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1 . Introduction

One often finds that extremely useful tools or applications can be

abstracted into language constructs whose methods can be hidden from

the user. Interprocess communication is a good example of this as

shown in the Concurrent C transaction call [GeRo86], and the Ada ren-

dezvous [DoD83]. Ideally we would like to see deadlock detection and

resolution available at the language level as well. Since most con-

current languages involve a run time kernel which implements facili-

ties like process management and interprocess communication, it is a

natural place to put deadlock detection.

In this thesis we describe an implementation of a distributed deadlock

detection algorithm in the distributed kernel of Concurrent C. In par-

ticular, we have considered the relationship between local and global

deadlock detection and made some special improvements on published

deadlock detection algorithms [CMH83] that can be made because we have

special implementation (kernel) knowledge. Our specific implementa-

tion is in support of Ed Vopata's distributed discrete event simulator

[Vop88] (for which we detect deadlock).

The distributed discrete event simulator [ReFu87] is an especially

interesting application because in this particular implementation

deadlock is a naturally occurring event. The deadlock must therefore

be detected and resolved possibly many times during the course of a

given simulation. More specifically, the simulator represents simula-

tion elements, like queues and servers in a queuing model, as indivi-

dual processes. The "jobs" which get passed through the simulation

are represented by data objects and travel from process to process via



synchronous messages. Present in each job (object) is a simulation

time. When jobs may arrive from several paths at a single point, the

simulator must be careful which message to accept first. A message

from each branch must be present, and then the message with the smal-

lest time value in it must be received first. After a message is

received, this node must wait again until there is a message for each

incoming path before choosing another one to receive.

- queue/server-

/ \

source -> branch - - server -> sink

\ /
- queue/server-

Figure 1.1: a simple simulation model

With this in mind, picture a simple model where a path branches in

two, each branch leading to a queue-server pair, and then joining

again at a server. The choice of paths to take at a branch is based

on probability, and it may be the case that one of these paths has a

very high probability. One can envision, then, most of the messages

flowing through the one side. The first message passes through the

queue, into the server, and then sits as a pending message at the join

point while the join server process waits for a message from the other

path so that it can choose, based on simulation time, which message to

receive

.

Because path choice at a branch is based on probability, we would

expect occasional jobs to come along the other path and the simulation

would continue. This is mostly true. However the queue along the

heavily traveled path is not infinite in size. Therefore it may reach



a point at which it is full if there is a sufficient number of jobs in

the system. In this case the branch point will get blocked trying to

send a message to the queue (which will refuse to receive the message

when it is full). We can now see that we have deadlock, because if

the branch point is blocked, then there is now no way for an occa-

sional job to make it along the lower probability branch to the join

point. The node at the join point is waiting for a message which will

never arrive.

A simulation may reasonably be designed so that the above situation is

not an unlikely case. Nor is it the only way the simulation may

deadlock. But if deadlock is natural, then so must be the detection

and resolution thereof. Our intent with this project is to implement

the deadlock detection independently of the application. That is, we

tried not to take special advantage of the application in the deadlock

detection. Because of the intended separation of detection and appli-

cation, the resolution becomes a responsibility of the application,

though necessary low level (kernel) facilities need to be provided to

permit this. The resolution must be handled by the application

because the detection software has no understanding of what the appli-

cation is trying to do.

In the case of distributed simulation, resolution involves sending

special NULL jobs (usually referred to as NULL messages) to the join

processes. The resolver must determine the appropriate points to

insert such messages when notified that deadlock exists. Kernel

facilities have been developed which provide the resolver the ability

to query the state of a process, and to intercept the current simula-

tion time.
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The rest of our paper will discuss the general deadlock problem, local

deadlock detection and kernel knowledge, global deadlock detection,

and finally our implementation of distributed deadlock detection in

Concurrent C.
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2. Deadlock in Concurrent Systems

The deadlock problem is a fundamental concurrent programming concept.

Simply defined, a process is deadlocked if it is waiting for an event

which will never occur. Obviously one process, if coded correctly,

won't deadlock without the cooperation (or lack thereof) of some other

process or external entity.

Deadlock is of particular concern in resource allocation. Many

processes are vying for the same resources and it is possible that

several processes will each get some but not all of the resources they

want. If they are coded in such a way that they must have all

requested resources to continue, and no process is able to complete

its resource request, then each process will be blocked, waiting for

another to free a resource. The group of processes will be

deadlocked.

In a simple example there are two processes, a disk drive, and a tape

drive. Each process needs one of each to run. It may be the case

that one process runs, gets allocated the tape drive, but before it

can request the disk the second process gets scheduled. The second

process requests the disk drive and gets it. Now it tries to request

the tape drive, but there are none to be allocated so it blocks, wait-

ing for a free tape drive to show up. The first gets rescheduled and

it makes its request for the disk. It also blocks, waiting on the

availability of the disk drive. Now neither of them can run, each

waiting on the other; they are deadlocked. This kind of circular

dependency is typical of deadlock situations.

We can model the above example by representing each resource allocator



as a process. Resource allocators are passive agents, "accepting"

messages from requesting processes only when they can grant the

request. A requesting process is an active agent in the sense that it

sends a message to a specific resource allocator when it wants some-

thing. Communication between processes is synchronous.

In the example above, we envision each application process as having

completed a message exchange with different resource allocators, each

being allocated one of the resources it requested. Having done that,

they each now have requests pending outside of the other resource

allocator.

PI — request .allocate > R2
P2 — request .allocate > Rl

There is another relationship, implicit, between the resource alloca-

tors and the processes which have received resources (because the

allocators expect the eventual return of their resources).

R2 — accept. free--> P2
Rl --accept . free--> PI

We can therefore represent general resource allocation as a communica-

tion graph.

PI <— accept . free-- Rl

I

I I

request .alloc request . alloc

I I

v
R2 — accept. free— > P2

This permits the treatment of the deadlock in a generic fashion as



communication deadlock. Resource allocation deadlock detection is now

a matter of detecting communication deadlock. Ideally the detection

need know nothing about the application which is deadlocking, but can

be abstracted from such details.

There are four necessary conditions for deadlock to exist:

1. Processes claim exclusive control of the resources

they require (mutual exclusion)

2. Processes hold resources already allocated to them while

waiting for additional resources (wait for)

3. Resources cannot be removed from the processes holding them

until the resources are used to completion (no preemption)

4. A circular chain of processes exists in which each process

holds one or more resources that are requested by the next

process in the chain (circular wait)

In the above example, each of these conditions holds for the resource

allocation graph, as well as the communication graph. Mutual exclu-

sion is a stated property of the system. The wait for property and

the no preemption property are true because of the synchronous commun-

ication mechanism. A process cannot tell that its request will get

queued, nor can it undo the communication once it is initiated. Like-

wise, a resource can't be preempted because a process already involved

in a communication can't be interrupted to talk to someone else

(assuming that a resource would only be preempted from a blocked pro-

cess which was waiting for more processes). Finally, the circular

chain is evident when viewing who is waiting to communicate with whom.

There are many ways to deal with deadlock. Two basic approaches are
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either to avoid deadlock in the first place, or to let it happen and

then try to detect and resolve the deadlock. Either approach is aimed

at affecting one of the necessary conditions for deadlock.

Deadlock avoidance usually changes the way a process is allowed to

request resources. One such way is to require that each process allo-

cate all of the resources it needs in one atomic command. This will

deny the wait for property since no process will be holding a resource

while waiting to be allocated another.

Deadlock resolution can take a variety of forms, depending on the con-

dition being denied. If preemption were permitted, then an already

allocated resource could be taken away from the process which had it,

and be given to another process to fulfill that process's resource

request. In distributed simulation, one would want to break the cir-

cular chain property by sending a null message to one of the blocked

processes

.

Our goal is to view deadlock in terms of communication. Though we

will treat deadlock with respect to a specific communication model, it

is useful to discuss first the different models of deadlock from a

communication perspective.

2.1. Models of Deadlock

There are four basic models of deadlock in resource allocation [Kna87]

corresponding to the complexity of resource requests. We will take a

brief look at each of these.
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2.1.1. One - resource Model

This is the simplest model, where a resource allocator can have at

most one outstanding resource. The requesting process can likewise

have at most one outstanding request. Hence any node on the wait-for

graph (WFG) has a maximum outdegree of 1, and finding deadlock is a

matter of finding a cycle.

Think of representing a resource allocator as a process, with that

process holding exactly one resource. A user process may have at most

one pending message. The process may request a resource by initiating

a send (process call in Concurrent C), the completion of which denotes

allocation of the resource. The allocator then waits (attempts to

receive) for another message from the user process signaling the

return of the resource, thereby establishing a dependency on the pro-

cess presently holding the resource. The communication graph depicts

the wait-for graph (WFG) and therefore detecting a cycle of communi-

cants detects deadlock.

2.1.2. AND Model

In the AND model, a process may request a set of resources at one

time. Each of these resources must be available to grant the request,

otherwise the process is blocked. Deadlock detection is as the previ-

ous model a matter of finding a cycle.

In terms of communication the AND is represented by the ability to

send a message to multiple destinations in one operation (the message

must be received at all destinations to complete) and a process may

receive messages from several sources at once (there must be a message

-9-



from each source requested) . However, the receive does not play a

role because resource allocations don't work that way. A user process

may request several resources simultaneously from several allocators

using an AND-send. Upon allocation, each allocator then initiates a

single receive, waiting for the deallocate message. An allocator can-

not allocate to anyone else because the receive would then have to be

an OR'ed receive. Realize that this means there can't be more than

one user process which can call this allocator. Hence a strict AND

communication model isn't very useful, and does not fit Concurrent C,

our target language. Finally, when all is said and done and we have

again a communication graph which models the WFG. Due to its AND

nature, detecting a single cycle detects deadlock.

2.1.3. OR Model

In the OR model, a process issues a request for a set of resources.

This request is granted if any of the resources is available.

This corresponds to multiple sending again, but where any receiver is

sufficient. Likewise the receive becomes a selective receive where

any message may be received. In practice this is most evident at the

resource allocator for now it is possible to manage many resources of

a given type; allocating them to more than one user process. The

allocator can then initiate select receives to all processes which

have been given resources and each may return its resource at any

time. The communications graph once again is an image of the WFG, but

the meaning is more complicated. Because of the OR nature, locating a

single cycle may be insufficient to detect deadlock. Now, any depen-

dent may be capable of freeing the deadlock since any one caller may

10-



free a waiting process. In terms of the WFG, we must look for a

"knot". If a process A is in such a knot, then for every process B

reachable from A, A is reachable from B (by following the WFG). It is

essentially a matter of checking all dependency paths.

2.1.4. AND-OR Model

As the name suggests, the AND-OR model is a combination of the previ-

ous two models where there can be any mixture of AND and OR resource

requests. The resulting communication graph does not lend itself to

any specific graph theoretic description of deadlock, but as the most

general aspect is the OR model, detection of a knot will detect

deadlock. However, a more efficient algorithm can be developed

[HeCh83]

.

The OR model being less restrictive, it is possible to implement both

the AND and the AND-OR models in it.

2.2. Deadlock in Concurrent C

To properly discuss communication deadlock detection, we must present

a specific communication model. The language of interest is Con-

current C. Interprocess communication is via synchronous transaction

calls, and is similar to an Ada rendezvous. The overall communication

mechanism follows that of the OR model.

A transaction call in Concurrent C involves two elements, one active,

one passive. There is the actual transaction call made by an initiat-

ing process, and there must be a matching accept by the transactee. A

transaction call explicitly names the process to transact with. The
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accept places no restriction on who may call (though this may be

implemented in a suchthat ) .

Therefore a process can transact (rendezvous with another process) by

naming a process and a transaction name within that process. A pro-

cess can accept simply by saying it will accept one or more particular

transaction types. An accepting process can select one of many tran-

saction call types to accept . Each accept may further be qualified

with a guard and a suchthat clause. The guard is a boolean expression

using strictly local or global variables. The guard must be true

before even considering accepting a transaction call type. The

suchthat is also a boolean expression, but it can contain parameter

values from the incoming transaction call as well as local/global

variables of the accepting process. If the suchthat clause is true,

then the transaction call will be accepted. Order of acceptance is

first-in-first-out. Note that the suchthat will be evaluated for each

transaction call in the incoming transaction queue until it evaluates

to true, unless there are none, in which case the process will go back

to sleep.

Here is a short Concurrent C example of a producer and consumer where

the producer reads a character from standard input, sends it to the

consumer, who writes it to standard output.
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process body producer (process consumer)

{

char c;

while ((c = getcharO) != EOF)
consumer .put (c )

;

}

process body consumer ()

{

for (;;)
accept put(c) {

printf (

"

%c "
)

;

}

}

Figure 2.1: Simple Concurrent C producer consumer.

Given the Concurrent C communication model, lets try the simple

deadlock example again. The accepts remain the same, though it is a

transaction call instead of a message being accepted. The user

processes make transaction calls to request resources. The transac-

tion calls are queued outside of the accept . allocates because there

are no resources left to allocate (a false guard). However the

accept. free has a true guard because there are resources allocated.

Figure 2.2 shows sample code for a simple resource allocator process.

#define TOTAL_RESOURCES 1

process body res_alloc()

{

int number_resources = TOTAL_RESOURCES

;

for ( ; ; ) select {

(number_resources > 0) : accept allocate () {

number_resources—

;

}

or
(number_resources < TOTAL_RESOURCES ) : accept free () {

number_resources++

;

}

}

}

Figure 2.2: A simple resource allocator process.
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process userl (process RA1 , process RA2)

{

/* .... do stuff .... */
RA1. allocate (); /* get resource 1 */
RA2. allocate (); /* get resource 2 */
/* ...use resources... */
RAl.free(); /* release resources */
RA2.free();

}

process user2 (process RA1, process RA2)

{

/* .... do stuff .... */
RA2. allocate (); /* get resource 2 */
RA1. allocate (); /* get resource 1 */
/* ...use resources... */
RA2.free(); /* release resources */
RAl.freeO;

}

Figure 2.3: Two user processes programmed to request allocate in
different orders.

PI <--accept . f ree-- Rl

I

I I

xaction. alloc xaction. alloc

I I

I

R2 --accept . free--> P2

Figure 2.4: Communication graph from executing processes in figure
2.3.

