/@EDIT -
A Resident Structure Editor
for PROLO@/

by
SANDRA LEE QUFFY

B.S. University of Illinois, 1877
A MASTER'S REPORT
submitted in partial fulfillment of the
requirements for the degree
MASTER OF SCIENCE
Department of Computer Science
KANSAS STATE UNIVERSITY
Manhattan, Kansas

1985

Approved by

/Z;zL§E;;r T. Hartley >

PEDIT -
LJD A Resident Structure Editor
J66 5 for PROLOG ; S

5??; CONTENTS

ced

1. chapter one..lllll.ll.lllllIlll.ll....l.!u.....‘ll.l
1.1 IntrodUCEION.vssesssrsssnssasnsvssssssnsassnsesas
1,2 Literature ReVIiew. ..vuseessswsienseesssasesssnsns

2. Chapter Two-ttll-n.-llotllo.llulll.lll:..-n.nol-..nl
2.1 ReqUirements-.---....-----...---o-.-o.oo....---

3l chapter ThreeQOC...l‘..'...lll.-llIll'.‘.'l.ll..l.!.
2:f Deslfll...vcemcnmmsmsmnms o 5 B B B 58 sk el TPET

4. Chaprer FOUlsiseesssssvosasacnnsnssssssrossasnonsas .
4'1 ImPlEmentationc ® # % 8 8 B ¢ 6 8B B S S S S S R B S S P B S ENS S
4-2 Testingl ® ® 4 & ® & B S B 8 P e T A P e P E S EEE e s * 8" s B
5. Chapter Fivel ® 8 8 # 8 W B 8 % B & B B B B S S 8BS S e RS SsE L I
5.1 Conclusions. & 8 ® 8 8 % 0 8 PP S S @ BB S E S S e SRS SEEEE e . 0
502 Extensions- e 8 2 8 & 5 & % B B 9 S 9 B S S S & P B E S B S S D ® o o8 " B e
BI LIOGRAPHYI ® 8 ® @ 8 B & 8 5 5 8 F S & 0 P P BT S A B B S S E e ® ® 8 & & 8§ & & B " S 0
Glossaryi-l.lll.....ll.-l..lll.ll.....l.'ll'!l!lI..I..ll
PEDIT ComandS- 8 8 B O 8 ® 0 9 0 8 B S 8 4B 0 S sE eE e s * 8 8 8 & 8 8 P B S E B 2D

USER'S MANUALIIIIIII......IIll!...lll'...'.ll.llIllllll.

Source Codell....ll'llI-ll.ll."lllIIlll.ll..ll..lIlll..

Ry Al1202 99L282

40
42
90

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

4.
5.
6.
i
8.
8.

PEDIT -~

A Resident Structure Editor

for PROLOG

LIST OF FIGURES

Program Flow....--...l....O‘I
Structure Tree...eecesosassss
RULE TEBC. o vis viw s s siw s 6 & % 6 5 8 8 e

Fact Tree....... I R I S

PROLOG StruCtuUr..cceeossssesse

Rule SEFUCEULC.sereeesnssonsnns

Internal PEDIT Format.eceesees
Goal Tree IIIIII llll'll"lllll

Input Command Flow.....oovse.

e 8 8 2 8 & s 4B e e

[O B A A A B L L B

a ® 8 B e s e e e s e

® s ® e 8 s s s e e e

(RO B A A R R A I I

1. Chapter One

PROLOG was created around 1970 [5] and as such is a
relatively new programming language. This compares to 1962
for the <c¢reation of LISP, a language with similar
applications. Due to 1its T"youth", some of the utilities
taken for granted in most programming environments are not
available in the PROLOG programmin¢g environment. For
example, an editor based within the PROLOG environment s
non-existent to this author's knowledge. This paper
describes PEDIT - a resident structure editor for PROLOG.
Familiarity with PROLOG use and format by the reader is
assumed. The implementation of PEDIT is 1intended to fill

the editor gap in the PROLOG programming environment.

1.1 Introduction

Currently, a programmer debugging a program within the
PROLOG environment has two options for making program
changes. First, the programmer might exit the interpreter
and edit the program file(s) using a text editor such as
"yi" or "ed". Then, the interpreter must be reentered and
the program file(s) reloaded. This iteration usually occurs
many times before a program is correct. This method is both
time-consuming and costly on any size program. On a large

program, the costs could be prohibitive.

It should be noted that PROLOG commands can be created to
edit program files without exiting the interpreter. This
would give the impression of an interpreter-based editor;
however, this method merely simulates the method mentioned
above. It would not avoid the cost of reloading the edited

files into the PROLOG environment.

2. second methoé availablie tc the PROLOG programmer 1S <Ine
manua.l delezion and addition of entire PROLOG clauses.* Tnis

coulé be accomplished with <the wuse c¢i the "retract” or
"abolish" commands together with the "gssert” commands.
This method, however, would probably reguire the deletion
and insertion of entire procedures due to the manner the

"assert" commands operate.

If a single clause were "retract"ed and then "assert"ed, it
would lose its position in the data base in relation to the
other clauses for that procedure. Because PROLOG performs a
"top-down" traversal of the data base, the logic for that
procedure would in all probability be severely modified.
Thus, entire procedures would need to be deleted and then
inserted to ensure proper ordering of clauses. As can be

seen, this method would only be practical if the entire

* NOTE: Appendix A contains a glossary of PROLOG
terminology used in this paper.

procedure were faulty. If only a small error existed in a
procedure, this method would be too cumbersome and time-
consuming. Also, tc an inexperienced typist, it could

indeed resemble Purgatory.

Due to the reasons listed above, plus the enticement of
enhancing an "infant" language, the task was undertaken to
wrize a2 PROLOG-basec ecditor. Since PROLOG is replacing LISP
ir. some areas and thus is growing in use, it was agreed that

this task woulid indeec fill & need ©oi the future.

Once the task was undertaken, a decision was needed on what

tvpe of editor was appropriate. Since nc PROLOG editor was

t

known to exist, it was not possible to base the editor on
other PROLOG editors. First, a general comparison of editor
types was conducted. Second, since PROLOG and LISP are both
used for Artificial 1Intelligence applications and as such
are often used by the same personnel, thought was given to
basing the PROLOG editor on existing LISP editors. Thus, a

comparison of LISP editors was also conducted.

1.2 Literature Review

The merits and deficiencies of different types of editors
have been debated since their invention. The viewpoints of

various authors are presented and summarized here.

1.2.1 Text vs. Structure Editors For the purposes of this

paper, a text editor 1is here defined as an editor which
performs only text editing functions. A structure editor is
defined as having the capability of parsing and modifying
tree structures. In other words, a structure can be
traversed by moving a cursor around. A pure structure
ed¢itor does not include tex: editinc capabilities. Insteag,
portions of trees are delete€ and replaced using tools such
as templates. A hybrid editor incorporates both tex:

eciting and structure editing commands.

Structure =ditors are considered by mest te be far superior
to text editors. There are, of course, others who claim
that structure editors do not entirely fill the editing

needs of a programmer.

Among those who praise structure editors is Wilander [20].
He says that the advantage of structure editors is that only
the parts affected by an edit are changed. This means that
the structure of the program remains intact since a
structure editor only allows logical portions of a program

to be changed.

In his paper, Waters [19] contends that structure editors do
not satisfy all the needs of an editor. He proposes that
text-oriented commands not be abandoned in a structure

editor environment. He argues for a hybrid approach to

editing in order to incorporate the advantages of both the
textual and structural viewpoints. To support his point,
Waters points to EMACS [15] which has supported both text
and structure-oriented commands for more than a decade.
Waters points out that although many claim that new methods
are superior to old methods, this very seldom is the case.
He saves :the: nev metheds are liable tc leave unaddressec

some oI the issues handlec by the oid metnods.

Teitelbaum ané Reps [_7] suppor: the basic premise made Dy
Waters. The Cornell Program Synthesizer is a hybrid design
which thev claim seeks a ©pragmatic balance between the
extremes of & structure editor and & text editor. They
state that although they promote the structural perspective,
they recognize that text-oriented commands are sometimes
needed. They do mention, however, that at times
contradictions arise between the two perspectives which can
lead to confusion and inconvenience. They list examples of
this and conclude that mechanisms can be incorporated into
editors such as the Synthesizer to minimize the

contradictions by enforcing user actions.

Stromfors and Jonesjo [16] describe ED3, a hybrid editor
which they call a structure-oriented text editor. They
describe their method of superimposing a tree structure onto
text which is then applicable to any type of object, whether

it is text, figures or data records. The structure editing

commands parse the tree. When the desired tree position is
reached, the text editor commands can be utilized.
Stromfors and Jonesjo provide scenarios for the application
of the ED3 editor and mention that it is especially useful
for handling the source text of large program systems and

for the preparation of structured documents.

Shani [13] refutes the points supporting hybrid editors. He
claims that text-oriented commands are not the answer for
filiing the gaps in structure editors. Instead, he proposes
the extension of structure editing commands. He claims that
with a sufficiently robust set of structure editing
commands, the importance of text-oriented commands is

strongly downplayed, if not eliminated.

Cohen [6] also favors pure structure editors and states that
the textual viewpoint is never necessary. He contends that
three modifications will solve the problems 1in structure
editors without reverting to a textual viewpoint. First,
cursor movement should be simplified by viewing the screen
as a 2-Dimensional arrangement of nodes. Movement between
nodes would be accomplished with the use of natural commands

such as up, down, left and right.

The second modification would allow expressions to be input
from left to right. This would allow more complex commands

to be input than the simple template expansion of most

structure editors.

Third, the transformation of program fragments can be
accomplished by an editer which supports matching and
instantiation of subtrees. He cites MYTE, under development
at Brandeis University, as wusing this method of fragment
modification. In Cohen's mind, these three modifications
woult¢ £ill the gaps of structure editors without the use of

terxt-oriented commanas.

In summary, most authors agree that the basic structural
viewpoint 1is an effective and desirable method of program
modification. However, the methods for £illing the voids of
structure editors vary. The hybrid approach (ie. inclusion
of text-oriented commands in a structure editor) appears to
be the most widely wused. This is probably due to its
relative ease in implementation. Other methods are
certainly under development so, as with all problems of
today, we can look to the future for additional innovative

solutions.

1.2.2 Resident vs. Source-file Systems Sandewall [12]

describes a residential interactive system to mean that the
primary copy of the program resides in the programming
system itself. INTERLISP is cited as an example of a
residential interactive system. A source-file system is

defined as having programs maintained as text files which

are loaded by the programming system. MACLISP is a source-
file system. When a resident editor exists but is not
well-developed, an intermediate stage is reached. PROLOG is
in the intermediate stage, due to the "retract" and "assert"
commands, as is LISP 1.6. However, because the capabilities
resident in PROLOG and LISP1.6 are not sufficient, most
users prefer tc use & general-purpose ztext editor, thus

running in source-file mode.

Resident editcrs are superior to source-file editors because
program modules can be modified and debugged without the
cost of relicading source-files into the programming
environment. However, sufficient capabilities must be
included in residential systems to ensure that users do not
revert to source-file editors. An example of a useful
facility is the ability to write procedure definitions to a
file in an input-compatible format. This allows these files
to be reread into the programming environment and provides
transfer of programs (a procedure may be needed by more than

one program), back-up capability, and copy for the user,

1.2.3 Display-Oriented vs. Hard-Copy Editors Display-

oriented editors, or full-screen editors, allow the user to
view a larger amount of text than hard-copy editors.
Cursors allow movement around the displayed area and usually
scroll the text as new lines are added. This is in contrast

to hard-copy editors which require the user to specify the

lines to be printed. Display-orientéd editors are usually
preferred by users, especially when viewing large amounts of

text.

1.2.4 Residential LISP Editors The resident LISP editors

surveyed were LEDIT [10], Franz Lisp [9], EMACS [15],
Interlisp [1,18] and ZMACS [7,14]. Text versus Structure
capabilities were noted as well. as GiSpiay-orientec versus
haré copy capabilities, (Display-oriented ecitors are

sometimes calied full-screen ed:itors.)

All of the editors are basically structure editors. In
addizion, some text-oriented commands are present in all.
The editors vary in their command structures, but most
contain the same basic capabilities. For example, an editor
with a more rigorous command structure will allow an edit
command to be entered with fewer key strokes than an editor
with a limited command structure. Although the capabilities
are similar, differences are perceived by the user. While
fewer keystrokes are genérally desired, the number of
commands will be greatly increased. It is a question of
personal preference whether fewer keystrokes or fewer

commands to remember is more desirable.

EMACS and ZMACS were the only editors surveyed which
incorporate full-screen editing support. EMACS 1is the

precursor of ZMACS, and as such can be thought of as a

subset of ZMACS. IMACS was developed to facilitate editing
of English text as well as for preparation, testing and
debugging of LISP programs. To support the editing of
English text, ZMACS has a larger number and variety of
commands than most editors. This includes a full range of
mouse manipulations. These extensions make ZMACS by far the

mos: powerful editor surveyed.

1.2.5 Conclusions Basically, three major cholices are made

when developing or evaluating editors. The first involves
structure versus text-oriented commands. Although pure
structure editors are far superior tc pure text editors, :it
is widely accepted that some text editing capabilities are

needed in most, if not all, structure editors.

The second choice 1is between resident and source-file
editors. A resident editor is of supreme importance in
interactive programming environments to save time, effort
and resources. However, a resident editor must be rigorous

enough to keep users from reverting to source-file editors.

The final choice is between display-oriented (full-screen)
editors and hard-copy editors. Display-oriented editors are
usually easier to learn in addition to saving time by
keeping the current picture displayed at all times. In this
way, the user does not need to print the current status of

the edited item. However, display-oriented editors are more

costly to implement so are usually not developed when cost

is of extreme importance.

Most users would agree that & resident, display-oriented
structure editor is most desirable. The development of all
these capabilities in an editor should be done
simultaneocusly to ensure efficiency and to reduce
dupiication of effakt. 1f sufiicient: resources are no:
available &tc include all of these capabilities, choices
pecome necessary. I1i & Single property were tC be omittec,
the best choice would be the display-oriented capabilities.
This woulé result ir & resident structure editor. The
inclusion of these twc properties in an editor would still
fulfill the needs of a user when editing in an interactive
programming environment such as PROLOG or LISP. The
following chapters describe the development of PEDIT - a

resident structure editor for PROLOG. Details for using

" PEDIT are included in Appendix C, the User's Manual.

2. Chapter Two

2.1 Requirements

The Real-Time LISP Editor [10] was referenced for direction
for the requirements of the PROLOG Editor - PEDIT. Since
many LISP users are also PROLOG users, the decision was made

tc re=zin 2 maximum number of command abbreviations from the

t'l
=
w0

J
=

ditor. This 1s thougnt to pe an important
consideration because a user will be able to easily cross
between these editors. In general, the editor must be
simple enough to ensure that a PROLOG programmer will use it
plus it shouid be versatile enough tec compete with an editor

external to the PROLOG interpreter.*

The PROLOG editor is also similar to the ED3 editor [16].
It is a structure-oriented text editor, or hybrid editor, in
order to allow full editing capabilities of a PROLOG clause.
The main thrust of PEDIT is as a structure editor but some
text-editing capabilities were provided. A PROLOG clause,
or structure as it is called here, usually consists of two
parts: a head and a tail separated by ':-' (colon-dash).

When a structure has no tail, it is usually referred to as a

* NOTE: Appendix B contains a list of PEDIT commands.

_12-

fact.

example: fact(Varlist).

head(Varlist) :- tail.

Any portion of a PROLOG structure can be a compound
structure., The editor must be able to address any part of a
PROLOG structure, whatever form it takes. This It done by
allowing the wuser tc :traverse :the structure using commancs

such as right, left, ur or down.

For modification of the current structure, commands are
provided to find ar argument, change an argument, or insert
new information either before or after the structure. These
commands should be versatile enough to allow the user to

easily modify the selected portions of the structure.

The editor should be user-friendly in a few specific areas.
First, the editor should provide help to the wuser in
learning how to use the instructions. One feature that is
desirable in all systems, no matter how complex, is a
facility to provide on-line user assistance. The editor
should also allow the user to back out of either single
changes or entire edit sessions. An "undo"™ function is
considered an important item, especially in an interactive
system such as PROLOG. Last, the editor should allow the
user to modify the editor environment. This will save time

and effort when a user is involved in lengthy edit sessions.

13

The top level commands of the editor allew the user to enter
and exit the editor. The option exists to save the changes
entered within an edit session or to end a session without a
save, A function also exists to display the edit commands

with a brief explanation on their usage.

A set of commands exist to modify the editor environment. A
command 1is provideéd to repeat the last executed command.
The option also exists to define new editor commands. Any
new commands will remain 1in the PROLOG dataz base for the
duration of the PROLOG session. A command to wundo the
effects of the previous editor command is also provided by

PEDIT.

The user can enter multiple editor commands per line. These
are executed in the order that they appear. 1If an error

occurs in the string, the rest of the line is abandoned.

Buffers are also available for storage and movement of the
current structure. Commands exist to display the buffer

names and their contents.

The implementation of both structure editor commands and
text editor commands makes the PROLOG editor versatile. The
addition of the commands to modify the editor environment
further increases the power of the editor, thus ensuring its
use. The requirements defined here will ensure an easily

usable editor that is user-friendly and provides powerful

14

edit capabilities. Chapter Three outlines the design

process for implementing the requirements outlined here.

15

3. Chapter Three

3.1 Design

The implementation of the PEDIT editor is modular in
structure. This is a self-imposed requirement as well as a
PROLOG-influenced requirement. It is self-imposed for ease
¢f meintzinability. ae Clockeir ané Younc stated, "I tne
program has been made modular - and PROLOG makes this easy
toc do - then there is usually no nee¢ to rewrite existing
parts of the program when modiiications are reguired."l A
structured implementation is PROLOG-influenced because
PROLOG is more easily readabie and implemente¢ in & moduiar
format. To again quote Clocksin and Young, "The programming

style implied by PROLOG makes structured programming much

more convenient than with Pascal, for example."2

The main program 'pedit’' calls the routine 'edit' to execute
the editor. This routine retrieves the desired clause
(procedure) using the subroutine 'get_routine’, The
procedure occurrences are then returned and passed to the
subroutine 'randex'. The modular structure of PEDIT allows

for easy addition of commands. See Chapter Five for details

1. Clocksin, Young, p. 16.
20 ibid' p. 5l

16

on adding commands.

‘ name
. edit
R
| name
v
~ clauses —
' \{
get_routine randex
‘ clauses
subroutine name
arguments _l

get_command

call{subroutine)

Figure 1. Program Flow

The method of traversing PROLOG structures was an integral

part of the design of PEDIT. A

structures inside the editor

-1

was requi

‘7_

format for storing

red. Many methods

were examined before a choice was made. Most were
variations of a common theme, all centering on the idea of

treating a PROLOG structure as a tree.

All levels of a structure have basically two parts: the
functor ané the argument 1list. Example: functor(argl,
arg2). If a structure is drawn as a tree with the functor
as <the roc: ané the arguments as noces, tne metned of

trzversal becomes apparent.

functor
P \
Y

/ N\

argl argz
Figure 2, Structure Tree

3,1.1 Traversal Commands To move from the functor to the

argument list, the direction is 'Down'.* Movement between
nodes, or arguments, is 'Left’' or 'Right'. Movement from

the argument list to the functor is 'Up’'.

