OPTIMIZATION OF MANAGEMENT SYSTEMS

USING SENSITIVITY ANALYSIS
by /":w?; B

. RAVINDRA KUMAR

B, Tech. (Hons) --Mech., Indian Institute of Technology,

Bombay, India, 1966

A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE
Department of Industrial Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1970

Approved by:

Major Professor



LD ,
26t d 11
74

z

K? éé ACKNOWLEDGEMENT

The author wishes to express his deep sense of appreciation to
his major professor, Dr. E. S. Lee for his guidance, constructive
criticism and keen interest taken in preparing this master's thesis;

to Mr. Syed Waziruddin for helpful suggestions and to Mr. P, K. Mehrotra

for help in proof reading.

The author also wishes to express his thanks to Mrs. Roopa Sheh

for her drawings and Mrs. Marie Jirak for her excellent typing.



THIS BOOK
CONTAINS
NUMEROUS PAGES
WITH DIAGRAMS
THAT ARE CROOKED
COMPARED TO THE
REST OF THE
INFORMATION ON
THE PAGE.

THIS IS AS
RECEIVED FROM
CUSTOMER.



iii

TABLE OF CONTENTS

ACKNOWLEDGEMENT | ii
LIST OF TABLES v.
LIST OF FIGURES vi
INTRODUCTION AND PURPOSE OF STUDY 1

NUMERICAL METHODS OF SOLUTION OF NON-LINEAR TWO POINT BOUNDARY

VALUE PROBLEMS 3
Non~Linear Dynamic Systems 3
General Classification of Numerical Methods of Solution of

Variational Problems 5

Direct Methods 5

Indirect Methods 6
BOUNDARY CONDITION ITERATION METHOD BASED ON DIFFERENTIAL

SENSITIVITY ANALYSIS 10
The Problem 10
Discussion 20

APPLICATION TO AN INVENTORY MODEL 2l
Development of the Model 21
Definition of the Problem 22
Formulation of the Problem : 23
Boundary Condition Iteration : 25
Numerical Aspects 28
Resu 1ts 30

APPLICATION TO AN INVENTORY AND ADVERTISEMENT SCHEDULING MODEL bL
Development of the Model bl
Definition of the Problem - TS
Formulation of the Problem LT
Boundary Condition Iteration Scheme 50
Numerical Aspects 53
Results 54

APPLICATION TO A PRODUCTION AND ADVERTISEMENT SCHEDULING MODEL 66
Definition of the Problem 70
Formulation of the Problem Tl
Boundary Condition Iteration Scheme 73
Numerical Aspects 80

Results 82

» . Py



CONCLUSION

REFERENCES

APPENDICES

Direct Second Variational Method

Computer Program for the Inventory Model

Computer Program for the Inventory and Advertisement
Scheduling Model

Computer Program for the Production and Advertisement
Scheduling Model

LY

gl

96

o

1C2
115

L Ly



LIST OF TABLES

TABLE Page
4,1 Initial Approximations Used for the Inventory Model 31
4,2 Convergence Rate of Final Inventory, Xl(tf) 32
4,3 Convergence Rate of Total Cost, Kz(tf), in an Inventory
Model | 33
4,4 Convergence Rate of Residuals ¥;, ¥, and IR 34
4,5 Effect of Step Size Y and Weighting Factor q, on
Convergence Rate - 36
5.1 Initial Approximations Used for Advertisement Model 55
5.2 Convergence Rate of Sales, X,(t) 56
5,3 Convergence Rate of Final Inventory, Xz(tf) o
L Convergence Rate of Total Profit, XS(tf) 58
5,5 Convergence Rate of Residuals ¥,, ¥,, V3 and |IR] | 63
5.6 Efﬁect of Step Size Y and Weighting Factor g, on
Convergence Rate 6L
6.1 Initial Approximations Used for the Production and
Advertisement Scheduling Model 83
6.2 Effect of Weighting Factor 9 and Step Size Yy on Convergence
Rate for Set 1 8k
6.3 Effect of Weighting Factor e and Step Size Yy on Convergence

Rate for Set 3 ' 93



CHAPTER 1
INTRODUCTION AND PURPOSE OF STUDY

Science, since the earliest times, has been concerned with the
mathematical expression of the laws governing the behavior of physical,
biological, social and economic processes, Once the u;derlying laws
of behavior have been determined — or, as is more often the case,
approximated — for a given system, it is often observed that the
behavior of the system can be influenced by the choice of certain
parameters which man can control. For example, the demand for an
economic good is affected by its price and the price can be set by the
management. A question then arises as to how these controllable
parameters can be chosen so as to attain some desired objective which
may be either qualitative or quantitative. The rapid development of
science and technology in recent years has brought competitive pressures
on management and interest has focused on optimizing the behavior of
the system. Some output of the system, such as the profit produced by
an economic enterprise, is either to be maximized or minimized subject
 to the laws governing the behavior of the system, The search for the
values of the parameters that maximize or minimize a well defined system
performance criterion constitutes the fundamental problem of optimization
theory.

The different rules of causality of various systems are described
by mathematical relationships having a great variety of structures and
in which the control variables appear in many ways. A large body of

theory has been developed in recent years to deal with optimization



problems encountered in various fields., Several important optimization
techniques like linear programming, dynamic programming, search
tgphniques, maximum principle ete, have been developed to treat various
classes of problems. Calculus of variations is a classical mathematical
tooi that treats certain problems in the area of optimization theory.
Specifically, the mathematical models that calculus of variations treats
associates values with functions and seeks a function which minimizes

or maximizes the objective function. "This particular model, though
restricted, is capable of describing a very large number of important
processes in many fields and has been the subject of continuous study
for a long time.

The.two point boundary value difficulty encountered in obtaining
solutions to practical problems, however, limits the use of both calculus
of variations and maximum principle. With the advent of fast digital
computers, interest in this area has increased and a large amount of
research has been devoted to devising techniques for overcoming this
difficulty,

This work is a study of the way in which a recently proposed
technique of boundary condition iteration based on differential
sensitivity analysis [26, 28] can be used to sblve variational problems
arising in management decision making. More specifically, the object
of this report is to investigate the cbmputational fgatures of this
technique with respect to different problems., Chapter 4 deals with an
inventory model, Chapter 5 deals with a more complex problem of inventory
and advertisement scheduling and Chapter 6 deals with a production and

advertisement scheduling model,



CHAPTER 2

NUMERICAL METHODS OF SOLUTION OF NONLINEAR TWO POINT

BOUNDARY VALUE PROBLEMS

NON-LINEAR DYNAMIC SYSTEMS .
In general, the variational problem can be stated as follows: Find
the m dimensional vector of control variables f(t) in the interval

tg St 2t such that a scalar performance index of the form

te

I =0, t) + [ £,(X(¢), T(t), t)dt (1)
t
0
is a minimum (or maximum), while the p dimensional vector of initial
conditions J(i(to), to) = 0 and the q dimensional vector of final conditions
ﬁ(f(tf), tf) = 0 are satisfied and the n first-order, nonlinear, differentis

equations

X = E(X(t), T(t), t) (2)

are also satisfied. The vector X is an n dimensional vector of state
variables, and t is the independent variable time. Note that, if the
initial time is specified, p < n and q < n+l. It is usually assumed
that the problem is deterministic, Furthérmore, in the following discussion
it is assumed that f(X, T, t) and all of its derivatives are continusus in
the interval of interest. It is assumed also that the control variable
T(t) is unbounded and that there are no constraints on the state history
except at the initial and terminal boundaries.

The conditions which must be satisfied if the extremal is to comply

with the requirements of the problem statement are discussed by Bliss [1],



They may be summarized as follows. In the interval of interest,

k=H, i=-H,H =o0 (3)
X x T

where superscript T denotes transpose and A(t) are the Lagrange multipliers,

At the known initial time,

V&5, ) = 0, [+ :T)]to d¥(ty) = o. (4)

At the unknown final time,

o B =T - _ - _
n(X(tf), tf) = 0, [(Pi f.k )]tf dX(tf) 0, [Pt +$ H]tf dtf = 0.
(5)

If the final time is known, the last condition of Equations (5) will
‘not hold.

The scalar functions P and H are defined as follows:

HJ
n

$R(E), ) + 0 E(Ey), tp) + ¥ AR(L), t)

B=f,%, T, +1 i&X, T, t) | (6)
where 1 and v are constant multipliers and the scalar function H is
known as the generalized Hamiltonian, The conditions given above can
be obtained by the standard calculus of variation methods and form
a first-order necessary condition for the optimization problem., It is

assumed that a well defined minimum of H (X, T, X, t) exists so that

H =0 and ﬁ_ _ is positive definite everywhere in the interval of

T T,T

interest, With these assumptions, the condition ﬁ_ = 0 theoretically
T

yields m algebraic equations which can be used to eliminate the m control

variables in Equation (3)., The results can be expressed as



=3
> |
=

=-H (7)

>l

i
>

where H = H[X, %, T (X, X, t), t], Equations (4), (5), and (7) lead to
a conventional, two point boundary value problem in which the conditions
on variables X and A are specified at both ends of the interval of

interest,

GENERAL CLASSIFICATION OF NUMERICAL METHODS OF SOLUTION OF VARIATIONAL
PROBLEMS

In general the methods used for numerical solution of variational
problems can be classified as either direct or indirect. The direct
methods use only the process equations and the desired terminal conditions
as the starting point to minimize or maximize some desired performance
index. The indirect methods, on the other hand, use the conditions re-
quired for mathematical optimality as a starting point and seek, by
various iterative philosophies, to satisfy these conditions.

DIRECT METHODS

The direct numerical optimization procedure was first suggested by
Kelley [9] and is referred to as the gradient method. Other direct
optimization methods have been suggested by Bryson et. al. [2] and Kelley
et, al, [10]. These methods have been applied with success to many
practical problems in spacecraft guidance and control and aeronautics.
Advantages usually associated with the steepest descent techniques, as
they are frequently called, are that convergence does not depend upon the
availability of a good initial estimate of the optimal trajectory as a
starting point and that the techniques seek out relative minima rather
than merely functionals which are stationary. The main disadyantage
associated with the steepest descent techniques is that in many practical

applications the convergence rate slows down as the optimum trajectory



is approached. The steepest descent methods have been discussed by
several authors in detail, see [2], [9], [10] and [11].
INDIRECT METHODS

The indirect numerical opt%mization techniques were suggested as
early as 1949 by Hestenes [7], who applied a calculus of variation
formulation to the study of time~optimal solutions to the fixed end
point problem. A number of methods have been proposed for the solution
of two point boundary value problems arising in optimal control problems,
These may be subdivided into three main classes:

i, Boundary Condition Iteration Methods
ii, Control Function Iteration Methods

iii. Newtou—tyée Iteration Methods
The choice of the method to be adopted depends on the problem and the
nature of application. Each problem will have a certain structure and
exhibit certain stability properties, although iula non-linear problem
it might be very difficult to isolate either. Further the nature of the
application may be the deciding criterion, For example, for on-line
controls, rapidity of convergence is important, For some problems it
may be necessary to obtain extremely accurate trajectories, while in
others convergence of the performance functionél to within a pre-assigned
tolerance may be sufficient. These factors must be considered before
selecting ény one method.
i. Boundary Condition Iteration Methods

In these methods, typically the control function T(t) i1s eliminated
from the process and adjoint equations by solving ET = 0 and the resulting
equations are solved by iteration on one of the unknown boundary values

say, i(to). Suitable scalar terminal error function



V{i[tf, i(to)], i[tf, X(to)]} is then constructed, The boundary value
K(to) is then adjusted till the error function V goes to zero. Several
methods have been proposed for driving the error function to zero,

Levine has proposed two methods, The first method [18] uses the gradient
approach while the second one is concerned with the solution of two-point
boundary value problems via a Newton-Raphson scheme using sensitivity
information [19]. Levine [19] has reported success with these methods.
However, for closed-loop problems, Padmanabhan et. al., [26] have drawn
attention to the drawbacks of the method., The success of Newton-Raphson
scheme depends upon évailability of good estimates of i(to) to achieve
convergence where as in closed loop problems, it is generally impossible
to get reasonably close estimates of the artificial variables, such as

py and v. Padmanabhan et, al. [26] have proposed another method for
boundary condition iteration using differential sensitivity measures,
These local sensitivity variables are governed by certain differential
equations derived from the process equations. They have reported success
with recycle problems using the above method,

Another typical method used for boundary condition iteration is the
method of Green's function due to Denn and Aris [5]. One of the draw-
backs in these schemes is that they usually require manual (as opposed
to automatic) step size adjustment resulting in program interruptions
which make them unsuitable for high-speed machine c&mputations (Lee [14]).

The boundary condition iteration methods have certain computer pro-
gramming advantages, Computer logic is simple and fast storage requirements
are small, In the problems where the method is successful, accurate

trajectories are obtained. The main disadvantage is the inherent



instability of one of the Euler-Lagrange equations.
ii, Control Function Iteration

In recent years control function iteration methods have been
extensively used in the solution of optimal control problems (Kelley [9],
Fine and Bankoff [6], Luus and Lapidus [22], Merriam [23]). These methods
can be broadly classified into first and second variation procedures. The
first-variation techniqué uses a gradient approach to extremize the
Hamiltonian ET’ while the second-variation method takes into account the
local curvature of the level surface of the Hamiltonian in the control
space, and converges to the optimum with quadratic rate of convergence.
Bryson [3] has developed a first-variation procedure which employs a
control correction scheme for both fixed final time and free final time
problems, Mitters algorithm [24] is based on second-variations and
exhibits improved rate of convergence, The algoritﬁm is equivalent to
Newton's Method in function space, However, for free-final time problems,
it is too cumbersome to apply. Padmanabhan and Bankoff [27] have proposed
a method which dispenses with Ricatti equations used in Mitter's algorithm.
Merriam [23] has proposed methods based on both first variations and
second variations and has called them relaxation methods.

The primary advantage of these methods is that computations are always
performed in the stable direction, However convergence tends to be slow
in a certain neighborhood of the optimum,

iii. Newton's Method

Newton's method was first proposed by Hestenes [7] to solve fixed
end point problems of the calculus of variations. Kalaba [8] has used
this method for a special class of problems and called it quasi-linearization.

A mathematical treatment of the quasilinearization method is given by



Lee [14] and has been applied to numerous problems in the fields of
industrial and chemical engineering. Extensions of the generalized
Newton-Raphson method for variable final time problems have been provided
by Long [21], Conrad [4], and Lewallen [20].

Newton's Method essentially linearizes the set of non-linear
differential equations around the previous iteration and uses the
superposition principle in obtaining the solution of the two-point
boundary vélue problems, The iteration scheme provides a sequence of
trajectories which in general converges rather rapidly to the solution of
the original non-linear equations.

Meaningful comparisons of these contemporary optimization methods
are not found frequently in the literature. Recent studies by Kopp and
Moyer [13] and Moyer & Pinkham [25] compare the generalized Newton-
Raphson method [12], the second variation method [11], and the classical

gradient method [9].
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CHAPTER 3

BOUNDARY CONDITION ITERATION METHOD BASED ON

DIFFERENTIAL SENSITIVITY ANALYSIS

THE PROBLEM
The method which is introduced informally in Chapter 2, is developed

here for the following variational problem: Find the function

T(t) k) S £ <t (D
Such that the set of functions
X, (t), eevy X (1) ty St <t | (2)
~given by the differential equations’
I.(i = fi(xl, seey Xn, T(t), t), i-= 1, resy 11 (3)

and end conditions
‘pj(to’ Xl(to)’ LI ] Xn(to)’ tf’ Xl(tf)’ !l_l’ Xn{tf)) =0

j=1, «sv, P<2n (4)

minimize a function of the form
J = (b(tO’ Exl{tﬂ)’ ee Yy xn(to)’ tf’ Xl(tf), ansy Xn(tf)) (5)

where the expression X represents the first differential-%% . The
variables Xl(t), cees Xn(t) are the state varisbles and T(t) is the
control variable. The variable t is the independent variable and can
be considered as time., The problem formulated asbove is essentially the

problem of Mayer [1]. Following the classical treatment in the calculus

of variations, let us introduce the set of Lagrange multipliers:
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M, i=1, cyn (6)

and the set of constant multipliers

Ujp j‘:l’_'--;P' (7
Define the functioms
T n . -
F(ts X, X, 1, T) - Z Ai(xi = fi (ts I, X)) (8)

1=1
Glty, X (tg), tey X (), W) = ¢(ty, X (g, tg, X (1))

: jzl by ¥y (g & (eg), g, T (£0)

(9)
where the vectors X, X and X represent Xl, vesy Xn; Xl, suey Xh; and
11, esay An’ respectively. The Euler-Lagrange equations are
'-giﬁf;-~—g§—=o, £=1, veup n (10)
). i
i
oF
3T ; | (11)
The transversality conditions are
A NNET- LS ) NRE. ol L
ile=ty 93X, lt=ty 1 le=t,  8X, t=t,
i = 1’ "oy n . (12)

Equations (10) to (12) form a necessary condition for the optimization
problem and have been called the multiplier rule by Bliss [1]. Equation

(10) can be reduced to
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A, =, | i=1, eou, N (13)

The system of equations can be put in the canonical form by defining

the Hamiltonian

n i i
H= ] A £ (e, X, v, _ (14)
i=1 .