Figure 2.3 shows two user processes which will make their resource

allocation requests in different orders. Execution of these processes

could result in the communication graph shown in figure 2.4. A

trivial method of deadlock detection in this situation is to observe

that all processes are unable to run. Since it is highly unlikely

that deadlock will involve all processes, this method is at best use-

ful only when identifying programmer error (this method is used by

Concurrent C)

.

-14-



Local deadlock detection (local, meaning the system on one virtual

processor) is a matter of walking the communication graph, checking to

see who is blocked on whom, and observing the state of the process

being waited for.

This works fine for the trivial example above, so let's make it more

complicated. Let us say there is an additional user process P3 which

isn't doing anything in particular at the moment, but could ask for a

resource. We would have the following:

PI <— accept. alloc— Rl

/ I

v— a.al-
accept. alloc P3 accept. alloc

--a.al

—

"

I /
R2 — accept. alloc— > P2

Where Rl and R2 could also accept allocation requests from P3 . Now we

let events take their course where we deadlocked last. P3 takes no

action:

PI <— accept. free Rl

I /
"

xaction. alloc v--a.al-

I

P3
I

— a.al

—

" xaction. alloc
v / I

R2 accept. free— > P2

Viewing the above picture, we see that if we did not know something

about the distinction between "alloc" and "free" then we would be

unable to detect deadlock. If we only knew that R2 could be called by

P1,P2,P3, then we might think that it is possible that P3 has a

resource which it could return to R2, enabling R2 to grant Pi's

15-



request. Why do we even know this much (whom can call whom)? Because

an "accept" is an open ticket for anyone to try to transact. Hence

any accept would create an implied relationship between every other

process and itself for each "acceptable" transaction call.

To keep this under control, it is useful to know just exactly which

processes can make transactions call to whom. Then when looking for

deadlock, we don't have to concern ourselves with the state of every

process in the system, only those which we know can call.

But we need to go one step further. What is needed are dynamic depen-

dency relations, information about who can call whom at a given

instant. For instance, in the example we know that if P3 has not done

anything, then it can only call allocate. Since the resource alloca-

tor is out of resources, there can be no accept-allocate relationship

with any process, hence P3 can be disregarded completely, and deadlock

is still detected.

If we have dependency sets for each type of transaction call, then in

the above example we won't need to know anything about allocate and

free. As long as the resource allocator's guard on allocate goes to

false (because there are no more resources to allocate), Rl and R2

will no longer be considered dependent on P3 . If the dependent set of

the transaction free is maintained dynamically such that only callers

of allocate are in the free set, then in the above example the false

guard on allocate will dispose of P3, which does not appear in the

free set. In summary, when using transaction specific dependent sets,

a kernel view of the guard in an accepting process can be used to

eliminate certain members of dependent sets from consideration during

-16-



a deadlock computation. This can permit detection of some deadlocks

which might not otherwise be possible.

There is one last situation to consider. In the above example, the

deadlock is obvious because all resources have been allocated. Let's

change the situation slightly such that each resource allocator starts

with three resources. PI and P2 will attempt to acquire two of each.

As before each completes a request to an allocator, and gets blocked

on a transaction call to the other (because the other only has one to

give). Now we add in P3, and say that it may request a resource, or

not (it takes no specific action this time). By observation, we know

that P3 can request and release a resource from either or both alloca-

tors, but will have no effect on the deadlock of PI and P2. This is a

deadlock we cannot detect without knowing exactly how transaction

calls affect each other. This requires more application-specific

knowledge than we deem appropriate for kernel based deadlock detec-

tion.

It seems reasonable to view resource allocation in terms of communica-

tion, and work with deadlock at that level. We will now turn our-

selves to a more specific discussion of deadlock discussion.
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3. Kernel Knowledge and Local Deadlock Detection

A concurrent programming environment generally has three components: a

compiler to support a concurrent programming language, a run-time

library to implement the language features, and a software kernel to

manage the concurrency aspect. This is the basic design of Concurrent

C.

3.1. The Kernel of Concurrent C

UNIX

Concurrent C Kernel

Kernel process

a UNIX process

a Concurrent C
program

a virtual
processor

-Concurrent C
processes

Figure 3.1: the design of Concurrent C

Implemented as a single UNIX* process, a Concurrent C program is com-

posed of compiled user code, as well as the run-time library which

contains the kernel and other support functions. As shown in figure

3.1, the Concurrent C kernel exists as a layer between the processes

it implements and UNIX in much the same way as UNIX provides an

* UNIX is a trademark of AT&T
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environment for its own processes. The boundary is somewhat less well

defined, however, since a Concurrent C process may make direct use of

UNIX system calls without passing through the Concurrent C kernel.

The kernel implements Concurrent C processes as lightweight processes-

--which have low context switch overhead and are most efficiently

implemented in shared memory--all within a single UNIX process. The

function call mechanism of the underlying hardware is employed for

performing the context switch. The low cost encourages programmers to

develop solutions which employ many smaller processes.

prog.cc -j

Concurrent
C Compiler

Concurrent C runtime library-*

-V prog..c ^ C Compiler -*prog..o-3 linker a .out

Figure 3.2: the making of a Concurrent C program

The compiler provides necessary language constructs for concurrent

programming such as transaction calls and accept statements. The com-

piler produces pure C code which when compiled may be linked with the

Distributed Concurrent C library. The library provides an implementa-

tion of functions in support of the code produced by the compiler.

The kernel is actually comprised of functions which are also in the

run-time library. The kernel routines are the first to take control

when the program is started up. These routines handle basic process

management needs such as process creation, termination, and schedul-

ing. It resembles a small operating system.

Since the kernel is doing process management, it maintains a process

control block (PCB) for each Concurrent C process. The PCB holds
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information about the process's address space, outgoing transaction

data, incoming transaction queue, and references to parent and chil-

dren. The process table is visible to the entire library and many of

the library functions depend on this information.

Though dependent on implementation, the basic approach for process

creation is to allocate an area of memory and designate it as stack

space for a particular Concurrent C process. A stack frame is con-

structed as per the function call mechanism of the hardware, and is

given the initial appearance of a function which has made a call some-

where, and whose return address is specified in the stack frame as the

beginning of the Concurrent C process.

lop of stack

regs

old FP

RA

args

FP I-

1
T

c_switch(old,new)

regs

old FP

RA

args

address space

code

data

process3

process2

processl

main

global data

process

stacks

Figure 3.3: Context switch from PI to P2 when PI calls
c_SWITCH (old, new)

The context switch mechanism involves calling a special assembly

language routine, c_SWITCH(), with two parameters: the frame pointer

of the process to switch to, and an address for the current frame

pointer to be stored at (a location in the current processes PCB).

C_SWITCH() simply takes the current frame pointer and places it in the

location given in the parameter list, and takes the new frame pointer
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and puts it directly into the frame pointer register. When C_SWITCH()

returns (executes the return instruction) the subroutine return

mechanism uses the current frame pointer* to determine the location of

the stack frame to pop. Since it now has the frame pointer of a dif-

ferent process, context has effectively been switched.

The decision to perform a context switch is generally made by the

scheduler, but there are other situations where c_SWITCH() can be

called. One such time is during a transaction call. When a process

makes a transaction call, the kernel function c_tc() is called to do

the work. This function connects a transaction call structure to the

destination process's incoming transaction queue. It then checks the

state of the destination process. If it is waiting for this transac-

tion, then c_tc() may switch context directly to the destination pro-

cess .

Scheduling is likewise implementation dependent, though present imple-

mentations tend to be round robin with priority. Like real UNIX

processes, Concurrent C processes are allocated a time slice, and will

be preempted if they exceed their slice. The compiler also generates

code to call the scheduler directly when a Concurrent C process can

tell that it will block (ie. wait for a transaction when there are

none to be accepted). Environment permitting, the implementation may

choose to intercept certain slow UNIX system calls ( ie . readO) until

it knows the call can be fulfilled ( ie . until the read won't block).

This prevents the entire Concurrent C program from being blocked due

* Though hardware dependent, use of a single frame
pointer to reference the previous frame and restore the
stack seems to be typical.
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to an action of a single Concurrent C process.

With the basic process control in place, it is possible to implement

other features as kernel-knowledgeable processes, ie . as processes

which have access to the kernel data structures. A good example of

this is the Null process. This is a kernel process which is always

ready to run. Its priority is adjusted such that it only runs when

nothing else can. The Null process can check for system termination

conditions and also can do crude deadlock detection (in the uniproces-

sor version) . Termination can happen when all user processes are

either at a select-terminate statement or have already completed. The

Null process can scan the process table checking the process states to

see if this is the case. Simple deadlock can be detected by checking

the process states to see if each process is waiting for a Concurrent

C event (like a transaction call, as opposed to a read on a slow dev-

ice). Obviously all processes waiting on each other constitutes

deadlock.

The process abstraction is a convenient way to add functionality to

the kernel. Because of the inherent modularity of a separate process,

one can readily see that new services and modification of old services

might easily be accomplished. It was this observation which lead to

our implementation of deadlock detection in kernel processes. Of par-

ticular interest is that different deadlock detection processes could

be added, implementing different detection algorithms with little or

no modification required to the kernel itself.

The distributed kernel is not much different from the regular kernel.

A single UNIX process/Concurrent C program is now referred to as a

-22-



virtual processor. Interactions within a virtual processor are ident-

ical to those in the uniprocessor kernel. The difference is that mul-

tiple processors may be started, and Concurrent C processes may be

created on them and may interact with all other processes in the dis-

tributed system. From a programming point of view, the primary differ-

ence is that processes may not share the same address space, so one

must be careful to pass data by value rather than by reference.

Figure 3.4: Kernel process Msg in a virtual processor maintains
communication links to all other virtual processors

The distributed kernel makes use of a kernel process on each virtual

processor called Msg to manage incoming data from other processors.

Msg can deliver, forward, and process incoming messages. It is this

process which will see an incoming transaction call message, package

the parameters into a transaction call structure, attach it to the

destination process's incoming transaction queue, and determine if the

process needs to be scheduled. Using a separate process for this pur-

pose avoids the risk that the kernel itself might block trying to read

a message from another processor. The present implementation is also

clever enough to establish direct communication links with all other
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virtual processors. The implementation is not dependent on a particu-

lar underlying transport mechanism

Because of the ease with which kernel processes could be added, modif-

ications to the kernel to support deadlock detection were minimal. Two

fields were added to the process control block. The first was

p_tccallee which holds the process id of the process being called dur-

ing a transaction call. This was needed because during a transaction

call with a remote process, no information in the kernel on the cal-

ling side said who the callee was. When a transaction call is made,

kernel function c_tc() is called, and it is in this function that

p_tccallee is set (and cleared on completion of the transaction call).

The other addition was the p_tcseq field. This sequence number is

supposed to be updated whenever a process makes a transaction call, or

waits on an accept. Updating on transaction calls is easy, and is

done in c_tc(). Updating prior to waiting on an accept is more diffi-

cult and couldn't be done in the kernel. We only want the sequence

number to change once before waiting. Whenever a transaction call

comes in, the process gets awakened to evaluate the suchthat . Because

of the way this is done, bumping the sequence number in a kernel func-

tion would occur every time the process was awakened, giving the illu-

sion that the process was active when it really couldn't do anything.

It is therefore necessary for the application programmer to place a

call to special function bumpseq() prior to all select statements (and

accept statements not enclosed in selects). Ideally the code to

increment the sequence number should be directly added to the C source

produced by the Concurrent C compiler, but modifying the compiler was

beyond the scope of this project.
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3.2. Local Deadlock Detection

Concurrent C has built into it a form of deadlock detection. This is

really intended to catch programming mistakes (we presume) and is sim-

ply a matter of observing that there are no processes which can be

run, but all are waiting for some event internal to Concurrent C (ie.

not blocked on a read). This is trivial, and not useful for our pur-

poses as it requires all processes to stop. We are interested in the

deadlock of arbitrary groups of processes. Just because one segment

of a simulation (for example) deadlocks, does not mean that they all

should wait. Hence a more sophisticated deadlock mechanism is neces-

sary.

The kernel data structures reflect all activity within the processor.

Hence a deadlock detection process ought to be able to view the com-

munication graph along with the process states to determine deadlock.

Because of the communication model, (the fact that an accept creates

an implicit relationship with all other processes), we must know which

processes may choose to call which other processes. The best way to

get this information is from the application itself. The present

implementation is given a table of processes and the processes they

may call. The deadlock detection software takes this table and

inverts it into dependent sets of processes (from who P can call to

who can call p) . Knowing this, the deadlock process can pick a pro-

cess, see if it is blocked, and scan the processes in its dependency

list to determine their states. Deadlock exists if the starting pro-

cess is blocked, and all of its dependents are deadlocked.

An interesting result from an implementation standpoint involves
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information about non-local processes. One would think that local

deadlock could only be detected if all processes and relevant depen-

dents were local. However, in specific implementations it is possible

to know what a remote process is doing. In Concurrent C an incoming

transaction call is noted by attaching a transaction call structure to

the destination process's incoming transaction queue on its process

control block (PCB). If the transaction call cannot be accepted at

the destination, then we know that the calling process is blocked, and

since the identity of the caller is contained in the transaction call

structure the kernel can tell what processes are blocked. Hence a

remote process might call a local process, get blocked, and the kernel

would know about it. If another local process is dependent on this

remote process, then this information can be used when detecting the

deadlock despite the fact that a participant is non-local. This pro-

vides a potential means of partitioning the processes among systems

since intuitively less effort is required to do local deadlock detec-

tion when compared with distributed deadlock detection.
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* build new dependent sets
for all processes A

if process B is in the transaction queue of process A then
Dependent_set (B) = { A }

* and remember remote-blocked processes
if not LOCAL (B) then

Remote_blocked = Remote_blocked union B

choose a blocked process P

let set S = { P } where P is unmarked
while S contains unmarked processes do

Let P be an unmarked process in S

if not LOCAL (P) and P in Remote_blocked
or LOCAL (P) and BLOCKED (P) then

mark S (P)

S = S union Dependent_set (P)

else abort
endwhile
if not abort then

local deadlock detected

Figure 3.5: local deadlock detection algorithm

The algorithm is as follows. Knowing that the dependent set of a

transacting process consists solely of the transactee, we build new

dependent sets for all transacting processes. We do this by looking

for transaction call structures in the incoming transaction queues of

all processes. The transaction call structures identify the origina-

tor and when the originator is non-local, the process id is placed in

a special list of remote-blocked processes. A blocked process P is

chosen as the starting point. P is placed in set S and is "unmarked".