A clause can be thought of as a structure with the functor

's-' (pronounced 'if') and argument list (Head, Body). When

* commands are written in this paper showing the complete
name; however, only the upper case portion of the name
should be entered as the command. For example, a
command written as 'InsertBefore' should be entered into
the editor as 'ib'.

the clause is a fact, Body 1is ‘'true'. Figures 3 and ¢

depict the trees for a rule and a fact, respectively.

\
// \
a

Hea Body

Figure 3. Rule Tree

/ A\

Head true
Figure 4, Fact Tree

Each node in the tree can be a structure, so multiple levels
are created. When there are multiple goals in the Body, the
goals are considered bound together by the functor ',' [5].
Figures 5 through 7 show the mapping of a PROLOG structure

to a tree structure to an internal PEDIT storage format.

19

functorl(Argl, Arg2) :- goall(ZX1,X2),

goal2(B1).

Figure 5, PROLOG Structure

heac e * body
functorl 7
/N /N
Argl Arg2 goall goalz
X1 X2 Bl

Figure 6. Rule Structure

:- (functorl (Argl, Arg2),
. (goall (X1, X2), goal2 (B1))

Figure 7. Internal PEDIT Format

20

In this way, all movement required to reach various
positions in a PROLOG clause could be accomplished by using

four commands: 'Up', 'Down', 'Left', and 'Right'.*

Limitation to these four commands would, of course, require
a user to mentally translate a clause to its equivalent tree
format when using the editor. This would not wusually
present a problem; however, in some cases, the translation
from clause to tree is not immediately apparent. This 1is
especially true when attempting to reach the head or body of

a rule or when traversing the goals in the body of a rule.

For example, traversal from <+he highest structure ievel
'Head :- Body.' to Body would be accomplished by using
'Down' followed by 'Right'. Since this is not a wusual way
of wviewing such a traversal, confusion would usually occur.
To minimize confusion in structure traversal, some

additional traversal commands were added.

To move from the highest structure level in a clause to its
arquments, the commands 'Head' and 'Body' were added. The
resulting edit list would be the entire Head or the entire

Body of the clause. At this level, the entire edit list

* NOTE: All traversal commands, except Head, Body, Start
and TOP, can have repetition arguments of either a
number or * to denote the maximum number.

21

could be replaced or modified. To modify only the argument

list of the Head, the user must first travel 'Down'.

Commands were created to traverse multiple goals because of
their method of internal storage, Figure 8 illustrates the
mapping of the body 'goall, goal2, goal3, goalé4, etc.' to

its associated tree structure.

goa.l .
goal2 7

goal3)
goaléd etc.
Figure B. Goal Tree

Thus, to travel from goall to goal3 the user would enter
'Right', 'Down', 'Right', 'Down’. To facilitate movement of

this kind, the commands 'NextGoal' and 'PreviousGoal' were

22

added. The addition of the commands 'Head', 'Body',
"NextGoal', and 'PreviousGoal' allows the traversal of a

clause in a more logical manner.

Since each occurrence of a procedure produces a tree, travel
between trees must also be possible. This is accomplished
by the inclusion of the commands 'NextClause' and
'PreviousClause’. The trees are stored 1in & 1ist, thus

producing:

[:- (head, bodyz), :- (head, body2), . . .]

Each of the traverszl commands only allow movemen: 1f tne
appropriate format is present. For example, to use Head or
Body, the functor of the current structure level must be
i To travel 'Down', the current level must be a
struciure, not a list. To travel 'Right’', the current level
must be a list, such as an argument list. To use 'Next' or
'Previous', the current edit list must be a clause (i.e.
functor equals ':-'). Appropriate checks are also made
before a "return command” (PreviousClause, Start,

PreviousGoal, Up or Left) is executed.

The commands 'TOP' and 'Start' are the exceptions of the
traversal commands. The 'TOP' command recurses to the
beginning of the first procedure occurrence by executing the

appropriate traversal commands. The 'Start' command

23

recurses to the beginning of the current procedure
occurrence, These commands are accomplished by recording
all the traversal commands executed during the edit session
for a clause. This list of commands is then used to perform

the traversal to the beginning of the clauses.

Once the desired structure level 1is reached, various

commands can be issuec to moc:iy the structure.

- ~

3.2.2 Modifi-zation Commands The original intent £or the

modification commanés was <tTC incorporate DHotnh structure
editing and text editing capabilities in PEDIT. This was

describeé in earlier chapters as & hypridé editor.

As the design of PEDIT progressed, it was determined that
structure editing capabilities were more applicable than
text editing capabilities when editing PROLOG clauses. This
was mainly due to the inability to extract variable names
from the data base. Because of this, the text editing needs
are narrowed down to editing functbr and atom names. This

essentially cuts the amount of text editing in half.

The majority of changes required when debugging PROLOG
clauses seem to be structural. For example, clauses and
goals need to be moved, changed and added. Structure editing
commands aid in maintaining the structural integrity of
clauses when making these types of modifications. With this

in mind, the design proceeded using mainly structure editing

commands.

The first obvious modification needs were to change
functors, goals and arguments to a functor. These needs
were filled by three commands tailored to those changes.
The commands 'CHangeArgument' and 'CHangeGoal' modify
positional items and the command 'CHangeFunctor' modifies

the Iunctor

i

or the current structure.

A fourth command 'CHange' was added to allow more powerful
modifications. This commané replaces the current structure
with whatever structure is entered. Since structural checks
are not performed, <chic commané is meant for careful use.
This command plus the 'REPLace' command provide the text

editing capabilities which make PEDIT a hybrid editor.

In addition to these commands, the current structure can be
removed and replaced using buffers. Commands to examine the
buffers are also available to aid in the use of buffers.
Again, structural checks are not performed when using

buffers so careful use is advised.

The decision was made to 1limit the capabilities of the
search mechanism. The 'Find' command was designed to find a
specific occurrence of a clause, not a specific goal or
functor. It was felt that since the size of most PROLOG
clauses is not wusually large, a more powerful search

mechanism was not immediately needed.

The next modification function to be designed was the insert
mechanism, Separate instructions were designed for
inserting either before or after the current structure. The

cursor position is unaffected by the insert commands.

Finally, commands were designed to delete structures and
move goals. The move command was limited 1in scope in
anticipation of the type of moves needec most. The de.ete
command was designed to delete a specified number of items.
1f «he cursor is at the clause level, clauses will be
deleted. If the cursor is at the goal level, goals will be

deleted. Otherwise, arguments will be deleted.

The command base was designed to handle a large portion of
anticipated modifications. The implementation of PEDIT is
described in Chapter Four. Chapter Five outlines some
extensions to PEDIT and details the method for extending the

PEDIT command base.

26

4, Chapter Four

4,1 Implementation

PEDIT was developed and tested on a VAX machine running C-
PROLOG. PEDIT was written in PROLOG with 450 PROLOG

clauses, a total of approximately 60,000 bytes of code.

The implementation of PEDIT is recursive with each structure
level having a 1loop to read commands. At each structure
level, the program loops through the command list until the
"return command” 1is found. When a "downward traversal"
command is executed, another level of recursion is begun
continuing the loop through the command list. Each downward
traversal command has an appropriate return command. For

example, the return command for 'Down' is 'Up'.

The commands are interactively accepted from the wuser and
are inserted onto the command list. The commands must be
entered in all lower case and must be spelled correctly. As
commands are recognized, the appropriate command structure
is anticipated. 1If the correct command structure is not
entered, that command plus the rest of the line are ignored.
When a "new line" is found, the list becomes available for

execution.

As the command list is executed, the commands are removed

from the list. When a command 1is wunable to execute

- 27 -

successfully, the remaining elements of the command list are
deleted. When the program finds a null command list, the
user is prompted for further input. The commands read in
from the user are then used to create a new command list.
Each member of the command list contains the procedure name

and the argument 1list. This argument list is passed into

111

e

the appropriate command procecdure at execution :fime,. ure

m

9 depicts the flow of data from its input as a2 command l:ine
to the execution of the command procedures. Examples of the
argument lists are [*] for a traversal commané or [string,

delimiter] for a modification command. .

Each command subroutine has six parameters., The £first two
parameters are passed into the subroutine. First is the
argument list for the command and second is the clause name
currently being edited. The third parameter is the current
structure and is passed into the subroutine. The fourth
parameter is the returning structure, and may o¢r may not
have changed from the structure passed into the subroutine,
The fifth parameter is the "undo" structure passed into the
subroutine and the sixth parameter is the returning "undo”

structure.

command line

commandc
list

Get
Command

procedure name
arguments

Execute
procedure

Figure 9. Input Command Flow

As each command is successfully executed, a trail is left
behind. A list of all downward traversal commands is kept
for each clause name edited. This allows for checks when
upward traversal commands are executed, plus it allows for
the execution of a "reverse traversal" as is the case for

the 'TOP' and 'Start' commands.

The trail also includes the undec list which is upcatec for
all appropriate commands successfully executec. This 1ist
consists of the last command executed. Commands such as
'Type', 'RePeaT',6 'DISPLAY' and "CONTENTS' do not change the
undo list sc they can not be "undone". Alsc, the 'UNdc'

command can not be "undone".

When the 'UNdo' command is executed, the last command Iis
first checked. If it was a traversal command, the opposite
traversal command is inserted onto the command list.* For
all other commands which can be "undone", the structure
passed in is replaced by the last structure encountered.
This would apply for the commands which modify the

structures, such as 'CHange' and 'DELete’.

The 'UNdo' command will only reverse a single occurrence of

* NOTE: An attempt to undo a 'Start' command will result
in the 'Head' command. An attempt to undo a 'TOP’
command will result in the 'NextClause' command.

_30...

a traversal command. In other words, if a 'Right 5' were
undone, the results would be a single 'Left' command. The

same is true for traversal commands with the argument '*',

An edit session can be ended in three ways: QUIT, FILE or
END. A 'QUIT' command aborts the current edit session. If
changes have been made but not saved, the user is prompted
for wverification. If '"QUIT' ie again enterec, tne session

is aborted: otherwise, the 'FILE' commanc is executed.

The 'FILE' commané replaces all. predicate occurrences in the

PROLOG data base with the edited structures. The command

h

recurses to the stact of the irst procedure occurrence
before performing its functions. This is done by executing
the 'TOP' command. The command then asks the user if the
structures are to be stored in a file. 1If the user answvers

'yes', the structures are stored in the filename supplied by

the user. Otherwise, the command is exited.

1f, for some reason, the structures cannot be added to the
data base, an error message is given. The structure is then
saved in the file 'peditjunk'. This allows the wuser to
examine the structure at a later time without the loss of
the edited version. For this error, the pre-edit session
version of the current clause is left intact in the PROLOG

data base.

Since variable names can not be retrieved from the PROLOG
data base, the structures written to the file will have
internal variable representation (ex. _23). The user can
later do global edits on the file to reassign the pre-PROLOG

session variable names.

An 'END' command prompts the user for 'QUIT or FILE'. The
appropriate command is then executed. II 'FILE' 1s entered,

a 'QUIT' command is executed after the 'FILE' has completed.

4.2 Testing

Due to the structure of PROLOG clauses, the procedures were
easily unit-tested. This allowed all of the modules to be
verified before the program was system tested. Once the
internal format for the clauses was established and tested,
the driving routines for PEDIT were implemented and tested.
Finally, the command procedures were tested. The first
group of commands to be tested were the traversal commands.
The general edit commands were tested next. Finally, the

modification and special editor commands were tested.

Integration tests were routinely performed as the unit-
tested routines were incorporated into the system. Finally,
thorough system tests were performed to ensure that all

parts integrally worked together.

32

5. Chapter Five

5.1 Conclusions

Efforts were made to provide the capability of modifying all
portions of a PROLOG clause. However, due to some inherent
deficiencies, such as the inability to retrieve variable
names, PEDIT does not satisfv all desirable elements ol an
editor. Tnis, of course, would be a natural extension if

and when those deficiencies are removecd.

Though attempts were made to model PEDIT after LEDIT - The
Real-Time LISP Editor [10], the differences between PROLOG
and LISP necessitated differences in ecitors. As the design
progressed, different methods of traversing the structures
became apparent. Since a PROLOG clause is more variable in
structure, a more rigorous set of traversal commands was

implemented.

The modification commands were also different in
implementation. Since variable names can not be extracted,
positional modifications were needed in PEDIT, Also, some
commands used in LEDIT were not applicable for modifying

PROLOG clauses.

As was mentioned in Chapter Three, although the original
intent was to implement PEDIT as a hybrid editor, the text

editing capabilities were found to be mainly wunnecessary.

_33-.

Most of the editing commands that were implemented were
structure editing in nature. The requirement of a hybrid

editor was met in spirit if not in letter.

PEDIT succeeds in many of the reguirements. First, it
succeeds in the requirement of addressing any part of a
PROLOG clause. 1t also fulfills the user-friendly
reguirement. For example, assistance 1is provided in the
'HELP' command and the 'UNdo' command provides the user an
opportunity to correct inadvertent errors. Also, the user
is protected from accidently exiting the editor without

saving the changes made by means of an additional prompt.
5.2 Extensions

It can be safely said that no editor has ever fulfilled all
the requirements for every user. In this respect, PEDIT is
no different. With this in mind, PEDIT was designed to
facilitate extensions by future users. A useful extension
would be a more powerful "Find" mechanism. This could
include the ability to search between clauses as well as
within clauses. The following paragraphs describe the

necessary ingredients for incorporating new commands.

First, the mapping of an input command string to 1its
associated procedure and argument list must be added. This
is accomplished by adding occurrence(s) to the

"process_command' procedure. This procedure receives words

from the input string and parses the proper number of
arguments. Some rudimentary syntax checks are also
performed. The procedure name and the appropriate arguments

are then added to the command list.

All new command procedures should call the procedure
'leave_trail' to provide the markers needed for the 'UNdo'
command. Wher appropriate, the commanc name shouic be adaed
te the "invalid_undo’ list, if the command is a
modification command, the procedure name shoulc be added to
the 'modificatjon_command' list. I1f the command is a
traversal command, the procedure name should be a2dded tc the
'traversal_command’ liskt. This list contains three
parameters: the name of the command in the first position,
either 'up' or ‘'down' in the second position dependent on
whether the command is a downward or upward traversal
command, and the reverse command procedure in the third
position which is used by the 'UNdo', 'TOP', and ‘'Start'

commands.

Each command procedure has six parameters. These have been
described in Chapter Four. If the new command creates
another recursive level by calling the procedure 'randex',
the command to exit that level should be passed to 'randex'
as the first argument. When an error occurs, the procedure
'error’ should be called. This procedure has two

parameters: the procedure name and the current structure.

This procedure prints a simple error message and "pretty
prints" the current structure. The command list 1is then
purged to avoid compounding the error. If an additional
message is desired, it can be printed either before or after

the call to 'error'.

By following these instructions, a user should be able to
ex-end the capabilities of PEDIT. This shoulc ensure tne

continued use cf PEDIT as a useful PROLOG-basecd editor.

BIBLIOGRAPHY

[1] Barstow, David R. "A Display-Oriented Editor for
Interlisp." Interactive Programming Environments.
McGraw-Hill, Inc. 1984.

[2] Barstow David R. Shrobe, Howard E. Sandewall, Erik.
Interactive Programming Environments. McGraw-Hill,
Inc. 1984,

-

31 Brown, P. J. Writinc Interactive Compilercs ang
lntercreters. Jonn wiiey & Sons. New YOork, New Yorh.
1876,

[4] Clocksin, W. F. Young, C. D. '"Introduction to PROLOG,
a 'Fi‘tn-Generation' Language." ComputerWoric. USA.
Volume 17. Numper 31. P. IDi-1€. Rugust I, 1SE3.

[5] Clocksin, W. F. Mellish, C. S. Programming in
PROLOG. Springer-Verlag. 1981.

[6] Cohen, E. "Text-OCrientec Structure Commanas for
Structure Editors." SIGPLAN Notices. Volume 17.
Number 11. November, 1982.

[7] Cohen, Meryl. Ingria, Robert. "Introduction to the
Lambda: A Programmer's Guide to Getting Started." LISP
Machine Inc. Los Angeles, CA. August, 1984.

[8] Donzeau-Gouge, Veronigue. Huet, Gerard. Kahn, Gilles.
Lang, Bernard. "Programming Environments Based on
Structured Editors: the MENTOR Experience.”
Interactive Programming Environments. McGraw-Hill,
Inc. 1984.

[9] Foderaro, John K. Sklower, Keith L. The FRANZ LISP
Manual. Berkeley, CA. April, 1982.

[10] Goodman, Jana Taylor. The Real-Time Lisp Editor.
Manhattan, KN. 1982.

[11] Ledgard, Henry. Singer, Andrew. Whiteside, John.
Directions in Human Factors for Interactive Systems.

Springer-verlag. New York, New York. 1379.

[12] Sandewall, Erik. "Programming in an Interactive
Environment: the LISP Experience." Interactive
Programming Environments. McGraw-Hill, Inc. 1984.
PP. 31-80.

3?

BIBLIOGRAPHY

[13] Shani, Uri. "Should Program Editors not Abandon Text
Oriented Commands?" SIGPLAN Notices. Volume 18.
Number 1. January 1983.

[14] Smith, Sarah. "ZMACS Introductory Manual." LISP
Machine Inc. Los Angeles, CA. 1984.

[15] Stallman, Richard M, "EMACS: The Extensible,
Customizable, Self-Documenting Display Editor."
Proceedings of SIGPLAN/SIGOA Symposium on Text
Manipulation. June 8-10, 1981. Portland, ORE. P.
147.

[16]1 S:romfors, Ola. Jonesjo, Lennar:. "The Implementation
and Experiences of a Structure-Oriented Text Editor."
Proceedings of SIGPLAN/SIGO2 Symposium on Text
Manipulation. June 8-10, 1981. Portland, ORE. P. 22,

[17] Teitelbaum, Tim. Reps, Thomas. "Tne Corneli Program
Synthesizer: A Syntax-Directed Programming
Environment." Communications of the ACM. Volume 24.
Number 9. September, 18981.

[18] Teitelman, Warren. Masinter, Larry. "The Interlisp
Programming Environment." Interactive Programming
Environments. McGraw-Hill, Inc. 1984. PP. 83-96.

[19] Waters, Richard C. "Program Editors Should Not
Abandon Text Oriented Commands." SIGPLAN Notices.
Volume 17. Number 7. July, 1982,

[20] Wilander, Jerker. "An Interactive Programming System
for Pascal." Interactive Programming Environments.
McGraw-Hill, Inc. 1984.

38

Glossary

argument

body

clause
database
fact
functor
goal
head

module

predicate
program

routine

rule

structure

APPENDIZX A

Objects related to a functor.

Example:
functor(argumentl, argument2)

Set of calls to other clauses.
rule.

A PROLOG statement.

Sequence of modules that have beer reac in.
lause without a body. Format - 'head.’

Clause name; also called a predicate.

Arqgument in the body ¢f a rule.

See rule and fact for format.

Seguence of routines; every routine ig contained

inside some module.
Clause name; also called a functor.
Sequence of clauses.

Sequence of clauses each with the same
predicate. Also called a procedure.

Full form of a clause. Also known as an
implication., Format - 'head :- bedy."

Any portion of a rule.

39

See format for

PEDIT Commands

APPENDIX B

General Edit Commands

QUIT
FILE
END

HELP

Type

Abort this edit session
Save this edit session
End this edit session
Display edit commands

Display current edit list

Traversal Commands

TOP

NextClause

PreviousClause

Head

Body

Start

NextGoal

PreviousGoal

Down
Up
Right

Left

Move the curscr to the beginning of the
first procedure occurrence.

