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ABSTRACT 

Plants activate innate immune responses or innate immunity upon pathogen infection. 

There are two types of plant innate immunity: PAMP-triggered innate immunity (PTI) and 

effector-triggered innate immunity (ETI). The molecular basis for ETI has been well 

documented. However, the study on PTI and its interplay with pathogen virulence is in its 

infancy. My research focuses on the interplay between PTI and bacterial virulence in 

Pseudomonas-Arabidopsis interactions.  

NHO1, a gene required for nonhost resistance to Pseudomonas syringae, encodes for 

the 3-glycerol kinase in Arabidopsis genome. NHO1 functions, at least in part, by depriving 

glycerol from nonhost bacteria cells. NHO1 is induced by a well-known bacteria PAMP flg22. 

The induction of NHO1 correlates well with the resistance against Pseudomonas syringae pv. 

tabaci because a mutant strain of P. s. pv. tabaci deficient in NHO1 induction gains partial 

virulence on Arabidopsis plants. P. s. pv. tomato strain DC3000 induces transient NHO1 

expression that is suppressed in a type III secrection system-dependent manner. Using 

protoplast assay, nine DC3000 effectors that are able to suppress NHO1 were identified. One 

of them, HopAI1, induces leaf chlorosis and helps nonpathogenic bacterial growth when 

expressed in Arabidopsis plants, suggesting that HopAI1 has virulence activity in planta.  

To study AvrB virulence activity in Arabidopsis plants, one mutant compromised in 

AvrB-specific RAR2.6 induction has been characterized in detail. rrb3 is more susceptible to 

a nonhost bacteria P. s. pv. tabaci strain 6505, a virulent bacteria P. s. pv. tomato strain 

DC3000 and an avirulent bacteria strain DC3000 (avrB). The mutant allele rrb3 carries a 

point mutation at the end of RAR1 CHORD II domain. RRB3 (RAR1), together with NDR1, is 

involved in the type II nonhost resistance to P. s. pv. tabaci but not in the type I nonhost 

resistance to P. s. pv. phaseolicola. RAR1 participates in basal resistance against DC3000 by 

antagonizing COI1 activity. AvrB targets RAR1 to trigger AvrB-dependent leaf chlorosis and 

enhanced bacterial growth. The AvrB-dependent enhanced bacterial growth but not leaf 

chlorosis requires COI1, suggesting that AvrB targets JA signaling pathway to promote 

parasitism.  
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DC3000 and an avirulent bacteria strain DC3000 (avrB). The mutant allele rrb3 carries a 

point mutation at the end of RAR1 CHORD II domain. RRB3 (RAR1), together with NDR1, is 

involved in the type II nonhost resistance to P. s. pv. tabaci but not in the type I nonhost 

resistance to P. s. pv. phaseolicola. RAR1 participates in basal resistance against DC3000 by 

antagonizing COI1 activity. AvrB targets RAR1 to trigger AvrB-dependent leaf chlorosis and 
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CHAPTER 1 

 

 

LITERATURE REVIEW 

THE MOLECULAR BASIS OF PLANT HOST AND NONHOST RESISTANCE 

1 



Introduction 

Plants are sessile and encounter various environmental challenges, abiotic or biotic, 

during their lifecycle. To protect themselves, plants have developed a complicated defense 

system. Upon the invasion of biotic offenders, plants use both preformed barriers and active 

defense responses to keep the invaders out. One of the well-characterized preformed barriers 

for foliar pathogen is the plant surface structure. Pathogen infection could be hindered by the 

wax and cuticle layer covering plant epidermal cells, or by the unfavorable size, location and 

shapes of stomata and lenticels. Besides the physical barriers, plants also produce antimicrobial 

chemicals such as phytoalexin to restrict pathogen infection. Once the preformed barriers are 

overcome, plants initiate active defense responses upon pathogen infection. There are two 

major types of plant induced defense responses, systemically induced resistance (SIR) and 

localized innate immunity (LII). SIR refers to resistance that is induced in uninfected 

above-ground part of plants by a chemical treatment or pathogen infection. The well-studied 

SIR includes systemic acquired resistance (SAR, Durrant and Dong, 2004), induced systemic 

resistance (ISR, van Loon et al., 1998) and wound inducible resistance (WIR, Kessler et al., 

2002). SAR is triggered by a group of small signaling molecules, including salicylic acid (SA) 

and its analogs, or by pathogen infection (Durrant and Dong, 2004). ISR is elicited by 

nonpathogenic rhizobacteria colonizing roots (van Loon et al., 1998). WIR is induced upon 

tissue damage typically caused by feeding insects (Kessler et al., 2002). The signaling network 

of SIR involves salicylic acid (SA), jasmonic acid (JA) and ethylene with intertwining 

crosstalk (Pieterse and Van Loon, 2004). Recently, brassinosteroids and abscisic acid were also 

found to play a role in SIR (Nakashita et al., 2003; Ton and Mauch-Mani, 2004).  

LII refers to local defense responses triggered by plant pattern recognition receptors 

(PRRs) upon recognition of pathogen associated molecular patterns (PAMPs) or by resistance 

(R) proteins upon recognition of avirulence (AVR) proteins (Ausubel, 2005). Often the plant 

LII is associated with a rapid, localized hypersensitive response (HR) elicited by gene-for-gene 

resistance, which accounts for most cultivar level resistance and in some cases, species level 

resistance (Zhao et al., 2005). The species level resistance conferred by an entire plant species 
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to a whole pathogen species or pathovar is also called nonhost resistance (Thordal-Christensen, 

2003). In the past twenty years, the understanding of gene-for-gene resistance has been greatly 

expanded with the intensive study of AVR-R interactions. However, the molecular basis for 

nonhost resistance is poorly explored until recently. With the discovery of PAMPs and their 

corresponding receptors in plants, PAMP triggered immunity (PTI) has been established as an 

important molecular mechanism for nonhost resistance and is emerging as a research front in 

the field of molecular plant-microbe interactions. PTI, together with effector-triggered 

immunity (ETI), forms the important layers of plant innate immunity (reviewed in 

Thordal-Christensen, 2003; Cunha et al., 2006; Chisholm et al., 2006) and shares striking 

similarity with animal innate immunity (reviewed in Nurnberger and Brunner, 2002; Buttner 

and Bonas, 2003; Nurnberger et al., 2004;).  

To counteract plant resistance, pathogens have developed sophisticated virulence 

strategies to avoid, suppress or break through host surveillance systems (reviewed in Hornef et 

al., 2002; Finlay and McFadden, 2006). One of the strategies used by pathogen is the 

modification of PAMPs to avoid host recognition (Hornef et al., 2002). Pathogens such as 

bacteria, fungi and oomycetes can also avoid recognition by losing or mutating an AVR gene 

whose product is recognized by the hosts. In some cases, lost of a functional AVR gene will 

incur a fitness penalty on susceptible host, thus imposing a selection pressure on pathogen 

population (Leach et al., 2001; McDonald and Linde, 2002). Other strategies include the 

secretion of toxins, cell wall degrading enzymes and virulence effectors. In this chapter, recent 

advances on PAMP and AVR perception, suppression of PAMP or AVR signaling by pathogen 

virulence machineries, the molecular basis of nonhost resistance and potential application of 

plant innate immunity in disease management will be discussed.  

PAMPs and Their Recognition by the Hosts 

PAMPs, also called MAMPs (microbe associated molecular patterns), refer to pathogen 

structures or components, usually indispensable for the microbial lifestyle, that are not found in 

potential hosts (Nurnberger et al., 2004). Some PAMPs are not critical for bacteria survival but 

mediate bacterial virulence activity and are required for bacteria pathogenesis. For example, 
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flagellum is dispensable for bacteria viability whereas critical for bacteria motility. A 

bacterium lacking functional flagellin synthesis or flagellum assembly genes is unable to exert 

full virulence on its hosts (Takeuchi et al., 2003; Tans-Kersten et al., 2001). Due to their 

indispensability for bacteria survival or virulence, PAMPs have been used as ideal targets by 

host surveillance systems.  

The perception of PAMPs is mediated by a group of pattern recognition receptors 

(PRRs), including transmembrane Toll-like receptors (TLRs) and cytosolic Nod proteins in 

animals as well as receptor like kinases (RLKs) and NBS-LRR proteins in plants (Ausubel, 

2005). TLRs are Toll family proteins characterized by an extracellular leucine-rich repeat 

(LRR) domain and an intracellular Toll/IL-1 receptor (TIR) domain (Medzhitov, 2001). Both 

LRR and TIR domains are conserved protein-protein interaction modules found in proteins 

involved in ligand recognition or signal transduction (Medzhitov, 2001). The first Toll family 

protein, Drosophila Toll, was identified in fruitfly determining dorsal-ventral embryonic 

polarity (Hashimoto et al., 1988). TLR family proteins were then found in mammals and other 

vertebrates. In plants, clear TLR homologues are lacking (Zipfel and Felix, 2005). However, a 

group of RLKs and RLPs (receptor like proteins) have been identified as important players in 

plant growth, development and plant-microbe interactions (Torii, 2004). In the Arabidopsis 

genome, there are more than 600 RLK family members (Morillo and Tax, 2006). About 200 of 

them, including the well-characterized RLKs such as CLV1 (CLAVATA1, Clark et al., 1997), 

BRI1 (brassinosteroid-insensitive 1, Li and Chory, 1997), FLS2 (flagellin sensing 2, 

Gomez-Gomez and Boller, 2002) and the recently identified EF-Tu receptor EFR1 (elongation 

factor Tu receptor 1, Zipfel et al., 2006), belong to the LRR-RLK subfamily (Torii, 2004).  

Nod proteins are a family of intracellular PRRs characterized by their 

nucleotide-binding oligomerization domain (NOD) (Inohara and Nunez, 2003; Inohara et al., 

2005). The well-characterized Nod proteins include apoptosis protease activating factor 1 

(APAF1), mammalian NOD-LRR proteins and plant NBS-LRR proteins (Inohara and Nunez, 

2003). Most Nod proteins are composed of a variable N-terminus effector-binding domain that 

is responsible for signaling, a conserved NOD domain that mediates self-oligomerization and a 

C-terminus ligand recognition domain that interacts with cytosolic ligands. The structure 
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homology among APAF1, NOD-LRR and plant NBS-LRR proteins indicates that they may 

use similar mechanism to activate downstream signaling (Inohara and Nunez, 2003). 

PAMP Perception and Signaling in Animal Systems 

In animal systems, TLR-mediated PAMP perception triggers NFκB activation, 

cytokine production and inflammatory responses via a series of phosphorylation events. A 

well-characterized example is the LPS receptor TLR4 (Medzhitov et al., 1997). TLR4 

recognize LPS with the assistance of LBP (soluble LPS-binding protein), CD14 (membrane 

attached co-receptor) and MD-2 (soluble protein associated with TLR4). Upon ligand binding, 

the cytosolic TIR domain of TLR4 recruits myeloid differentiation factor 88 (MyD88) adaptor 

protein, interleukin-1 receptor-associated kinases (IRAKs), Toll-interacting protein (TOLLIP) 

and TNF-receptor associated factor 6 (TRAF6) to form a signaling complex, which 

subsequently phosphorylates IκB (inhibitor of NFκB) and activates the transcription factor 

NFκB (Miller et al., 2005). Similar receptor complexs and signaling cascades were also found 

in other TLR-mediated innate immune response except TLR3 (Sioud, 2006). Recently, 

cytosolic Nod proteins have been shown to mediate PAMP perception in addition to TLRs. 

How these cytosolic Nod proteins recognize PAMPs and activate downstream activities is not 

fully understood. However, APAF1, a well-studied Nod protein, was found to activate 

caspases and apoptosis through self-oligomerization (Zou et al., 1997). In the absence of death 

stimuli, APAF1 self-oligomerization is suppressed by its N-terminus WD40 domain (Hu et al, 

1998; Srinivasula et al., 1998). In response to cell damage, cytochrome c is released from 

mitochondria and binds to the WD40 domain of APAF1. APAF1 is then oligomerized and 

pro-caspase-9 is recruited (Saleh et al., 1999; Benedict et al., 2000). Deletion of the WD40 

domain leads to constitutive activation of procaspase-9 independent of cytochrome c (Hu et al, 

1998; Srinivasula et al., 1998), indicating WD40 is a negative regulator of APAF1 activation.  

PAMP Perception and Signaling in Plants 

In plants, bacteria PAMPs such as peptidoglycan, cold shock protein, LPS, flagellin, 

and EF-Tu elicit medium alkalinization (Felix and Boller, 2003), oxidative burst (Meyer et al., 

2001), nitric oxide production (Zeidler et al., 2004), callose deposition (Gomez-Gomez et al., 
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1999), PR gene expression and other basal defense responses (Newman et al., 2002; 

Keshavarzi et al., 2004). Other PAMPs like chitin, β-glucan, xylanse and cell wall proteins 

from fungi and oomycetes trigger phytoalexin and ethylene production (Zhang et al. 2002; 

Ramonell et al., 2002; Ron and Avni, 2004), electrolyte leakage and PR gene expression (Ron 

and Avni, 2004). Based on their localization, these PAMPs can be grouped into three classes, 

the surface exposed PAMPs, the cytosolic PAMPs and the secreted PAMPs.  

The surface exposed PAMPs include flagellin, LPS, peptidoglycan from bacteria and 

chitin, β-glucan, cell wall proteins from oomycetes. Some of these surface exposed PAMPs are 

well studied with their PRRs in plants identified. For example, the β-glucan elicitor (GE), 

released from Phytophthora sojae cell wall component 1,3-β-glucan, has been characterized as 

a defense elicitor in soybean and other Fabaceae family plants (Fliegmann et al., 2004). The 

corresponding receptor protein, GE binding protein (GEBP), has been purified through 

ligand-affinity chromatography. The soybean GEBP protein is membrane localized and 

composed of a GE binding domain and a β-glucan endoglucosidase domain with 

endo-1,3-β-glucanase activity. GEBP protein represents a unique type of PRR with dual 

functions in PAMP perception. It releases GE from β-glucans present in fungal or oomycete 

cell walls with its endo-1,3-glucanase activity. The released GE then binds to the GEBP and 

induces phytoalexin production (Fliegmann et al., 2004; Fliegmann et al., 2005). However, it is 

not determined whether GE perception plays a role in plant disease resistance. Another surface 

exposed PAMP, chitin, was recently found to bind chitin elicitor binding protein (CEBiP) 

purified from rice cell cultures. CEBiP is a plasma membrane protein with two extracellular 

LysM motifs (Kaku et al., 2006). Interestingly, LysM motifs are also present in Nod factor 

receptor kinases that recognize lipochitooligosaccharides, chitin oligosaccharides modified by 

fatty acid, sulfate or sugars (Madsen et al., 2003). Knock-down of CEBiP leads to loss or 

reduction of chitin induced responses and gene expression, indicating CEBiP is the bona fide 

PRR for chitin perception (Kaku et al., 2006). A loss-of-function mutation of chitin responsive 

gene has been linked to increased susceptibility against Erysiphe cichoracearum, the causal 

agent of powdery mildew disease on Arabidopsis (Ramonell et al., 2005), suggesting a 

correlation between chitin perception and disease resistance. 
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Most of our current knowledge on PAMP signaling and regulation in plants is provided 

by Boller’s group working on flagellin perception. Flagellin is conserved in eubacteria. It has 

been identified as a general elicitor in boiled Pseudomonas syringae pv. tabaci crude extracts 

which induce strong medium alkalization in tomato cell cultures (Felix et al., 1999). A 

conserved N-terminal 22 amino acid peptide of flagellin (flg22) has full elicitor activity and 

triggers strong growth inhibition in Arabidopsis thaliana seedlings (Gomez-Gomez et al., 

1999). The fls2 gene controlling the flg22-induced growth inhibition was identified in a genetic 

screen. FLS2 is an LRR-RLK sharing high sequence similarity with the resistance protein 

Xa21 (Gomez-Gomez and Boller, 2000). Flg22 directly binds to FLS2 (Chinchilla et al., 2006). 

Upon flagellin binding, FLS2 rapidly activates a downstream MAPK (mitogen-activated 

protein kinase) cascade, WRKY family transcription factors (Asai et al., 2002), ion channels, 

the NADPH oxidase complex (Gomez-Gomez and Boller, 2002), defense gene expression 

(Zipfel et al., 2004) and callose deposition (Gomez-Gomez et al., 1999; Kim et al., 2005). The 

FLS2 mediated signaling cascade is negatively regulated by a kinase-associated protein 

phosohatase (KAPP) and FLS2 internalization (Gomez-Gomez and Boller, 2002; 

Gomez-Gomez et al., 2001; Robatzek et al., 2006), maintaining the transient status of flagellin 

signaling. 

The second class of PAMPs, cytosolic PAMPs, has been characterized recently. To 

date, there are two bacteria cytosolic proteins found to elicit innate immune responses in plants: 

the cold shock protein (CSP) and the elongation factor EF-Tu. Cold shock protein was 

identified in an experiment initially designed to characterize peptidoglycan, a surface exposed 

PAMP. Peptidoglycan from Gram-positive bacteria activates innate immunity in animal 

system (Michel et al., 2001). Commercially available peptidoglycan from Micrococcus 

lysodeikticus elicits strong medium alkalinization in cultured cells of Solanales species such as 

tobacco, potato and L. peruvianum. Interestingly, a proteinaceous fraction in the peptidoglycan 

preparation was 100 fold more active than the nonproteinaceous fraction. Further analysis of 

this fraction led to the purification of CSP as a new elicitor that is present in all bacteria. 

Similar to flagellin, the conserved N-terminal 15-22 amino acid residues spanning a 

RNA-binding motif RNP-1 possess the full elicitor activity (Felix and Boller, 2004). The PRR 
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recognizing CSP has not been identified. However, PRR recognizing another cytosolic PAMP, 

EF-Tu, has been recently characterized, providing a good example of cytosolic PAMP 

perception. EF-Tu triggers medium alkalinization in Arabidopsis and other Brassicaceae 

family plants. Peptides containing the N-terminus 18-26 amino acids, elf18 to elf26, retain the 

full elicitor activity. Arabidopsis plants treated with elf18 exhibit enhanced oxidative burst, 

ethylene production and resistance to bacterial pathogens (Kunze et al., 2004). EF-Tu and 

flagellin induce a common set of responses and are perceived by closely related LRR-RLKs 

(Zipfel et al., 2006). Similar to FLS2, the EF-Tu receptor EFR has an extracellular LRR 

domain, a transmembrane domain and an intracellular serine/threonine kinase domain. EF-Tu 

perception activates defense responses that limit A. tumefacien infection in Arabidopsis leaves. 

Interestingly, tobacco plants that are highly sensitive to Agrobacterium transformation do not 

respond to EF-Tu. Transient expression of Arabidopsis EFR gene in tobacco leaves restores 

EF-Tu responses, indicating that lacking a functional EFR is responsible for the high 

transformation efficiency in tobacco (Zipfel et al., 2006). It is noteworthy that CSP is 

recognized by Solanales but not by Brassicaceae (Felix and Boller, 2004) whereas EF-Tu is 

only recognized by Brassicaceae (Zipfel et al., 2006). PAMP perception may be a molecular 

mechanism for nonhost resistance that contributes to host determination. How the bacteria cells 

release cytosolic PAMPs is not fully understood, but it is conceivable this occurs upon bacteria 

lysis. It is well known that plants secrete various proteases and enzymes into intercellular 

spaces, which may directly attack and break the invading bacteria cells.   

The only known PRR recognizing a secreted PAMP is the ethylene-inducing xylanase 

(EIX) receptor. Xylanase is a 22-kD fungal protein purified from Trichoderma viride. 

Xylanase induces ethylene biosynthesis, electrolyte leakage, PR protein expression and a HR 

like response (Ron and Avni, 2004). The xylanase and the elicitor activity of EIX are 

independent of each other (Furman-Matarasso et al., 1999; Rotblat et al, 2002). EIX binds to 

two tomato RLPs with a cytosolic endocytosis signal motif, LeEix1 and LeEix2. However, 

only LeEix2 transduces the HR induction signal. The HR inducing capability of EIX through 

LeEix2 is dependent on its endocytosis signal. Interestingly, it has been shown that EIX was 

transported into cytoplasm after binding the plasma membrane, indicating a role of LeEix2 in 
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both EIX endocytosis and HR induction (Ron and Avni, 2004). Another well known secreted 

PAMP is harpin, a group of water soluble, HR eliciting proteins that are acidic, heat stable, and 

glysine rich encoded by the hypersensitive response and pathogenesis (hrp) island (Wei et al., 

1992; Galan and Collmer, 1999). As other PAMPs, harpin is conserved across bacteria species 

and required for bacterial virulence on compatible hosts (Wei et al., 1992; He et al., 1993; Lee 

et al., 2001). The first harpin, hrpN, was identified in Erwinia amynovora (Wei et al., 1992). 

Similar proteins have then been found in Pseudomonas syringae (hrpZ; He et al., 1993; Preston 

et al., 1995) and Rolstonia solanacearum (popA; Arlat et al., 1994). Harpin is secreted from 

TTSS pilus tip into the plant apoplast (Li et al., 2002) and binds to lipid bilayers of plant plasma 

membrane to form ion-conducting pores (Lee et al., 2001). Whether this pore-forming activity 

is mediated by membrane localized receptor protein(s) remains unknown. Identification of 

harpin binding protein, if there is one, will provide a great example of a HR eliciting protein 

that recognizing a PAMP. Resistance conferred by such a protein is likely to provide durable 

and broad-spectrum resistance (Staskawicz et al., 2001; Chisholm et al., 2006).  

Polymorphism of PAMP Recognition 

The recognition of PAMPs is highly structure-dependent. For example, human TLR4 

receptor recognizes hexa-acylated but not penta-acylated LPS from P. aeruginosa (Hajjar et 

al., 2002). Variation in one or more amino acid residues in the conserved flg22 peptide reduces 

or abolishes its recognition by FLS2 (Zipfel et al., 2004; Sun et al., 2005). Interestingly, the 

flagellins from P. s. pv. tabaci and P. s. pv. glycinea sharing identical amino acid sequence are 

differentially recognized due to different patterns of glycosylation (Takeuchi et al., 2003; 

Taguchi et al., 2006). In fact, shielding or modification of exposed PAMPs is an important 

strategy used by bacteria to evade host recognition and immune response (Hornef et al., 2002). 

Recently, it was shown that the oligomerization status and the localization of flagellin are also 

important for its recognition (Simth et al., 2003; Miao et al., 2006; Franchi et al., 2006). Human 

TLR5 recognizes Salmonella typhimurium flagellin at its C-terminus D1 domain. Deletion of 

28 amino acid residues in this domain abrogate the ability of flagellin to trigger TLR5 mediated 

NF-kB activation (Smith et al., 2003). Interestingly, the D1 domain recognized by TLR5 is 

buried inside the flagellar filaments. Given that polymers of flagellin do not bind to TLR5 and 
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flagellin filaments trigger NF-kB activation only after deplomerization, monomeric flagellin, 

instead of flagellar filaments must be recognized by TLR5 (Smith et al., 2003). A recent report 

showed that the biologically active monomeric flagellin is not a product of flagellar shearing. 

