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The purpose of this report is to study the basic concepts of
maximum likelihood (ML) estimation, and its relevance to time delay
estimation. The ML estimate is derived for the difference between
the times of arrival of a signal due to a source and received at two
sensors. A lower bound for the variance of this estimate is also
derived. Sufficient details related to the derivations are included
so that this report can be used to good advantage for pedagogical

purposes.
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I. MAXTMUM LIKELTHOOD ESTIMATION

1.1 Estimation Model
A commonly used estimation model is shown in Fig. 1.1. The
model has the following four components:

A. Parameter Space

The output of the information sources is a parameter
(or variable), which is viewed as a point in a parameter
space. The parameter space can be classified into two
cases as follows:

i. The parameter is a random variable whose
behavior is governed by a probability
density function.

ii. The parameter is an unknown quantity A but
not a random variable.

B. Probabilistic Mapping

This defines how a variable is mapped from the parameter
space onto the observation space.

C. Observation Space

We can make n arbitrary observations which constitute
a point in an n-dimensional space. We denote this point
by the vector R.

D. Estimation Rule

After observing R, we wish to estimate the value of
A, which we denote this as a(R). This mapping of the
observation space into an estimate is c¢alled an estimation

rule.



1.2 Methodology

Maximum likelihood (ML) estimation concerns the estimation
of a parameter that causes an observation to be most likely to
occur. For example, if an unknown parameter A is corrupted by
“zero-mean Gaussian noise, see Fig. 1.2(a), then the conditional

density of an observation R is given by

pr/, (RIp) = /2T ap)7 exp [- (R - &)2]

1
2042
which is shown in Fig. 1.2 (b). We note that PT/, (R/A) is
maximum at an observed value which i1s most likely to occur, namely
A = Rpax- Thus we choose the value Rp,x to be the maximum likeli-
hood estimate of A denoted as dpj(R). It follows that we can use
the following to calculate the value of 3y (R).

(i) Single observation case

3ln pT/, (R/y)

=0
34 A= 3g7(R)
(ii) n observations case
3ln pI/, (R/y) -5

3A A = 3p(R)

where R is an n-vector.

In order to assess the effectiveness of the ML procedure,
we may compute the variance of the ML estimate so obtained. How-
ever, it is usually difficult to compute the variance of an ML

estimate. Thus a lower bound on the variance on any unbiased
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estimate is computed via the following Cramér-Rao lower bound

(CRLB) [1]:

2 -1
O&(R)

v

342

where d(R) is any unbiased estimate of A.

II. RELEVANCE TO TIME DELAY ESTIMATION
In this section we will study the relevance of ML estimation
to the problem of time delay estimation (TDE). To this end we

consider the two-sensor model.

x1(t) s1(t) + ny(t)

xp(t) a s (t+D) + ny(t)
where s)(t) is the signal, a is an attenuation factor, and nj(t)

and n,(t) are additive noise processes. The Fourier Series (FS)

expansion of x;(t), i=1,2, over a finite observation time T is

given by
T jk
xi(t) =} X; (kwy) ed wot’ =1,2
k= -
where
T -
Xi(kwy) = —%— J x;(t) e JkWot 4y
0 .
1=1,2, wo = %g , and Xj(kwy,) is the k-th FS coefficient.

(2-1)

(2-2)



In practice, the FS information is obtained via the discrete

Fourier transform (DFT). The relation between the DFT and FS is

given by
Xj(K) = —— X;(kwp) (2-3)
where
N-1
X&) = —%— E x4 (m) WKM is the k-th DFT coefficient,
m=0

xi(m) is the m~th sampled point obtained by sampling x;(t),
N is the number of sample point in the observation period T,

k=0, 1, ..., N-1 is the k-th harmonic, and

W= e—jZﬂ/N’ j = Y -1
From [2] it is known that if the observation time T >> [|D| + Rslsl(r)],
then
= ), k=1
T Cxpxp(kvo), k=
E [%3(k) Xp*(1)] = (2-4)
0, k # 1
where G denotes the cross power spectral density (PDS). If

x1x2

xi(t) is Gaussian and zero-mean, then DFT coefficient X;j(k) in

(2-3) is also Gaussian, and has a zero mean; that is

T -1
E [x;(k)] = —%— I E [x5(t)] e JkWot  4p
Q
= 0.