Move the cursor to the next procedure
occurrence

Move the cursor to the previous procedure
occurrence

Move the cursor to the head of the current
procedure occurrence

Move the cursor to the body of the current
procedure occurrence

Move the cursor to the start of the current
procedure occurrence

Move the cursor to the next goal in the body

Move the cursor to the previous goal in the
body

Move the cursor to a lower structure level
Move the cursor to a higher structure level
Move the cursor right in the structure

Move the cursor left in the structure

APPENDIX B

Modification Commands

Find

DELete
InsertAfter
InsertBefore
MoVe

CoPy

CHange
CHangeARGument
CHangeFUNCtor
CHangeGOAL
REMove

REPLace

Find a given clause

Delete structure(s)

Insert after the current structure
Insert before the current structure

Move structure(s)

Copy structure(s)

Change current structure

Change argument of current structure
Change functor name of current structure

Change goal of current structure

1}

Remove current structure and place in bufier

Replace current structure with contents of
buffer

Special Editor Commands

UNdo

BUFFER

DISPLAY
CONTENTS
CHangeDELIMiter
RePeaT
bEFineCcmManD
DISPLayComManDs

COMMAND

Undo last editor command

Create a buffer

Display all buffer names

Display contents of a given buffer
Change current delimiter

Repeat the last command

Define a command for editor use
Display the names of all new commands

Display the list of commands associated with
a new command

- 41 -

APPENDIX C
USER'S MANUAL

Introduction - How to Use PEDIT

This manual describes the use of a real-time editor for
PROLOG. The editor will enable the leaving the PROLOG
interpreter. Edited clauses may replace clauses in the
PROLOG data base and may be stored in files. The editor is
a structure editor with facilities to edit all portions of a
PROLOG structure.

All commands must be spelled correctly anc musSt De enterec
in &ll lower case. Multiple commands may be entered on an
input line. Items are sepsrated by single or multipie
blanks and the input line is ended bv & carriage return. As
the input line is parseg, rudimentary syntax <checks are
made. i1f & command is not input in the prope- format, the
input line from that point forward is deleted. Commands may
not be broken across lines.

Commanées are writtern irn this manual showing <the complete
name;: however, only the upper case portion of the name
should be entered as the command. For example, a command
written as 'InsertBefore' should be entered into the editor
as 'ib'.

Due to the 1internal storage of strings, goals such as
'write('error')' are retrieved as ‘'write(error)'. To
avoid syntax errors when the clause is replaced in the data
base, strings such as these should be restored while editing
the clause. When strings are entered 'write("error™)', no
problem occurs.

Since spaces are used to separate 'words', care should be
used when typing in new structures. For example, while
‘argl, arg2' is a legitimate entry to the PROLOG
interpreter, the items would be separated when parsed by
PEDIT. In this case, the proper entry would be 'argl,arg2’.

Variables appear in the internal format of PROLOG (_23).
This format can be input to the modification commands (ex.
charg 1 _23) or a new variable name can be identified (ex.
charg 1 X). The names entered via PEDIT commands create new
internal mappings when the clauses are added to the PROLOG
data base. These mappings will not match any mappings
performed in previous assertions.

Items added via PEDIT are stored as strings until added to
the data base. Because of this, when a functor and its

- 42 -

APPENDIX C

arguments are entered as one item (ex. functor(argl, arg2)),
this should be considered to be a single entity. These
items can not be accessed in the same manner as those
retrieved from the data base. For example, the 'Down'
command can not be performed to reach the arguments.

NOTE: 1If the edit session terminates abnormally, execute
<cleanup.>. This clause will remove any remnants of the
previous edit session(s) and will allow a new edit session
to be started.

..-43_

APPENDIX C

Entering and Leaving PEDIT

To enter the editor from the PROLOG interpreter environment
type:

pedit(clausename).

The 'clausename' must be structurally identical to the
clause to be edited. In other words, if arguments are
present, the correct number of arguments must be entered in
order to retrieve the proper clauses. An example would be:

pedit (clausename(Argl,Arg2,...)).

Arg., hrgz, etc. should be speciflec as variacle names <to
zliovw interna: 1instantiatior :c¢ the argument names in the
PROLOG data pase. Any variable names can be entered, except
tne anonymous variable '_' because internal instantiation is
stifled.

To exit the editor, one of the following commands should be
entered: END, OQUIT or FILE. These commands are explained
on =heir appropriatce manuzl pages.

APPENDIX C

O
c
-
|

quit

p

The 'QUIT' command aborts the current edit session. If
changes have been made to the clause but have not been
saved, the user is prompted for verification. Enter either
'quit.' or ‘'save.'. If 'quit.' is entered, the session is
aborted; otherwise the 'FILE' command 1is executed. There
are no arguments for this command.

- 45 -

APPENDIX C

FILE

file

The 'FILE' command replaces all predicate occurrences in the
PROLOG data base with the edited structures. The command
then asks the user if the structures are to be stored in a

file. Enter either 'yes.' or 'no.'. If 'yes.' is entered,
the structures are stored in the filename supplied in the
format 'filename.'. Otherwise, the command ic exited. The

'FILE' commandé ends the curren: edit session.

1f, for some reason, the edited structures can not be
properly formatted for input into the aata base, an error
message is printed and the structures are saved in the file
'pecditjunk’. The data base version of the clause will
remain intact in the pre-edit session status.

There are no arguments for this commanc.

_46-

APPENDIZX C

END

end

The 'END' command prompts the user 'Quit or save?'. The
response should be formatted either 'quit.' or 'save.'. 1If
'save.,' 1is entered, the 'FILE' command is executed;
otherwise, the 'QUIT' command 1is executed. There are no
arguments for this command.

47

APPENDIX C

HELP

help <command name>

The 'HELP' command displays an explanation of the syntax and
the function of the command name entered. To display a list
of all valid commands, type 'help help'. The abbreviated
command name 1is wused for input. For example, 'help pg’
would provide the explanation for the traversal command
'PreviousGoal’.

48

APPENDIX C

The 'Type' command causes the current structure to be
displayed in ‘'pretty print' format. The current structure
remains the same., There are no arguments for this command.

49

APPENDIX C

TOP

top

The 'TOP' command moves the cursor to the beginning of the
first procedure occurrence. The result will be the entire
PROLOG procedure. There are no arguments for this command.

EXAMPLE:

The current procedure 1§ thisclause(argl;.
thisclause(arg2) :~ goall, goall.
thisclausel(arg3) :- goal3, goalé.
thisclause(argé) :- goals,

The current structure is goal2, goalé

==> top
results in thisclause(argl).
thisclausef{arg2)
thisclause{arg3)
thisclause(arg4)

« goall, epala,
- goall, goalé,
- goals,

e se e

NOTE: This command will be automatically issued before a
QUIT or FILE command is executed.

_50-

APPENDIX C

NextClause

nc or nc¢ <num> or nc *

-

The command 'NextClause' moves the cursor to the start of-
the next procedure occurrence., When '*' is entered, the
maximum allowable moves are made. When 'num' 1is entered,
that number of moves are made. When no argument is entered,
only 1 move is made.

EXAMPLE:

The current structure is thisclause(argl).

thisclauselarg2) :- gozll, gocal2.
thisciauseiarg3) :- goel3, goais.
thisclause(arg4) :- goals.
==> nc 1
results in thisclause(arg2) :- gcall, goall.
==> NC * ’
results in thisclause(arg4) :- goals.

2 repetition(s)

1f the editor can not move the cursor the number of moves
specified, the editor will simply move the cursor to the
last procedure occurrence. A message will be printed
telling how many moves were completed.

EXAMPLE:

The current structure is thisclausef{argl).
thisclause(arg2) :- goall, goal2,
thisclause(arg3) :- goal3, goalé4.
thisclause(arg4) :- goals.

==> nc 5

results in thisclause(arg4) :- goals.
3 repetition(s)

NOTE: A message is also printed telling how many moves were
completed when the argument is '*'.

51

APPENDIX C

PreviousClause

pc or pc <num> or pc *

The command 'PreviousClause' moves the cursor to the start
of the previous procedure occurrence. When '*' is entered,
the maximum allowable moves are made. When ‘'‘num' is
entered, that number of moves are made. When no argument is
entered, only 1 move is made.

EXAMPLE:

The current procedure is thisclause(argl).
thisclause(arg2)
thisclause(arg3)
thisclause(arg4)

goall, goalz.
goalld, goelé.
gcals.

e we =8

The current structure is thisclause(arg3) goal3, goal4.

thisclause(arg4) :- gocalS5.
==> _DC 1
results in thisclause(arg2) :- goall, goal2.
thisclause(arg3) :- goal3, goal4.
thisclause(arg4) :- goals.
== Pc *
results in thisclause(argl).

thisclause(arg2) :- goall, goal2.
thisclause(arg3) :- goal3, goald.
thisclause(arg4) :- goals.

1 repetition(s)

1f the editor can not move the cursor the number of moves
specified, the editor will simply move the cursor to the

first procedure occurrence. A message will be printed
telling how many moves were completed.

- continued -

- g =

APPENDIX C
EXAMPLE:

The current structure is thisclause(arg3) :- goal3, goal4.
thisclause(arg4) :- goals.

==>pc5
results in thisclause(argl).
thisclause(arg2) :- goall, goalZ2.
thisclause{arg3) :- goal3, goalé4.
thisclause{arg4) :- goals,
2 repetition(s)

NOTE: A message is alsc printed telling how many moves were
compieteé whern the argument is '*',

53

APPENDIX C

Head

The 'Head' command moves the cursor to the head of the
current procedure occurrence. There are no arguments for
this command.

EXAMPLE:

The current structure 1is thisclauselarc2) :- gcall, goalZ.

==> h
results in thisclause(arg2)

APPENDIX C

Body

The 'Body' command moves the cursor to the bpody of the
current procedure occurrence. The result is the entire list
of goals in the body. For facts, the result is 'true'.
There are no arguments for this command.

EZEAMPLE 1:

Thne currenit structure is thisclause(azgl).

==> b
results in true
EXAMPLE 2:
The curren: s:tructure 1is thisclausel{arg2) :- goall, goalZ.
==> Db
results in goall, goal2

NOTE: To manipulate the first goal in the body immediately
after the command 'Body' has been executed, the command
"Down' should be entered. To reach other goals in the body,
the 'NextGoal' command should be used.

_55-

APPENDIX C

Start

The 'Start' command moves the cursor to the start of the
current procedure occurrence. The command will recurse to
the start no matter where the cursor 1is currently placed.
There are no arguments for this command.

EXAMPLE:

The current procedure is thisclause(arg3) :-
goal3, goaléd(goal_arg).

The current structure is goal_arg
==> §
results in thisclause(arg3) :-

goal3, goalé(gozl_arg).
The current structure is goall3, goalé4(goal_arg)
==> S

results in thisclause(arg3) :-
goal3, goal4(goal_arg).

NOTE: This command must be entered in order to -reach the
level where the commands 'NextClause' and 'PreviousClause'’
may be entered.

- §g -

APPENDIX C

NextGoal

ng or ng <npum> or ng ¥

The command 'NextGoal' moves the cursor to the next goal in
the body of the current procedure occurrence. When '*' is
entered, the maximum allowable moves are made. When 'num'
is entered, that number of moves are made. When no argument
is entered, only 1 move is made.

EXAMPLE:

The current procedure 1S thisciauselarg3) :
goal3, goalé, goalt. gozlé.

The current structure is gcail, goalé4, goalf, gozls

==> ng 1

results in goalé, goalf, goale
==> ng *

results in goalsé

2 repetition(s)

NOTE: To edit goals, the user must travel 'Down' to reach a
point where editing may occur.

1f the editor can not move the cursor the number of moves
specified, the editor will simply move the cursor to the
last goal. A message will be printed telling how many moves
were completed.

EXAMPLE:
The current structure is goal3, goal4, goalS5, goalé
==2> ng 5

results in goalé
3 repetition(s)

NOTE: A message is also printed telling how many moves were

completed when the argument is '*'.

57

APPENDIX C

PreviousGoal

pg or pg <num> or pg *

|

The command 'PreviousGoal' moves the cursor to the previous
goal 1in the body of the current procedure occurrence. When
'*' is entered, the maximum allowable moves are made. When
'num' is entered, that number of moves are made. When no
argument is entered, only 1 move is made.

EXAMPLE:

The current procedure is thisclause(arg3) :-
goal3, goal4, goalb, goalé.

The current structure is gcalé
==> pg 1
results in goal5, goalé
==> *
results in goal3, goal4, goals, goalé

2 repetition(s)
NOTE: To edit goals, the user must travel 'Down' to reach a
point where editing may occur.

I1f the editor can not move the cursor the number of moves
specified, the editor will simply move the cursor to the
first goal., A message will be printed telling how many
moves were completed.

EXAMPLE:

The current structure is goalé

==> pg 5

results in goal3, goal4, goal5, goalé
3 repetition(s)

NOTE: A message is also printed telling how many moves were
completed when the argument is '*',

-.58..

APPENDIX C

Down

d or 4 <num> or 4 *

The command 'Down' moves the cursor to a lower structure
level. When '*' is entered, the maximum allowable moves are
made. When 'num' is entered, that number of moves are made.
When no argument is entered, only 1 move is made.

EXAMPLE 1:
The current structure is goal3(goal4(thisarg ! j

==> g 2
results in thisarg

EXAMPLE 2:
The current structure is goali(goalz(lievel2(laszlevel)::
==>d*
results in lastlevel
3 repetition(s)

If the editor can not move the cursor the number of moves
specified, the editor will simply move the cursor to the
lowest level. A message will be printed telling how many
moves were completed.

EXAMPLE:
The current structure is goal3(goal4(thisarg))
==> d 5

results in thisarg
2 repetition(s)

NOTE: A message is also printed telling how many moves were
completed when the argument is '*'.

- 59 -

APPENDIX C

5

U or u <num> or u*

The command 'Up' moves the cursor to a higher structure
level. When '*' is entered, the maximum allowable moves are
made. When 'num' is entered, that number of moves are made.
When no argument is entered, only 1 move is made.

EXZAMPLE 1:
The current body is goal3(goald4(thisarg))
The current structure is thisarg

==> u 1
results in goal4(thisarg)

EXAMPLE 2:

The current structure is thisarg

==>u*

results in goal3(goal4(thisarg))
: 2 repetition(s)

If the editor can not move the cursor the number of moves
specified, the editor will simply move the cursor to the
highest level. A message will be printed telling how many
moves were completed.

EXAMPLE:

The current body is goall(goal2(level2(lastlevel)))
The current structure is lastlevel

==> u b5

results in goall(goal2(level2(lastlevel)))
3 repetition(s)

NOTE: A message is also printed telling how many moves were
completed when the argument is '*'.

-60_

APPENDIX C

Right

r or r <num> or r ¥

=

The command 'Right' moves the cursor to right 1in the
structure. When '*' is entered, the maximum allowable moves
are made. When 'num' is entered, that number ¢f moves are
made. When no argument is entered, only 1 move is made.

EXAMPLE 1:
The current structure 1is argl, argez, &rg3
==>r 2
results In arg3
EXAMPLE 2:
The current s:tructure is argl, argz2, arg3, argé, argd
==>r *
results in arg5b
4 repetition(s)
If the editor can not move the cursor the number of moves
specified, the editor will simply move the cursor as far
right as possible . A message will be printed telling how
many moves were completed.
EXAMPLE:
The current structure is argl, arg2, arg3
==>r 5
results in arg3)
2 repetition(s)

NOTE: A message is also printed telling how many moves were
completed when the argument is '*'.

Also, due to the internal storage mechanism, 'Right' should

not be used to travel among goals. Instead, the command
'NextGoal' is provided.

_61-

APPENDIX C
Left

l or 1 <num> or 1 *

\

The command.‘Left' moves the cursor left in the structure.
When '*' is entered, the maximum allowable moves are made.
When 'num' is entered, that number of moves are made. When
no argument is entered, only 1 move is made.

EXAMDPLE:

The current goel is goaifargl, arg2, arg3, arg4, arct)

The current structure 1is argb

==> 1 1
results in arg4, argb
==>1*
results 1in argl, arg2, arg3, argé, argd
3 repetition(s)

If the editor can not move the cursor the number of moves
specified, the editor will simply move the cursor as far
left as possible. A message will be printed telling how
many moves were completed.

EXAMPLE:

The current goal is goal(argl, arg2, arg3, arg4, arg5)
The current structure is argb

==>] 7

results in argl, arg2, arg3, arg4, arg5
4 repetition(s)

NOTE: A message is also printed telling how many moves were
completed when the argument is '*'.

62

APPENDIX C

Find

f <num> <pattern>

The 'Find' command searches the bodies of the rules for a
match of <pattern> in the argument <num>. If no match is
found, the cursor is positioned at the last rule. If a
match is found, the cursor 1is positioned at that rule.
There should be no blanks within <pattern>, The items being
matched must be instantiated.

EXAMPLE:

The current structure is thisclause(argl).
thisclause(ergzj :- goail, @goz-I.
thisclauselarg3) :- gozl3, goald.
thisclause(arg4) :- goals.

==> £ 1 arg3
results in thisclause{arg3) :- goaili, goalé.

==> £ 1 argé
results in thisclause(arg4) :- goalb.
*** ryle not found ***

NOTE: If the cursor is not positioned at the start of a
rule, the command 'Start' |is executed before the search
begins.

63

DELete

APPENDIX C

del or

del <num>

or del *

The 'DELete
single/mult
is entered,
deleted.
deleted.
delezec.

If <here ar
specified

ge.eted.

of & rule,

positioned

arguments a
EXAMPLE I:

The current

==> del 2
results

EXAMPLE 2:
The current

==> del 1
results

When
When no

' command deletes either:

iple goals,
all the
'num’

¢ fewer items in
all
cursor ig positioneé at the

in <num>,

i the cursor

one or more goals are deleted. If the
arguments

at the
re deleted.

structure is

in

structure is

in

or single/multiple items.
items
is entered, that number of items
argument

single/multiple rules,
When '*!'
in the current structure are
are
is entered, only 1 item is

structure than
the 1items are deleted. 1If the
start of & rule, rule(s) are
positioned at a goal in the boady

cursor 1is
one or more

the curren:

cre

to a functor

thisclause(argl).
thisclause(arg2) :- goall, goal2.
thisclause(arg3) :- goal3, goal4.

thisclause(arg4) :- goals.
thisclause{arg3) :- goal3, goals.
thisclause(arg4) :- goals.

goall, goal2, goal3, goald

goal2, goal3, goald

- continued -

64

EXAMPLE 3A:
The current
==> del 3
results
EXAMPLE 3B:
The current

==> del 6
results

structure is

in

structure is

in

APPENDIX C

argl,

arg4,

argl,

4
2

(nu

65

arg2, arg3, arg4, argd

arg5b

arg2, arg3, arg4, arg5

=
[
0
ct
~——

APPENDIX C

InsertAfter

ia <head> <goal list> <delim>
or
ia <goal list> <delim>
or

ia <argument list> <delim>

The 'InsertAfter' command inserts either: a single rule,
single/multipie goals, or single/multiple items after the
current structure,

I1f the cursor is positioned at the start of a rule, a new
rule 1is inserted. 1In this case, the first format should be
entered.

If the cursor is positioned at a goal in the body of a rule,
one or more goals are inserted. In this case, the second
format should be entered. (See the 'Body', 'NextGoal', and
'PreviousGoal' commands for information on reaching the body
or goals in a rule.)

