Tukey’s HSD test (p < 0.05) 

 

Effects of ecotype and planting location on bio-oil yield and bio-oil C and O contents 

were also analyzed by two-way ANOVA. Based on statistical results summarized in Table 5.2, 

bio-oil yield of big bluestem HTC was significantly affected by ecotype (p < 0.05) and planting 
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location (p < 0.01), with the latter being more influential (greater F-value with smaller P-value). 

The interaction effect of ecotype and planting location on bio-oil yield was statistically 

insignificant (p > 0.05). Bio-oil C and O contents were significantly affected by both ecotype  

(p < 0.01) and the interaction between ecotype and planting location (p < 0.05); however, 

planting location alone had no significant effect on bio-oil C or O contents. 

 

Table 5.2 Two-way ANOVA test of the effect of ecotype and planting location on bio-oil 

yield and elemental composition 

Bio-oil yield Bio-oil carbon content Bio-oil oxygen content  

Source of variation df F P df F P df F P 

Ecotype 3 3.83 .020 3 7.42 .001 3 7.17 .001 

Location 2 13.12 .000 2 2.11 .140 2 2.59 .092 

Ecotype × location 6 1.83 .127 6 2.71 .032 6 2.68 .033 

 

 5.3.3 The effect of ecotype and planting location on big bluestem chemical and 

elemental compositions  

It was hypothesized in this study that the yield and elemental compositions of bio-oil 

were determined by the chemical and elemental compositions of big bluestem feedstock (Table 

3), which were influenced by ecotype and/or planting location. By averaging all ecotypes and 

cultivar in each planting location, big bluestem planted in Carbondale, IL and Manhattan, KS, 

contained higher cellulose and hemicellulose contents than in Hays, KS, whereas lignin contents 

of the three planting locations were statistically the same. A positive correlation between the 

total amount of cellulose and hemicellulose and bio-oil yield was found (described in section 3.4, 

Fig. 5). Furthermore, big bluestem planted in Carbondale, IL and Manhattan, KS contained more 

C but less O than in Hays, KS, which may also explain the higher bio-oil yield in the two 

locations. A positive correlation between C content and bio-oil yield and a negative correlation 

between O content and bio-oil yield were found (described in section 3.4, Fig. 6). The effect of 

big bluestem ecotype on its chemical and elemental compositions is dependent on the planting 

location. Generally, KAW and the IL ecotype had either higher cellulose content or lower O 

content; however, compared with planting location effect, ecotype effect on feedstock 
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composition was not significant. Detailed analysis of the effect of ecotype and planting location 

on big bluestem chemical and elemental compositions will be reported in another article in our 

series (unpublished data). 

 5.3.4 Correlations between feedstock compositions and bio-oil yield  

A positive linear relationship between bio-oil yield and the total amount of cellulose and 

hemicellulose in the feedstock is shown in Figure 5.5. Bio-oil yield generally increased as the 

total amount of cellulose and hemicellulose increased. Cellulose and hemicellulose were found 

to be able to convert to bio-oil in hot-compressed water at relatively low temperatures (260 to 

300 °C) by some other researchers (Minowa et al., 1997; Pińkowska et al., 2011). The relatively 

low coefficient of determination (R2 = 0.63) of the linear regression in Figure 5.5 suggests that 

bio-oil yield was probably affected by other factors besides the total amount of cellulose and 

hemicellulose of the feedstock, such as lignin content. Compared with cellulose and 

hemicelluose, lignin is more readily depolymerized (Tymchyshyn and Xu, 2010), but the 

decomposition of pure lignin favors the formation of water-soluble organic compounds and solid 

residue rather than heavy bio-oil. Furthermore, solid residue is formed by condensation reactions 

of the water-soluble organic compounds (Bobleter and Concin, 1979). Demirbaş (2000) also 

reported that free phenoxyl radicals derived from lignin decomposition had a random tendency to 

form bio-char via condensation or repolymerization; however, bio-oil produced from real 

biomass HTC contained significant quantities of phenolic compounds and their derivatives 

(Bhaskar et al., 2008; Tymchyshyn and Xu, 2010; Sun et al., 2011), which indicated that lignin 

in real biomass contributed greatly to bio-oil production. Roberts and co-workers (2011) reported 

that boric acid inhibited the condensation reaction in pure lignin base-catalyzed HTC. Significant 

interactions between the biomass chemical compounds in the HTC process may occur because 

acetic acid and other organic acids were produced from cellulose and hemicellulose in HTC. 

Weak correlation between lignin content and bio-oil yield was found in this study, perhaps 

because of the complex reactions in biomass HTC. Minowa and coworkers (1998) also found 

that the bio-char yield increased as the biomass lignin content increased, but the correlation 

between lignin content and bio-oil yield was weak. The other reason for the weak correlation 

might be the narrow lignin content range of big bluestems in this study (16.3% to 19.6%). The 
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effect of lignin content on bio-oil production is difficult to distinguish clearly in such narrow 

range. 

 

Table 5.3 Chemical and elemental compositions of big bluestem (wt% db) 

Ecotype Planting location Cellulose Hemicellulose Lignin 
Cellulose and 
hemicellulose 

Hays, KS 30.02±0.46a 22.79±0.77a 18.17±0.53a 52.81a 

Manhattan, KS 30.03±1.03a 24.73±0.66ab 17.72±0.15a 54.76ab CKS 
Carbondale, IL 30.55±0.88a 26.55±1.63b 17.45±0.90a 57.1b 

Hays, KS 27.80±0.35a 22.03±0.47a 17.33±0.13a 49.83a 

Manhattan,KS 29.53±0.37b 25.01±0.64b 17.17±0.50a 54.54b EKS 
Carbondale, IL 29.46±1.17b 26.33±0.80c 18.05±0.62a 55.79b 

Hays, KS 28.96±1.64a 21.99±0.60a 16.51±0.33a 50.93a 

Manhattan, KS 29.96±1.49a 25.20±1.23b 16.27±1.20a 55.06b IL 
Carbondale, IL 29.71±0.38a 25.54±1.11b 17.47±0.90a 55.25b 

Hays, KS 29.38±0.00a 22.31±0.32a 16.92±0.20a 51.69a 

Manhattan, KS 32.28±0.48ab 24.10±0.37b 17.62±0.05b 56.38b KAW  
Carbondale, IL 33.25±0.33b 26.30±0.10c 19.35±0.17c 59.55c 

Hays, KS 29.0±1.17a 22.3±0.61a 17.28±0.71a 51.3±1.50a 

Manhattan, KS 30.19±1.28ab 24.85±0.83b 17.13±0.88a 55.04±1.50b 
Average of all 
ecotypes and 

culitvar Carbondale, IL 30.39±1.48b 26.16±1.10c 17.90±0.96a 56.55±2.17b 

CKS 30.20±0.79ab 24.69±1.89a 17.78±0.63b 54.89±2.29a 

EKS 28.93±1.07a 24.45±1.97a 17.52±0.58b 53.38±2.9a 

IL 29.55±1.25a 24.24±1.91a 16.75±0.97a 53.79±2.77a 

KAW 

Average in all 
locations 

31.64±1.82b 24.24±1.80a 17.96±1.13b 55.87±3.56a 

Elemental composition (wt% db) 
Ecotype Location Carbon Hydrogen Nitrogen Sulfur Oxygen1 