In fact, it is secreted upon contact with host cells. Host produced lysophospholipids act as a 

signal molecule in flagellin secretion (Subramanian and Qadri, 2006). Monomeric flagellin can 

also be delivered into host cytosol and recognized by IPAF1 (or CARD12, Caspase recruitment 

domain family member 12) in a TLR5-independent manner, making the mechanism of PAMP 

perception more complicated (Miao et al., 2006; Franchi et al., 2006). Similar to Salmonella 

flagellin D1 domain, Pseudomonas flg22 is also embedded in the inner core of flagellin 

filament (Zipfel and Felix, 2004). How this hidden peptide binds to FLS2 remains mysterious. 

It is possible that flagellin monomer instead of flagellar filament acts as the defense-eliciting 

PAMP. If this is true, it will be interesting to ask how this flagellin monomer is produced and 

whether the production of monomeric flagellin needs a host signal.  

On the other hand, polymorphism in individual PRR alleles also affects PAMP 

recognition. Human TLR4 polymorphisms led to variation in ligand recognition or 

downstream signaling events, which in turn changed the disease outcomes upon bacteria 

infection (Arbour et al., 2000; Miller et al., 2005). In plants, point mutations in the FLS2 kinase 

domain reduced flagellin binding whereas point mutations in the LRR domain totally abolished 

the ligand binding activity of FLS2 (Gomez-Gomez et al., 2001; Gomez-Gomez and Boller, 

2000; Bauer et al., 2001). The sensitivity of PAMP perception indicates that it is a tightly 

regulated and evolutionary active biological activity in the arms race between pathogens and 

their corresponding hosts.  

In general, PAMPs are conserved molecules required for bacterial survival or 

virulence. The recognition of PAMPs by plant PRRs triggers defense responses at the species 

level. It is interesting that plant recognize even cytosolic proteins. However, an important 

bacterial virulence determinant, the conserved TTSS pillus protein, which is in close contact 

with plant cells, is not recognized. In fact, the Yersinia TTSS base forming protein, YscF, does 

trigger an antibody response when injected into mice (Matson et al., 2005), indicating that the 

TTSS apparatus could be recognized by the hosts. Recent phylogenic study of hrpA genes from 
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22 Pseudomonas syringae bacteria strains reveals that it is the diversifying selection that keeps 

hrpA from being recognized (Guttman et al., 2006). Identification of PRRs that targeting HrpA 

and driving the diversifying selection will provide a useful model for studying the evolutionary 

relationship between PAMPs and PRRs (Guttman et al., 2006). Whether other PAMPs are 

undergoing similar selection process is an open question. It appears that PAMP recognition by 

PRRs might also be dynamic and undergoing selection albeit the process may be slower than 

that of AVR recognition by R proteins.  

AVR Recognition and R Protein Activation in Plants 

It has been 13 years since the cloning of the first plant R gene Pto (Martin et al., 1993). 

To date, more than 60 R genes and more than 40 AVR genes have been identified. Most of 

these R proteins have a conserved nucleotide binding domain (NBS) and a C-terminal leucine 

rich repeat (LRR). Based on the structural characteristics of their N-terminus domain, 

NBS-LRR type of R proteins can be classified into TIR- and CC-NBS-LRR proteins (reviewed 

in Baker et al., 1997; Staskawicz et al., 2001; Martin et al., 2003). Other R proteins include 

transmembrane receptor like proteins, such as Xa21 from rice and Cf family proteins from 

tomato (Romeis, 2001; Rivas and Thomas, 2005), variants of NBS-LRR proteins, such as Pita 

from rice, RRS1 and SLH1 from Arabidopsis (Bryan et al., 2000; Lahaye, 2004; Noutoshi et 

al., 2005), cytosolic kinase like proteins such as Pto from tomato and Rpg1 from maize, or R 

proteins that do not fall into any of the above classes (reviewed in Martin et al., 2003; 

McDowell and Woffenden, 2003). Recently, an inducible R gene, Xa27, has been 

characterized in rice-Xanthamonas oryzae interaction (Gu et al., 2005). Xa27 shares identical 

sequence in the coding region with its susceptible allele. However, only the resistant allele is 

directly induced by Xanthomonas oryzae pv. oryzae strains containing avrXa27, a 

AvrBs3/PthA family effector protein with conserved nucleotide binding motifs and 

transcription activation domain. The differential expression of Xa27 resistant and susceptible 

alleles is caused by the sequence variation in their promoter region that is responsible for the 

disease outcome (Gu et al., 2005). The identification and characterization of Xa27 and its 

avirulence effector avrXa27 provide a new model of AVR-R interaction in which avirulence 

effector directly binds to the promoter region of R genes and induces R gene expression. 
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Recognition of AVR Effectors 

Except for Xa27, most R genes rely on their protein products to carry out AVR 

recognition. There are two widely discussed models explaining how R proteins recognize AVR 

proteins: the ligand-receptor model and the guard-guardee model. In the ligand-receptor 

model, R proteins act as receptors for AVR effectors. The binding of the AVR protein triggers 

R protein activation and disease resistance. The most likely candidate R proteins that fit in this 

model should have been the typical transmembrane receptor like R proteins because they 

structurally mimic known receptor proteins. However, direct binding between these R proteins 

and their AVR effectors has never been demonstrated (Luderer et al., 2001). At present, there 

are only three examples of direct AVR-R interaction: The AvrPita-Pita interaction in 

Magnaporthe grisea-rice pathosystem (Bryan et al., 2000), the PopP2-RRS1 interaction in 

Rostonia solanacearum-Arabidopsis pathosystem (Deslandes et al., 2003) and the 

AvrL567-L5, 6, 7 interactions in Melampsora lini-flax pathosystem (Dodds et al., 2006). Both 

Pita and RRS1 are NBS-LRR proteins. Pita has a typical NBS domain, a N-terminal CC 

domain and a C-terminal LRR domain (Bryan et al., 2000). RRS1 is a TIR-NBS-LRR type of R 

protein with unique features. RRS1 has two tandem TIRs at its N terminus and a WRKY 

domain at its C terminus. Upon binding PopP2, RRS1 translocates to the nucleus and regulates 

gene expression (Deslandes et al., 2003). L5, 6, 7 are flax rust resistance TIR-NBS-LRR 

proteins recognizing the secreted, 127 amino acid Avr567 protein variants encoded in the 

highly polymorphic Avr567 locus (Dodds et al., 2004). There were 12 Avr567 variants 

identified and named from A to L. Each individual variant has been tested for its interaction 

with L5, L6 and L7 respectively in the yeast two-hybrid system. The specificity and strength of 

the interactions correlate well with the HR eliciting ability of Avr567 variants and with the 

virulence level of rust strains carrying those variants. For example, Avr567-D interacts with L6 

but not L5. Consistently, AvrL567-D specifically induces a necrotic response in L6 and is not 

able to infect L6 plants. Another Avr567 variant, Avr567-B slightly interacts with L6 and only 

triggers a weak chlorotic response and weak resistance in L6 plants (Dodds et al., 2006).  

Compared to the ligand-receptor model, the guard-guardee model seems to explain the 

activity of a greater number of R proteins. The central idea of guard-guardee model, or the 
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guard hypothesis, is that AVR effectors mediate virulence activity by targeting and modifying 

host component(s). R proteins detect the modification and trigger disease resistance. Based on 

this hypothesis, the host targets should interact with the AVR effectors in planta and enhance 

pathogen virulence in the absence of the corresponding R gene. To date, there are four plant 

proteins identified as targets of AVR effectors. They are Arabidopsis RIN4 (RPM1 interacting 

protein 4) targeted by Pseudomonas syringae effectors AvrB, AvrRpm1 and AvrRpt2 (Mackey 

et al., 2002; Mackey et al., 2003; Axtell et al., 2003), Arabidopsis PBS1 (required for 

AvrPphB/RPS5-mediated resistance) by Pseudomonas syringae effector AvrPphB (Shao et al., 

2003), tomato Pto (resistance to Pseudomonas syringae pv. tomato) by Pseudomonas syringae 

effector AvrPto (Tang et al., 1996; Pedley and Martin, 2003; Mucyn et al., 2006) and tomato 

Rcr3 (required for Cf-2 mediated resistance) by Cladosporium fulvum effector Avr2 (Kruger et 

al., 2002; Rooney et al., 2005. However, none of these plant targets have been shown to assist 

virulence activity of AVR effectors, jeopardizing the virulence criterium for host targets in 

guard-guardee model. To explain this, the guard hypothesis has been modified, and a 

guard-multiple guardee model has been proposed (Lim and Kunkel, 2004; Belkhadir et al., 

2004). Supporting the modified guard hypothesis, a second host target for AvrB has recently 

been identified (Shang et al., 2006). RAR1 (required for Mla12 resistance), a well-studied 

signaling component required for R gene activity, is found to negatively regulate cell wall 

defense and mediate AvrB triggered leaf chlorosis and bacterial growth enhancement. A point 

mutation at the end of RAR1 CHORII domain abolished its interaction with SGT1b 

(suppressor of the G2 allele of Skp1), a cochaperone of HSP90 (heat shock protein), and the 

AvrB virulence activity in Arabidopsis (Shang et al., 2006), suggesting the involvement of 

SGT1 in AvrB virulence activity. Like RIN4, RAR1 could be an ancient basal defense 

regulator that is exploited by bacterial effecors to carry out virulence activity. Further 

exploration of how AvrB modifies RAR1 and how R proteins guard the AvrB-RAR1 complex 

will shed light on the molecular mechanism of AVR recognition. Besides these two models, it 

is noteworthy that some effectors are processed by host proteins before coming into contact 

with host targets. A good example is AvrRpt2. AvrRpt2 is secreted as a 28kD protein into plant 

cell. Inside the plant cell, AvrRpt2 is able to cleave its own N terminus 71 amino acid peptide 

(Mudgett et al., 1999). The self-process and the HR eliciting ability of AvrRpt2 require 
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AtROC1, an Arabidopsis cyclophilin peptidyl-prolyl cis/trans isomerase (Coaker et al., 2005; 

Coaker et al., 2006). Cyclophilin is a well-know chaperone functioning in protein folding. 

Refolding and processing of type III effectors in the host might be a general mechanism for 

their activation (Joosten et al., 1999; Coaker et al., 2006).  

R Protein Activation 

Although many downstream components of R signaling have been identified through 

intensive genetic screening (reviewed in Glazebrook, 2001; Nimchuk et al., 2003), the exact 

mechanism of R protein activation remains a mystery. It is known that plant NBS-LRR 

proteins share significant sequence homology with mammalian Nod proteins. The question is: 

do plant NBS-LRR proteins act in a similar way as Nod proteins? One relavant question in this 

regard is, do plant NBS-LRR proteins rely on NOD oligomerization to carry out their mission? 

This important question had not been answered until recently (Mestre and Baulcombe, 2006). 

Mestre and Baulcombe detected N protein oligomerization in the presence of its corresponding 

AVR protein, TMV helicase P50. Oligomerization of N protein is required for resistance 

upstream of EDS1 and NPG1, signaling components required for N-mediated disease 

resistance. The authors were able to detect the elicitor dependent N protein oligomerization in a 

transient assay system that does not elicit cell death, ensuring enough protein for 

co-immunoprecipitation experiments. This breakthrough discovery will encourage similar 

exploration for other NBS-LRR proteins and provide new insight into the mechanism of R 

protein activation. Interestingly, like APAF-1, a well-characterized mammalian Nod protein, 

some NBS-LRR proteins are also negatively regulated. Point mutations in the conserved NBS 

domain (Shirano et al., 2002; Bendahmane et al., 2002; Howles et al., 2005), the LRR 

(Bendahmane et al., 2002; Howles et al., 2005) domain or in the region between NBS and LRR 

(Zhang et al., 2003) led to constitutive activation of defense responses independent of pathogen 

infection. The molecular mechanism of this negative regulation is not clear. It is possible that 

the R protein LRR domain plays a role in negative regulation resembling the APAF-1 model. 

Supporting this hypothesis, a truncated TIR-NBS R protein PRR1A (Michael Weaver et al., 

2006) is constitutively active. A similar effect was also found in a truncated CC-NBS R protein 

RPS2 (Tao et al., 2000). On the contrary, deletion of LRR domain in other R proteins generated 
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inactive, instead of constitutive active R proteins (Moffett et al., 2002; Leister et al., 2005; 

Mestre and Baulcombe, personal communication), indicating that the negative regulation 

might be specific for certain R proteins.  

Suppression of PAMP and Avr Signaling by Pathogen Virulence Systems 

To avoid plant surveillance, pathogens have developed various strategies to evade or 

suppress plant innate immunity. One of the best-characterized virulence systems used by 

bacteria is the type III secretion system (TTSS). Bacteria are able to deliver effectors into host 

cells through TTSS to interfere with host signal transduction and metabolism. For example, 

Pseudomonas bacteria inject more than 50 type III effectors into host cells via the TTSS. Many 

of these effectors are able to suppress plant innate immunity through various mechanisms 

(Grant et al., 2006). Identifying specific pathways targeted by type III effectors will shed light 

on new resistance strategies to control disease in plants.  

Suppression of PAMP Signaling 

PTI (PAMP triggered immunity) is an important layer of plant disease resistance 

against pathogen infection. However, in most compatible interactions, PTI is not effective 

although PAMPs are perceived normally. For example, flagellin from the virulent 

Pseudomonas syringae tomato strain DC3000 share identical flg22 with the nonhost strains P. 

s. pv. tabaci and P. s. pv. phaseolicola that induce NHO1 expression upon infection. However, 

this active flagellin does not elicit an effective resistance against DC3000 in Arabidopsis. 

DC3000 lacking the flagellin synthesis gene grows similarly compared to wild type DC3000 

strain (Li, et al., 2005), indicating that the flagellin-induced immunity is overcome by DC3000. 

Further evidence shows that flg22-induced expression of NHO1 is suppressed by DC3000 in a 

TTSS dependent manner. Nine out of nineteen effectors tested are able to suppress NHO1 

expression in a protoplast transient assay, suggesting that the induced expression of NHO1 is a 

general target for type III effectors (Li et al., 2005). The NHO1 gene has multiple W boxes in 

its promoter region, which are the potential binding sites for WRKY transcription factors. 

Since flagellin activates WRKY transcription factors through FLS2 and the MAPK cascade, it 

is possible that DC3000 targets this signaling pathway to suppress NHO1 induction. Indeed, 
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HopAI1, one of the effectors suppressing NHO1, is able to block AtMAPK3 and AtMAPK6 

activation at or downstream of AtMEKK1 (Zhang J. and Zhou J.M., unpublished). Recently, 

OspF, a HopAI1 homolog in Shigella, was also found to regulate MAPK signaling, which is 

responsible for the postivasion virulence in T84 intestinal cells (Zurawski et al., 2006). A 

MAPK signaling cascade is an evolutionary conserved signaling module mediating multiple 

biological activities of eukaryotic cells. In plants, MAPK cascades are involved in plant 

development, cell cycle regulation, hormone sensing and abiotic and biotic stress tolerance 

(Tena et al., 2001). The role of MAPKs in PAMP signaling, HR cell death and disease cell 

death regulation has also been documented (Asai et al., 2002; de Polo et al., 2004; Pedley and 

Martin, 2005). In Arabidopsis, AtMEKK1 positively regulates disease resistance against 

Pseudomonas bacteria. Constitutive active AtMEKK1 results in enhanced disease resistance 

against virulent Pseudomonas syringae bacteria strains (Asai et al., 2002). To identify DC3000 

effectors that target MAPK cascades in Arabidopsis, He and colleagues tested ten effectors 

with demonstrated defense suppressing activity. Two of them, AvrPto and AvrPtoB, are able to 

block PAMP activated MAPK signaling at or upstream of AtMEKK1. Significantly, DC3000 

lacking of these two effectors showed reduced virulence when growing in Arabidopsis leaves, 

indicating the suppression of PTI is critical for bacteria pathogenicity (He et al., 2006). 

Intriguingly, it has recently been pointed out that the AvrPtoB mediated basal defense 

suppression is dependent on the absence of a functional FLS2, the receptor kinase for bacterial 

flagellin (de Torres et al., 2006). Supporting this observation, FLS2, even when expressed at 

low levels, partially relieves MAPK suppression by AvrPtoB (He et al., 2006), revealing a feed 

back interference of PRRs against PTI suppression. 

Although suppression of a MAPK cascade is an important strategy for bacteria to 

overcome host defense, other effectors such as AvrRpm1 and AvrRpt2, are not able to interfere 

with MAPK signaling (He et al., 2006). However, AvrRpm1 and AvrRpt2 suppress flagellin 

induced callose deposition as well as defense gene expression (Kim et al., 2005). The PTI 

suppressing activity of AvrRpm1 and AvrRpt2 is likely carried through by RIN4. RIN4 is a 

host target phosphorylated by AvrRpm1yet cleaved by AvrRpt2 (Mackey et al., 2002; Mackey 

et al., 2003; Axtell et al., 2003). RIN4 is not required for the virulence activity of AvrRpm1 and 
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AvrRpt2 measured by bacterial growth but is hypothesized to mediate PTI suppressing activity 

of these two effectors (Lim and Kunkel, 2004; Belkhadir et al., 2004; Kim et al., 2005). How 

AvrRpm1 and AvrRpt2 exert their PTI suppressing activity through RIN4 is not further 

clarified in the model proposed in Kim et al. (2005). AvrRpm1 and AvrRpt2 do not seem to 

interfere with MAPK signaling (He et al., 2006), thus there may not be a link between RIN4 

and the specific MAPK pathway tested by He et al. (2006). Nevertheless, there are more than 

60 MAPKKK, 10 MAPKK and 20 MAPK candidate genes in the Arabidopsis genome 

(Nakagami et al., 2005). The possibility that RIN4 regulates some of these MAPKs to suppress 

PTI cannot be excluded.  

Type III dependent basal defense suppression also occurs in Xanthomonas campestris 

pv. Vesicatoria (Xcv) infected pepper plants (Keshavarzi et al., 2004). An Xcv hrpA mutant 

induced strong callose deposition and cell wall strengthening. The defense inducing elicitor 

was identified as lipopolysaccharides (LPS). LPS also induced rapid NOS (NO synthase) 

expression and a strong nitric oxide (NO) burst in Arabidopsis (Zeidler et al., 2004). NO 

production is responsible for down stream defense gene expression, indicating a role of NO in 

basal defense. An Arabidopsis AtNOS mutant that was unable to produce NO was more 

susceptible to a virulent Pseudomonas strain DC3000, confirming the positive regulation of 

basal defense by NO signaling. It remains to be determined if any DC3000 effectors suppress 

NO production or signaling.  

Recently, both flagellin and LPS were found to induce stomatal closure that blocks 

host-entry by nonhost bacteria (Melotto et al., 2006). Stomatal closure induced by flagellin but 

not LPS is fully dependent on FLS2, indicating that active PTI is involved. The PAMP-induced 

stomatal closure requires the SA and ABA signaling pathway. Significantly, DC3000 induces 

transient stomatal closure early after infection and is able to force stomata to reopen in a 

coronatine dependent manner (Melotto et al., 2006), revealing a masked wrestling between PTI 

and bacterial virulence. All together these data suggest that the battle between bacterial 

virulence and plant innate immunity commences even before bacteria enter into host tissues.   
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Suppression of AVR Signaling---Layered Gene-for-Gene Resistance? 

To colonize the host, pathogens need to overcome multiple layers of defense responses 

(Thordal-Christensen, 2003). Gene-for-gene resistance is believed to be the last barrier of plant 

defense. To overcome gene-for-gene resistance, pathogens have evolved virulence effectors to 

actively suppress HR and disease resistance. There are a number of bacteria and oomycete 

effectors that are able to suppress AVR triggered cell death. For example, P. s. pv. phaseolicola 

effectors AvrPphC, AvrPphF or VirPphA are able to suppress HR induced by other AVR 

proteins (Jackson et al., 1999; Tsiamis et al., 2000). Other effectors that are able to suppress 

AVR-triggered HR include AvrPphEpto, AvrPpiB1pto, AvrPtoB, HopPtoD2, HopPtoE, 

HopPtoF, AvrRpt2, HopPtoN (reviewed in Espinosa and Alfano, 2004; Nomura et al., 2005; 

Grant et al., 2006) and Avr3a (Bos et al., 2006). Among these effectors, some are general 

program cell death (PCD) suppressors that are able to suppress Bax-induced PCD in both yeast 

and plants (Jamir et al., 2004; Abramovitch et al., 2003). Some are able to suppress HR on 

nonhost plants (Abramovitch et al., 2003; Epinosa et al., 2003; Jamir et al., 2004; 

Lopez-Solanilla et al., 2004). Only two of them specifically suppress HR induced by certain 

AVR proteins (Ritter and Dangl, 1995; Bos et al., 2006). The exact mechanisms of most HR 

suppressing activities are not fully understood although some of them have their biochemical 

activity characterized. For example, AvrPtoB is an E3 ubiquitin ligase involved in protein 

degradation (Janjusevic et al., 2006; Abramovitch et al., 2006), HopPtoD2 is a putative protein 

tyrosine phosphatase, whereas HopPtoN is a papain-like cysteine protease (reviewed in Grant 

et al., 2006). Identification of the specific substrates for the above effectors will lead to a better 

understanding of how pathogens overcome gene-for-gene resistance.  

To guard their gene-for-gene resistance, plants have developed multiple layers of R 

genes counteracting the cell death suppressing effectors (Chisholm et al., 2006). To date, the 

best-illustrated example for the layered gene-for-gene resistance is the RPM1 and RPS2 

mediated resistance. It has been shown that AvrRpm1 and AvrB target RIN4 and induce RIN4 

phosphorylation (Mackey et al., 2002). The perturbance of RIN4 is somehow recognized by 

RPM1 that elicits the first layer of gene-for-gene resistance (Mackey et al., 2002). To suppress 

the RPM1 mediated resistance, AvrRpt2 evolved in Pseudomonas bacteria to block AvrRpm1 
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or AvrB triggered HR through eliminating RIN4 (Chisholm et al., 2006). The elimination of 

RIN4 is subsequently recognized by RPS2 and a second layer of gene-for-gene resistance is 

initiated (Mackey et al., 2003; Axtell et al., 2003).  