The original system of equations (3) may be written as

X = Hi(i’ % T '. : (15)

A= - By (X, X, T) , (18)
with equation (11) as

B, (X, X, T) = 0. a7

The systém is now composed of 2n differential equations [Equations (15)
and (16)], 2n transversality conditions [Equations (12)], one equation
for tﬁe control variable [Equﬁtian (11) or (17)}, and p end conditions
[Equation (4)], to determine the values of the n state variables and

n Lagrange mult?pliers, the 2n end values Xi(to), Xi(tf), 1= 1, savy Dy
the one control variable, and the p constant multipliers., Since the
boundary conditions are not all given at the initial point tO’ the above
system forms a two-point boqndary value problem, Thé differential
equations which arise in great many practical situations are not linear
and cannot be solved analytically., The numgrical solution cannot be
initiated at either t = t, or t=t; because neitherri(to) nor i(tf)

is known.
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The following discussion on boundary condition iteration follows
the work of Padmanabhan and Bankoff [26] closely., For more details,
the reader is referred to the original work,

An obvious approach to resclving this computational dilemma is
to select a set of boundary'conditions on a trial-and-error basis at
either boundary so as to reduce the problem to a final value problem
or an initial value problem, Therefore a sequence of trajectories con-
verging to the optimum may be obtained by iterating on the boundary
values at either end of the process. However, the instability of the
adjoint equations to numerical integration in the direction of the
process, combined with the fact that the terminal values of the state
variables (which are physical quantities) are more easily guessed than
those of the adjoint variables, dictates that the iteration be performed
on the exit values,

Thus having converted the problem into a final value problem by
guessing the final values of the state variables not specified by end
conditions given by equation (4) and the values of constant multipliers,
'ui, i=1, «¢., p, the initial conditions given by équation (4) and
(12) should match those obtained by backward integration, Presumably,
the values at the initial end will not match and further iterations must
be made. This can be stated in another way: The iteration process séeks
to drive a residual vector R to zero by iterating on the boundary con-

ditions. Denoting the initial conditions on the adjoint variables by

0]

i=1, «u., n, the residual vector R may be defined as
i’

A
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‘J’m
= [aey -29] m< C18)
1'‘*o 1 —P
0
Lhn(to) -'An‘

It will be observed that only the initiai conditions in Equation (4)

are included,
It is clear that we will need some measure of the "miss distance"

at every iteration. To this end, the residual norm Q is defined as

n n
2 2 2
a= LR I[T= ] og+ T vy (19)
i=1 i=1
- (X (e
If @ > 0, then the vector m = _ is perturbed such that Q is
H

decreased, The most rapid decrease in Q is accomplished by moving in the
T space in the direction of the negative gradient of 2, Obtaining { in
terms of 7 through the expressions for R, the implied partial derivative

f_ may be computed., However, the partial derivative does not give the
L

true sensitivity of Q with respect to T, as it ignores the constraints
imposed by the process. A valid measure is the constrained total
derivative

a0 X (to) oA (to)

m— ﬂ-+ﬂ_ -—T——-'l-ﬂ_ e (20)
dr T X(to) o l(to) . om
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where the last two terms on the right side establish the connection to

the canonical system (15), (16) and (17). From (19), it follows that

R NO RG] (21)
dm
where I'(T), the constrained Jacobian Q% , 18 given explicitly by:
dm
. X (ty) _ X (ty)
r(m) =R_+R_ —F R AE— (22)
m X(to) om A(to) o

The boundary condition iteration can be constructed either as a gradient

method for minimizing @, or as Newton's scheme for solving the system

R(m) =0, ' (23)

The advantages of the gradient method and variations of this method
are in its simplicity. The convergence of the method is not contingent
upon a good initial estimate as the starting condition, It is assured
that the function to be minimized is decreased after each iteration cycle.
The possible disadvantages are the slow convergence rate as the optimal
trajectory is reached, and the unspecified step size, On the other hand,
the Newton-Raphson has the advantage of possible improved rate of
convergence in the terminal phase of the iteration technique.

As is usually the case, it is difficult to state dogmatically
the superiority of any one method over another. A combination of two
of the methods in practice might well be used to advantage, It is
obvious that one can easily combine both these schemes as follows. The

(k+1)St iterate is obtained from:
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T T (e vy 19T+ g TEHT REY. (26)
The introduction of 9 in the above formula gives control over the
iteration process and its rate of convergence, If q = 1, Equation (24)
reduces to Newton's Method, while gy, ™ 0 corresponds to the gradient
approach. This allows one to use the gradient scheme in the beginning
with a crude estimate of T and progress towards the solution, Once the
iterates are brought to the proximity of the solution, the Newton-
Raphson scheme can be used to achieve rapid convergence,

In order to use the iteration formula (24), the sensitivitiesof the
residuals 6 and | to small perturbations in 7 are required. These in tumn,

are expressible in terms of the sensitivities of X(t) and (L), which
. 3ax(t) 3A (L) 3X(t)  BA(L)

are defined as the local gradients — 3 g B =
X (t.)  8X (t[) du N
£ f
These are tied to the process via the sensitivity differential equations,
whose derivation is typified by the following treatment for 2%£El—— .
X (t.)
£

Representing equation (15) as the nonlinear integral equation

. ,
X(t) = X () + [ Hy(X(8), T(E), E)dE (25)

te
we get by direct differentiation

- t -
) LGN {H—Xia}_{(g) +n”3%‘-9—}dz. (26)
3X (t,) te © 70T OX(ep) *Toax(ty) _

By forcing T(t) to satisfy equation (17), we restrict the trajectory
displacements §X(t), SA(t) to be tangential to the surface Hp = 0. This

results in the variational equation:
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Hy aT(L) B g AX(E) Hy 5 Bi(t) o il (27)
: ax(t) ax(t) 4 BX(tf)
Combining (26) and (27) we arrive at
axX(t 3 A (E)
BE w1y {A(E) 3Dy g } dg (28)
ax(tf) te _ Bx(tf) ax(t )
- e -1
where A(t) = FA,E' gX’T HT,T HT,f (29)
B(t) = - H. . H, , TH, -~ (30)
TRl g E T,A"
Equivalently, (28) can be represented as the differential system:
da oX X X
T g_:LEl_g = A(t) 3§$El— o+ B(t)-géiﬁl- D
ax(tf) ax(tf) ax(tf)
.?.f_Q.E.)... - I, (32)
axX(ty) 't=t.
A similar treatment for the other sensitivity co-efficients leads to
their respective equations,
'2"; (axft)) = Ar) X 9X(t) + B(t) alft) (33)
au Bu au
=, =0 (34)
au t=tf
_%_ (ax(t) ) = c(t) 8X(t) D(t) AL BA(t) (35)

BX(t ) ax(t ) ax(t )
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i =k (36)
BX(tf) t=t. ‘
& Ay - gy 28 4 ppy O (37)
Y] ou o
- aa(t) -
——i = q)... » (38)
au t=t, X(tg)

The integration of the above system of differential equations backwards
yields the sensitivity co-efficients at the initial point and hence the
constrained Jacobian matrix I'(r) is completely.defined. Note that the
system of differential sensitivity equations forms a final value problem.
It will be noted that in the iteration scheme given by Equation (24),
a factor Yé has been introduced. The factor yé is given by
11 &* )12

Y, =Y : (39)
e [ &

The above representation explicitly shows the normalization of the

gradient g¥-= ar’(7)R. Our immediate concern is how to fix the bounds
dm
on the weighting factor 9 and the step size factor Vi for which the

iteration process reaches the solution of the residual equation R(m) = 0.

It has been proved by Padmanabhan and Bankoff [28] that for Vi 9 e[0,1]
1, Qk + 0 monotonically as k + =, where k is the iteration number.
2. 7+ 7

at a superlinear rate, where 7, is the solution at the

0 0

optimum,
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For any arbitrary initial policy, the algorithm converges to the
same optimum, It has been assumed here that the equation

R(1) = 0 has a unique solution at T = ;O'

The computational scheme can now be summarized as follows:

1,

e

6.

8.

10.

Estimate the vector T from physical considerations or otherwise,
If Equation (17)admits of explicit sﬁlution for the control
variable T(t), eliﬁinate T(t) from Equations (15) and (16).
Otherwise assume a reasonable value of the control variable T(t).
Calculate exit values of the adjoint variables from Equation (12).
Integrate the system of Equations (15) and (16) backwards.

If the control variable T(t) was assumed in step 2, check if
Equation (17) is satisfied. If not, find a solution of the
Equation (17) by control iteration using direct second variation
method (DSV) outlined in Appendix (1). If the control variable
was not assumed, generate the control program,

Compute the residual vector R, Equation (18),

1f ||R|| is sufficiently close to zero, the problem is solved
and the computation terminated. If not, improve the estimate

of T by iterating on boundary conditions. The following

additional steps are required.

Compute the exit values of sensitivity co-efficients from.

Equations (32), (34), (36) and (38).
Integrate all the sensitivity differential equations (31), (33),

(35) and (37) fromt =t_ tot =t Compute the constrained

£ 0°*

Jacobian matrix E% .
dm

Improve the estimate of T by using Equation (24) and return to

step. 3.
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DISCUSSION

The main advantage of this technique lies in its simplicity. The
programming is comparitively straightforward. This method has the
additional advantage of being able to converge starting from a crude
estimate of the final values of the state variables, It combines the
advantages of both the grgdient approach and the quadratic convergence
characteristic of the Newton-Raphson approach. Quadratic convergence

£ iteration tends to be proportional

means that the error in the (k+1)®
to the square of the error in the kth iteration, This method has also
been found to be effective in closed-loop control problems where
quasilinearization failed to converge [28].

Inspite of all the advantages, this technique also has its difficulties,
There are two main difficulties.

The first difficulty arises from the fact that the number of
sensitivity differential equations in case of-open loop problems, are
2.n2 where n is the number of state variables. Hence, as the number of
state variables increase, the computer memory required is tremendously
large. |

The second difficulty arises because of the unspecified step size
Y and the welghting factor Gy e Trial and error is required to find a
suitable combination of the factors for each problem.

For a detailed mathematical treatment of this.technique and related
convergence theorems, the reader is referred to Padmanabhan and Bankoff
[26,28]), This technique has been used to solve three typical management

problems in Chapters 4, 5 and 6, The numerical and computational

aspects of this method have also been discussed.



CHAPTER 4
APPLICATION TO AN INVENTORY MODEL

In this chapter, the computational aspects of this technique will
be discussed with respect to its application to an inventory model
having one state variable and one control variable. As will be seen
later, this being a smaller dimensioned problem, it is easier to solve.
DEVELOPMENT OF THE MODEL

This model is taken from a paper by Lee and Shaikh [16]. Consider
the case of a manufacturing organization whose sales rate is known with
certainty. The rate of change of inventory level Xl(t) ié given by

X (1)

O P(t) - Q(t) t £ &

where P(t)

production rate at time t

and = Q(t) = sales rate at time t,

The management wishes to minimize the cost functional given by
t :
£ 9 2
Cp = { [C; (T, = X ()7 + ¢ exp(P - P(1))"]dt (2)
0 .
where CT is the total cost of production and inventory. Cp is the
minimum production cost which occurs when the production rate is Pm.-
The quantity Pm can be considered as the production capacity of the
manufacturing plant., Since the plant is designed for a capacity Pm’
an increase in capacity may require additional equipment and manpower
and this can be very expensive. On the other hand, a decrease in pro-
duction rate below Pm will be equally expensive due to maintenance of
unused equipment and idle labor which cannot be decreased due to contract

agreements, GI is the cost of carrying inventory and the quantity Im

21
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can be considered as the capacity for storage of inventory. In actual
practice, the minimum storage cost is obtained when the storage capacity
is completely utilized. In addition, the cost functional has the
smoothing capability which is frequently desirable for many manufaéturing
processes, In this case Iﬁ and Pm can be congidered as the desirable
inventory and production levels. It is further assumed that the sales
forecast is known and is given by the linear relation |

Q(t) = a + bt ty St <t S (3)
and the initial inventory is given as

%, (£ )=X] | (4)

1YY 1
where a, b and Xg are known constants,

The role of management in this partiéular case is to sélect the
optimal policy from among all feasible solutions which gives the minimum
cost. |
DEFINITION OF THE PROBLEM

Find the control function P(t) in the interval to <t f.tf such

that the scalar performance index

t
. £
2 2
By, = { [&(Im - X ()7 + ¢ exp(® - P(t))“1dt (5)
0

is a minimum, while the initial condition
X, (t) = X0 - | (6)
1*°0 1
and the first order, nonlinear, differential equation

.‘dxl(t)
dt

= P(t) - (a + bt) ' | ’ (N
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is satisfied, Note that, it has been assumed that the problem is
deterministic, that the control variable P(t) and its derivatives are
continuous in the interval of interest., It is also assumed that the
control variable P(t) is unbounded and ﬁhat there are no constraints on
the state history except at the initial boundary. In a practical problem,
the management may wish to specify the final inventory also.
FORMULATION OF THE PROBLEM

This problem was formulated by following the classical treatment of
Calculus of Variations and the numerical results are obtained by using
the technique outlined in Chapter 3.

Introduce another state variable

t
Xy (t) = [ [C (T - X ()P + ¢, exp(®, - p(t))%)at (8)

&

differentiating with respect to the independent variable t,

X, (t) 9 2
—55— = O (I, - K@) + ¢ exp (B - P(1)) (9
with X, (tg) = Cy (10)
and XZ(tD) = 0,
fherefore the problem may be reformulated as the Mayer's Problem as
Minimize xz(tf) subject to
k) = P(t) - (a + bt) (12)
%, = C.(I - X ()2 + C_ exp(®_ - () (13)
2 CI m 1 P il

.and boundary conditions

, 5 ‘
xl(to) =X (14)
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Xz(to) =0 (15)

where the notation (.) represents %E

Introduce the Lagrange multipliers Al(t), Az(t) and the constant

multipliers My and My and define the functions
. . 2
F= Al(t)[Xl +a+ bt -P(t)] + Az(t)[x2 - GI(Im - X,(t))
- C. exp(P_ = P(£))*] (16)
P P m

and € = u (X, (ty) - XD + w%,(ty). (17)

The Euler Lagrange equations [15]

'%Ef.f‘__%g.go 1=1, 2 (18)
)¢ i
i
and
- '
9F _ 19
s =0 (19)

can now be applied to equation (16) to obtain the following relationships

dx,(t)
S 2 o

—ar " 20T, - ) R

dr. (t)
2 = 21
dt 0 (21)

2 Al

- - - —— 2
and (B P(t)) exp(P P(t)) 2,0 0. (22)

We need two boundary conditions for the two Lagrange multipliers Al and

A They are obtained by applying the transversality conditions [15]

2'



25

d
T L) (23)
i t=t. axi t=t.

Applying this condition to equations (16) and (17), we get
Al(tf) =0 (24)
lz(tf) = -1, {25)

Now we have four differential conditions with two initial and two final
conditions, which make the problem, a two point boundary value type.

In addition we have an implicit equation (22) for determining the control
variable P(t).