The goals in the <goal list> should be separated by blanks.
Each goal should be followed by a goal functor - a comma or
semicolon. These functors are placed between the goals as
they are inserted into the body of a rule. (The <goal list>
may be omitted for the first format. The resultant rule 1is
a fact (body = 'true').)

If the cursor is positioned at the arguments to a functor
one or more arguments are inserted. In this case, the third
format should be entered. (See 'Down' for information on
reaching the arguments to a functor.). The items in the
<argument list> should be separated by blanks.

The <delim> is equal to '/' (slash) when the edit session
begins. (See 'CHangeDELIMiter' to change the current
delimiter.)

- continued -

66

APPENDIX C

EXAMPLE 1A:
The current structure is thisclause(argl) :- goall, goal2.
thisclause(arg3) :- goal3, gcaléd.
==> ia thisclause(arg2) goal2 goal3 &
results in thisclause(argl) :- goall, goalz.
thisclause(arg2) :- goal2, goal3.
thisclause(arg3) :- goal3, goalé.
EZAMPLE 1B:
The current structure is thisclause(argl) :- goall, goal2.
thisclause(arg3) :- goall?, goalé.
==> ia thisclause(arg2) true /
or
ia thisclause(arg2) /
results in thisclause(argi) :- goell, gocalZz.
thisclause(arg2). :
thisclause(arg3) :- goal3, goals.
EXAMPLE 2:
The current structure is goall, goal2
==> ia goalla , goal2a , /
results in goall, goalla, goal2a, goal2
EXAMPLE 3:
The current structure is argl, arg2
==> ia argla arg2a /
results in argl, argla, arg2a, arg?

..67_

APPENDIX C

InsertBefore

ib <head> <goal list> <delim>
or
ib <goal list> <delim>

or

ib <argument list> <delim>

1
J

The 'InsertBefore' command inserts either: a =single rule,
singie/multiple goals, or single/multiple items pefore the
current structure.

If the cursor is positioned at the start of a rule, a new
rule 1is inserted. 1In this case, the first format should be
entered.

If <he cursor is positioned at a goal in the body ¢f a rule,
one or more goals are inserted. In this case, the second
format should be entered. (See the 'Body', 'NextGoal', and
'PreviousGoal' commands for information on reaching the body
or goals in a rule.)

The goals in the <goal list> should be separated by blanks.
Each goal should be followed by a goal functor - a comma or
semicolon., These functors are placed between the goals as
they are inserted into the body of a rule. (The <goal list>
may be omitted for the first format. The resultant rule is
a fact (body = 'true').)

If the cursor is positioned at the arguments to a functor
one or more arguments be inserted. In this case, the third
format should be entered. (See 'Down' for information on
reaching the arguments to a functor.). The items in the
<arqument list> should be separated by blanks.

The <delim> is equal to '/' (slash) when the edit session
begins. (See 'CHangeDELIMiter' to change the current
delimiter.)

- continued -

68

APPENDIX C

EXAMPLE 1A:
The current structure is thisclause(arg2) :- goal2, goal3.
thisclause(arg3) :- goal3, goald.
==> ib thisclause(argl) goall goal2 /
results in thisclause(argl) :- goall, goal2.
thisclause(arg2) :- goal2, goal3.
thisclause(arg3) :- goal3, goal4.
EXAMPLE 1B:
The current structure is thisclause(arg2) :- goal2, goals.
thisclause(arg3) :- gcalld, geelé.
==> ib thisclause(argi) true /
or
ib thisclause(argl}) /
results in thisclause(argl).
thisclause(arg2) :- goal2, goals.
thisclause(arg3) :- goal3, goalé4.
EXAMPLE 2:
The current structure is goall, goal2
==> ib goalla , goal2a , /
results in goalla, gocal2a, goall, goal2
EXAMPLE 3:
The current structure is arg2, arg3
==> ib argla arg2a /
results in argla, arg2a, arg2, arg3

-69_

APPENDIX C

MoVe

mv <fromarg> <toarg>

The 'MoVe' command moves either: a single rule, a single
goal, or a single item. If the cursor is positioned at the
start of a rule, a rule 1is moved. If the cursor is
positioned at a goal in the body of a rule, a goal is moved.
If the cursor is positioned at the arguments to a functor,
an argument itc moved.

The structure at position <frcomarg> 1is moved bpehind <he
structure at position <toarg>. If either of the arguments
is higher thar the number of items present, an error isg
flagged anc the command is ignored. Zero iS5 & vaiid vaius
for <toarg>.

EXAMPLE 1:

The current structure 1is thisciause{argl;,
thisclause(arq2)
thisclause(arg3)

goall, goall.
goal3, goalé.

thisclause(arg4) :- goals.
==> mv 2 4
results in thisclause(argl).
thisclause{arg3) :- goal3, goald,
thisclause(arg4) :- goals.
thisclause(arg2) :- goall, goalz.
EXAMPLE 2:

The current structure is goall, goal2, goal3, goald
==>mv 1 3
results in goal2, goal3, goall, goal4

- ¢ontinued -

- 70 -

EXAMPLE 3:
The current
==>mv 2 4
results
EXAMPLE 4:
The current

==>mv 2 0
results

structure is

structure is

in

APPENDIX C

argl, arg2,

argl, arg3,

argl, arg2,

arg2, argl,

_71—

arg3,

arg4,

arg3,

arg3,

arg4,

arg2,

arg4,

arag4,

argb

args

argb

arg5

APPENDIX C

CoPy

1

cp <fromarg> <toarg> J

The 'CoPy' command copies either: a single rule, a single
goal, or a single item, If the cursor is positioned at the
start of a rule, a rule 1is copied. If the cursor |is
positioned at a goal in the body of a rule, a goal is
copied. If the cursor is positioned at the arguments to a
functor, an argument is copied.

The structure at position <fromarg> 1is copied behiné the
structure at position <toarg>. If either of the arguments
is higher than the number of items present, an error 1is
flagged and the command is ignored. Zero 1s a valid value
for <toarg>.

EXAMPLE 1:
The current structure is thisclauseiargi).

thisclause(arg2) :- goall, goal2.
thisclause(arg3) :- goal3, goals.

thisclause(arg4) :- goals,

==> cp 2 4

results in thisclause(argl).

thisclause(arg2) :- goall, goal2.
thisclause(arg3) :- goal3, goald.
thisclause({arg4) :- goals.
thisclause{arg2) :- goall, goal2.

EXAMPLE 2:

The current structure is goall, goal2, goal3, goald
==> Cp 1 3
results in goall, goal2, goal3, goall, goalé

- continued -

72

EXAMPLE 3:
The current
==> cp 2 4
results
EXAMPLE 4:
The current

==> Cp 2 0
results

structure is

in

structure is

APPENDIX C

argl,

argl,

argl,

arge,

'73

argz,

arg2,

argz,

argl,

arg3,

arg3,

arg3,

argz,

arg4,

arg4,

arg4,

arg3,

argb

arg2, args

args

arg4, arg5

APPENDIX C

CHange

ch <structure>

The 'CHange' command replaces the current structure with
with <structure>. There should be no blanks within
<structure>.

EXAMPLE 1:
Tne current Structure 1is goal3, goalé

==> cnh goalb,goalé
results 1in goal5, goalé

EXAMPLE 2: .

The current structure is goal7(argl, arg2)

==> ch goal8(arg3,arg4)
results in goalB8(arg3, arg4)

*kk*CAUTION**** This command should be used with great care.
No structural checks are made on <structure> so invalid
structural formats can be created. This command should not
be used to add new structures. The commands 'InsertAfter’
and 'InsertBefore' ensure proper structural format for
additions. When replacing an entire rule, the head and body
should be separately modified. The commands
'CHangeArgument', 'CHangeFunctor' and 'CHangeGoal' are
recommended for novice users to ensure proper structural
format.

‘74

APPENDIX C

CHangeArgument

cha <num> <new>

The 'CHangeArgument' command replaces the argument in the
position of <num> with the value of <new>., There should be
no blanks within <new>.
EXAMPLE 1:
The current structure 1S functor(argl, arg2, arg3s)
==> cha 2 newvalue

results in functor(argl, newvalue, arg3)
EXAMPLE 2:
The current structure is goalif{argl, arg2), goal2
==> cha 2 newvalue

results in goall(argl, arg2), newvalue

NOTE: The structure 'goall(argl, arg2), goal2' 1is stored
internally as ',(goall(argl, arg2), goal2)'. To modify an
argument of goall, 'Down' must first be executed.

EXAMPLE:

The current structure is goali(argl, arg2), goal2

==> d cha 2 newvalue u
results in : goali(argl, newvalue), goal2

At this point in the example, goal traversing commands such
as 'NextGoal' and 'PreviousGoal' can be executed.

75

APPENDIX C

CHangeFunctor

chf <new>

The 'CHangeFunctor' command replaces the functor in the
current structure with the value of <new>. There should be
no blanks within <new>,

EXAMPLE:

The current structure is goali{argl, argz, arg3;

==> chf newfunctor
results in newiunctor(argl, argl, arg3)

76

APPENDIX C

CHangeGoal

chg <num> <new>

The 'CHangeGoal' command replaces the goal in the position
of <num> with the value of <new>. There should be no blanks
within <new>,

EXAMPLE:

The current structure 1is goail,goal2,goals

==> cng 2 newgoal(argl) ’
results in goall.newgoal(argl),gcalsl

This commandé should not be used to add new goals. The

commands 'InsertAfter' and 'InsertBefore' ensure proper
structural format for additions.

-77_

APPENDIX C

REMove

rem <name>

The 'REMove' command removes the current structure and
places it in the buffer <name>. The buffer <name> should
begin in a lower case letter. The resultant structure is
the null 1list. See 'REPLace', 'BUFFER', 'DISPLAY', and
"CONTENTS' for further buffer commands. The Dbuffer will
remain in the data base for the rest of the edit session.

_78...

APPENDIZX C
REPLace

repl <name>

The 'REPLace' command replaces the current structure with
the contents of buffer <name>. The buffer <name> should
begin in a 1lower case letter. See 'REMove', 'BUFFER',
'DISPLAY', and 'CONTENTS' for further buffer commands.

EXAMPLE:
The current procedure is goalé(argl).
Buffer 'buffi' contains goali(arg5)

==> repl buffl
results in goal7(arg5)

Xk*XCAUTION**** This command should be used with great care.
No structural checks are made on <structure> so invalid
structural formats can be created. This command should not
be used to add new structures. The commands 'InsertaAfter’
and 'InsertBefore' ensure proper structural format for
additions. When replacing an entire rule, the head and body
should be separately modified. The commands
'CHangeArgument', 'CHangeFunctor’ and 'CHangeGoal' are
recommended for novice users to ensure proper structural
format.

79

APPENDIX C

UNdo

un

The 'UNdo' command attempts to reverse the effects of the
last executed command.

If the last command was a traversal command such as 'Up',
'Down', ‘'Left', or 'Right', the opposite traversal command
is executed. Only & single move is made (Example: 1if last
command was 'Down *' or 'Down 5', the 'UNdo' results in the
execution of 'Up'). If the last command was ‘TOP',
'NextClause' 1is executed; if the last command was 'Start’,
'Head' is executed.

For other commands which can be ‘undone', the previous
structure replaces the current structure. This occurs for
modification commands such as 'CHange', '‘InsertAfter’',

'DELete', etc.
Commands which can not be ‘'undone' (ex. 'Find', 'FILE')

generate an error message with no effect on the current
structure or cursor position.

80

APPENDIX C

BUFFER

buffer <name> <structure>

The 'BUFFER' command creates a buffer <name> with contents
<structure>. The buffer <name> should begin in a lower case
letter. The <structure> should be a PROLOG structure,. See
'REMove', 'REPLace', 'BUFFER' and 'CONTENTS' for further
buffer commands.

EXAMPLE:

==> buffer buff2 goalz,goal3l
results in a buffz goal2,goall

81

APPENDIX C
DISPLAY

display

The 'DISPLAY' command displays the names of all the buffers
in the data base. See 'REMove', 'REPLace', 'BUFFER' and
"CONTENTS' for further buffer commands.

-82_

APPENDIX C
CONTENTS

contents <name>

The 'CONTENTS' command displays the contents of the buffer
<name>, The buffer <name> should begin in a lower case
letter. See 'REMove', 'REPLace', 'BUFFER' and 'DISPLAY' for
further buffer commands.

83

APPENDIX C
CHangeDELIMiter

chdelim <new>

The 'CHangeDELIMiter' command replaces the current delimiter
with <new>. The <delim> is egual to '/' {slash) when the
edit session begins.

84

APPENDIX C

RePeaT

rpt

The 'RePeaT' command repeats the last traversal or
modification command successfully executed. Only a single
repetition is made for traversal commands. For example, if
the last command was 'Down *' or 'Down 5', the 'RePeaT'’
results in the execution of 'Down’.

85

APPENDIX C

DEFineComManD

defcmd <name> <command list> <delim>

The 'DEFindeComManD' command defines a new command <name>,
This command can be referenced until the end of the edit
session and invokes calls to all the commands 1in the
<command list>. The <command list> is composed of existing
commands which are entered as defined in the user's manual.
The commané list is terminated by the current <delim>. The
<delim> is equal to '/' (slash) when the edit session
begins. (See 'CHangeDELIMiter' to change the current
delimiter.) (See 'DISPLComManD' to display the list of all
new commands and 'COMMAND' to display the list of associated
commands for a new command.)

-86-

APPENDIX C
DISPLayComManD

displemd

The 'DISplayComManD' command displays all new commands
entered within the edit session, (See 'DEFineComManD' to
define new commands and 'COMMAND' to display the 1list of
associated commands for a new command.)

_87-

APPENDIX C

COMMAND

command <name>

The 'COMMAND' command prints the list of commands associated
with the new command <name>. (See 'DEFineComManD’' to define
new commands and 'DISPLComManD' to display the list of all
new commands.)

_88—

APPENDIX C

Sample Edit Sessions

| ?= pedit (head2(A,B)).
Welcome to PEDIT - a PROLOG-EBased Editor
For assistance, type (help help) .

Clause retrieved from data base.

PEDIT:¢t
head3 (X, y) :—
rulel,rule2{a, bl.
head3{w, z) -
rulel,rulez, rule3d,rules4, rules.
head3(_49, _S@) :-
ruleS(rule&(_51,_S52), _53),rule?7(_49,_58, _S4).
head3(_25, _26).

PEDIT:nc b ng 3 t
rule4,ruledS

PEDIT:ia goall , geoalz2 , 7 t
rule4,goall, goal2,ruled

PEDIT:s mc bngdr ibAB /1 * 0t
1 repetition(s)
rule7(_49,RA,B, _5@, _34)

FEDIT:top h cha 2 ¢ ¢
head3 (x, c)

PEDIT:s b chg 1 rule23 top ¢
head3(x,c) -

ruleg3,rulecg(a, bl.
head3(w, 2) -

rulel,rulez,rule3, rule4,goall, goalz, ruled.
head3(_49, _5S5@) :-

ruleS(rules(_51,_52), _53),rule7(_49,A,B, _58, _34).
nead3 (_25, _26).

PEDIT:zmv 1 4 ¢
head3(w,z) ::—
rulet,ruleg,rule3, rule4, goall, goala, rules.
head3(_49, _S@) :—-)
ruleS{rules(_51i,_5S&),_53),rule7(_49,A,B, 5@, _54).
head3 (_g25, _26).
head3 (x,) -
ruleg3,rule2t{a,bl.

PEDIT:file

Do you wish to store in a file?

Enter (yes.) or (no.) yes.

Type file name: newheads.

rnewhead3 consulted 309 bytes @. 116678 sec.
Clause replaced in data base

..89.-

APPENDIX C

Source Code

/* main routine */
pedit(ClauseName) :-
init,
edit([ClauseNamel, _, _, _, _,
cleanup.
init :-
nl,

write('Welcome to PEDIT - a PROLOG-Based Editor'),
write(' For assistance, type <help help> .'), nl,

asserta(delim(/))
cleanup :-
retract all(traversall(
retract_aillcmé list!
retract ell{new communc(*, 1)
retracs_all(buffer(_, _J7,
retract_all(last_command(
retract_all(undocommand(_
retract alltunancea(e
retract azlil(counter()),
retract_all(delim(_)7.
cleanup.

),

-

edit([ClauseName | [1],
OldClause, OldClaLse, LastUndo, LastUndo) :-
get_routine(ClauseName,Routine),
inform(Routine),

remove cld undo,
randedeone, ClauseName, Routine, NewRoutine,
Routine, ThisUndo).

inform(Routine) :-
not null (Routine),
write('Clause retrleved from data base.'), nl.
inform(Routine) :-
write('Clause not in data base. '), nl,
write('Clauses may be added via the <ib> command.

90

nl.;
nl,

'), nl.

APPENDIX D

/* Routine which extracts clauses from the */
/* data base and puts them in internal *)
/* PEDIT format. Lt 3
get_routine(Name, Routine) :-

find_all_rules(Name, ListofHeads, ListofTails),

!, construct routine(
ListofHeads, ListofTails, [], Routine).

find all rules(Head, _,) :-
asserta(rule(mark mark))
clause(Head,Tail),
asserta(rule(Head,Tail)),
fail.

ind_all rules(_, E, T)

“collect_rules([],[],M,N),
!,H—M T = N,

find_all_rules(_,_,_).

collect_ Tules(S,T,L,M) :-
get_next rule(x T
!, collect rules([x|s] [v|T],L,M).

collect_ rules(L,M,L,M).

get_next_rule(X, ¥) :-
retract(Pule(Z Y}), !, X == mark.

construct rout¢ne((4, [}, Routine, Routine).

construct routine([HofHeads ﬁ RestofHeads],
[HofTails | RestofTails
InRoutine, TotalRoutine) :-
ThisRule =.. [if, HofHeads, HofTails],
appl(InRoutine, [ThisRule], PartRoutine),
construct_routine(RestofHeads, RestofTalls,

PartRoutine, TotalRoutine).

. -

91

APPENDIX D

/* Driving routine for reading and executing commands. */
randex(Until, ClauseName, Structure, NewStructure,
LastUndo, NewUndo) :-
get_command([Command | Arglist]),
Procall =.. [Command, Arglist, ClauseName,
Structure, TempStructure,
LastUndo, TempUndol],
call(Procall),
continue(Until, Command, ClauseName,
TempStructure, NewStructure, TempUndo, NewUndo).

continue(Until, Command, ClauseName,
ThisStructure, ThisStructure, LastUndo, LastUndo) :-
Until = Commanc.
continue(Until, Commancé, ClauseName,
ThisStructure, NewStructure, LastUndo, NewUndoc) :-
randex(Until, ClauseName, ThisStructure, NewStructure,
LastUndo, NewUndo).

/* Gets commands from Command List */
/* 1f none present, reads new line */
/* from user. */
get_command(ReturnedCommand} :-
retract{cmé_list (ReturnedCommand)).
get_command(ReturnedCommand) :-
read new list,
get_command(ReturnedCommand).

read_new_list :-
nl,
write('PEDIT:'),
read_ 1n(L15tofWords)
process_ list(ListofWords).
read_new list.
read_in(Tword 1 MoreWords]) :-
“getO(Char
read word(Char, Word, NextChar)},
rest line(Word, NextChar, MoreWords).
rest line(Word, Char, [1) :-
newlzne{Char) la
rest_line(Word, Char, [Wordl | Words]) :-
“read word(Char, Wordl, NextChar),
rest line(Wordl, NextChar, wOrds)
read_word(Char, Word, Char) :-
“newline(Char), E, name (Word, [Char]).
read word(Char, Word NextChar) :-
in word(Char), !,
geto(c1),
rest word(Cl CharList, NextChar),
name(Word, [Char | CharList]).
read word(Char, Word, NextChar) :-
“get0(C1),

92

APPENDIX D

read word(C1l, Word, NextChar).
rest_word{Char, [Char | CharList], NextChar) :-

in_word(Char), !,

get0(Cl),

rest word(Cl, CharList, NextChar).
rest_word(Char, [], Char).
in_word(Char) :- Char > 32, Char < 126,
newline(10).