P is first checked for locality. If it is local, and is running then

the computation is aborted (of course this won't happen the first time

since P was specially chosen). If it is local and blocked, then it is

"marked" in set S, and the dependent set of P is added to set S. If P

is not local, then if it is in the special remote-blocked list it is

"marked" in set S and its dependent set is added to S. Finally a new P

is chosen from the unmarked processes in S. This continues until the
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computation either aborts or all processes in S are marked. We are

really just computing closure on the dependent sets, tracking the

states as we go so we can abort at the first opportunity if necessary

(as opposed to computing complete closure first and then checking

their states)

.

i Processor B

Processor A

Figure 3.6: Communication graph of a simple simulation model
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Figure 3.7: Dependent sets for processor B and the construction of S

Figure 3.6 shows a sample communication graph from a simulation. At

-28-



server 2, the upper path has a high probability. Queue 3 has filled

and is waiting for server 4 to call and get a job, while server 4 is

trying to send a job to queue 7. Queue 7 is waiting for another job

from server 6 so it can decide which job to accept. But, there are no

jobs on the lower path, and queue 5 is waiting for one from server 2.

The system has deadlocked. Now, local deadlock detection on processor

B can detect the deadlock even though processes 3 and 5 depend on pro-

cess 2 which is remote.

Figure 3.7 shows the dependent set on processor B and the successive

states of set S. In this example process 7 is arbitrarily chosen to

start with. It is placed into S. Next process 7's state is checked,

found to be blocked, and its entry in S is marked. Then 7's dependent

set is added to S. Process 4 is selected next (from S), found to be

blocked, marked, but its dependent set (process 7) is already in S so

no dependents are added. Process 6 is blocked, is marked, and its

dependent (process 5) is added to S. When process 2 is handled, as per

the algorithm it is identified as being non-local and is in the

remote-blocked list so it is treated like any other blocked process.

Finally process 3 is chosen, is marked, and its dependents are already

in S resulting in an absence of unmarked processes in S. Therefore we

have deadlock.

One last point is that to prevent inconsistent states from giving the

appearance of deadlock when it isn't really there, this algorithm must

run in a non-preemptable mode. This won't be a problem as long as

local deadlock detection isn't run unnecessarily often. A possible

heuristic might be used, based on the ratio of idle to active

processes, for determining when detection ought to be tried.
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Though the ability to detect deadlock locally even in the presence of

non-local processes suggests a way of partitioning the processes, we

can't expect to be able to condense all problems to this. In the next

chapter we will treat the problems of distributed deadlock detection.
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4. Global Deadlock Detection

Global deadlock detection in a distributed environment suffers from a

lack of global state. It becomes necessary to flow information about

the individual actions on the different processors amongst them until

at some point deadlock, or the absence thereof is evident.

b_.l. Classes of algorithms

A distributed environment complicates the deadlock problem by isolat-

ing the pieces of information necessary to determine deadlock. The

various methods of reconstructing this information enable one to clas-

sify the algorithms involved into four basic groups [Kna87] : path-

pushing, edge-chasing, diffusing computations, and global state detec-

tion.

4.1.1. Path-Pushing

The path-pushing method has its roots in the original construction of

the WFG. The method involves construction of the local WFG at each

node, and passing it to connecting nodes. Eventually one node will

have enough of the graph assembled to tell if deadlock exists.

This method has drawbacks in that the underlying computation needs to

be frozen during the deadlock computation in order to ensure a con-

sistent WFG. Algorithms implementing this tend to fail to detect some

deadlocks, and sometimes detect phantom deadlocks as well.

A. 1.2. Edge -Chasing
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Edge chasing involves sending special "probe" messages along the edges

of the WFG. These probes are propagated from node to node until they

reach a running process (and are discarded) or arrive back at the ini-

tiator of the probe (and thus detect a cycle). This method is only

useful if finding a cycle is sufficient for the model of deadlock

involved. Maekawa [1983] presents two algorithms which fit in this

category, and takes special issue with avoiding the detection of phan-

tom deadlocks.

4..1..3. Diffusing Computation

A diffusing computation is characterized by a manager process which

suspects deadlock and initiates a computation following the structure

of the existing application. This computation uses special "query"

and "reply" messages. The queries propagate to dependent processes

seeking information and the replies carry the results back. The com-

putation actually grows and shrinks as queries and replies work their

way through the system. The computation terminates when it shrinks

back to its root. Chandy, Misra, and Haas [1983] and Natarajan [1986]

present algorithms in this class which we will discuss in detail

below.

4.1.4. Global State Detection

The main idea here is to see a consistent global state without having

to suspend the underlying computation. This is related to the concept

of snapshots where partial views of the system are assembled to create

a picture of the whole. A partial ordering is developed based on a

"happened before" relationship, which can ultimately be used to
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describe a wait-for graph with a deadlock in it, as happening before a

wait-for graph was built from snapshots. Hence the snapshot view is

sufficiently accurate to detect deadlock. Of course there is much to

consider here, but it is not relevant to our discussion.

4.2. A Distributed Deadlock Detection Algorithm

Chandy, Misra, and Haas present an algorithm for communication

deadlock using an OR model of communication. We know from examining

the OR model previously that the need is to detect a knot of idle

waiting processes. In graph-theoretic terms, a vertex i of a directed

graph is said to be in a knot if all vertices that can be reached from

i can also reach i. Note that we can infer as well that an idle pro-

cess waiting on a process or processes in a knot could be considered

deadlocked though it does not participate directly in the knot.

The fundamental idea is that communicating processes know whom they

communicate with and whom they are waiting for. All of the necessary

wait-for information is present to detect deadlock, if the processes

can be made to cooperate. Chandy, Misra, & Haas use a method classi-

fied by Knapp as a "diffusing computation".

Each process has a so-called "dependent set" which is the set of all

processes which may send a message to this process. They further

state that the process may continue upon receiving a message from any

one of these. A process, upon entering the idle state, awaiting a

message, may initiate a query computation to find out if it is

deadlocked. From what we've already seen about diffusing computa-

tions, we can expect that the queries will propagate around, and
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replies will be sent back describing what was found (and hence the

computation grows and shrinks). The messages are of the form query

(i,m,j,k) and reply(i,m, j ,k) where m is the sequence number of the

query computation initiated by process Pi and is being sent from Pj to

Pk. Thus Pi is the initiator while Pj is the sender and Pk the

receiver.

The authors state two properties which hold for the query computa-

tions :

If process Pi is deadlocked then for every query (i,m,i,j)

it sends, it will receive a corresponding reply (i,m,j,i).

If initiator Pi has received reply (i,m,j,i) corresponding

to every query (i,m,i,j) that it sent, then it is

deadlocked.

In the algorithm, each process Pk has four tables of variables:

latest(i) == the largest sequence number in any query

(i,m,j,k) sent or received by Pk (initialized to 0)

engager (i), for i <> k, is the identity, say j, of the pro-

cess which caused latest (i) to be set to its current value

m by sending Pk the message query (i,m,j,k) (initialize to

arbitrary values)

num(i) is the total number of messages of the form query

(i,m,k,j) sent by Pk, minus the total number of messages of

the form reply (i,m,j,k) received by Pk, where m = latest
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(i) and j is arbitrary. Note that num (i) = means that Pk

has received replies to all queries of the form (i,m,k,r)

that Pk sent, where m = latest (i).

wait (i) is true if and only if Pk has been idle continu-

ously since latest (i) was last updated. Initially wait (i)

is false, for all i.

From the above definitions, latest(i) is used to separate multiple

queries from the same originator. Engager (i) remembers the identity

of the process which sent the last query which could be acted upon.

Num(i) tracks the matching of replies to queries and wait(i) remembers

if a process has been idle since receiving the engaging query to which

a response is being considered.

The reader can get kind of a feel for how this will work. All of the

local variables are indexed by the initiator. The sequence number m

is therefore used to dispose of old queries and replies from the same

initiator. Num(i) tells the process when all responses to all queries

to the dependent set have been received. Engager(i) then tells the

process which process's query was being propagated so that it knows

which process to respond to. And finally, wait(i) will catch situa-

tions where the process has not been idle.

In detail, an idle process Pi initiating a query bumps its deadlock

computation sequence number (same as incrementing latest (i)), and

sends query (i, latest (i), i, j) to all processes in its dependent

set. It also sets num(i) to the number of processes in its dependent

set and sets wait(i) = true (because Pi has been idle since latest(i)
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was last changed) . Whenever a process starts executing as the result

of receiving a regular message (it is not processing a deadlock compu-

tation) is should set wait(i) = false for all i.

When an idle process Pk receives a query (i,m,j,k), if m < latest (i)

this means a more recent query has been seen from Pi, so discard this

query. if m > latest (i) this indicates a new query from Pi. Set

latest (i) = m, set engager (i) = j, and wait (i) = true. Then send

query ( i,m,k, r) to all process in the dependent set, and set num(i) to

the number of processes in the dependent set. If, on the other hand,

wait (i) = true and m = latest (i) then this is a query which has been

seen before and the process is still idle so send reply (i, m, k, j)

to Pj . If m = latest (i) but wait (i) = false then discard the mes-

sage because the process hasn't been idle.

When a process receives a reply (i, m, r, k), if m = latest (i) and

wait (i) true then the process has received a reply to a query, and

it has remained idle. Therefore decrement num(i), and if num (i) =

and this process is the initiator then declare deadlock, otherwise

send reply (i,m,k,j) to engager (i). Hence if m <> latest (i) or m =

latest (i) but wait (i) = false then discard the query because the

computation is old or this process has not remained idle.

On the one hand, Chandy, Misra, and Haas have a fundamentally sound

algorithm. Messages for deadlock computation are small and are used

in an orderly fashion. However it has a couple of drawbacks. In par-

ticular, it requires that the number of processes be statically known

to size the deadlock variable arrays, and this storage is required for

each process. The necessity for all this storage stems from the need
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to remember what everyone has done. Natarajan [1986] proposed a simi-

lar algorithm which eliminates most of the storage requirements, and

is independent of network size. He accomplishes this by using a

periodic algorithm rather than trying to remember lots of state. Part

of our preliminary investigation of distributed deadlock detection was

to implement Natarajan' s algorithm.

4.3. Natarajan ' s Algorithm

Briefly, Natarajan views a distributed program as a network of comput-

ing agents which cooperate by exchanging messages. Each agent has a

set of output ports through which it sends messages, and a set of

input ports for receiving messages. For each communication event

(transaction) initiated by an agent, a communication identifier (Com-

mld) is created as a pair <transaction number, node number>. The

agent then uses this identifier in querying the states of its output

ports. The Commld becomes a deadlock reference number, and each agent

keeps this deadlock reference (Dref) in loose synchronization [Lam78].

As periodic port query information travels around the network, Dref

will tend to the highest Commld of processes involved in transactions.

This is the election aspect of the algorithm, for the agent whose

CommId==Dref will be the agent to detect the deadlock.

Agents, in the course of querying their output ports and answering

queries on their input ports, will suspect that deadlock has occurred

when each port has taken on an "inactive" state and will initiate

deadlock computations. More than one agent may initiate a deadlock

computation (which means the agent involved uses a different kind of

port query message), but due to the election algorithm, only one will

-37-



end up reporting the deadlock. When detecting, the agents use a dif-

ferent type of query to send out over their output ports which will

cause queries to be propagated and eventual responses elicited.

Deadlock is detected when the detector can determine that all of its

output ports are "Quiet", that is, when all of the agents with whom

this agent is trying to communicate with are also blocked trying to

communicate with some agent, and each of their output ports is quiet,

and so on.

Though Natarajan describes this as an algorithm suitable for a node

kernel, it is somewhat difficult to picture that way. It appears that

each process corresponds to any "agent" of his, and visualizing a ker-

nel routine running through all this on behalf of each process is

confusing. For our experimental implementation we elected to go ahead

and implement it on a per-process basis in part because the method of

kernel implementation was not obvious and in part because we did not

have access to the Concurrent C kernel source at that time.

To gain the desired level of control over the interprocess communica-

tion we had to implement a virtual network with a separate group of

processes. That is, we implemented interprocess communication through

other processes of our own creation. These processes implemented the

synchronous communication requirement of the application layer above,

while remaining active to exchange the query and detect messages asyn-

chronously with other processes of the same layer. Because we did not

have access to the kernel at this time, we did not have a global view

of the actions of local processes. Hence we could do the implementa-

tion within a single Concurrent C virtual processor and it would be

the same as if we were truly distributing, but easier to debug.
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This experiment became something of a study of problems in distributed

implementations. The code was complicated and difficult to debug

because of the concurrency. The shared memory environment within a

virtual processor posed problems where multiple instances of processes

wanted to invoke the same set of functions. Each function had to be

reentrant and all process state information local to a given process

and necessary to the function had to be passed as arguments to the

function. This wasn't hard to do, but it reduced the readability and

increased the confusion. The shared memory was also a problem because

it is trivial for one process to destroy another's data. The lessons

learned with this experiment were further reason for us to make ease

of implementation a realistic criterion for our final project.

Though Natarajan's algorithm does seem to be an improvement over

Chandy, Misra, and Haas, they both suffer in the area of complexity.

The algorithms are hard to understand and indeed we sacrifice reada-

bility for functionality (or is it quality) when moving from CHM's

algorithm to Natarajan's algorithm. In fact our first attempt at

implementing Natarajan's algorithm was wrong due to a misunderstanding

of the author's intent.

Both algorithms require a certain amount of per process state and both

are best viewed from the perspective of the individual processes them-

selves. Though Natarajan states that his algorithm is suitable for

implementation in the node kernel of a distributed language, how best

to achieve this is not obvious. The results of our experience led us

to the following qualities we wanted to see: ease of implementation,

easily debugged, and easily understood.
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Our target environment is Distributed Concurrent C which employs a

node kernel on each virtual processor. Rather than embed the deadlock

detection into each process, we would rather see the algorithm imple-

mented in the kernel itself. This we have done, using a hybrid algo-

rithm of our own which more suitably fit the kernel environment, and

was easer to implement.

4.4. Implementing Deadlock Detection in Concurrent C

We will now describe the algorithm we implemented.

Our communication model is the OR model. Hence we are concerned with

identifying the states of dependents as are Chandy, Misra, and Haas.

Rather than using the diffusing computation approach, we use something

similar to path-pushing.