We now define the vector

Xl(k)
X =

L X (k)



Then the covariance matrix I, of X(k) is given by [3],

z

x = E [X(k) X*'(k)]

Xy (k) X * (i)
= E
Xz(k) Xl*(k)

where the asterisk denotes complex conjugate, and the prime denotes

transpose.

X3 (k) Xp*(k)

Xy (k) Xp*(k)

From Iy and (2-4) it follows that

[ G ko)
Zx _ 1 x1x1 o]
= k-4
leXz(kWO)

where lexl(kwo) and zexZ(kwo} denote auto spectra, and G

denotes the cross spectrum. Alternately, (2-5a) can be written

as

—

Le = = Qy (kwg)

._!

GXIXZ(RWO)

zexz(kwo)

where Qg(kw,) is the spectral matrix of X(k).

We know that if X'(k) = [X;(k)

are zero mean Gaussian random variables, then the joint density

function of X(k) for a given attenuation a and delay D is

given by

f(zckba,D)

-1
X' (k) Iy X(k)

X7(k)] where X;(k} and X;(k)

exp | - 2

X' Q L(kwy) X(k) }

(2-5a)

(2-5b)



T,
|z,

2m :

We recall that if X(0), X(1),

.., X(N-1) are zero-mean Gaussian

and mutually uncorrelated, then the above joint demnsity function simplifies

N-1
= ¥ exp J - % [ ) X*'(k) {Qx(kwo)]'1 é(kql

to yield
N_
Efgp) = I £ E&yy
Py k=0
=0
N 1
= h exp - E .Il
where
X' = [X(0) X(1) ...(X(N-D)], X'(k) =
_q1, 1/2 _ 1/2
ol e
2m 27
and
H=1 -1
Jp = Tkéo X¥' (k) [Qglkwgy)] = X(k)

(2-6)

(%1 (k) Xy(k)]

From (2-3), it follows that J| can be written as

N-1
Jl =
k=0

For large T, (2-7a) yields

! X+ (£) Qg T(£) X(£) df
o}

df =

R Gvg) [Qgkwg) 1™ Xk 3

(2-72)

(2-7b)



Since the integrand of (2-7b) is an even function of f, we have

Jy = ] X*'(£) Qe l(E) X(£) df (2-8)

-0

|

where X(£) = F{x(t)}, x'(t) = [x7(t) x2(t)] and F denotes the Fourier

transform. Again, from (2-5) it follows that
B U Gy ()
~Gx. xo(£) Gyyxy (£)
QL (kwy) = Q= 1(£) L bl
Bigy 27E) B E) = By, 083 1
or = 7
i y Gyqxq (£)
“Igg) = — L1 (2-9)
U 1 - Clz(f) %
~Gxyx9(£) ,
i lexl(f) zexz(f) Gxez(f) 3
2
|lex2(f)l

where Cjo(f) is called the magnitude squared

T Gxyxy (D) Gxyxp (£)

coherence (MSC)} functionit. Thus

2
. i ]Gx1x2(fn

T = C12(0) | Gypxg () Grpug(D)

qx-lm} <

Gy g K gy 5 1

From Sectiom 1.2 we know that the ML estimate of D, denoted by

Dpl, is obtained by maximizing PX/y 4 (E/a p) in (2-6) with respect

The reader may refer to the Appendix for a discussion of the MSC functionm.



to D; that is

dln px (X )
Pa,d /a0 ~ =0 (2-11)
abD D =Dn

Combining (2-6) and (2-11) we obtain

2 Ny - L 2 . .
D (1n nN) 2 3D (J1) 0 (2-12a)

From (2-6) we note that h in (2-12a) is independent of D. Thus

(2-12a) simplifies to yield

‘z?'ﬁ'(:’l) = 0 (2-12b)