Hays, KS 50.11±1.27a 4.18±0.04a 1.08±0.07a 0.65±0.45a 43.99±0.79a 

Manhattan, KS 50.66±0.97a 4.15±0.04a 0.83±0.01a 0.51±0.27a 43.86±0.73a CKS 
Carbondale, IL 53.16±0.56a 4.26±0.21a 0.76±0.18a 0.75±0.03a 41.08±0.61a 

Hays, KS 48.66±0.78a 4.11±0.04a 1.15±0.12a 0.34±0.01a 45.76±0.68b 

Manhattan, KS 49.92±0.11ab 4.11±0.42a 0.90±0.07a 0.46±0.30a 44.61±0.17b EKS 
Carbondale, IL 53.12±1.13b 4.39±0.12a 0.97±0.54a 0.75±0.04a 40.78±0.43a 

Hays, KS 50.09±0.33a 4.43±0.40a 0.99±0.21a 0.30±0.06a 44.21±0.20c 

Manhattan, KS 51.62±0.02b 4.31±0.18a 0.91±0.21a 0.54±0.29a 42.63±0.28b IL 
Carbondale, IL 53.15±0.10c 4.34±0.01a 0.92±0.01a 0.74±0.01a 40.86±0.06a 

Hays, KS 50.78±0.57a 4.41±0.60a 0.84±0.13a 0.27±0.51a 43.70±0.67c 

Manhattan, KS 51.22±0.62a 4.46±0.46a 0.69±0.19a 0.74±0.16a 42.89±0.20b KAW 
Carbondale, IL 53.65±0.14b 4.42±0.01a 0.63±0.14a 0.75±0.01a 40.55±0.02a 

Hays, KS 49.78±1.02a 4.26±0.23a 1.04±0.15a 0.40±0.25a 44.52±0.97c 

Manhattan, KS 50.80±0.82a 4.23±0.23a 0.85±0.12a 0.54±0.22a 43.58±0.93b 
Average of all 
ecotypes and 

cultivar Carbondale, IL 53.21±0.55b 4.34±0.12a 0.85±0.27a 0.75±0.02a 40.85±0.36a 

CKS 51.31±1.64a 4.19±0.11a 0.89±0.17a 0.64±0.26a 42.98±1.57b 

EKS 50.57±2.15a 4.20±0.24a 1.00±0.27a 0.52±0.23a 43.71±2.36b 

IL 51.62±1.38a 4.36±0.21a 0.94±0.14a 0.52±0.24a 42.57±1.51a 

KAW 

Average in all 
locations 

51.88±1.55a 4.43±0.03a 0.72±0.11a 0.59±0.27a 42.38±1.64a 

Different letters (a, b, and c) indicate that the means of composition are significantly different in the order of c>b>a 

based on Tukey’s HSD test (p < 0.05). 
1Calculated by the difference between 100% and the total amount of carbon, hydrogen, nitrogen, and sulfur. 
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Figure 5.5 Effect of the total amount of cellulose and hemicellulose in big bluestem on bio-

oil yield 

 

The effect of big bluestem C and O contents on bio-oil yield is evident in Figure 5.6. 

Higher C content or lower O content, which usually correlate with each other, gave higher bio-

oil yield and explained 58 and 54% of the variation in bio-oil yield, respectively. Heavy bio-oil 

produced from biomass HTC mainly consists of high molecular weight organic compounds such 

as phenolic compounds and their derivatives, long-chain carboxylic acids/esters, and long-chain 

hydrocarbons (Bhaskar et al., 2008; Sun et al., 2011). Biomass C is the main source of produced 

heavy bio-oil.    
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Figure 5.6 Effect of big bluestem C content (A) and O content (B) on bio-oil yield 
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Correlations between bio-oil yield and the contents of cellulose, hemicellulose, and 

lignin, as well as C and O contents of the feedstock were also analyzed by SPSS Pearson’s 

correlation. Correlations between bio-oil yield and the contents of cellulose and hemicellulose 

were significant at the 0.05 level, and the correlation coefficients (r) were 0.67 and 0.70, 

respectively. Furthermore, a strong positive correlation between bio-oil yield and the total 

amount of cellulose and hemicellulose was found (r = 0.79, significant at the 0.01 level), which 

is consistent with Figure 5.5. The correlation between bio-oil yield and lignin content is weak 

and insignificant with a correlation coefficient of 0.14; however, considering the narrow range of 

lignin content in the selected big bluestem samples (16.3% to 19.4% in Table 5.3), the 

correlation is not reliable enough to exclude the effect of lignin content on bio-oil yield. The 

positive correlation between big bluestem C content and bio-oil yield (r = 0.75, significant at the 

0.01 level) and the negative correlation between big bluestem O content and bio-oil yield  

(r = -0.72, significant at the 0.01 level) are also consistent with the findings from Figure 5.6. 

 5.3.5 Comparison of bio-oil production from big bluestem, switchgrass, and 

corncobs 

Table 5.4 summarizes the yield and elemental composition of bio-oils generated from big 

bluestem, switchgrass, and corncobs. When the highest-yielding big bluestem (KAW planted in 

Carbondale, IL) was used in statistical analysis, big bluestem had bio-oil yield similar to 

corncobs, and yield was significantly higher than that from switchgrass. However, bio-oil from 

KAW big bluestem planted in Carbondale, IL, had the lowest C and the highest O contents 

compared with those from switchgrass and corncobs. When the average bio-oil yield and 

elemental composition of all big bluestems were used, bio-oil yield of big bluestem and 

switchgrass had no significant difference, but both were lower than that of corncobs. Bio-oils 

produced from the three types of biomass were statistically the same in both C and O contents. 

This is the first data set, to the best of our knowledge, that provides fundamental information 

about the potential of big bluestem to be developed as a biofuel feedstock and how it compares 

with more widely used crops such as switchgrass. 
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Table 5.4 Comparison of bio-oil production between big bluestem, switchgrass, and 

corncobs 

Biomass Bio-oil yield (%) Bio-oil C content (%) Bio-oil O content (%) 

Best big bluestem-KAW 27.2±1.1b 70.2±0.5a 21.12±0.8b 

Switchgrass 23.6±0.2a, A 75.5±0.2b, A 15.77±1.3a, A 

Corn cobs 29.9±0.5b, B 74.8±0.1b, A 16.76±0.6a, A 

Big bluestem-Average    24.1±2.7A    73.5±4.1A      18.6±4.1A 

 Lowercase letters (a and b) indicate whether the means of yield or elemental composition of the 

best yielding big bluestem-KAW, switchgrass, and corncobs are significantly different based on 

Tukey’s HSD test (p < 0.05). Uppercase letters (A and B) were used to indicate the difference 

among the average bio-oil yield and elemental composition of all big bluestems, switchgrass, and 

corncobs. The same letter means they are not significantly different, whereas different letters 

mean they are significantly different in the order of b>a or B>A. 