Recall that the essence of deadlock detection in the OR model is

detection of a knot. This means that for a process to be deadlocked,

it must be waiting for a process or processes from its dependent set,

and each of these must similarly be blocked, waiting on their depen-

dent set, and so on. Our approach is to flow messages over each of

these paths until they either loop, or reach running processes. Their

status is reported back to a centralized agent responsible for the

particular deadlock computation, and it is this agent which will

report the existence of distributed deadlock when it has enough infor-

mation.

The kernel knows which processes may call which other processes. This

is the way the dependent set is handled. The information is already

provided for local deadlock detection. Recall that Concurrent C
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processes interact with transaction calls. For more complicated

applications it may be necessary to handle separate dependent sets for

each possible incoming transaction call. We do not make any distinc-

tion at this time for distributed simulation. A Concurrent C process

may be "idle" because it has made an uncompleted transaction call, or

it is trying to accept a transaction. The dependent set mentioned

above is only relevant when accepting transaction calls. When making

a transaction call, there is exactly one dependent, the destination of

the transaction call being made.

The algorithm works in the following way. A kernel process called

"deadlock" periodically wakes up and performs local deadlock detec-

tion. If local deadlock is not found, then it looks for a process

which is either transacting with or trying to accept from a non-local

process. If such a process exists, then a deadlock detection agent is

dynamically created to monitor the deadlock computation. The deadlock

process creates a message containing the process id of the agent, as

well as listing the current process and the current process's sequence

number. This message is then flowed to the member(s) of the dependent

set. If the process is transacting then the message is sent to the

deadlock process on the processor where the destination process is

located. If the process has multiple dependents, then the message

must split and flow to each dependent. The agent must be notified of

the split so that it can account for the findings of each message. To

keep this orderly, each message has an identifying sequence number.

The deadlock process makes a split transaction call to the agent,

which returns with a new sequence number. The new message, a copy of

the first except for the sequence number is then flowed to a depen-
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dent. Many successive splits may occur if there are many dependents.

When a message being flowed to process P arrives at a deadlock pro-

cess, the deadlock process examines the state of P to see what to do

next. If P is active, then deadlock cannot exist, an abort message is

sent back to the agent, and the deadlock message is discarded. If P

is not active it must be idle. Now the deadlock process needs to

determine if this message has passed through P before (by scanning the

list in the message). If the message has been to P before, the

process's sequence number is compared with the number stored in the

message to see if the process has been active since receiving the last

message. If they match then a deadlock message is sent back to the

agent identifying the message and indicating that this message found

conditions for deadlock. If the sequence numbers don't match, an abort

message is sent to the agent. If the message has not visited P, then

it is propagated to the members of the dependent set as before.

There are some special cases to consider. In our implementation, the

application specifies which processes are to be "watched" for

deadlock. This is to avoid service processes, statistics collectors,

and other processes which should never deadlock and usually are just

support for the main activity of the application. The situation

arises where a process may be transacting with one of these when a

message is flowed to it. In keeping with the algorithm, the message

will be dutifully flowed to the destination process. To handle this

case, the deadlock process which receives the message for P will ver-

ify that P is in the set of "processes to watch". If it isn't, then

an abort message will be sent back to the agent since, regardless of
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if ACTIVE (dest_proc)
send abort message to msg. agent

else /* blocked */

/* if this process has been visited before */
if dest_proc in msg. list

/*
* if current process seqno is the same as that
* process's seqno stored in the message
*/

if dest_proc . seqno = msg . list [proc ]. seqno
send complete message to msg. agent

else /* something changed since last visit */
send abort message to msg. agent

else
/*
* if making transaction call, propagate to the
* process being called
*/

if TRANSACTING (dest_proc)
append (msg. list, dest_proc, dest_proc_seqno)
dest_proc = TRANSACTEE (dest_proc)
send msg to deadlock (PROCESSOR(dest_proc)

)

else /* ACCEPTING */
append (msg. list, dest_proc, dest_proc_seqno)
for all P in Dependent_set (dest_proc)

dest_proc = P

/*
* the message only splits if it has to
* take more than one path
*/

if not first_time
msg. seqno = msg. agent . split (

)

else
first_time = TRUE

send msg to deadlock (PROCESSOR(dest_proc)

)

Figure 4.1: Distributed deadlock detection algorithm. A deadlock process
receives a detect message "msg", which is being propagated to
"dest_proc "

.

the state of P, deadlock cannot exist with a dependence on a process

out of the set of relevant processes.

Another special case is really an optimization. It involves the
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dependent set of an accepting process. If a process in the dependent

set has already called, then it is unnecessary to flow a message to it

since it is obvious that it is already transacting with a blocked pro-

cess (the one the message is at). This can happen when a process

calls, but the transaction cannot be accepted because of a false guard

or suchthat .

One additional optimization is important. The problem can arise where

after several splits, the paths join up again. The basic algorithm

does not have a join facility, and so many messages may duplicate the

same path unnecessarily. The algorithm will still work, but may tend

to feed on itself, allowing more messages than necessary which when

traversing the same path to a series of splits ( ie . split join split)

causes them to multiply even faster. The solution to this is for each

process to maintain a list of deadlock detection agent ids which have

passed through that process. Since we believe at most one agent

should exist on each processor, the table need be only as big as the

number of processors. The idea is that the agent id uniquely identi-

fies a deadlock computation. When a message arrives at a process, the

last agent id from the same processor is checked. If they are dif-

ferent, the new one is saved and the message is treated as usual. If

they are the same, this means a message from the same computation has

already been here, so there is no need for this message to continue

and a completion message is sent to the agent.

The agent responsible for a deadlock computation must account for each

message regardless of the state of the computation. If each message

reports back that deadlock appears to exist, then the agent will

notify the resolver process that indeed distributed deadlock has been
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detected. If any one message triggers an abort, then deadlock cannot

exist. To aid in the termination of an aborted deadlock computation,

the agent will return a special invalid sequence number on subsequent

split transaction calls which will be recognized by the calling

deadlock process as a signal to abort the computation on its end.

Finally, to make the job of the resolver somewhat easier, each "com-

plete" message returned to the agent will contain the entire deadlock

message. The agent can then create a list which is the union of all

processes in "complete" messages. This will result in a single list

of all processes involved in the knot, which can then be handed to the

resolver process when (and if) deadlock is reported. This can sim-

plify the resolver' s task because it doesn't have to guess or deter-

mine for itself the processes involved [Vop88].

P5 is running

Agentlfl
Msg gels to P5
P5 is running

Send abort msg to agent

Agantld It

10, 11, 8

10. 11. 8, 7, 6

Agsnlia | 1

10. 11

S^j

I

l

1

S> 1 1

° )C

13
*

Agenlld
Msg gets to P10
P10 is idle

Msg has been to P10 before

Send completion msg to agent

10. 11, 12. 15, 14. 13

Figure 4.2: Example of distributed deadlock detection

In figure 4.2 we have an example of distributed deadlock detection.

For simplicity, we do not show or keep track of the individual process

sequence numbers. All processes are idle except for P5 which is
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running. The figure shows deadlock detection as having started at

process 10 and assume a detecting agent has already been created with

a pid of Agentld. The arrows show the dependencies (A -> B means A

depends on B). The deadlock detection messages are shown at different

points in the computation as they flow the graph.

The message starts at process 10 and flows to its only dependent, Pll.

Pll is found to be idle, and having two members in its dependent set.

The message splits (previously we had just message 1, now we have 1

and 2) and message 1 is sent to P8, while the other (same message but

different message sequence number) is sent to P12. Each message then

flows through several nodes, following simple dependencies. Note that

in this example P5 is running. When message 1 gets to it, P5 is found

running and immediately an abort message is sent to the agent. Mes-

sage 2, on the other hand, arrives at P10 which is found to be idle.

The message is checked to see if it has been to P10 before. It has,

and the process's transaction sequence number is compared with the one

stored in the deadlock detection message for that process to determine

if it has been active since the message was last at this process. It

finds the sequence number has not changed, causing a completion mes-

sage to be sent to the agent.

The agent receives both the abort and the completion message, realizes

that it has heard from all outstanding messages and quietly terminates

(because of the abort). Now consider the same example, but this time

P5 is idle, waiting on P2, and nothing else is changed. In this case

the deadlock message would not stop at P6, but would continue until it

reached P7. It would stop at P7 because it had visited P7 before.

Since P7 is idle and has remained so, a completion message is sent to
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the detecting agent. This time the agent would report deadlock to the

resolver

.

4.5. Analysis

Before we compare the three algorithms we first need to discuss cri-

terion for judging them. Our experience has led us to suggest three

criterion: the clarity of the algorithm, the ease of implementation

from a kernel standpoint, and benefits or assistance provided to the

resolver.

We say clarity, thinking specifically of how easy it is to understand.

Our experience with Natarajan's algorithm showed that difficulty in

understanding led to misinterpretation of the author's intent and an

incorrect implementation. Because the level of complexity sharply

increases in a concurrent environment, we chose the simpler, cleaner

algorithm.

Ease of implementation follows directly from clarity, but we further

qualify that it must be a kernel-oriented implementation. This qualif-

ication is a direct reflection of our goal in placing deadlock detec-

tion within a language kernel. We also consider ease of implementa-

tion equivalent to how easy the algorithm is to debug and how diffi-

cult it is to verify correct behavior. Again we learned from

Natarajan's algorithm; when it was producing results there was the

nagging question whether those results were appearing for the right

reasons or not. We would like to eliminate that feeling of uncer-

tainty .

Finally we consider assistance to the resolver. Detecting deadlock is
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only part of the job. It must still be resolved. To this end we

merit algorithms which can assist the resolution, generally by trying

to provide more information than a simple "I am deadlocked".

Natarajan's algorithm is the most complex and the least clear. This

stems from the periodic nature of the algorithm and the minimal amount

of per-process state being maintained. The combinations of local

variables cause different actions when messages arrive, and make it

difficult to follow. Implementation is similarly difficult and

confusing in part because his terms and description don't seem to

match our environment. He claims his algorithm is suitable for a node

kernel implementation, but just how to do this is not obvious to us.

Another problem with this algorithm is debugging it in a concurrent

environment. There seems to be too much to keep track of. Regarding

resolution, Natarajan's algorithm will report deadlock at exactly one

node. The only particular benefit this algorithm has for the resolver

is that only one node will report this deadlock.

Chandy, Misra, and Haas' algorithm is not as complicated as

Natarajan's. They use more per-process state information which

reduces the complexity of the algorithm itself, but incurs the cost of

the extra storage. In terms of implementation, this algorithm is also

difficult to view in a node kernel approach. Resolution benefits are

minimal, and the same deadlock may be detected by many processes.

We believe our algorithm is easy to understand. Almost all necessary

state information is carried in the deadlock detection messages, and

the actions performed when a message arrives are straight-forward and

direct. Implementation is easier than the other algorithms, espe-
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cially in terms of debugging. This is because the deadlock detection

message we use holds information telling where it has been, and from

examining the contents of the messages one can see how the algorithm

determined the presence or absence of deadlock. We believe this to be

significant since we can more easily verify that the algorithm is

behaving the way we expect it to. Finally, we consider assistance to

the resolver which our algorithm does best. We can provide the

resolver with a list of deadlocked processes, much more than just the

single process of Natarajan or Chandy, Misra, and Haas (though in the

latter case this could probably be added) . Further note that our

local deadlock detection algorithm described in chapter 3 can also

provide this information, meaning that a single resolver may be used

to deal with both kinds of deadlock.

This is not to say that our algorithm is perfect. We pay a price for

having larger messages than either of the other algorithms, and like

Chandy, Misra, and Haas, the same deadlock may be detected by several

agents

.

Often the performance of distributed algorithms is characterized by

the number of messages which get sent. Chandy, Misra, and Haas show

that their algorithm requires at most 2nk messages where n is the

number of processes, each of which has a dependent set of size k or

less. Natarajan claims his algorithm is comparable with a limit of 2nk

+ n - 1 for the detection part of the algorithm. He does not state

the cost of the election part, so it is unclear just how meaningful

his figure is. In our case, the limit is 3nk - 2n + 1 . We arrive at

this as follows: there are nk messages propagated among processes,

n(k-l) split messages sent to back to the agent, and n(k - 1) + 1
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completion messages sent to the agent. This is really worst case

since all processes are not likely to have the same size dependent

set. Furthermore, any process making a transaction call will have

only one member in its dependent set. In terms of minimum messages,

it is not clear whether anything meaningful can be determined. The

simplest case is where k = 1, giving a minimum of 2n for Chandy

,

Misra, and Haas, 3n - 1 for Natarajan, and n + 1 for our algorithm.

Figure 4.3: Familiar picture of deadlock

For example, in our familiar picture of deadlock, starting at process

2 Chandy, Misra, and Haas would flow queries 2-3-4-7-6-5-2 and replies

would flow back 2-5-6-7-4-3-2, sending 12 messages. Our algorithm

would flow 2-3-4-7-6-5-2, thus sending 7 messages (counting the com-

pletion message). When the deadlock is reported, our algorithm will

list the processes involved.

In summary, we have looked at two distributed deadlock detection algo-

rithms suitable for our model of communication. We have proposed a

third which we believe to improve on the others in terms of understan-

dability, kernel implementation, and resolution assistance. Though we

pay a small price for larger messages, and have a potential for a

worse worst-case in terms of sending messages, we feel that our algo-

rithm is a reasonable alternative to those we have discussed.
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5. Recovery Mechanisms

Recovery involves denying one of the basic conditions of deadlock.

Resource allocation frequently makes use of preemption to free

deadlock. Communication deadlock is a bit different since the reasons

for why a group of processes are waiting are not evident to the ker-

nel. Though they would be to the application writer. Our particular

application environment is distributed simulation. Deadlock occurs

because processes are doing accepts on processes which will never call

and other processes are making calls which cannot be accepted. The

basic idea to free this is to make a transaction call to the process

which needs one so that it may accept and get on its way.

Distributed simulation passes timing information in the transaction

calls it makes. In order to perform a proper resolution the resolving

transaction call must have the correct time values in its parameters.

The resolver must get the proper time from the process which would

ordinarily be making the call that the resolver will have to make. If

the process with the needed time is accepting, then the resolver can

just ask it what the time is, and the process can be coded to accept

special transaction calls of that nature even though it is deadlocked.