—93-

APPENDIX D

process_list([]).
process_list([EofLine]) :- eofline(EofLine).
process_list([Command | Rest]) :-
process_command(Command, Rest, NewRest),
process_list(NewRest).
process_command(quit, Rest, Rest) :-
assertz(cmd_list([quit])).
process_command(file, Rest, Rest) :-
assertz{cmd_list([file])).
process_command(end, Rest, Rest) :-
assertz(cmd_list([end])).
process_command(help, [Name | Rest], Rest) :-
assertz(cmd_list([help, Name])).
process_command(t, Rest, Rest) :-
assertz{cmd_list{{typel)).
process_command(top, kest, Rest) :-
assertz(cmd_list{({topl)).
process_command(h, Rest, Rest) :-
assertz(cmd_list(i{nead]);.
process_command(b, Rest, Rest) :-
agsertz(cmd_list([body])).
process_command(s, Rest, Rest) :-
assertz(cmd_list([start]l)).
process_command(nc, [* | Rest], Rest) :-
assertz(cmd_list([next_clause, *])).
process_command(nc, [Num | Rest], Rest) :-
integer (Num),
assertz(cmd_list([next_clause, Num])).
process_command(nc, Rest, Rest) :-
assertz(cmd_list([next_clause])).
process_command(pc, [* | Rest], Rest) :-
assertz(cmd_list([previous_clause, *])).
process_command(pc, [Num | Rest], Rest) :-
integer(Num),
assertz(cmd_list([previous_clause, Num])).
process_command(pc, Rest, Rest) :-
assertz(cmd_list([previous_clause])).
process_command(ng, [* | Rest], Rest) :-
assertz(cmd_list([next_goal, *1)).
process_command(ng, [Num | Rest], Rest) :-
integer (Num},
assertz(cmd_list([next_goal, Num])).
process_command(ng, Rest, Rest) :-
assertz(cmd_list([next_goall])).
process_command(pg, [* | Rest], Rest) :-
assertz(cmd_list([previous_goal, *1)).
process_command(pg, [Num | Rest], Rest) :-
integer (Num),
assertz(cmd_list([previous_goal, Num])).
process_command(pg, Rest, Rest) :-
assertz(cmd_list([previous_goall)).

-94_

APPENDIX D

process_command(d, [* | Rest], Rest) :-
assertz(cmd_list([down, *]}).
process_command(d, [Num | Rest], Rest) :-
integer (Num),
assertz(cmd_list([down, Num])).
process_command(d, Rest, Rest) :-
assertz(cmd_list([down])).
process_command(u, [* | Rest], Rest) :-
assertz(cmd_list([up, *])}).
process_command(u, [Num | Rest], Rest) :-
integer (Num),
assertz(emd_list([up, Num])}).
process_command(u, Rest, Rest) :-
assertz(cmd_list{[up]l)).
process_command(r, [* | Rest], Rest) :-
assertz(cmd_list{[right, *j)).
process_command(r, [Num | Rest], Rest) :-
integer (Num),
assertzicmd_list([right, Num])).
process_command(r, Rest, Rest; :-
assertz(emd_list([right])).
process_command(l, [* } Rest], Rest) :-
assertz(cmd_list([left, *])).
process_command(l, [Num | Rest], Rest) :-
integer (Num),
assertz(cmd_list([left, Num])).
process_command(l, Rest, Rest) :-
assertz(cmd_list([left])).
process_command(E,[Num | [Pattern | Rest]], Rest) :-
assertz(cmd_list([find_argument, Num, Pattern])).
process_command(del, [* | Rest], Rest) :-
assertz(cmd_list([delete_structures, *])).
process_command(del, [Num | Rest], Rest) :-
integer (Num),
assertz(cmd_list([delete_structures, Num])).
process_command(del, Rest, Rest) :-
assertz(cmd_list([delete_structures])).
process_command(ia, [Name | Args], Rest) :-
find delim(Args, [], Commands, Rest),
assertz(cmd_list([insert_after, Name | Commandsl)).
process_command(Ib, [Name | Args], Rest) :-
find_delim(Args, [], Commands, Rest),
assertz(cmd_list([insert_before, Name | Commands])).
process_command(mv, [From | [To | Rest]], Rest) :-
assertz(cmd_list([move_item, From, Tol)).
process_command{(cp, [From | [To | Rest]], Rest) :-
assertz(cmd_list([copy_item, From, To])).
process_command(ch, [New | Rest], Rest) :-
assertz{cmd_list([change_structure, New])).
process_command(cha, [Num | [Newval | Rest]], Rest) :-
integer (Num),
assertz(cmd_list([change_argument, Num, NewVall)).

95

APPENDIX D

process_command(chf, [New | Rest], Rest) :-
atom(New),
assertz(cmd_list([change_this_functor, New])).

process_command{(chg, [Num | [Newval | Rest]], Rest) :-
integer (Num),
assertz(cmd_list([change_goal, Num, NewVal])}).

process_command(rem, [Name | Rest], Rest) :-
assertz(cmd_list([remove, Namel)).

process_command(repl, [Name | Rest], Rest) :-
assertz(cmd_list([replace, Name])).

process_command(un, Rest, Rest) :-
assertz(cmd_list([undo])).

process_command(buffer, [Name | [Contents | Rest]], Rest) :-
assertz{cmd_list({create_buffer, Name, Contencsl}).

process_commandidispiay, Rest, Rest) :-
assertzicmd_list([display_buifers])).

process_command(contents, [Name : Rest], Rest) :-
assertz{cmd_list({buffer_contents, Name])).

process_command(chdelim, [New ; Rest], Rest) :-
assertz(cmd_list({change_delimiter, New])).

process_command{rpt, Rest, Rest) :-
assertz(cmd_list([repeat])).

process_command(defcmd, [Name | Args], Res:t) :-
f£ind_delim(args, [], Commands, Rest),
assertz(cmd_list([define_command, Name | Commands])).

process_command(displcmd, Rest, Rest) :-
assertz(cmd_list([display_commands])).

process_command (command, [Name | Rest], Rest) :-
assertz(cmd_list([command_contents, Namel)).

process_command(32, Rest, Rest]).

process_command(Command, Rest, Rest) :-
new_command(Command, Args),
add_to_cmd_list(Args).

process_command(Command, Rest, []) :-

rwliite(thdehkkhkkdkkdkdkdkdkhdkhddhkbhhkkhkhhhihkhdihk) , nl ,

write('Error in input string starting with '),

write(Command), nl,

write('Rest of input string ignored'), nl,

writE{ EYZ21232 2322222323 X323 223 2 4 0 2 & 4 b & R) ; nl

find_delim([], Commands, Commands, []) :- !.

find_delim([Head | Tail], Commands, Commands, Tail) :-
delim(Head), !.

find_delim([Head | Tail], InList, ReturnList, Rest) :-
appl(inList, [Head], Outl),
find_delim(Tail, Outl, ReturnList, Rest).

add_to_cmd_list([]) := !.

add_to_cmd_list([Head | Tail]) :-
process_command (Head, Tail, NewTail),
add_to_cmd_list (NewTail).

96

APPENDIX D

/* Command procedures ®y
%* */
/* PARAMETERS: * L
/* Arg list - Passed */
/*¥ Clause Name - Passed *
/¥ Current Structure - Passed */
/* New Structure - Returned */
/* Last Undo - Passed '
/¥ New Undo - Returned */
/* %*
/* These commands are called */
/* by the randex routine. *r

kkkkkkikk Guit *******/

quit({], ClauseName, Structure, Structure,
LastUndo, LastUndo) :-
changed(ClauseName; ,
retract_all(changed(ClauseName)),
w;lte(Changes have not been saved')y
n
end([], ClauseName, Structure, Structure,

LastUndo, LastUndo).

guit([), ClauseName, Structure, Structure,
LastUndo, LastUndo) :-
asserta(cmd_list([done])),
asserta(cmd_list([topl)).

kdkhhkkkk file *******/

file([], ClauseName, Structure, Structure,
LastUndo, LastUndo) :-
asserta(cmd_list([done])),
asserta(cmd_list([do_ flle]))
asserta(cmd_list{[topl)).

do flle([], ClauseName, Structure, Structure,
LastUndo, LastUndo) :-
retract and save(ClauseName),
retract alchhanged(ClauseName))
teld,
file_save(Structure),
retract_all(saved(Xx, Y))

do_file([], ClauseName, Structure, Structure,
LastUndo, LastUndo) :-
retract_all(ClauseName),
restore clause,
write('Can not properly format this structure '), nl,
write('Structure saved in file peditjunk '), nl,
tell(peditjunk),
save_ structure(Structure)
told.

- 97 -

APPENDIZX D

done([], ClauseName, Structure, Structure,
LastUndo, LastUndo).

retract and save(X) :-
clause(X,Y),
assertz(saved(x,Y)),
fail,
retract_and_save(X) :- retract_all(X).

restore_clause :-
retract(saved(x Y)Y},
restore_saved(X,Y),
fail.

restore_clause.

restore saved(H,true) :-
assertz(H).

restore saved(H,T) :-
assertz&.-(H T

make_filename(ClauseName, FileName) :-
“ClauseName =.. [Functor | Rest],
appl([Functor],[t,m,p],FileName).

replace_clause(ClauseName, []).
replace_clause(ClauseName,

[HeadofStructures | RestofStructures)]) :-

HeadofStructures =.. [if, Head, Tail],

write occurrence(Head, Tail),

write('."),

nl,

replace clause(ClauseName, RestofStructures).

add_occurrence (Head, true) :-
assertz(Head).
add_occurrence(Head, Tail) :-
assertz(--(Head Tail))s
file save(Structure) :-
“write('Do you wish to store in a file? '),
nl,
write('Enter <yes.> or <no.> '),
read(Ans),
file response(Ans. Structure).
file response(yes, Structure) :-
“write('Type file name: '),
read(Filename),
tell(Filename}r
save_structure(Structure),
told,
consult(Filename),
write('Clause replaced in data base'), nl.

_gB...

APPENDIX D

file_response(y, Structure) :-

write('Type file name: '},

read(Filename),

tell(Filename),

save structure(Structure)

told,

onsult(Filename),

write('Clause replaced in data base'), nl.
file_response(no, Structure) :-

tell(pedlttmp)

replace_clause(ClauseName, Structure),

told,

consult(pedittmp),

name (pedittmp, Charllst\

system([114 109, 32 | Cnarllst])

write('Clause replaced in cdata base‘), nl.
file_response(n, Structure) :-

“tell(pedittmp),

replace_ clause(ClauseName, Structure),

told,

consult(pedlttmp),

name (pedittmp, Charlist),

system([114 109, 32 | Charllst])

write('Clause replaced in data base'), nl.
file_response(_, Structure) :-

“write('Invalid answer '), nl,

write('enter <yes.> or <no.> '),

read(Ans),

file_response(Ans, Structure).

save structure([]). :
save_structure([HeadofStructures | RestofStructures]) :-
“HeadofStructures =.. [if, Head, Taill,
write occurrence(Head, Ta11)
write('.'), nl,
save structure(RestofStructures)
save structure([HeadofStructures | RestofStructures]) o=
“write(HeadofStructures), nl,
save structure(RestcfStructures)
save_structure(_).
write occurrence(Head, true) :-
write(Head).
write occurrence(Head, Tail) :-
write((Head :- Tall))

99

APPENDIX D

/******** end *******/

end([], ClauseName, Structure, Structure,
LastUndo, LastUndo) :-
write('quit or save? '),
read(Ans),
end_response(Ans).
end_response(quit) :-
asserta(cmd_list([quit])),
asserta(cmd_list([topl)).
end_response(save) :-
asserta(cmd_list([done])),
asserta({emd_list([do_£file])),
asserta(emd_list([topl)).
end_response(_) :-
write('Invalid answer'),
nl,
write('Enter either <quit.> or <save.> '),
read(Ans),
end_response(Ans).

% % % % %k %k k% help *******/

help([guit], ClauseName, Structure, Structure,
LastUndo, LastUndc) :-
write('Format: Y. nl,
write(' quit '), nl, nl,
write('Aborts the current edit session.'), nl,
write('If changes have been made but not saved,'), nl,
write('the user will be prompted for '),
write('verification.'), nl,
write('If this occurs, enter either <quit.>')},
write(' or <save.>'), nl.
help([file], ClauseName, Structure, Structure,
LastUndo, LastUndo) :-
write('Format: '), nl,
write("' file '), nl, nl,
write('Replaces all occurrences in the data'),
write(' base '), nl,
write('with the edited structure. ')}, nl,
write('It then asks if the structures are to be '), nl,
write('stored in a file. '),
write(' Enter either <yes.> or '), nl,
write(' <no.>. If <yes.>, enter <filename.>. '), nl.
help([end], ClauseName, Structure, Structure,
LastUndo, LastUndo) :- :
write('Format: '), nl,
write(' end '), nl, nl,
write('Ends the current edit session. '), nl,
write('Prompts <quit or save?>. '), nl,
write('Enter either <guit.> or <save.>. '), nl.

= 100 =

APPENDIX D

help([help], ClauseName, Structure, Structure,
LastUndo, LastUndo) :-

write('Format: L}, HI,

write(' help <command> '), nl, nl,
write('Commands for which help is available: '), nl,
write(' General Edit Commands '), nl, write('
write('quit * Y

write('file * ¥

write('end " X

write('help)y

write('t '}, nl, nl,

write(' Traversal Commands '), nl,

write(' 3

write('top '
write('nc y
write('pc '
write('h '
write('b '
write{'s ‘
write(' g P
write('ng '
write('pg '
write('d '

L

)
)
i
)
)

- wm w m m w

ni,

write('u
write('r
write('l
write(' Modifi
write(' 5,
write{'f Y
write{'del ra
write('ia ')
write('ib ")
5

),
1g
)y
),
),
), nl, nl,
cation Commands '), nl,

write('mv
write('ch
write(" !
write('cha
write('chf '
write('chg '
write('rem '),

write('repl '}, nl, nl,

write(' Special Editor Commands '), nl,
write(' 'Y
write('un '?

nl,

write('buffer
write('display
write('contents
write('chdelim '),
write('rpt '), nl,
write(' 2),
write('defcmd ')
write('displcmd '
1)

r
write('command , nl,

= 101, =

APPENDIX D

help([t], ClauseName, Structure, Structure,
LastUndo, LastUndo) :-

write('Format: '), nl,
write(' t '), nl, nl,
write('Causes the current structure to be '), nl,
write('displayed in pretty printer format. '), nl.

help([top], ClauseName, Structure, Structure,
LastUndo, LastUndo) :-
write('Format: '), nl,
write(' top '), nl, nl,
write('Moves the cursor to the beginning of the '), nl,
write('first procedure occurrence. '), nl.
help([nc], ClauseName, Structure, Structure,
LastUndo, LastUndo) :-

write('Format: 'Y Ml
write(' ne or nc <npum> or nc * '), nl, nl,
write('Moves the cursor to the start of the '}, nl,
write('next procedure occurrence. '), nl,
write_trav_parms.

help([pc], ClauseName, Structure, Structure,
LastUndo, LastUndo) :-
write('Format: '), nl,
write(' pc or pc <num> or pc * '), nl, nl,
write('Moves the cursor tc the star: of the '), nl,

write('previous procedure occurrence. '), nl,

write_trav_parms.
help([h], ClauseName, Structure, Structure,

LastUndo, LastUndo) :-

write('Format: £y, nls

write(' h *), nls nil,

write('Moves the cursor to the head of the '), nl,

write('current procedure occurrence. '), nl.
help([b], ClauseName, Structure, Structure,

LastUndo, LastUndo) :-

write('Format: ty; nl,

write(' b '), nl, nl,

write('Moves the cursor to the body of the '), nl,

write('current procedure occurrence. '), nl.
help([s], ClauseName, Structure, Structure,

LastUndo, LastUndo) :-

write('Format: '), ni,

write(' s Y}, al; ni,

write('Moves the cursor to the start of the '), nl,

write('current procedure occurrence. '), nl.
help([ng], ClauseName, Structure, Structure,

LastUndo, LastUndo) :-

write('Format: ¥ nl;

write("' ng or ng <num> or ng * '), nl, nl,

write('Moves the cursor to the next goal in the '), nl,

write('body of the current procedure '),

write('occurrence. '), nl,

write_trav_parms.

= 3102 =

APPENDIX D

help([pgl], ClauseName, Structure, Structure,
LastUndo, LastUndo) :-
write('Format: '), nl,
write(' pg or pg <num> or pg * ')
write('Moves the cursor to the previous '
write('goal in the body'), nl,
write('of the current procedure occurrence. '), nl,
write_trav_parms.

help([d], ClauseName, Structure, Structure,
LastUndo, LastUndo) :-

, nl, nl,
¥,

write('Format: '), nl,

write(' d or d <num> or 4 * '), nl, nl,
write('Moves the cursor to a lower '),
write{'structure ievel. '}. nl,

wWrlte_trav_parms.
nelpi[u], CilauseName, Structure, Structure,
LastUndo, LastUndoc) :-

write('Format: 'Y ml;
write(’ U or u<npum> or u* '), nl, ni,
write('Moves the cursor tc a higher '),
write('structure level. '), nl,
write_trav_parms.

help([r], ClauseName, Structure, Structure,
LastUndc, LastUndo; :-
write('Format: '3 nl,
write('’ r or r <num> or r * '), nl, nl,

L}

4

write('Moves the cursor right in the '),
write('structure. '), nl,
write('NOTE: Due to the internal storage '),
write('mechanism, '), nl,
write('<r> should not be used to travel '),
write('among goals. '), nl,
write('Instead, the command <ng> is provided. '), nl,
write_trav_parms.

help([1], ClauseName, Structure, Structure,
LastUndo, LastUndo) :-
write('Format: '), nl,
write(' 1 or 1l <num> or 1* '), nl, nl,
write('Moves the cursor left in the structure. '), nl,
write_trav_parms.

help([£f], ClauseName, Structure, Structure,
LastUndo, LastUndo) :-
write('Format: '), nl,
write(' f <num> <pattern> '), nl, nl,
write('Searches the bodies of the rules for a '), nl,
write('match of <pattern> in the '),
write('argument <num>. '), nl,
write('If no match is found, the cursor '},
write('is positioned '), nl,
write('at the last rule. If a match is found, '),
write('the cursor '), nl,
write('is positioned at that rule. '), nl.