Now, from (2-8) and (2-10) we have

J = j X*'(£) Q L1(f) X(f) df
- i . Gy x, ¢ E)
. Cryn 8! Bxpgi(E) Conalh)
; Xy (£
- - 12
= = % Xz(fzl
-lexch) 1
Cuyxp B Groxy (£) Gyyxyp (£)
which yields
= X ()12 Ixp(6) 12
T 1 . X
1 I m C12(E) | Gyyxy () Gxpxy (£)
o 1 X1(£) Xg*(£) Gy, (E) XP*CE) Xp(E) Gy () -!
- df
J L= CalE) | Gppx) (£) Grpxp(E) * Gxyxy (F) Gxoxy (£) |
-0 . 4

Jp = J2 - J3 (2-13)
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where
= [X1(£)|2 Xp(£) 2
5y - 1 ST L. 1S T
i % e 1
- 1 X () Xo%(£) Gx1x2(f) X3*(£) X5(£) lexz(f)
J = + df
3 L 1 - C1o(f) Goeyxp (E) Gy () Gyxq (E) Gryxy ()
; _ j2mED . ,
Noting that lexZ(f) = lexz(f)le , it follows that Jy in (2-13)
1s independent of D. Thus, D can be estimated by maximizing only Js.
Again, J3 can be written as
)
Jy = I [ACE) + A*(f)] df
-0
@
= J [ACE) + A(-£)] df
=0
=]
= 2 [ A(E) df (2-14)
- -
where
ACE) = 1 Xl(f) Xz*(f) lex2(f)
- X1(£) Xo*(£) Cy2(£) ejz.n-fD
i |lex2(f)l Jd L1 - Ci2(f)
r % - -!
_ X1(£f) X9*(£) C12(£) ejznﬂ)
i |leX2(f)| i _l - CIZ(f)_|
and
% -j2n{D
Gy x, (£) |lex2(f)[ e
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Also, Gy x,(f), X](f) and X3(f) can only be estimated. Thus, if
their estimates are denoted as axlxz(f), X1 (£), Xp(f) respectively,

then we have

- -

_ il(f)‘iz*(f) Cy12(£) j27ED
MDD Te ] T-cp@ | °
By letting
Gxyxy () = 3 (D) Xp*(D)
we obtain
@
_ - 1 i Cip(f) ~ j27 D
J3 = 2T J’ lexz(f) [{lexz(f)l_} l:l -Clz(f)-! % df
= ot f Exlxz(f) g (£) I2TED ¢ (2-15)
where
i _ C1o(£)
ML~ (G x, (D) 1 = C1o(8)]

is the ML weighting function.

Inspection of J3 shows that it can now be expressed as

I3 = 2T Ry (D) (2-16a)
where
Ry 2y (D) = [ Gapny () W (5) &I¥TP g (2-16b)
o

is considered to be the ML crosscorrelation function corresponding
to the weighting functiom Wy in (2-15).
New, from (2-16) it is clear that the maximum value of J3

equals the maximum value of §x1¥%(D). The particular value of
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D, say BML: where ﬁxlgé(D) attains its maximum is the desired ML
estimate of D, as illustrated in Fig. 2.1.
In summary, (2-16) states that the ML estimate of the delay
D in (2-1) can be obtained as follows:
1) Estimate the cross spectrum axlxz(f) where xj(t) and x5(t)
are defined in (2-1).
2) Weight ax1x2(f) with the ML weighting function Wyy, defined
in (2-15).
3) Find the inverse Fourier transform of the product of
[(Wap - axlxz(f)] to obtain the correlation function
Ry 305 (D).
4) The ML estimate for D in (2-1) is given by Dyy, which is
the value of D for which §xlx2(D) attains its peak value.

In the foregoing discussion we have the ML weighting function defined

as
(£) = 1 C12(£)
ML T T x (D1 T - Cp(0) |

which means that a priori knowledge of the signal and noise statistics
is known. In many problems this information is not available.