However, if the process is making a transaction call, then the needed

time information is located in the parameters of that transaction

call. But that process is blocked making a transaction call (we

presume) elsewhere. Hence the deadlock detection software must pro-

vide a means for intercepting pending transaction calls to get a copy

of the parameters back to the resolver.

The resolver is an application layer process because the details of
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the application must be known to know how to approach resolution.

This limits the amount of information available to it about other

processes and the deadlock. Our implementation can presently provide

the resolver with a list of processes involved in a knot, but it may

need to know more. To this end we provide two services to the

resolver.

The first is a simple query-state(process) call which will return the

state (running, accepting, or transacting) of any process in the sys-

tem. If the process is transacting, query-state( ) will also return

the process id of the transactee. With this the resolver can see the

direction of the dependencies. The second service is an intercept-

transaction (process a, process b). This returns the parameters with

in the transaction call going from process a to process b. This only

works if the call is as yet unaccepted at b. In this way we allow the

resolver to intercept a message. It is up to the resolver to inter-

pret the information and act upon it further. These two primitives

are sufficient for the current needs of the resolver. Further details

regarding resolution in our environment may be found in [Vop88].
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6. Summary and Future Work

In conclusion, we have looked at two distributed deadlock detection

algorithms suitable for our model of communication. We have proposed

our own which we believe to improve on the others in terms of under-

standability , kernel implementation, and resolution assistance. We

also developed a local deadlock detection algorithm which takes advan-

tage of special implementation (kernel) knowledge and which enables it

to detect deadlock in certain cases where local processes are depen-

dent on remote processes. We actually did the implementation, a dis-

tributed deadlock detection package, which works with Ed Vopata's dis-

tributed discrete event simulator [Vop88].

An especially interesting area for future work involves a close look

at the amount of local work which can be accomplished in the node ker-

nel. For example, the present distributed deadlock implementation

uses message passing between deadlock detection processes when flowing

to any application process, even if the process is local (meaning it

will send itself a message). We did this because our first priority

was to get the algorithm running, and because we lacked the time to do

a more complicated implementation correctly. The approach which first

comes to mind is a recursive one, and since recursion is elegant but

often not efficient, and because of internal stack limitations, a

proper solution will require careful consideration. However one can

readily see that if much of the local flow can be done internally,

then the amount of message passing would drop dramatically.

There are several other ideas worth looking at. Of special interest

is the relationship between local and global deadlock detection, and
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the impact of the presence or absence of local deadlock detection (our

global algorithm will detect any deadlock, global or local). Another

topic is the question of partitioning the communication graph over

processor boundaries to take advantage of the local algorithm's abil-

ity to detect deadlock in certain situations where dependencies exist

with non-local processes.

Because our deadlock detection software was added to Concurrent C with

little modification to Concurrent C itself, and because of the ability

to implement the algorithm in independent processes, it should be pos-

sible to implement other detection algorithms as well with minimal

modification to the kernel. A comparative analysis of different algo-

rithms and different kinds of applications might prove interesting.
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Appendix A: Implementation hurdles

The implementation involved much more than just coding the algorithms.

The first task was to port Distributed Concurrent C to the AT&T

3b2/400's. This was necessary because Concurrent C will only distri-

bute between homogeneous systems. Sound simple? Though uniprocessor

Concurrent C is already capable of running on a 3b2, the distributed

version as released by AT&T Bell Labs only distributes on systems

based on 4.2/4.3 BSD UNIX (using sockets for interprocess communica-

tion), and the AT&T 3b4000 multiprocessor (using System V message

queues). With the arrival of WIN/3b networking software (which

includes the Berkeley sockets) for the 3b2s we were able to success-

fully port Concurrent C to the 3b2s.

Since the distributed code was meant for a BSD environment, we had to

be familiar with some of the finer distinctions between System V and

BSD. One example is interrupting system calls. In BSD UNIX, when a

system call (such as read()) is interrupted and the signal handler

returns control to the interrupted routine, the system call will

automatically be restarted. System V on the other hand does not res-

tart; the system call fails and errno==EINTR. Hence wrapper code

needs to be inserted around some of the system calls in the multipro-

cessor code to disable the alarm( ) signal prior to making the call

(alarm() is used to implement time slices) so as to avoid interrupting

the call.

To get here from there we discovered a bug in AT&T's C Compiler which

AT&T was previously unaware of (and was sufficiently nasty to find

that we had to go to assembly language to catch it) . In the course of
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this port we learned that when a Concurrent C process's stack is clob-

bered, you only find out about it when context returns to the process

whose stack was trashed. When this happens, the core dump is useless

in figuring out who crashed whom and where because the stack is messed

up. This is one of the toughest problems to debug. There is no

mechanism to detect when a process has exceeded its designated stack

area (though I think for development purposes such a thing could be

implemented to catch some violations). Translation: porting took

nearly as much time as writing the project itself. We also had to get

C++ running so we could recompile the Concurrent C compiler to under-

stand the keyword for asynchronous message passing.
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Appendix B: Source code for local and distributed deadlock detection
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# $Header: Makefile.v 1.1 88/06/20 13:49:15 scott Locked $

CSRC=
C0BJ=
CCSRC= mkgraph.cc deadlock. cc dead2.cc dead3.cc
CC0BJ= mkgraph..o deadlock.. o dead2..o dead3..o
DEFS= defs.h spec.h
CCFLAGS= -DDEADLOCK

cc -Dc_MPCC -g -c $*.c

CCC ${CCFLAGS} +M -g -C $*.cc

dd.a: ${CC0BJ}
ar r dd.a ${CC0BJ}

a. out: ${C0BJ} ${CC0BJ} ${DEFS}
cc -g ${C0BJ} ${CC0BJ} /usrb/scott/ccc/lib/libmpcc50g.a -lnet

dead2..o: dead2.cc ${DEFS}
CCC ${CCFLAGS} -DPASS1 +M -g -c $*.cc

dead3..o: dead3.cc ${DEFS}
CCC ${CCFLAGS} -DPASS1 +M -g -c $*.cc

mkgraph..o: mkgraph.cc ${DEFS}
deadlock.. o: deadlock. cc ${DEFS}
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static char
rcsid[ ]=

"$Header: deadlock. cc ,v 1.6 88/09/14 02:24:12 scott Locked $";

typedef long c_pid, c_tp; /* defined in ccproc.h, need for pid */

/* //include "Pid.h" */

/*
//undef PASS1
//include "../.. /ccc/src/include/ccproc .h"

*/
//include <stdio.h>
^include <concurrentc .h>

# include "Pid.h"

//include "defs.h"
//include "spec.h"

LIST table [D_NPROCS ]

;

/*
extern long startmem;
*/

TPTR_report_deadlock d_report_deadlock; /* for use by gdetect */

long d_debug;
extern process anytype dda_id;

/*
* Deadlock is the process whose primary responsibility is deadlock
* detection. One such process is supposed to be created on each
* virtual processor, and the process id of each should be stored in
* a table called "deadmen" where the index is the processor number
* of the process. (ie. process deadlock on processor 5 will
* appear in deadmen [5]).
*/

process body deadlock ( report_deadlock, Query_tab, D_debug)
{

c_pidu proc, spid, dpid;
c_pid p;

CALLERS callers;
0UTBUF_S outbuf;
register LIST *ptr;
register int i;

int status, done=0;
int mypid;
int count;
int timeout;
int detect_enabled = TRUE;
char *b;
DDMSG ddmsg;
c_pidu newpid;
extern char *getxaction( )

;

int dorpt = 1;
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char flowtcall;

/* So I can identify myself */

mypid = c_mypid();
dda_id = c_nullpid;
d_report_deadlock = report_deadlock; /* place in global var */

d_debug = D_debug; /* place in global variable */

for ( ; !done ;

)

select {

/*
* putcallers (c_pidu Proc, CALLERS_S Callers)
*

* This transaction is called by mkgraph whose job it
* is to inform each deadlock process in the system
* of the list of processes it is expected to watch
* out for. Each deadlock process will only be asked
* to watch out for processes local to it.
*

* Proc is the process id of a process to watch, and
* Callers is a list of processes which may call this
* one. Note that is an invalid pid, hence the
* list may be terminated with a 0.

*/
accept putcallers (Proc, Callers) {

/*
* if Proc is not local then we've got bogus data
*/

if ( IISLOCAL(Proc)) {

c_printf ( "dead: Proc %P Not local\n", Proc);
printf ( "dead: Proc Xltx not local\n", Proc);
fflush (stdout);
treturn( )

;

} else {

for (i = 0; i < CALLERSIZE; i++) callers [i] = 0;

/*
* copy parms so we can free the transaction right
* away
*/

for (i = 0; (Callers . callers [i] != 0) &&
(i < CALLERSIZE) ; i++)

callers[i] = Callers .callers [i]

;

proc = Proc;

}

} /* free transaction call */
/*
* table is indexed by the matching process table
* index
*/

table [proc .u_px] .pid. u_pid = proc.u_pid;
/*
* If we do NOT already have a list of callers for
* this process
*/

if ((ptr = table [proc .u_px] .next) == 0) {

/*
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* if there are any callers
*/

if (callers[0] != 0) {

/*
* allocate space for the first entry; fill it

*/
ptr = table [proc .u_px] .next =

(LIST *) malloc (sizeof (LIST));
ptr -> pid.u_pid = callers [0];
ptr -> next = 0;

i - 1;

}

else continue; /* ??? */

}

else i = 0;

/*
* skip to end of linked list
*/

ptr = table [proc .u_px] .next

;

while (ptr -> next != 0) ptr = ptr -> next;
/*
* loop through callers, adding LIST structs to the
* list as we go
*/

for (; (callers [i] != 0) && (i < CALLERSIZE) ; i++) {

ptr -> next = (LIST *) malloc (sizeof (LIST));
ptr = ptr -> next;
ptr -> pid.u_pid = callers [i];
ptr -> next = 0;

}

or
/*
* Mkgraph calls done when there are no more putcallers
* transactions to be made (we have all the info now)
*/

accept done ( ) {

}

done = TRUE;

}

if DBG(20)
for (i = 0; i < D_NPR0CS ; i++)

if (table [i] .pid.u_pid != 0) {

printf(" deadman PZd: table [Zd] .pid = Z#x\n" , c_por,
i, table [ i] .pid.u_pid)

;

ptr = table [i] .next;
while (ptr != 0) {

printf( "deadman: PZd: caller= 2#x\n",
c_por,ptr->pid.u_pid)

;

ptr = ptr -> next;
}

}

count = 0; done = 0;
for ( ; !done ; ) {

select {

/*
* ASYNC intercept (c_pidu src_pid, c_pidu dst_pid,
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* TPTR_intercept_response response_tptr)
*

* This transaction call is provided for the benefit of
* the deadlock resolver (Ed's project). Its purpose is

* to intercept the parameters of a transaction call which
* has been made but cannot complete at the callee side
* (an unaccepted transaction call). Ed needs this so
* that he may determine the simulation time in the
* caller.
*

* This call is implemented as an asynchronous transaction
* call and includes as a parameter a transaction pointer
* to call with the results when they become available.
* This call-back mechanism is necessary because there is

* no way in Distributed Concurrent C to return parameters
* other than a single simple type in a transaction
* call--the only way being via "treturn". Regular
* Concurrent C doesn't present this problem because the
* shared memory environment permits passing pointers
* (call-by-reference).
* *

* The local resolver process will ask its local deadhead
* for the intercept. If the intercept destination is
* local, then it will snag the parameters and call back
* the resolver. If, however, the destination is
* non-local, then it will forward the request to a

* queryserv process on the appropriate virtual processor
* for handling (the queryserv process will do the
* call-back directly).
*/

accept intercept (src_pid, dst_pid, response_tptr) {

if DBG(21)
printf

(

"deadman Zitx: accepted intercept (src= Htx, dst= Z//x)\n",
mypid, src_pid, dst_pid)

;

if (ISLOCAL (dst_pid)) {

spid = src_pid; dpid = dst_pid;
b = getxaction (spid, dpid);
/*
* if there was no transaction to intercept, a -1
* status is returned
*/

if (b == 0) status = -1;

else {

status = 0;

/* copy the buffer */
for (i = 0; i < OUTBUFSIZE; i++)

outbuf . outbuf [i] = b[i];
/* this was dynamically allocated; free it */
free (b) ;

}

(*response_tptr) (outbuf, status);
}

else
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/* can I use the original parms? */

Query_tab.query_tab [dst_pid.u_por ] . intercept
(src_pid, dst_pid, response_tptr)

;

}

/*
* getstate (c_pidu pid)
*

* This is yet another service provided for the benefit of
* the resolver process. It allows the resolver to
* determine the state of an arbitrary process in the
* system. Just as with intercept, a request about a

* local process will be handled directly, whereas the
* query will be forwarded if it is non-local.
*

* Note that this attempts to return the result via
* "treturn" because the necessary info can be fit into a

* long, which is simple enough that Distributed
* Concurrent C can deal with it. Hence the transaction
* is synchronous, and indeed if the query is forwarded
* elsewhere, it must wait for that call to return.

*/

or accept getstate (pid) {

if DBG(21)
printf ( "deadman Xitx: accepted getstate\n",
mypid)

;

if (ISLOCAL (pid))
treturn (getstate (pid));

else
treturn (Query_tab.query_tab [pid. u_por] .getstate

(pid));

}

/*
* This transaction is used to enable deadlock detection
*

* This feature is provided because in the amount of time
* it takes the resolver process to perform the
* resolution, the detector is liable to detect the same
* deadlock again before the resolver has had a chance to
* do anything about it. Running deadlock at a low
* priority (to reduce frequency of scheduling) didn't
* have much of an effect.
*

* Detection will be disabled when it successfully reports
* deadlock to the resolver.
*
/

or accept enable_detect ( ) {} detect_enabled = TRUE;
/*
* This is where deadlock detection is initiated. Note
* that the deadlock detection doesn't run on processor
* (Ed doesn't put any regular simulation processes there,
* just collector and other support processes)
*/

or (detect_enabled && c_por !
= 0): delay 10.0; {
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if (/*count++ > 500*/ 1) {

count = 0;

c_printf

(

"deadlock[%x] : thinking of detection, ddaid= %x\n",
mypid, dda_id)

;

if (dorpt) { dorpt— ; c_prpt(); }

if (!DBG(30)) {

if DBG(21) {

printf ( "deadman %//x: calling detect\n",
mypid)

;

f flush (stdout);

}

if (p = detect( ) ) {

if DBG(22) {

printf

(

"deadman Zjtx found deadlock at Z#x\n",
mypid, p)

;

f flush (stdout)

;

}

/*
* If we can't make the report within 2

* seconds, forget it.