The Molecular Basis of Nonhost Resistance  

Although R genes are effective resources for crop breeding, resistance mediated by a 

single R gene is rarely durable because it can be easily defeated by a single loss-of-function 

mutation in the corresponding AVR gene. To improve the crop protection against pathogen 

invasion, alternative strategies such as R gene pyramiding and multiline deployment have been 

proved successful (McDowell and Woffenden, 2003). Another important source of resistance, 

the nonhost resistance, however, has not been explored. Nonhost resistance is believed to be 

effective and durable against the vast majority of pathogens. Successful identification of genes 

involved in nonhost resistance in model plants provides a new strategy to study nonhost 

resistance in crop plants through either mutational or gene silencing analyses (Lu et al., 2001; 

Collins et al., 2003; Peart et al., 2002). According to Mysore and Ryu (2003), there are two 

types of nonhost resistance. Type II nonhost resistance is characterized by a visible HR while 

type I nonhost resistance does not trigger any visible response. Whether type I and type II 

nonhost resistance are activated through distinct or similar mechanisms is an open question. It 

seems like some defense genes are induced earlier and faster in type II nonhost resistance. 

However, the majority of defense genes share almost identical expression pattern in both types 

of nonhost resistance (Oh et al., 2006). Interestingly, genes involved in R-mediated resistance 

have been associated to type II but not type I nonhost resistance, indicating that type II nonhost 

resistance shares similar signaling pathways with gene-for-gene resistance. For example, 

silencing of NbSGT1, an important signaling component for N gene-mediated resistance, 

compromised nonhost resistance against P. s. pv. maculicola and Xanthomonas axonopodis pv. 

vesicatoria which cause HR on tobacco. Loss of NbSGT1 function does not affect nonhost 

resistance resistance against CaMV and Xanthomonas campestris pv. campestris, which do not 

elicit HR response on tabacco (Peart et al., 2002). Similarly, AtRAR1, a SGT1 interactor, is 

required for nonhost resistance against HR eliciting P. s. pv. tabaci but not against non-HR 

19 



eliciting P. s. pv. phaseolicola in Arabidopsis (Li X. and Zhou J.M., unpublished data). These 

data suggest that different mechanisms are exploited in different types of nonhost resistance.  

There are three possible mechanisms explaining the molecular basis of nonhost 

resistance. First of all, gene-for-gene resistance can lead to nonhost resistance. Second, PAMP 

recognition and signaling contribute to nonhost resistance. Third, defense genes that directly 

restrict pathogen infection or growth play a role in nonhost resistance. It is known that 

gene-for-gene resistance is the major mechanism of intraspecies or cultivar level resistance. 

Examples of R gene functioning in nonhost resistance are few. It has been shown that nonhost 

resistance in wheat against Blumeria graminis f. sp. secalis and B. graminis f. sp. agropyri, the 

rye and wheatgrass mildew fungi, is mediated by R gene pyramids (Matsumura and Tosa, 

1995). Similar mechanism also exists in cereal rust systems (Sanghi and Luig, 1974) and 

Magnaporthe grisea-gramineous plant system (Hiura, 1978; Kang et al., 1995; Swegard et al., 

1995). To explain the formation of R pyramid-mediated nonhost resistance, Tosa has proposed 

a model describing the evolution of formae speciales and races (Tosa, 1992). In his model, the 

pathogen has a set of ancient AVR genes (Ax1-4 and Ay1-4) to control characters other than 

avirulence. Some of the AVR effectors are recognized by plant species X and Y carrying the 

corresponding R genes. To colonize X and Y, pathogen chooses to lose the corresponding AVR 

genes while at the same time preserve the other effector genes that may incur fitness penalties. 

The species level resistance determined by R-AVR recognition has been maintained over the 

years by balancing and stabilizing selection (Tosa, 1992). This model has not been proved at 

the molecular level. However, single R gene mediated nonhost resistance has been reported in 

maize. The maize Rxo1 (reaction to Xanthomonas oryzicola 1) gene is responsible for nonhost 

HR and resistance against the rice pathogen X. o. pv. oryzicola bearing AvrRxo1, the causal 

agent of bacteria streak disease. Rxo1-transgenic rice is more resistant to X. o. pv. oryzicola 

infection compared to nontransgenic rice, implicating a potential role of nonhost resistance in 

disease management. However, maize lines that do not carry Rxo1 are still resistant to the rice 

pathogen, indicating the involvement of other genes or other mechanisms (Zhao et al., 2005). 

Besides R genes, several signaling components involved in gene-for-gene resistance such as 

SGT1 (Peart et al., 2002), RAR1 (Li X. and Zhou J.M., unpublished), EDS1 (Yun et al., 2003), 
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PAD4 and SAG101 (Lipka et al., 2005) are also involved in nonhost resistance. Significant 

overlaps in defense response gene profiling between nonhost resistance and gene-for-gene 

resistance have been detected in Arabidopsis plants treated with nonhost and avirulent strains 

of Pseudomonas bacteria (Tao et al., 2003; Navarro et al., 2004). Among the nonhost bacteria 

regulated genes, approximately 30% of them are also regulated by flg22, indicating a role of 

PAMP signaling in nonhost resistance (Navarro et al., 2004).  

Supporting the idea that PAMP signaling participates in nonhost resistance, species or 

family level difference in PAMP recognition has been suggested to be associated with nonhost 

resistance (Felix and Boller; 2001; Fliegmann et al., 2004; Zipfel et al., 2006). Meanwhile, 

pathogen mutants lacking a functional PAMP have been shown to gain at least partial virulence 

on nonhost plants (Shimizu et al., 2003; Li et al., 2005). These two lines of evidence indicate 

that PAMP recognition is an important nonhost barrier at least in the tested pathosystems. The 

evolutionary process linking up PAMP recognition, suppression of PAMP signaling by 

pathogen virulence, gene-for-gene resistance and suppression of HR by pathogen effectors has 

been proposed (Chisholm et al., 2006). It seems that the game started from the pathogen side. 

Pathogens rely on their PAMPs to carry out life cycle and pathogenesis. PRRs are subsequently 

evolved to recognize pathogen PAMPs and trigger nonhost resistance. Because the pathogens 

could not afford losing PAMPs, they have evolved the ability to suppress PRR recognition thus 

breaching nonhost resistance and establish pathogenesis.  

The third type of nonhost resistance genes plays a role in directly restricting pathogen 

infection or growth. To establish pathogencity, pathogens need to enter host tissue to obtain 

nutrients and counteract host defense. Pseudomonas bacteria choose to use natural opening or 

wounds on plant leaf surface whereas some fungal pathogens directly penetrate plant cell wall. 

In the latter case, there are several preformed (wax, cuticle layer, cell wall) and inducible 

barriers (papilla) to prevent pathogen penetration. Intensive mutant screening in Arabidopsis 

yielded three PEN genes involved in limiting Blumeria graminis f. sp. hordei (Bgh) penetration 

(reviewed in Ellis, 2006). PEN1 encodes a SNARE (soluble N-ethylmaleimide-sensitive factor 

attachment protein receptor) domain containing protein involved in membrane fusion and 

secretion events (Collins et al., 2003; Assaad et al., 2004). PEN2 encodes a putative glycosyl 
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hydrolases with undefined biochemical activity (Lipka et al., 2005). PEN3 is an ATP binding 

cassette (ABC) transporter protein (Stein et al., 2006). All three proteins accumulate at the 

penetration sites during Bgh infection despite their different subcellular localization before 

infection (Ellis, 2006), indicating their role in direct prevention of Bgh penetration. 

Considering that formation of papillae beneath the penetration site is strongly induced upon 

Bgh infection, it is reasonable to hypothesize that PEN genes are involved in papillae mediated 

cell wall defense. In-deed, the rate of papillae formation is reduced in pen1 mutant (Assaad et 

al., 2005). However, the Arabidopsis mutant pmr4 (powdery mildew resistance 4) lacking a 

callose synthase gene is more resistant instead of susceptible to Bgh infection. The resistance of 

pmr4 against Bgh is caused by the SA dependent cell death. It is likely that plants are able to 

initiate a more effective defense response, the localized cell death once the cell wall defense 

failed. Supporting this idea, the EDS1-PAD4-SAG101 signaling complex (Feys et al., 2005) 

known to participate in gene-for-gene resistance is required for postpenetration defense against 

Bgh infection. Recently, a role of actin cytoskeleton in preinvasion nonhost resistance has also 

been demonstrated (Yun et al., 2004; Opalski et al., 2005; Shimada et al., 2006). Inhibition of 

the actin skeletal function in combination with the eds1 mutation severely compromise nonhost 

resistance in Arabidopsis against wheat powdery mildew (Yun et al., 2004). Actin filament 

polariztion is induced in Arabidopsis toward the appressorial contact sites by nonhost 

Colletotrichum species and contributes to preinvasion resistance as well as papillae callose 

formation (Shimada et al., 2006). The synergistic effect of both pre- and postinvasion defenses 

eventually contributes to Arabidopsis nonhost resistance (Lipka et al., 2005). 

Similar to resistance against fungal pathogens, plant resistance against bacteria 

pathogens is also controlled by layered defense responses (Cunha et al., 2006). One of the 

major challenges for Pseudomonas bacteria is to obtain nutrients. Virulent bacteria strains have 

various strategies to suppress host defense and access to nutrients. On the other hand, plants are 

able to deprive nutrients from nonhost bacteria. For example, glycerol is an important carbon 

source for Pseudomonas bacteria. Glycerol can be entrapped in plant cells in the form of G3P, 

catalyzed by 3-glycerol kinases. The Arabidopsis nho1 mutant lacking the functional 

3-glycerol kinase gene accumulates high level of glycerol that is permeable to the plant plasma 
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membrane. Nonhost bacteria strains are able to actively uptake the intercellular glycerol and 

grow in the nho1 mutant (Li X. and Zhou J.M., unpublished), suggesting that nutrient 

deprivation is an important layer of nonhost resistance in Arabidopsis plants. Supporting the 

presence of an additive nonhost resistance in Arabidopsis against Pseudomonas bacteria, the 

NHO1 mediated nutrient deprivation works synergistically with FLS2 mediated innate 

immunity against the nonhost bacteria P. s. pv. tabaci (Li X. and Zhou J.M., unpublished), 

Intriguingly, NHO1 itself is induced by a flagellin PAMP, flg22, via a FLS2 dependent 

pathway (Li et al., 2005). Further experiments are needed to better understand plant nonhost 

resistance against Pseudomonas bacteria. 

Conclusions and Perspectives 

One of the major goals of studying plant-pathogen interaction is to develop strategies 

to protect crop plants from various diseases and reduce the loss in crop production. As the 

most important source of resistance in molecular breeding, R genes have been widely 

deployed in crop protection. In order to broaden the spectrum and improve the durability of R 

gene mediated resistance, multiple R genes recognizing different AVR effectors should be 

bred or transformed into one crop variety to form R gene pyramids, which is technically 

difficult and time consuming. Another way to achieve durable resistance is to use R genes 

recognizing an AVR effector that will impose a great fitness penalty on the pathogen. Such R 

genes may naturally exist in plants. For example, the Arabidopsis RPW8 and the maize Rpg1 

confer broad-spectrum resistance against powdery mildew and stem rust respectively. There 

are two genes at the RPW8 locus, RPW8.1 and RPW8.2, both encoding proteins that contain a 

membrane anchor fused to a putative CC domain (Xiao et al., 2001). The resistance mediated 

by RPW8 proteins requires EDS1, EDS5, PAD4, NPR1 and SGT1b but not NDR1, RAR1 

and PBS3 (Xiao et al., 2005). Rpg1 encodes a receptor kinase with two tandem 

serine/threonine kinase domain which provides broad range and durable resistance against the 

barley stem rust fungi Puccinia graminis f. sp. Tritici (Brueggeman et al., 2002; Nirmala et 

al., 2006). RPW8 and Rpg1 are thought to recognize either a PAMP or an AVR effector 

indispensible for pathogen virulence. Further investigation of their ligand recognition and 

resistance activation will bring new ideas in breeding durable disease resistance. Besides 
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naturally existing R genes, chimeric R genes with PAMP recognizing and HR-eliciting 

abilities could be constructed in the future based on the in depth knowledge of PRR and R 

protein activation. It has been shown that chimeric RLK joining the BRI1 receptor domain 

and the Xa21 kinase domain is able to trigger HR cell death in rice cell culture in the 

presence of brassinosteroids ligand (He et al., 2000). In plants, there are a number of 

well-characterized RLKs including two PRRs and more than 10 R proteins. The 

recombination between the PAMP recognition and HR eliciting domain of these RLKs may 

generate new R genes that mediate highly effective and durable resistance. Direct 

transformation of PRRs that determine species level resistance into crop plants may also help. 

For example, tobacco plants are more susceptible to Agrobacterium infection due to the lack 

of the EF-Tu recognizing receptor EFR (Zipfel et al., 2006). Stable transgenic tobacco lines 

expressing EFR may restore the resistance against the Agrobacterium. With the discovery of 

more PAMP-PRR pairs, there will be more nonhost resistance genes available for disease 

management. 
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CHAPTER 2 

 

FLAGELLIN INDUCES INNATE IMMUNITY IN NONHOST INTERACTIONS 

THAT IS SUPPRESSED BY PSEUDOMONAS SYRINGAE EFFECTORS 
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Note: Li X, Lin H, Zhang W, Zou Y, Zhang J, Tang X and Zhou JM contributed to the 

published paper. In this chapter, Lin H. and Zou Y. contributed to the screening of 

NHO1-suppressing effectors. Zhang W. and Zhang J. contributed to the development and 

characterization of HopAI1 transgenic plants.  
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Abstract 

Arabidopsis NONHOST1 (NHO1) is required for limiting the in planta growth of 

nonhost Pseudomonas bacteria but completely ineffective against the virulent bacterium 

Pseudomonas syringae pv. tomato DC3000. However, the molecular basis underlying this 

observation remains unknown. Here we show that NHO1 is transcriptionally activated by 

flagellin. The nonhost bacterium P. syringae pv. tabaci lacking flagellin is unable to induce 

NHO1, multiplies much better than does the wild-type bacterium and causes disease symptoms 

on Arabidopsis. DC3000 also possesses flagellin that is potent in NHO1-induction, but this 

induction is rapidly suppressed by DC3000 in a type III secretion system-dependent manner. 

Direct expression of DC3000 effectors in protoplasts indicated that at least nine effectors, 

HopS1, HopAI1, HopAF1, HopT1-1, HopT1-2, HopAA1-1, HopF2, HopC1, and AvrPto, are 

capable of suppressing the flagellin-induced NHO1 expression. One of the effectors, HopAI1, 

is conserved in both animal and plant bacteria. When expressed in transgenic Arabidopsis 

plants, HopAI1 promotes growth of the nonpathogenic hrpL- mutant bacteria. In addition, the 

purified phytotoxin coronatine, a known virulence factor of P. syringae, suppresses the 

flagellin-induced NHO1 transcription. These results demonstrate that flagellin-induced 

defenses play an important role in nonhost resistance. A remarkable number of DC3000 

virulence factors act in the plant cell by suppressing the species level defenses, and that 

contributes to the specialization of DC3000 on Arabidopsis. 
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Introduction 

Nonhost resistance refers to resistance shown by an entire plant species to a specific 

parasite (Heath, 1987). This resistance is expressed by every plant towards the majority of 

potential phytopathogens and differs from the cultivar level resistance conditioned by 

gene-for-gene interactions (Martin et al., 2003; Belkhadir et al., 2004). Plant defenses can be 

induced by “general elicitors” of pathogen or plant origin, including oligosaccharides, lipids, 

polypeptides, and glycoproteins (Nurnberger et al., 2004). However, a role of these elicitors in 

plant disease resistance in a natural setting is often difficult to establish, because plants’ 

responses to elicitors do not differentiate resistant and susceptible plants. Many of the elicitors 

are now known as Pathogen-Associated Molecular Patterns (PAMPs). The best-characterized 

PAMP known to activate innate immunity in plants is flagellin from Pseudomonas bacteria 

(Felix et al., 1999). A conserved N-terminal peptide of flagellin, flg22, is a highly potent 

elicitor of defense responses in tomato and Arabidopsis (Felix et al., 1999; Gomez-Gomez et 

al., 1999). In Arabidopsis, flg22 is perceived by FLS2, a receptor-like kinase that activates 

downstream events through a MAP kinase cascade (Gomez-Gomez and Boller, 2000; Asai et 

al., 2002). Pre-treatment of Arabidopsis with flg22 peptide not only globally induces defense 

gene expression, but also protects plants from subsequent infection of the virulent DC3000 

(Zipfel et al., 2004). Arabidopsis plants lacking FLS2 exhibit enhanced disease susceptibility to 

DC3000 under certain circumstances (Zipfel et al., 2004). While these work elegantly 

demonstrated the functional significance of flagellin-sensing in plant defense, whether 

flagellin-signaling plays a role in the species level resistance remains unknown.    

The bacteria enter plants through natural openings such as stomata or wounds and 

proliferate in the intercellular spaces. A major bacterial pathogenesis mechanism is mediated 

by the so-called Type-III Secretion System (TTSS) through which gram-negative bacteria 

inject a repertoire of effectors into host cells (Alfano and Collmer, 2004). Type III effectors 

play an important role in bacterial pathogenesis. In P. syringae, a growing number of effector 

genes, such as avrRpt2, avrRpm1, virPphA(hopAB1), avrPto, and hopAB2(avrPtoB), are 

known to contribute to virulence (Chen et al., 2000;  Ritter and Dangl, 1995; Jackson et al., 
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1999; Tsiamis et al., 2000; Shan et al., 2000; Abramovitch et al., 2003). avrRpt2, for example, 

suppresses plant PR gene expression and interferes with the RPM1-specified resistance (Chen 

et al., 2000). avrPtoB, hopX1(avrPphEpto), hopAM1(avrPpiBpto), hopAO1(hopPtoD2), 

hopE1(hopPtoE), hopF2(hopPtoF), hopF1(avrPphF), and hopN1(hopPtoN) all appear to 

suppress cell death in plants (Abramovitch and Martin, 2004; Alfano and Collmer, 2004). In 

addition to type III effectors, certain P. syringae strains, including DC3000, produce the 

phytotoxin coronatine, which also plays a role in bacterial virulence (Bender et al., 1999). A 

role of TTSS or coronatine in overcoming nonhost resistance has not been examined closely. 

In previous studies we showed that the Arabidopsis NHO1 gene is required for 

resistance to multiple strains of nonhost P. syringae, but completely ineffective against 

DC3000 (Lu et al., 2001). Interestingly, NHO1 transcripts are induced by the nonhost strains, 

but suppressed by DC3000 (Kang et al., 2003). This suppression is apparently of functional 

significance, because plants overexpressing NHO1 exhibit enhanced resistance to DC3000 

(Kang et al., 2003).   

Here, we show that the flg22 peptide strongly induces the transcription of NHO1. A P. 

syringae pv. tabaci (Ptab) strain, to which Arabidopsis is a nonhost plant, induces NHO1 in a 

flagellin-dependent manner. A Ptab strain lacking the flagellin gene fliC elicits disease 

symptoms and multiplies in Arabidopsis plants, demonstrating that flagellin-signaling 

contributes to nonhost resistance. In contrast to nonhost bacteria that give a prolonged 

induction of NHO1, DC3000 only transiently induces NHO1 transcription, also in a 

flagellin-dependent manner. While the wild-type DC3000 rapidly suppresses the NHO1 

induction, DC3000 mutant strains defective in TTSS are diminished in their ability to suppress 

NHO1. Expression of the DC3000 effectors HopS1, HopAI1, HopAF1, HopT1-1, HopT1-2, 

HopAA1-1, HopF2, HopC, and AvrPto in the plant cell blocks the NHO1-induction by flg22. 

In addition, purified coronatine suppresses the fl22- and P. syringae pv. phaseolicola 

(Pph)-induced NHO1 expression. Furthermore, expression of HopAI1 in transgenic plants 

promotes nonpathogenic bacterial growth. Together these results demonstrate the importance 

of flagellin-induced innate immunity mechanism in nonhost resistance and a role of DC3000 

virulence factors in suppressing the flagellin-induced innate immunity.  
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Materials and Methods 

Construction of NHO1-LUC Reporter Line 

An 1.8 kb NHO1 promoter sequence was PCR-amplified from Col-0 genomic DNA 

with the following primers: 5’- CAGTCGACTTCCTTACAGTCCAGACAT G-3’ and 

5’-TTCCCGGGGGTAAAGGTGAAGAACGATGCT-3’. The PCR product was digested 

with SalI and SmaI and cloned into a modified pBI121 vector with the LUC reporter gene (He 

et al., 2004). The NHO1-LUC construct was introduced into Agrobacterium tumefaciens strain 

GV3101 and transformed into Col-0 plants by floral-dipping (Clough and Bent, 1998). The T4 

progeny of a selected homozygous transgenic line with a single insertion was used for all 

experiments.  

Bacterial Strains and Bacterial Growth Assay 

Bacterial strains used in this study include DC3000, Pph NPS3121 (Lu et al., 2001), 

Ptab 6505 wild-type and 6505 fliC- mutant (Shimizu et al., 2003), DC3000 hrpL- mutant 

(Zwiesler-Vollick et al., 2002), DC3000 hrpA- and hrcC- mutants (Roine et al., 1997; Yuan and 

He, 1996), and DC3000 fliC- mutant (previously referred to as flaA; Hu et al., 2001). Bacteria 

were grown overnight at room temperature in King’s medium B with appropriate antibiotics, 

precipitated, washed twice with ddH2O and diluted to the desired concentration with ddH2O for 

plant inoculation. Bacteria used for growth assay was diluted to 105 cfu/ml and 

syringe-infiltrated into young and fully expanded Arabidopsis leaves. All experiments were 

repeated at least twice with similar results. 

Luciferase Activity Assay 

Bacterial cultures used for luciferase activity assay were diluted with 0.2 mM luciferin 

to 108 cfu/ml and syringe-infiltrated into Arabidopsis leaves. The leaves were removed from 

plants at the indicated time points and sprayed with 1mM luciferin containing 0.01% Triton 

X-100. Luminescence images were captured by using a low light imaging system, and relative 

luciferase activity was calculated with the WinView software (RoperScientific, Trenton, NJ; 

He et al., 2004).  
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Flagellin and Coronatine Treatment 

Polypeptides containing 22 conserved N-terminal residues of flagellin from P. 

aeruginosa, Ptab, and Agrobacterium tumefaciens were synthesized by Bio-Synthesis, Inc 

(Lewisville, TX) as the following: flg22P. aeruginosa: QRLSTGSRINSAKDDAAGLQIA; flg22A. 

tumefaciens: ARVSSGLRVGDASDNAAYWSIA, and flg22P. s.tabaci: 

TRLSSGLKINSAKDDAAGLQIA. Flg22 peptides were dissolved in ddH2O and diluted to 1 

μM with 0.2 mM luciferin before inoculation. Coronatine (kindly provided by Carol Bender) 

was dissolved in ddH2O and diluted to 100 ng/ml with 0.2 mM luciferin before inoculation. 

