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The method developed in a previous paper �R. Mazo, J. Chem. Phys. 129, 154101 �2008�� for
extracting information on the size of relative fluctuations in multicomponent systems is tested on ten
binary systems and one ternary system. For the binary systems, it is found that the approximation
works well for mole fractions in the range of 0.15–0.85 in most cases. For the ternary case, the
method inherently yields less information and is valid only over a more restricted range for the case
studied �chloroform-methanol-acetone�. It is found that the predicted ratio of number fluctuations is
approximately equal to the ratio of molar volumes of the components.
© 2009 American Institute of Physics. �DOI: 10.1063/1.3154582�

I. INTRODUCTION

In a previous paper,1 one of us introduced a method for
deducing information on the fluctuations of particle numbers,
eventually from thermodynamic data, using Kirkwood–Buff
theory.2 Two systems for which data were available, urea-
water and 2,2,2-trifluoroethanol-water, were analyzed using
the method in order to illustrate its applicability. This paper
is hereafter referred to as I. Indeed, the method is an approxi-
mate one; it is not universally applicable, but it does contain
an internal check, so that one is not left guessing about the
validity of the results. In the following we shall call the
method by the name principle component approximation
�PCA for short�. Our PCA is not identical to the PCA used by
statisticians but is closely related to it, as noted in I.

The purpose of this paper is twofold. First, we want to
add a few theoretical comments concerning details of the
method. The second and the main object of the paper is to
apply the method to 11 additional systems. These comprise
two electrolyte solutions, a ternary mixture, and eight non-
electrolyte binary systems including both polar and nonpolar
molecules, and large and small molecules. We hope in this
way to investigate the extent of applicability of the method,
which was tested in I in only two examples, both aqueous.

II. THEORY

Kirkwood–Buff theory expresses the thermodynamic
properties of solutions in terms of certain integrals,

Gij =� �gij�r� − 1�d3r , �1�

and numbers, Bij =cicjGij +cj�ij. The Gij are called
Kirkwood–Buff integrals �KBIs�. The gij are spherically av-
eraged pair correlation functions. These expressions can be
inverted to give the Bij in terms of thermodynamic
functions.3 Kirkwood and Buff showed that VBij = ��Ni�Nj�,

the covariance matrix of the fluctuations of the particle num-
bers, �Ni, of the various species in the solution, defined as in
Refs. 1 and 2.

The result of I was the demonstration that, when some of
the eigenvalues of B are much larger than the others, the
description of the system can be condensed with little loss in
accuracy and new information obtained. In effect, although
the �Ni are fluctuating quantities, there are certain ratios of
the �Ni which have fixed relationships. The method leads to
a reduction in dimensionality of fluctuation space.

We outline the procedure proposed in I which we call the
PCA. Write the B matrix in dyadic form,

B = �
�

u�u�T��, �2�

where the �� are the eigenvalues and the u� the correspond-
ing eigenvectors of B. The T means transposed. Note that we
label the eigenvectors by Greek letters as superscripts; com-
ponents of these vectors will be denoted by Latin subscripts.
This is a change from the notation of I, made to avoid con-
fusion. �To avoid more confusion we state explicitly that the
placing of sub- and superscripts has nothing to do with the
co- or contravariant nature of the vectors.� If we discard the
small eigenvalue contributions to the sum in Eq. �2� �the
meaning of the term “small eigenvalue” is explained in detail
in I�, we get a new matrix,

b = �large
��u�u�T. �3�

This matrix has rank at most n-r, where n is the number of
components of the solution, and r is the number of small
eigenvalues of B. Consequently it can be described by a
smaller number of independent variations or eigenmodes;
this implies strong couplings between the fluctuations of
various components, especially in two component, and to a
lesser extent in three component, solutions.

As stated in I, the b matrix is of little interest in itself. It
is an approximation to the B matrix which we assume wea�Electronic mail: mazo@uoregon.edu.
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already have in hand. The interesting information lies in the
eigenvectors of B. The PCA proceeds by providing a ratio-
nale for neglecting one or more of these eigenvectors, thus
reducing the dimensionality of the space. The computation of
b is merely a check on the validity of the PCA for the system
being studied.