For example, in passive detection, unlike the usual communication
problem, the source spectrum is unknown, or known only approximately.
If this is the case, they can only be estimated to obtain the "approxi-
mate ML (AML)" weighting function ﬁML which may be substituted

for the true weighting functions Wyg,.
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III. VARIANCE OF ML ESTIMATOR
A lower bound on the variance for any unbiased estimator (which

is not necessarily attainable) is given by the Cramér-Rao Lower

Bound (CRLB), denoted by Gﬁz. The CRLB is defined as [1]

0.2 > 5 L _ (3-1)
D EJ ] lan/a,d (;-(-/a,D) }
| ap?

it has been shown that ML estimation is unbiased [4]. Thus, (3-1)
can be used for calculating the CRLB of an ML estimator.

We start from the joint probability of X for given o and D
to find the variance Unz of the ML estimator. From (2-6) and
(2-13) we have

PX/y 4 (E/Q,D) = htexp [-1/2 Ji]

= hf exp [-1/2(Jp - J3)] ,
which yields
(3-2)

In pX/y 4 Q{-/a,D) = ln h® + [-1/2 (Jg - J3)]

Next, the derivatives in (3-2) yield

10 px/g g Rfg,p) a2 32 3
o (h) + —_(=1/2 J9) + — (1/2 J3)
102 ap2 ap2 2 3D 3
52
abD

since h and J9 are independent of D.
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Taking the expected value we obtain

2
3% Inpx/y g (X/g o) 2
E 4 ; L -3-—2 {E[J3]}
aD aD
o .2 P ;
=T[5 B (0wt ST e
2
o 3D
2 ~ j2meD
= T | == E [Gg;x,(£)] W () e’ df
3 2 1%2
~m D
f -]
[ 32 j2m£D
= T == Gy x, (£) W, (£) e’ ] df
-0 aD
where
E [Cxyxp(E)] = Gyyx (£).
. _ j2nfr
Next, letting Gy x,(f) = tilxz(f)I e we get
2 ) -
3% 1n px/ (X ) @ G (£)
E{ o, d ..JU.,D } . J 32 ®1X2 C12(E) ejzﬂfndf
~ oo en2 C12(6) j2nE(D+T)
= Tf (j2nf) Wﬁ e df
_ Clz(f) j2ME(D+T)
- I (2n£)? T-c(H ° df (3-3)

Since 0 < Gj9(f) < 1 and (27£)2 > 0, (3-3) attains its maximum

i2nf(D+1) _

value when e l; i.e. when D = =T, so that the minimum

obtainable variance is

‘°° 9 Cp2(f) -l
[% J (2mf) T -C (D) df ]
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Thus, the CRLB for the ML estimate for D is given by (3-1) to be

™ -1

Cyo(£)
oﬁb; > TI (2m£)? 1—_1;‘;—1—;(-5 df (3-4)
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APPENDIX
Coherence Function

1.0 Introduction

In general, we use the crosscorrelation function to assess
causality; that is, how much does the source influence the observed
output. The coherence function also provides a measure of causality,
but it has an additional advantage over the crosscorelation function.
The crosscorrelation function is a function of time, and its maximum
value corresponds to the approximate time delay (T) between the
source and the observed output. However, the coherence function
is a function of frequency, and its maximum values occur at the
frequencies where the greatest transfer of energy may be taking
place. Techniques used to suppress interference (noise, vibration,
etc.) depend on the frequency distribution of the interference.
Hence the coherence function not only provides a measure of causal-

ity, but also provides ways of solving interference problems.

2.0 Coherence Function
The coherence function Yxle(f) of two jointly wide-sense
stationary random processes X)(t) and X,(t), is a measure of the

linear dependence between the processes. It is defined as

Gy x5 (E)
Y Gyyxq(E) Ggoxy (£)

Yxlxz(f) = (A-1)

where Gy,x,(£) is the cross power density spectrum between X)(t)
and X3(t), Gy,x,(f) and Gx,x,(f) denote the auto power density

spectra of X;(t) and X3(t), respectively.
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3.0 Magnitude-Squared Coherence Function (MSC)
The MSC denoted as Cx x,(f), or more simply Cj(f), is directly
related to the coherence function, and is defined as

|G 083 [

2
- = (A"Z)
Cxyxg () = | Yipxy(E) | Gy (£) Gy ()