BOUNDARY CONDITION ITERATION

As discussed in Chapter 3, we need the differential semsitivity
af(t) and'aittz
3xX(t xX(t

measures to iterate on the boundary conditions,
o) o)

The differential semsitivity equations are given by

4 (D, | g BE gy O (26)
oX(tg) ax(t,) 0X(t.)
L @A, oo By p(p MO (27)
X(t ) X(t) R (t,)
ma B l -1 (28)
ax(t.) ‘t=t.
ax(t) | -0 (29)
ax(ty) t=tg
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where I is the identity matrix, For the particular problem, the matrices

A(t), B(t), C(t) and D(t) are given by

A(t) = : (30)
—ZCI(Imrxl) 0

»m 2¢_(-P(£)) exp(2 -R(1))’
H H
PsP PsP
B(t) =
2¢ (P -R (1)) exp(2_-(£)) .-4C§(Pm-P(t))2 (exp(2_-P(£)) %)
i T H
\ PsP P,P J
(31)
-20,6; 0
c(t) = (32)
0 0
0 ch(Imfxl)
and D(t) = (33)
0 0
where B = 20,C exp(B, = B(e)? [1+ 2(B, - 2(e)’. (34)

Thus for the differential sensitivity measures we have four differential
equations given by equation (26), four differential equations given by

equation (27) and eight boundary conditions given by equationms (28) and (29).
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In the terminology of Chapter 3, the residual norm vector is

L&
R = (35)
)
where
by = X, (0) - xg =0
¥ (36)
5 = %,(0) =0
) Xl(tf)
and T = R _ (37)
£ t;

The elements of the constrained Jacdbian,~g%-are given by

dm
raxl(to) axl(to)7
axl(tf) axz(tf)
r(m) = . (38)
, axz(to) axz(to)
\axl(tf) axz(tf}J

The elements of the above matrix are obtained by integrating the differential
sensitivity equations backwards. All the necessary information for the

iteration scheme

P T [me vy TGO+ g T RGH (39)

is available,
It would be observed that equation (22) does not admit explicit analytic

solution for P(t). In general, however, this control can be found by
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iterative procedures for solving the algebraic equation (22), in
conjunction with differential system (7), (9), (20) and (21). The
Direct Second Variational Method, a procedure proposed by Padmanabhan
and Bankoff [26] was used. The details of the method are given in
Appendix (1).

NUMERICAL ASPECTS

In order to solve this problem numerically, the constants were assumed

to have the following values:

a = 2.0 I = 10.0
b = 1.0 ¢, = 0.001
xg - 5,0 P = 5.0
m
¢, = 0.1 tg = 0
tg = 1.0 .

This problem was solved on an IBM 360-50 computer. The Runge-Kutta
integration formulae were used to integrate equations (12), (13), (20),
(21), (26) and (27). The step size used for the numerical integration
was 0.01.

As discu;sed previously, we need initial approximafions of the
fingl_values-of the state variables to start the solution of this
prohiem. 'Since there are only two state variables, we needed the
initial approximations of Xl(tf) #ﬁd Xz(tf). These values were oﬁéaihed
'ffom iﬁtuition and knowledge of the system, After obtaining optimum
solution from one initial approximation, other initial values were
tried to study the convergence properties of the technique. The set
of-iﬁi;ial approximations used are given in Table 4,1. It would be

observed that the initial approximations used were on both sides of the

optimum.
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The convergence rates of the control variable — production rate —
are shown in Figs. (4.1) and (4.2). The convergence rates of the
inventory level and the total cost are shown in Figs. (4.3), (4.4),

(4.5) and (4.6) respectively.

Its observed from Figs. (4.1) and (4.2) that production rate curve
is very close to the optimum after the fifth iteration. This near optimum
trajectory is reached irrespective of the initial guess on control
variable in five iterations. However, the trajectories for cost and
inventory level are far from optimum at the fifth iteratioﬁ.

The rates of convergence of the final inventory Xl(tf), total
cost Xz(tf), and the residuals are given in Tables (4.2), (4.3) and (4.4)
respectively. The rate of convergence_during the first five or six
iterations is fast while the rate of convergence is slow thereafter.

This is illustrated in Fig. (4.7). Similar convergence rates hold
for other variables.

It can be seen from Tables (4.2), (4.3) and (4.4) that with initial
guesses far from optimum, the correct solution ié ﬁbtained without
significant increase in the number of iterations. It is an important
advantage of the scheme that correct solutions are obtained starting
with crude estimates of the final vaiues of the.state variables, The
convergence rate ﬁf the final inventory is shown in Figure (4.7).

Since the weighting factor q provides control over the iteration
process, the effect of q; on convergence rate was studied. The results
are shown in Table (4.5). The number of iterations required were minimum
with q = 1. This is because of the fact that the initial approximation
was close to the optimum and Newton-Raphson techniques better near the

optimum than the Gradient technique.
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RESULTS
The optimal cost in the problem was 0.9187 and the optimal initial

and final values of the state variables were:

X, (0)

3.0 Xl(l) = 9.3088

X,(0) = 0.0 Xé(l) = 0,9187
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Table 4,1. Initial Approximations Used for the Inventory Model

Set No.

Optimum

0
X, (te)

9.0
7.0
4.0
20,0

50,0

9.3088

Xo(t,)

0.95
0.5
1.5
2,0

10.0

0.9186



Table 4.2, éonvergence Rate of Final Inventory, Xl(tf)

o0
Xl(tf)
o
Xz(tf)
Iteration

1
2

v

10

11

13
14
15
16
17
18
19

20

Initial Approximation of Production P(t) = 6.0

ok )
Ay Giaa;i) s Y = 0.5

9.0

0.95

9.0
9.1346
9.2144
9.2683
9.2884
9.2987
9.3036
9.3062
9.3075
9.3082
9.3084
-9.3086
9.3087

9.3087

3

7.0

0.5

7.0
7.9525
8.5157

8,8583

9.0921

9.2282
9.2483
9.2866
9.2914
9.3024
9.3038
9.3069

9.3073

9.3082

9.3084
9.3086
9.3087

9.3087

4.0

1.5

4,0

5.8178
7.0792
8.1279
8,8487

9.0135

9.2038

9.2246

9.2784

9.2846

9.2999

9.3018

9.3062
9.3067
9.3080
9.3082
9.3085

9.3086

9.3087 -

9.3087

20,0

2,0

20,0
15,7915
10,9164
8.7561
8,8187
9.1387
9.1644
19,2574
9.2672
9.2936
9.2968
9.3044
9.3053
9.3075
9.3078
9.3084

9.3085

9.3087

9.3087

9.3088

50.0

10.0

Did not converge in 1 hour of computing time.

8 iterations,. ||R|[| = 9.85

32
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Table 4.3, Convergence Rate of Total Cost, xz(tf)' in an Inventory Model

Initial Approximation of Production P(t), = 6,0

3
9 = (jﬁﬁ;ﬁ) » Yy = 0.5

X)(tp) 9,0 7.0 4.0 20.0 50.0
X, () 0.95 0.5 1.5 2,0 10.0
Iteration

1 0.95 0.5 1:5 2.0

2 0.9934  0,9301  2.1611 3.0733

3 1,0049  1.1538  2,5591 3.1671

4 0.9929  1,2419  2.6475 2,1629

5 0.9558  1.2339  1,7985 1,5022

6 0,9373  1.,1022  1,3226 1.3275 ,‘é;

7 0.9280 1.0060 1.1664 1,1144 :

8 0.9233  0.9714  1,0370  1,0426 E'

9 0.9210  0.9439  0.9918 0.9782 2,
10 0.9198  0.9339  0.9537 0.9550 § o
11 0.9192  0.9259  0.9399 0.9361 - R
12 0.9189  0.9230  0,9288 0.9292 ’g‘ M
13 0.9188  0.9207  0.9248 0.9237 j 3
14 0.9187  0.9199  0.9216 0.9217 8
15 - 0.9192  0.9204 0.9201 9 §
16 — 0.9190  0.9195 0.9195 § ‘5
17 C - 0.9188  0.9191 0.9190 § §
18 - 0.9187  0.9188 0.9189 8 ®
19 - - 0.9187 0,9187 : §
20 - - 0.9187 0.9187 a <
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Table 4.5, Effect of Step Size y, and Weighting Factor on
k Ik

Convergence Rate

o _ o _ -
Xl(tf) = 9,0, Xz(tf) = (.95, P(t) 6.0,
Step Size Weighting Factor No, of Time
Yy Qe Iterations Min,
Required
*
K 3
0.5 Qﬁﬁﬂi? 14 11.2
x 2
0.5 (m) 14 11,2
0.5 o5 13 10. 4
* 100+k '
0.5 L 13 10.4
* 50+k *

k

0.5 (W) 12 9.6
k

0.5 (10+k ) 10 8.0
k

0.5 (1 T k) 7 5.6
.k

0.5 (.1+k ) 5 4.0
k

0.5 TR 4 3,2

*
k = Iteration Number
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CHAPTER 5
APPLICATION TO AN INVENTORY AND ADVERTISEMENT SCHEDULING MODEL

We now wish to apply the technique to a more complex problem,
namely an inventory and advertisement model. This model has two
state variables and one control variable. As will be seen, the
number of differential eduaticns increase rapidly as the number of
state variables increase,
DEVELOPMENT OF THE MODEL

This model was originally developed by Teichroew [29]., Consider
a group of people in which onl& certain members possess a particular
piece of information, say, about a cogpany‘s product, Suppose that
the total number of such persons remains constant and that the diffusion
of information occurs only through personal contact. The number of
contacts made by an average informed person in a unit of time is known,
In a contact, the contactee receives information if he does not already
have it, if he already has it, the contact is wasted in so far as in-

creasing the number of informed persons is concerned.

Let k(0) = ko number of informed persons at time ty
N = total number of persons
C = contact co-efficient; the number of contacts made

by one informed person per unit time

k(t) = number of informed persons at time t
then k(t) /N = proportion of informed persons at time t
k(t) _ .
1l- N = proportion of uninformed persons at time t

C k(t) dt = contacts made during a time interval dt.

L
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The increase in the total number of informed people during a short interval
of time dt is obtained by multiplying the number of contacts by the
proportion of uninformed persons, because an increase in informed members

is caused only by contacts with uninformed group. Hence

dk() = €+ k(e) - dt . (1 - KL (1)
or

dk(t) k{t) :

—dt—'=C°k{t) (l-""ﬁ""—)- - (2)

Suppose next that the firm can influence the number of coﬁtacts by
spending money on advertising. In particular, it can increase the number
of contacts made by the informed persons by an additional number T

per unit of time, Thus,

dk(t)

_ _ k()
S - k(o) [c+ T [1- F (3)

If each informed person buys n units of the company's products and

if Xl(t) represents the sales at time t, thén

X, () =n . k(1). ' (4)
Let n = 1, and substituting for k(t) in equation (3) we get
dx, (t) X, ()

L —x(0) - (CHT() + [1- ] . (5)

Next, the rate of change of the firm's inventory Xz(t), is given by

dx, ()
dt

= P(t) - Xl(t) (6)

where P(t) = production rate at time t.



The production rate is assumed to be a linear function given by

P(t) = atbt (7
where a,b are known constants and t is time.
This is a typical industrial management problem where the management

wishes to maximize the profit given by

t
_r £ 2 2
(1) = { [C, + X (8) = € (B] = X,(£))7 - ¢, + T(B)X;(t)]dt
0
(8)
where Cs is the revenue from sale of one unit of the product, CI is the

inventory carrying cost, and P_ can be considered as the capacity for

I
the storage of inventory. In many practical situations, the minimum
storage cost is obtained when the storage capacity is completely filled,
Furthermore, the cost function, equation (8), has the smoothing
capability, which is frequently desirable for many processes. In this
case, PI can be considered as the desirable inventory level. The last
term on the right hand side of equation (6) represents the total cost of

advertising, where CA is the cost of advertising.

The initial conditions for equations (5} and (6) are
0

]

Xl(to) (9

X1
X, (t) = X0 (10)
270 2 °
The role of management in this particular case is to select the
optimal policy from among all feasible solutions which gives the
maximum profit,
DEFINITION OF THE PROBELEM

Find the control function T(t) in the interval t < t < t_ such

0 £

that the scalar performance index

46



te

3wy = [ Lo, X (6) - G () - %,(N% - ¢, » TE(OXR (DA (1)

t
0

is a maximum, while the first order, non-linear, differential equations

. Xm(t) Xl(t)
i xl(t) « (C+ T(E))[1 - =] (12)
dxz(t)
and F - P(t) - Xl(t) | . (13)

and the initial conditions

0
0

are satisfied. The above problem has two state variables, Xl(t) and
Xz(t), and one control variable T(t). Note that, since advertisement

rate cannot be negative we have a lower bound on the control functiom
T(t) > 0 (16)

It has been assumed that the problem is deterministic, that the control
variable and its derivitives are continuous in the interval [to, tf].
FORMULATION OF THE PROBLEM

As discussed in Chapter 3, it is convenient to reformulate the

problem as a Mayer's problem. To this end define

t
Xy(0) = [ [C, X () = Cx(Pp - ()7 - ¢,P(1) * X (D] de. (D)

to

Direct differentiation yields

dX,(t) 2 2
3= c X (8) - C (] - X,()7 - ¢ T + X (£) (18)

W7



with X3(tf) = J(T) (19)

and X3(t0) = 0, (20).

Thus, with the introduction of the state variable X3(t), the original
problem may be reformulated as:

Maximize X3(tf) subject to the constraints of equations (12), (13)
and (18) and satisfying the initial conditions given by equations (14),
(15) and (20).

To solve this problem, following the classical technique of the
Calculus of Variations, introduce the Lagrange multipliers kl(t), Az(t),

l3(t), ul(t) and the constant multipliers 6y, 6, and 6,. Define the

2 3
functions
. xl .
F=2,0% - X (C+T)(1 - —ﬁ)] +2,[X, - a-bt+X)]
ALK - CX +C(P - X))+ C, T + u.(t) + T(D)
3o 81 ) s 2 A~ 814 T ¥y

_ 0 0 (21)

and G = Xa(tf) + el{xl(to) - xl] + ez[xz(to) - XZ] + 33[x3ftc}]
(22)

Ll

vhere the notation (') represents-gz
In equation (21) My = 0, when the constraint equation (16) is not
violated, However when the constraint equation (16) is violated, the
control variable T(t) is determined by the equality in equation (16).

and the multiplier ul(t) is determined from the Eule;-Lagrange equations.

Applying the Euler-Lagrange equations [15] to equation (21)

we get the adjoint system

ar, (t) Xy 2
—5r— = - MEH+ DA -5+, v Ay [-C +Cy T (23)

L8



dkz(t)

S = = 2, C(P- X,) (24)
dA3(t)
= (25)
%
and -Xlxl(l - -ﬁ) + ZABCA Xl T + By = 0. (26)

However, since the multiplier My does not enter into the equations (23),
(24) and (25), the numerical solution procedure will be the same as for
the unconstrained case, except that whenever the constraint is violated,

the control variable will be obtained from the equality in equation (16).

Therefore, the multiplier M, can be dropped from equation (26), which
then reduces to
A X
A X _
T(t) = 57— (1 - =) . ’ (27)
2A3CA N

The required boundary conditions for the Lagrange multipliers are ob-

tained by applying the transversality conditions [15]

i t=tf BXi t=tf

to equations (21) and (22). The boundary conditions are

Al(tf) =0 (29)
A () =0 (30)
Aa(tf) = -1, (31)

The system is now composed of 6 differential conditions with three

initial and three final conditions which make the problem a two point



boundary value type. In addition we have equation (27) for determining
the control variable T(t). Notice that the control variable can be
eliminated from equations (12), (18) and (23) by using equation (27).
BOUNDARY CONDITION ITERATION SCHEME

In order to use the iteration scheme given by equation (24) of

AX(t) and ax(t)
ai(tf) aX(t

Chapter 3, we need the sensitivity co-efficients
)
- - f
where X(t) and A(t) are (3xl) vectors, To obtain
these sensitivity co-efficients, the following eighteen differential

equations are required

BX(tf) BX(tf) ax(tf)
'%E (228, o gey O ppy 2O (33)
ax(tf) X (ty) BX(t,)
with the boundary conditions
'“%ELEL =1, where I is a 3x3 Identity matrix (34)
BX(tf) t=tg
and E%LEL— I = 0. (35)
BX(tf) t=t.

For the particular problem, the matrices A(t), B(t), C(t) and D(t)

can be easily derived to be

50



[ 2X X
(CHT) (1 - =) - =
T,T
A(t)= -1
2C. TX
c -cﬁT2 P ——-ﬁ———-l— @ -
s T,T
( X, 2
2 1
Xl(l - —ﬁ)
B(t) = ﬁ:l_. 0
T,T
X
2 1
-chT Xy (1 - N)
rzx
—-ﬁ-l— (C+T) + i—l— [, -
T
c(t) =
0
| 0
T
and D(t) = - [A(t)]
where HT,T = —2X1 A3.Cuus

X

2Xl

=)

N

2Kl

)

2X

- 2A3CA

- ZASCA

T}

T)

1 1
—(1 - E") {).l(l - —N—)—Z)\3CAT

2

2CI(PI

2
—ZCAT Xl

'Xz)

(36)

X
1
1 - —ﬁa

(38)

(39)

(40)

21

4

-
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Thus, for the differential sensitivity measures we have nine differential
equations given by equation (32), nine differential equations given by
equation (33) and eighteen boundary conditions given by equations (34)
and (35). Since the boundary conditions are given at the final time
only, the system forms a final value type problem and can be easily
solved.