Construction of Effector Gene Expression Plasmids 

A transient expression vector pUC19-35S-FLAG-RBS containing the CaMV 35S 

promoter, 3x FLAG, and a Rubisco Small Subunit terminator (Zou Y. and Zhou J.M., 

unpublished results; accession number DQ077692) was used for transient expression of 

effector genes in protoplasts. The effector genes were PCR-amplified with primers listed in 

Supporting Table 1. After restriction digestion, the avrPto PCR product was inserted between 

the XhoI and SpeI sites of pUC19-35S-3xFLAG-RBS, resulting in the 35S-AvrPto construct. 

Other effector genes were inserted between XhoI and Csp45I of pUC19-35S-FLAG-RBS, 

resulting in 35S-Effector-FLAG constructs.  

Protoplast Transfection Assay 

Protoplasts were isolated from 6-week-old NHO1-LUC plants according to Sheen 

(http://genetics.mgh.harvard.edu/sheenweb/). Protoplasts were transfected with either an 

effector construct or the empty vector, incubated in 0.4 M mannitol and 1 μM flg22P. s.tabaci for 

12 h. LUC activity was measured after adding 50 μM luciferin to the transfected protoplasts.  

Construction of Estradiol-Inducible hopAI1 Expression Plants 

The HopAI1-FLAG fragment was excised from the 35S-HopAI1-FLAG plasmid with 

XhoI and SpeI and inserted into pER8 (Zuo et al., 2000). The construct was transformed into 

Arabidopsis plants (Col-0) by Agrobacterium-mediated transformation. Transgenic plants 
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were selected on MS plates containing hygromycin. For hopAI1 induction, plants were sprayed 

with 25 μM estradiol containing 0.02% silwet L-77.  

Results 

Flagellin Induces NHO1 Transcription 

To further investigate the regulation of NHO1 expression in response to Pseudomonas 

bacteria, an NHO1-LUC reporter line was constructed. An 1.8 kb NHO1 upstream sequence 

was fused to the firefly luciferase gene coding sequence and introduced into Arabidopsis plants 

(Col-0). Consistent with the expression of endogenous NHO1 mRNA (Kang et al., 2003), the 

NHO1-LUC expression in a homozygous reporter line was strongly induced by Pph, but not 

DC3000 (Fig. 2-1a). Detailed analysis revealed a transient NHO1-LUC induction 3 h after 

DC3000-inoculation, but the NHO1-LUC expression returned to the base line by 12 h (Fig. 

2-1b). In contrast, Pph induced a strong and sustained expression of NHO1-LUC. The strong 

induction by nonhost bacteria is not strain-specific, because another nonhost strain Ptab also 

induced NHO1-LUC to a high level (Fig. 2-2a).  

We previously hypothesized that a PAMP derived from the nonhost Pseudomonas 

bacteria induces the expression of NHO1 (Kang et al., 2003).  Flagellin is a well-known 

PAMP that induces innate immune responses in plants and animals. We therefore tested if 

flagellin induces the NHO1-LUC reporter gene. flg22 peptides corresponding to P. 

aeruginosa, A. tumefaciens, and P. s. tabaci were tested for their ability to induce NHO1-LUC. 

Fig. 2 shows that the active peptide flg22P. aeruginosa was fully capable of inducing NHO1-LUC.  

Flg22P. s. tabaci was similarly active in NHO1-LUC induction (Fig. 2-6a). In contrast, flg22A. 

tumefaciens, which is inactive in plant immune response induction (Felix et al., 1999), was unable 

to induce NHO1-LUC (Fig. 2-1c).  

Flagellin Is Required for NHO1 Induction and Resistance in Nonhost Interaction 

If flagellin is required for the NHO1-induction by a nonhost bacterium, then bacteria 

lacking flagellin should be defective in NHO1 induction. A Ptab mutant strain lacking the 

flagellin gene fliC- (Shimizu et al., 2003) induced poorly the NHO1-LUC expression (Fig. 
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2-2a), indicating that flagellin is largely responsible for the observed induction of NHO1 by 

this bacterium. To test if flagellin contributes to nonhost resistance in Arabidopsis plants, the 

fliC- mutant was compared with the wild-type Ptab for disease symptoms and bacterial growth 

in planta.  Fig. 2-2b shows that fliC- caused visible disease symptoms on Arabidopsis. In 

contrast, the wild-type bacterium caused no visible symptoms. The mutant bacteria multiplied 

at least 10 fold four days after inoculation, whereas the wild-type Ptab failed to multiply in the 

four-day period (Fig. 2-2c). Together these data demonstrate that flagellin is a major PAMP 

responsible for the induction of NHO1 and resistance to this nonhost P. syringae bacterium.  

Transient Induction of NHO1 by DC3000 Requires Flagellin 

The possibility that transient NHO1-LUC induction by the wild-type DC3000 depends 

on flagellin was also tested. The fliC- mutant of DC3000, previously referred to as flaA (Hu et 

al., 2001), failed to induce NHO1-LUC at any tested time point after inoculation (Fig. 2-3a). In 

addition, wild-type DC3000 bacteria killed by exposure to kanamycin prior to inoculation also 

induced a strong and sustained NHO1-LUC expression, whereas the fliC- bacteria killed by 

kanamycin did not induce NHO1-LUC (data not shown). Bacterial growth assay indicated that 

the wild-type and fliC- mutant of DC3000 grew similarly when infiltrated into Arabidopsis 

plants (Fig. 2-3b). The two strains also caused indistinguishable disease symptoms (Supporting 

Fig. 2-3).  These results demonstrate that, like Ptab, DC3000 flagellin is fully capable of 

inducing NHO1. However, unlike Ptab, the response to DC3000 flagellin is abrogated and 

does not result in resistance in the plant. 

TTSS Is Essential for DC3000 to Suppress NHO1 

The lack of sustained NHO1-LUC induction by DC3000 flagellin is consistent with our 

hypothesis that this bacterium actively suppresses the NHO1-mediated nonhost resistance (Lu 

et al., 2001). Therefore, a role of DC3000 virulence/pathogenicity genes in the active 

suppression of NHO1 was tested. Fig. 2-4a shows that DC3000 strains lacking the TTSS 

structure genes hrpA and hrcC induced much greater NHO1-LUC expression compared with 

the wild-type DC3000, indicating that TTSS is largely responsible for the suppression. The 

DC3000 mutant lacking the regulatory gene hrpL gave an even stronger induction than did 
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hrpA- and hrcC- mutants (Fig. 2-4a). The strength and kinetics of the hrpL- mutant induced 

NHO1-LUC expression resemble those of Pph (Fig. 2-4b and Fig. 2-1b). hrpL encodes a sigma 

factor that regulates both TTSS and coronatine biosynthetic genes through the hrp box (Boch et 

al., 2002). These results demonstrate that TTSS is essential for DC3000 to suppress the NHO1 

expression. 

Type III Effectors Suppress NHO1 Expression 

The hypothesis that type III effectors suppress NHO1 expression was systematically 

tested by using a protoplast-based transient assay. Protoplasts were isolated from plants 

carrying the NHO1-LUC reporter and transfected with constructs carrying DC3000 effector 

genes under the control of the CaMV 35S promoter. A total of 19 effectors were tested 

(Supporting Table 2-1; http://www.Pseudomonas-syringae.org). Most of these effectors were 

selected because their function in virulence had not been reported previously. For control, 

protoplasts were transfected with an empty vector. The transfected protoplasts were 

subsequently induced with flg22P. s.tabaci. As seen in Fig. 4c (contributed by Lin H.), flg22 P. 

s.tabaci induced NHO1-LUC in protoplasts transfected with empty vector compared to 

uninduced protoplasts, recapitulating the NHO1-LUC induction observed in intact leaves. 

Transfection of nine effector genes, hopS1, hopAI1, hopAF1, hopT1-1, hopT1-2, hopAA1-1, 

hopF2, hopC1, and avrPto, strongly reduced the flagellin-induced NHO1 expression in 

repeated experiments. Among these, hopAI1, hopT1-1, hopAA1-1, hopF2, and hopC1 

completely abolished the NHO1 induction. Other effector genes did not show a consistent 

effect on NHO1 induction. These results indicate that almost 50% of the tested DC3000 

effectors are functionally redundant and suppress the flagellin-induced NHO1 expression.  

 Southern blot analysis was carried out to determine if any of these nine effector 

sequences exist in the two nonhost strains used (Supporting Fig. 2-4, contributed by Lin H.). 

Not all the nine effectors described in this work are unique to DC3000. HopAA1 is encoded by 

the conserved effector locus (CEL) that exists in all known P. syringae pathovars (Alfana et al., 

2000). Southern blot analysis indicated that the hopT1-1 and hopAA1 sequences exist in Ptab, 
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whereas the hopAF1, hopT1-2, and hopAA1 sequences are present in Pph. Thus it appears that 

the delivery of a few of these effectors by the bacterium is not sufficient for the suppression.  

HopAI1 Promotes Parasitism in Plants 

To determine if any of the tested effectors promote virulence, a FLAG-tagged hopAI1 

was introduced into Arabidopsis plants as a stable transgene using an estrodial-inducible 

system (Zuo et al., 2000). This effector was chosen because it shares 35% identity with the 

Salmonella enterica serovar typhimurium VirA, a mouse killing factor (Gulig and Chiodo, 

1990; Supporting Fig. 2-1). A search of the GenBank database indicated that similar proteins 

also exist in S. choleraesuis, Shigella flexneri and Chromobacterium violaceum.  Fig. 2-5a 

shows that induced expression of hopAI1 in a transgenic line exhibited chlorosis, reminiscent 

of disease symptoms. The expression of hopAI1 also enhanced the growth of the hrpL- mutant 

bacteria by at least 30 fold (Fig. 2-5b, contributed by Zhang J.).  Similar results were observed 

in 6 primary transgenic plants (Supporting Fig. 2-2, contributed by Zhang J.). These results 

indicate that the suppression of NHO1 by HopAI1 is relevant to the virulence function.   

The role of hopAI1 in NHO1-suppression was further tested by using a DC3000 mutant 

strain carrying truncated hopAI1. Consistent with a redundant role of multiple effectors in 

NHO1-suppression, the hopAI1 mutation did not produce a measurable effect on NHO1-LUC 

suppression (Li X. and Zhou J.M., unpublished data). 

Coronatine Partially Suppresses NHO1 Expression 

Previous work suggested that both TTSS and the phytotoxin coronatine modulate the 

expression of a similar set of plant genes (He et al., 2004; Alfano et al., 2000). This prompted 

us to test if coronatine also contributes to the observed suppression of NHO1. Figs. 2-6a and 

2-6b show that co-infiltration of purified coronatine diminished the NHO1-LUC expression 

induced by flg22P. s. tabaci or Pph. However, a DC3000 mutant that is blocked in the synthesis of 

coronatine was only marginally compromised in NHO1-LUC suppression (Supporting Fig. 

2-5). Together these results suggest that coronatine plays a minor role in NHO1-suppression. A 

role of coronatine and the requirement of COI1 in NHO1 suppression (Lu et al., 2003) indicate 

that jasmonate signaling may play a role in NHO1 suppression. Consistent with this possibility, 
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exogenous application of methyl jasmonate partially suppressed the Pph-induced NHO1-LUC 

expression (Supporting Fig. 2-6). 

Discussion 

The molecular basis of nonhost resistance is poorly understood.  It is speculated that 

PAMP-induced innate immunity plays an important role in the species level resistance, but 

direct evidence is lacking (Nurnberger et al., 2004). The results presented here show that flg22, 

a known PAMP, mimics nonhost bacteria and induces the expression of NHO1. In contrast, the 

inactive peptide flg22A.tumefaciens is unable to induce NHO1. Thus the induced expression of the 

nonhost resistance gene NHO1 is a typical PAMP-mediated innate immune response. 

Recent results showed that Pseudomonas bacteria carry at least two additional PAMPs, 

a cold-shock protein and elongation factor-TU, both inducing defense responses in plants 

(Felix and Boller, 2003; Kunze et al., 2004). The results presented here indicate that flagellin is 

the primary PAMP in Ptab responsible for NHO1 induction, because the fliC- mutant strain is 

largely inactive in NHO1 induction. The induction of NHO1 is likely of functionally 

importance, because Arabidopsis plants overexpressing NHO1 display enhanced resistance to 

DC3000 (Kang et al., 2003). The Ptab strain lacking fliC gains partial virulence on wild-type 

Arabidopsis when directly infiltrated into leaves. This strain also displays enhanced virulence 

on tomato plants (Shimizu et al., 2003). It should be noted that the fliC- mutant is not fully 

pathogenic on Arabidopsis. One plausible explanation is that PAMPs other than flagellin also 

contribute to species level resistance (Zipfel et al., 2004). Nevertheless, these results 

demonstrate that flagellin plays a critical role in eliciting nonhost resistance.      

Although nonhost resistance is effective to the vast majority of potential pathogens, it is 

breached by a small number of pathogens, presumably because the latter has evolved 

specialized virulence mechanisms that enable them to successfully overcome this resistance. 

Flagellin is highly conserved among Pseudomonads, including DC3000 that is virulent on 

Arabidopsis. NHO1-LUC reporter assay revealed a transient induction by DC3000, and this 

induction is flagellin-dependent. The induction is quickly suppressed within 6 h after 

inoculation, coincides with the in planta expression of type III genes in DC3000 (Xiao et al., 
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2004). We previously hypothesized that DC3000 suppresses NHO1 by using type III effectors 

(Kang et al., 2003). Indeed, the hrpA-, hrcC- and hrpL- mutants of DC3000 all induce 

NHO1-LUC to a much greater level than does the wild-type strain. Most importantly, direct 

expression of nine DC3000 effector genes in the plant cell or exposure to purified coronatine 

strongly suppresses the flg22-induced expression of NHO1-LUC, providing direct evidence 

that type III effectors suppress the flagellin-induced immune responses.  These observations 

are consistent with the knowledge that exogenous flagellin only protects Arabidopsis plants 

against DC3000 when applied one day before the bacterial inoculation, but ineffective when 

infiltrated simultaneously with the DC3000 bacterium (Zipfel et al., 2004). Together these 

results provide strong evidence that a major target for DC3000 is innate immunity that acts at 

the species level to limit nonhost Pseudomonas bacteria. Consistent with the role of DC3000 

TTSS in overcoming species level resistance, recent work shows that the DC3000 TTSS 

actively suppresses and tolerates the production of antimicrobial root exudates that are 

inhibitory to nonhost bacteria, although which effector(s) does so remains to be determined 

(Bais et al., 2005). The ability of a bacterium to overcome the species level resistance may 

represent a major evolutionary step that enables a P. syringae bacterium to colonize on a new 

host species.   

The results presented here indicate that a surprisingly large proportion of the DC3000 

effectors possess the ability to suppress the flagellin-induced NHO1 expression. Among the 

nine effectors that suppress NHO1 expression, at least HopAI1 and AvrPto are capable of 

promoting nonpathogenic bacterial growth when expressed in plants (Kim et al., 2005). 

HopAI1 shares significant homology with virulence proteins of animal bacteria. This raises an 

intriguing possibility that flagellin-induced innate immunity in the host is similarly targeted by 

diverse pathogenic bacteria. Expression of AvrPto in the plant also suppresses callose 

deposition induced by the hrcC mutant bacteria (DebRoy et al., 2004). Because callose 

deposition can be induced by flagellin (Felix et al., 1999), AvrPto might suppress cell wall 

defense and NHO1 expression through a common step required for flagellin signaling. A recent 

report shows that AvrRpt2 and AvrRpm1 can suppress flagellin-induced callose deposition 

when directly expressed in plants (Kim et al., 2005). These observations re-enforce the notion 
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that flagellin-induced defenses are targeted by diverse effectors, although they do not appear to 

share a conserved biochemical function.  

A large number of P. syringae effectors have been shown to target various host 

defenses including callose deposition, defense gene expression and cell death induced by 

gene-for-gene interaction or nonhost interactions (Abramovitch and Martin, 2004). Often, the 

defense-suppression by an individual effector is revealed either when the latter is directly 

expressed at a high level in the plant cell or delivered along with other effectors in the 

bacterium. It remains to be determined whether these effectors, when individually delivered by 

P. syringae, are sufficient to suppress host defenses. It is possible that a successful 

defense-suppression by a bacterium requires synergistic action of a large set of the 

bacterium-delivered effectors. For instance, CEL, which exists in all P. syringae, is required by 

DC3000 for pathogenicity and suppression of callose deposition in Arabidopsis (DebRoy et al., 

2004). However, the vast majority of P. syringae is nonpathogenic on Arabidopsis. Thus, the 

function of CEL-encoded effectors is likely to be assisted by other effectors unique to DC3000. 

Similarly, several effectors activate COI1-dependent gene expression when delivered by 

DC3000 but not when delivered by Pph (He et al., 2004). DC3000 type III effectors and 

coronatine act synergistically to modulate the JA signaling in Arabidopsis (He et al., 2004; 

Zhao et al., 2003). These may explain why some of the effector sequences carried by Ptab and 

Pph do not appear to suppress the NHO1 expression. It may be that the suppression of the 

flagellin-induced expression of NHO1, which is known to involve the JA signaling pathway 

(Kang et al., 2003), requires a synergistic activity from a large set of these effectors and 

coronatine that target the JA signaling pathway. 

The RPM1-interacting protein RIN4 was shown recently to negatively regulate the 

flagellin-induced callose deposition (Bias et al., 2005). RIN4 also interacts with AvrRpt2 and 

AvrRpm1 (Mackey et al., 2002; Mackey et al., 2003; Axtell and Staskawicz, 2003). AvrRpt2 is 

a cysteine protease that cleaves RIN4, leading to the degradation of RIN4 (Day et al., 2005), 

whereas AvrRpm1-RIN4 interaction results in the phosphorylation of RIN4 (Mackey et al., 

2002). It is suggested that RIN4 and/or RIN4-associated proteins are manipulated by these two 

effectors to suppress the flagellin-induced cell wall defense (Bais et al., 2005). It remains to be 

54 



shown if and how the AvrRpt2-mediated degradation of RIN4 leads to the suppression of 

callose deposition. An important area of future research will be to determine if a common 

mechanism is used by various effectors to suppress flagellin-induced defenses.   
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Figure Legend 

Figure 2-1. NHO1 is transcriptionally induced by nonhost bacteria and flagellin. 

(a). A luciferase image of NHO1-LUC transgenic leaves inoculated with water, nonhost strain 

Pph, or virulent strain DC3000 for 24 h. (b). Time course of NHO1-LUC expression in plants 

inoculated with water, Pph, or DC3000 bacteria. (c). NHO1-LUC activity of plants inoculated 

with 1 μM flg22P.aeruginosa or flg22A.tumefaciens  at the indicated hours. Bacteria were inoculated at 

107 cfu/ml suspended in 0.2 mM luciferin. Arabidopsis leaves were detached at the indicated 

time points after inoculation to examine the luciferase activity. These experiments were 

repeated at least six times with similar results. 

Figure 2-2. Flagellin is required for NHO1 induction and resistance to Ptab. (a). 

NHO1-LUC activity of plants inoculated with the wild-type and fliC- mutant strains of Ptab.   

(b). Disease symptoms of Arabidopsis plants (Col-0) 7 days after inoculation with the 

wild-type (WT) and fliC- mutant strains of Ptab (106 CFU/ml). (c). Bacterial growth of the 

wild-type (WT) and fliC- mutant Ptab strains on Arabidopsis plants. For luciferase assay, a 

bacteria inoculum of 107 cfu/ml was used. For disease symptom development, a bacteria 

inoculum of 106 cfu/ml was used. For bacteria growth assay, a bacteria inoculum of 105 cfu/ml 

was used. These experiments were repeated three times with similar results. 

Figure 2-3. DC3000 flagellin transiently induces NHO1 and fails to confer disease 

resistance. (a). NHO1-LUC expression in plants inoculated with water, the wild-type (WT) or 

fliC- mutant DC3000 strains at the indicated hours after inoculation. (b). Bacterial growth assay 

of Col-0 plants infiltrated with the wild-type (WT) or fliC- mutant strains of DC3000. For 

luciferase assay, a bacteria inoculum of 107 cfu/ml was used. For bacteria growth assay, a 

bacteria inoculum of 105 cfu/ml was used. These experiments were repeated three times with 

similar results.  

Figure 2-4. DC3000 requires type III effectors to suppress NHO1 expression. (a). 

NHO1-LUC plants were inoculated with the wild-type (WT), hrpA-, hrcC-, or hrpL- mutant 

DC3000 strains, and relative luciferase activity was measured 0, 12, and 24 h after inoculation. 

(b). Kinetics of NHO1-LUC expression in response to the wild-type (WT) and hrpL- mutant 
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DC3000 strains. A bacteria inoculum of 107 cfu/ml was used for these luciferase assays. (c). 

Expression of DC3000 effectors blocks flg22-induced NHO1-LUC expression. Protoplasts 

were transfected either with the empty vector (V) or the indicated effector constructs, and 

relative LUC activity was measured 12 h after addition of flg22. Vector-transfected protoplasts 

treated with ddH2O were used as a control for basal NHO1-LUC expression (V-). Each data 

point consists of three replicates. The error bar represents standard error. The experiments were 

repeated three times with similar results.  

Note: Figure 2-4c is contributed by Lin H.  

Figure 2-5. HopAI1 promotes virulence in plants. (a). hopAI1 expression induces 

chlorosis. Transgenic hopAI1-FLAG (line 2) and wild-type (WT) plants were sprayed with 50 

μM estradiol and photographed 5 days later. (b). hopAI1 expression enhances bacterial growth 

in plants. Transgenic hopAI1-FLAG (line 2) and wild-type (WT) plants were sprayed with 

either buffer or 50 μM estradiol one day prior to inoculation with the hrpL- mutant. Bacteria 

population in the leaf was determined at the indicated times. Error bars indicate standard error. 

The experiments were repeated three times with similar results. 

Note: Figure 2-5 is contributed by Zhang J. 

Figure 2-6. Coronatine partially suppresses NHO1 expression. (a). Coronatine 

inhibits the flagellin-induced NHO1-LUC expression. NHO1-LUC transgenic plants were 

inoculated with 1 μM flg22P. s.tabaci alone, 1 μM flg22P. s.tabaci plus 200 ng/ml coronatine, or 1 

μM flg22A.tumefaciens. Arabidopsis leaves were detached at 0, 3 and 9 hours after inoculation for 

luciferase assay. (b). Coronatine inhibits the Pph-induced NHO1-LUC expression. 