It is known that the power density spectrum matrix Qy(f) is

positive semidefinite, i.e.,

Gy xp (£ Gxyx, (£)

Qx(f) = ;0 (A-3)
Gxel(f) zexg(f)
where |*| denotes the determinant of the matrix enclosed.
If the processes are real, then Gy x,(f) = Gile(f). Thus
(A-3) yeilds
2
GXIKI(E)GxeZ(f) = lexz(f) > 0 (A-4)
or
2
lexl(f)GxZXZ(f) > lexz(f) (A-5)

Further, lexl(f) and Gszz(f) are nonnegative and real function
of f. Thus (A-5) can be divided through by Gy x;(f) Gx,x,(f)
without changing the sense of the inequality. This division yields

2
G xp ()]

12-

W
o
«
n

Gy /0T Giggres 0D

or

0 < Cxyx,(£) € 1.
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Hence the MSC has the property that its value is always between
0 and 1. The boundary values correspond to the following cases:
(i) IF X;(t) and Xp(t) are uncorrelated and zero mean
wide-sense stationary processes, its crosscorrela-

tion is zero, and hemce Gy x,(f) = 0.

(ii) When Xj(t) and Xp(t) are linearly related and no noise

contaminated, then
|G '2 = G (f) G (f) which means that
xlxz(f) X]1X] X9X9
CX1xz(f) = 1.
4.0 Signal-to-Noise Considerations

Consider the configuration shown below:

: 2(t)
X(t) B(e) | =§; T(t)

N(t)

It follows that

Yp(£) = Xp(£) H(f) + Np(f)

where Yp(f), Xp(f) and Np(f) are the Fourier transforms of sample
function segments from random processes Y(t), X(t) and N(t); the
length of each of these segements is 2T seconds. Then the auto

power density spectrum of Y(t) is given by

o E { |YT(f)|2 }
ny(f) lim T

T> @

]

[ *
= lim 5= E { [H(E) Xp() + Np(D)] [H(E) Xp(£) +Np(E)] }

T—pm

or

Gyy(£) = TH(E)? Gry(£) + GpalE) + H(E) Gen(£) + H*(£) Gpy(f)

(A-6)
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where Gyx(f), Gpn(f) and Gyn(f), Gpx(f) are auto and cross power

density spectrums respectively.

Similarly,
E {YT(E) XT*(f)}
Gyx(f) = lim -
T+
E{ [H(£) Xp(£) + Np(£)] - XT*(f)}
= 1lim
2T
T+

Next, if X(t) and N(t) are assumed to be zero mean uncorrelated

processes, then (A-6) and (A-7) simplify to yield

Gyy () THCE) |2 Gy (£) + Gpp(£) (a-8)

and

Gyx(£) = H(E) Gyy(E) (a-9)

Thus (A-2), (A-8), and (A-9) yield

2
|Gy (£)1
" Gyx(£) Gyy(£)

JHCE) |2 Gy (£)

Gyx (£) [1n(E) |2 G {E) + Gy ()]

lH(E) |2 Gyx (£)

= 2 (A*IO)
[HCE) | Gy (£) + Gup(f)
Thus the output signal-to-noise ratio (SNR) is given by
2
G, (£ H(E Gex(£) (£)
SNR = —2&— Lol = (A-11)

Gn(E) G () T TTCyy(D)
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Note that this is not the overall SNR, but the SNR at a specified
value of frequency f. It states that the influence of noise decreases
as ny(f) approaches to 1.

We now summarize the following features of the MSC function [6]:

a) It is a dimensionless function in the frequency domain.

b) It takes values between 0 and 1.

c) At each frequency, it represents the fraction of the

system output power to the total output power.
When the MSC is less than unity, at least onme of the following
conditions exists:

a) There is noise present in the measurements.

b) The system is nonlinear (i.e. energy is generated at

additional frequencies).

c¢) Other inputs are present in the system.
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