*/
timeout = within 2 ?

(*report_deadlock) (p) : 1;

if (Itimeout) detect_enabled = 0;

}

else
if (!DBG(29) && dda_id == c_nullpid) {

ddstartl ();

}

}

else
if (!DBG(29) && dda_id == c_nullpid) {

ddstartl ();

}

}

c_sch(); /* good idea? */

}

/*
* Global detection messages come from deadlock processes
* on other virtual processors.
*/

or accept global_detect (Ddmsg, Newpid, Flowtcall) {

ddmsg * Ddmsg;
newpid = Newpid;
flowtcall = Flowtcall;
}

c_printf( "deadman Zx : got glob_detect\n" , mypid);
printddmsg (mypid, ddmsg, newpid);
ddetect (ddmsg, newpid, flowtcall);

/*
* This allows the application layer to explicitly
* terminate us
*/
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or accept term() {done = TRUE;}

}

}

DEADMEN deadmen;
/*
* process queryserv()
*

* This purpose of this process is to field certain queries from
* deadlock processes on other virtual processors. It is done as a
* separate process (instead of calling another deadlock process)
* because with independent activity on different processors the
* deadlock processes might synchronously request something from
* each other which would deadlock them. And it simply wouldn't do
* to have the deadlock detector deadlocked.
*

* One queryserv process exists for each deadlock process, one per
* processor.
*/

process body queryserv (

)

{

char *b;
register int i;

int mypid, status;
OUTBUF_S outbuf;
extern char *getxaction( )

;

/* note my pid */
mypid = c_mypid();

/*
* Each queryserv process receives a putdeadguys call from the
* buildgraph process. It is simply a table of pids for deadlock
* processes in the system. The table is indexed by processor
* number. Note that queryserv places this into a global variable
* so that others may use it.

*/
accept putdeadguys (Deadmen) {

c_printf( "queryserv [Zx]: got putdeadguys transaction\n"

,

mypid)

;

for (i = 0; i < D_NP0RS-; i + +) {

deadmen [i] = Deadmen. deadmen [ i]

;

if (deadmen [i] != 0)

c_printf( "queryserv [Zx]: deadmen [Zd] = Zx\n",
mypid, i, deadmen[ij);

}

}

for (;;)
select {

/*
* For a proper treatment of this transaction call, see
* the identical transaction call in the deadlock process.
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* This * is just the implementation of the intercept when
* the request gets forwarded to a remote processor.
*/

accept intercept (src_pid, dst_pid, response_tptr) {

if (ISLOCAL (dst_pid)) {

b = getxaction (src_pid, dst_pid)

;

if (b == 0) status = -1;

else {

status = 0;

for (i = 0; i < OUTBUFSIZE; i++)
outbuf . outbuf [i] = b[i];

free (b)

;

}

(*response_tptr) (outbuf, status);

}

else {

/*
* since only deadlock processes should call, if
* this was a non-local process then someone
* screwed up
*/

printf

(

"queryserv: intercept -- non-local xptr\n");
fflush (stdout);

}

}

/*
* For a complete description of the getstate transaction,
* see the identical transaction call in the deadlock
* process. This is just the queryserv implementation
* which deadlock calls when it gets a non-local request.
*/

or accept getstate (pid) {

if (ISLOCAL (pid))
treturn (getstate (pid));

else
printf

(

"queryserv: getstate — non local pid= %//x\n",
pid);

treturn (0);
}

or terminate;

/*
* This is a distributed deadlock agent. When a distributed deadlock
* computation is initiated, an agent is created to tally up the
* information and report the results. This method was deemed simpler
* than trying to get the deadlock process to manage possibly many
* distributed deadlock computations simultaneously and stay within
* reasonable memory limits.
*/

process body ddagent (origin, org_seqno)
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int nummsgs = 1;

int abort = 0;

int nlist = 0;

int done = FALSE;
register int i, j

;

process anytype mypid;
DDMSG UDDmsg; /* union of ddmsgs */

mypid = (process anytype) c_mypid();
printf( "ddagent [Z#x] : origin= Z#x, org_seqno= Zd\n", mypid,

origin, org_seqno);
fflush (stdout);
c_printf ( "ddagent [Zx] : origin= Zx, org_seqno= Zd\n", mypid,

origin, org_seqno)

;

for { ; ! done ; ) {

select {

/*
split (c_pidu Pid)

This transaction call is made when a distributed
deadlock detection message reaches a point at which
it must take two different paths. In order to detect

* deadlock, the results of following all paths *must* be
* known. Hence the agent must be notified of a split.
*

* Pid is the process at which the split is taking place
* (not the id of the deadlock detector, but the id of
* the process whose communication flow is causing the
* split) .

*

* To identify each message, it (the message) is assigned a
* sequence number. The split transaction returns a number
* to use (since any one message doesn't know about any
* siblings, nor their activity). If the agent has already
* determined that deadlock cannot exist (abort==TRUE) it
* will return a sequence number of (invalid as a real
* sequence number) which tells the split point that there
* is no need to waste resouces and continue; it already
* failed so stop.
*/

accept split (Pid)
printf

(

"ddagent [Z#x

{

}

or
/*

split (Pid= 2#x), nummsgs was Zd\n",
mypid, Pid.u_pid, nummsgs);

fflush (stdout)

;

c_printf

(

"ddagent [Zx] : split (Pid= Zx) , nummsgs was 2d\n",
mypid, Pid.u_pid, nummsgs);

treturn (abort ? —nummsgs, : ++nummsgs);

abort (c_pidu Pid, long Seqno)
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* The abort call is made whenever a deadlock detection
* message reaches a point where it is certain deadlock
* cannot exist (ie. a running process). Any one such
* instance aborts the whole computation. The abort is
* reported to the agent.
*

* The Pid is the id of the process whose state caused the
* abort. The Seqno is the sequence number of the
* detection message involved.
*/

accept abort (Pid, Seqno) {

abort = TRUE;
printf

(

"ddagent [Z//x] : abort (Pid= X#x, Seqno= Zttx) , nummsgs was Zd\n",
mypid, Pid.u_pid, Seqno, nummsgs);

fflush (stdout);
c_printf

(

"ddagent [Zx] : abort (Pid= Zx, Seqno= Zx) , nummsgs was Zd\n",
mypid, Pid.u_pid, Seqno, nummsgs);

nummsgs--

;

}

or

/*
* rpt_deadlock (DDMSG DDmsg)
*

* This call is made by a detector when a deadlock
* detection message reaches the same process which it
* started with, and the state of that process hasn't
* changed.
*

* Note that this does not necessarily mean that deadlock
* exists. Any messages resulting from a split must be
* accounted for.
*

* It passes the entire message for the agent's viewing
* pleasure.
*/

accept rpt_deadlock (DDmsg) {

printf

(

"ddagent [Ztlx] : rpt_deadlock, DDmsg. seq= ZA, nummsgs was Zd\n",
mypid, DDmsg .msg_seqno , nummsgs);

c_printf(
"ddagent [Zx] : rpt_deadlock, DDmsg. seq= %d, nummsgs was Xd\n",

mypid, DDmsg .msg_seqno, nummsgs);

for (i=0; i < GDLISTSIZE &&
DDmsg. dlist [i] .pid. u_pid != 0; i++) {

for (j=0; j < nlist; j++)
if (DDmsg. dlist [ i] .

pid . u_pid ==

UDDmsg. dlist
[ j ] .pid.u_pid)

break;
if (j == nlist) /* didn't find it */

UDDmsg. dlist [nlist++ ]
.
pid.u_pid =

DDmsg. dlist [ i ]
.
pid . u_pid;
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}

}

printddmsg (mypid, UDDmsg, 0); /* may not work */

if ((--nummsgs == 0) && labort) {

printf ( "Distributed Deadlock! ! !\n")

;

c_printf ( "ddagent
[
Zx ] : Distributed Deadlock !!! \n"

,

mypid)

;

}

fflush (stdout);
or
/*
* All messages must be accounted for before we can
* terminate; else someone might try to call us and they
* would be decidedly upset if we weren't here.
*/
(nummsgs ==0) : done = TRUE;

}

}

c_printf( "ddagent [%x] : terminating\n" , mypid);
dda_id = c_nullpid;
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static char
rcsid[] = "$Header: dead2.cc,v 1.5 88/09/14 02:23:55 scott Locked $'

//include <stdio.h>
//undef PAS SI
# include "../.. /ccc/src/include/ccproc .h"

^include "Pid.h"
//include "defs.h"
//include "spec.h"

LIST *Stuck;
extern LIST table [D_NPR0CS]

;

extern DEADMEN deadmen;
extern long d_debug;

/*
* makelist (LIST *gr, c_pidu proc)
*

* makelist adds a LIST structure to a LIST, and puts the proc info
* in it

*/
#define makelist(gr, proc) \

{ \

register LIST *ptr; \
ptr = gr -> next; \
while (ptr != 0) ptr = ptr -> next; \

if (ptr == 0) { \
ptr = (LIST *) malloc (sizeof (LIST)); \

ptr -> pid.u_pid = proc; \

ptr -> next = gr -> next; \

gr -> next = ptr; \

} \

}

/*
* inlist (LIST *head, c_pidu proc)
*

* When given the head of a LIST of LIST'S, it will return true or
* false depending on whether it can find proc in the LIST
*/

inlist(head, proc)
LIST *head;
c_pidu proc;

{

register LIST *ptr;

ptr = head;
while (ptr != 0)

if (ptr->pid.u_pid == proc.u_pid)
return (TRUE);

else ptr = ptr -> next;
return (FALSE);
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/*
* freelist walks a LIST, freeing everything in the list as it goes
*/

void freelist (head)
LIST *head;

{

register LIST *xptr, *yptr;

xptr = head;
yptr = head -> next;
while (yptr != 0) {

free (xptr)

;

xptr = yptr;
yptr = yptr -> next;

}

free (xptr)

;

/*
* detect is the main function for detecting local deadlock

The basic algorithm is to run through the list of
processes-to-watch and stick into the Stuck list each pid which
is stuck. Stuck in this case is any process making a transaction

* call which I can determine cannot be accepted by the destination
process

.

The next step is to find an accepting process-to-watch and
recursively walk a list of its callers. If each of these callers
is also "stuck" then the accepting process is likewise stuck,

* moreover it is deadlocked.
*/

detect(

)

{

int i

;

register c_tcall *tcall;

/*
* While we're walking the process table and transactions queues,
* it is safer to prevent disallow preemption.
*/

c_DISABLE;

/*
* Build a list of stuck processes
* The approach is to locate all accepting processes and
* evaluate the pending incoming transaction calls.
*/

Stuck = (LIST *) malloc (sizeof (LIST));
Stuck -> pid.u_pid = 0;
Stuck -> next = 0;
for (i = 0; i < D_NPR0CS; i++) {

/*
* Only processes to watch for are in "table"
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*/
if (table [ i] .pid.u_pid != 0) {

if (ACCEPTSTATE (table [i].pid)) {

if DBG(23)
printf

(

"table [%d]= %itx c_procs
[ ] .p_tcin.pid= Z#x\n",

i, table [ i] .pid.u_pid,
c_procs [i]

.
p_tcin->tc_callerpid)

;

/*
* look at the incoming transaction queue
*/

tcall = c_procs [i] .p_tcin;
/*
* Walk the queue of incoming transactions
*/

while (tcall != 0) {

if DBG(23) {

printf

(

"detect: pid=2//x selmsk=Z#x tcmsk=%//x\n"

,

c_procs [i]
.
p_pid, c_procs [i] .p_selmsk,

tcall->tc_msk)

;

ff lush (stdout)

;

}

/*
* The process can only be blocked on select if
* the pending transactions couldn't be accepted
* either due to a false guard or false suchthat.
* Hence it is sufficient that the process be
* blocked on wselect, and there be transactions
* in the queue.

V
makelist (Stuck, tcall -> tc_callerpid)

;

tcall = tcall -> tc next;

}

}

/*
* we're finished with the worst of it, permit preemption
*/

c_ENABLE;
/*
* Something missing here. It is possible that no one is
* accepting and that all are transacting. In this case we
* would actually expect this to be a result of incorrect
* programming (as opposed to an expected event as in the case
* of discrete event simulation). Since it is "incorrect" and
* since this version is aimed at running with the simulator
* (not so generalized), I haven't added code to look for

transacting processes if it can't find any accepting*

* processes
*/

for (i = 0; i < D NPROCS; i++)
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* if it is a process to watch
*/

if (table [ i] .pid.u_pid != 0) {

if (ACCEPTSTATE ( table [ i] .pid) )

if (recurse(table [ i] .pid, table [i] .pid) ) {

if DBG(22) {

print f( "DEADLOCK DETECTED! ! !\n")

;

f flush (stdout)

;

}

f reelist (Stuck)

;

/* c_ENABLE; */
return (table [ i] .pid.u_pid)

;

/* yup. Well, I hope so anyway */

}

}

}

/*

*

*

*

*

*

*

k

*/

f reelist (Stuck)

;

/* c_ENABLE; */
return (FALSE); /* nope */

recurse (c_pidu start, c_pidu pid)

Recurse is the heart of local deadlock detection. It will
recursively walk backwards to callers of processes until it
either finds a running process (and aborts the deadlock), finds
stuck process (and then the recursion stops and it will go back
and find some other path to check) , or finds its starting point
(considers it stuck)

recurse (start, pid)
c_pidu start, pid;

{

register LIST *ptr;

if DBG(24)
printf( "recurse : start= %#x, pid= Z#x\n",

start. u_pid, pid.u_pid);

/*
* Is this process already stuck? (note: even if it is a remote
* process, we might know about it)
*/

if (inlist(Stuck, pid)) {

if DBG(24)
printf( "recurse: pid= %#x is stuck\n", pid.u_pid);

return (TRUE);

}

/* if it isn't local we can't tell... yet */
if ( IISLOCAL(pid) ) return (FALSE);

/* not doing accept, running or transacting */
if ( !ACCEPTSTATE(pid) ) return (FALSE);
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*

/*
* At this point we know that the process is ACCEPTING. We now
* walk through its list of callers and determine what the
* state of each is. If they are all stuck, then we have
* deadlock.
*

* Note that the processes which have called us but whose
* transactions we cannot accept will already appear in the
* "Stuck" list so we do NOT have to treat differently
* processes who have called over process who haven't.
*/

ptr = table [pid. u_px] .next

;

while (ptr != 0) {

if (ptr -> pid.u_pid == start. u_pid)
{ ptr = ptr -> next; continue; }

if (Irecurse (start, ptr -> pid))
return (FALSE)

;

else
ptr = ptr -> next;

}

/* this node is stuck, so add it to the list */
makelist (Stuck, pid.u_pid);
if DBG(24)

printf ( "recurse : pid= litx is stuck (bottom) \n", pid.u_pid);
return (TRUE);

char *getxaction (c_pidu src_pid, c_pidu dest_pid)
/*
*

*

* This function is called by both process deadlock and process
* queryserv. Its purpose is to get the parameters of a pending
* synchronous transaction call. Hence it implements the
* transaction call "intercept".
*

* The idea is to locate the process, and find the transaction in
* the queue by looking for a transaction with the proper source
* address. Since we're only talking synchronous calls, there can

be at most one transaction from the source process in the queue.
* For this reason too, we don't need to care which transaction was
* called either.