The existence of small eigenvalues is a necessary, but
not sufficient condition. To appreciate this, consider the toy
model for a binary system with a B matrix,

S = 	1 �

� f�

 . �4�

This should be imagined to be the B matrix for a binary
system very dilute �� small� in component 2, scaled so that
its largest matrix element is unity. f is an arbitrary constant.
Of course it is easy to compute the eigenvalues and eigen-
vectors of S directly, but it is more enlightening to carry out
the calculation to first order in � only. The two eigenvalues
are of order unity and order �, respectively, as one can see
immediately from elementary perturbation theory. Carrying
out the procedure of I, we find for the relative error of the
reconstituted matrix sij the following results, presented in
matrix form:

s = 	 1 � + O��2�
� + O��2� O��2�


 . �5�

In other words, the relative error in the 2,2 matrix element is
of the same order as the matrix element itself. This occurs
because the matrix S is almost singular for small �. The same
conclusion holds, mutatis mutandis, if component 1 is the
dilute one. Since small � in this example is a metaphor for
small concentration in the real physical systems we want to
treat, what we learn from this example is that the method of
I is not likely to give reliable results for very dilute solutions.
Indeed, detailed calculations bear this out as we shall see in
the section to follow.

The last methodological point we wish to make here
concerns three component systems. In I we pointed out that
when there were two large and one small eigenvalues, the
fluctuations form a one parameter family,

�N1:�N2:�N3 = a1 + �a2:b1 + �b2:c1 + �c2. �6�

Here the �N’s are the particle number fluctuations as in I,
col�a� ,b� ,c�� is the �th eigenvector normalized to unity, and
� is an arbitrary parameter. � may be eliminated as follows.
�u1 ,u2 ,u3� form an orthonormal triad of vectors. By our ne-
glect of the small eigenvalue, we are forcing ��N1, �N2,
�N3� to lie in the u1-u2 plane and hence be normal to u3.
Consequently

�N1a3 + �N2b3 + �N3c3 = 0 �7a�

or

�N3/�N2 = − �b3 + a3��N1/�N2��/c3. �7b�

Although the ratio of the fluctuations is not determined
uniquely as is the case in a binary system, a relation between
the two pairs of fluctuations is determined. Equations �6� and

�7b� are consistent as can be seen by the more tedious elimi-
nation of � from Eq. �7�.

III. ANALYSIS OF SELECTED SYSTEMS

We have analyzed 11 selected systems to illustrate what
can be learned by applying the principal component method
to specific cases. These examples were chosen to explore a
number of different solvent-solute molecular characteristics.
The data for the two electrolyte solutions come from the
analysis of thermodynamic data by the group of Smith. The
KBI data for the remaining nine solutions were obtained
from previous work from the laboratory of Matteoli or cal-
culated here from the referenced thermodynamic data. We
discuss them seriatim. Because the data are voluminous, we
give in the body of this paper only values of the pertinent
computed quantities for concentration values near the lower
and upper limits of validity of the approximation, and in the
middle. More complete tables have been deposited with the
Physics Auxiliary Publication Service �EPAPS�.4

Ar(1)—Kr(2) at 115K �Ref. 5�. This system was chosen
because the components are simple, spherical, monatomic
fluids with no directional intermolecular forces. The sizes of
the component atoms are similar; the Lennard-Jones size pa-
rameters are �=3.40 and 3.60 Å for Ar and Kr, respectively
Table I shows the results of our calculations for selected
values of the concentration.

One can see from the table that in the concentration
range 0.15	x1	0.85, the eigenvalue ratio is greater than
20. Furthermore, bij /Bij never differs from unity by more
than about 
.05 throughout this concentration range. There-
fore, we have considerable confidence that the replacement
of B by b is an adequate approximation. This is an example
of what we meant when we stated in Sec. I that the theory
contains an internal applicability check.

One finds from the table that �N1 /�N2 increases in ab-
solute value slowly but steadily from 0.95 at x1=0.15 to 1.05
at 0.85; the sign of this ratio is negative. Thus we may say
that, whatever the magnitude of the fluctuations, they occur
very highly correlated in essentially a 1–1 ratio, one argon
leaving the system for every krypton entering, and vice
versa.