 

The main chemical compounds of bio-oils produced from big bluestem (KAW planted in 

IL), switchgrass, and corncobs are summarized in Table 5.5. Bio-oils from the three biomass 

contained similar chemical compounds, such as ketones, alcohols, esters, and long-chain alkane 

hydrocarbons, but area percentages varied by biomass. Among the many chemical compounds in 

the bio-oils, 2-Ethylhexyl mercaptoacetate and 1-Hexanol, 2-ethyl- were the dominant 

compounds. The highest concentrations of 2-Ethylhexyl mercaptoacetate and 1-Hexanol, 2-

ethyl- were observed in corncob-based bio-oil, whereas bio-oils from big bluestem and 

switchgrass had similarly lower concentrations, perhaps because corncobs have higher cellulose 

(35.6%) and hemicellulose (30.0%) contents than big bluestem (31.2% cellulose, 26.2% 

hemicellulose) and switchgrass (31.0% cellulose, 20.4% hemicellulose). In HTC, cellulose and 

hemicellulose are believed to make short- and straight-chain hydrocarbons such as -Ethylhexyl 

mercaptoacetate and 1-Hexanol, 2-ethyl-. Small percentages of 2-Pentanone, 4-hydroxy-4-

methyl- were observed in all three bio-oils and were considered the decomposed product of 

benzene derivatives from lignin (Bhaskar et al., 2008). Neither phenol nor its derivatives were 

found in the bio-oils produced in this study. Bhaskar and coworkers (2008) reported that 

phenolic derivatives could be concentrated in aqueous products with strong alkali solution, 

which was the case for this study.  
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Table 5.5 Identification of compounds by GC-MS in bio-oil from big bluestem, switchgrass, 

and corncobs  

Area (%) 

No. 
RT 

(min) 
Name of compound 

Molecular 

formula 
Big 

bluestem 
Switchgrass Corncobs 

1 5.8 
3-Penten-2-one, 4-

methyl- 
C6H10O 1.5 4.6 - 

2 6.4 
2-Pentanone, 4-hydroxy-

4-methyl- 

C6H12O2 

 
3.7 5.8 3.6 

3 9.3 1-Hexanol, 2-ethyl- C8H18O 21.1 20.9 30.1 

4 15.0 
2-Ethylhexyl 

mercaptoacetate 
C10H20O2S 33.0 25.6 48.3 

5 17.1 Diethyl Phthalate C12H14O4 2.05 0.55 0.51 

6 22.8 Hexadecane C16H34 - 3.36 - 

7 22.9 Nonadecane C19H40 8.93 - 3.19 

 

 5.4 Conclusions 

Bio-oil yield of big bluestem HTC was significantly affected by both ecotype and 

planting location, but the latter was more influential. The interaction effect between ecotype and 

planting location on bio-oil yield was statistically insignificant (p > 0.05). Bio-oil C and O 

contents were significantly affected mainly by ecotype (p < 0.01) and sometimes by the 

interaction between ecotype and planting location (p < 0.05); however, planting location alone 

had no significant effect on bio-oil C or O contents. Big bluestem and switchgrass have similar 

potential for bio-oil production via HTC in terms of bio-oil yield, bio-oil C and O content. 
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Chapter 6 - Hydrothermal Conversion of Cellulose, Hemicellulose, 

and Lignin: Influence of Operating Conditions and Their 

Interactions 

Abstract  

The effects of reaction temperature, retention time, feedstock content, and catalyst 

loading on pure cellulose, D-xylose (model of hemicellulose) and lignin HTC were investigated. 

The maximum bio-oil yields of 21.4% and 19% were obtained from cellulose and D-xylose, 

respectively, at 300°C for 20min with 10% feedstock loading and 0.5% sodium hydroxide. 

However, little bio-oil was produced from lignin in this study. The interaction effect between the 

three components in HTC process also was studied using their mixture as feedstock. The results 

showed that there was positive interaction between cellulose and lignin, but negative interaction 

between cellulose and D-xylose. No significant interaction was found between D-xylose and 

lignin. Hydrothermal conversion of seven real biomass (corn cobs, big bluestem, switchgrass, 

pine, cherry, pecan, and hazelnut shell) and their model biomass also was carried out to study the 

effect of biomass chemical composition on bio-oil yield. As the total amount of cellulose and 

hemicellulose increased, bio-oil yield generally increased when real biomass was used, but 

decreased when low lignin content of model biomass was used.  
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 6.1 Introduction 

Biofuels produced from lignocellulosic biomass have received great interest because 

lignocellulosic biomass is abundant, renewable, and environmental friendly. In the US, about 1.3 

billion dry tons of lignocellulosic biomass can be sustainably produced annually (Perlack et al., 

2005). Hydrothermal conversion (HTC) is a promising technique to produce biofuels from 

lignocellulosic biomass, which can be operating at relatively low temperature without feedstock 

drying step owing to the use of hot compressed water or other solvents as reaction medium. HTC 

is a chemical reforming process, in which gases, water-soluble matters, bio-oil, and char are 

produced from biomass in a heated, pressurized, and oxygen-absent enclosure in the present of 

water or other solvents. via hydrolysis, depolymerization, repolymerization, and condensation 

(Ocfmia et al., 2006). Bio-oil produced from biomass HTC is an alternative for fossil fuel, which 

can be used as a fuel for stationary diesel engines, burners, boilers or turbines (Czernik and 

Bridgwater, 2004), or be upgraded to transportation fuels (e.g., gasoline and diesel) or products 

such as polymers, aromatics, lubricants and asphalt (Peterson et al., 2008).  

The three major chemical compositions of lignocellulosic biomass are cellulose, 

hemicellose, and lignin. Forest biomass is typically composed of 40-45% cellulose, 15-35% 

hemicellulose and 20-35% lignin. Agricultural wastes generally contain 40% cellulose, 20-25% 

hemicelllulose and 10-20% lignin (Tymchyshyn and Xu, 2010). It is believed that the 

composition of lignocellulosic biomass had significant effect on its hydrothermal decomposition 

in the aspect of optimal operating conditions, bio-oil yield and bio-oil components. The optimal 

temperature for bio-oil production from woody biomass HTC at the absence of catalyst shifted to 

a higher value as biomass lignin content increased (Zhong and Wei, 2004). As cellulose and 

hemicellulose content increased, bio-oil yield increased when woody biomass was used as 

feedstock at neutral conditions (Zhong and Wei, 2004; Demirbaş, 2005; Demirbaş et al., 2005; 

Bhaskar et al., 2008). However, bio-oil yield increased with increasing lignin content at alkaline 

condition (Minowa et al., 1998a). Furthermore, more acetic acid was obtained from cellulose 

rich biomass, but lignin rich biomass produced more phenolic hydrocarbons and derivatives 