Since iterations are carried out on final values of the state

variables, the vector T is defined as

r h'
xl(tf)

=i
]

Ky t) RE

\X (tf)a

and in the terminology of Chapter 3, the residual norm vector to be

driven to zero is

(42)

w1
1
<=
(%)

Sk,

1 0
Xl(to) - Xl
“x.(e) - %° (43)

20 2 *

\x3(t0)

The elements of the constrained Jacobian é% are given by
dn



r{m=

BXl(tO)

3X1(tf)

axzcto)

HXl(tf)

3X3(t0)

axl(t

2,
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3
axl(to) axl(to)
BXZ(tf) BX3(tf)
axz(to) axz(to) _ i
BXZ(tf) ax3(tf)
8X3(t0) 3X3(t0)
axz(tf) 3X3(tf)

The elements of this matrix are obtained by integrating the sensitivity
differential equations backwards., All the necessary information for the

iteration scheme

-1

k+1 ] ﬁ(;

R N (6 ER %) IO LN T “

is now available.
NUMERICAL ASPECTS
In order to solve this problem numerically, the constants are assumed to

have the following values:

a = 70,0 ¢, = 0.15

b = 100.0 P = 50.0
C=2.0 CA=105

N = 150.0 xg = 20.0
¢ = 10.0 % = 20.0
s 2

t. =0 t_ =1,

o
L]



The problem was solved on an IBM 360-50 computér. The Runge Kutta
integration formulae were used to integrate the differential equations,
The step size used for the numerical integration was 0,01,

To obtain the solutions, the initial approximations given in
Table 5.1 were used,

Out of the seven initial sets of approximations tried, only five
converged to the optimum. In other two cases overflow occurred even
before the first iteration.

The convergence rates of final sales, final inventory, and total
cost are given in Tables 5.2, 5.3, and 5.4. The convergence rates of

the trajectories for sales, inventory level, cost and advertisement are

54

shown in Figs. (5.1), (5.2), (5.3) and (5.4) respectively, The following

initial approximations, step size and weighting factor are used in

obtaining these figures:

[}

Xl(tf) 150

I

Xz(tf) 90

]

XB(tf) 650

=K _
9% * Tovx

Y T 0.1
The effect of step size and weighting factor on convergence rate
measured in terms of number of iteratioms required was also studied.
The results are shown in Table 5,6,
RESULTS
The optimal profit in this problem was J = 584,2151 and the optimal

initial and final values are



Table 5.1, Initial Approximations Used for Advertisement Model

Set No. X3t Xy(t,) xgctf)
1 120.0 75.0 600.0
2 150.0 90,0 650.0
3 100.0 50.0 500,0
4 80,0 40.0 450, 0
5 75,0  125,0 .  300.0
6 45,0 45,0 600.0
7 200.0 55.0 400,0

Optimum 115,6907 66,1579 584,2151



Table 5.2, Convergence Rate of Sales, Xl(tf)

[ §
Xl(tf)

(s ]
Xz(tf)

o
X3(tf)

Iteration

Wo~NoTuns~wkho =

o et
U = Tork

120,0
75.0

600.0

120.0
119.784
119.270
118.591
117,876
117.226
116.699
116.311
116,050
115,886
115,791
115.738
115,718
115.703
115,696
115,693
115.6915
115,6911
115.6909
115,6908
115,6907
115,6907

—

Yk = 0,1

150.0
90.0

650.0

150.0
147.997
144,942
141,347
137.446
133,357
129,266
125,453
122.202
119.698
117.965
116.886
116.278
115.962
115.810
115.741
115..711
115,699
115.694
115.692
115.691
115,6909
115,6908
115,6907
115.6907

100.0

50.0

500.0

100.0
101.254
104,003
107.204
110,041
112.186
113,644
114,560
115,099
115.396
115,552
115,628
115.664
115,680
115.686
115,689
115,690
115.6906
115,6907
115,6907
115.6907
115,6907

80.0

40,0

450,0

80.0
82,595
90,374
98.862
105.430
109. 820
112,521
114,078
114,921
115.349
115,551
115.639
115.674
115,686
115.690
115.6909
115.6910
115,6909
115,6909
115,6908
115,6908
115.6907
115,6907

56

75.0 45.0

125,0 45.0

300.0 600.0

OVERFLOW

45,0

48,671
113,799
115,419
116,486
116.996
117.070
116,880
116,583
116.291
116.059
115,899
115,801
115.745
115,761
115,702
115.696
115,693
115.692
115.691
115,6909
115.6908
115.6907
115.6907
115.6907

200.0

55.0

400.0

OVERFLOW



Table 5.3. Convergence Rate of Final Inventory, xz(tf)

(]
Xl(tf)
(8}

X (tg)
(s ]
X(te)

Iteration

Yo WD

R R R el o I [ Yy S Sr g gy
MEPEWRROVWO~wNOULFWNERO

"
%Y = Torer Y - 01
120.0 150.0
75.0 90.0
600.0 650.0
75.0 90.0
75.049 91.652
74.249 88.672
72.885 82.538
71,310 75.721
69.818 70,159
68,585 66,638
67,667 65.000
67.041 64,631
66.647 64,883
66. 414 65.301
66.285 65.659
66.215 65,895
66.184 66.030
66.169 66.099
66.163 66.132
66,160 66,147
66.159 66.151
66.158 66.155
66.158 66.157
66.1579 66,157
66.1579 66,158
- 66.158
- 66,1579
- 66,1580

100.0

50.0

500.0

50.0
50.384
51,862
54,128
56,780
59.381
61,602
63.295
64,469
65,218
65,663
65.910
66,040
66.104
66,135
66,148
66,154
66.156
66.157
66.1577
66,1578
66,1579

—

80.0

40.0

450.0

40.0
41,865
44,217
47.411
51.370
55.409
58.916
61.605
63.471
64,661
65,368
65,762
65.969
66,072
66,120
66,142
66,152
66,155
66,157
66.1576
66.1578
66,1579
66,1578

75,0 45.0

125.0 45.0

300.0 600.0

OVERFLOW

45,00
50.228
29.970
36.450
43,546
50.095
55.450
59.431
62.166
63.916
64.964
65.554
65.867
66.024
66.099
66,133
66.148
66,154
66.156
66.157
66.1578
66.1579
66.1579
66,1580
66,1580

5T

200.0

55‘0

400.0

OVERFLOW
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Table 5.4, Convergence Rate of Total Profit, X3(tf)

k
9 = To+k * Y = 001
X;(tf) 120.0 150.0 100.0 80,0 75.0 45,0  200.0
x;(tf) 75.0 90.0 50.0 40,0 125.0 45.0 55.0
Xg(tf) 600.0 650.0 500.0 450.,0 300.0 600.0 400 .0
Iteration
1 600.0 650.0 500.0 450,0 600 .0
2 600,010 650,120 499,935 448,845 599,664
3 600,920 724,571 518,363 449,274 819,035
4 601.590 818,728 543,937 560,231 817.896
5 600. 841 875.927 565.793 602,818 798.168
6 598,464 876.115 579,331 620,404 760.906
7 595,141 832.969 585,398 620,090 715,886
8 591,783 771,382 586,946 611,761 673,510
9 589,009 711,242 586,572 602,341 639. 890
10 587,025 662.940 585,757 594,905 616,431 &
11 585,755 629,146 585,081 590,012 5 601,659 5
12 585,010 608,023 584,653 587.151 B 593,115 @
13 584,604 596,032 584, 420 585,619 5 588,519 5
14 584,397 589,756 584,305 584, 854 586,198
15 584,297 586, 686 584,253 584,493 585,088
16 584,250 585,269 584,230 584,331 584,584
17 584,230 584,646 584,221 584,262 584,364
18 584,221 584,384 584,218 584,234 584,273
19 584,218 584,280 584,216 584,222 584,237
20 584,216 584,239 584,2158  584,2183 584,224
21 584,2153 584,224 584,2153  584,2161 584,218
22 584,2151 584,219 584,2148  584,2151 584,216
23 - 584,216 - 584,2148 584,215
24 - 584,2153 - - 584,2151
25 - 584,2151 - - 584,2151



Advertisement, A(t)
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Fig.5.l. Convergence rate of advertisement,A(t).
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Fig.5.2. Convergence rate of sales, X,(1) in advertisement model.
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Inventory, X, (1)
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Fig.5.4. Convergence rate of inventory, X,(t), in advertisement
model.
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Table 5.6. Effect of Step Size Vi and Welghting Factor g, on

Convergence Rate

o _ o _ o _
Xl(tf) = 100.0 Xz(tf) = 50,0 X3(tf) = 500.0
Step Size Weighting Factor No, of Iterations Time
Yi Q. Required Min,
%
X 2
0.1 (IEE;E) Did not converge. 12,48
After 64 iterations
||r|| = 0.09588
0.1 % 56 10.91
* 100+k *
« e
0.1 SO0tk 42 8,16
k
0.1 '"3-0:1'{- 32 6,24
0.1 -3 22 4,28
* 10+k *
k _ .
0.1 o 17 3.31
k
k
0.1 ) Y 8 1.56
k
0.1 ﬁ;g 7 1,37
k
0.2 -.Tl"—lz 8 1.56

%
k = iteration no.



x,(0)
X,(0)

X5(0)

[l

]

20,0

20.0

0.0

X, (1)
X, (1)

X4(1)

115.6907

66,1579

584,2151
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CHAPTER 6
APPLICATION TO A PRODUCTION AND ADVERTISEMENT SCHEDULING MODEL

To study the effectivenes; of the computational procedure in
obtaining numerical solutions for complex dynamic problems, a
production and advertisement problem with four state variables and
two control variables is solved in this chapter, To illustrate the
versatality of the procedure, Lagrange formulation of the variational

problem has been used for the derivation of the necessary equations,

DEVELOPMENT OF THE MODEL

The system under consideration is shown in Fig. (6.1). A
manufacturing firm has decided to produce and market a new product B,
Since the product is ﬁew, advertising is planned to boost its sales.
Furthermore, to protect against fluctuations in demand, it is planned
to maintain an inventory for the product., Product B is produced in
the chemical reactor in which the following first order reaction takes
place

A~+B~+ C,
During this reaction, a certain amount of B also decomposes into C. B
is the most valuable product and C is the least valuable. 8ince C is
less valuable, the decomposition of B into C is undesirable. It is
assumed that the raw material containing A, B and C is available in

unlimited quantity and that both A and C have an unlimited market at

a fixed price and they can be sold as soon as manufactured, Therefore,

inventory for A and C is not considered, The amount of B produced and

decomposed can be controlled by the reaction temperature T.

66
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Let
V = volume of chemical reactor
q = flow rate
Ka = reaction rate constant of A
Kb = reaction rate constant of B
Ga’Gb = frequency constants for products A and B respectively
Ea’Eb = activation energies of reactions

R = gas constant

T = temperature in reactor

Xl = concentration of A in reactor
X2 = concentration of B in reactor
0 ‘
Xl = raw material concentration of A
0
X2 = raw material concentration of B,

The production rates in the reactor can be represented by

V3 = qx] - X (£)) - VKX, (£) W
dky 0
V=t = q(X, - X,(€)) - VKX, (t) + VKX, (£). (2)

The reaction rate constants are defined as

2 Ea
Ca exp - 37

bl
(]

(3
E
G, exp (- -ﬁ%) .

It

and Kb

As indicated before, an inventory is desired for the product B

and the performance equation for inventory is
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Rate of change in = total production - total sales
inventory
or

dX,(t)
e qu(t) - X4(t) (4)
where X3(t) is the inventory and X4(t) is the sales of product B.

The sales rate for product B is again given by the diffusion model of

Chapter 5, equation (5). Hence,

dx, (t) X, ()
—————E Xh(t) [Cc + A(t)][1 - N ] (5)

where Cc is the contact co-efficient, A(t) is the advertisement rate
and N represents the total number of people in the group. Equations (1)
through (5) represent the system, We have four state variables, Xl(t),
Xz(t), X3(t) and X4(t), and two control varisbles T(t) and A(t).

The management wishes to select the control variables, such that,
considering the costs of advertising and storage of B and the relative
sales values of A, B and C, the profit, given by the following function,

is maximized.

tf [Total revenue of + Total revenue of + Total revenue of
Total Profit = f B A C

%o
- inventory - advertisement - manufacturing] dt.

cost cost cost

Mathematically, the objective function can be stated as
J = ftf [C,X, + C.qX, + C,q(1-X,-X,) - C.(I -X)2 - ¢ a%%?
= phy T R T SRR Y I''m 3 TR

o

2
= CT(Tm—T) }dt (6)

where Cl’ C2, and 03 are the revenues from sales of an unit of the



products B, A, and C, respectively, The fourth and fifth terms
represent the inventory and advertising costs for product B, The
last term represents the manufacturing cost. Im can be considered

as the desirable inventory level and C. and c, are the inventory and

I

advertising costs.

DEFINITION OF THE PROBLEM
The optimum control problem is to determine the trajectories

Xl(t), Xz(t), X3(t), and Xd(t)’ t. <t j.tf, and the control functions

0

A(t) and T(t) in such a way that the performance functional

t
IR, ACE), T(B)] = [ ° [CiX, + Cpax

+Cyq(1 - X, - X
t

1 1 2)

2

2
4~ CT(Tm - T)"1dt (7)

2 2
- CI(Im - X3) - CuA X

is maximized, subject to the constraints

dx, () 0
dxz(t) 0
V—— = a(X, - %,(0) - VKX, () + VK X, (£) 9)
dX3(t)
) = quct) - Xl&(t) (10)
dx, (t) X,(t)
and - X4(t)[Cc + A(t)][1 - N ] (11)
with the boundary conditions
X, (t) = X (12)
170 1
_ 0
XZ(tO) = Xz (13)



T1

_ 0

X3(t0) = x3 (14)

and X, (6. = 50 (15)
AL 4

Note that the final time t_ is explicitely specified in this

b
formulation and its assumed that all functions have continuous second
order derivatives., The problem is assumed to be deterministic and

that there are no bounds over the state history except at the initial
point. There are no bounds over the temperature T(t) and from physical
reasoning, its clear that advertisement rate A(t) cannot be negative, i.e.
(16)

A(t) > 0, t,a<t<t

0 E*
FORMULATION OF THE PROBLEM

The procedure for solution of this problem is the same as for the
last two problems, First, the necessary conditions for optimality
are in the usual way and then necessary equations are derived for
boundary condition iteration.

Following the classical treatment in Calculus of Variations, let

us introduce the set of Lagrange multipliers

Ai(t), i=1, ..., 4, toititf (17)
and the set of constant multipliers
uj, j=1, 280y 4. (18)

Define the functions

x°

- e _ 9 (0 _
1 Xl) + Kaxl] + Az[}{2 v (X2 X

F(X,X,T(8) ,A(0) %) = A, [%, -

Y 2)

X
. . 4
+ KXy = KX 1+ A.0Ky = X, + X1 + 40X, - X,(CHA(L - )]

2 2,2 2
+ [clx4 + gzq'xi + CBq(l-Xl—XZ) = CI(Im—X.?-) - CuA X4-CT(Tm-T) ]

(19
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and 62,7 = uy (X, (tg) - xg] +ou, [X,(ty) - xg] +uglx,(ey) - xg)] (20)
0

The Euler-Lagrange equations [15],

—EE(—._-)-EE"=09 i=l’ seey 4 (21)
3xX i
i
and -g%=0,-g—i——=0 (22)

can now be applied to equation (19) to obtain the following relationships

dkl(t) Al
qc = a5t Gy - Gl - KDy -yl (23)
dlz(t) 12
T U A Sl VR PN (24)
dA3(t)
ac = 261, - Xy) (25)
daa(t) Zx4 2
and —— =23 = A, (C_ + A1 - =) + C; - 2CAX, . (26)
Application of equation (22) to equation (19) yields
A(t) = A4(X4 - N)/ZCuNX4 27)
K X.E X.E A
amd 212 [y, - 2] +—K-'?—27u +20(T_ - 1) =0, (28)
RT RT

Equation (27) gives an explicit expression for control variable A(t)

and hence can be eliminated from all the performance equations., However,
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equation (28) gives an implicit equation for control variable T(t)

and therefore DSV method has to be used. It will be observed that all
the equations are non-linear differential equations. For the 8
differential equations [equations (8) through (11) and equations (23)
through (26)] we have only four boundary conditions given by equations
(12) through (15). Additional four boundary conditions can be obtained

by applying tranversality conditions [15].