NHO1-LUC activity of plants inoculated with water, Pph, or Pph plus 200 ng/ml coronatine 

(cronatine+Pph). An inoculum of 107 cfu/ml was used for Pph in the luciferase assay. The 

experiments were repeated twice with similar results. 
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Figure 2-1 NHO1 is transcriptionally induced by nonhost bacteria and flagellin 
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Figure 2-2 Flagellin is required for NHO1 induction and resistance to Ptab 
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Figure 2-3 DC3000 flagellin transiently induces NHO1 and fails to confer disease resistance 
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Figure 2-4 DC3000 requires type III effectors to suppress NHO1 expression 
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Figure 2-5 HopAI1 promotes virulence in plants 
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Figure 2-6 Coronatine partially suppresses NHO1 expression 
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CHAPTER 3 

 

RAR1, A SIGNALING MODULE IN HOST, NONHOST AND BASAL RESISTANCE, 

IS TARGETED BY PSEUDOMONAS SYRINGAE EFFECTOR AVRB 

 

Some of the data here are published in Proc Natl Acad Sci U S A. 103:19200-19205 

 

Note: Shang Y, Li X, Cui H, He P, Thilmony R, Chintamanani S, Zwiesler-Vollick J, Gopalan 

S, Tang X, and Zhou J contributed to the published paper. In this chapter, Shang Y. shares the 

credits of the AvrB dependent susceptibility in rar1 and coi1 mutant backgrounds; Cui H. 

contributed to the coimmunoprecipitation experiment. 
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Abstract 

To explore the molecular mechanism for effector virulence activity, a screening for 

Arabidopsis mutants aiming at identifying AvrB virulence targets has been performed. Based 

on the expression level of RAP2.6, a reporter gene of AvrB virulence activity, six rrb (reduced 

response to avrB) mutants were isolated. One mutant, rrb3 compromised AvrB specific 

RAR2.6 induction and is more susceptible to DC3000 (avrB). The mutant allele rrb3 was 

mapped to a 46 kb interval at the end of chromosome 5. rrb3 carries a point mutation that 

convert H217 to Y in the conserved RAR1 CHORD II domain. RAR1, a co-chaperone for 

HSP90, is known to mediate resistance signaling of several CC-NBS-LRR proteins. However, 

the role of RAR1 in nonhost resistance, basal defense and bacterial virulence is not known. The 

studies here demonstrate that RAR1, together with NDR1, is involved in type II but not type I 

nonhost resistance. RAR1 participates in basal resistance against DC3000 by antagonizing 

COI1 activity. RAR1 coimmunoprecipitates with AvrB and is targeted by AvrB to trigger leaf 

chlorosis and promote nonpathogenic bacterial growth. The AvrB-dependent enhanced 

bacterial growth but not leaf chlorosis requires COI1, suggesting that AvrB targets the JA 

signaling pathway to promote parasitism.  
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Introduction 

Plant resistance against bacterial pathogens can be classified into host, nonhost and 

basal resistance based on the level of specificity. The resistance conferred by plant resistance 

(R) genes upon recognition of avirulence (AVR) proteins in an adapted bacterium pathogen is 

called gene-for-gene resistance and is referred to as host resistance here. Often, host resistance 

is characterized by a visible hypersensitive response (HR) and is specific to avirulent pathogen 

strains carrying the corresponding AVR genes. Unlike the cultivar level host resistance, 

nonhost resistance is a species or higher taxonomic level resistance effective against all strains 

in a given pathogen species or pathovar that is not adapted to the nonhost plants. There are two 

types of nonhost resistance. Type I nonhost resistance does not trigger HR whereas type II 

nonhost resistance does (Mysore and Ryu, 2003). The molecular basis for nonhost resistance is 

not fully understood. However, emerging lines of evidence suggest that PTI (PAMP-triggered 

immunity) is a molecular mechanism of nonhost resistance (Felix and Boller; 2001; Fliegmann 

et al., 2004; Zipfel et al., 2006; Shimizu et al., 2003; Li et al., 2005). Signaling components 

involved in host resistance may also contribute to nonhost resistance (Peart et al., 2002; Yun et 

al., 2003; Lipka et al., 2005; Zhao et al., 2005). Besides host and nonhost resistance, plants also 

activate basal level resistance that is effective against all strains of a given pathogen (Nomura 

et al., 2005). The measurable basal resistance includes localized callose deposition, the 

induction of defense genes and the modulation of hormonal signaling pathways (Abramovitch 

and Martin, 2004).  

To become a pathogen on plants, Pseudomonas bacteria developed sophisticated 

virulence mechanisms to subvert host, nonhost and basal resistance. For example, 

Psueudomonas bacteria use their type III secretion system (TTSS) to secrete effector proteins 

into plant cells to suppress defense responses (Collmer and Alfano, 2004). In some cases, the 

effector proteins are recognized by the hosts and trigger gene-for-gene resistance. One well 

accepted model explaining the recognition of effector proteins by plant R proteins is the guard 

hypothesis (Dangl and Jones, 2001). According to guard hypothesis, effector proteins target 

and modulate host components to promote parasitism. The perturbation of host component is 

then recognized by an R protein, which subsequently triggers disease resistance. Supporting 
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this model, four host targets of 6 different effector proteins have been identified (Mackey et al., 

2002; Mackey et al., 2003; Axtell et al., 2003; Shao et al., 2003; Pedley and Martin, 2003; 

Mucyn et al., 2006; Kruger et al., 2002; Rooney et al., 2005). However, none of these targets 

have been associated with effector virulence activity. Based on the modified version of guard 

hypothesis, an effector protein could have more than one host target and the virulence targets 

are still to be identified (Belkhadir et al., 2004). The P. syringae effector protein AvrB 

enhances virulence on soybean and Arabidopsis plants lacking the corresponding resistance 

genes (Ashfield et al., 1995; Nimchuck et al., 2000), but triggers host resistance on soybean 

and Arabidopsis plants carrying Rpg1 and RPM1 respectively (Ashfield et al., 2004). The 

virulence and avirulence activity of AvrB has the same structural requirements, suggesting that 

they are intimately connected (Ong and Innes, 2006). Therefore, host proteins required for 

AvrB virulence function may provide a molecular link between effector virulence function and 

the elicitation of host resistance.  

To identify possible host components involved in AvrB virulence activity, a screening 

for Arabidopsis reduced response to AvrB (rrb) mutant compromised in RAP2.6 induction was 

performed (Chintamanani, 2005). RAP2.6 is an ethylene response factor (ERF) family 

transcription factor that is strongly induced by virulent Pseudomonas bacteria. RAP2.6 

induction was associated with bacteria pathogenicity and was modulated by individual type III 

effectors including AvrB (He et al., 2004). AvrB strongly induced RAP2.6 expression in the 

absence of RPM1. The induction of RAP2.6 by AvrB is fully dependent on the jasmonic acid 

(JA) signalling pathway because AvrB fails to induce RAP2.6 in coi1 mutant background (He 

et al., 2004).  

Using the AvrB-specific RAP2.6 induction as a virulence indicator of AvrB, six rrb 

mutants were isolated based on their reduced response to AvrB (Chintamanani, 2005). One 

mutant, rrb3 compromised AvrB-specific RAP2.6 induction and is more susceptible to 

DC3000 (avrB), indicating that a host component involed in both AvrB virulence and 

avirulence activity was mutated. The RRB3 gene was found to encode for RAR1, a 

cochaperone of HSP90 required for gene-for-gene resistance. Further experiments demonstrate 

a role of RAR1 in nonhost and basal resistance. Significanly, RAR1 is targeted by AvrB and 
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required for AvrB-dependent susceptibility and chlorosis, two indicators of AvrB virulence 

acitivity. AvrB-dependent susceptibility but not chlorosis requires COI1. The results suggest 

that AvrB targets RAR1 and modulates JA signalling pathway to promote parasitism. 

Materials and methods 

Construction of rar1-29/rar1-29,rpm1/rpm1,avrB/avrB; 
rar1-20/rar1-20,rpm1/rpm1,avrB/+; and coi1/coi1,rpm1/rpm1,avrB/+ Plants 

To construct rar1-29/rar1-29, rpm1/rpm1, AvrB/AvrB and RAR1/RAR1, rpm1/rpm1, 

AvrB/AvrB plants, the dexamethasone (Dex)-inducible AvrB transgenic line 1 (named 

Dex-AvrB here, Nd-0 background lacking the RPM1 locus) was crossed with the rar1-29 

plants (Col-0 background carrying the RPM1 resistance gene). The SSLP marker 

K17N15-19K (primers 5’-gactagagagtaagaacatgactc-3’ and 5’-aagtcgaatcgttcacgcaataag-3’) 

closely linked to the RAR1 locus was used to identify the respective genotypes at the RAR1 

locus. Homozygous F4 plants with rar1-29/rar1-29, rpm1/rpm1, AvrB/AvrB and RAR1/RAR1, 

rpm1/rpm1, AvrB/AvrB genotypes were used for experiments. rar1-20 (Tonerro et al., 2002) 

and coi1-1 (Xie et al., 1998) mutants (Col-0 background, carrying the RPM1 resistance gene) 

were similarly crossed with Dex-AvrB. rar1-20/rar1-20, rpm1/rpm1, AvrB/+ and RAR1/+, 

rpm1/rpm1, AvrB/+ plants, and COI1/COI1, rpm1/rpm1, AvrB/+ and coi1-1/coi1-1, 

rpm1/rpm1, AvrB/+ plants were identified from F2 plants by PCR. The genotype at the COI1 

locus was identified by using a CAPS maker as described (Xie et al., 1998). Primers 

5’-atcttcaagtctcaaagtgtgc-3’ and 5’-gattccacaagataacttgaagc-3’ were used to determine the 

genotype at the RPM1 locus (Nd-0 background lacking the RPM1 locus). Plants carrying the 

AvrB transgene in F1 or F2 generations were confirmed with AvrB-specific primers 

5’-atcaatgcttaattggtgcagc-3’ and 5’-atcagaatctagcaagcttctg-3’. All the plants carry a 

chromosome segment from the Nd-0 ecotype and thus are rpm1-null. 

Bacterial Growth and HR Assay 

Five-week-old plants were infiltrated with bacteria suspension at 105 CFU/ml and 

bacterial number was counted at indicated time points. For AvrB dependent bacterial growth 

assay, plants were treated with 30 μM Dex solution containing 0.02% Silwet L-77 (Osi 
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Specialties, Friendship, WV) 2 days before bacteria inoculation. For HR assay, leaves were 

infiltrated with DC3000 (avrB) at 108 CFU/ml and HR was scored 10-12 hours after 

infiltration. Each experiment was repeated at least twice with similar results. 

Mapping and Cloning of rrb3 Gene 

For mapping the rrb3 gene, the rrb3 mutant was crossed with the Nossen ecotype, and 

5 week old F2 plants were inoculated with DC3000 (avrB) at 108 CFU/ml. Plants displaying 

delayed HR were scored as mutants. SSLP, INDEL and CAPS or SNP markers were used in 

fine mapping as described previously (Xiao et al., 2004).  

CCD Imaging and Luciferace Activity Assay 

Four to six week old plants were infiltrated with 2x106 CFU/ml DC3000 (avrB) 

containing 0.02 mM luciferin. The inoculated leaves were then collected at different time 

points, sprayed with 1 mM luciferin containing 0.01% Triton X-100. The leaves were kept in 

dark for 6 minutes before luminescence images were captured. Quantitative luciferase assay 

was performed as described (He et al., 2004). 

RNA Blot Analysis 

For RAP2.6 expression analysis, total RNA was extracted from plants at indicated time 

points after infiltration with 2 x 106 cfu/ml DC3000 (avrB), and the RNA blot was hybridized 

with the RAP2.6 cDNA probe.  

Western Blot Analysis 

Anti-RAR1 antiserum was raised in rabbits using full-length recombinant RAR1 

protein as antigen as described (Azevedo et al., 2002). Total protein was extracted from 

5-week-old plants in a 1ХPBS buffer containing 10 mg/mL leupeptin, 1 mM PMSF, 2 mM 

EDTA, 1 Х proteinase inhibitor cocktail (Roche, Basel, Switzerland) and 1% Triton X-100. 

For AvrB protein detection, plants were sprayed with 30 μM Dex (Sigma, St. Louis, MO) for 

24 h before protein extraction. Thirty µg protein samples were electrophoresed through a 12% 

or 15% SDS-PAGE. Protein was electrotransferred to an Immobilon P membrane (Millipore 
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Corp., Bedford, MA). Immunodetection was performed with a 1:2,500 dilution of anti-RAR1 

antibodies, or a 1:10,000 dilution of anti-AvrB antibodies. The blot was then hybridized with a 

goat anti-rabbit or goat anti-mouse HRP-conjugated secondary antibody (Sigma, St. Louis, 

MO) and visualized with ECL western blotting detection reagents (Amersham, Piscataway, 

NJ) following the manufacturer’s instructions.  

Yeast Two-Hybrid Assay 

The RAR1, rar1-29, SGT1b, and HSP90.1 coding sequences were amplified from total 

cDNA of Arabidopsis Col-0 wild-type (RAR1, SGT1b, and HSP90.1) or rar1-29 plants using 

gene specific primers 5’-aactctgaattcatggaagtaggatctgca-3’ and 

5’-aatctcgagctttgaatcgaaaatctcagg-3’ (RAR1 and rar1-29), 5’-gaattccctctgaaagaatcaatgg-3’ 

and 5’-ctcgagagatcaatactcccacttc-3’ (SGT1b), and 5’-gaattcctaaagttcgttgcgatgg-3’ and 

5’-ctcgagcttcatctcttagtcgac-3’ (HSP90.1). PCR products were digested with EcoRI and XhoI 

and inserted into pJG4-5 (RAR1 and rar1-29) or pEG202 (SGT1b and HSP90.1). The 

constructs were sequence-verified and co-transformed in pairs into the EGY48 yeast strain 

containing pSH18-34. At least six individual colonies from each transformation were tested for 

β-galactosidase activities on X-Gal plates following the protocol described (Golemis et al., 

1997). 

To determine if the RAR1 and rar1-29 proteins accumulated to similar levels in yeast, 

total yeast protein was extracted by boiling equal amounts of yeast cells in 2× Laemmli sample 

buffer. The total protein was separated by 10% SDS-PAGE gel and transferred to immobilon 

membrane (Millipore Corp., Bedford, MA). The membrane was then hybridized with 

monoclonal mouse anti-HA antibody (Sigma, St. Louis, MO) and detected with the 

HRP-conjugated goat anti-mouse antibodies (Sigma, St. Louis, MO) and ECL regents 

(Amersham, Piscataway, NJ).   

Co-Immunoprecipitation 

Co-immunoprecipitation experiment was done as described (12). AvrB-3x-FLAG 

transgenic and nontransgenic rpm1 plants were sprayed with 30µM estradiol (Sigma, St. Louis, 

MO) prior to protein extraction. The immune complex was precipitated with an 

74 



agarose-conjugated monoclonal anti-FLAG antibody (Sigma, St. Louis, MO). The presence of 

RAR1 and AvrB-FLAG in the complex was detected by using western blot. 

Results 

Mutant rrb3 Compromises AvrB-Specific RAP2.6 Induction and Gene-for-Gene 
Resistance 

We showed previously that AvrB specifically induces RAP2.6, an ERF family 

transcription factor, in a COI1 dependent manner. RAP2.6 induction correlates well with the 

pathogenicity of various Pseudomonas strains (He et al., 2004), suggesting that RAP2.6 

expression is a reliable virulence indicator. To identify host components required for AvrB 

virulence activity, RAP2.6-LUC transgenic lines developed in Col-0 background (He et al., 

2004) was mutagenized with ethane methyl sulfonate (EMS). 15,000 M2 plants derived from 

6,000 EMS-mutagenized M1 plants were screened and six rrb (reduced response to AvrB) 

mutants were identified (Chintamanani, 2005). One mutant, rrb3 severely compromised AvrB 

specific RAP2.6 induction (Fig. 3-1a and Fig. 3-4c) and showed a delayed HR induced by 

AvrB (Fig. 3-1b). Consistently, the rrb3 mutant lost gene-for-gene resistance against the 

avirulent strain DC3000 (avrB) (Fig. 3-1c).  

The Mapping and Cloning of rrb3 

 Genetic analysis indicated that rrb3 is caused by a single recessive mutation (Shang et 

al., 2006). The F2 mapping population was constructed by crossing the mutant rrb3 to 

Arabidospsis accession Nossen carrying a functional copy of RPM1. Out of a total of ~800 F2 

plants, 43 plants showing the mutant phenotype, a delayed HR were selected for PCR analysis. 

rrb3 was mapped to a ~2 cM interval between the flanking SSLP markers nga129 and MXC20 

at the end of chromosome 5. Screening of another ~1,200 F2 plants generated another 60 

recombinant plants showing a delayed HR. The rrb3 gene was delimited to a 46 kb interval 

between the SNP markers K10D11-12K and MIO24-46K. Twelve genes were found in this 

area including RAR1, a well know signaling component required for gene-for-gene resistance. 

Allelism tests indicated that rrb3 is a rar1 allele, because rrb3 x rar1-20 F1 plants displayed the 

mutant phenotype, a delayed HR (Table 3-1) in response to DC3000 (avrB). Transformation of 
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a wild-type copy of RAR1 gene driven by its natural promoter into rrb3 restored the normal HR 

(Fig. 3-2a). Sequencing analysis revealed a point mutation at the end of the CHORDII domain 

that led to a H217Y substitution (Fig. 3-2b). Twenty-eight rar1 alleles had been reported prior 

to this study (Tornero et al., 2002). We therefore renamed rrb3 as rar1-29. The mutant protein 

RAR1-29 is unstable in planta (Fig. 3-2c, contributed by Shang Y.). However, the stability of 

RAR1-29 expressed in yeast is not affected by the mutation (Fig. 3-2c). H217 is a highly 

conserved residue located at the end of CHORD II domain of the RAR1 family proteins. The 

CHORD II domain is known to be required for the interaction with SGT1, but not HSP90 

(Takahashi et al., 2003; Liu et al., 2004). Indeed, a yeast two-hybrid experiment indicated that 

the RAR1-29 protein is unable to interact with SGT1b but interact normally with HSP90 (Fig. 

3-2d).  

RAR1 and NDR1 Are Required for Type II But Not Type I Nonhost Resistance  

Based on the presence or absence of HR to a nonhost pathogen, plant nonhost resistance 

can be classified into two types (Mysore and Ryu, 2003). Type I nonhost resistance does not 

trigger HR whereas type II nonhost resistance does. According to this criterion, nonhost 

Pseudomonas bacteria strain P. s. pv. tabaci triggers type II nonhost resistance and P. s. pv. 

phaseolicola triggers type I nonhost resistance in Arabidopsis plants (Oh et al., 2006). To test 

the requirement of RAR1 in type I and type II nonhost resistance, we hand-infiltrated P. s. pv. 

tabaci and P. s. pv. phaseolicola into Col-0 and rrb3 leaves. Interestingly, the rrb3 mutant 

consistently supported P. s. pv. tabaci growth by 10 folds (Fig. 3-3a). The growth of P. s. pv. 

phaseolicola in rar1-29 remained the same with that in wild type plants (Fig. 3-3b). Because 

RAR1 is known to participate in gene-for-gene resistance, we hypothesize that other signaling 

components may also affect type II nonhost resistance in Arabidopsis. To test this hypothesis, 

five mutants defective in R gene signaling were selected and checked for nonhost bacterial 

growth (Table 2). Two mutants, rar1-20 and ndr1 supported the growth of P. s. pv. tabaci but 

not P. s. pv. phaseolicola (Fig. 3-3c, Table 2). It has been shown that RAR1 and NDR1 

contribute quantitatively to the function of a number of CC-NBS-LRR proteins (Torreto et al., 

2002). However, the role of R genes or R-signalling genes in type II nonhost resistance is not 

clear. Recent microarray data showed that genes regulated by nonhost and avirulent bacteria 
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were overlapped (Navarro et al., 2004). Here we show that RAR1 and NDR1 are required for 

type II nonhost resistance, suggesting that gene-for-gene resistance and nonhost resistance 

share similar signaling components. 

RAR1 Antagonizing COI1 Activity in Basal Resistance Against DC3000 

COI1 is a well-known signaling component mediating JA response and bacterial 

virulence (Feys et al., 1994; Xie et al., 1996). A point mutation in COI1 led to reduced DC3000 

growth (Kloek et al., 2001), indicating a role of JA signaling in DC3000 pathogenicity. The 

resistance of the coi1 mutant to DC3000 is correlated with PR-1 activation and SA 

accumulation. Eliminating SA restored the susceptibility of coi1 to DC3000 (Kloek et al., 

2001), suggesting a crosstalk between JA and SA signaling pathways. Here we show that both 

rar1-29 and rar1-20 mutants supported 50 to 100 fold more DC3000 bacterial growth (Fig. 

3-4a) and showed more severe disease symptoms (Fig. 3-4b). PR-1 expression upon DC3000 

infection is down regulated (He P., Chintamanani S. and Zhou J.M.) whereas RAR2.6 

expression is up regulated (Fig. 3-4c) in the rar1-29 mutant compared with the wild type 

plants. Microarray analysis showed that about 25% of the down-regulated genes in coi1 upon 

DC3000 infection are up-regulated in the rar1-29 mutant (Fig. 3-5a, Table 3), revealing an 

antagonism between RAR1 and COI1 in regulating DC3000 responsive genes. To determine 

the epistatic relationship between rar1 and coi1, the rar1/ coi1 double mutant was created and 

tested for DC3000 bacterial growth. As shown in Fig. 3-5b, DC3000 grow similarly in the 

rar1/coi1 double mutant and the coi1 mutant (Fig. 3-5b), suggesting that COI1 is epestatic to 

RAR1 and mediates rar1 susceptibility to DC3000. Intriguingly, the JA response measured by 

root length inhibition in rar1 is not significantly affected (Fig. 3-5c), suggesting that either 

RAR1 only affects COI1 activity triggered by DC3000 or the effect of RAR1 on JA response is 

masked by other signaling pathways. For example, SGT1b is involved in JA signaling (Gray et 

al., 2003). However, the effect of SGT1b in JA signaling is partially masked by ethylene 

signaling pathway and is more pronounced in ein3 mutant background (Lorenzo and Solano, 

2005; Solano, personal communication).  
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RAR1 is Required for AvrB-Dependent Susceptibility and Chlorosis 

AvrB virulence activity is measured by leaf chlorosis in Arabidopsis and enhanced 

bacterial growth in bean plants (Ong and Innes, 2006). Dex-inducible AvrB expression in 

Arabidopsis contributes to enhanced bacterial growth of P. s. pv. phaseolicola (Fig.3-6a) as 

well as P. s. pv. tomato DC3000 hrcC- mutant strain (Fig. 3-6b, contributed by Yulei Shang), 

indicating in planta AvrB expression renders Arabidopsis plants more susceptible to 

Pseudomonas bacteria in a strain-nonspecific manner. To determine whether the ability of 

AvrB to cause leaf chlorosis and modulate bacterial growth is dependent on RAR1, the 

Dex-AvrB transgenic plants (in Nd-0 accession) were crossed to both the rar1-29 and rar1-20 

plants. F2 plants with AvrB//+, rpm1//rpm1, RAR1//rar1 genotype were selected and 

propagated to F3 and F4. AvrB//AvrB, RAR1//RAR1, rpm1//rpm1 and AvrB//AvrB, rar1//rar1, 

rpm1//rpm1 homozygous plants were tested for Dex-inducible leaf chlorosis as well as 

AvrB-dependent bacterial growth. As shown in Fig. 3-6c, leaf chlorosis induced by Dex 

treatment was abolished in both rar1-29 (Fig. 3-7a) and rar1-20 (Shang et al., 2006) mutant 

backgrounds, indicating that RAR1 is required for AvrB-dependent leaf chlorosis. Four 

independent F4 lines from two independent crosses were tested and showed consistent 

phenotypes (Fig. 3-7a). Besides a role in AvrB triggered leaf chlorosis, RAR1 is also required 

for AvrB enhanced DC3000 hrcC- bacterial growth (Fig. 3-7b, credit shared by Yulei Shang). 