(Bhaskar et al., 2008). Therefore, in order to better understand lignocellulosic biomass HTC, it is 

necessary to investigate the hydrothermal decomposition behaviors of the three components and 

their interactions.  
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Cellulose is composed of D-glucose units, which are linked by ß-(1→4) glycosidic 

bonds. Much work has been done on the kinetics and mechanisms of cellulose decomposition 

under hot-compressed water (Kamio et al., 2008a; 2008b; Kabyemela et al., 1998; Sasaki et al., 

1998; 2000; 2002; 2004). The composition of the aqueous products was analyzed for proposing 

the reaction pathway. However, they did not pay attention to bio-oil production from cellulose 

HTC. Minowa and co-workers (1997; 1998b; 1998c) investigated the effect of reaction 

temperature on cellulose HTC products distribution under alkali condition or catalyst-free 

condition. They reported that the highest heavy oil yield from cellulose HTC was obtained 

around 300°C, and alkali catalyst suppressed the formation of char from oil. However, 

Tymchyshyn and Xu (2010) found that bio-oil yield from cellulose HTC decreased as 

temperature increased from 250 to 350°C. The effects of alkalinity on reaction pathway of 

cellulose HTC were studied by Yin et al., (2011). They found that alkaline pathway was involved 

under initial strong alkaline conditions, acidic and alkaline pathways simultaneously occurred 

under initial weak alkaline conditions. The major compounds of bio-oil produced from cellulose 

HTC were esters of complex organic acids and long chain hydrocarbons (Tymchyshyn and Xu, 

2010; Karagöz et al., 2005).  

Hemicellulose is a polysaccharide that contains pentoses (xylose, arabinose), hexoses 

(mannose, glucose, and galactose) and uronic acids, in which, xylose always presents in the 

largest amount. Hydrothermal decomposition of xylan as a model substance for hemicellulose 

was carried out in sub-critical water by Pińkowska et al., (2011). No bio-oil was produced from 

xylan when reaction temperature was lower than 260°C. As temperature further increased to 

300°C, bio-oil yield slightly increased to 4.3%.  

The chemical structure of lignin is more complex than cellulose and hemicelluloses. It is 

composed of paracoumaryl alcohol, confieryl alcohol and shinapyl alcohol, which are crossing 

linked by ether. The decomposition of lignin or its model compounds has been carried out in 

supercritical water (Wahyudiono et al., 2008; Funazukuri et al., 1990). They found that water 

density had significant effect on the products distribution of lignin HTC. As water density 

increased, bio-oil yield increased but char yield decreased. During lignin HTC, the hydrolysis is 

an important reaction, but char is easily formed duo to the condensation of intermediates. The 

use of supercritical water-phenol mixtures in lignin HTC is an effective method to suppress char 

formation (Lin et al., 1997a; 1997b; Saisu et al., 2003). They reported that phenol could prevent 
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the char formation by condensation reaction. Furthermore, bio-oil production from lignin HTC 

also was investigated at low temperature (Karagöz et al., 2005; Tymchyshyn and Xu, 2010). 

They found that the yield of bio-oil was relative low, and its main components were phenolic and 

benzene derivatives. 

Although the HTC of the three main components of lignocellulosic biomass was 

investigated by some many researchers, the information about the effect of operating conditions 

and component proportion of lignocellulosic biomass on bio-oil production via HTC is not 

sufficient, and a satisfactory relationship between the HTC of the three components and biomass 

has not yet been established. The objectives of this study were are to 1) examine the effect of 

operating conditions including reaction temperature, retention time, biomass content, and 

catalyst loading on bio-oil production from cellulose, hemicellulose, and lignin HTC; 2) 

investigate the interactions between the three components; 3) investigate the relationship 

between lignocellulosic biomass HTC and the three components HTC. 

 6.2 Materials and Methods 

 6.2.1 Materials 

α-cellulose power (C8002) was obtained from Sigma-Aldrich Co., Ltd. D-xylose with a 

purity of 99% (H193) was used as a hemicellulose model, which was obtained from Cascade 

Analytical Reagents & Biochemicals. Alkali lignin with low sulphonate content (471003) was 

purchased from Sigma-Aldrich Co., Ltd. Seven lignocellulosic biomass (corn cobs, switchgrass, 

big bluestem, cherry wood, pecan wood, pine, and hazelnut shell) were also used. Commercially 

available corncobs were obtained from Kaytee Products, Inc. (Chilton, WI). Switchgrass 

(Panicum virgatum-Kanlow) was grown and harvested at the Kansas State University Agronomy 

Farm in Manhattan, KS. Big bluestem originated from Carbondale, Illinois was planted at USDA 

Plant Material Center, Manhattan, KS. Wood chips of cherry, pecan, and pine were purchased 

from Ace Hardware.  Hazelnut shell was peeled from hazelnuts obtained from Nuts Company. 

Each biomass was ground in a Retsch SM2000 rotary cutting mill (Retsch Inc., Newtown, PA) 

with a 1.0-mm screen. After grinding, each sample was manually mixed thoroughly. Samples 

were dried at 105°C for 24h before use in the experiments. 
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 6.2.2 HTC apparatus and experimental procedure 

In a typical test, feedstock, sodium hydroxide as the catalyst, and deionized water were 

placed in a 1.8 L Parr model 4578 high-temperature high-pressure reactor (Parr Instrument 

Company, Moline, IL). The reactor was heated to the desired temperature and then kept for 

desired time. Then the reactor was cooled to room temperature by tap water through the 

serpentine cooling coil. After the reaction, gaseous products were vented from the gas outlet 

valve. The solid and aqueous products were collected from the reactor and separated by vacuum 

filtration with Whatman Grad No.1 filter paper. When pure lignin was alone used as feedstock, 

the solid and aqueous products collected were acidified to pH ~ 1-2 with 10 wt% HCL before 

vacuum filtration to precipitate the unconverted lignin and high molecular lignin cleavage 

products (Roberts et al., 2011). Then, the water-insoluble fraction and the reactor were washed 

by acetone. The solvent insoluble portion was separated through vacuum filtration and then dried 

to obtain residual solid, called bio-char. The solvent soluble portion is then evaporated in a rotary 

evaporator (Buchi RE-111, Flawil, Switzerland) at 60°C to remove acetone, and the remaining 

product is water insoluble bio-oil. The bio-oil yield was defined as follows: Bio-oil yield (%) = 

(weight of bio-oil)/(weight of feedstock) × 100%. More details of the experimental apparatus and 

procedure can be found in one of our previous papers (Gan et al., 2010). 