36_ ) -0 - (29)

oX 2
i t—tf BXi t-tf

to equations (19) and (20), Hence, we obtain

J\l(tf) =0 (30)
Ay (ep) =0 (31)
13(tf) =0 (32)
k4(tf) =0. (33)

The boundary conditions given by equations (12) through (15) and
equations (30) through (33) make this system, a two point boundary

value problem,

BOUNDARY CONDITION ITERATION

The procedure for the solution of the problem is the same as that
used in previous two models. The final values of the state variables
are estimated using judgment and knowledge of the process. These
estimates are then improved till the boundary conditions at the
initial point are satisfied using the combined gradient and Newton-
Raphson technique and employing the sensitivity information. In order
to obtain the necessary equations in vector form, we define the

generalized Hamiltonian



0 qr0
X - Xl] - KaX1] + AZ[V[XZ - Xz} - KbXZ + Kaxll

- g9
H=20y %

X2

+2,40aX, = X, (0] + 4, [(C (X, - D]

2 2.2
[clx4 + CyqX; + Coq(1 - X - Xz) - CI(Im - x3) - CAX, (34)

2
- Cy(z, - ML

The process and adjolnt equations can therefore be written as

X(t) = H_[X, A(t), T(t)] (35)
A

and A(t) = -H_[X, X, A(t), T(t)] (36)
X

and equations (27) and (28) can be written as

H,[X, X, A(t)] = 0 (37)
H (X, X, ()] = 0 . (38)
As discussed in Chapter 3, we need the sensitivity measures

aX(t) - aa(t)
ai(tf) ai(tf)

« The differential sensitivity equatioms for

these measures may be derived as indicated in Chapter 3 and are given

by
4 EHE) gy 2Oy g RO (39)
BX(tf) BX(tf) BX(tf)
aX(t)

= =1 (40)
ax(tf) t=t.



SEMEL - gy RO ey M (44)
BX(tf) SX(tf) BX(tf)

af(t) -0 (42)

BX(tf) t=t.

where I is a (4x4) idenﬁity matrix and the matrices A(t), B(t),

C(t) and D(t) are given by

A(t) =H_ _ - H H;ITH _-H HllAg _ (43)
E LT BT rx RafAax
-1 -1
B(t) =- [H_ H o H _+H_ H H ) (42)
7,7 DT, %,A MR AR :
ct) =-® +H HZT +u B ly (45)
. Hp gl ALA

and

D(t) = - [A©)]" (46)

where subscripts denote partial differentiation and superscript T
denotes matrix transpose. For the particular problem the elements of

the (4x4) matrices are given by

B3

A.=-[2+Kx ]+ i

11 v a RZT& 0

T, T

o o aMRaN RS

12 2.4

RTHy o

A, =0

13



14

21

22

23

24

31

32

33

34

41

42

43

44

11

12

0
K - KaEa(AZ - ll) (XlKaEa B XZKBEb)
a 2. 4
RT HT,T
q AR E XK E, - LK E]
- G+ R+
v R2T4H
T,T
0
0
0
q
0
-1
0
0
0
2X4 Xf} ) X‘,’ 2}{4
(CC+A)(1 - —N—-) i (1 - “ﬁ)[}\k(l - —N—) + 4CuAX4] (47)
AA
—X2K2E2
1l aa
2_4
RT HT,T
XlKaEa
[X, K E - X E, ]
2 TR ™ ol By,
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13

14

21

22

23

24

31

32

33

34

41

42

43

b4

11

12

74 [X,E K, = XKE]

12

-1 2

RT HT,T

ZEZ

2
K a(xz—kl)

2.4
R'T HT,T

—A K K E E (Ag=3y)

2.4
RT HT,T

(48)



Ci3 =
C14 =
Caz. ™ 12
RT HT,T
Ca3 =
Co =
Gy = O
Cgy = 0
Cyq = =26,
Cyy = O |
€=
Cyp = O
Cag ™
Gy %% (cta) + 20,47 - —— [, —E;—(-‘l) + 4C_AX
- AA
and D(t) = - [A(E)]T
where HT = leaja (J\z_—ll) iib;bﬁ - ZCT(Tm-T)
RT RT
2 2
Hpp ™ :"% Hp + E%}% (Ay=2p)" ’Kfﬁ?a—z_ 120,
’ R%T R%T

)

(49)

(50)

(51)

(52)
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3
and HA g e 2cux4 . (53)

The residual norm vector R is defined as

r 3\
¥q
R = (54)
¥y
Lw4J
( 0)
Xl(to) - X
0
= (55)
X, (t) - Xp
30 3
0
LX4(t0) - X4J .
The constrained Jacobian, -‘-1_!_{— is given explicitely by
drw
f \
axlcto) BXl(tO) axl(to) BXl(tO)
axl(tf) axz(tf) ax3(tf) BX4(tf)
aXZ(tD) axz(to) axz(to) axz(to)
BXl(tf) axz(tf) 8X3(tf) 3X4(tf)
r(m =
BX3(t0) ax3(t0) 3X3(t0) 8X3(t0)
BXl(tf) BXz(tf) axs(tf) axa(tf)
axa(to) 3X4(t0) 8X4(t0) 8X4(t0) -
Laxl(tf) sz(tf) axa(tf) axa(to)J




8o

The elements of the matrix I'(7) are obtained by integrating the
sensitivity differential equations (39) and (41) backwards., All the
necessary information is now available for iterating on the boundary

conditions using the iteration formula

Pk iR L 1 - )] r@T + qkr(}K)‘l]’ﬁﬁK}. (57)

As before, dy is the weighting factor and yi is the normalized step

size for the gradient technique.

NUMERICAL ASPECTS

In order to obtain numerical solution of this problem, the constants
were assumed to have the following values, The values were selected so
as to méke the system as close as possible to the one solved by Lee

and Shah [17].
11
Ga = 0,535 x 1077 per unit time
18
G, = 0.461 x 107" per unit time
E_ = 18000 cal/mole
E = 30000 cal/mole

R = 2 cal/mole %k

V = 24

2 = 60
1 =10

m
T = 340°K

m

N = 100

cC =1

C '3 4,
c. = 0,001



¢, = 0.01
¢, = 5.0

C2 = C3 = 0,0
CI =1,0

X{ = 0.53

X) = 0.43

X = 1.0

x) = 0.1

ty = 0.0

£ = 1.0

Since an explicit solution for T(t) cannot be obtained, it is necessary
to assume an initial trajectory for this control variable. For all
numerical work, the following trajectory was assumed:

T(t) = 340°K, ELER (58)

£
With the assumed initial function, equation (58), the process and
adjoint equations are integrated, To cobtain a solution of the equation
(28) in conjuction with the process and adjoint equations, direct
second variational method outlined in Appendix (1) was used. The
iteration cycle for DSV method is nested inside the boundary condition
iteration cycle in the computer program,
Since only the final conditions for adjoint variables A(t) are

given at the final time, it is necessary to assume the boundary

conditions of the state variables at the final time tf. The different

81



sets of values assumed for the state variables at the final time are
given in Table 6,1,

In order to ensure rapid and uniform convergence to the optimum,
the weighting factor 9 and the step size Yy have to be suitably
selected. Because of the nature of the process equations, it was
observed during computer runs that the problem was very sensitive
to the values assumed for the control variable T(t), the state
variables i(tf), the weighting factor q, and the step size y,. The
results have been documented and discussed in detail in fhe next

section for each set seperately,

RESULTS

The initial function assumed for the control variable T(t), given
by equation (58) was the same for all the sets, Hence the sets have
been grouped according to the values assumed for the state variables

X(t This problem was solved on an IBM-360/50 computer. Runge-

o)
Kutta integration method was used to integrate the systems of non-
linear differential equations. The step size used for the numerical
integration was 0,01,

Set 1.

The différent combinations of values of the weighting factor 4y
and step size Yk tried are given in Table 6,2. The assumed values for
i(tf) were close to the solution of the problem solved by Lee and
Shah [17].

Set 1A which corresponds to pure Newton-Raphson method failed

after two iterations, Sets 1B and 1C, in which the effect of gradient

technique was gradually increased, also failed to converge. In set 1D,

82



TABLE 6.1,

Set No,

Initial Approximations Used for the Production and
Advertisement Scheduling Model

Initial Approximation of Temperature T(t) = 3400, toStste.
0.42 0.47 . 50.0
0.42 0.47 2,5 80.0

0.4 0.45 2.5 50.0

83
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thé effect of gradient technique was increased further and the solution
was obtained in 28 iterations,

The rates of convergence of the concentrations of A and B are

shown in Fig. (6.2). The convergence rate of inventory, X3(t), is
shown in Fig, (6.3). The optimal trajectory is quite close to the
trajectory at the first iteration and the convergence is uniform.,
The convergence rates of sales Xé(t), the temperature T(t), the adver-
tisement rate A(t) and the profit J are shown in Fig, (6.4), Fig. (6.5),
Fig. (6.6) and Fig. (6.7) respectively. |

In obtaining the Figs. (6.1) through (6.7), the following

approximations of the state variables at the final time were used

X, (te = 0.42
X,(tg = 0.47
X, (tg) = 2.5
Xa(tf) = 50.0 ,

The optimal profit in this problem was 94,23 and the optimal values

of state variables at final time are

Xl(l) = 0,4437

X2{1) = 0,4753

X3(1) = 2,4021

X4(1) = 48,1296.
Set 2,

The values assumed for the state variables at final time were
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X, (te) = 0,42
X,(te) = 0.47
Xa(te) = 2.5
X,(t.) = 80,0

For this set of values, overflow occured during the initial integration
of process and adjoint equations. Hence this set was not explored
further., However, from this set we get a clue to the maximum value of

X4(tf) that can be used in the initial guesses,

Set 3, )

The different combinations of values of the weighting factor g
and step size Yk tried are given in Table 6.3. The assumed values of
xl(tf) and Xz(tf) were different from those assumed in Set 1,

Sets 3A through 3E failed to converge, The results of these
sets are given in Table 6,3. Z_[n our considered opinion, this failure
was mainly caused by the discontinuity in advertisement rate curve
near the initial boundary., A near discontinuity in the function can
make the Newton-Raphson method fail to converge., The discontinuity in

advertisement rate function is caused by the sales which remains

negative at t = 0 in all the cases.
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CHAPTER 7
CONCLUSION

The usefulness of boundary condition iteration based on differential
sensitivity analysis has been shown., The method converges to the
solution even with crude initial approximations of the state variables
in most of the cases. In some cases, depending on the nature of the
equations, it may fail to converge from points not close to the optimum,
On the other hand, the rate of convergence depends heavily on the
choice of the weighting factor and the step size used. A suitable
combination of these factors has to be determined by trial and error
for each problem, However, it is suggested that initially gradient
technique be used to bring the approximations near the optimum and
then utilize the quadratic convergence property of the Newton-Raphson
method to obtain the optimum,

This technique in conjunction with direct second variational
method has proved successful even for those problems where explicit
solutions for control variables could not be obtained. It has even
proved successful in closed-loop problems where other techniques like
Quasilinearization failed.

Differential sensitivity analysis has a major disadvantage.

The number of equations to be integrated increases rapidly as the
number of state variables increase and therefore limit its application
to problems of small dimension.

While evaluating the merits and demerits of this problem, it
should be considered that no single optimization technique isrsuitable

for all classes of problems that are encountered in practical situatioms.

9k



The selection of the technique to be used depends upon the nature of
the problem and the nature of the application and is best left to

the analyst solving the problem,
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APPENDIX 1
DIRECT SECOND - VARTATIONAL METHOD

Direct Second Variational Method is a useful technique for obtaining
numerical solution of the control variable T(t) from the Euler-Lagrange

equation

Hp(X(t), X(t), T()) =0 o))

Assuming that there is only one control variable in question and that
the optimal control T#(t) is unique, we can apply Newton's method

to equation (1). Consider a non-optimal path (X(t), A(t), T(t))

lying in an € neighborhood of the optimal path, (i*(t), Ax(L), T*(Fj).

A first order expansion of HT(i*, X%, T*) around (i,‘i, T) yields
Hy (%, X%, %) = B (R, X, D + By (X, X, T 8X(1)

= = - = = 2
+ HT.,-X(X, A, T) AX(t) + HT,T(X, A, T) AT(t) + 0(e®)

where  AX(t) = X*(t) - X(t) (2)
AA(E) = A*(t) - X(t)
AT(t) = T*(t) - T(t) (3)

If (X*(t), A*(t), T*(t)) is the solution, then the left hand side of
equation (1) is zero, so that after discarding terms of 0(52) we get

-1

AT(t) = _HT,T

3 AX(t)) (4)

[HT f_HT;i AX(t) + H
Equation (4) forms the basis of the algorithm. Letting X = ik,
A=x,T= Tk, then equation (4) can be rewritten to obtain the (k+l)St

estimate of the control vector:
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st = ™) - ™8 =

k

k k
- {HT’T {H +HT

—k+1 =k k+1
S[XT () - X (1)] + HT,E

- 351}
(5)

[X
Since ﬁk(t) is the state of the system at time t under an input
Tk(t) and is determined by integrating the system and adjoint equations
using the known Tk(t) Equation (5), as it stands, is not useful as an
iterative formula, since it involves X (t) and X 1(t) which are un-
knowns., If we assume that variations in AX(t) and AX(t) between
successive iterations are of same order of magnitude, we cén modify

equation (5) into the following computationally feasible scheme:

-1

e = 1% - b W+ Hl;’}—{ - ¥ 4 H’T‘ (3 - 7E1yy
1;:3 1 (6)
and THt) = TO(t) - (Hy Tl)o[uo] k=0 (7

where T (t) is the initial assumed policy,

Normally it is necessary to limit the step sizes in T(t) while using
equations (6) and (7), especially if the initial guess is far from the
optimum, To this end, a factor nke(O, 1) is introduced in equation (6)

which now becomes,

k
-1}

k+1 .k k k k gk _ k-1 k
T “(t) =T (t) -n {HT’T {HT + HT’K[X 7] + HT

it

-k k-1
327 - A 1}

(8)
The computational scheme is as follows:
1, Choose a nominal To(t), which is not far from the optimum, and

integrate the system and adjoint equations to determine io & XO.
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2. Compute Tl(t) from Equation (7) for the first iteration and
Tk(t) by equation (8) when k > 1.

k+l(t)

3. If ||H§|l is less than some preassigned tolerance, then T
is taken to be the optimal policy. Otherwise go to step 2.
This method, for inventory model has yielded the solution in an average
of 10-12 iterations. The number of iterations required increase if the
initial policy is far from optimum., To improve the convergence,

gradient technique may be employed to get close to the optimum and then

use the second-variation method outlined above.
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APPENDIX 2

COMPUTER PROGRAM FOR THE INVENTORY MODEL



100
200
201
400
500
600
998
999

886
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PROBLEM]1-—INVENTORY MODEL

COMMON/ARRAYL/CP4C1,PM,0IM, 11
COMMON/ARRAY2/Y{101)ALAG(2,101),KOUNT
COMMON/ARRAY3/AMDA(24101),PROD(101)
COMMON/ARRAY&4/EX(2,101),HTT(101},A210101),811(101),B12(101),821(10
11),822(101},C11(101),D12(101)

COMMON/ARRAYS/HT(101)

DIMENSION VECZ(2)+PP{8,4),RESVECI2),SENCO{8,101),SEND(8),Q14),R(4&)
1,L{4)sM(4),RI{4)},RA[2),RMI2)

FORMAT(8F1047)

FORMAT(3F104s4,2E1548)

FORMAT(4F6.24213)

FORMAT(1H ,3El18.8)

FORMAT{1HLl,* ITERATION NUMBER *,14/)

FORMAT(1Hl, 10X,* THESE ARE FINAL ANSWERS ' )

FORMAT{1H ,FBe4yTXsFBabks4X,F9:4)

FORMAT(1H ,'PRODUCTION INVENTORY COST *)

KPROB=0

READ IN THE DATA

READ 1004A4B4C+CI1,0IM,CPPM,TFINAL
READ 2004X14X23GS+EPS.EPSLN
READ EOI!AAIBBfCC’DD’MM,KP

PRINT OUT THE DATA

PRINT 100+A4ByC+CI+OIM,CP,PM, TFINAL
PRINT 2004 X14X2+GSsEPS,EPSLN

PRINT 2014AA,BB+CC4DDyMM,KPROB
ITER=1

NINT=TFINAL/GS

II=NINT+1

NINT=100

1I=101

INITIALIZE

EX{1l,I1})=X1
EX(24111=X2
VECZ(1)=X1
VECZ(2)=X2

ASSUME THE CONTROL FUNCTION
DO 1 I=1,1I1

Al=1
T=(Al-1a)%GS



PROD({I)=AA-BB%:T
CONTINUE

10k

COMPUTE THE BOUNDARY CONDITIONS ON ADJOINT VARIABLES

AMDA(L,I1)=0,
AMDA(Z,II)z‘lo

INTEGRATE THE STATE AND ADJOINT
R RUNGE-KUTTA METHOD

KOUNT=1

D0 2 I=1,NINT

IT=11+1-1

AI=IT

T={Al-1.)%GS

AT=T

X1=EX(1,1T)

X2=EX(2,1T7)

AMDI=AMDA{1l,IT)
AMD2=AMDA{2:IT}
ALP={PM-PRODI(IT) ) %x%x2

DO 3 J=144
PP{1,J)i==-GS*(PRODIIT)-A-B*AT)
PPiZ'J)=—GS*(CI*lDIM-Xl}f*2+CP*EKP(ALP)i
PP({3,J)==GS*(0IM=XL1)*CI*AMD2%2,
Cleo

IF{J.EQs3} CJU=2a
AT=T=GS*CJ/ 2
X1=EX(LyIT)}+PP{1l,J)%CJd/2.
X2=EX(2: ITY4PP{2,J)1%CJ/ 2
AMD1=AMDA(1,IT)I+PP{3,J)%CJ/2.