Taken together, these data demonstrated AvrB requires RAR1 to mediate its virulence activity 

in Arabidopsis plants.  

AvrB Reduces DC3000 Bacterial Growth in a RAR1-Dependent Manner 

To test whether AvrB expression also enhances virulent bacterial growth in 

Arabidopsis, we inoculated DC3000 onto Dex-treated AvrB//AvrB, RAR1//RAR1, rpm1//rpm1 

and AvrB//AvrB, rar1//rar1, rpm1//rpm1 homozygous plants. Surprisingly, AvrB expression 

reduces, instead of increases, the bacterial number of DC3000 (Fig. 3-8). The reduction of 

DC3000 bacterial number occurred before leaf chlorosis took place (data not shown), 

suggesting that it is not a side effect of leaf chlorosis. Interestingly, the AvrB dependent 

reduction of DC3000 growth is also mediated by RAR1 because Dex-induced AvrB expression 

no longer reduces DC3000 bacterial number in rar1 background (Fig. 3-8). The reduction of 
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DC3000 bacterial growth triggered by AvrB is probably specific to the genetic background 

tested here because AvrB transgenic line in other genetic background did not significantly 

affect DC3000 bacterial growth (Makey, personal communication). Taken together, these 

results suggest that a cryptic R gene may exist in Nd-0 background, which recognizes AvrB 

and triggers disease resistance against DC3000.  

RAR1 Is a Host Target of AvrB 

Based on the guard hypothesis, effector proteins target host components to achieve 

virulence on host plants. Although we showed that RAR1 is required for AvrB dependent 

virulence activity, whether or not RAR1 is a host target of AvrB remains undetermined. To test 

whether AvrB directly interacts with RAR1, yeast two-hybrid experiment was carried out. As 

shown in Fig. 3-9a, there is no physical interaction between AvrB and RAR1 (Fig. 3-9a). 

However, AvrB and RAR1 co-immunoprecipitation experiments indicate they do exist in the 

same protein complex (Fig. 3-9b, contributed by Haitao Cui), suggesting that RAR1, or the 

protein complex containing RAR1 is targeted by AvrB. The interaction between AvrB and 

RAR1 could be indirect and may need other host protein (s).  

COI1 Is Required for AvrB-Dependent Susceptibility  

Because COI1 works downstream of RAR1 to mediate DC3000 virulence activity, we 

further tested the requirement of COI1 in AvrB dependent susceptibility and leaf chlorosis. The 

AvrB transgenic line was crossed to COI1/coi1 heterozygous plants using COI1/coi1 as the 

recipient. F1 plants with COI1/coi1 genotype were forwarded to F2 and F3. AvrB/+, 

COI1/COI1, rpm1/rpm1 and AvrB/+, coi1/coi1, rpm1/rpm1 progenies were selected and 

analyzed for AvrB dependent bacterial growth and leaf chlorosis. As shown in Fig. 3-10, COI1 

is required for AvrB dependent bacterial growth (Fig. 3-10a, credit shared by Yulei Shang) but 

not for AvrB dependent leaf cholosis (Fig. 3-10b, credit shared by Yulei Shang). How COI1 

mediates AvrB virulence activity is not clear. It is likely that AvrB modulates COI1 activity to 

promote bacterial virulence. Supporting this hypothesis, seedlings with AvrB expression 

consistently exhibit better root length inhibition induced by MeJA (Fig. 3-10c).  

Discussion 
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RAR1 is known to play a key role in gene-for-gene resistance to diverse pathogens 

(Shirasu et al., 1999; Takahashi et al., 2003). However, a role of RAR1 in nonhost resistance 

and bacterial effector virulence function has not been reported. Our results show that RAR1, 

together with NDR1, participate in type II but not type I nonhost resistance. Although it is not 

clear how RAR1 and NDR1 affect type II nonhost resistance, these two proteins do act 

synergistically in gene-for-gene resitance mediated by several CC-NBS-LRR proteins 

(Tornero et al., 2002). It is possible that RAR1 and NDR1 assist some unidentified 

CC-NBS-LRR proteins in mediating type II nonhost resistance. R genes and their signaling 

components are known to carry out species level resistance in several pathosystems (Peart et 

al., 2002; Zhao et al., 2005). More significantly, the Pseudomons effector AvrB targets RAR1 

to mediate its virulence activity. In the rar1 mutant background, both AvrB dependent leaf 

chlorosis and increase in bacterial growth are abolished. The AvrB dependent increase in 

bacterial growth but not leaf chlorosis also requires COI1, an F-box protein required for JA and 

wound-inducible responses.  

How AvrB affects COI1 activity is not clear. It is likely that AvrB modulate COI1 

activity through RAR1. It is known that SGT1, a RAR1 interactor, is involved in JA signaling 

(Lorenzo and Solano, 2005). SGT1 physically interacts with SKP1 and CUL1, subunits of the 

SCF (Skp1-Cullin-F-box) ubiquitin ligase complex (Azevedo et al., 2002) and is required for 

SCF (TIR1) mediated auxin responses (Gray et al., 2003). It is possible that RAR1, once 

targeted by AvrB, associates with SGT1 and SCF (COI1) to promote Pseudomonas 

pathogenicity. Supporting this model, a point mutation abolishing SGT1 interaction renders 

RAR1 totally unfunctional in mediating AvrB virulence activity (Fig. 3-2d, 3-6b and 3-6c). 

Moreover, we were able to detect a greater root length inhibition induced by JA in seedlings 

with AvrB expression (Fig. 3-9c), indicating that AvrB promotes JA signaling. 

It is noteworthy that AvrB also reduces DC3000 growth in a RAR1-dependent, 

RPM1-independent manner. The resistance triggered by AvrB overexpression in planta may 

be a unique feature of the genetic lines used in this study because a similar overexpression of 

AvrB did not trigger any DC3000 resistance (Mackey, personal communication). A possible 

explanation is that a cryptic R protein (probably carried in the Nd-0 accession) recognized 
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AvrB and triggered the resistance against DC3000. Interestingly, this RPM1-independent, 

RAR1-dependent resistance is only triggered by AvrB overexpression in Arabidopsis plants. 

AvrB delivered by DC3000 failed to elicit an effective resistance response because DC3000 

(avrB) grew similarly with DC3000 in Arabidopsis plants lacking the RPM1 resistance gene 

(Li X. and Zhou J.M., unpublished data). It is noteworthy that the bacterial growth of DC3000 

hrpL- mutant is promoted, instead of inhibited by AvrB, suggesting that the AvrB-triggered, 

RPM1-independent and RAR1-dependent resistance may require other DC3000 effectors. 

Besides a role in mediating type II nonhost resistance and AvrB virulence, RAR1 also 

functions in basal resistance against DC3000. We showed that the rar1 mutant is more 

susceptible and that rar1 susceptibility is carried out by COI1, indicating that RAR1 mediates 

basal resistance against DC3000 by antagonizing COI1 activity. Intriguingly, both RAR1 and 

COI1 are required for AvrB dependent bacterial growth. It is most likely that AvrB targets 

RAR1 and relieves the suppression on COI1 activity that eventually promotes AvrB virulence 

as illustrated in Fig. 3-11. RAR1 may also impose a positive regulation on SA pathway that is 

not negatively affected by AvrB targeting. Supporting this model, AvrB expression induces 

both JA and SA pathway genes in microarray analysis (Thilmony R., unpublished data).  

The previously identified AvrB target protein RIN4 is required for effector-triggered 

resistance (Axtell et al., 2003; Mackey et al., 2002; Mackey et al., 2003) but not the effector 

virulence function (Belkhadir et al., 2004). It is suggested that other proteins associated with 

RIN4 might be required for the AvrRpt2 and AvrRpm1 virulence functions (Kim et al., 2005). 

Here we showed that RAR1 is required for AvrB virulence activity and coimmunoprecipitates 

with AvrB in planta. However, RAR1 and RIN4 do not exist in a same protein complex (Shang 

et al., 2006), suggesting that RAR1 may carry out AvrB virulence function independent of 

RIN4. Interestingly, both RAR1 and RIN4 negatively regulate flagellin induced cell wall 

defense (Kim et al., 2005; Shang et al., 2006), indicating that targeting negative regulators of 

PAMP-triggered immunity (Chisholm et al., 2006) could be a common strategy used by 

bacteria to suppress basal resistance.  
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Table 3-1 HR complementation of rrb3 

 LUC HR 

WT + 3 (3) 

rrb3 + 0 (7) 

rar1-20 - 0 (4) 

F1 (rar1-20×rrb3) + 0 (5) 

F1 (rar1-20×WT) + 5 (5) 
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Table 3-2 The differential requirement of HR signaling components in type I and type II 
nonhost resistance 

Arabidopsis mutants 
Signaling 

components 

P. s.pv. phaseolicola 
(Type I nonhost 

resistance) 

P. s.pv. tabaci 
(Type II nonhost 

resistance) 

rar1-20 RAR1 N Y 

ndr1 NDR1 N Y 

pbs1 PBS1 N N 

sgt1b SGT1b N N 

eds1 EDS1 N N 
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Table 3-3 Selected gene list of coi1-downregulated and rar1-upregulated JA pathway genes 

Array element Locus Description 

249208_at AT5G42650  allene oxide synthase (AOS) / hydroperoxide dehydrase / cytochrome P450 74A (CYP74A),  

245928_s_at 
AT5G24770 
AT5G24780 

vegetative storage protein 2 (VSP2), identical to SP:O82122 Vegetative storage protein 2 precursor 
{Arabidopsis thaliana} 
 

255786_at AT1G19670 
coronatine-responsive protein / coronatine-induced protein 1 (CORI1), identical to coronatine-induced protein 1 
(CORI1) 
 

260399_at/ 
261037_at 

AT1G72520 
AT1G17420 

 lipoxygenase, putative  

265058_s_at 
AT1G52030 
AT1G52040 

myrosinase-binding protein, putative (F-ATMBP),  

265530_at AT2G06050 
12-oxophytodienoate reductase (OPR3) / delayed dehiscence1 (DDE1) 
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Figure Legend 

Figure 3-1 The mutant rrb3 compromises AvrB-specific activities. (a). 

RAP2.6-LUC reporter activity in both wild type and rrb3 mutant plants in response to DC3000 

(avrB). RAP2.6-LUC transgenic plants were inoculated with DC3000 (avrB) suspended in 

0.2mM luciferin at 2X106 cfu/ml. Luciferase activity was examined at the indicated time 

points. (b). HR response elicited by DC3000 (avrB). Arabidopsis wild type and rrb3 mutant 

plants were infiltrated with DC3000 (avrB) at 108 cfu/ml. HR started to develop in wild type 

plants 6 hours after inoculation. Picture was taken 10 hours after inoculation. At least 6 

individual plants were tested for HR and showed similar response as shown in the picture. (c). 

Disease symptoms induced by DC3000 (avrB) in both wild type and rrb3 mutant plants. An 

inoculum of 106 cfu/ml was used. The picture was taken 6 days after inoculation. These 

experiments were repeated at least three times with similar results. 

Figure 3-2 RRB3 is a previously unidentified RAR1 allele. (a). A wild type copy of 

RAR1 driven by its natural promoter complemented the HR response in both rrb3 and rar1-20 

mutants. Arabidopsis Col-0, rrb3, rar1-20 plants and the rrb3 or rar1-20 T1 transgenic plants 

carrying the RAR1 transgene were inoculated with DC3000 (avrB) at 108 cfu/ml. Plants were 

examined for HR from 6 to 12 hours after inoculation. Picture was taken 10 hours after 

inoculation. From left to right: the wild type Arabidopsis plants, the rrb3 mutant, the rar1-20 

mutant, the rar1-20 mutant complemented by RAR1 transgene, the rrb3 mutant complemented 

by RAR1 transgene. The number of leaves shown an HR is listed bellowed the picture. (b). rrb3 

(rar1-29) mutant carries a point mutation at the end of CHORD II domain of the RAR1 protein. 

The filled boxes represent the CHORD I (cysteine-and histidine-rich domain), CCCH 

(Cys-Cys-Cys-His) and CHORD II domains of the RAR1 protein. (c). The stability of 

RAR1-29 protein in yeast (left) and plants (right). To express the proteins in yeast cells, RAR1 

and RAR1-29 coding regions were constructed into pJG4-5 vector carrying an HA tag and 

transformed into the EGY48 yeast strain. Yeast total protein was extracted with the 2× 

Laemmli sample buffer and bloted with anti-HA antibody. The stability of RAR1-29 protein in 

Arabidopsis plants was determined with the anti-RAR1 antibodies. The total protein was 
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extracted from Arabidopsis wild type and rar1-29 mutant plants. Equal amount of the total 

protein was electrophoresed through 12% SDS-PAGE gel and blotted with the anti-RAR1 

antibodies. Protein bands were detected with the ECL detection reagents provided by 

Amersham, Piscataway, NJ. (e). The interaction with SGT1b but not HSP90.1 is abolished in 

RAR1-29 protein. RAR1 wild type and RAR1-29 coding sequences were cloned into the 

pJG4-5 vector carrying an HA tag. SGT1b and HSP90.1 coding sequences were constructed 

into the pEG202 vector. The corresponding contructs were transformed in pair into the EGY48 

yeast strain containing pSH18-34. Protein interaction was tested on X-Gal plates. At least six 

individual transformants were examined for β-galactosidase activities. Two individual colonies 

were shown in the picture. These experiments were repeated at least twice with similar results.  

Note: The western blot figure (Figure 3-2c, on the right) showing the RAR1-29 protein 

stability in Arabidopsis plants is contributed by Shang Y. 

Figure 3-3 Both RAR1 and NDR1 contribute to type II nonhost resistance. (a) and 

(b). rar1-29 mutant compromised nonhost resistance against P. s. pv. tabaci but not P. s. pv. 

phaseolicola. (c). ndr1 compromised nonhost resistance against P. s. pv. tabaci but not P. s. pv. 

phaseolicola. Bacteria were inoculated at 2X105 cfu/ml. Leaf discs were detached from the 

plants on 0, 2 and 4 days afer inoculation and counted for bacteria number. These experiments 

were repeated at least three times with similar results.  

Figure 3-4 RAR1 plays a role in basal resistance against DC3000. (a) and (b). 

DC3000 bacteria grow more vigorously and cause more severe disease symptom in rar1-29 

and rar1-20 mutant compared to wild type plants. Plants were dip-inoculated with 2X107 

cfu/ml DC3000 suspended in10mM MgCl2 containing 0.02% Silwet L-77. The inoculated 

plants were covered with plastic dome for 1 hour before transforming to a plant growth 

chamber. For bacteria growth assay, Arabidopsis leaves were detached from the inoculated 

plants at the indicated time points, weighed and counted for bacteria number. For disease 

symptom analysis, the inoculated plants were encubated at 22°C in a plant growth chamber for 

symtom development. Picture was taken 6 days after inoculation (c). RAR1 mutation 

compromised AvrB-specific RAP2.6 induction but enhanced RAP2.6 expression upon DC3000 

infection. Total RNA was extracted with 2XCTAB buffer from Arabidopsis plants inoculated 
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with DC3000 or DC3000 (avrB) at 2X106 cfu/ml.  The RNA blot was hybridized with the 

RAP2.6 cDNA probe.  

Figure 3-5 RAR1 mediates Arabidopsis basal resistance against DC3000 through 

antagonizing COI1 activity. (a). RAR1 antagonizing COI1 in regulating DC3000 responsive 

genes. The wild type (Col-0), rar1-29 and coi1-1 Arabidopsis plants were inoculated with 

DC3000 at 2X106 cfu/ml. Leaves were detached at 0 and 24 hours after inoculation. Total RNA 

was extracted with 2XCTAB buffer and purified with the RNeasy Mini Kit (QIAGEN 

Sciences, ML). Microarray experiments were carried out using the Arabidopsis Genome ATH1 

Array containing 22,500 probe sets (Affymetrix, Inc). Each of the microarray experiments 

contains at least three independent replicates. Haitao Cui analyzed Microarray data with the 

Genespring 7.0 software. (b). coi1-1 mutation complemented DC3000 susceptibility in rar1-29 

mutant. Arabidopsis Col-0, coi1-1, rar1-29 and coi1-1/rar1-29 plants were inoculated with 

DC3000 at 105 cfu/ml. Leaf bacteria number was counted at the indicated time points. This 

experiment was repeated twice with similar results. (c). The rar1-29 mutation does not affect 

root length inhibition induced by MeJA Arabidopsis wild type, rar1-20 and rar1-29 seeds were 

surface sterilized and germinated on 1/2MS plates containing MeJA at the indicated 

concentrations. Root length was measured 9 dyas after germination. The relative root length 

was calculated by dividing the actual root length by the root length of control (Col-0) plants 

growing in 1/2MS without MeJA. This experiment was repeated twice with similar results. 

Figure 3-6 AvrB expression in Arabidopsis enhances the bacterial growth of both 

nonhost and nonpathogenic bacteria. (a). AvrB expression enhances P. s. pv. phaseolicola 

bacterial growth. This experiment was done once. (b). AvrB expression enhances DC3000 

(hrcC-) bacterial growth. This experiment was repeated three times with similar results. AvrB 

transgenic plants were treated with Dex 2 days before bacterial inoculation. H2O treatment was 

used as a control. Bacteria were inoculated at 105 cfu/ml. Leaf discs were detached from the 

inoculated bacteria plants and counted for bacterial number at the indicated time points.  

Note: Fiugre 3-6b is contributed by Shang Y. 

Figure 3-7 RAR1 is required for both AvrB dependent leaf chlorosis and bacterial 

growth. (a). Dex induced leaf chlorosis in AvrB//AvrB, RAR1//RAR1, rpm1//rpm1 and 
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AvrB//AvrB, rar1//rar1, rpm1//rpm1 plants. Plants were inoculated with 30µM Dex to induce 

AvrB expression. Leaf chlorosis was examined 4 days after inoculation. Each genotype is 

represented by 4 independent F4 lines derived from two independent crosses. (b). DC3000 

(hrcC-) bacterial growth in AvrB//AvrB, RAR1//RAR1, rpm1//rpm1 and AvrB//AvrB, 

rar1//rar1, rpm1//rpm1 plants. Bacteria were infiltrated at 105 cfu/ml into fully expanded 

Arabidopsis leaves 2 days after Dex treatment. Leaf bacteria number was counted at the 

indicated time points. These experiments were repeated at least two times with similar results.  

Note: Shang Y. shares credit on Figure 3-7b.  

Figure 3-8 RAR1 is required for AvrB dependent and RPM1 independent 

DC3000 resistance in Arabidopsis plants. Homozygous AvrB//AvrB, RAR1//RAR1, 

rpm1//rpm1 and AvrB//AvrB, rar1//rar1, rpm1//rpm1 plants were inoculated with 30µM Dex 

to induce AvrB expression. DC3000 bacteria were infiltrated at 105 cfu/ml into fully expanded 

Arabidopsis leaves 1 day after Dex treatment. Leaf bacteria number was counted at the 

indicated time points. This experiment was repeated at least twice with similar results. 

Figure 3-9 AvrB and RAR1 do not interact in yeast but coimmunoprecipitate in 

plant protein extracts. (a). Yeast-two-hybrid analysis for AvrB and RAR1 interaction. AvrB 

and RAR1 (or RAR1-29) coding sequences were constructed into pJG4-5 and pEG202 

respectively and transformed into EGY48 yeast strain containing pSH18-34. Six individual 

yeast transformants were tested for β-galactosidase activities on X-Gal plates. One 

representative clone was shown in the picture. RAR1-SGT1b interaction was used as a control. 

AvrB and SGT1b (in pJG4-5) proteins were detected with anti-HA antibody. (b). AvrB 

coimmunoprecipitated with RAR1. Total plant protein was extracted from AvrB-FLAG 

transgenic plants and immunoprecipitated with anti-FLAG antibodies. RAR1 protein was 

detected in the precipitates with the anti-RAR1 antibodies. These experiments were repeated at 

least twice with similar results.  

Note: Fiugre 3-9b is contributed by Cui H. 

Figure 3-10 AvrB expression enhances bacterial growth through COI1 and 

promotes JA response. (a). COI1 is required for AvrB dependent bacterial growth. AvrB//+, 
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COI1//COI1, rpm1//rpm1 and AvrB//+, coi1//coi1, rpm1//rpm1 plants were pretreated with 

30µM Dex and inoculated with DC3000 (hrpL-) at 105 cfu/ml. Leaf bacterial number was 

counted at the indicated time points. (b). COI1 is not involved in AvrB dependent leaf 

chlorosis. AvrB//+, COI1//COI1, rpm1//rpm1 and AvrB//+, coi1//coi1, rpm1//rpm1 plants were 

sprayed with 30µM Dex to induce AvrB expression. Leaf chlorosis was examined 4 days after 

Dex treatment. (c). AvrB expression promotes root length inhibition mediated by exogenously 

applied MeJA. AvrB transgenic plants were germinated on 1/2MS plates with or without Dex. 

MeJA was added at the indicated concentration. Root length was measured 9 days after 

germination. Relative root length was calculated by dividing the actual root length by the root 

length of AvrB transgenic plants growing in 1/2MS without MeJA. These experiments were 

repeated at least twice with similar results. 

Note: Shang Y. shares credit on Figure 3-10a and 3-10b. 