 6.2.3 Analytical tests 

Chemical composition of biomass was determined according to the laboratory analytical 

procedures developed by the National Renewable Energy Laboratory (Sluiter et al., 2005; Sluiter 

et al., 2008). Briefly, after water and ethanol extraction, the sample was soaked in 72% sulfuric 

acid at 30 °C for 1 h with constant stirring, followed by dilution to a 4% acid solution and 

heating for another hour at 120 °C. The aqueous products and solid residue of the pretreatment 

process were separated by vacuum filtration. The filtrate was adjusted to neutral by calcium 

carbonate, then the sugar contents of the filtrate were measured by high-performance liquid 

chromatography (Shimadzu, Kyoto, Japan), and acid-soluble lignin content in the filtrate was 

detected by a UV-visible spectrophotometer (BioMate 3, Thermo Electron Corporation, 

Madison, WI). The solid residue was dried and combusted. The weight difference between the 

dry residue and combustion residue was reported as acid-insoluble lignin.  
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Bio-oil chemical compounds were analyzed by a gas chromatograph equipped with a 

mass selective detector (Agilent 5975C GC-MS with HP-5MS column, Agilent Technologies 

Inc., Santa Clara, CA). The temperature was kept at 40°C for 1 min, then increased to 300 °C 

with 10 °C/min heating rate and held for 5 min. The inlet temperature of the GC-MS was 280 °C. 

Compounds in the bio-oil were identified using the NIST08 library (Agilent Technologies Inc., 

Santa Clara, CA). 

 6.3 Results and discussion 

 6.3.1 Effect of operating conditions  

 6.3.1.1 Effect of reaction temperature 

Operating temperature is one of the most important factors in HTC. In this section, HTC 

of cellulose, hemicellulose, and lignin was conducted for 20 min with 10% feedstock content and 

0.5% sodium hydroxide (all on the a total reactants weight basis including the weight of; 

feedstock + water + catalyst). Bio-oil yields are presented in Figure 6.1. In this study, bio-oil 

yield of lignin HTC was very low, which was neglected and not presented. The trend of bio-oil 

yield from cellulose and hemicellulose was similar. The bio-oil yield increased first when 

temperature increased from 260°C to 300°C, and then decreased as reaction temperature further 

increased to 320°C. A similar phenomenon was found by Minowa and co-workers (1997). 

Cellulose decomposition in hot-compressed water with alkali catalyst was carried out at different 

reaction temperatures from 200 to 350°C. They  found that only water-soluble products were 

produced from cellulose alkaline HTC via hydrolysis and secondary decomposition below 

260°C, then the water-soluble products were converted to bio-oil at over 260°C. Bio-oil yield 

increased when temperature increased from 260 to 300°C owing to the cellulose quickly 

decomposition in this temperature range. As temperature further increased, bio-oil yield 

decreased due to its secondary decomposition to gases. Pińkowska et al., (2011) also found that 

xylan as a model substance for hemicellulose was firstly hydrolyzed to reducing sugars at lower 

temperature (<240°C). Then, bio-oil was produced from the sugars and its yield increased as 

temperature increased from 240°C to 300°C.  Similar trend of bio-oil yield as a function of 

reaction temperature also was observed when real biomass was used as HTC feedstock, such as 

woody biomass (Ogi et al., 1994; Zhong and Wei, 2004; Qian et al., 2007; Liu and Zhang, 2008; 
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Xu and Lad, 2008), rice staw (Yuan et al., 2007), and secondary pulp/paper sludge powder (Xu 

and Lancaster 2008). As temperature increases, depolymerization of the biomass into a liquid 

oil-rich phase becomes possible. But a further increase of the temperature might promote 

decomposition of these fragments into gaseous products and repolymerization or condensation of 

the intermediates into chars (Yuan et al., 2009; Minowa et al., 1998a). As shown in Figure 6.1, 

the maximum bio-oil yields of cellulose and hemicellulose were 21.4% and 19%, respectively, 

which were both obtained at 300°C.  
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Figure 6.1 Effect of operating temperature on bio-oil production from cellulose (▲) and 

xylose (■) hydrothermal conversion 

(20min retention time, 10% biomass content, 0.5% catalyst loading) 

 6.3.1.2 Effect of retention time 

In this experiment, HTC was conducted at 300°C with 10% feedstock content and 0.5% 

sodium hydroxide. Effects of retention time on bio-oil yields are shown in Figure 6.2. For both 

cellulose and hemicellulose, retention time had no significant effect on bio-oil yield at shorter 

retention time. As retention time increased from 10 min to 20 min, bio-oil yield increased  

rapidlyfast, but then decreased at a prolonged retention time, which could be explained by the 

cracking of bio-oil or intermediate products to gases and formation of chars by condensation, 

cyclization, and repolymerization (Xu and Etcheverry, 2008; Li et al., 2009). In this step, the 

maximum bio-oil yields of cellulose and hemicellulose were 21.4% and 19%, respectively, 

which were both obtained at 20min.  
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Figure 6.2 Effect of retention time on bio-oil production from cellulose (▲) and xylose (■) 

hydrothermal conversion 

(300°C, 10% biomass content, 0.5% catalyst loading) 

 6.3.1.3 Effect of feedstock content 

In this experiment, the reactor was loaded with 500 g of reactants, which included 

5%-20% feedstock, 0.5% sodium hydroxide (all on a total reactant weight basis), and relevant 

amount of deionized water. The HTC experiments were carried out at 300°C for 20min. The 

effect of feedstock content on bio-oil yield is shown in Figure 6.3. When feedstock content 

increased from 5% to 10%, bio-oil yield of cellulose HTC increased from 16.0% to 21.4%, and 

increased from 13.3% to 19.0% for xylose HTC. As feedstock content further increased, bio-oil 

yield of cellulose HTC slowly decreased, but bio-oil yield of xylose HTC sharply decreased. It is 

speculated that higher water content improves gas and aqueous products formation and biomass 

depolymerization, and vice versa. Previous researchers reported that liquefaction yield decreased 

as biomass ratio increased because of the decreasing water content (Yu et al., 2007). In this 

study, the highest bio-oil yield of cellulose and hemicellulose HTC were 21.4% and 19%, 

respectively, which were both obtained at 10% feedstock content. 
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Figure 6.3 Effect of biomass content on bio-oil production from cellulose (▲) and xylose (■) 

hydrothermal conversion 

(300°C, 20min retention time, 0.5% catalyst loading) 

 6.3.1.4 Effect of catalyst loading 

In this experiment, the reactor was loaded with 500 g of reactants, which included 10% 

feedstock on a total reactants weight basis, 0 to 1.5% sodium hydroxide as catalyst (on a total 

reactants weight basis), and deionized water (changed accordingly with catalyst loading). The 

reaction conditions were set at 300 °C for 20 min retention time. Catalyst loading had significant 

effect on bio-oil yield, which is shown in Figure 6.4. Without catalyst, the bio-oil yields were 

low as 4.5% and 1.5% for cellulose and hemicellulose, respectively. When catalyst loading 

increased to 0.5%, the bio-oil yield sharply increased, and then slightly decreased when catalyst 

loading increased to 1.5%. Research showed that the alkali catalyst inhibited the formation of 

char from bio-oil (Karagöz et al., 2006; Minowa et al., 1998). Thus, bio-oil yield increased as 

catalyst loading increased to 0.5%. However, the bio-oil yield decreased when catalyst loading 

further increased, which might due to the enhanced cracking and dehydration of the bio-oil to 

gases and water soluble products with excessive alkali catalyst. In this study, the highest bio-oil 

yield of 33.8% was obtained with 0.5% catalyst loading. Similar results were reported in 

previous studies on the woody biomass HTC with alkali catalyst (Ogi et al., 1985; Karagöz et al., 