The partial molar volumes of Ar and Kr at x1=0.5 are

32.59 and 34.11 cm3, respectively. Consequently V̄2 / V̄1

=1.05. In I we made the hypothesis that the fluctuations were
such as to keep the volume actually occupied by the mol-

ecules almost constant in the sense that �N1V̄1+�N2V̄2=0.
We shall refer to this as the occupied volume hypothesis
�OVH�. If it is indeed correct, then we should have

�N1/�N2 = − V̄2/V̄1. �8�

From the table, it is clear that this condition is very closely
fulfilled, within 1%, which is probably within the error of the
method. With an eigenvalue ratio of 38 �at x=0.5�, one might
expect a discrepancy of about 2.5%. Thus we conclude that
the OVH is approximately valid in this case also.

Carbon tetrachloride(1)—methanol, ethanol, propanol,
butanol(2) at 298K �Ref. 6�. These are four different binary
mixtures, not a five component mixture. These systems were
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chosen to study the effect of molecular size in solutions of
otherwise rather similar molecules. We intend to present and
discuss the results of all four cases together. The results of
our calculations are given in Table I. In all of them, the
alcohol moiety fluctuates more than the CCl4 although
��N1 /�N2� is rather close to unity in the case of butanol,
which has a very similar molar volume to that of CCl4.

In all four cases the values of the bij /Bij are quite close
to unity. As in the previous case, this means that our approxi-
mation is valid. In estimating whether Eq. �9� holds approxi-
mately, in these and all the following examples in this paper,
we shall use molar volumes of the pure components instead
of partial molar volumes. The volume changes on mixing are
small relative to the molar volumes themselves, and in any
case, the ratio of volumes is to be compared to an approxi-
mate ratio of number fluctuations. The greater precision af-
forded by using partial molar volumes would be in most
cases negligible, but widens the range of validity of Eq. �9�
as we have verified by a sample calculation. We do not make
the manifestly incorrect claim that this is a valid approxima-
tion for all solutions, but it is valid for the systems discussed
in this paper except for the Ar–Kr and electrolyte examples.
This can be verified by consulting the references given to the
thermodynamic data from which the Bij were computed in
each example. For the Ar–Kr case, the temperature ranges of
the coexistence curves of Ar and Kr do not overlap. The

normal boiling point of Ar is 87.3 K; our data are for 115 K.
Therefore we have used partial molar volumes instead in this
case.

The same reasoning forces us to use partial molar vol-
umes when we present the results on electrolyte solutions
later in this section. The molar volumes of the pure solid
solute salts are not relevant to our considerations.

One can see from the tables that methanol fluctuates
about 2.4 times more than CCl4, ethanol about 1.7 times as
much, propanol about 1.3 times as much, and butanol about
the same as CCl4. Equation �8� is satisfied in all four cases
quite closely although not exactly.

H2O(1)-acetonitrile(2) at 303K �Ref. 7�. This system
was chosen as an example of a hydrogen bonding, dipolar
molecule interacting with water. Water and acetonitrile are
miscible over the entire concentration range. In this case
b11 /B11 is close to unity for x1 0.1, while b12 /B12 and b22 /B22

are only close to unity for x1�0.25. This contrasts with the
cases previously discussed, where the approximation held for
all three ratios over a wider range.

In the range 0.25�x1�0.95, �N1 /�N2 is quite close to
−3 over the entire range. The ratio of molar volumes is 2.98.
Again, the assumption that the fluctuations are such as to
keep the total volume occupied by molecules in a given vol-
ume constant is a very good approximation.