Figure 3-11 A model illustrating roles of RAR1 and COI1 in both disease 

resistance and AvrB dependent virulence activity. In Arabidopsis plants without AvrB 

transgene, RAR1 suppress COI1 activity that mediated JA response and DC3000 susceptibility 

to play a role in basal resistance. With AvrB expression, RAR1 is recruited in a protein 

complex containing AvrB. The suppression on COI1 activity is thus relieved and downstream 

genes involving in pathogenicity are expressed.   
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Figure 3-1 The mutant rrb3 compromises AvrB-specific activities 
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Figure 3-2 RRB3 is a previously unidentified RAR1 allele 
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Figure 3-3 Both RAR1 and NDR1 contribute to type II nonhost resistance 
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Figure 3-4 RAR1 plays a role in basal resistance against DC3000 
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Figure 3-5 RAR1 mediated basal resistance against DC3000 through antagonizing COI1 activity 
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Figure 3-6 AvrB expression in Arabidopsis enhances the bacterial growth of both nonhost and 
nonpathogenic bacteria  
 

100 



 

 

Figure 3-7 RAR1 is required for both AvrB-dependent leaf chlorosis and bacterial growth 
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Figure 3-8 RAR1 is required for AvrB-dependent and RPM1-independent DC3000 resistance in 
Arabidopsis plants.
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Figure 3-9 AvrB and RAR1 do not interact in yeast but coimmunoprecipitate in plant protein extracts 
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Figure 3-10 AvrB expression enhances bacterial growth through COI1 and promotes JA response 
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Figure 3-11 A model illustrating the roles of RAR1 and COI1 in both disease resistance and AvrB-dependent virulence activity  
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CHAPTER 4 

 

GLYCEROL ACCUMULATION IN NHO1 MUTANT PLANTS COMPROMISES 

ARABIDOPSIS NONHOST RESISTANCE AND REGULATES PSEUDOMONAS 

TYPE III SECRETION ACTIVITY 

 
 

Note: Douglas Baker contributed to the construction of DC3000 transposon insertion mutant 
library and the screening of glpF- mutants. 
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Abstract 

NHO1 encodes for glycerol kinase (GK) that converts glycerol to glycerol 3-phosphate. 

GK activity is abolished in nho1 mutant plants, which leads to the accumulation of glycerol. 

The growth of nonhost Pseudomons strains in nho1 plants requires intact glycerol uptake and 

alginate synthesis systems, indicating that NHO1 functions by depriving glycerol from nonhost 

Pseudomons bacteria. The NHO1 mediated glycerol deprivation works synergistically with 

FLS2 mediated innate immunity in Arabidopsis nonhost resistance. Intriguingly, the glycerol 

uptake system in the virulent strain DC3000 imposes a negative regulation on both TTSS 

activity bacterial virulence. These studies demonstrate a role for glycerol uptake in regulating 

bacteria metabolism and virulence on plants. 
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Introduction 

Nutrient availability is an important determinant in maintaining the biotrophic lifestyle 

of many obligate fungal pathogens (Hahn and Mendgen, 2001). In a typical biotrophic 

interaction, a penetration peg is developed to break through cell wall barriers and a haustorium 

is formed to obtain nutrients. Supporting a role of haustorium in nutrient uptake, genes 

involved in carbohydrates and amino acids transportation are specifically induced in 

haustorium isolated from living plant cells (reviewed in Panstruga, 2003; Biemelt and 

Sonnewald, 2005). Bacterial genes expressed in plants have been analyzed for type III 

regulation (Thwaites et al., 2004) but genes involved in nutrient uptake have received little 

attention. The type III secretion system (TTSS) has long been established as the most important 

bacterial virulence machinery (Alfano and Collmer, 1997). Bacteria use TTSS to secret 

effector proteins into the host cells to interfere with host defense responses and metabolism 

(Truman et al., 2006). For example, Psudomonas syringae pv. tomato DC3000 secretes more 

than 40 effectors into plant cells (Chang et al., 2004). About half of them are able to suppress at 

least one type of host defense response (reviewed in Grant et al., 2006) via various 

mechanisms. It has been shown that type III effectors are able to affect different aspects of 

plant metabolism including primary carbon metabolism, fatty acid biosynthesis, 

photosynthesis and cell wall metabolism (Truman et al., 2006; Thilmony et al., 2006) although 

little is know about how bacteria obtain nutrients from their hosts. 

Pseudomonas species have more than 300 nutrient uptake systems responsible for 

metabolizing a large number of organic compounds. The ability to use diverse organic carbon 

sources including sugars, amino acids, glycerol and other carbon compounds, enables 

Pseudomonas bacteria to grow in a diverse range of hosts (reviewed in Tamber and Hancock, 

2003). As an important carbon source, glycerol is supplied at a high concentration in liquid 

King’s B medium which is widely used for Pseudomonas syringae growth in vitro. Glycerol 

uptake in Pseudomonas bacteria is mediated by a conserved glycerol transport system shared 

by many gram negative bacteria including E.coli (Schweizer et al., 1997). In E.coli, the 

glycerol facilitator (GlpF) and the glycerol kinase (GlpK) are encoded in the glp operon that is 

induced by glycerol or G3P but repressed by maltose or glucose (Weissenborn et al., 1992). 
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Glycerol uptaken by GlpF is phosphorylated to glycerol 3-phosphate (G3P) by GlpK and then 

incorporated into alginate synthesis and phospholipid metabolism (Schweizer et al., 1997).  

Unlike bacterial membranes, plant plasma membrane is permeable to glycerol, which is 

only entrapped in the plant cytoplasm in its phosphorylated form. In Arabidopsis, NHO1 (or 

GLI1, Eastmond, 2004) is the only gene coding for the glycerol kinase (GK) that catalyzes the 

phosphorylation of glycerol to G3P (Kang et al., 2003). An Arabidopsis mutant lacking the 

functional NHO1 gene supports nonhost Pseudomonas bacterial growth, indicating a role of 

NHO1 in plant defense (Lu et al., 2001). It has been suggested that blocking G3P synthesis may 

affect lipid metabolism that in turn compromise disease resistance in nho1 mutants (Shah, 

2005). Supporting this hypothesis, exogenous application of glycerol activates G3P 

biosynthesis, quenches 18:1 and induces PR1 expression in an NHO1-dependent manner 

(Kachroo et al., 2005). However, unlike act1 mutation, nho1 mutation did not affect 

Arabidopsis lipid profiling and was not able to suppress the resistance phenotype mediated by 

ssi2 (Kachroo et al., 2005), indicating that other mechanisms are involved in NHO1 mediated 

generol resistance. Besides blocking G3P synthesis, NHO1 mutation also leads to the 

accumulation of glycerol that enhances resistance toward dehydration-associated abiotic 

stresses (Eastmond, 2004).  

Here we show that the nho1 mutation leads to the loss of GK activity and the 

accumulation of glycerol. Glycerol accumulation induces active glycerol uptake in the nonhost 

bacteria Pseudomonas syringae pv. phaseolicola (Pph). Pph growth in nho1 mutant needs 

intact glycerol uptake systems, suggesting that Pph actively assimilate glycerol. The NHO1 

mediated nonhost resistance in Arabidopsis functions, at least partly, in depriving glycerol 

from invading bacteria cells and works synergistically with FLS2 mediated innate immunity in 

the resistance against P. s. pv. tabaci. Interestingly, deficiency in glycerol uptake does not 

compromise DC3000 bacterial growth in Arabidopsis. Instead, glycerol uptake imposes a 

negative regulation on DC3000 virulence. Further experiments reveal that glycerol uptake 

negatively regulates DC3000 TTSS activity through G3P. Our results demonstrate a role of 

Pseudomonas bacteria glycerol uptake in both nonhost and host interactions for the first time.  

Materials and Methods 
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Bacteria Strains and Bacterial Growth Assay 

Bacteria strains used in this study include Pseudomonas syringae pv. tomato strain 

DC3000, Pph strain NPS3121 (Lu et al., 2001),  Pseudomonas syringae pv. tabaci (Ptab) 

strain 6505 (Li et al., 2005), Pseudomonas syringae pv. syringae (Pss) 3525 and Pss algL- 

(Yun et al., 1999). Bacteria were cultured in King’s B medium supplemented with appropriate 

antibiotics overnight. A bacteria suspension of OD value<2 was used for all experiments. For 

bacterial growth assay, bacteria were inoculated at 105 cfu/ml. Leaf discs were taken at the 

indicated time points and grounded in ddH2O or 10mM MgCl2. Bacterial number were 

counted as described before (He et al., 2004). All experiments were repeated at least twice with 

similar results. For disease development, bacteria were inoculated at 106 cfu/ml. Bean plants 

were grown in green house after inoculation to allow disease symptom development.  

Transposon Insertion Mutant Screening 

 P. s. pv. phaseolicola (Pph) transponsome insertion mutant library was constructed as 

described before (Xiao et al., in press). A DC3000 mutant library was generated with an 

EZ-TzTM<KAN-2> transposon mutagenesis kit (Epicentre Technologies, Wiscosin, WS). 

Pph glpF- mutant was screened with two rounds of PCR reactions. The first PCR was carried 

out using the glpF diagonostic primer: 

5’-ATGAATTCAGAGCCTTCAGATCAAGCGTTC-3’ in the combination with 

TN-KAN-L1 primer or TN-KAN-R1 primer. The second round of PCR was carried out with 

the glpF diagonostic primer in combination with TN-KAN-L2 

5’-GAATATGGCTCATAACACCCCTTGTATTAC-3’ and TN-KAN-R2 

5’-CAGACCGTTCCGTGGCAAAGCAAAAGTTC-3’ 

DC3000 glpF- mutant was screened with the diagonostic primer 

5’-TGGTTTCACGCTGGTTGGTGATACCGATG-3’ in combination with the TN-TET-L1 

primer: 5’-TACCGGCATAACCAAGCCTATGCCTACAG-3’ or the TN-Tet-R1 

5’-CACATGGAACGGGTTGGCATGGATTGTAG-3’ primer for the first round PCR. The 

second round PCR was carried out with the diagonostic primer and the TN-TET-L2: 

110 



5’-GAGGATGACGATGAGCGCATTGTTAGATTTC-3’ primer or the TN-TET-R2: 

5’-CACTCCAAGAATTGGAGCCAATCAATTCTTG-3’ primer. 

Construction of Pph TOPO: algD Mutant 

A TOPO:algD Pph plasmid was constructed by cloning an algD partial ORF into the 

TOPO TA cloning vector (Invitrogen). The algD-F primer: 5’-ATCAACAAC GGCAAA 

TCAC-3’ and the algD-R primer: 5’-TTTCGTTGGCGAAAGTAACC-3’. were used for 

amplifying algD partial ORF. The TOPO:algD Pph plasmid was then introduced into Pph by 

electroporation. Colonies with kanamycin and ampamcilin resistance were shaked in King’B 

medium overnight and collected for genomic DNA extraction. Pph TOPO:algD mutant was 

confirmed by diagnosis PCR with the algD-F primer in combination with the T7 primer: 

5’-TAATACGACTCACTATTGGG-3’ or the SP6 primer. 

5’-TATTTAGGTGACACTATAG-3’. 

Luciferase Activity Assay 

For avrPto-LUC activity assay, bacteria overnight culture were harvested, washed 

twice with ddH2O and diluted to 0.2 OD600 with minimal (MM) and MM supplemented with 

fructose, glycerol or G3P at indicated concentration. Bacteria suspension in MM was culture 

for 6 hours at room temperature. Luciferin was added to the bacteria suspension at a final 

concentration of 0.01 mM. Luminescence images were captured with a low light imaging 

system, and relative luciferase activity was calculated with the WinView software 

(RoperScientific, Trenton, NJ; He et al., 2004).  

Glycerol Kinase Assay and Glycerol Measurement 

Fresh Arabidopsis leaves were ground in 200μl extraction buffer (50 mM Tris PH 7.6, 

10 mM glycerol, 1 mM EDTA. 1 mM PMSF and 1 mM β-mercaptalethanol) with a hand drill. 

The total leaf protein extract was centrifuge at 13,000 rpm for 10 minutes. Supernatant was 

collected and used for glycerol kinase assay. For each eppendorf tube, 1,425 μl reaction buffer 

(750 μl Solution I, 37.5 μl 800 mM ATP, 15 μl 133 mM NAD and 15 μl glycerol-P 

dehydrogenase) and 75 μl protein extract was added. Solution I contains 0.6 M hydrazine, 0.33 
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M glycine, 0.33 M sodium carbonate, 40 mM MgCl2 and 600 μl 25 mM glycerol). The mixture 

was mixed and incubated at 30oC dry bath for 5 minutes. Glycerol kinase activity was 

calculated based on NADH absorbance at OD340 (Hayashi and Lin, 1967). Glycerol was 

extracted and measured as described (Pinter et al., 1967) using a spectrophotometric method. 

Glycerol concentration was calculated by the reduction of NADH.  

Results 

NHO1 Mutation Leads to Accumulation of Glycerol in Arabidopsis Plants 

It has been shown that NHO1 confers resistance against both nonhost and virulent 

Pseudomonas syringae strains (Kang et al., 2003). Whereas the biochemical and physiological 

nature of this NHO1 mediated resistance is not known. In Arabidopsis genome, AtNHO1 is the 

only gene encodes for glycerol kinase (GK) that converts glycerol to glycerol 3-phosphate 

(G3P) (Kang et al., 2003). Here we show that the GK activity is completely lost in nho1 mutant 

(Fig. 4-1a). The loss of GK activity leads to the accumulation of glycerol to more than 200 mM, 

one hundred fold higher than that in wild type plants (Fig. 4-1b).  

Glycerol Uptake Is Required for Nonhost Bacteria Ggrowth in nho1 Plants 

Glycerol is an important nutrient and carbon source for Pseudomonas bacteria. Hence 

we hypothesize that the susceptibility of nho1 against Pseudomonas strains is caused, at least in 

part, by the availability of glycerol. If this is true, then a bacteria mutant that is unable to uptake 

glycerol will no longer grow in nho1 plants. To test this possibility, we screened a Pph 

transposon insertion mutant library for a glpF mutant that lacks a functional glycerol transport 

system. In the Pph genome, glpF and glpK genes are organized in glp operon followed by glpR, 

a repressor of glp operon, and glpD, a G3P dehydrogenase (Fig. 4-2a). The screening of Pph 

transposon insertion mutant library yielded a TN:glpF mutant with TN:Km inserted 249 base 

pairs after the start codon (Fig. 4-2a). As expected, the Pph TN:glpF mutant is unable to grow 

in minimal medium (MM) supplemented with 50mM glycerol (Li X. and Zhou J.M., 

unpublished data).  
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To examine the bacterial growth of Pph TN:glpF mutant in nho1 plants, we infiltrated 

the wild type and mutant strains into nho1 plants. As shown in figure 4-2b, the wild type strain 

multiplied ~8 folds in nho1 plants, whereas the bacterial growth of TN:glpF mutant was largely 

compromised (Fig. 4-2b), suggesting that a functional glpF gene is required for Pph growth in 

nho1 plants. However, it is noteworthy that neither the wild type nor the mutant strain grew in 

Col-0 plants. This result is consistent with an extremely low concentration of glycerol in wild 

type plants (Fig. 4-1b). To further exploit the role of glycerol uptake in nonhost bacterial 

growth, we examined glpF promoter activity by fusing glpF promoter with the LUC reporter 

gene. As expected, glpF-LUC activity is induced in nho1 but not in wild type plants (Fig. 4-2c). 

Taken together, these results demonstrate that glycerol uptake is actively induced and is 

required for nonhost bacterial growth in nho1 plants.  

NHO1 and FLS2 Works Synergistically in Arabidopsis Nonhost Resistance 

It has been suggested that plants activate layered defense responses to prevent pathogen 

infection (Thordal-Christensen, 2003; Yun et al., 2003; Lipka et al., 2005). Here we showed 

that NHO1 functions in depriving glycerol from nonhost Pseudomonas bacteria. According to 

Thordal-Christensen, nutrient availability is an important layer of nonhost resistance 

(Thordal-Christensen, 2003). We demonstrated previously that flagellin sensing also plays a 

role in Arabdiospsis nonhost resistance. Ptab strain 6505 lacking the flagellin synthesis gene is 

able to grow in Arabidopsis that is a nonhost plant for Ptab (Li et al., 2005). Flagellin sensing is 

mediated by the receptor like kinase FLS2, which subsequently activates MAPK signaling 

cascade and WRKY transcriptional factors (Asia et al., 2002). To test whether there is a 

synergistic effect between NHO1 mediated glycerol deprivation and FLS2 mediated innate 

immunity, a nho1/fls2 double mutant was constructed. As shown in Fig. 4-3, nho1 and fls2 

single mutants supported 10-20 fold Ptab bacterial growth whereas the nho1/fls2 double 

mutant supported more than 60 fold bacterial growth (Fig. 4-3), suggesting that NHO1 and 

FLS2 work synergistically in Arabidopsis nonhost resistance against Ptab. 
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Glycerol Uptake Is Not Required for Pph Growth on Bean Plants  

To test whether glycerol uptake is an important determinant for Pph to grow on its host 

plants, both wild type Pph and TN:glpF mutant strains were inoculated into bean leaves via 

syringe infiltration. Our data show that both wild type and mutant strains grow similarly and 

cause indistinguishable disease symptom on bean plants (Fig. 4-4a and 4-4b), indicating that 

glycerol uptake is not required for Pph bacterial growth in compatible bean plants. 

Interestingly, a Pph mutant strain min41 (Xiao, 2005) deficient in fructose and mannose uptake 

grew less and failed to cause disease on bean plants (Fig. 4-4b). TTSS activity is 

downregulated in Pph min41 mutant (Xiao, 2005). So far, it is not clear whether the growth 

defect of Pph min41 mutant is caused by the lack of nutrient or by the downregulation of TTSS 

activity. 

Alginate Production Is Required for Nonhost Bacterial Growth in nho1 Plants  

It has been shown that glycerol assimilation is incorporated into alginate synthesis in P. 

aeruginosa (Marty et al., 1992). Alginate production is a critical virulence determinant of P. 

aeruginosa in chronic lung infection of cystic fibrosis (CF) patients (Ramsey and Wozniak, 

2005). A role for alginate in bacterial colonization of host plants has also been proposed (Yu et 

al., 1999; Keith et al., 2003). Supporting a role for alginate in facilitating nonhost bacterial 

growth in nho1 plants, the TN:algL mutant of Pss strain 3525 (Yu et al., 1999) deficient in 

alginate biosynthesis failed to grow in nho1 plants (Fig. 4-5a). However, it is noteworthy the 

TN:algL mutant had a general growth defect even in wild type Col-0 plants (Fig. 4-5a). To 

better illustrate the role of alginate in Pseudomonas virulence activity on plants, a Pph TOPO: 

∆algD mutant was created by disrupting algD ORF with TOPO:∆algD plasmid. The Pph 

TOPO:∆algD mutant lost the mucoid phenotype on MG plates (Li X. and Zhou J.M., 

unpublished data). However, the bacterial growth of Pph TOPO: ∆algD on bean plants was not 

affected (Fig. 4-5c), suggesting alginate is not a critical virulence determinant in Pph 

pathogenicity on its host plants.  
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Glycerol Uptake Negatively Regulates DC3000 Virulence on Arabidopsis Plants 

To test whether glycerol serves as a carbon source for compatible bacteria strains in 

Arabidopsis plants, we screened a DC3000 transposon insertion library for a DC3000 TN:glpF 

mutant (Fig. 4-6a) and tested its bacterial growth in nho1 and Col-0 plants. Consistent with our 

previous results, DC3000 grew similarly in the nho1 mutant and the Col-0 plants (Lu et al., 

2001). However, the DC3000 TN:glpF mutant strain grew much better in both Col-0 and the 

nho1 mutant plants compared to the wild type DC3000 strain (Fig. 4-6b), suggesting that 

glycerol uptake negatively regulates DC3000 virulence activity on Arabidopsis plants. 

Interestingly, although DC3000 grew similarly on both Col-0 and nho1 plants, a significant 

difference in DC3000 TN:glpF bacterial growth on Col-0 and nho1 plants was consistenly 

observed.  

Glycerol Uptake Suppresses DC3000 TTSS Activity through G3P 

Because TTSS is the most important virulence determinant for bacteria pathogenesis, 

we further tested whether glycerol uptake affects type III gene expression. Consistent with the 

previous report (Xiao et al., in press), avrPto promoter activity is induced by MM 

supplemented with 10mM fructose (Fig. 4-7a). No induction was observed when fructose was 

removed from MM (Fig. 4-7a), indicating that fructose is the major inducer of avrPto-LUC 

activity. Glycerol is able to induce avrPto promoter activity when supplied as the sole carbon 

source in MM (Fig. 4-7a). However, in the presence of fructose, supplement of glycerol 

inhibits avrPto-LUC activity that is induced by fructose (Fig. 4-7b). The suppression imposed 

by glycerol is abolished in DC3000 glpF- mutant (Fig. 4-7b), indicating that active glycerol 

uptake system is needed. It is noteworthy that the suppression of avrPto-LUC activity by 

glycerol is sensitive to glycerol concentration. Glycerol supplemented at as low as 10mM is 

able to suppress avrPto-LUC by about 1.5 folds. The suppression is most obvious when 

glycerol was added at 50mM. Intriguingly, increasing the glycerol concentration to 100mM 

abolished the suppression and brought the avrPto-LUC activity back to normal.  

Because glycerol is converted to G3P upon uptake, we hypothesized that the 

suppression of TTSS activity by glycerol is actually mediated by G3P. Supporting this 
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hypothesis, G3P is able to suppress avrPto-LUC activity in both DC3000 wild type and glpF- 

mutant strains (Figue 4-7c), suggesting that G3P is responsible for TTSS repression. 

Consistent with the TTSS activity in MM, avrPto-LUC activity in planta is also negatively 

regulated by glycerol uptake (Fig. 4-8). Taken together, these results demonstrated that 

glycerol accumulation in nho1 mutant imposed a negative regulation on TTSS in a glycerol 

uptake dependent manner.  

Discussion 

Glycerol is an important carbon source for Pseudomonas bacterial growth. Glycerol 

taken up by bacteria cells is converted to dihydroxyacetone phosphate (DHAP) and used for 

lipid biosynthesis, alginate production and cellular metabolism (Schweizer et al., 1997). Here 

we showed that glycerol uptake is required for Pph bacterial growth in nho1 plants, suggesting 

that glycerol availability determines the outcome of nonhost bacterial growth. However, it is 

noticeable that the bacterial growth of Pph TN:glpF mutant in nho1 plants was not completely 

abolished (Fig. 4-2b). Whether or not other mechanisms are also involved in Arabidopsis 

nonhost resistance to Pph remains an open question. The abolishment of cytosolic G3P by 

NHO1 mutation could somehow affect Arabidopsis lipid metabolism, which has been assigned 

a role in plant defense response against Pseudomonas bacteria (Shah, 2005).  