2006; Bhaskar et al., 2008), as well as sewage sludge (Yokoyama et al., 1987; Suzuki et al., 

1988), and barley stillage (Dote et al., 1991). However, Alkali catalyst had little catalytic effect 
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on bio-oil production from alage HTC, because alage contained a considerable amount of sodium 

(Dote et al., 1994; Minowa et al., 1995; Zhou et al., 2010).  
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Figure 6.4 Effect of catalyst loading on bio-oil production from cellulose (▲) and xylose (■) 

hydrothermal conversion 

(300°C, 20min retention time, 10% biomass content) 

 6.3.2 Interaction effects between pure cellulose, hemicelluose, and lignin 

The maximum bio-oil yields of cellulose and hemicellulose HTC were both obtained at 

300°C for 20min with 10% feedstock loading and 0.5% catalyst loading (on a total reactants 

weight basis). Thus, in this section, all experiments were conducted at 300°C for 20 min with 

50g feedstock, 2.5g sodium hydroxide, and 447.5g deionized water. In order to investigate the 

interaction effect among HTC of cellulose, hemicellulose and lignin, it is assumed that the three 

components HTC is unaffected by each other, and their individual content in the feedstock has 

no significant effect on bio-oil production. The hypothesis bio-oil yield is calculated by the 

following equation: 
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, , , ,i H ypothesis i C ellulose i Xylose i L ign inY aY bY cY= + +                     (6-1) 

where Yi, Hypothesis (weight percent, %) is calculated product yield for any given feedstock (i=1 or 

2, denoting bio-oil or char, respectively); a, b, and c are cellulose, xylose and lignin content in 

the feedstock, respectively, %; Yi, Cellulose, Yi, Xylose, and Yi, Lignin are product yields of pure 

cellulose, xylose and lignin HTC at 300°C for 20min with 10% feedstock loading and 0.5% 

catalyst loading. Y1, Cellulose=21.38%, Y1, Xylose=19.00%, Y1, Lignin=0; Y2, Cellulose=5.44%, Y2, 

Xylose=13.34%, Y2, Lignin=42.96%. 

 6.3.2.1 Hydrothermal conversion of the mixture of cellulose and xylose 

     The mixture of cellulose and D-xylose (model of hemicellulose) was used as 

feedstock in this section to investigate the interaction between cellulose and hemicellulose, in 

which the cellulose or xylose content increased from 0 to 100% with an interval of 20% on a 

feedstock weight basis. The hypothesis product yields were calculated via Eq. (6-1) with c=0. As 

shown in Figure 6.5, the actual bio-oil yields decreased as cellulose content in the mixture of 

cellulose and xylose increased to 20%, and then increased as cellulose content further increased. 

As described in section 6.3.1, cellulose had better bio-oil production potential than xylose. When 

part of xylose was replaced by cellulose in the mixture feedstock, the mixture of cellulose and 

xylose should produce more bio-oil than pure xylose. However, the bio-oil yields of the mixture 

feedstock were lower than that of pure xylose HTC when cellulose content was less than 60%. 

Furthermore, the actual bio-oil yields were lower than hypothesis yields. The above results 

indicated that there was negative interaction between cellulose and xylose HTC. Competition 

might exist between cellulose and xylose HTC. It has reported that there are competitive parallel 

reactions in biomass HTC (Behrendt et al., 2008). Competition might exist between cellulose and 

xylose HTC.  When the ratio of cellulose to xylose was 1:4, the lowest bio-oil yield of 15.0% 

was obtained. 
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Figure 6.5 Effect of cellulose and xylose content on their mixture hydrothermal conversion  

(300°C, 20min retention time, 10% biomass content, 0.5% catalyst loading) 

 6.3.2.2 Hydrothermal conversion of the mixture of cellulose and lignin 

     The mixture of cellulose and lignin was used as feedstock under the same conditions. 

When lignin content in the feedstock was higher than 60%, more unconverted lignin and high 

molecular lignin cleavage products were produced and they were difficult to be separated from 

the aqueous products. HTC products when lignin content was higher than 60% in the feedstock. 

Thus, the cellulose content increased from 40% to 100% with an interval of 10% on a feedstock 

weight basis in this section. Figure 6.6 shows the calculated (b=0) and actual product yields. The 

actual bio-oil yields were higher than hypothesis yield, but actual char yields were lower, which 

indicated that bio-oil formation was improved and char formation was inhibited. Demirbas 

(2000) reported that free phenoxyl radicals derived from lignin decomposition had a random 

tendency to form bio-char via condensation or repolymerization. However, Roberts and co-

workers (2011) reported that boric acid inhibited the condensation reaction in pure lignin base-

catalyzed HTC. The acetic acid and other organic acids produced from cellulose HTC might be 

the reason for the positive interaction between cellulose and lignin in the HTC process. As can 

be seen in Figure 6.6, bio-oil yield increased as cellulose content increased with low cellulose 

and high lignin content feedstock, and then slightly decreased when as cellulose content further 

increased with high cellulose and low lignin content feedstock. The maximum bio-oil yield of 

32.0% was obtained with from the feedstock with 60% cellulose content and 40% lignin in the 
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feedstock. Char yield decreased with increasing cellulose content, and then appeared to level off 

when cellulose content was higher than 70%.  
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Figure 6.6 Effect of cellulose and lignin content on their mixture hydrothermal conversion  

(300°C, 20min retention time, 10% biomass content, 0.5% catalyst loading) 

 6.3.2.3 Hydrothermal conversion of the mixture of xylose and lignin 

          HTC of the mixture of xylose and lignin was conducted under the same conditions, and the 

xylose content increased from 40% to 100% with an interval of 20% on a feedstock weight basis 

in this section with a=0 in Eq. (6-1). In Figure 6.7, the actual bio-oil yields were slightly higher 

than the hypothesis yields, which indicated that no significant interaction effect occurred 

between xylose and lignin HTC. Similarly, the actual char yields were lower than the calculated 

values, might duo to the acids produced from xylose HTC. However, the difference between the 

actual and calculated bio-oil/char yields was small compared to the HTC of mixture of cellulose 

and lignin. The final pH values of aqueous products from cellulose and xylose HTC at 300°C for 

20min retention time with 10% biomass content and 0.5% catalyst loading were roughly 

measured by pH paper. The former one (~3) was lower than the latter (~4) one, which meant that 

xylose produced less acids than cellulose. 
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Figure 6.7 Effect of xylose and lignin content on their mixture of hydrothermal conversion 