- 103 -

APPENDIX D

help([del], ClauseName, Structure, Structure,
LastUndo, LastUndo) :-
write('Format: '), nl,

write(' del or del <num> or del * '), nl, nl,

write('Deletes either: single/multiple rules, '),
write('single/multiple '), nl,
write('goals, or single/multiple items. '),
write('If there '), nl,
write('are fewer items in the current structure '),
write('than are '), nl,
write('specified by <num>, all the items '),
write('are deleted. '), nl,
write('When no argument is entered, only 1 item '},
write{'is deleted. '), nl, nl,
write('When <num> is entered, that number of '),
write('items are deleted. '), nl, nl,
write('When * is entered, all the items '),
write('are deleted. '), ni, nl,
write('If the cursor is positioned at the '),
write('start of a rule, '), nl,
write('rules are deleted. If the cursor is '),
write('positioned at a '), nl,
write('goal, goals are deleted. Otherwise, '),
write('items are deleted. '), nl.

help([ia), ClauseName, Structure, Structure,
LastUndo, LastUndo) :-
write('Format: *Y: k.
write(' ia <new items> <delim> '), nl, nl,
write('Inserts either a single rule, '),
write('single/multiple goals or '), nl,
write('or single/multiple items after the '),
write('current structure. '), nl,
write('If the cursor is positioned at the '),
write('start of a rule, '), nl,
write('a new rule is inserted. If the cursor '),
write('is positioned at a '), nl,
write('goal, goal(s) are inserted. (Goals '),
write('should be followed by a goal '), nl,
write('functor - a comma or semicolon.) Otherwise,
write('item(s) are '), nl,
write('inserted. The <new items> should be '),
write('separated by blanks. '), nl,
write('The <delim> is equal to </> (slash) '),
write('upon entering PEDIT. '), nl.

help([ib], ClauseName, Structure, Structure,
LastUndo, LastUndo) :-
write('Format: '), nl,
write(" ib <new items> <delim> '), nl, nl,
write('Inserts either a single rule, '),
write('single/multiple goals or '), nl,
write('or single/multiple items before the '),
write('current structure. '), nl,

- 104 -

!)'

APPENDIX D

write('If the cursor is positioned at the '),
write('start of a rule, '), nl,
write('a new rule is inserted. If the cursor is '),
write('positioned at a '), nl,
write('goal, goal(s) are inserted. (Goals '),
write('should be followed by a goal '), nl,
write('functor - a comma or semicolon.) Otherwise, '),
write('item(s) are '), nl,
write('inserted. The <new items> should be '),
write('separated by blanks. '}, nl,
write('The <delim> is equal to </> (slash) '},
write('upon entering PEDIT. '), nl.

help([mv], ClauseName, Structure, Structure,
LastUndo, LastUndo) :-
write('Format: ¥, Bl,
write(' mv <fromarg> <toarg> *J, nl; nl,
write('Moves either a single rule, a single '),
write('goal or '), nl,
write('or a single item. If the cursor is
write('positioneé '), nl,
write('at the start of a rule, a rule is moved. '),
write('If '), nl,
write('the cursor is positioned at & goal, '),
write('sa goal is moved.'), nl,
write('Otherwise, an item is moved. '},
write('The structure at position '), nl,
write('<fromarg> is moved behind the structure at '),
write('position <toarg>. '}, nl.

help([cp], ClauseName, Structure, Structure,
LastUndo, LastUndo) :-
write('Format: '), nl, -
write(' cp <fromarg> <toarg> '), &1, ml;
write('Copies either a single rule, a single '),
write('goal or '), nl,
write('or a single item. If the cursor is '),
write('positioned '), nl,
write('at the start of a rule, a rule is copied. '),
write('If '), nl,
write('the cursor is positioned at a goal, '),
write('a goal is moved.'), nl,
write('Otherwise, an item is copied. '),
write('The structure at position '), nl,
write('<fromarg> is copied behind the structure at '),
write('position <toarg>. '), nl.

help([ch], ClauseName, Structure, Structure,
LastUndo, LastUndo) :-
write('Format: Y nidy
write('’ ch <new> '), nl, nl,
write('Replaces the current structure '), nl,
write('with the value of <new>. '), nl,
write('There should be no blanks within <new>. '), nl,
write('***CAUTION*** '), nl,

)y

- 105 -

APPENDIZX D

write('This command should be used with '),
write('extreme caution. '}, nl,
write('Commands <cha>, <chf> and '),
write('<chg> are '), nl,
write('recommended for novice users to '),
write('ensure proper '), nl,
write('structural format. '), nl.
help([chal, ClauseName, Structure, Structure,
LastUndo, LastUndo) :-
write('Format: 'l nl,
write(' cha <num> <new> '), nl, nl,
write('Replaces the argument in the position '), nl,
write('of <num> with the value of <new>. ')}, nl,
write('There should be nc blanks within <new>. '), nl.
help([chf], ClauseName, Structure, Structure,
LastUndec, LastUndo) :-
write('Format: '), nl,
write(' chf <new> '), nl, nl,
write('Replaces the functor in the '),
write('current structure '), nl,
write('with the value of <new>. '), nl,
write('There should be no blanks within <new>. '), nl,
help([chg], ClauseName, Structure, Structure,
LastUndo, LastUndc) :-
write('Format: ¥, nl,;
write(' chg <num> <new> '), nl, nl,
write('Replaces the goal in the position '), nl,
write('of <num> within the body with the '),
write('value of <new>, '), nl,
write('There should be no blanks within <new>. '), nl,
help([rem], ClauseName, Structure, Structure,
LastUndo, LastUndo) :-
write('Format: "3 nl,
write(' rem <name> '), nl, nl,
write('Removes the current structure and '),
write('places it in '), nl,
write('in the buffer <name>. The buffer '),
write('<name> should '), nl,
write('begin in a lower case letter. '),
write('The resultant '), nl,
write('structure will be the null list. '), nl.
help([repl], ClauseName, Structure, Structure,
LastUndo, LastUndo) :-
write('Format: '), nl,
write(' repl <name> '), nl, nl,
write('Replaces the current structure with '),
write('the contents '), nl,
write('of the buffer <name>. The buffer '),
write('<name> should '), nl,
write('begin in a lower case letter. *1s mls

= 4UG =

APPENDIX D

help({un], ClauseName, Structure, Structure,
LastUndo, LastUndo) :-
write('Format: 'Y, nl,
write(' un '), nl, nl,
write('Reverses the effects of the last '),
write('executed command. '), nl,
write('Commands such as <t>, <file> '),
write('and <contents> '), nl,
write('can not be undone. '), nl.
help([buffer], ClauseName, Structure, Structure,
LastUnde, LastUndo) :-

write('Format: 'Y HL;

write(' buffer <name> '), nl, nl,
write('Creates a buffer <name> witk '),
write('contents <structure>. '}, ni,

write('The <structure> should be a '),

write ('PROLOG structure. '), nl,

write('The buffer <name> should begin in a '),

write(' lower case letter. ';, nil.
help([display], ClauseName, Structure, Structure,

LastUndo, LastUndo) :-

write('Format: '), nl,

write(' display '), nl, nl,

write('Displays the names of all the buffers '),

write('in the data base. '), nl.
help([contents], ClauseName, Structure, Structure,

LastUndo, LastUndo) :-

write('Format: '), nl,

write(' contents <name> '), nl, nl,

write('Displays the contents of the '),

write('buffer <name>, '), nl,

write('The buffer <name> should begin in a '),

write('lower case letter. '), nl.
help([chdelim], ClauseName, Structure, Structure,

LastUndo, LastUndo) :-

write('Format: '), nl,

write(' chdelim <new> '), nl, nl,

write ('Replaces the current delimiter '),

write('with <new>. '), nl,

write('The <delim> is equal to </> (slash) '), nl,

write('upon entering PEDIT. '), nl.
help([rpt], ClauseName, Structure, Structure,

LastUndo, LastUndo) :-

write('Format: *Y. nl,

write('’ rpt '), nl, nl,

write ('Repeats the last executed traversal '),

write('or modification '), nl,

write('command. '), nl.
help([defcmd], ClauseName, Structure, Structure,

LastUndo, LastUndo) :-

write('Format: '), nl,

write(' defcmd <name> <command list> '),

= 107 -

APPENDIX D

write(' delim> '), nl, nl,
write('Defines a new command <name> '),
write('which can be '), nl,
write('referenced until the end of the '),
write('edit session. '), nl,
write('The new command <name> should begin '},
write('in a lower case letter. '), nl,
write('The new command will invoke calls '),
write('to all the '), nl,
write('commands in the <command list>. The '), nl,
write('<command list> is composed of '),
write('existing commands '), nl,
write('which are entered as defined in the '),
write('user"s manual. '), nrl,
write('The <command list> is terminated by the '),
write('current <delim>, '}, nl,
write('The <delim> is equal to </> (slash) '},
write('upon entering PEDIT. '), ni.
help({displemd], ClauseName, Structure, Structure,
LastUndo, LastUndo) :-
write('Format: '), nl,
write(' displemd '), nl, nl,
write('Displays the names of all new commands '),
write('entered within '), ni,
write('the edit session. '), nl.
help([command], ClauseName, Structure, Structure,
LastUndo, LastUndo) :-
write('Format: '), nl,
write(' command <name> '), nl, nl,
write('Prints the list of commands '),
write('associated with '), nl,
write(' the new command <name>. '), nl,
write('The command <name> should begin in a '),
write('lower case letter. '), nl.
help([Arg | []], ClauseName, Structure, Structure,
LastUndo, LastUndo) :-
write('No help available for '),
write(Arg), nl.

write_trav_parms :-

nl,
write('When no argument is entered, '),
write(' only 1 move is made. '), nl, nl,
write('When <num> is entered, '), nl,
write(' that number of moves are made. '), nl, nl,
write('When * is entered, '), nl,
write(' the maximum allowable moves are made. '), nl.

nl,

= 108 =

APPENDIX D

%k kg ok kkk t *******/

type([], ClauseName, Structure, Structure,
LastUnde, LastUndo) :-
!, pp(Structure), nl,

pp([]1) :- nl,

pp([Front | End]) :-
Front =.. [if | [Head | Bedyll,
Body = [truel,
write(Head), write('.'), nl,
pp(End).

pp([Front | End]) :-
Front =.. [if | [Head | Bodyl],
write(Head),

write(' '), write{'-'), nl,
write(' '), ppiBodyi, write('.'}, nil,
pp(Ené) .

pp([Front | []]1) :-
write(Front).
pp({Front | Bndj}) :-
Front =.. [Functor | [Head | Bodyil,
comma_or_semicolon(Functor),
write{Front), write(' '),
pp(End).
pp({iFront | End}) :-
write(Front), write(' '),
pp(End).

pp(_).

kdkkkkkk tOp *******/

top([], ClauseName, Structure, Structure,
LastUndo, LastUndo) :-
build_top_cmd_list(ClauseName),
add_new_to_old_cmd_list(ClauseName),
leave_trail(top, [T, ClauseName).

build_top_cmd_list(ClauseName) :-
Tetract(traversal(ClauseName, Command)),
traversal_command(Command, _, OppCommand) ,
asserta(old_traversal(Command)),
asserta(new_cmd_list([OppCommand])),
fail.

build_top_cmd_list(ClauseName).

add_new_to_old_cmd_list(ClauseName) :-
retract(old_traversal(Namel)),
asserta(traversal{(ClauseName, Namel)),
retract (new_cmd_list(Name2)),
asserta(cmd_list(Name2)),
fail.

add_new_to_old_cmd_list(ClauseName).

- 108 =

APPENDIZX D

% % % % % %k % %k nc kkdkkdkk

next_clause([], ClauseName, [H | Tail] , [H | NewTaill],
LastUndo, NewUndo) :-
H=..[1if | _],
not null(TallT
leave trail(next _clause, [], ClauseName),
randex (previous_clause, ClauseName, Tail, NewTail,
LastUndo, NewUndo).
next_clause([*], ClauseName, [H | Tail] , [H | NewTaill,
“LastUndo, NewUndo) 2
H—.-[lfl];
not_null(Tail7,
leave trall(next _clause, [*I, ClauseName),
assertaf(counterinext _clause’},
randex (previous clause, ClauseName, Tail, NewTail,
Las*Undo, NewUndo}.
next_clause([*], ClauseName, Structure, Structure,
TLastUndo, LastUndo) :-
count (next_clause, Structure;.
next_clause([C], ClauseName, Structure, Structure,
LastUndo, LastUndo) :-
retract all(counter(next_clause)).
next clause(INum], ClauseName, [B ! Taill , [H | NewTaill],
TLastUndc, NewUndo) :-
integer (Num),
H=.. [if 1,
not_null(Tail7],
leave trall(next _clause, [Num], ClauseName),
asserta(counter(next_clause)),
randex (previous_clause, ClauseName, Tail, NewTail,
LastUndo, NewUndo).
next_clause([Num], ClauseName, Structure, Structure,
TLastUndo, LastUndo) :-
integer (Num),
count {next clause, Structure).
next clause(_, ClauseName, Structure, Structure,
“LastUndo, LastUndo) :-
pedit_error(next clause, Structure).

/******** *******/

previous_clause([], ClauseName, Structure, Structure,
LastUndo, LastUndo) :-
last traversal(next_clause, ClauseName),
leave trail(previous_clause, [], ClauseName),
remove traversal(next _clause, ClauseName).
previous_clause([*], ClauseName, Structure, Structure,
LastUndo, LastUndo) :-
last_traversal(next_clause, ClauseName),
leave trall(preV1ous clause, [*], ClauseName)
asserta(counter(previous_clause)),
remove_traversal(next _clause, ClauseName)

- L1D =

APPENDIX D

previous_clause([*], ClauseName, Structure, Structure,
LastUndo, LastUndo) :-
count (previous_clause, Structure).
previous_clause([0], ClauseName, Structure, Structure,
LastUndo, LastUndo) :-
retract_all(counter(previous_clause)).
previous_clause([Num], ClauseName, Structure, Structure,
LastUndo, LastUndo) :-
last_traversal(next_clause, ClauseName),
integer (Num),
leave_trail(previous_clause, [Num], ClauseName},
asserta({counter (previous_clause)),
remove_traversal(next clause, ClauseName).
previous_clause([Num]}, ClauseName, Structure, Structure,
LastUndo, LastUndo) :-
integer (Num),
count (previous_clause, Structure).
previous_clause(_, ClauseName, Structure, Structure,
LastUndc, LastUndo) :-
pedit_error(previous_clause, Structure).

% ¥ % %k % %k % %k h t******/

head(_, ClauseName,
TCurrentStructure | Rest], [NewStructure | Rest],
LastUndo, NewUndo) :-
CurrentStructure =.. [if | [Head | Tll],
leave_trail(head, [], ClauseName),
randex (start, ClauseName, [Head], [NewHead | _I,
LastUndo, NewUndo),
NewStructure =.. [if | [NewHead | TIl].
head(_, ClauseName, Structure, Structure,
LastUndo, LastUndo) :-
pedit_error(head, Structure).

/******** b *******/

body(, ClauseName,
TCurrentStructure | Rest] , [NewStructure | Restl],
LastUndo, NewUndo) :-
CurrentStructure =.. [if | [H | Tailll,
leave_trail(body, [], ClauseName),
randex (start, ClauseName, Tail, NewTail,
LastUndo, NewUndo),
NewStructure =.. [if | [H | NewTaill].
body(_, ClauseName, Structure, Structure,
LastUndo, LastUndo) :-
pedit_error(body, Structure).

- 111 =

APPENDIX D

/******** S *******/

start(_, ClauseName, Structure, Structure,
LastUndo, LastUndo) :-
last_traversal(body, ClauseName),
leave_trail(start, [], ClauseName)
remove traversal(body, ClauseName).
start(, ClauseName, Structure, Structure,
LastUndo, LastUndo) :-
last_traversal(head, ClauseName),
leave_trail(start, [] ClauseName)
remove traversal(head, ClauseName).
start(_, ClauseName, Structure, Structure,
LastUndo, LastUndo) :-
build_start_cmd_list,
add_ new to old cmd list(ClauseName),
leave_trail(start, [], ClauseName).
build start cmd list :-
retract(traversal(ClauseName, Command) },
asserta(old traversal(Command)),
not_next_clause(Command),
traversal command(Command , OppCommand),
asserta(new_cmd llst([OppCommandl))
fail.
build_start_cmd_list.
not_next_clause({next_clause) :- !, fail.
not_next_clause(_).

kkkkkkik n dkdkkkkk

next_goal([_ ? ClauseName, [true], [truel,

“LastUndo, LastUndo) :-

count (next_goal, [true])
next_goal([], CTauseName, [Head | T], [NewHead | TI,

“LastUndo, NewUndo) :-

Head =.. [Functor | [HeadArg | TailArgll,

comma or semicolon(Functor),

leave trail(next_goal, [], ClauseName)

randex(previous_ goal, ClauseName, Ta1lArg, NewTailArg,

LastUndo, NewUndo),

create new goals(Functor, HeadArg, NewTailArg, NewHead).
next_goal([¥], ClauseName, [Head | T], [NewHead | T],

LastUndo, NewUndo) :-

Head =.. [Functor | [Headarg | TailArg]ll],

comma or semicolon(Functor),

leave trail(next_goal, [*], ClauseName),

asserta(counter(next goal))

randex(previous_ goal, ClauseName, TailArg, NewTailArg,

LastUndo, NewUndo)

create new goals(Functor, HeadArg, NewTailArg, NewHead).
next_goal([¥], ClauseName, [H | T], [H | T],

“LastUndo, NewUndo) :-

count(next_goal [H | TD.

= 11d =

APPENDIX D

next_goal([0], ClauseName, Structure, Structure,
LastUndo, LastUndo) :-
retract_all(counter(next_goal)).
next_goal([Num], ClauseName, [Head | T], [NewHead | T,
LastUndo, NewUndo) :-
Head =.. [Functor | [HeadArg | Tailargl],
comma_or_semicolon(Functor),
integer (Num),
leave_trail(next_goal, [Num], ClauseName),
asserta(counter(next_goal)),
randex (previous_goal, ClauseName, TailArg, NewTailArg,
LastUndo, NewUndo),
create_new_goals(Functor, HeadArg, NewTailArg, NewHead).
next_goal([Num], ClauseName, Structure, Structure,
LastUndo, LastUndo) :-
integer (Num),
count (next_goal, Structure).
next_goal(_, ClauseName, Structure, Structure,
LastUndo, LastUndoc) :-
pedit_error(next_goal, Structure).

create_new_goals(Fn, HArg, [], HArg).
create_new_goals(Fn, HArg, TArg, NewGoals) :-
NewGoa.s =.. [Fn | [HArg ; Targ]ll.

/******** p *******/

previous_goal([], ClauseName, Structure, Structure,
LastUndo, LastUndo) :-
last_traversal(next_goal, ClauseName),
leave_trail(previous_goal, [], ClauseName),
remove_traversal(next_goal, ClauseName).
previous_goal([*], ClauseName, Structure, Structure,
LastUndo, LastUndo) :-
last_traversal(next_goal, ClauseName),
leave_trail(previous_goal, [*], ClauseName),
asserta(counter (previous_goal)),
remove_traversal(next_goal, ClauseName).
previous_goal([*], ClauseName, Structure, Structure,
LastUndo, LastUndo) :-
count (previous_goal, Structure).
previous_goal([0], ClauseName, Structure, Structure,
LastUndo, LastUndo) :-
retract_all(counter(previous_goal)).
previous_goal([Num], ClauseName, Structure, Structure,
LastUndo, LastUndo) :-
last_traversal(next_goal, ClauseName),
integer (Num),
leave_trail(previous_goal, [Num], ClauseName),
assertal(counter(previous_goal)),
remove_traversal(next_goal, ClauseName).