TABLE I. Selected values of the ratio of the reconstructed to the original Kirkwood–Buff B matrix elements.
The last column contains the ratios of actual molar volumes except in the cases of Ar–Kr and H2O-guanidinium
chloride, where partial molar volume ratios are given. See the text for a discussion of this. More complete tables
may be found in Ref. 4. �x is xc in the guanidinium chloride example.�

System x2 �1 /�2 b11 /B11 b22 /B22 b12 /B12 �N1 /�N2 V2 /V1

Ar�1�–Kr�2� 0.15 19.1 0.950 0.951 1.055 
0.993 1.05
0.50 38.1 0.976 0.972 1.027 
1.041
0.85 20.5 0.958 0.949 1.051 
1.051

CCl4�1�–CH3OH�2� 0.15 92.8 0.937 0.998 1.011 
0.401 0.420
0.50 265.3 0.979 0.999 1.004 
0.415
0.85 137.6 0.961 0.999 1.007 
0.421

CCl4�1�–C2H5OH�2� 0.15 43.9 0.934 0.993 1.023 
0.569 0.606
0.50 122.6 0.978 0.997 1.008 
0.596
0.85 104.0 0.975 0.996 1.010 
0.609

CCl4�1�–C3H7OH�2� 0.15 25.8 0.951 0.985 1.029 
0.735 0.775
0.50 91.4 0.982 0.994 1.012 
0.767
0.85 98.4 0.982 0.993 1.011 
0.782

CCl4�1�–C4H9OH�2� 0.20 34.6 0.966 0.976 1.030 
0.913 0.952
0.50 89.6 0.988 0.990 1.011 
0.942
0.85 86.1 0.988 0.989 1.012 
0.961

H2O�1�-acetonitrile�2� 0.25 281 0.996 0.764 1.037 
2.943 2.98
0.50 602.5 1.000 0.986 1.002 
2.953
0.85 711.1 1.000 0.988 1.001 
2.967

C8H18�1�-hexadecane�2� 0.15 35.8 0.991 0.921 1.029 
1.754 1.80
0.50 89.3 0.997 0.965 1.011 
1.804
0.85 107.2 0.997 0.969 1.009 
1.842

C8H18�1�-2 ,2 ,3trimethylpentane�2� 0.15 27.2 0.962 0.967 1.038 
0.963 1.02
0.50 57.3 0.983 0.982 1.018 
1.016
0.85 29.0 0.971 0.962 1.036 
1.069

H2O�1�-guanidiniumchloride�2� 0.156 67.0 0.997 0.938 1.015 
2.106 2.05
0.27 95.4 0.997 0.952 1.012 
2.087
0.351 90.0 0.997 0.952 1.011 
2.087
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Octane(1)-hexadecane(2) at 298K �Ref. 8�. This system
was chosen as an example of two chemically very similar
species of different sizes. In this case, the b’s are again ex-
cellent approximations to the B’s for 0.15�x1�0.85. How-
ever, the value of �N1 /�N2 decreases steadily from 
1.75 to

1.84. This is a relatively small change over this range but it
is larger than in third case, above. The details are shown in
Table I. It should be emphasized that there is nothing in our
development that requires, or even implies, that �N1 /�N2 be
constant as a function of concentration. It is our auxiliary
approximation that the partial molar volume ratio be equal to
the molar volume ratio which implies this, and we do not
assert that this hypothesis be rigorously true. For this binary
mixture, the ratio of molar volumes is 1.8.

Octane(1)-2,2,4 trimethylpentane(2) �Ref. 8�. This sys-
tem was chosen in order to have a sample system of chemi-
cal isomers. The molar volumes are almost the same, the
ratio being 1.02. Hence, if we are to be guided by experience
up to now, we should expect bij /Bij to be close to unity for
0.15�x1�0.85 and �N1 /�N2 to be approximately constant
over this range. Indeed, this is the case, as shown in Table I
�N1 /�N2 varies from 
0.96 to 
1.07 over this range. The
ratio of molar volumes is 1.02. Our expectations are borne
out.

Acetone(1)-chloroform(2)-methanol(3) at 323K �Ref. 9�.
We close our description of selected nonelectrolyte solutions
with one example of a ternary solution. The three compo-
nents are miscible in all proportions at the temperature of the
experiments.