3 AMD2=AMDA{2,1IT)
EX(LlyIT=1)=EX{LlsIT)+1a/6e*(PP(Llyl)+2:,%PP(142}+2:%PP(1,3)+4PP(1l,s4))
EX{2,1T=1)=EX(2,IT)+1a/6e%(PP{2,1)+2:%PP{2,2)42.%PP(24314PP(2,41))
AMDA(L,IT=1)=AMDA(LyIT}+1a/6e%{PP(3,1)+2.,%PP(3,2)+42.%PP(3,3]+PP(3,

14))
AMDA(2,1T-1)=AMDAL2,IT)

2 CONTINUE

CALL H1

TEST IF PRESENT CONTROL SATISFIES HT(T)=0

DO 5 I=1,11
IF(ABS(HT(I))eGTLEPS) GD TO 6
CONTINUE

G0 10 7

CONTINUE

CALL H2

CALL H3

EQS.

BACKWARDS BY FOURTH
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IMPROVE THE CONTROL BY DSV METHOD

QQQ=KOUNT
STEP=CQQ/(CC+CQQ)
DO 4 I=1,I11

PROD(I)=PRODII)=STEP*(HT(I}+Y(L))/HTT(I)

CONTINUE
KOUNT=KOUNT+1

DO 50 I=1,11I
ALAG(1,T)=AMDA(1,1I)
ALAG(2,1}=AMDA(2,1)
CONTINUE

GO 7O 8

CALCULATE THE RESIDUAL VECTOR AND NORM R

RESVEC(1)=EX(1,1)-C
RESVEC(2)=EX(2,1)

RESV=0,

DO 9 I=1,2

RESV=RESV+ (RESVEC(I)*%2)
CONTINUE

RESV=ABS (SQRT(RESV))

TEST FOR CONVERGANCE

IF{RESV.EQ.EPS) GO TO 101

PRINT 500,ITER

PRINT 400, {RESVEC(I)41=1,2),RESV
PRINT 9999

DO 9997 I=1,I1I

PRINT 9998,PRODII)LEX{L,sI),EX(2,1)
CONTINUE

COMPUTE SENSITIVITY COEFFICIENTS AT FINAL TIME

SENCO(1,II)=1.0
SENCO(2,11)=0.0
SENCO(3,11)=0.0
SENCO(4,11)=1.0
DO 91 1=5,8
SENCO(I,I1)=0.
CALL H3

CALL H4
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INTEGRATE DIFFERENTIAL SENSITIVITY EQUATIONS BACKWARDS

BY FOURTH ORDER RUNGE KUTTA METHOD

DO 10 I=1,NINT
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12
13

10

29

25
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IT=11+1-1

DO 11 K=1,8

SEND{K)=SENCO(K,IT)

DO 12 J=1|4

PPl 4Jl==(BL2(ITI*SEND(T )+BILUIT)I*SEND(5))*GS

PP(2 4J)=—(BL2(IT)*SENDI(8 }+BL1(IT)*SEND(6 )}*GS

PP(3 4J)==(A2L(TT)*SEND(L1)}+B22{[T)*SEND(T )+B21(IT)®SENDI(5 )1%*GS
PPl4 2J)i==(A2L(IT)*SEND(2)+B22(IT)*SENDI(8 )+B21(IT)I*SEND(6 ))*GS
PP(54J)==(CLL(IT)I*SEND(1}+D1I2(IT)*SEND(T))*GS
PP{6yJl=={CLL(TTI*SEND(2)+DLI2{IT)I*SEND(B))*GS

PP(T74J)=0. )

Pptst}=Uo

Cd=1e.

IF(JeEQ.3) CJU=2,

DU 12 K=1,8

SEND(K)=SENCO(K,IT)I+PP{K,J)*CJ/2,

DO 13 K=1,8

SENCO(Ky TT=1)=SENCO(KyIT}+1a/6e¥{PPIK,1)+2.,%PP(Ky2)+2.%PP(Ky3)+PP{
1Ky4) )

CONTINUE

1

CALCULATE THE ELEMENTS OF CONSTRAINED JACOBIAN MATRIX

Q(1 )=SENCO(1l ,1)
Q{2 )=SENCO(3 ,1}
Q(3 J}=SENCO(2 ,1)
Ql4 )=SENCO(4 ,1)}
N=2

PERFORM MATRIX OPERATIONS FOR BOUNDARY CONDITION ITERATION

CALL GMTRA{QsRyN¢N)

CALL MINV{GQsNyDsL:M)
QQQA=ITER~1

QK={QQQ/ (QQQ+DD ) ) *xkMM

CALL SMPY{Q,QK4sRI¢NgN,O)
QK1=00

CALL GMPRD{R,RESVEC,RAsNyN,1)
DO 29 1=1,N

QK1=QK1+RA([T)*%2
QKI=(1le-QK)*0.5/QKL¥RESV*Xk2
CALL SMPY{R,QKI+Q #N4N,O)
CALL GMADD(RI,Q +R oNyN)

CALL GMPRDI(R 4RESVEC,RA;NyN,1)
CALL GMSUB(VECZ,RAsRMyN,1)

DO 25 I=1,N

VECZ{I)=RM{I)
EX(1l,IT)=VECZ{1l)}
EX(2,11)=VECZ{2)

ITER=ITFR+1
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888

887

GO TO 81

PRINT 600

PRINT 400, (RESVEC{I),I=1,2},RESV
PRINT 9999

DD 8888 I=1,1I1

PRINT 9998,PRODIT)EX{1,1),EX{2,1)
CONTINUE

KPROB=KPROB+1

IF(KPROB.EQ.KP) GO TO 8887

GO TO B886

STOP

END

107
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SUBROUTINE H1
SUBROUTINE H1 CALCULATES HT(T)

COMMON/ARRAYL/CP,CI4PMs0IM, 11
COMMON/ARRAY3/AMDA(2,101),PROD(101)
COMMCN/ARRAYS/HT{L101)
DO 1 I=1,11 :
1 HT(I)=AMDA(1,1) =2 %AMDA(2, 1) *CP.(PM-PROD(IL})*EXP({(PM-PROD(T))*%2)
RETURN
END

SUBROUTINE H2
SUBROUTINE H2 CALCULATES Y(T) FOR USE IN DSV METHOD

COMMON/ARRAY1/CP4CI4PMaOIM, LI
COMMON/ARRAY2/Y({101)ALAG(2,101),KOUNT
COMMCN/ARRAY3/AMDA(2,101),PROD(101)
IF{KOUNT.EQel} GO TO 2
DO 1 I=1,1I
Y(I)=AMDAL1,1)-ALAG(1,1)

1 CONTINUE
RETURN

2 DO 3 I=1,11

3 Yil)=0.
RETURN
END
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SUBROUTINE H3
SUBROUTINE H3 CALCULATES HTT(T)

COMMON/ARRAY1/CP,CI,PM,0IM,II

COMMON/ARRAY3/AMDA(2,101},PROD(10OL)
COMMCN/ARRAY4/EX{24101),HTT(101),A21(101),B11(101),B12(101),821(10
11),B22(101),C11(101),D12(101)

DD 1 I=1,1I

1 HTT(I)=2.%AMDA (2, [ ) *CP*EXP((PM-PROD(I))*%2)%(1a+2*(PM~-PROD(I})#*%2
1) .

RETURN

END

SUBROUTINE H4
SUBROUTINE H4 CALCULATES MATRICES A,B,Cy AND D

COMMON/ARRAYL/CPCI4PM,0IM,II
COMMCN/ARRAY3/AMDA(2,101),PROD{101)
COMMON/ARRAY4/EX(24101)4HTT(101),A21(101),B11(101),B12(101),B21(10
11),822(101),C11(101),D012(101)
DO 1 I=1,I1I
A21(1)==-2.*CI*(0IM-EX({1ls1))
BL1(I)==1«/HTT{1I)
B12{ 1} =424 %CP*{PM—PROD(T) J*EXP{ (PM=PRODCT )} })*%*2) /HTT(I)
B21(I)=B12(1) '
B22(I)=(Bl2(I)**2)*HTT(I)
B22(I)=-B22(1I)
Cli(I)=-2.*AMDA(2,1)*CI
D12(1)=2.*%CI*(0OIM-EX(1s1))
1 CONTINUE
RETURN
END
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APPENDIX 3

COMPUTER PROGRAM FOR THE INVENTORY AND

ADVERTISEMENT SCHEDULING MODEL
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20
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30
40
60
80
90

8887
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PROBLEM 2 —-— INVENTORY AND ADVERTISEMENT SCHEDUL ING
PROBLEM

COMMON/BLOCK/TIEX{3,101),CA,C,ADTV(101),0N,AMDA(2,101)4F,CI.PI,
LA11(101},A21(101),A31(101},A32(101),B11(101) +B31(101),
2 cii(io1),€22{101}),D111(101),012(101)

DIMENSION VECZ(3)4PP(15,4),RESVEC(3),SENCO{15,101),SEND{L5),Q(9),
IR(9)4RI(9}4RA(3)4RM(3),L(9),M(9)

FORMAT(10F8.4) '

FORMAT(4FBe4,E10a4)

FORMAT(4F10.4,E1044)

FORMATI(2FT7.2,214%)

FORMAT(1H ,* ITERATICN NUMBER= '[86)

FORMAT(1H 44F1246)

FORMAT(1H ,20X,' THESE ARE FINAL ANSWERS ')

FORMAT(1H ,' ADVERTISEMENT SALES INVENTORY PROFIT ')

FORMAT(1H +4F12.6)

READ IN THE DATA

READ 10,A4B,Cs0ON,F,CI,PI,CA,Q0,0I
READ 20,X1+X2+X3,GS,EPS
READ 22+AA,BBs MM, KP

PRINT OUT THE ODATA

PRINT 10,ABsCsON;F3sCI,PI,CA,Q0,01I
PRINT 21 4X14X%X24+X3,G5,EPS
PRINT 22,AA,BB,MM,KPROB

INITIALIZE THE VARTABLES

KPROB=0
ITER=1
NINT=100
fI=101
EX{l,1I)=X1
EX(2:11)=X2
EX{3'II}=X3

INITIALIZE VECTOR PI
VECZ(1)=X1
VECZ(2)=X2
VECZ(3)=X3

CALCULATE BOUMDARY CONDITIONS ON ADJOINT VARIABLES AT T=TF

AMDA(1,11)=0.
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INTFGRATE PROCESS AND ADJOINT DIFF. EQUATIONS BY 4TH ORDER
KUTTA METHDD

DO 1 I=1,NINT

[T=11+41-1

Al=1T

T={Al-1.)%*GS

AT=T

X1=EX(L,IT)

X2=EX(2,1IT)

X3=EX{3,1IT)

AMD1=AMDAL(1,1IT)

AMDZ2=AMDA(2,1IT)

DO 2 J=1.+4

ADT==AMD1*(1.-X1/0N})/(2+%CA)

IF{ADT«LFs0s) ADT=0.
PP(lyJ)==GSH{XL*C+X1*ADT-C*{X1%**2)/0ON-(X1*%2)}*ADT/ON)
PP{2yd)}==GS*{A+B*AT-X1]
PP{3,J)==CS%(F&X1-CI*(PI-X2)*%2-CA*X1%*{ADT ) *%2)
PP(4,J)==GS*(-AMDL*{C+ADT ) *(1l,-2%X1/0ON)+AMD2+F-CA*{ADT ) **2)
PP{53J)i==CS*{24*CI*{PI=-X2))}

CJ=1.

IF{JsEQs3) CU=2,

AT=T-GS*CJ/2.

X1=EX{1,IT)+PP(1,J)%CJ/2,

X2=EX{2,IT)I+PP12,J)%2CJ/2.

X3=zEX(3,IT)+PP(3,J)%CJ/ 2.

AMD1=AMDA(1,1IT) +PP(4,J)%CJ/2,

AMD2=AMDA(2,IT) +PP(5,41%CJ/2,

CONTINUE

EX(LyIT=1)=EX{1 s ITI+(PPILlsL)+PP(L,y2)%2.42:%PP(1+43)4PP(1,4))/ba
EX{241T=11=EX{23ITI+{PP{2,1)4PP(2,2)%2.42:%PP(2,3)+PP(2:4)) /6,
EX(3,IT=1)=EX{3,IT)+(PP(3,1)+PP(3,2)%2.+2.%PP(3,3)+PP(3,4)) /6.
AMDA(L,IT=1)=AMDA(LsIT)I+(PP(4,1)42,%PP(4,2)42.%PP({4,3)+PP(4%y44))/6.
AMDA(2, TT=1)=AMDA(2,IT)I+(PP(S541)+2.%¥PP(542)42.%PP(5,3)1¢PP(5,4))/6.
CONTINUE

GENERATE THE CONTROL PROGRAM

DO 3 I=1,1I1
ADTV(I)==-AMDA{]1,1)*(1.-EX(1,1)/0N}/(24%CA)
[F(ADTVII)eLEaO,) ADTVI(I)=0.

CONTINUE

CALCULATE THE RESIDUAL VECTOR AND NORM R

RESVEC(1)=FX{(1,1)-Q0
RESVEC(2)=EX(2,1)-01

RUNGE
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RESVEC(3)=EX{3,1)
RESV=Q.

DO 4 I=1,3
RESV=RESV+RESVEC{ 1 }%*%*2
RESV=ABS (SQRTIRESV))
PRINT 30,ITER

TEST FOR CONVERGANCE

IF(RESV.LE.EPS) GO TO 101

PRINT 40, (RESVEC(I},I=1,3),RESY
PRINT 80

0D 91 I=1,11I

PRINT Q0,ADTV(I) s (EX(JJs1},dd=1,3)

COMPUTE SENSITIVITY COEFFICIENTS AT FINAL TIME

SENCO(1,1IIV=1,
SENCO(541I1)=1.
SENCO{(9,I1)=1,
SENCO(2,I1)=0.
SENCO(3,11)=0,
SENCO(4,11)=0,
SENCO(6,111=0,
SENCO(7,111=0a
SENCO(8,1I11=0.
DO 5 I=10,15

SENCO(I,IT)=0,.