= 113 -

APPENDIX D

previous_goal([Num], ClauseName, Structure, Structure,
LastUndo, LastUndo) :-
integer (Num),
count (previous_goal, Structure).

previous_goal(_, ClauseName, Structure, Structure,
LastUndo, LastUndo) :- '
pedit_error(previous_goal, Structure).

% % % ¥ % J ok ok d *******/

down([*], ClauseName,
[CurrentStructure | Rest], [CurrentStructure | Rest],
LastUndo, NewUndo) :-
currenzStructure =.. [F | []],
count (down, CurrentStructure).
down{[Num], CiauseName,
(CurrentStructure | Rest], [CurrentStructure ;| Restl],
LastUndo, NewUndo) :-
integer (Num),
CurrentStructure =.. [F | {]],
count (down, CurrentStructure).
down(, ClauseName,
TCurrentStructure | Rest], [CurrentStructure ' Rest],
LastUndo, NewUndo, :-
CurrentStructure =.. [F | [1],
pedit_error(down, CurrentStructure).
down([], ClauseName,
[CurrentStructure | Rest], [NewStructure | Restl],
LastUndo, NewUndo) :-
CurrentStructure =.. [Functor | Arglist],
leave_trail{down, [], ClauseName),
randex(up, ClauseName, Arglist, NewArglist,
LastUndo, NewUndo),
NewStructure =.. [Functor | NewArglist].
down([*], ClauseName,
[CurrentStructure | Rest], [NewStructure | Rest],
LastUndo, NewUndo) :-
CurrentStructure =.. [Functor | Arglist],
leave_trail(down, [*], ClauseName),
asserta(counter(down)),
randex (up, ClauseName, Arglist, NewArglist,
LastUndo, NewUndo),
NewStructure =.. [Functor | NewArglist].
down([*], ClauseName, Structure, Structure,
LastUndo, LastUndo) :-
count (down, Structure).
down([0], ClauseName, Structure, Structure,
LastUndo, LastUndo) :-
retract_all(counter(down)).

= 114 =

APPENDIX D

down([Num], ClauseName,
[CurrentStructure | Rest], [NewStructure | Rest],
LastUndo, NewUndo) :-
CurrentStructure =..
integer (Num),
leave_trail(down, [Num], ClauseName),
asserta({counter(down)),
randex (up, ClauseName, Arglist, NewArglist,
LastUndo, NewUndo),
NewStructure =.. [Punctor | NewArglist].
down{[Num], ClauseName, Structure, Structure,
LastUndo, LastUndo) :-
integer (Num),
count (down, Structure).
down(_, ClauseName, Structure, Structure,
LastUnde, LastUndo)} :-
pedit_error(down, Structure).

[Functor | Arglist],

kxkkkkkkk u ***'ﬁ***/

up([], ClauseName, Structure, Structure,
LastUndo, LastUndo) :-
last_traversal(down, ClauseName),
ieave_trail(up, i1, ClauseName),
remove_traversal(down, ClauseName).

up([*], ClauseName, Structure, Structure,
LastUndo, LastUndo) :-
last_traversal(down, ClauseName),
leave_trail(up, [*], ClauseName),
asserta(counter(up)),
remove_traversal(down, ClauseName).

up{[*], ClauseName, Structure, Structure,
LastUndo, LastUndo) :-
count (up, Structure).

up([0], ClauseName, Structure, Structure,
LastUndo, LastUndo) :-
retract_all(counter{up)).

up([Num], ClauseName, Structure, Structure,
LastUndo, LastUndo) :-
last_traversal(down, ClauseName),
integer (Num), ,
leave trail(up, [Num], ClauseName},
asserta{counter(up)),
remove_traversal(down, ClauseName).

up([Num], CclauseName, Structure, Structure,
LastUndo, LastUndo) :-
integer (Num),
count (up, Structure).

up(_, ClauseName, Structure, Structure,
LastUndo, LastUndo) :-
pedit_error(up, Structure).

= 115 =

APPENDIX D

kkkkkkkk r %%k dkkdkk

right([*]), ClauseName, [H | [1], [H],
LastUndo, NewUndo) :-
count(right, [H]).
right ([Num], ClauseName, [H | []], [H],
LastUndo, NewUndo) :-
integer (Num),
count(right, [H]).
right(_, ClauseName, [H | []], [H],
LastUndo, NewUndo) :-
ped1t error(r1ght [H]).
right([], ClauseName, [H | Taill, [H | NewTail],
Las_Uncc, NewUnac! :-
leave_ctrailirignt, [], ClauseName!},
randex{ieft, ClauseName, Tsil, NewTail,
LastUndo, NewUndo).
right([*], ClauseName, [H | Taill, [H | NewTaill,
LastUndc, NewUndo, :-
leave trail(right, [*], ClauseName),
asserta(counter(right)),
randex(left, ClauseName, Tail, NewTail,
LastUndo, NewUndo).
rignz{{0], ClauseName, Structure, Struc:ture,
LastUndo, LastUndo) :-
retract all(counter(rlgnt))
right ([Num], ClauseName, [H | Ta11], [H | NewTaill,
LastUndo, NewUndo) :-
integer (Num),
leave trazl(rlght [Num], ClauseName),
asserta(counter(r1ght))
randex(left, ClauseName, Tail, NewTail,
LastUndo, NewUndo).
right(_, ClauseName, Structure, Structure,
LastUndo, LastUndo) :-
pedit_ error(rlght, Structure)

kkdkkkdkdkk 1 *******/

left([], ClauseName, Tail, Tail,
LastUndo, LastUndo) :-
last_traversal(right, ClauseName),
leave trail(left, [], ClauseName),
remove traversal{r1ght ClauseName) .

left([*], cTauseName, Tail, Tail,
LastUndo, LastUndo) :-
last traversal(rlght ClauseName),
leave trail(left, [*], ClauseName),
asserta(counter(left)),
remove_traversal(right, ClauseName).

left([0], ClauseName, Structure, Structure,
LastUndo, LastUndo) :-

- 116 -

APPENDIX D

retract_all(counter(left)).
left([Num], ClauseName, Tail, Tail,
LastUndo, LastUndo) :-
last_traversal(right, ClauseName),
integer (Num),
leave_trail(left, [Num], ClauseName),
assertal(counter(left)),
remove_traversal(right, ClauseName).
left([*], ClauseName, Tail, Tail,
LastUndo, LastUndo) :-
count(left, Tail).
left([Num], ClauseName, Tail, Tail,
LastUndo, LastUndo) :-
integer (Num),
count(left, Taill.
left(_, ClauseName, Tail, Tail,
LastUndo, LastUndo) :-
pedit_error(left, Tail).

% % Jc de % v Kok khkkkkkk
/ £ /

find_argument(Args, ClauseName,
[Structure | Rest], [Structure | Rest],
LastUndo, LastUndo) :-
Structure =.. [Functor | RestArgs],
not_if(Functor),
asserta(cmd_list([find_argument | Args])),
asserta(cmd_list([start])).
find_argument ([Num, Pattern], ClauseName,
[clause | Rest], [Clause | Rest],
LastUndo, LastUndo) :-
Clause =.. [if | [Head | Tailll,
arg(Num, Head, Value),
Value == Pattern,
leave_trail{find_argument, [Num, Pattern], ClauseName).
find_argument (Args, ClauseName, (Clause | [1], [Clausel,
LastUndo, LastUndo) :-
write(' ***rule not found*** '), nl, nl.
find_argument({Args, ClauseName, Structure, Structure,
LastUndo, LastUndo) :-
asserta(cmd_list([find_argument | Argsl}),
asserta(cmd_list([next_clausel])).
find_argument(Args, ClauseName, Structure, Structure,
LastUndo, LastUndo) :-
pedit_error(£find_argument, Structure).

- 137 =

APPENDIX D

/*****i** del kkkkkkk

delete_structures([*], ClauseName, Structure, [],

LastUndo, Structure) :-

leave trail(delete_structures, [*], ClauseName).
delete structures([], ClauseName, Structure, NewStructure,

LastUndo, Structure) :-

delete items(1, Structure, NewStructure),

leave tra1l(delete structures, [], ClauseName)
delete structures([Num], ClauseName,

Structure, NewStructure,

LastUndo, Structure) :-

delete items(Num, Structure, NewStructure),

leave trail(delete_structures, [Num], ClauseName).
delete s+ructures(Args, “ClauseName, Structure, Structure,

LastUndo, LastUndo) :-

pedit_error(delete_structures, Structure).

delete_items(_, [], []).
delete_ “items(0, List, List).
delete 1tems(Num [Head], NewHead) :-
Head =.. [Functor l [Goall | RestGoals]],
comma_or_semicolon(Functor),
NewNum is Num - 1,
delete 1Lems(NewNum, RestGoals, NewHead).
delete_ 1tems(Num, [Head | Taill, NewList) :-
NewNum is Num - 1,
delete_ 1tems(NewNum, Tail, NewList).

/******** ia kkkkkkk

insert after([NewHead | []], ClauseName,
[Head | Taill, [Head | [NewStructure | Tailll,
LastUndo, [Head | Tail]) :-
Head =.. [if | Rest],
NewStructure =.. [if, NewHead, true],
leave_trail(insert_after,
“[c | [NewHead | []]], ClauseName).
insert after([NewHead | NewGoals], ClauseName,
[Head | Taill, [Head | [NewStructure | Tailll,
LastUndo, [Head | Taill]) :-
Head =.. [if | Rest],
ib_goals(NewGoals, [], NewTail),
NewStructure =.. [if, NewHead, NewTall],
leave trail(insert_ after,
Tc | [NewHead | NewGoals]], ClauseName).
insert_after(Goals, ClauseName, [Head | T], [NewHead | T],
LastUndo, [Head | T]) :-
Head =.. [Functor l [Goall | [RestGoals | []11],
comma or semicolon(Functor),
ib_goals(Goals, RestGoals, NewGoals),
goal functor(F),
NewHead =.. [F , Goall , NewGoals],

- 118 -

APPENDIX D

leave_trail(insert_after, [g | Goals], ClauseName).
insert after(Goals, ClauseName, [Head | T], [NewHead | T],

LastUndo, [Head | T]) :-

last_traversal(next_goal, ClauseName),

ib_goals(Goals, [], NewGoals)

goal_functor(F),

NewHead =.. [F , Head , NewGoals],

leave trail(insert_after, [g | Goals], ClauseName).
insert_after(Goals, ClauseName, ?Hea T], [NewHead | T],

LastUndo, [Head | T]) :-

last_traversal(body, ClauseName),

ib_goals{Goals, [], NewGoals),

goal functor(F),

NewHead =.. [F , Head , NewGoals],

leave trail(insert_after, [g | NewGoals], ClauseName).
insert after(NewItems, ClauseName, [Head | Taiil, [Head | Tail],

LastUndo, LastUndo) :-

Head =.. [if | _J,

pedit_ error(la, Structure).
insert after(NewItems, ClauseName, [Head | Taill, [Head | Tail],

LastUndo, LastUndo) :-

Head =.. [Functor Ly

comma or semicolon(Functor),

pedit_error(ia, Structure).
insert_after(NewArgs, ClauseName,

[HofList | RestofList], ReturnedList,

LastUndo, [HofList | RestofList]) :-

appl ([HofList], NewArgs, NewList),

appl (NewList, RestofList, ReturnedList),

leave tra:l(:nsert after, NewItems, ClauseName)
insert after(NewItems, ClauseName, Structure, Structure,

LastUndo, LastUndo)} :-

pedit_error(ia, Structure).

kkkkkkkk 1L kkdkkikdkk

insert before([NewHead | []], ClauseName,
[Head | Taill, [NewStructure | [Head | Tailll,
LastUndo, [Head | Taill) :-
Head =.. [if | Rest],
NewStructure =.. [if, NewHead, truel],
leave trail(insert before,
TNewHead | [1T, ClauseName).
insert_before([NewHead | NewGoals], ClauseName,
[Head | Tail], [NewStructure | [Head | Tailll,
LastUndo, [Head | Tail]) :-
Head =.. [if | Rest],
ib_goals(NewGoals, [], NewTail),
NewStructure =.. [if, NewHead, NewTaill,
leave trail(insert before,
TNewHead | NewGoals], ClauseName).

= I19 =

APPENDIX D

insert before([NewHead | NewGoals], ClauseName,

[T, [NewStructurel,

LastUndo, [1) :-

last_traversal(next_clause, ClauseName),

ib_goals(NewGoals, [], NewTail),

NewStructure =.. [if, NewHead, NewTaill,

leave_trail(insert_before,

TNewHead | NewGoals], ClauseName).

insert before([NewHead | NewGoals], ClauseName,

[T, [NewStructure],

LastUndo, []) :-

no_last_traversal,

ib_goals(NewGoals, [], NewTail),

NewStructure =.. [if, NewHead, NewTaill,

leave_trail(insert_before,

TNewHead | NewGoals], Clauselame).

insert_before(NewGoals, ClauseName,

[Head | T), [NewHead | TI].

LastUndc, [Head | T]) :-

Head =.. [Functor | _J,

comma_or_semicolon(Eunctor),

ib_goals{NewGoals, Head, NewHead),

leave_trail(insert_before, [g | NewGoals], ClauseName).
insert_before(NewGoale, ClauseName,

[Head | T], [NewHead | TJ,

LastUndo, [Head | T]) :-

last_traversal(next_goal, ClauseName),

ib_goals(NewGoals, Head, NewHead),

leave trail(insert_before, [g | NewGoals], ClauseName).
insert_before(NewGoals, ClauseName,

[Head | T], [NewHead | TI,

LastUndo, [Head | TJ]) :-

last_traversal(body, ClauseName),

ib_goals(NewGoals, Head, NewHead),

leave_trail(insert_before, [g | NewGoals], ClauseName).
insert_before(NewItems, ClauseName, [Head | Taill, [Head | Taill,

LastUndo, LastUndo) :-

Head =.. [if | _J],

pedit_error(ib, Structure).
insert_before(NewItems, ClauseName, [Head | Taill, [Head | Taill,

LastUndo, LastUndo) :-

Head =.. [Functor 1 Ay

comma_or_semicolon(Functor),

pedit_error(ib, Structure).
insert_before(NewItems, ClauseName, [HofList | RestofList], NewlList,

LastUndo, [HofList | RestofList]) :-

appl(NewItems, [HofList | RestofList], NewList),

leave trail(insert_before, NewItems, ClauseName).
insert_before(NewItems, ClauseName, Structure, Structure,

LastUndo, LastUndo) :-

pedit_error(ib, Structure).

- 120 -

APPENDIX D

ib goals([], Goals, Goals).
ib_goals([Goal | [Functor | [1]], [], Goal) :-
comma_or_semicolon(Functor).
ib goals([Goal | [1], [], Goal).
ib_goals([Goal | [Functor | [1]], OldGoals, NewGoals) :-
comma_or_semicolon(Functor),
NewGoals =.. [Functor, Goal, 0ldGoals].
ib_goals([Goall | [Functor | RestGoals]], OldGoals, NewGoals)
comma_or_semicolon(Functor),
ib_goals{RestGoals, 0ldGoals, TempGoals),
NewGoals =.. [Functor, Goall, TempGoals].

.!******** mv *******/

move_item([From, To), ClauseName,

{Head ! Tail], [NewHead | Taill],

LastUndo, [Head | Taill) :-

From < To, Head =.. [Functor | Rest],

comma_or_semicolon{Functor),

move_goal_back(From, To, 1, [Head], NewHeaé, []),
; leave trail(move item, [From, To], ClauseName).
move_item([From, Tol, ClauseName,

[Head | Tail], [NewHead | Tail],

LastUndo, [Head | Taill) :-

From > To, Head =.. [Functor | Restl],

comma_or_semicolon(Functor),

move_goal_forward(From, To, 1,

[Head], NewHead, Article),

leave trail(move_item, [From, Tol], ClauseName).
move_item(TFrom, To], ClauseName, Head, NewHead,

LastUndo, Head) :--

From < To, move back(From, To, 1, Head, NewHead, []),

leave trail(move_item, [From, To], ClauseName).
move_item(TFrom, To], ClauseName, Head, NewHead,

LastUndo, Head) :-

From > To,

move_forward(From, To, 1, Head, NewHead, Article),

leave trail(move_item, [From, To], ClauseName).
move_item(TFrom, Tol, ClauseName, Structure, Structure,

LastUndo, LastUndo) :-

pedit_error(mv, Structure).

move_goal_back(From, To, To,
[Head], NewHead, [NewFunctor, Item]) :-
Head =.. [Functor, Goal, RestGoals],
comma_or_semicolon{Functor),
NewRest =.. [NewFunctor, Item, RestGoals],
NewHead =.. [Functor, Goal, NewRest].
move_goal back(From, To, To,
{GoaIll, NewGoals, [NewFunctor, Item]) :-
NewGoals =.. [NewFunctor, Goal, Item].

- 121 -

move

move

move

APPENDIX D

_goal_back(From, To, From,
[Head], NewHead, Article) :-
Head =.. [Functor, Goal, RestGoals],
Current is From + 1,
move_goal_back(From, To, Current,
[RestGoals], NewHead, [Functor, Goall).

_?oal_back(From, To, Current,

Head], NewHead, Article) :-

Head =.. [Functor, Goal, RestGoals],

NewCurrent is Current + 1,

move_goal_back(From, To, NewCurrent,
TRestGoals], NewRes%, Article),

NewHead =.. [Functor, Goal, NewRest].

goal_forward(From, To, From,
[Head], RestGoals, [Functor, Goall]) :-
Head =.. [Functor, Goal, RestGoals].

move_goal_forward(From, To, From,

[GoaIll, [], [Functor, Goall) :-
goal_functor (Functor).

move_goal_forward(From, 0, 1,

move

move

move

move

[Head], NewHead, Article) :-
Head =.. [Functor, Goal, RestGoals],
comma_or_semicolon(Functor),
move_goal_forward(From, O, 2
[RestGoals], NewRest, [NewFunctor, Item]),

make_new_goals(Functor, Goal, NewRest, NewGoals),
NewHead =.. [NewFunctor, Item, NewGoals].
oal_forward(From, 0, 1,

Goall, NewGoals, [NewFunctor, Item]) :-
NewGoals =.. [NewFunctor, Goal, Item].
_goal_forward(From, To, To,

[Head], NewHead, Article) :-

Head =.. [Functor, Goal, RestGoals],
comma_or_semicolon(Functor),

NewCurrent is To + 1,

move_goal_forward(From, To, NewCurrent,

[RestGoals], NewRest, [NewFunctor, Item]),

make_new_goals(NewFunctor, Item, NewRest, NewGoals),
NewHead =.. [Functor, Goal, NewGoals].
_goal_forward(From, To, To,

[GoaTl], NewGoals, [NewFunctor, Item]) :-
NewGoals =.. [NewFunctor, Goal, Item].
_goal_forward(From, To, Current,

Head], NewHead, Article) :-

Head =.. [Functor, Goal, RestGoals],

NewCurrent is Current + 1,
move_goal_forward(From, To, NewCurrent,

RestGoals], NewRest, Article), ,

make_new_goals(Functor, Goal, NewRest, NewHead).