* getxaction() will return a pointer to a dynamically allocated
* buffer which should be freed by the caller
/

*

char *

getxaction (src_pid, dest_pid)
c_pidu src_pid, dest_pid;
{

c_proc *p; c_tcall *t;
int size; char *s;
register char *sl, *s2;
extern char *c_malloc();
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p = &c_procs [dest_pid.u_px]

;

t = p -> p_tcin;

while (t != 0)

if (t->tc_callerpid == src_pid.u_pid) {

/* found the puppy */
size = p -> p_desc -> p_tdesc [c_log2( t->tc_msk) ] . t_argsiz

;

si = s = c_malloc (size);
s2 = t -> tc_args;
for (; size > 0; *sl++ = *s2++, size— );

return (s)

;

}

else
t = t-> tc_next

;

return ( (char *) 0)

;

}

//define ACCEPTING (1 « 27)
//define XACTING (2 « 27)
//define RUNNING (3 « 27)

int getstate (pid)
c_pidu pid;

{

if (ACCEPTSTATE (pid)) {

if DBG(25)
printf ("getstate: ACCEPTING pid= 2//x\n", pid.u_pid)

return (ACCEPTING)

;

}

if (WAITSTATE (pid)) {

if DBG(25)
printf ( "getstate: XACTING pid= Z//x, callee= Z#x\n",

pid.u_pid, c_procs [pid.u_px] .p_tccallee)

;

return (XACTING
|
c_procs [pid.u_px]

.
p_tccallee)

;

}

if DBG(25)
printf ("getstate: RUNNING pid= Z//x\n", pid.u_pid);

return (RUNNING);
}
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static char
rcsid[] = "$Header: dead3.cc,v 1.2 88/09/14 02:24:02 scott Locked $'

//include <stdio.h>
//undef PAS SI
//include "../.. /ccc/src/include/ccproc .h"

//include "Pid.h"
//include "defs.h"
#include "spec.h"

extern LIST table [D_NPR0CS];
extern DEADMEN deadmen;
extern long d_debug;

process ddagent dda_id;

/*
* ddstartl
*

* The purpose of this function is to initiate distributed deadlock
* detection
*

* The approach is to scan the table of processes-to-watch "table"
* and check each process' state. If it is making a transaction
* call to a process which is non-local, then we become suspicious
* that there is a possible deadlock situation. Likewise, if the
* process is accepting (WAITSTATE) and it has a potential caller
* who has not called, then we try to detect deadlock.
*
/

void
ddstartl(

)

{

register int i, j

;

c_pidu tmppid;
DDMSG ddmsg;
void ddstart2( ) ;

c_printf( "deadlock: Entering ddstartl\n" )

;

for (i = 0; i < D_NPR0CS; i++)
/*
* processes to watch are non-zero
*/

if (table [ i] .pid.u_pid != 0)

if WAITSTATE (table [i].pid) {

ASSERT (i==table[ij .pid.u_px, "ddstartl:");
tmppid. u_pid = c_procs [i] .p_tccallee;
c_printf( "ddstartl: WAITSTATE\n" )

;

c_prptp (&c_procs [ i] )

;

if ( !ISL0CAL( tmppid)) {

/*
* out bound transaction call
*/

dda_id = create ddagent
(table [i] .pid, c_procs [ i] .p_tcseq)

;
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c_printf( "deadlock: created ddagent 2x\n",
dda_id)

;

/*
* make sure the list starts with zeroes
*/

for (j=0; j < GDLISTSIZE;
ddmsg.dlist

[
j++] .pid.u_pid = 0);

ddmsg.dda_id = dda_id;
ddmsg.msg_seqno = 1;

ddmsg.dlist [0].pid = table [i].pid;
ddmsg. dlist [0 ] . seqno = c_procs [ i ]

.
p_tcseq

;

ddmsg.dlist [1] .pid.u_pid = 0;

tmppid.u_pid = c_procs [i] .p_tccallee

;

/*
* send a global_detect transaction to the next
* guy (might be myself— too painful to do right
* for this version)
*/

c_printf

(

"deadlock: calling deadmen[Zd] {=0xZx} .gd(
)
\n"

,

tmppid.u_por, deadmen [tmppid.u_por] )

;

deadmen [tmppid.u_por]
.
global_detect

(ddmsg, tmppid, TRUE);
return( )

;

}

}

else {

if ACCEPTSTATE (table [i].pid) {

/*
* is there a possible off-site caller?
*/

if (possible ( i) ) {

/*
* go for it

*/
ddstart2 (i);
return( )

;

}

}

}

}

/*
* Possible is used when an accepting process has been located and we
* want to know if there is a possible caller off-site AND if that
* caller has NOT called.
*/

possible (i)

int i;

{

LIST *ptr;
c_pidu pid;
c_tcall *tcptr;

pid = table [ i] .pid;
ptr = table [i] .next;
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while (ptr != NULL) {

/*
* is the possible caller local or remote?
*/

if (!ISLOCAL (ptr -> pid)) {

/*
* offsite; is it in the queue?
*/

ASSERT (pid.u_px == i, "possible:");
tcptr = c_procs [i].p_tcin;
while (tcptr != NULL) {

if (tcptr -> tc_callerpid == ptr -> pid.u_pid)
break; /* yup, found it in the queue */

else
tcptr = tcptr -> tc_next;

}

if (tcptr == NULL)
/*
* not found in queue
*/

return (TRUE);

}

/*
* go to next possible caller
*/

ptr = ptr -> next;

}

if (ptr == NULL)
return (FALSE); /* didn't find anything */

/*
* ddstart2 is used when an accepting process has been located and
* we've determined that there is a possibility (offsite caller who
* hasn't called)> This function does the real work of splitting the
* message off on all paths.
*/

void
ddstart2 (i)

int i;

{

register int j ;

int firstone = TRUE;
c_pidu pid, tmppid;
/* ptr is used to point to processes in the dependent set */
LIST *ptr;
c_tcall *tcptr;
DDMSG ddmsg;

pid = table [i].pid; /* the process we are working on */
ptr = table [ij.next;
ASSERT (table [ i ]

.
pid. u_pid == c_procs [ i ]

.
p_pid, "ddstart2 :

" )

;

dda_id = create ddagent(pid, c_procs [ i ]
.
p_tcseq)

;
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c_printf( "deadlock: created ddagent Zx\n", dda_id)

;

I*
* make sure the list starts with zeroes

*/

for (j=0; j < GDLISTSIZE; ddmsg. dlist
[
j ++] .pid.u_pid = 0);

ddmsg.dda_id = dda_id;
ddmsg. msg_seqno = 1;

ddmsg. dlist [0].pid = table [i].pid;

ddmsg. dlist [0].seqno - c_procs [ i] .p_tcseq;

ddmsg. dlist [1] .pid.u_pid = 0;

while (ptr != NULL) {

/*
* start at the beginning of the incoming transaction queue

*/
tcptr - c_procs [pid.u_px] .p_tcin;
while (tcptr != NULL)

/*
* If a possible caller has called, then we don't
* need to flow a message to it. It is already in
* the ACCEPTSTATE so we know the caller's
* transaction couldn't be accepted (else the callee
* would be running)

.

*/

if (tcptr -> tc_callerpid == ptr -> pid.u_pid)
break;

else
tcptr = tcptr -> tc_next;

if (tcptr == NULL)
/* didn't find it
*

* Note that we flow the first message, but have to split
* for any others
*/

if (firstone) {

tmppid.u_pid = ptr -> pid.u_pid;
c_printf

(

"deadlock: calling deadmen[2d] {=0x%x}
.
gd(

)
\n"

,

tmppid.u_por , deadmen [ tmppid . u_por] )

;

deadmen [tmppid. u_por]
.
global_detect (ddmsg, ptr ->pid,

FALSE)

;

firstone = FALSE;

}

else {

ddmsg. msg_seqno = ddmsg. dda_id. split (pid);
if (ddmsg. msg_seqno != 0) {

tmppid. u_pid = ptr -> pid.u_pid;
c_printf

(

"deadlock: calling deadmen[Zd] {=0x2x} .gd( )\n"

,

tmppid. u_por, deadmen [ tmppid. u_por] )

;

deadmen [ tmppid. u_por]
.
global_detect

(ddmsg, ptr -> pid, FALSE);

}

}

ptr = ptr -> next;
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}

}

void
propagate (ddmsg, newpid)
DDMSG ddmsg; c_pidu newpid;

{

int last;
c_pidu tmppid;
LIST *ptr;
c_tcall *tcptr;

c_printf( "propagate : ddmsg. a= Zx, msgseq= Zx, newpid= Zx >>\n",
ddmsg. dda_id, ddmsg .msg_seqno , newpid);

c_prptp(&c_procs [newpid.u_px] )

;

for (last = 0; (last < GDLISTSIZE) &&
(ddmsg. dlist [last] .pid.u_pid != 0); last++);

if WAITSTATE (newpid) {

ddmsg. dlist [last].pid = newpid;
ddmsg. dlist [lastj.seqno = c_procs [newpid. u_px] .p_tcseq;
last++;
tmppid. u_pid = c_procs [newpid. u_px] .p_tccallee

;

c_printf( "deadlock: calling deadmen[Zd] {=0xZx}
.
gd( )\n"

,

tmppid. u_por, deadmen [ tmppid. u_por] )

;

deadmen [tmppid. u_por]
.
global_detect (ddmsg, tmppid, TRUE);

}

else {

if ACCEPTSTATE (newpid) {

ptr = table [newpid. u_px] .next

;

while (ptr != NULL) {

tcptr = c_procs [newpid. u_px] .p_tcin;
while (tcptr != NULL)

if (tcptr -> tc_callerpid == ptr -> pid.u_pid)
break;

else
tcptr = tcptr -> tc_next;

if (tcptr == NULL) {

/* didn't find it */
ddmsg. msg_seqno = ddmsg. dda_id. split (newpid);
if (ddmsg. msg_seqno != 0) {

ddmsg. dlist [lastj.pid - newpid;
ddmsg. dlist [lastj.seqno =

c_procs [newpid.u_px] .p_tcseq;
tmppid. u_pid = ptr -> pid.u_pid;
c_printf

(

"deadlock: calling deadmen[Zd] {=0xZx}

.

gd(
)
\n"

,

tmppid. u_por, deadmen [tmppid. u_por] )

;

deadmen [ tmppid. u_por]
.
global_detect

(ddmsg, ptr -> pid, FALSE);
}

}

ptr = ptr -> next;



else
/* abort */
ddmsg.dda_id. abort (newpid, ddmsg.msg_seqno)

;

}

void
ddetect (ddmsg, newpid, flowtcall)
DDMSG ddmsg; c_pidu newpid; char flowtcall;

{

register int i;

ASSERT (ISLOCAL (newpid), "ddetect:");
c_printf ( "ddetect

:
\n" )

;

c_prptp(&c_procs [newpid.u_px] )

;

/*
* Is newpid a process-to-watch? It might not be if the
* message was flowed from a transacting process which was
* making some kind of special call ( ie . to a statistics
* collector or something) which does not really participate in
* the communication which might deadlock.
*/

if (table [newpid. u_px ] .pid.u_pid == 0) {

c_printf( "deadlock: [%x] not a process to watch\n",
newpid. u_pid)

;

/*
* The process is calling someone we aren't watching, so we
* must conclude that it is active; no deadlock
*/

ddmsg. dda_id. abort (newpid, ddmsg. ms g_seqno )

;

}

if (WAITSTATE (newpid) || ACCEPTSTATE (newpid)) {

if (flowtcall) {

register int last;
register c_tcall *tcptr;
c_pidu tmppid;
/*
* this msg arrived by following a transaction call
* our job is to verify that the call is still here
* (necessary in distributed environment)
*/

for (last = 0; (last < GDLISTSIZE) && (ddmsg. dlist
[last ] .pid.u_pid != 0); last++)

;

last—

;

tmppid. u_pid = ddmsg. dlist [ last ] .pid.u_pid;
tcptr = c_procs [newpid. u_px]

.
p_tcin;

while (tcptr != NULL)
if (tcptr -> tc_callerpid - tmppid. u_pid)

break;
else

tcptr = tcptr -> tc_next;
if (tcptr -- NULL)

/*
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* didn't find it: abort
*/

ddmsg.dda_id. abort (newpid, ddmsg .msg_seqno)

;

else
/*
* found it, now see if it is the same call by
* comparing the sequence numbers
*/

if (ddmsg. dlist [last].seqno != tcptr->tc_tcseq)
ddmsg. dda_id. abort (newpid, ddmsg. msg_seqno )

;

}

/*
* newpid is still blocked, now we want to know if this is the
* process the message started at

*/
if (ddmsg. dlist [0] .pid.u_pid == newpid. u_pid)

/*
* yes, same process, are the sequence numbers the same?
*/

if (ddmsg. dlist [0].seqno == c_procs [newpid. u_px ]. p_tcseq)
/*
* yes, report deadlock to agent
*/

ddmsg. dda_id. rpt_deadlock (ddmsg)

;

else
/*
* seqno has changed, abort

V
ddmsg. dda_id. abort (newpid, ddmsg. ms g_seqno )