SUBROUTINE Hl CALCULATES THE MATRICES A.8,C AND D
CALL Hl

INTEGRATE DIFFERENTTAL SENSITIVITY EQUATIONS BACKWARDS
BY FOURTH ORDER RUNGE KUTTA METHOD

DO 6 I=14NINT

IT=I1+1-1

DO 7 K=1l415

SEND{K)=SENCO{K,IT}

DO 8 J=ly4

PPllyJ)=—(ALL{IT)I*SEND{1)+B11{IT)I*SEND(10) YRGS
PP(2,J)=-{A11(IT)I*SEND(2)+BL1(IT}*SEND(11) }*GS
PP(3,J)=—(A11{IT)*SEND(3)+BI1(IT)*SEND(12) 1 %*GS
PPl&4yJ)==(A21{ ITI%*SEND(1))*GS

PP{5,J)==(AZ21{IT}I*SEND(2))*GS

PP{6yJ)=~(A210ITI*SEND(3))*GS
PP{T7yJd)==(A3L{IT)*SEND(L1)}+AB2(IT)*SEND(4)+B3LIITI®SENDILO) }*GS
PPIByJ)=~TA3LLITI*SEND(2)}+A32(IT)*SEND(5)+B31{IT)*SEND(11))%GS
PP(9yJ)==(A31(IT)I*SEND(3)+A22(ITI*SEND(6)+B3L(ITI*SEND({12))*GS
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PP(10,J)==(CLlLI{IT)*SEND{L)+DL1(IT)I*SEND(LO}+DI2(TIT)I*SEND{13))*GS
PPILLlyd)==(CLLCIT)RSEND(2)+DLL{IT)®SENDILL}+DI2(IT)%SEND{L14})*GS
PPL12,J)==(CLLI{IT)I*SEND{(3)+DLI1I(ITI*SEND(L2)+D12(IT)*SEND{15})*GS
PPIL3,J1==-(C22(IT)*SEND{4))*GS

PP{14,J)=—(C22(IT)I*SENDI(5))*GS

PP(L154J)=-{(C22(IT)*SEND(6}}*GS

CJ=l. ’

IF{JeEQ.3) CJU=2,

DO 8 K=1,15

SENDIK)=SENCO{K,IT)+PPIK,J}*CJ/2a

DO 9 K=1ls15

SENCO(K s IT-1)1=SENCOIKsIT)+(PP(Kel)#2.%PP(K42) 42, %PP{Ks3}4PP(Ky4))/

16.

CONTINUE
CALCULATE THE ELEMENTS OF CONSTRAINED JACOBIAN MATRIX

Q{1)=SENCO(1,1)
Q(2)=SENCO(4,1)
QU3)=SENCO(T,1)
QU4)=SENCD(2,1)
Q(5)=5SENCO(5,1)
QU6)=SENCO(B,1)
Q(7)=SENCO{3,1)
Q(B)=SENCO(641)
QU9)=5ENCO(9,+1)
N=3

PERFORM MATRIX OPERATIONS FOR BOUNDARY CONDITION ITERATION

CALL GMTRA(QsR¢NyN}

CALL MINV(QyNyD,L,M)
QQQ=ITER-1 :

QK=(CCA/ (AA +0QQQ) )**MM

CALL SMPY(Q,QK+RIsNyN,0Q)
QK1=0,

CALL GMPRDI(RL+RESVECsRAyNsN,s1}
DO 13 I=14N

QK1=QK1+RA(T)%%2
QKI=(1.-QK1*BB /QK1*RESV**2
CALL SMPY{R,QKI+QyNsN,O)

CALL GMADDIRI,»QsRyNeN)

CALL GMPRD(RS4RESVEC,RAyNgNs1)
CALL GMSUB(VECZ,RA,RMyNy1]

oo 11 I-"-'].'N

VECZ(I)=RMI(I)
EX{1,11)=VECZ({1)
EX{2,11)=VECZ{2)
EX{3,11)=VECZ(3)

ITER=ITER+1
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SUBROUTINE H1
THIS SUBROUTINE CALCULATES MATRICES AyBsC AND D

COMMON/BLODCK/TIZEX(3,101)3CA4C,ADTV(101),ON,AMDA(2,101)}),F,CI,PI,
1A11(101),A21(101),A31(101),A32{({101),B11(101) +B31{(101),

2 cii{ioly,C22{101),D11{101),D12(101)

DIMENSION HTT(101)

DO 1 I=1,11

HTT{I)=2.%EX{(Ll,1)%*CA

ALI(I)=C+ADTV(I) =2 %C2EX{ 13 1) /ON=2 % ADTV{I)*EX{1,T1)/ON-EX{1,1)%*{1,
L-EX{LlaT}/ONI*{AMDA(L, 1) =2 AMDA(Ly I)REX(LyI)/ON+2.%CA®ADTV(1))/HTT
2(1)

A2l({I}=-1.
AZL(T)=F=CAXADTV({I ) %%2+2 *%CA*ADTVI{II*EX(1,I)%(AMDA(Ll,1)-2.%AMDA(L],
TID*EX(1, 1) /0N+ 2. ¥ CAXADTV(I)Y/HTTILL)

A32{1)=2*CI*(PI-EX(251))
BLL(I)==(EX{1, I} %(1e-EX(L,I1)/0ON)IX%22/HTTI(I)
B31([)=2.%CA*ADTVIT)*{EX (1, 1) %¥2)%({1e—EX(1,I)/0N)/HTTI(I)}
Cll(I)=2*AMDA(L, 1) (C+ADTVIT})}/ON+{AMDA(L,I)*{1le~2.*%EX(1,]1)/0N}+2
Le*CARADTV(T ) )%RX2/HTT(I)

C22({11=-2.*C1

DL1(I)=-A11(1)

D12(I)=-A21(1])

CONTINUE

RETURN

END
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GO T0O 12

PRINT 60

PRINT 404 (RESVEC({IL),I=1,3},RESV
PRINT 80

DO 92 I=1,11

PRINT 90, ADTVIT ) (EX(JJs I} edd=1,3)
KPROB=KPROEG+1 ‘
IFIKPROBLEQ.KP) GO TO 8888

GO TO BARBT

STOP

END
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APPENDIX 4

COMPUTER PROGRAM FOR THE PRODUCTION AND

ADVERTISEMENT SCHEDULING MODEL
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PROBLEM NO., 3--PRODUCTION AND ADVERTISEMENT SCHEDULING

COMMON/ARR/KOUNT s ALAG(2,101)}4AX(2,101)

COMMON/BLOCK/IT+GA,EAsGR, TEMP{101),GByEB,EX(4,101),AMDA(4,101)+CUy
1Q,v,C,ADTV(101),0L,CI,AL2(102),A12(101),A21(101),A22(101),A32(101)
2,A34(101),A44(101),B11(101),8B812(1011)},B21(101),B22(101),B44(101),
3C11(101),C22(101},C214101),C22(101),C33(101),C44(101},D11(101),D12
4{(101),022(101),023(101),D43(1011,044(101),D21{101),HT(101),HTT(101L
5)sCTsTM,Y(101)

DIMENSION VECZ(4),PP(32,4)+RESVEC(4), Z{101),SE(32,101},SEND
1(32)+QQ(16)4,R{16};RI(16)sRA{&},L(LE6),M{16)RM{4)

10 FORMAT(10FB.4)

14 FORMAT(2FTe142E943,2F7+3)

15 FORMAT(1H »5X, 'EA ='F9.1/5X%,"ED ='F9,1/5X+'CA ='E1l.3/5X,'GB
1 =tE11e3/5X, 'CT ='FBe4/5Xy'TM ='FB8s4)

20 FORMAT(S5FBe49E10e44E10.4)

21 FORMAT{1H +5X,*INITIAL ESTIMATES OF STATE VARIABLES®'/5X,'X1{(1l)="'Fl
1064/5Xs " X2(1)="FLlOa&4/5XKs " X3(1}="FLl0a4/5Xy"X4(1)="F10:4/5X+"GS =t
2F10.4/5X, "EPS ='ElO0.4/5Xy'EPSL ='E10.4)

22 FORMAT(2FTe232144F7.1)

24 FORMAT(1H ,'NDe OF ITER TO SOLVE HT = 'I4)

25 FORMAT(1H1,20X,*ADVERTISEMENT AND PRODUCTION PROBLEM */5X,*'C =t
1F8+4/5X,'C1 ='FB,4/5X,'C2 ='FB8.4/5X,'C3 ="FB.4/5Xy'N ='F8§
2e4/5X4"V ='FB.4/5%X,'Q ="F8e4/5Xy " X1{0)="FBa&/5X,'X2(0)="FBa4
3/5X9 ' X3(0)="FBe4/5Xy'X4(0)="FB,4/5%,°'CU ='FBs4/5Xy 'R ='FBe &4/5
4Xy'CI ='FB.4/5Xy " IM ='FB.4)

26 FORMAT(1H ,5X, 'AA ='FT.2/5X,'88B ='FT7e2/5Xy* MM =V[4/5X,"KP
3="14/5X,'CC ='F7.1)

30 FORMATI(1H ,* ITERATION NUMBER= '[6)
40 FORMAT(1H +5F12.6)
60 FORMAT(1H ,20X,' THESE ARE FINAL ANSWERS ')

80 FORMAT(IH ,4X,"'TIME CONCe UF A CONC. OF B INVENTORY SAL
1ES ADVERTI SEMENT TEMPRATURE PROFIT *)

90 FORMATU(1H 45F12e692X9F12e6:48XyFl24635X4F1266)
KPROB=0

READ IN THE DATA

READ 104C,C14C2,C3,0L,V,Q,X10,X%X204X30,X40,CU +GR,CI,01
READ 14,EAL,EByGA,GB,CT,TM

8887 READ 204X19X29X3,X43GS,EPSLEPSL

READ 224yAA,BByMMyKP,CLC
PRINT OUT THE DATA

PRINT 254C¢C1,C2,C3,0LyVeQyX104X20,X30,X40,CU, GR,CI1,01
PRINT 154EA+EByGAsGB 4CT,TM
PRINT 214 X14X2+X3,3X4,GS,EPSHEPSL
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INITIALIZE THE VARIABLES

ITER=1
NINT=100
[I=101
EX{1lyI1)=X1
EX{2,11V=X2
EX(3,1I)=X3
EX{4,11)=X4

INITIALIZE VECTOR PI

VECZ(1}=X1
VECZI(2)=X2
VECZ(3)=X3
VECZ(4)=X4

ASSUME THE CONTROL FUNCTION

D0 5 I=1,1II
TEMP(I)=340,00

CALCULATE BOUNDARY CONDITIONS ON ADJOINT VARIABLES AT T=TF
AMDA(1,II1=0.
AMDA(2,11)=0.
AMDA(3,11)=0.
AMDA{4,I11=0.

INTEGRATE PROCESS AND ADJOINT DIFF. EQUATIONS BY 4TH DRDER RUNGE
KUTTA METHOD

E1=EA/GR

E2=EB/GR

KOUNT=1

DO 1 I=1,NINT
IT=11+1-1
X1=EX(1,IT)
X2=EX(2,IT)
X3=EX(3,IT)

X4=EX (4,17}
AMD1=AMDA(1,1IT)
AMD2=AMDA(2,1IT)}
AMD3=AMDAI(3,IT)
AMD4=AMDA 4, 1IT)
T=TEMP({IT)

DD 2 J=14+4
ADT=AMD&4* (X4—0L) /(2. ¥CU*0OL*X4&)
AK1=GA*EXP(-EL1/T)
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AK2=GB*EXP(-E2/T)

PP(1lyJ)==GS*(Q*({X10-X1)/V-AK1%X]1)
PP{2yJ)=-GS*(Q*(X20-X2)/V-AK2¥X2+AK1#*X1)

PP(34J)1=-GS*{Q%X2-X4)

PP(4yJ)=—CGSk(Xa*{]1.—X4/0L}*(C+ADT))
PP(5,J)==-GS*{0*(AMD1/V+C2-C3)-AK1*(AMD2-AMD1))
PP(64yJ)==-GS*(Q*(AMD2/V-AMD3-C3) +AMD2*AK2)
PPIT¢J)==0GS*(2,.,*%CI*(0I-X3))
PP(Byd)==GS*(AMD3+C1-AMDAG* (C+ADT ) ¥ (1le-2e*¥X&/0L) -2 *CUXX4G*{ADT%%2))
Cd=1l.

IF(JsEQe3) CJ=2,

X1=EX(l,IT)#PP(1,J)%CJ/2.

X2=EX(2:,IT)I+PP(2,J)%CI/ 2,

X3=EX{34IT)+PP(3,J)1%LJ/2,.

KG=EX(4, IT)+PP(4,J0)1%CJ/2,

AMD1=AMDA{1,IT) +PP(5,J)%Cu/2.

AMD2=AMDA (24 IT}) +PP(64J)*CJ/2,

AMD3=AMDA{3,IT) +PP(7,4)*CJ/2.

AMD4=AMDA( 4, IT) +PP(8,J)*CJ/2,

CONTINUE

EX{LyIT=1)=EXU Y1, IT)+(PP(1l,1)}+PP(1l,2)%2,+2.%PP(1,3)+PP(1l,4}))/6.
EX{2¢IT=1)=EX(2ITI¢(PP{2,1)4PP(2,2)%2,42.%PP(2,3)4PP(2,4))/6.
EX(3,IT-1)=EX{(3,IT)+(PP(3,1)+PP(3,2)%2,+42,%PP(3,3)4+PP(3,4)) /6.
EX(4yIT=-1)=EX{ 4 IT)+ (PP(4y1)4+PP(442)%2,42.%¥PP(4,43)+PP(4y4)) /6.
AMDA(L,IT=1)=AMDA{LyIT)I+{(PP[5,1)}+2.%PP(542)42,%PP(543)+PP(5+4)}) /6.
AMDA(Z2,IT~1)1=AMDA(Z2,IT)+ (PP (641142 %PP{642)4+2.%PPl6y3)+PPl6,4)) /6.
AMDA(3,IT-1)=AMDA(3,IT)I+(PP(T741)42%PP(742)42.%PP{T743)+PP{T7,44))7/6.
AMDA(4, IT-1)=AMDA{4y ITI+(PP(8,1)42.%¥PP(842)42.,%PP(8,3)+PP{Bs4))/b.
CONTINUE

CALL H2

TEST IF THE PRESENT CONTROL SATISFIES HT=0

DO 16 I=1,II
IFIABS{HT(I))aGT.EPSL}Y GO TO 17
CONT INUE

GO TO 18

CONTINUE

CALL H3

CALL H4

IMPROVE THE CONTROL BY DIRECT SECO&D VARIATION METHOD

QQQ=KOUNT

STEP=CQQ/(CC+QQQ)

DO 19 I=1,I11
TEMP(I)=TEMPUI)-STEPX(HT(I)+Y(I))/HTT(I)
KOUNT=KOUNT +1

DO 23 I=1,I11

AX(1,1)=EX(1,1)
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AX(2,1)=EX{2,1)
ALAG(1.I)=AMDA{1,1)
ALAG(Z2,41)=AMDA(2,1)

23 CONTINUE

GO 70 12

GENERATE ADVERTISEMENT RATE

18 DO 3 I=1,11
ADTV(I}1=AMDA(4, I 1*¥(EX{4,1)-0L)/(2.*CU*OL*EX{4,1))
IF{ADTV(I}.LE.0.0) ADTV(I)=0.0

3 CONTINUE
PRINT 244KOUNT

CALCULATE THE RESIDUAL VECTOR

RESVEC(1)=EX{1,1)-X10
RESVEC(2)=EX{2,1)-X20
RESVEC(3)=EX{3,1)-X30
RESVEC(4)=EX{4,1)-X40
RESV=0, ’
DO 4 I=1,4

4 RESV=RESV+RESVEC{I)*%*2
RESV=ABS(SQRT{RESV))
PRINT 30, ITER

TEST FOR CONVERGENCE OF THE PROBLEM

IF{RESV.EQ.EPS) GO TO 101
PRINT 40, (RESVEC(I)eI=1,4)RESV
PRINT 80

CALCULATE THE PROFIT

DD 31 I=1,11
31 Y{I)=Cl*EX(4,T1)+C2%Q%¥EX (1o I)+C3%Q*{1le=EX{LeI)-EX{(2,1))-CI*(0I-EX(3
Lo D) )k2-CUX{ADTVIII*EX(4, 1)) ¥¥2-CTH*{(TM-TEMP(]))*%2
CALL QSF{GS,Y:+Z,11)
DO 91 1=1,11,10
Al=1]
TIME={AlI=-1e)%*GS .
91 PRINT 90+ TIMEL(EX(JI, 1) =1e4) s ADTVII) ,TEMP(])2(1)

CALCULATE BOUNDARY CONDITIONS OF SENSITIVITY COEFFICIENTS

DO 51 I=191645
51 SE(T,II)=1.0

DO 52 I=2,.5

SE{I,111=0.0

SE(I+5 ,11)=0.0
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SE(I+10,+,11)=0.0
SE(I+427,111=0.0
DO 53 I=17,28
SE(I!II}=000
CALL H3

CALL HI1

INTEGRATE SENSITIVITY EQUATIONS BY FOURTH ORDER RUNGE KUTT
METHOD

DO 6 I=1¢NINT

IT=11+1-1

DO 7 K=1,32

SEND(K)=SE (KyIT)