= 122 =

APPENDIX D

make _new_goals(Functor, Goal, [], Goal).
make_new_goals(Functor, Goal, Rest, NewGoals) :-
NewGoals =.. [Functor, Goal, Rest].

move_back(From, To, To,

[Head | Tail], ReturningStructure, Article) :-

appl([Head], Article, NewHead),

appl(NewHead, Tail, ReturningStructure).
move_back(From, To, From,

[Head | Tail], NewTail, Article) :-

NewFrom is From + 1,

move back(From, To, NewFrom, Tail, NewTail, [Headl).
move_back(From, To, Current,

[Head | Tail], [Head | NewTzil], Article) :-

NewCurrent is Current + 1,

move_back{(From, To, NewCurrent,

Tail, NewTail, Article).

move_forward(From, To, From,
[Head | Taill], Tail, [Headl).
move_forward(From, 0, 1,
[Head | Tail], ReturningStructure, Article) :-
move_forward(From, 0, 2, Tail, NewTail, Article),
appl(Article, [Head], NewHead),
appl (NewHead, NewTail, ReturningStructure).
move_forward(From, To, To,
[Head | Taill], ReturningStructure, Article) :-
NewCurrent is To + 1,
move_forward(From, To, NewCurrent,
Tail, NewTail, Article),
appl([Headl, Article, NewHead),
appl (NewHead, NewTail, ReturningStructure).
move_forward(From, To, Current,
[Head | Taill, [Head | NewTail], Article) :-
NewCurrent is Current + 1,
move_forward(From, To, NewCurrent,
Tail, NewTail, Article).

kkkkdhkkd cp dkdkdkkkdk

copy_item([From, To], ClauseName,
[Head | Taill, [NewHead | Taill,
LastUndo, [Head | Taill]) :-
From < To, Head =.. [Functor | Rest],
comma_or_semicolon(Functor),
copy_goal back(From, To, 1, [Head], NewHead, [1),
leave trall(move item, [From, To], ClauseName).
copy item([From, To], ClauseName,
“[Head | Taill, [NewHead | Taill,
LastUndo, [Head | Taill) :-
From > To, Head =.. [Functor | Rest],
comma_or_semicolon(Functor),

- 123 =

APPENDIX D

copy_goal_forward(From, To, 1,
[Head], NewHead, Article},
leave_trail(move_item, [From, To], ClauseName).

copy_item([From, To], ClauseName, Head, NewHead,
LastUndo, Head) :-
From < To, copy_back(From, To, 1, Head, NewHead, []),
leave trail(copy_item, [From, Tol], ClauseName).
copy_item(TFrom, To], ClauseName, Head, NewHead,
LastUndo, Head) :-
From > To,
copy_forward(From, To, 1, Head, NewHead, Article),
leave trail(copy_item, [From, To], ClauseName).
copy_item(TFrom, To?, ClauseName, Structure, Structure,
LastUndc, LastUndo) :-
pedit_error{(cp, Structure).

copy_goal_back(From, To, To,
[Head], NewHead, [NewFunctor, Item]) :-
Head =.. [Functor, Goal, RestGoals],
comma_or_semicolon(Functor),
NewReSt =.. [NewFunctor, Item, RestGoals],
NewHead =.. [Functor, Goal, NewRest].
copy_goal_back(From, To, To,
[Goall, NewGoals, [NewFunctor, Item]) :-
NewGoals =.. [NewFunctor, Goal, Item].
copy_goal_back(From, To, From,
[Head], NewHead, Article) :-
Head =.. [Functor, Goal, RestGoals],
Current is From + 1,
copy_goal_back(From, To, Current,
[RestGoals], NewRest, [Functor, Goall),
NewHead =.. [Functor, Goal, NewRest].
copy_goal_back(From, To, Current,
[Head], NewHead, Article) :-
Head =.. [Functor, Goal, RestGoals],
NewCurrent is Current + 1,
copy_goal_back(From, To, NewCurrent,
?RestGoals], NewRest, Article),
NewHead =.. [Functor, Goal, NewRest].

copy_goal_forward(From, To, From,
[Head), Head, [Functor, Goall]) :-
Head =.. [Functor, Goal, RestGoals].
copy_goal_forward(From, To, From,
?Goal], Goal, [Functor, Goall]) :-
goal_functor (Functor).
copy_goal_forward(From, 0, 1,
[Head], NewHead, Article) :-
" Head =.. [Functor, Goal, RestGoals],
comma_or_semicolon(Functor),
copy_goal_forward(From, 0, 2,

-"124 -

APPENDIX D

[RestGoals], NewRest, [NewFunctor, Item]),
make_new_goals(Functor, Goal, NewRest, NewGoals),
NewHead =.. [NewFunctor, Item, NewGoals].

copy_goal_forward(From, 0, 1,
[Goal], NewGoals, [NewFunctor, Item]) :-
NewGoals =.. [NewFunctor, Goal, Item].
copy_?oal_forward(From, To, To,
Head], NewHead, Article) :-
Head =.. [Functor, Goal, RestGoals],
comma_or_semicolon(Functor),
NewCurrent is To + 1,
copy_goal_forward(From, To, NewCurrent,
[RestGoals], NewRest, [NewFunctor, Item]),
make_new_goals(NewFunctor, Item, NewRest, NewGoals),
NewHead =.. [Functor, Goal, NewGoals].
copy_goal_ forward(From, To, To,
[Goal], NewGoals, [NewFunctor, Item]) :-
NewGoals =.. [NewFunctor, Goal, Item].
copy_goal_forward(From, To, Current,
[Head], NewHead, Article) :-
Head =.. [Functor, Goal, RestGoals],
NewCurrent is Current + 1,
copy_goal_forward(From, To, NewCurrent,
[RestGoals], NewRest, Article),
make_new_goals(Functor, Goal, NewRest, NewHead).

copy_back(From, To, To,

[Head | Taill, ReturningStructure, Article) :-

appl([Head], Article, NewHead),

appl(NewHead, Tail, ReturningStructure).
copy_back(From, To, From,

[H | Taill, [H | NewTail], Article) :-

NewFrom is From + 1,

copy back(From, To, NewFrom, Tail, NewTail, [H]).
copy_back({From, To, Current,

[H | Taill, [H | NewTaill, Article) :-

NewCurrent is Current + 1,

copy_back(From, To, NewCurrent,

Tail, NewTail, Article).

copy_forward(From, To, From,
[Head | Taill], Tail, [Headl).
copy_forward(From, 0, 1,
[Head | Taill], ReturningStructure, Article) :-
copy forward(From, 0, 2, Tail, NewTail, Article),
appl{Article, [Head], NewHead),
appl(NewHead, Tail, ReturningStructure).
copy_forward(From, To, To,
[Head | Taill, ReturningStructure, Article) :-
NewCurrent is To + 1,
copy_forward(From, To, NewCurrent,

- 128 -

APPENDIX D

Tail, NewTail, Article),
appl([Head], Article, NewHead),
appl(NewHead, Tail, ReturningStructure).

copy_forward(From, To, Current,
[Head | Taill, [Head | NewTaill], Article) :-
NewCurrent is Current + 1,
copy_forward(From, To, NewCurrent,
Tail, NewTail, Article).

/******** ch *******/

change_structure(NewStructure, ClauseName,
Structure, NewStructure,
LastUndo, Structure)} :-
leave_trail(change_structure,
NewStructure, ClauseName).
change_structure(NewStructure, ClauseName,
Structure, Structure,
LastUndo, LastUndo) :-
pedit_error(ch, Structure).

/******** cha dddkkdkkk

change_argument ([Num | [Newval | []]], ClauseName,

[Head | T], [Head | T],

LastUndo, LastUndo) :-

atomic (Head),

write('No arguments present'), nl,

pedit_error(cha, [Head | T]).
change_argument ([Num | [Newval | []]], ClauseName,

[(Head | T], [Head | TI,

LastUndo, LastUndo) :-

functor (Head, Fn, N), Num > N,

write('Argument number too high'), nl,

pedit_error(cha, [Head | T]).
change_argument ([Num | [Newval | [] 1], ClauseName,

[Head | T], [NewHead | TI],

LastUndo, [Head | T]) :-

functor(Head, Fn, N},

functor (NewHead, Fn, N),

sub_arg(N, Num, NewVal, Head, NewHead),

leave trail(change_argument,

TNum l NewValJ, ClauseName).

change_argument(Args, ClauseName, Structure, Structure,

LastUndo, LastUndo) :-

pedit_error(cha, Structure).

sub_arg(0, _, _, _, _) = !.
sub_arg(N, Num, New, Val, NewVal) :-
arg(N, Vval, Oldarg),
arg(N, NewVal, NewArg),

- 126 -

APPENDIZX D

subs(N, Num, New, OldArg, NewArg),

N1 is N -1,

sub_arg(N1, Num, New, Val, NewVal).
subs(Num, Num, New, 0ld, New) :- !,
subs(_, _, _, Val, val) :- 1,

/******** chf *******/

change_this_functor([New], ClauseName,
[Structure | TI, [Structure | 71,
LastUndo, LastUndo) =
atomic(Val),
write('No functor is present'), nl,
pedit error(chf, [Structure ! T]i
change_ this ;unctor([hew], ClauseName,
[Structure | T], [NewStructure | TI,
LastUndo, [Structure | T1)} =-
Structure =.. [Fuctor | Args],
NewStructure =.. [New | Args],
leave_trail(change_this functor [New], ClauseName).
change_this_functor([New], ClauseName, Structure, Structure,
LastUndo, LastUndo) :-
pedlt_errcr(chf Structure).

/******** Chg % % g Kk k *k

change_goal([Num z [Newval | [])], ClauseName,
[Fead | T], [Head | T],
LastUndo, LastUndo) :-
atomic(Head),
write('No arguments present), nl,
pedit_error(ch [Head | TI).
change_goal([Num 1 ?Newval []]], ClauseName,
N

[Head | TI, ewHead | T]
LastUndo, [Head { T])
Head =.. [Fn |

comma_or_semicolon(Fn),

ch_goal(Num, 1, NewVal, Head, NewHead),

leave trall(change goal [Num [NewVal] ClauseName).
change_ goal(Args, ClauseName, Structure, Structure,

LastUndo, LastUndo) :-

pedit_error(chg, Structure).

ch_goal{(Num, Num, NewVal, Head, NewHead) :-
Head =.. [Fn, Goal, RestGoals],
comma_or_ semlcolon(Fn)
NewHead =.. [Fn, NewVal RestGoals].
ch_goal(Num, Current, NewVal, Head, NewHead) :-
Head =.. [Fn, Goal RestGoals],
comma_or semzcolon(Fn)
NewCurrent is Current + 1,
ch_goal (Num, NewCurrent, NewVal, RestGoals, NewGoals),

- 127 =

APPENDIX D

NewHead =.. [Fn, Goal, NewGoals].

% Jd % ¥ % % % %k rem *******/

remove ([Name | []], ClauseName, Structure, [I],
LastUndo, Structure) :-
asserta(buffer(Name, Structure)),
leave_trail(remove, [Name], ClauseName) .

remove (Args, ClauseName, Structure, Structure,
LastUndo, LastUndo) :-
pedit_error(rem, Structure).

j******** —eD1 *******/

replacek[Name | []], ClauseName, Structure, NewStructure,
LastUndc, Structure) :-
buffer (Name, NewStructure),
same_format(Structure, NewStructure),
ieave trail(replace, [Namel, ClauseName).
replace([Name], ClauseName, Structure, Structure,
LastUndo, LastUndo) :-
pedit_error(repl,Structure),
buffer (Name, NewStructure),
write('Buffer: '),
write(Name),nl,
write('Structure: '),
pp(NewStructure), nl.
same_format(S,N).

kkkhkdkkkd un *******/

undo([], ClauseName, Structure, Structure,
LastUndo, LastUndo) :-
undocommand (CurrentCommand) ,
invalid undo(CurrentCommand),
edit_error(un, Structure).

undo([], ClauseName, Structure, Structure,
LastUndo, LastUndo) :-
undocommand (CurrentCommand),
traversal command(CurrentCommand, _, NewCommand),
remove old _undo,
asserta(cmd_list([NewCommand])).

undo([], ClauseName, Structure, LastUndo,
LastUndo, Structure) :-
remove_old_undo.

undo([], ClauseName, Structure, Structure,
LastUndo, LastUndo) :-
pedit_error(un, Structure).

remove old undo :-

retract(undocommand(x))
remove_old_undo.

= 328 ~

APPENDIZX D

/******** bUffer *******/

create_buffer([Name | Contents], ClauseName,
Structure, Structure,
LastUndo, LastUndo) :-
asserta(buffer(Name, Contents)).
create_buffer(Args, ClauseName, Structure, Structure,
LastUndo, LastUndo) :-
pedit_error(buffer, Structure).

/******** display kkkkkkk

display buffers([], ClauseName, Structure, Structure,
LastUndc, LastUndo) :-
write('List of puiffer names: '}, ni,
write_buffer_names.

write_buffer_names :-
pbuffer(Name, X),

write(' '),
write(Name}, nl,
fail.

write_buffer_names.

/********Acontents *******/

buffer_contents([Name], ClauseName, Structure, Structure,
LastUndo, LastUndo) :-
buffer (Name, Contents)},
write('Contents of buffer '),
write(Name),
write{(' are: '), nl,
pp({Contents).

buffer_contents([Name | []], ClauseName,
Structure, Structure,
LastUndo, LastUndo) :-
write('Buffer '),
write(Name),
write(' does not exist. '), nl,
pedit_error(contents, Structure).

/t******* Chdelim khkkkkk%k

change_delimiter([New | []], ClauseName,
Structure, Structure,
LastUndo, LastUndo) :-
retract(delim(X)),
asserta(delim(New)).
change_delimiter(Args, ClauseName, Structure, Structure,
LastUndo, LastUndo) :-
pedit_error(chdelim, Structure).

< 128 =

APPENDIX D

kkkkkkkk rpt *******/

repeat ([], ClauseName, Structure, Structure,
LastUndo, LastUndo) :-
last_command(Command, Arglist),
asserta(cmd_list([Command | Arglist])).

repeat([], ClauseName, Structure, Structure,
LastUndo, LastUndo) :-
write('No command to repeat'), nl,
pedit_error(rpt, Structure).

/******** defcmd *******/

define_command([Name | Args], ClauseName,
Structure, Structure,
LastUndo, LastUndo) :-
assertaz (new_command(Name, Args)).
define_command(Args, ClauseName, Structure, Structure,
LastUndo, LastUndo) :-
pedit_error{(defcmd, Structure).

/******** displcmd *******/
display_commands([], ClauseName, Structure, Structure,
LastUndo, LastUndo) :-
write('List of command names: '), nl,
write_command_names.
write_command_names :-
command (Name, Args),

write(' *1 4
write(Name), nl,
fail.

write_command_names.

/******** command *******/
command_contents([Name], ClauseName,
Structure, Structure,
LastUndo, LastUndo) :-
command (Name, Contents),
write('Contents of command '),
write(Name),
write(' are: '), nl,
pp(Contents).
command_contents{[Name | []], ClauseName,
Structure, Structure,
LastUndo, LastUndo) :-
write('Command '),
write(Name),
write(' does not exist. '), nl,
pedit_error(command, Structure).

/* miscellaneous routines and rules L

= k30 =

APPENDIZX D

/* traversal_command - */
7= Parameters: wr
Vi Command Name */
J* Direction of Command */
S Opposite Traversal *y

traversal_command(top, up, next_clause).
traversal_command(next_clause, down, previous_clause).
traversal command(prev1ous clause, up, next clause)
traversal_command(head, down, start).

traversal command(body, down, start).
traversal_command(start, up, head).

traversal command(next goal down, previous_goal).
traversal command(prev1ous goal up, next goal)
traversal_command(down, down, up).
traversal_command(up, up, down).
traversal_command(right, down, left).

traversal command(left, up, rlght)

mocification command(delete_structures).
modification command(insert_after).
modification_command(insert “before).
modification command(move_item).
modification command(copy_item).
mod:ification command{change_structure).
modification_command(change_ “argument).
modification_command(change_this_functor).
modification command(change_goal).
modification command(remove).
modification_command(replace).

invalid_undo(file).
invalid_undo(find_argument).

- 133 -

APPENDIX D

leave trail(Command, Arglist, ClauseName) :-
traversal command(Command down,),
add traversal(Command, ClauseName7,
new_undo(Command, Argllst)
add command(Command Argllst)

leave trail(Command, Argllst ClauseName) :-
traversal command(Command up, _),
new_undo (Command, Argllst)
add command(Command Argllst)

leave trail(Command, Argllst ClauseName) 3=
modification command(Command)
add_changed(ClauseName),
new_undo(Command, Argllst)

leave_trail(Command, Arglist, ClauseName} 3=
new_ undo(Command Arglist).

new_undo(Command, Arglist) :-
invalid_ undo(Command)
asserta(last command(Commana, Arglist)).
new_undo(Command, Arglist) :-
remove old undo,
asserta{undocommand(Command)),
asserta(last_command(Command, Arglist)).

add_changed(Name) :- changed(Name).
add_changed(Name) :- asserta(changed(Name)).

pedit_error(Command, Structure) :-
write('Can not perform '),
wrlte(Command)

nl,
pp(Structure)
nl, nl,

retract_all(cmd_list(_)).

count (Command, Structure) :-

count them(O Command, Total),

write them(Command Total Structure)
count them(Num, Command, Total) :-

retract(counter(Command))

NewNum is Num + 1,

count them(NewNum, Command, Total).
count_them(Total, _, Total).

write them(Command, 0, Structure) :-
pedit error(Command Structure).

write them(Command, Total, ¥
write(' '),

wrlte(Total),
write(' repetition(s) '),
nl.

- 132 —

APPENDIX D

retract all(X) :- retract(X), fail.
retract_all(X) :- retract((X:-Y)), fail.
retract_all().

add_traversal (Name, ClauseName) :-
asserta(traversal(ClauseName, Name)).

remove traversal (Name, ClauseName)} :-
retract(traversal (ClauseName, Name)).
remove_traversal(_,_).

last_traversal(Namel, ClauseName) :-
retract(traversal(ClauseName, Name2)),
asserta(=-raversal(Clauselame, Name2}),
|
.
Namel = NameZl.

no_last_traversal :-
retract(traversal(CN, N))},
1, faill.

no_last_traversal.

add_command(Name, []).
add_command{Name, [*]) :-
asserta(cmd list([Name, *]1)).
add_command(Name, [1) :-
integer (Num),
NewNum is Num = qy
asserta(cmd_list([Name, NewNum])).

add_command(_,_).

]
*
S
Num

appl([],X,X).
appi([A[B] c,[a|D]) :- appl(B,C,D).

empty([]).

not null([]) :- !, fail.
not_null(Else).

comma_or semlcolon(' * Y

comma or semlcolon(")

goal functor(',').

not 1f(if) :- !, fail.

not_if(_).

eofTine(EofLine) :- name(EofLine, [10])

= 133 =

PEDIT -
A Resident Structure Editor
for PROLOG

by
SANDRA LEE DUFFY

B.S. University of Illinois, 1977

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

PEDIT -
A Resident Structure Editor

for PROLOG
This paper presents PEDIT - a residential structure editor
implemented in PROLOG. PEDIT allows the user to manipulate
the PROLOG data base without exiting the PROLOG interpreter.
This facility will greatly facilitate the interactive
testing process of PROLOG programs. Savings will be
incurred by using PEDIT, especially when dealing with a
large PROLOG program. The costs of repeatedly exiting ana
entering the interpreter plus the cost of reloading the

PROLOG file(s) are saved.

Chapter One of this paper details the motivation for
developing PEDIT. A comparison of editor types and existing
editors is also included. Chapters Two, Three and Four
describe the requirements, design and implementation,
respectively, of PEDIT. Chapter Five contains conclusions
and suggests extensions to PEDIT. The Appendices provide a
glossary of PROLOG terminology, a brief summary of the

available commands, the User's Manual and the source code.