;

else {

/* have we been here before? */

for (i=l; i < GDLISTSIZE && ddmsg. dlist [ i] .pid.u_pid !=0

;

i++)
if (ddmsg. dlist [i] .pid.u_pid == newpid. u_pid) {

/* Yes we've passed this node before... */

if (ddmsg. dlist [ i] . seqno ==

c_procs [newpid.u_px] .p_tcseq)
/* the seqno is the same, report to dda */
ddmsg. dda_id. rpt_deadlock (ddmsg)

;

else
/* seqno has changed, abort computation */
ddmsg. dda_id. abort (newpid, ddmsg. ms g_seqno )

;

return( )

;

}

propagate (ddmsg, newpid);
}

}

}

void
printddmsg (mypid, ddmsg, newpid)
process anytype mypid;
DDMSG ddmsg;
c_pidu newpid;
{

register int i;
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c_printf ( "\tdda_id= Xx, msg_seq= %d\n",
ddmsg . dda_id , ddmsg . msg_seqno )

;

for (i=0; i < GDLISTSIZE && ddmsg. dlist [ i] .
pid . u_pid != 0; i++)

c_printf ( "\t\tdlist [Xd] : pid= Xx, seq= %d\n",
i, ddmsg. dlist [i] .pid, ddmsg. dlist [i].seqno);

}

/*
* Application processes need to call bumpseq() prior to doing a
* select or an accept (in the absence of a select). This is to
* note activity in the process.
*/

void
bump_seq(

)

{

(c_cur -> p_tcseq) ++;

}
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static char
rcsid[]= "SHeader: mkgraph.cc,v 1.5 88/09/14 02:24:31 scott Locked $";

typedef long c_pid, c_tp; /* defined in ccproc.h, need for pid */

//include <stdio.h>
//include "Pid.h"
//include "defs.h"
//include "spec.h"

//define MAXPROCS 100

//define add(gr, proc) \

{ \

LIST *ptr; \

ptr = gr -> next; \

while (ptr != && ptr -> pid.u_px != proc) \

ptr = ptr -> next; \

if (ptr == 0) { \

ptr = (LIST *) malloc (sizeof (LIST)); \

ptr -> pid.u_pid = proc; \

ptr -> next = gr -> next; \

gr -> next = ptr; \

} \

}

process body buildgraph(deadmen, Query_tab)

{

long proc;
DEADMEN_S Deadmen;
CALLERS_S Callers;
CALLERS callers;
LIST *graph;
LIST *j, *k;

int nprocs = 0, i, done = 0;

TPTRS_putcallers tptrs;

graph = (LIST *) malloc (MAXPROCS * (sizeof (LIST)));

for (i=0; i < D_NP0RS ; i++)
if (deadmen [i] != 0)

c_printf

(

"buildgraph: deadmen [%d]= Xx\ti", i, deadmen[i]);

for (; !done; ) select {

/*
* load_callers is given a pid, and a table of pid's
* calls is a table of pids which proc may call
*

* It then inverts this information, building a graph listing
* each process and the process(es) which call(s) it.

*/
accept load_callers (Proc, Calls) {

proc = Proc;
for (i = 0; i < CALLERSIZE; i++) callers [i] = Calls [i];

} /* free caller */
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/*
* If proc is not in the graph yet, put it in.

*/
for (j = graph; (j < graph + nprocs) &&

(j -> pid.u_pid != proc); j++);
if (j -> pid.u_pid != proc)

if (nprocs == 0) {

graph -> pid.u_pid - proc;
graph -> next = NULL;
nprocs++;

}

else {

(graph + nprocs) -> pid.u_pid = proc;
(graph + nprocs) -> next = NULL;
nprocs++

;

}

/*
* now add proc to the list of callers to callers [i]

*/
for (i =0; (i < CALLERSIZE) && (callers[i] != 0); i++) {

for (j = graph; j < graph + nprocs; j++) {

/*
* if callers [i] is in graph then add proc and move
* to next i

*/
if (j -> pid.u_pid == callers[i]) {

add ( j , proc )

;

break;

}

}

/*
* if end of graph then didn't find callers[i] so add both

V
if (j == graph + nprocs) {

(graph + nprocs) -> pid.u_pid = callers [i];
add ((graph + nprocs), proc);
nprocs++;

}

}

or
/*
* This function is to be called after all load_callers
* transactions are finished.
*/

accept done() {

done = TRUE;
printf ( "Buildgraph: received D0NE\n");
fflush (stdout);

}

}

for (j = graph; j < graph + nprocs; j++) {

/* send callers to process pid */
k = j -> next;
for (i = 0; i < CALLERSIZE; i++)

Callers .callers [i] = 0;
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i = 0;

while (k != 0) {

Callers. callers [i++] = k -> pid.u_pid;
k = k -> next;
if (i == CALLERSIZE) {

printf( "build: deadmen [%d] == Z#x\n", j ->pid.u_por,
deadmen

[
j->pid.u_por ] ) ; fflush (stdout);

deadmen
[
j->pid.u_por] .putcallers (j -> pid, Callers);

i = 0;

}

}

printf( "build: deadmen [%d] == Z#x\n", j ->pid.u_por,
deadmen

[

j ->pid. u_por ] ) ; fflush (stdout);
Callers. callers [i] =0; /* I think */

deadmen [j->pid.u_por] .putcallers (j -> pid, Callers);

}

for (i = 0; i < D_NP0RS ; i++)
Deadmen. deadmen [i] = deadmen [i];

printf ( "Buildgraph: calling putdeadguys\n" ) ; fflush (stdout);

for (i = 0; i < D_NP0RS ; i++) {

if (Query_tab [i] != 0)

Query_tab [i] .putdeadguys (Deadmen);
if (deadmen [i] ! = 0)

deadmen [i].done();

}

printf ( "Buildgraph is f inished\n" ) ; fflush (stdout);
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//ident "$Header: defs.h,v 1.5 88/09/14 02:23:20 scott Locked $'

/* must be same as NPROCS in libmpcc: nprocs.c */

//define D_NPR0CS 50

/* must be same as NPORS in libmpcc: cc.h */

//define D_NPORS 16

//define CALLERSIZE 6

//define OUTBUFSIZE 64

//define GDLISTSIZE 50

//define TRUE 1

//define FALSE
//define DBG(x) (d_debug & (1 << (x)))

struct L_LIST {

c_pidu pid;
L_LIST *next;

};

typedef struct L_LIST LIST;

struct Dead_ID {

c_pidu pid;
long seqno;

};

typedef struct Dead_ID DEADID;
typedef struct Dead_ID GDLIST [GDLISTSIZE];

struct ddmsg_t {

process ddagent dda_id;
long msg_seqno;
DEADID dlist [GDLISTSIZE];

};

typedef struct ddmsg_t DDMSG;

typedef long CALLERS [CALLERSIZE];
typedef struct {

CALLERS callers;
} CALLERS_S;

typedef char OUTBUF [OUTBUFSIZE];
typedef struct {

OUTBUF outbuf;
} OUTBUF_S;

typedef trans void ( *TPTR_putcallers ) (c_pidu, CALLERS_S);
typedef TPTR_putcallers TPTRS_putcallers [D_NP0RS];

typedef process deadlock DEADMEN [D_NP0RS];
typedef struct {

DEADMEN deadmen;
} DEADMEN_S;

typedef process queryserv Queryserv_tab [D_NPORS];



typedef struct {

Queryserv_tab query_tab;

} Queryserv_tab_S

;

typedef async trans ( *TPTR_intercept_response) (OUTBUF, int);

typedef int trans (*TPTR_report_deadlock) (c_pidu)

;

extern int c_por;

//define ISLOCAL(pid) (pid.u_por == c_por)

//define ACCEPTSTATE(pid) (c_procs [pid . u_px] . p_state == c_wselect)

//define WAITSTATE(PID) (c_procs [PID.u_px] .p_state == c_wservice || \

(c_procs [PID.u_px] .p_state == c_wmsg && \

c_procs [PID.u_px] .p_tccallee != 0))

//define ASSERT(X.Y) if ( ! (X) ) \

fprintf (stderr, "Zs Assertion failed\n",Y)
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#ident "$Header: spec.h,v 1.6 88/09/13 03:38:22 scott Locked $"

process spec buildgraph(DEADMEN deadmen, Queryserv_tab Query_tab)

{ void trans load_callers (long Proc, CALLERS Callers);
void trans done ( )

;

};

process spec queryserv () {

void trans putdeadguys (DEADMEN_S Deadmen);
async trans intercept (c_pidu src_pid, c_pidu dst_pid,

TPTR_intercept_response response_tptr)

;

long trans getstate (c_pidu pid)

;

};

process spec deadlock (TPTR_report_deadlock report_deadlock,
Queryserv_tab_S Query_tab, long D_debug)

{

trans void putcallers (c_pidu Proc, CALLERS_S Callers);
async trans intercept (c_pidu src_pid, c_pidu xptr,

TPTR_intercept_response response_tptr)

;

void trans done();
long trans getstate (c_pidu pid)

;

async trans global_detect (DDMSG Ddmsg, c_pidu Newpid,
char Flowtcall )

;

async trans term();
void trans enable_detect ( )

;

};

process spec resolver () {

async trans intercept_response (0UTBUF_S outbuf, int status);
int trans report (c_pidu pid)

;

};

process spec ddagent (c_pidu origin, long seqno) {

int trans split (c_pidu Pid)

;

void trans abort (c_pidu Pid, long Seqno);
void trans rpt_deadlock (DDMSG DDmsg)

;

};
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Overview:

Startup

:

First a queryserv process should be started on each processor,
saving the pid in a table of type Queryserv_tab . Next a deadlock
process should be started on each processor, passing it a tran-
saction pointer to call when when reporting deadlock, and the
Queryserv table. Then on the local (main) processor (0) the pro-
cess "buildgraph" should be started. Buildgraph should be called
repeatedly giving process/callee information, and finally a table
of process ids of the deadlock processes started originally.

/* must be same as NPROCS in libmpcc: nprocs.c */
//define D_NPR0CS 24

/* must be same as NPORS in libmpcc: cc.h */
#define D_NP0RS 16

//define CALLERSIZE 6

//define OUTBUFSIZE 64
//define TRUE 1

#define FALSE

struct L_LIST {

c_pidu pid;
L_LIST *next;

};

typedef struct L_LIST LIST;

typedef long CALLERS [CALLERSIZE];
typedef char OUTBUF [OUTBUFSIZE];

typedef trans void (*TPTR_putcallers) (c_pidu, CALLERS);
typedef TPTR_putcallers TPTRS_putcallers [D_NP0RS];

typedef process deadlock DEADMEN [D_NPORS];
typedef process queryserv Queryserv_tab [D_NP0RS];
typedef async trans (*TPTR_intercept_response) (OUTBUF, int);
typedef async trans ( *TPTR_report_deadlock) ( )

;

extern int c_por;

//define ISLOCAL(pid) (pid.u_por == c_por)

process spec buildgraph (DEADMEN deadmen, Queryserv_tab Query_tab)
{ void trans load_callers (long proc, CALLERS callers);

void trans done ( )

;

};

Startup
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Above is the process spec for buildgraph( ) . Buildgraph is called

with a table of process ids of deadlock processes, indexed by

processor number. Someone will call buildgraph with the

load_callers transaction call, once for each relevant process (a

relevant process is a process which may participate in deadlock),

"proc" will be the pid of the process in consideration, and CALL-

ERS is a table of processes (pids) which this process can call.

"loadcallers( )
" may be called as many times as necessary for a

single process. If ever there are fewer processes than will fill

the callers table, place a pid in the first invalid location.

If a process calls no one, it is *not* necessary to call load-

callers() (at least not necessary at the moment).

When the process calling buildgraph() with all this juicy infor-
mation is finished, it needs to make one last transaction call
"done()". This tells buildgraph() to distribute its version of

the graph to all of the deadlock processes.

process spec deadlock (TPTR_report_deadlock report_deadlock,
Queryserv_tab Query_tab)

{

trans void putcallers (c_pidu Proc, CALLERS Callers);
void trans done ( )

;

async trans intercept (c_pidu src_pid, c_pidu xptr,
TPTR_intercept_response response_tptr )

;

long trans getstate (c_pidu pid)

;

Querying the network state. The resolver may contact the local dead-
head using the transaction calls "intercept" and "querystate" . Here
is the spec

:

async trans intercept (c_pidu src_pid, c_pidu xptr,
TPTR_intercept_response response_tptr)

;

trans long getstate (c_pidu pid)

;

The purpose of intercept is to snag the parms of a pending tran-
saction call, given the caller and the callee processes. The
intercept transaction is given the pid of the process making the
xaction call (src_pid), the pid of the accepting process
(dst_pid), and a transaction call to send the response to. Due
to the problems of implementing the return of arbitrary informa-
tion in a distributed environment, a call back mechanism
(response) is used to return the intercept result. Hence the
resolver should do "deadman. intercept (x, y, tptr) ; accept
response (outbuf, status);" or something like that. Just don't
forget that intercept is an async call. The intercepted message
(or as much of it as would fit) will be in "outbuf", and a

"status" value indicating the relative success of the intercept.
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If it went ok (found the message) then status will be 0, if it

couldn't find the message then the status will be -1.

Getstate is a synchronous transaction call and returns the state

of the process in question. There are three possible states:

ACCEPTING, XACTING, and RUNNING, and they occupy bits 27-31 of

the return value.

//define ACCEPTING (1 « 27)

//define XACTING (2 « 27)

//define RUNNING (3 « 27)

ACCEPTING means that the process is doing an accept, probably
just waiting on a transaction call. XACTING means that the pro-

cess is making a transaction call. In this case the process id

of the transactee will be returned in the first 27 bits (0-26) of

the long. RUNNING is pretty much everything else.
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Abstract

One often finds that extremely useful tools or applications can be

abstracted into language constructs whose methods can be hidden from

the user. Interprocess communication is a good example of this as

shown in the Concurrent C transaction call [GeRo86], and the Ada ren-

dezvous [DoD83]. Because programmers now have the ability to write

communicating programs easily, it would be nice if the programmer

didn't have to worry about the details of deadlock detection. We

believe deadlock detection is appropriate for implementation at the

language level.

In this thesis we describe an implementation of a distributed deadlock

detection algorithm in the distributed kernel of Concurrent C. In par-

ticular, we have considered the relationship between local and global

deadlock detection and made some special improvements on published

deadlock detection algorithms [CMH83, Nat86] that can be made because

we have special implementation (kernel) knowledge. Our specific

implementation is in support of a distributed discrete event simulator

[Vop88] for which we detect deadlock.