(300°C, 20min retention time, 10% biomass content, 0.5% catalyst loading) 

 6.3.3 HTC of real and model biomass 

To investigate the HTC of the mixture of cellulose, hemicellulose, and lignin, seven real 

biomass and their model substances were used in this study. The model biomass was made of 

cellulose, D-xylose, and lignin, whose contents were calculated as follows: 

             ,
, m o d

1 , 2 , 3 ,

1 0 0 %j r e a l
j e l

r e a l r e a l r e a l

C
C

C C C
= ×

+ +
                          (6-2) 

where Cj, model, Cj, real were chemical composition content of model biomass and real biomass (j = 

1, 2, 3 for cellulose, hemicellulose, and lignin, respectively); C1, real, C2, real, C3, real were cellulose, 

hemicellulose, and lignin contents in real biomass, respectively. The chemical compositions of 

real biomass and their model substances were presented in Table 6.1.   
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Table 6.1 Chemical compositions of real and model biomass 

Real biomass Cellulose (%) Hemicellulose (%) Lignin (%) Bio-oil yield (%) 

Corn cobs 35.6 29.95 14.21 29.86 

Switchgrass 31.0 20.4 17.6 23.59 

Big bluestem 31.24 26.24 17.29 28.5 

Cherry wood 39.07 18.63 20.09 25.64 

Pecan wood 40.06 15.43 22.85 27.09 

Pine wood 41.56 13.88 25.08 28.34 

Hazelnut shell 20.66 22.08 40.77 23.6 

Model Biomass Cellulose (%) Hemicellulose (%) Lignin (%) Bio-oil yield (%) 

Corn cobs 44.63 37.55 17.82 21.86 

Switchgrass 44.93 29.57 25.51 22.26 

Big bluestem 41.78 35.09 23.12 30.06 

Cherry 50.22 23.95 25.83 25.80 

Pecan 51.14 19.70 29.17 28.60 

Pine 51.61 17.24 31.15 27.80 

Hazelnut shell 24.74 26.44 48.82 22.00 

 

HTC of the real and model biomass was conducted at 300°C for 20min with 10% 

biomass content, and 0.5% catalyst loading. Table 6.1 presents experimental bio-oil yields of real 

and model biomass HTC. The relationships between bio-oil yield and the total amount of 

cellulose and hemicellulose in real and model biomass was analyzed and were shown in Figure 

6.8. Bio-oil yield generally increased as the total amount of cellulose and hemicellulose in of real 

biomass increased. Similar phenomenon was observed when big bluestems were used as HTC 

feedstock (Chapter 5). When model biomass was used as feedstock, the results became more 

complex as compared to real biomass. For high sugar content feedstock (65%~85% total amount 

of cellulose and hemicellulose), bio-oil yield generally decreased as the total amount of cellulose 

and hemicellulose increased. However, low sugar content model biomass did not follow this 

trend. Model hazelnut shell contained the lowest total amount of cellulose and hemicellulose 

(51.2%) among the model biomass, but its bio-oil yield was low as 22.0%.  
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Figure 6.8 Effect of cellulose and hemicellulose content on bio-oil yield 

(300°C, 20min retention time, 10% biomass content, 0.5% catalyst loading) 

 

Figure 6.9 shows the relationships between bio-oil yield and biomass lignin content. A 

declining trend in bio-oil yield was observed for real biomass. For model biomass with low 

lignin content but high sugar content, bio-oil yield generally increased as increasing lignin 

content. However, as lignin content of model biomass further increased, bio-oil yield decreased. 

It was consistent with the results of section 6.3.2.2. Bio-oil yield increased when feedstock lignin 

content increased from 15% to 40%, and then decreased as feedstock lignin content further 

increased to 60%. Therefore, total amount of cellulose and hemicellulose might be the main 

factor influencing bio-oil yield for real biomass HTC, but lignin could become the dominant 

factor for bio-oil production from model biomass with low lignin content, which ranged from 

15% to 35%. 
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Figure 6.9 Effect of biomass lignin content on bio-oil yield 

(300°C, 20min retention time, 10% biomass content, 0.5% catalyst loading) 

 6.4 Conclusion 

Bio-oil yields of pure cellulose and hemicellulose were both affected by reaction 

temperature, retention time, feedstock content, and catalyst loading. The maximum bio-oil yields 

of 21.4% and 19% were obtained from cellulose and hemicellulose, respectively, at 300°C for 

20min with 10% feedstock loading and 0.5% sodium hydroxide, but little bio-oil was obtained 

from alkali lignin. Negative interaction between cellulose and hemicellulose HTC was found. 

Positive interaction existed between cellulose and lignin HTC even little bio-oil was obtained 

from pure lignin. No significant interaction was observed between hemicelluose and lignin HTC. 

Bio-oil yield generally increased as increasing total amount of cellulose and hemicellulose in real 

biomass, but an opposite trend was observed for model biomass with low lignin content.  
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Chapter 7 - Conclusions and Recommendations 

 7.1 Conclusions 

Bio-oil production from lignocellulosic biomass via hydrothermal conversion has 

received great attention. Hydrothermal conversion (HTC) is a chemical reforming process in 

which hot compressed water (or other solvents) is used as reaction medium with which biomass 

is depolymerized and reformed to gases, water-soluble matters, char, and bio-oil in an oxygen-

absent enclosure at relative low temperature. This research was conducted to (1) investigate the 

effect of operating conditions (temperature, retention time, biomass content, and catalyst 

loading) and crude glycerol on bio-oil production, (2) to optimize the operating conditions and 

investigate the interaction effects between these operating conditions, (3) to study the effect of 

biomass ecotype and planting location on bio-oil production; (4) to investigate the effect of 

biomass chemical compositions on bio-oil production. The following conclusions were drawn: 

 Corncobs were used as the feedstock to investigate the effect of operating conditions and 

crude glycerol (solvent) on bio-oil production. The highest bio-oil yield of 33.8% on the basis of 

biomass dry weight was obtained at 305°C, 20 min retention time, 10% biomass content, and 

0.5% catalyst loading on a total reactant weight basis. The effect of crude glycerol on corn cob 

HTC was investigated at 305°C for 20min with 10% corncobs and 0.2% catalyst loading. Bio-oil 

yield based on the total weight of corn cobs and crude glycerol almost remained constant when 

the ratio of crude glycerol/corn cobs was below 3 but dramatically increased to 36.3% when the 

crude glycerol ratio increased to 4. H2 in the gas product also increased from 11.1% to 27.5% as 

the crude glycerol to biomass ratio increased from 0 to 5. In addition, the bio-oil with better 

flowability floated on the aqueous products once crude glycerol was added, indicating reduced 

oil density and viscosity, and thus better quality. As the crude glycerol to biomass ratio increased 

from 0 to 5, oxygen content in bio-oil increased from 13.8% to 19.9%, carbon decreased from 

77.5% to 65.8%, and hydrogen had no significant change. Thus, crude glycerol had at least two 

effects on biomass HTC: It increased bio-oil yield and quality in terms of low viscosity and 

density, but the oxygen content of bio-oil slightly increased as more crude glycerol was used.  