DO 8 J=1l.4
PP{lyJ)==GS*{ALLCIT}*SEND(1)+AL2(IT)*SEND(5)+BL1(IT)*SEND(17)+B12(
LIT)*SEND(21))
PP(2,3J)=-GS*{ALL(IT)*SEND(2)+AL2(IT)I*SENDIG6)+BLLIIT)*SEND(18)}+B12{
LITI*SEND(22))
PP(3,J)==-GS*(ALL(IT)*SEND(3)+A12(IT)*SEND(7)+BLL{IT)I*SEND{19)+B12(
1IT)Y®SEND(23)) :
PP{4yJ)==CGS*(ALL(IT)*SEND(4)+AL2{IT)*SEND(B)}+B11(IT}*SEND(20}+B121
LIT)*SEND{24))
PP(54J)==GS*{A2L(IT)*SEND(L)+A22(IT)*SEND(S5)+B21C(IT)I*SEND(1T7)+B22(
1IT)*SEND(21))
PP(6yJ)==GS*(A2Y(IT)I*SEND(Z2)+A22(IT)*SEND(6)+B21(IT)*SEND(18)+B22(
1IT)*SEND(22})
PP{74J)==GS®*{A2L(IT)*SEND(3)4A22{IT)*SEND(T)+B21(IT)*SEND(19)+B221
1IT)I*SEND(23}))
PP{ByJ)=—-GS*IA21(IT)*SEND(4)+A22(IT)*SEND(8)+B2L(IT)*SEND(20)+B22(
1LITY*SEND(24))

PPL9 4J)=-GS*(A32(IT)I*SEND(S5)+A34(IT)*SEND(13))
PP{10yJ)==-GS*(A32(IT)I*SENDI6)I+A34(IT)*SEND(14})
PP(11lyJd)=-GS*(A32(IT)I*SEND(T7)+A34(IT)*SENDI(15))
PP(12,3)==-GS*(A32(IT)*SEND(B)+A34(IT)I*SEND(16)}
PP{13,J)==GS*(A44(IT}I*SEND(13)+B44(IT)*SEND(29))
PP(144J)==GS*(A44(IT)I*SEND{14)+B44(IT)*SEND(30))

PP{15,J)=-GS*{A44 [IT)*SEND(15)+B44(IT)*SEND(31))
PP({l6yJ)==GS*(A44(IT)*SEND(16)+B44(IT)*SEND(32))
PP{17+J)==GS*(CLLOITI*SEND{L1)+CL2(ET)I*SEND(5)}+DLL(IT)I*SEND(17)+D12
1(IT)*SEND(21)) ,
PP(184J)==GS*{CLLUIT)IESEND(2)+C12(IT)*SEND(6)+DIL(IT)I*SEND(18)+D12
1{IT)*SEND(22))
PP(19yJ)==GS*(CL1(IT)I*SEND(3)+C1l2(IT)*SEND(7)+D11(IT)*SEND(19)+D12
LIIT)*SEND(23))
PP(20yJ)==GS*(CLL(IT)I®SEND(4}+CLl2(IT)I*SEND(8)+DL1(IT)*SEND(20)+D12
1(IT)*SEND(24))
PP(21yJ)==GS*(C2L(IT)I*SEND{1)4C22(IT)*SEND(5)+D2L(IT)*SEND(17)+D22
LOIT)*SEND(21)+D23(IT)%*SEND{25))
PP(224J)==-GS*(C2L(IT)I*SEND(2)+C22(IT)*SEND(6}+D21(ITI*SEND(18}+D22
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LUIT)ASEND{22)4D23{IT)*SEND(26))
PP(23,4J)==GS*{C21{IT)I*SEND(3)+C22(IT)XSEND(T7)+D2L(IT)*SEND(19)+D22
L{IT)I*SEND(23)+D23(IT)I%.SEND(2T))
PP(24sJ)==GSH{C2L(IT)I*SEND(4)+C22(IT)*SEND(8)+D2L(ITI%*SEND(20)+D22
L{IT)%SEND(24)}+D23(IT)*SEND(28))

PP({254J)==GS*C33(IT)*SEND(9 )

PP(26,J)=-GS*C33(IT)*SEND(10}

PP{2T+J)==GS%C3I3({IT)*SEND(11)

PP(284J)==GS*CA3{IT)ESEND(12)

PP(29,J)=-GS* (D44 (IT)%*SEND(29)+D43(IT)*SEND(Z25)+C44(IT)*SEND(L13)})
PP(304J)=-GS%{ D44 (IT)*SEND(30)+D43(IT)XSEND(26)+C44(IT)*SEND(14))
PP(31¢J)==-GS*(D44{IT)*SEND(31)+D43(IT)*SEND(27)+4C44(IT)*SEND(15))
PP(32,J)=-GS*{D44(ITI%SEND(32)+D43(IT)*SEND(28)+C44(IT)%SEND(16))
Cd=1le

IF{JeERQe3) CJ=2.

DO 8 K=1,32

SENDIK)=SE {(Ky IT)+PP (Ko J)*CJU/ 24

DO 9 K=1,32

9 SE (Ky IT-1)=SE (KyITIH(PP(Ks1l)+2.*%PP(Ky2)+2.¥PP{Ks3)+PP (K& ) )/

16.

6 CONTINUE

CALCULATE CONSTRAINED JACOBIAN MATRIX

QQ(1 )=SE(1l ,1)
QQ(2 1=SE(5 41)
QQ(3 )=SE(9 1)
QO(4 )=SE(13,1)
QQ(5 )=SE(2 ,1)
QQl6 )=SE(6 1)
QQ(7 )=SE(10,1)
QQ(8 )=SE(14,1)
QQ(9 )=SE(3 ,1)
QO(101=SE(7 ,1)
QQ(11)=SE(11,1)
QQ(12)=SE(15,1)
QQ{13)=SE(4 1)
QQ(14)=SE(8 ,1)
QQ(15)=SE(12,1)
QQ(16)=SE(1641)
N=4

PERFORM MATRIX OPERATIONS FOR BOUNDARY CONDITION ITERATION

CALL GMTRA{QQeRyNyN)

CALL MINVIQQeN,sDyL M)
QQQ=ITER-1

QK={CGCQ/ (AA +QQQ) )*x%MM
CALL SMPY{QOQ,QKsRIsNyN,0)
QK1l=0.
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CALL GMPRD(R,RESVEC,RA,NyN,1)}
DO 13 I=1,N
13 OK1=QK1+RA(I)%*%*2
QKI=(1.-QK)%*BB /QK1*RESV**2
CALL SMPY(R,0KI,QQsN¢yN,0Q)
CALL GMADDI(RIQQsR,N,N)
CALL GMPRDIR,RESVECyRAsNyNs1}
CALL GMSUB({VECZ,RA,RMyN,1)
DO 11 I=1,N
11 VECZ(1)=RM(I)
EX(1,11)=VECZ(1)
EX(2,11)=VECZ(2)
EX({3,I1)=VECZ( 3}
EX(4,11)=VECZ(4)}
ITER=ITER+1
GO YO 81
101 PRINT 60
PRINT 40, {RESVEC{I)sI=1,4),4,RESV
PRINT 80
DD 102 I=1,1I1
102 Y{I)=CLl*EX (4,1} +C2%*Q*EX{ L, [ )+C3%Q*¥(Le=EX{ LI )=EX(241)}=CI%{DI-EX{D
1o I} )R 2-CUR(ADTV (I )*EX by 1) )%X2-CT*(TM~-TEMP(I))%*%2
CALL QSFIGS,Y,Z,11)
DO 92 I=1,11,10
Al=1
TIME=(Al-1e)%*GS
92 PRINT 90+ TIME, (EX(JJsT1) 9 Jd=1s4) yADTV(I)TEMP({I},2(1)
KPROB=KPROR+1
IF{KPRDB.EQ.KP} GO TO 8888
GO TO 8887
8888 STOP
END
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SUBROUTINE H1
SUBROUTINE H1 CALCULATES COMPONENTS OF MATRICES A4B4+C,D

COMMON/BLOCK/TITGAyEA,GR,TEMP(101),GB4yEByEX{44y101),AMDA(44,101),CU,
19,VsC,ADTV(101),0L,CI,A12(101),A12(101),A21(101),A22(101),A32{(101}
2+A34(101),A44(101),B11C101),B12{201),821(101),B22(101),B44(101),
3Ccllt{lollreC12(101},C22(101),C22(201),C33(101),C44(101),D11(101),D12
4(101),D22(101),D23(101),D43(101),D44(101),021(10L}4HT(101),HYT(101
5)9CTsTMYL101)

DIMENSION HAA(101)

DO 1 I=1,I1

AK1=GA*EXP(-EA/ (GR*TEMP(I)})

AK2=GB*EXP (-EB/{GR¥TEMP{I}))

DENOM=(GR*TEMP { I ) *%2 }%%2

HAA{ )= 2 *CUX(EX(4,1)%%2)

DENOM=DENOM*HTTI(TI)

ALL(I)==(Q/V+AKL)+EX(1, 1) *((AKL*EA)=%2)*(AMDA(2,1)-AMDA(1,1))/DEND
1M

AL2(1)=~-EX{1,1)*AMDA(2, 1) *AK]1*AK2*EAXEB /DENOM

GREG=EX(14I)*EA*AK1-EX{(2, ) *EB*AKZ

A21(1)=AK1-AK1*EA*{AMDA{(2,1)-AMDA(1,1))*GREG/OENDOM

A22(1)==(Q/V+AK2 )+ AMDA(2,1 ) *AK2*EB*GREG/DENOM

A32(1)1=Q

A34(I)==1.0

A4 T)=(CH+ADTVII) ) *¥{le=2%EX (4, [ ) /0L)=EX{44 1) *{1a-EX{4,)/0L)*{AMD
IAGGy 1) ¥ [ 1e=2%EX (4, 1) /0L ) +4,#CURADTV(I)%EX{4,1))/HAA(]L)

BLl1(I)==((EX{1, 1) *AKL1*EA)**2)/DENOM

BL2(I)=EX({1,1V*AK1*EAXGREG/DENDOM

B21(I)=B12(T1])

B22(1)=—(GREG**%*2}/DENOM

Ba4(1)=—({EX(G44T1)—{EX(G, [)x%2)/0L)%%2)/HAA{])

Cl1(I)=C{({AMDA(2,1)-AMDA(1,1) ) *AKL*EA)%¥2)/DENDM

Cl2(I)=-AMDA(2, 1) *AK1*AK2*EAXEB*(AMDA(2,1)-AMDA(1,1))/DENOM

c21(r)=C12(1)}

C22(I)=((AMDA( 2,1 )*%AK2%EB)*%2) /DENOM

C33(I)==-2.%CI

Ca4(1)=2%AMDA( L, I )X (CH+ADTVII) ) /0L-2%CUR(ADTVIT ) %%2)+( {AMDAl4, )%
1{1e—2e%EX (4, 1)/0L)+4*¥CURADTVI{I)I*EX(4,1))%%2)/HAA(])

DL1{I)==-A11(1)

DL2(I)=-A211(1)

D21{1)=-A12(1)

D22(I)=-A22(1)

D23(I¥=-A32(1)

D431 1)1=-A341{1)

Da4(l)=-A44 (1)

RETURN

END
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SUBROUTINE H2
SUBROUTINE H2 CALCULATES HTZTL

COMMON/BLOCK/I1,GAyEAyGR,TEMP(101),GB,EB,+EX(4,101),AMDA(4,101),CU,
1QyV,4CyADTV(101),40L,CI4A11(101),AL2(101),A21(101),A22(101),A32(101)
2¢yA34(101),A44(101),B11(101),B12(101),B21(101),822(1011},B44(101),
3Cli(101¥,C12¢{101),C21(101),C22(201),C33(101),C44(101),D112(101),012
4(101),D022(101},023(101})+D43(101),044(101),021(101),HT(L01),HTT(101L
51,CT,TM,Y (101}

DO 1 I=1,I1 _

1 HT(I)=GA*EXP(-EA/(GR*TEMP(I}))*EX(1,[)*EA*{AMDA(2,]1)-AMDA{L,I))/(G
IR®TEMP () %%2)-GB*EXP(-EB/ (GR*TEMP(I)))*EB*EX{2, I} *AMDA( 2,1}/ (GR*TE
2MP{T)%%2)} =2, ¥CT*{TM=TEMP(I})

RETURN

END

SUBROUTINE H3
SUBROUTINE H3 CALCULATES HTTZIL

COMMON/BLOCK/T{yGA,EAsGR4TEMP(101),GB,EB+EX(44101),AMDA{4,101),CU,
1Q,V,4C,ADTV(101),0L4CE,A11(101),A22(101),A21(101)4A22(101),A32(101)
24A34(101),A44(101),B11(101),B12(101),B21(101),B822(101),B44(101),
3Cli(1lo0l),Cl2(101)4C21(101),C22(101),C33(101),C44(101),D11(101),D12
4(101),022(101),D23(101),D43(101),D44(101),D21(101)4HT{101),HTT(101
5),CT,TM,Y(101)

DO 1 I=1,11

HIT(I)==2*HT{I}/TEMP(IV+GA*EXP (-EA/(GRXTEMP(I) ) )I*EX (L, I ) *EAXEAX(A
IMDA(2,1)-AMDATL 1)}/ ((GR*TEMP(I)*%2)*%*2)+2,*CT~-GB*EXP(-EB/(GR*TEMP
2(I) ) )*EB*ERXEX (2, [ )*AMDA{2, 1)/ ((GR*TEMPII)*%2)%*2) -4 %CT*(TM-TEMP
3L)V)/TEMP(T)

1 CONTINUE

RETURN
END
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SUBROUTINE H4

SUBROUTINE H4 CALCULATES YZIK REQUIRED‘FDR DSV METHOD

COMMON/ARR/KOUNT,ALAG(2,101)4AX(2,101)
COMMON/BLOCK/TT14GA,EA,GR,TEMP(101),GB,EByEX(44101)yAMDA{4,101),CU,
1QsV,CoADTVI101),0L,CI,A11(L01),A22(101),A21(101},A22(101),A32{(101)
29yA341(101),A441101),B11(101),B12(101),B21(101),B22(201),B44({101},
3C11(101),C22(101),C21(101),C22(101),C33(101}),C44(101},D11¢(101),D1L2
4(1011,D22(101),D23(101),0D43(101),D44(101),D21(101),HT(LOL),HTT(1O1
5)sCTyTMyY{101) ,
IFIKOUNT.EQ.1) GO TO 2
DO 1 I=1,11
AK1=GA*EXP(-EA/(GR*TEMP(I))}
AK2=GB*EXP{~EB/{GR*TEMP{I)}}
Y{I)=AKLZXEAX(AMDA(2,[)-AMDA(L, 1))/ (GR¥TEMP(T)**2)1%{EX{1,I)-AX{1,1)
L)-AMDA({2, 1) *AK2*EB*(EX(2, 1) =AX{2, 1))/ (GR¥TEMP(I)%%2)}-EX(1,1)*AK1*E
2AX(AMDA{ Ly T)=ALAG(L, 1))/ (GRETEMPLII%*%2 )+ (EX{ 1, 1) *AKLIREA-EX(2,])*AK
32%EB)%* (AMDA(Z, I)Y-ALAGIZ, 1)}/ (GR*TEMP(I)%*%*2)
1 CONTINUE
RETURN
2 DO 3 I=1,1I
3 Y(I[)=0.,0
RETURN
END
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ABSTRACT

It is by now well known that many of the problems involved in
the optimization of complex non-linear dynamic systems are of compu-
tational nature, Dynamic programming suffers from the dimensionality
difficulty while the two—ﬁoint boundary value difficulty limits the
use of calculus of variations and maximum principle. The methods of
steepest descent and other techniques like quasilinearization overcome
the two-point boundary value difficulty in many cases.

Differential sensitivity analysis is a recently developed
technique which also helps overcome the two-point boundary value
difficulty in complex dynamic systems. It is a boundary condition
iteration technique and has been successfully used in many complex
problems,

The purpose of this work is to investigate the computational
features of this technique in solving various management problems.

First, the method of differential sensitivity analysis is dis-
cussed, Then its application to three problems in the field of
production and inventory control is discussed in detail.

The first is a simple inventory model with one state variable
and one control variable., The second application is an igventory
and advertising model with two state variables and one control variable.
The last application is that of a production and advertisement
scheduling problem having four state variables and two control variables,
On the basis of computational experience with these examples it was
concluded that:

1., Convergence is not contingent upon the initial approximations

of the state variables in most of the problems.



2, Convergence rate depends on the choice of parameters used
to control the iteration cycle, However, in most problems
it is quite rapid.
3. The number of equations to be integrated increases rapidly
as the number of state variables increase and this tends to
suppress its advantage of being able to converge from a
crude estimate of the state variables.
The merits and demerits of this technique in comparison to other
techniques should be evaluated in the light of the nature of application
and the type of problem. However, it is a useful technique for the

systems analyst for attacking optimization problems.