In contrast to the binary solution examples we have pre-
sented, this ternary solution exhibits a more limited range of
validity of the approximation we study here. When at least
one of the components is dilute, say x	0.1, we have a simi-
lar situation to that described in Sec. II. Think of the system
displayed in the usual composition triangle. Then, in the re-
gion around the edges of the triangle, our approximation is
invalid. As one proceeds concentrically toward the center,
there is a region where no one or no pair of the eigenvalues
of the B matrix dominates. So our considerations are invalid
here also. Proceeding further toward the center, one finds that
this system is a case of two large and one small eigenvalue.
The region where all of the bij /Bij are close to unity �
10%�
�based on neglecting the small eigenvalue� is shown in Fig.
1. It should be realized that the edges of this region are not
terribly well defined. They depend on how strict one wants to
be in deciding whether a number is sufficiently close to
unity.

The constant molecular volume hypothesis, V̄1�N1

+ V̄2�N2+ V̄3�N3=0, together with Eq. �7b� leads to equa-
tions similar to Eq. �8�,

V̄1

V̄3

=
a

c
,

V̄2

V̄3

=
b

c
. �9�

We have again taken the molar volumes of the pure compo-
nents as surrogates for their partial molar volumes and com-
puted the expected volume ratios on the basis of the a, b, c
coefficients obtained in the course of the eigenvalue analysis.

The volume ratios are adequately reproduced �to within
�5%�.

Because the data on which these remarks are based are
inherently voluminous, we present here only a small sample,
in Table II. For the bulk of the data see Ref. 4.

H2O(1)-NaCl(2) �Refs. 10 and 11� and H2O(1)-
guanidinium chloride(2) �Ref. 12� at 298K. So far, all of our
examples, both here and in I, have been nonelectrolyte solu-
tions. For electrolyte solutions, Kirkwood–Buff theory, on
which the present paper is based, must be applied with care.
This occurs because electroneutrality requires that the B ma-
trix be singular. There are several ways to do take care of this
complication. The simplest way for our purposes is to base
the stochiometry on the total ion concentration rather than on
the salt concentration. Quantities based on total ion concen-
tration will be denoted by the subscript c.

We initially chose NaCl because it is a prototypical elec-
trolyte for which much data are available. However, it has a
limited solubility in water at room temperature, about 6M or
a mole fraction of approximately 0.1. This is the mole frac-
tion of salt. The mole fraction of total ions, the most useful
concentration unit for our analysis, is roughly double this.
Unfortunately, even at 5.3M, the highest concentration for
which we have data, B12 is not reproduced well; b1c /B1c=
−1.54, even though the eigenvalue ratio is of reasonable size,
13.9. This is because of the small mole fraction. Therefore,
one cannot draw any reliable conclusions from this example.
It does appear that �N1 /�Nc is leveling off at a value close
to unity, but, because we are at the very limits of the validity
of our approximation, this is not reliable. Thus aqueous NaCl
is a cautionary example rather than an illustrative one.

Guanidinium chloride also has a solubility of approxi-
mately 6M at room temperature. We have data up to 7.2M at
300 K. Its total ion mole fraction at this concentration is,
however, about 0.35 essentially because guanidinium ion is a
larger and heavier particle than is chloride ion. Thus, based
on our experience with the nonelectrolyte solutions, we
might expect our approximation to be invalid for NaCl but
valid from about 4M to 7M for guanidinium chloride. At
4M, the total ion mole fraction is xc=0.17.

Some data for concentrations greater than 4M are shown
in Table I. One can see that �N1 /�Nc is approximately 2.1

FIG. 1. Ternary triangular diagram for the system acetone, chloroform-
methanol, showing the region in which the PCA adequately reconstructs the
B matrix. The points shown should be interpreted as showing the general
region of validity.; the boundaries are fuzzy, depending on the definition of
“adequate.”
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over this range of concentration. The partial molar volume

ratio V̄c / V̄1 over this concentration range increases slightly
but steadily by about 5%, ranging from 2.0 at the lower end
to 2.1 at the upper. Again, the hypothesis of constant molecu-
lar volume is correct to a good approximation.