Furthermore, the optimization of operating conditions for corncobs HTC was conducted 

via response surface methodology. Second order polynomial models were developed to predict 

bio-oil yield and carbon recovery, and first order model was developed to evaluate bio-oil carbon 
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content. The models were adequate enough owning to the low P value (<0.001), and insignificant 

lack of fit (P>0.05). Higher bio-oil yield and carbon recovery rate were achieved at low 

temperature for short retention time with high biomass content and moderate catalyst loading, 

but higher bio-oil carbon content was obtained at high temperature with low biomass content 

regardless of retention time and catalyst loading. A maximum bio-oil yield of 41.3% was 

obtained at 280°C, 12min, 21% biomass content, and 1.56% catalyst loading. The experimental 

bio-oil yield of 39.5% was well consistent with the predicted one. A highest bio-oil carbon 

content of 74.8% was produced at 340°C with 9% biomass content regardless of the retention 

time and catalyst loading. A maximum carbon recovery of 25.2% was observed at 280°C, 12min, 

21% biomass content, and 1.03% catalyst loading. The predicted bio-oil carbon content and 

carbon recovery also were confirmed well by the validation experiments. The properties of the 

bio-oil obtained at the optimal conditions for bio-oil yield were measured. The heating value of 

the bio-oil was low as 25.41MJ/kg due to its low carbon content (63%) and high oxygen content 

(28.8%). The chemical compounds of the bio-oil included ketones, alcohols, esters, and long 

chain alkane hydrocarbons, in which 2-Ethylhexyl mercaptoacetate and 1-Hexanol, 2-ethyl- were 

the dominant compounds. 

The effect of biomass ecotype and planting location on bio-oil production were studied 

on big bluestems. Three ecotypes (CKS, EKS, IL) and one cultivar (KAW) of big bluestem 

(Andropogon gerardii) that were planted in three locations (Hays, KS; Manhattan, KS; and 

Carbondale, IL) were converted to bio-oil via HTC. Bio-oil yield of big bluestem HTC was 

significantly affected by both ecotype and planting location, but the latter was more influential. 

The interaction effect between ecotype and planting location on bio-oil yield was statistically 

insignificant (p > 0.05). Bio-oil C and O contents were significantly affected mainly by ecotype 

(p < 0.01) and sometimes by the interaction between ecotype and planting location (p < 0.05); 

however, planting location alone had no significant effect on bio-oil C or O contents. Generally, 

the IL ecotype and the Carbondale, IL and Manhattan, KS planting locations gave higher bio-oil 

yield, which can be attributed to the higher total cellulose and hemicellulose content and/or the 

higher carbon but lower oxygen contents in these feedstocks. Bio-oil from the IL ecotype also 

had the highest carbon and lowest oxygen contents, which were not affected by the planting 

location. Bio-oils from big bluestem had yield, elemental composition, and chemical compounds 
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similar to bio-oils from switchgrass and corncobs, although mass percentages of some of the 

compounds were slightly different.  

In order to better understand lignocellulosic biomass HTC, cellulose, hemiecellulsoe, and 

lignin were used as feedstock to investigate the effect of operating conditions on their HTC and 

interactions between them in HTC process. Bio-oil yields of cellulose and hemicellulose were 

both affected by reaction temperature, retention time, feedstock content, and catalyst loading. 

The maximum bio-oil yields of 21.4% and 19% were obtained from cellulose and hemicellulose, 

respectively, at 300°C for 20min with 10% feedstock loading and 0.5% sodium hydroxide, but 

little bio-oil was obtained from alkali lignin. Negative interaction between cellulose and 

hemicellulose HTC was found. Positive interaction existed between cellulose and lignin HTC. 

No significant interaction was observed between hemicelluose and lignin HTC. Furthermore, 

hydrothermal conversion of seven real biomass and their models (corncobs, big bluestems, 

switchgrass, cherry, pecan, pine, and hazelnut shell) also were conducted. Bio-oil yield increased 

as real biomass cellulose and hemicellulose content increased, but an opposite trend was 

observed when model biomass with lignin content less than 40% was used as feedstock. 

 7.2 Recommendations 

Compared with other biofuels production technologies, like fast pyrolysis, gasification, 

combustion, fermentation, digestion, HTC is still at an early stage of development, which faces 

many challenges. The following are recommended fro future studies: 

• The products chemical compositions will be investigated for HTC reaction mechanisms 

and kinetics study. 

• The effect of operating conditions, solvents used, and biomass chemical composition on 

bio-oil compounds needs to be investigated for downstream bio-oil separation and 

upgrading. 

• Bio-oils produced from HTC can not be used as transportation fuels directly duo to its 

poor quality. Efficient and low-cost bio-oil upgrading technologies are necessary. 

Catalytic cracking and hydrotreatment are widely used to upgrade pyrolysis bio-oils. The 

possibility and effectiveness of various catalysts and hydrogen providing solvents for 

HTC bio-oil upgrading will be investigated. 
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• Aqueous products contain many valuable compounds, such as acetic acid, phenol, 

benzene, and their derivatives, which can be extracted from aqueous products. The effect 

of operating conditions, solvents used, and biomass chemical composition on the 

valuable chemicals production will be studied. 
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Chapter 8 - Contributions 

This research has made several unique contributions to the field of biomass hydrothermal 

conversion as follows: 

• Models for the estimation of bio-oil yield, bio-oil carbon content, and bio-oil carbon 

recovery of corncobs HTC have been developed. These models reveal the effect of 

operating conditions (temperature, retention time, biomass content, and catalyst loading) 

on bio-oil production and their interactions. The results will help in selecting appropriate 

operating conditions for bio-oil production from lignocellulosic biomass HTC, and 

promote biofuels production from agricultural residues. 

• The possibility and effectiveness of using crude glycerol as an inexpensive solvent in 

lignocellulosic biomass HTC has been investigated. The results will be valuable in 

treating and utilizing crude glycerol, and provide an option to improve bio-oil production 

from lignocellulosic biomass HTC with low cost.  

• The effect of biomass geographic/ecotype information on bio-oil yield and chemical 

compositions has been studied. It provided fundamental information and methodology to 

evaluate the potential of biomass (using big bluestem as an example) as a biofuels 

feedstock. 

• The relationships between bio-oil yield and biomass chemical and elemental 

compositions have been investigated. The models can be used to evaluate bio-oil yield in 

light of biomass chemical and elemental compositions, and are useful for biofuels 

feedstock selection and design.   

• The conversion mechanisms of and interactions between cellulose, hemicellulose, and 

lignin in HTC process have been studied. Such results will help in further understanding 

the mechanisms of lignocellulosic biomass HTC, and provide fundamental knowledge for 

process optimization and downstream bio-oil separation and upgrading. 