IV. DISCUSSION AND CONCLUSIONS

One might ask, why not just calculate ���N1
2� /

��N2
2��1/2= �B11 /B22�1/2? It would be much simpler than our

procedure and is always valid. If one is satisfied with this
ratio of averages, this is a reasonable thing to do. Our pro-
cedure, however, shows when the ratio of the �N’s �the ac-
tual fluctuating values, not just their root-mean-square val-
ues� can give definite values in spite of fluctuations of the
numerator and denominator separately. We believe that this
is useful and interesting information.

A referee has pointed out that the result for binary solu-
tions can be interpreted as finding the ratio of the most prob-
able values of �N1 and �N2 subject to the side condition that
�N1

2+�N2
2=const. This is an interesting mathematical side-

light and is easily verified by the method of Lagrange mul-
tipliers. The maximization problem leads to the same eigen-
value equation considered here. On the other hand, why
impose the condition �N1

2+�N2
2=const.? The eigenvectors

u� have a fixed, although arbitrary, magnitude, but the vector
��N1 ,�N2� does not. It is only the PCA which enables us to
diminish the dimensionality of the space of fluctuations.

In I we made the hypothesis of conservation of molecu-

lar volume in the sense that ��NiV̄i=0, called here the
OVH, based on two examples. This hypothesis has an intui-
tive appeal, but it is clear that it cannot be rigorously true. To
see this, square this equation.,

V−2�
i,j

��Ni�Nj�V̄iV̄j = 0 �10�

or

V−1�
i,j

BijV̄iV̄j = 0. �11�

This is the variance of the ratio of the fluctuation in the
occupied volume to the total volume. The formulas of Kirk-
wood and Buff show that the left hand side of Eq. �11� is
actually �kT /N, and not zero; � is the compressibility and �
the overall number density. This follows from Eqs. �13� and
�14� of Ref. 2 and the determinantal relationship �ij�B�
=�kBik�B�kj. It is intuitively clear that there should be some
sort of compressibility correction. For when the compress-
ibility is large, as in a gas, there is much empty volume and
nothing to force correlations in fluctuations. On the other
hand, when the compressibility is small, there is not much
free volume and correlations of the several components are
enforced by hard core constraints.

Consequently the OVH is not rigorous. On the other
hand, ��kT is a small number for typical liquids. For ex-
ample, for methanol at 293 K it is 0.073. Consequently
���kT /N�1/2 is extremely small for any volume containing
more than, say, 104 particles. Thus we may expect observed
deviations from the OVH when the PCA is valid to be due to
numerical roundoff, experimental error, our use of the molar
volume of the pure components as a substitute for partial
molar volumes, or actual physical effects. Although our ex-
amples only show that the OVH holds in the range 0.15
	x	0.85 for the binary solutions studies, this is due to the
invalidity of the PCA in the dilute solution region, and the
OVH may still hold there. Our results are mute on this point.
We suspect that the OVH probably holds over most of the
rest of the concentration range also.

An easy way of estimating, when the PCA may be ex-
pected to hold without actually solving the eigenvalue prob-
lem, is to calculate the correlation coefficient of the number
variances. The correlation coefficient is defined in math-
ematical statistics to be

TABLE II. The reconstruction of the B matrix for case 6, the ternary mixture acetone �1�-chloroform �2�- methanol �3�. a, b, and c are the coefficients defined
in Eqs. �7�. These values were computed by the methods in Sec. II using data from Ref. 9.

x1 x2 b11 /B11 b22 /B22 b33 /B33 b12 /B12 b13 /B13 b23 /B23 a b c

0.2 0.56 0.95 0.97 0.997 1.074 1.079 1.014 
0.655 
0.674 
0.341
0.2 0.64 0.948 0.964 0.994 1.065 1.407 1.024 
0.656 
0.672 
0.344
0.3 0.42 0.964 0.967 0.997 1.067 1.038 1.016 
0.639 
0.688 
0.345
0.3 0.49 0.962 0.966 0.996 1.057 1.077 1.022 
0.64 
0.685 
0.347
0.3 0.56 0.961 0.963 0.992 1.051 1.251 1.036 
0.64 
0.682 
0.353
0.4 0.3 0.971 0.963 0.997 1.063 1.025 1.02 
0.627 
0.698 
0.345
0.4 0.36 0.969 0.963 0.996 1.055 1.042 1.024 
0.63 
0.695 
0.347
0.4 0.42 0.968 0.963 0.994 1.049 1.079 1.033 
0.631 
0.692 
0.351
0.4 0.48 0.967 0.961 0.989 1.045 1.206 1.054 
0.63 
0.688 
0.362
0.5 0.2 0.974 0.954 0.997 1.064 1.02 1.029 
0.616 
0.709 
0.343
0.5 0.3 0.972 0.96 0.995 1.049 1.046 1.037 
0.622 
0.701 
0.349
0.5 0.4 0.971 0.961 0.985 1.041 1.184 1.079 
0.621 
0.691 
0.37
0.6 0.000 1.000 0.004 1.000 1.005 1.000 1.003 
0.004 
1.000 
0.002
0.6 0.24 0.973 0.955 0.992 1.047 1.053 1.061 
0.615 
0.705 
0.352
0.6 0.32 0.974 0.959 0.979 1.039 1.183 1.123 
0.611 
0.693 
0.382
0.7 0.18 0.973 0.948 0.989 1.049 1.064 1.111 
0.605 
0.711 
0.358
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��N1�N2
= ��N1�N2�/���N1�N1���N2�N2��1/2. �12�

It is clear that if �N1 and �N2 were strictly proportional,
then ���N1�N2

� would be unity. So if ���N1�N2
� is not close to

unity there is little hope that the PCA will be valid. For
example, for aqueous NaCl, ���N1�N2

� is never greater than
0.865 for the range of concentrations studied. On the other
hand, for guanidinium chloride it is greater than 0.95 for
concentrations greater than 4M. Similar behavior is visible in
the other systems we studied. For example, in the system
H2O-acetonitrile, ���N1�N2

� rises to 0.94 at xwater=0.35 and is
as high as 0.99 at xwater=0.99. But even at xwater=0.35,
b22 /B22 is only 0.91, not large enough for the PCA to be fully
reliable. Although the calculation of the correlation coeffi-
cient is simple and gives one a rough indication of what is
occurring, it is not a substitute for the full spectral analysis
and inspection of the resulting b’s.

In this work we have investigated a number of binary
systems and one ternary system to determine how general the
PCA is. For binary systems it has turned out to be more
general than we had expected. For the nonelectrolyte systems
studied, the approximation held for range of concentrations
usually ranging from about 0.15 to 0.85 mol fraction. In
some cases, the validity range was smaller, viz the water-
acetonitrile case just mentioned. Also, in the NaCl-water
case the available concentration range was too small, xNaCl

	0.15. One reason for the failure of the approximation in the
low concentration range was discussed in Sec. II. On the
whole, one can say that the PCA is widely, although not
universally, applicable. For the single ternary system studied,
the region of validity of the PCA is similarly restricted to the
interior part of the ternary composition triangle and even this
part is relatively small. Furthermore, even when valid, the
approximation does not give as much information as in the
binary case.

The PCA, when valid, yields a value of the ratio
�N1 /�N2. Although not necessarily implied by the approxi-
mation, we found that this ratio was almost constant for each
system. Furthermore the constant, in each case, was approxi-
mately the negative of the ratio of molar volumes of the
components �for binary systems�. This led us to the hypoth-
esis that the fluctuation of the several components was such

as to keep the volume occupied by the molecules in the
system of volume V constant. The constant value of the �N
ratio was, in fact, the molar volume ratio �or very close to it�.
While this hypothesis cannot be rigorously valid, empirically
it seems to be a very good approximation. We want to em-
phasize, however, that the PCA and the OVH are distinct.
The PCA does not logically imply the OVH. Conversely, the
OVH may be valid where the PCA is not. This question is
open since at present we cannot test the OVH without calling
upon the PCA.

Our final conclusion is that the PCA is a useful way of
approximating the relative fluctuations of components in a
binary solution. It does not work well in dilute solutions �at
least one component dilute� and gives more restricted infor-
mation on ternary than on binary solutions. A second conclu-
sion is that the volume actually occupied by molecules
within the system during a fluctuation is essentially constant.
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