A synergistic effect is detected between NHO1 and FLS2, both of which contribute to 

Arabidopsis nonhost resistance against Ptab. NHO1 is induced by a Pseudomonas PAMP flg22 

in FLS2-dependent manner (Li et al., 2005; Zhang J. and Zhou J.M., unpublished data). The 

inability of a Ptab flic- mutant to induce NHO1 was associated with its gain-of-virulence on 

Arabidopsis plants (Li et al., 2005). These data suggest that flg22 induced NHO1 expression 

contributes to the Arabidopsis nonhost resistance against Ptab. FLS2 was identified to play a 

role in Arabidopsis nonhost resistance because the fls2 mutant supported Ptab bacterial growth 

(Fig. 4-3). How do FLS2-mediated innate immunity and NHO1-mediated nonhost resistance 

work together is not clear. It is possible that FLS2 and NHO1 defend bacteria at different 

infection stages. For example, nho1 mutant allowed nonhost bacteria multiplication and the 
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formation of bacterial colonies in the intercellular spaces (Lu et al., 2001). FLS2, instead, may 

limit the movement and spread of bacterial cells upon the recognition of flagellin.  

Glycerol is a good energy source for alginate synthesis. A role of alginate in 

Pseudomonas bacterial virulence on plants is arguable. Keith (2003) observed a reduction in 

Pss TN:algL pathogenicity on bean plants. The Pss TN:algL mutant strain was not able to 

produce alginate (Yu et al., 1999), revealing a correlation between alginate production and Pss 

pathogenicity. A growth deficiency of Pss TN:algL on both Arabidopsis wild type and the 

nho1 mutant plants were also observed in this study. However, alginate production was not a 

virulence determinant in P. aeruginosa (Yorgey et al., 2001) and P. s. pv. tomato strain 

DC3000 (Li X. and Zhou J.M., unpublished data) pathogenicity on Arabidopsis. Moreover, a 

Pph algD mutant unable to synthesize alginate grew normally on its host bean plants. Further 

experiments are needed to determine the bacterial growh of Pph algD mutant on its nohost 

Arabidopsis plants. The result on this experiment will help us to address the role of alginate in 

Pph growth on nho1 plants.   

Although glycerol uptake is important for Pph bacterial growth on nonhost Arabidopsis 

plants, it seems despensible for Pph bacterial growth on host bean plants. It is possible that 

glycerol availability is noncritical in compatible interactions when a number of other nutrients 

including various carbohydrates are accessable. For example, the most important 

photosynthesis product, sucrose can be broken down into two hexoses, fructose and sucrose.   

Fructose seems to be an important carbon source for Pph growth in bean plants because Pph 

min41 mutant unable to uptake fructose failed to cause disease (Fig. 4-4b). It will be interesting 

to examine whether fructose is also an important carbon source for DC3000 growth in 

Arabidopsis plants.  

Besides a role in nutrient absorbance, the glycerol uptake system seems to negatively 

regulate TTSS activity in P. s. pv. tomato strain DC3000. DC3000 glpF mutant that was unable 

to take up glycerol exhibited higher TTSS activity and grew better on Arabidopsis plants. 

Glycerol also suppresses TTSS activity in MM supplemented with fructose in a 

concentration-sensitive manner. Although it is difficult to explain why glycerol at 50mM 

instead of 100mM suppresses TTSS induction by fructose, the regulation of TTSS seems 
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consistent with DC3000 bacterial growth in Arabidopsis plants. DC3000 grew to a same level 

in both Col-0 and nho1 plants (Lu et al., 2001). However, in the nho1 mutant plants, glycerol 

accumulated to about 200mM (Fig. 4-1b), a concentration at which TTSS is not suppressed 

(Fig. 4-7b) and DC3000 growth is not affected. The TTSS regulation in DC3000 glpF mutant 

also correlates well with the in planta bacterial growth (Fig. 4-7b).  

Glycerol is converted to G3P, which forms the triglycerol backbone for bacterial fatty 

acids biosynthesis (Schweizer et al., 1997). Like glycerol, G3P similarly suppresses TTSS 

activity in MM supplemented with fructose. Commercially available C16 and C18 fatty acids 

including palmitic acid, oleic acid and stearic acid are also active suppressors of TTSS activity 

(Xiao et al., 2004). Based on these results, bacterial glycerol uptake and lipid biosythesis seem 

to impose a negative regulation on TTSS activity. Intriguing questions are then raised: why 

would bacteria suppress their own virulence machinery upon glycerol uptake? What is the 

message carried by glycerol that is sensed by the bacterial cells? How would this message 

modulate bacterial lipid metabolism and TTSS activity?   

A model illustrating the role of bacteria glycerol uptake in bacteria metabolism and 

TTSS regulation is proposed (Fig. 4-9). In compatible interactions, the NHO1 expression and 

other plant metabolism genes are suppressed by type III effectors (Li et al., 2005), allowing the 

accumulation of various nutrients in the intercellular spaces. Unlike the role of glycerol uptake 

in nonhost interactions, glycerol uptake in compatible interactions may act as a sensitive tuner 

to adjust the balance between bacterial cellular metabolism and TTSS activity. Glycerol itself 

may not be an important nutrition in compatible interactions. However, glycerol availability 

could be an indicator of the overall status of nutrient avalaibility in the plant intercellular 

spaces. When glycerol is available, it may indicate a nutrient rich environment. In such a case, 

glycerol slightly inhibits TTSS activity through G3P to allow bacterial multiplication. 

However, when glycerol uptake system is mutated, the TTSS will be derepressed and more 

type III effectors will be secreted to suppress host defense genes and to obtain nutrients. 
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Figure Legend 

Figure 4-1 Loss of glycerol kinase activity and glycerol accumulation in nho1 

mutant plants. a. Glycerol kinase (GK) activity is abolished in nho1 mutant plants. b. Glycerol 

accumulation in nho1 mutant plants. Fresh Arabidopsis leaves were deatched from 5-week old 

Col-0 and nho1 plants. The total leaf protein and glycerol were extracted as described in 

materials and methods. Glycerol kinase activity and glycerol content was calculated based on 

the change of NADH absorbance at OD340.  

Figure 4-2 Active glycerol uptake is required for nonhost bacterial growth in 

nho1 plants. a. Organization of Pph glycerol uptake genes in glpF operon. glpF: glycerol 

fercilitator; glpK: glycerol kinase; glpD: glycerol 3-phosphate dehydrogenase; glpR: putative 

glp repressor; glpT: membrane associated glycerol 3-phosphate permease. TN represents the 

transposon insertion at the beginning of glpF open reading frame in Pph glpF- mutant. b. 

Glycerol uptake system is required for Pph bacterial growth in nho1 mutant plants. Bacteria 

were cultured in King’ B medium supplied with 1mM glucose. Bacterial number was counted 

at indicated time points. Each data point represents four independetn replicates. This 

experiment was repeated at least two times with similar results. c. Pph glycerol uptake is 

activated by glycerol accumulated in nho1 mutant plants. Pph bacteria carrying 

pPLT:glpF-LUC plasmid (construct made by Xiao F.) was inoculated at 0.2 OD600 on 5-week 

old Arabidopsis plants. Leaves were detached at 6, 12 and 24 hours after inoculation and 

examined for LUC activity. The picture shown here was taken 24 hours after inoculation. This 

experiment was repeated three times with similar results. 

Figure 4-3 NHO1 and FLS2 work synergistically in Arabidopsis nonhost 

resistance. Bacteria were inoculated at 105 cfu/ml. Arabidopsis leaves were detached at the 

indicated time points and surface sterized with 75% alcohol before grinding with a hand drill. 

Each data point represents 4 replicates. This experiment has been done once. 

Figure 4-4 Glycerol uptake is not a virulent determinant in Pph on host bean 

plants. a. Glycerol uptake is not required for Pph growth on its host bean plants. Bacteria were 

inoculated at 105 cfu/ml. Leaf discs were detached and analyzed for bacterial growth at 
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indicated time points. Each data point contains 4 independent replicates. b. Disease symptoms 

caused by Pph wild type ad glpF- mutant strains. Bacteria were inoculated at 106 cfu/ml. Picture 

was taken 7 days after inoculation. 

Figure 4-5 Alginate is required for Pss growth in nho1 mutant plants but not 

required for Pph growth in bean plants. a. Bacterial growth of Pss and algL- mutant strains 

in Arabidopsis plants. b. Bacterial growth of Pph and algD- mutant strains in bean plants. 

Bacteria were inoculated at 105 cfu/ml. Leaf discs were detached and analyzed for bacterial 

growth at the indicated time points. Each data point represents 4 independent replicates. These 

experimnets have been repeated at least two times with similar results. 

Figure 4-6 Glycerol uptake negatively regulates DC3000 bacterial virulence. a. 

Organization of DC3000 glycerol uptake genes in glpF operon. glpF: glycerol fercilitator; 

glpK: glycerol kinase; glpD: glycerol 3-phosphate dehydrogenase; glpR: putative glp 

repressor; glpT : membrane associated glycerol 3-phosphate permease. TN represents the 

transposon insertion at the beginning of glpF open reading frame in DC3000 glpF- mutant. b. 

Bacterial growth assay of DC3000 wild type and glpF- mutant strains in Arabidopsis plants. 

Bacteria were inoculated at 105 cfu/ml. Leaf discs were detached and analyzed for bacterial 

growth at the indicated time points. Each data point represents 4 independent replicates. This 

experimnet has been repeated at least two times with similar results. 

Figure 4-7 Glycerol uptake negatively regulates DC3000 TTSS activity through 

G3P. a. Induction of avrPto-LUC activity in MM supplied with fructose or glycerol. b. 

Glycerol suppresses avrPto-LUC activity induced by fructose in DC3000 wild type but not 

glpF- mutant strain. c. G3P suppresses avrPto-LUC activity in both DC3000 wild type and 

glpF- mutant strains. Bacteria were cultured overnight in King’B medium, washed with ddH2O 

and encubated in MM supplied with the corresponding carbon source for 6 hours before 

examining for LUC activity. These experiments have been repeated at least twice with similar 

results. 

Figure 4-8 Glycerol uptake negatively regulates TTSS activity in nho1 mutant 

plants. Bacteria were inoculated at 0.2 OD600 on 5-week old Arabidopsis plants. Leaves were 
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detached at the indicated time points and examined for LUC activity. Each data represents at 

least 5 replicates.  

Figure 4-9 A model of glycerol regulation on Pseudomonas bacterial metabolism 

and TTSS activity. In compatible interactions, the NHO1 is suppressed by type III effectors 

and glycerol is available for bacterial cellular metabolism. To allow enough energy for 

bacterial multiplication and alginate biosynthesis, glycerol uptake slightly inhibits TTSS 

activity through G3P. However, when glycerol uptake system is mutated, the TTSS will be 

derepressed and more type III effectors will be secreted to suppress host defense genes and get 

nutrients. 
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Figure 4-1 Loss of glycerol kinase activity and glycerol accumulation in nho1 mutant plants 
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Figure 4-2 Active glycerol uptake is required for nonhost bacterial growth in nho1 plants 
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Figure 4-3 NHO1 and FLS2 work synergistically in Arabidopsis nonhost resistance 
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Figure 4-4 Glycerol uptake is not a virulent determinant in Pph on host bean plants 
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Figure 4-5 Alginate is required for Pss growth in nho1 mutant plants but not required for Pph growth in 
bean plants 
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Figure 4-6 Glycerol uptake negatively regulated DC3000 bacterial virulence 
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Figure 4-7 Glycerol uptake negatively regulates DC3000 TTSS activity through G3P 
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Figure 4-8 Glycerol uptake negatively regulates TTSS activity in nho1 mutant plants 
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Figure 4-9 A model of glycerol regulation on Pseudomonas bacteria nutrient uptake, growth and 
virulence 
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Appendix A Supporting Information 

Detection of HopAI1-FLAG in plants 

Transgenic plants carrying the hopAI1-FLAG transgene were sprayed with 25 mM 

estradiol for 24 h. Total protein was extracted from leaves and approximately 100 �g protein 

was fractionated through SDS Page, and protein blot was detected with the mouse anti-FLAG 

M-2 monoclonal antibody (Sigma, St. Louis, MO) and the ECL kit from Amersham 

Biosciences (Piscataway, NJ).  

Reference 

Ronald, P.C., Salmeron, J.M., Carland, F.M. & Staskawicz, B.J. (1992) J. Bacteriol. 

174, 1604-1611. 
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Appendix B Definition of Abbriviations 

APAF1: apoptosis protease activating factor 1 

AtROC1: Arabidopsis single-domain cyclophilin 

AVR: avirulence 

BRI1: brassinosteroid-insensitive 1 

CAPS: cleaved amplified polymorphic sequence 

CC: coiled-coil  

CEL: conserved effector loci 

CHORD I: cysteine-and histidine-rich domain 

CLV: CLAVATA1  

COI1: coronatine insensitive 

DEX: dexamethasone 

EDS1: enhanced disease susceptibility    

EFR: EF-Tu receptor  

EF-Tu: elongation factor Tu 

ETI: effector-triggered immunity 

FLS2: flagellin sensing 2 

GEBP: GE binding protein 

GE : β-glucan elicitor    

HR: hypersensitive response 

HSP90: Heat shock protein 90 

INDEL: insertion-deletion 

ISR: induced systemic resistance 
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JA: jasmonic acid 

LBP: soluble LPS-binding protein   

LII: localized innate immunity 

LPS: lipopolysaccharide 

LRR: leucine-rich repeats 

MAPK: mitogen-activated protein kinase 

NBS: nucleotide binding site  

NDR1: nonrace-specific disease resistance 

NHO1: nonhost resistance 1 

NO: nitric oxide                    

NOD: nucleotide-binding oligomerization domain 

NOS: nitric oxide synthase 

NPG1: no pollen germination1 

NPR1: nonexpressor of pathogen-related gene 1 

PAD4: phytoalexin-deficient 4 

PAMP: pathogen associated molecular pattern 

PBS1: required for AvrPphB/RPS5-mediated resistance 

PCD: program cell death 

PEN: penetration 

PRR: pattern recognition receptor  

PRS2: resistance to Pseudomonas syringae 

PTI: PAMP-triggered immunity 

R: resistance 

RAR1: required for Mla12 resistance          
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Rcr3: required for Cf-2 mediated resistance 

RIN4: RPM1 interacting protein 4 

RLK: receptor-like kinase 

RLP: receptor like protein   

RPG1: resistance to Pseudomonas syringae pv. glycinea 

RPM1: resistance to Pseudomonas syringae pv. maculicola 

RPW8: resistance to powdery mildew 8 

Rxo1: reaction to Xanthomonas oryzicola 1 

SA: salicylic acid  

SAG101: senescence-associated gene101 

SAR: systemic acquired resistance 

SCF: Skp1-Cullin-F-box 

SGT1: suppressor of the G2 allele of Skp1 

SIR: systemically induced resistance    

SNARE: soluble N-ethylmaleimide-sensitive factor attachment protein receptor 

SNP: single nucleotide polymorphism 

SSLP: simple sequence length polymorphism 

TIR: Toll/interlucin-1 receptor 

TLR: Toll-like receptor  

TMV: tobacco mosaic virus 

TTSS: type III secretion system  

WIR: wound-induced resistance 
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Supporting Table 2-1 Primers used for effector transient expression constructs 

Construct Forward primer Reverse Primer 
Effector 
Digestion Note 

35S-AvrPto ttggtaccctcgagatgggaaatatatgtgtc actcgtcgacatagttcattgccagttacggtac XhoI/SpeI  

35S-HopAI1-FLAG aactcgagcgatagaaagcaggaaaacaac ttttcgaagcgagtccagggcggtggcatc XhoI/Csp45I  

35S-HopAQ1-FLAG aactcgagcgtaaaaatgaggactgcag ttttcgaatgcactgccaccagcaatcgag XhoI/Csp45I  

35S-HopQ1-2-FLAG aactcgagcgtgtaatcagcacttcctc ttttcgaaatccgggactgccgtcgac XhoI/Csp45I  

35S-HopT1-2-FLAG ttgtcgacgataagtggcacgtcgatttc ttttcgaagcctacccgatcagcggctgaat SalI/Csp45I  

35S-HopS1-FLAG ttctcgagtgctctgatgcgataaaaagag ttttcgaagaccttcccaagctctg XhoI/Csp45I  

35S-HopS2-FLAG aactcgaggccttcatgaaaaagtctg ttttcgaagccagatgagctcgccacag XhoI/Csp45I start codon GTG changed to ATG 

35S-HopAS1-FLAG aactcgagccgatggagcccgctcatgaccttaag ttttcgaaagaaaactcggctttctgttcaacctg XhoI/Csp45I  

35S-HopJ1-FLAG aactcgagcaacaggcggcgttcgtcaaggaaag aaatcgataaccttgcgcttgagtggctcgccttcgaatg XhoI/ClaI from old annotation, missing first 36 aa 

35S-HopAA1-1-FLAG aagtcgactgttcaaacttccgtagaacgagag aaatcgatcgaccgcataggccgaaacggtatttc SalI/ClaI  

35S-HopC1-FLAG aactcgagtcagggaactgaaccgcttatg ttttcgaagtgtatttttgaagcgaatacttgaac XhoI/Csp45I  

35S-HopF2-FLAG ttctcgaggaaaccattatgggtaatatttgc ttttcgaagaccctttcgaccggcactttc XhoI/Csp45I start codon ATA changed to ATG 

35S-HopAF1-FLAG ccgctcgagcggatggggctatgtatttca cccttcgaattgtgcgaccagatgttt XhoI/Csp45I  

35S-HopK1-FLAG ccgctcgagcggatgaatcgcatttcaaccagc cccttcgaagcagtagagcgtgtcgcgac XhoI/Csp45I 

35S-HopL1-FLAG aactcgagaaactacagctctacaccatgttg ttttcgaatctcgctttgaacgcctggatgac XhoI/Csp45I  

35S-HopQ1-1-FLAG ccgctcgagcggatgcatcgtcctatcacc cccttcgaaatctggggctaccgtcga XhoI/Csp45I  

35S-HopU1-FLAG ccgctcgagcggatgaatataaatcgacaactg cccttcgaaaatctgacttaatacaaataaatg XhoI/Csp45I  

35S-HopO1-2-FLAG ttctcgagacgctgtgtatgaatatc aaatcgattctcgttcaaatcgacgtg XhoI/ClaI  

35S-HopT1-1-FLAG aactcgagtgactcatatgatgaaaacag ttttcgaatgacttttgagccgcctgcctgac XhoI/Csp45I  

The P. syringae pv. tomato T1 strain carrying the pPTE6 plasmid (1) was used as template for avrPto-amplification.  
Other effector genes were amplified from DC3000 genomic DNA. 
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Supporting Figure 2-1 HopAI1 is a conserved effector in both animal and plant pathogenic bacteria 
St_VirA      1 MPINRPNLNLNIPPLNIVAAYDGAEIPSTNKHLKNNFNSLHNQMRKMPVSHFKEALDVPDYSGMRQSGFFAMSQGFQLNNHGYDVFIHAR 
Sc_s08402    1 MPINRPNLNLHIPPLNIVAAYDGAEIPSTNKHLKNNFNSLHNQMRKMPLSHFKEALDVPDYSGMRQSGFFAMSQGFQLNNHGYDVFIHAR 
Cv_VirA      1 MPINRAGLKLSLPSLNVGPVSERPQMSATNEDLKTNFHSLHNQMRQMPMSHFREALDAPDYSGMRQSGFFAMSQGFQLESHGGDVFMHAH 
Sf_OspF      1 MPIKKPCLKLNLDSLNVVRS-EIPQMLSANERLKNNFNILYNQIRQYPAYYFKVASNVPTYSDICQ-FFSVMYQGFQIVNHSGDVFIHAC 
HopAI1Pto     1 --------MLALKLNTSIAQAPLKKNAEAELRHMNHAEVRAHTPTRFTLNHRAPTYEVAQSALGENHGGWTAVNKFKVTES--EVFIHME 
HopAI1Psy     1 ----------------------MKKDAGAQLRRLNQSEVRANTPTRFAVNHRAPTYDVAQSALGENHGGWTAANHFKMTGS--EVFIHMD 
consensus    1                       .   . .. .  ..  .  .   .. . .     ..   .   . . .  .. * .     .**.*   
 
 
St_VirA     91 RESPQSQGKFAGDKFHISVLRDMVPQAFQALSGLLFSEDSPVDKWKVTDMEKVVQQA-----RVSLGAQFTLYIKPDQENSQYSASFLHK 
Sc_s08402   91 RESPQSLGKFAGDKFHISVLRDMVPQAFQALSGLLFSEDSPVDKWKVTDMEKVVQQA-----RVSLGAQFTLYIKPDQENSQYSASFLHK 
Cv_VirA     91 RENPQCKGDFAGDKFHISVQREQVPQAFQALSGLLFSVDSPIDKWKVTDMERVDQQS-----RVAVGAQFTLYVKPDQENSQYSASSLHN 
Sf_OspF     89 RENPQSKGDFVGDKFHISIAREQVPLAFQILSGLLFSEDSPIDKWKITDMNRVSQQS-----RVGIGAQFTLYVKSDQECSQYSALLLHK 
HopAI1Pto    81 RSDSRSKGDFAGDKIHLSVAPQHVASAFNAIGKILQADDSPVDKWKVTDMSCASSDLQPEKKRVTQGAQFTLYAKPDRADNTYSPEYMGK 
HopAI1Psy    67 RLEPNCKGEFAGDKIHLSVAPEDVPHAFNAIGKTLQASDSPVDSWKVTDMKCLQAEMPAAEQRVALGAQFTIYAKPDRADNTYSPEYMGK 
consensus   91 *  .. .*.*.*** *.*.. . *. **...   * . ***.* **.***  .  .      **..*****.* *.*  .  **  .. . 
  
St_VirA    176 TRQFIECLESRLSENGVISG-QCPESDVHPENWKYLSYRNELRSGRDGGEMQRQALREEPFYRLMTE------------------------ 
Sc_s08402  176 TRQFIECLESRLSENGVISG-QCPESDVHPENWKYLSYRNELRSGRDGGEMQRQALREEPFYRLMTE------------------------ 
Cv_VirA    176 TRQFIECLESRLSESGLMPG-QYPESDVHPENWKYVSYRNELRSGRDGGEMQSQALREEPFYRLMAE------------------------ 
Sf_OspF    174 IRQFIMCLESNLLRSKIAPG-EYPASDVRPEDWKYVSYRNELRSDRDGSERQEQMLREEPFYRLMIE------------------------ 
HopAI1Pto   171 MRGMISSIERELHTAGVQQSNNRPASDVAPGHWAYASYRNEHRSERAGSSSQANELEKEPFFQLVSFPDVAASPVKSGASSRSLMPPPWTR 
HopAI1Psy   157 MRGMISSIEQELSAAGVRQSSHRPDSDVSPGHWSYASYRNEHKSNRSGTSNQHRNLEAEPFFQLVSFSDGASGSSRSSADHQALLPPPWAR 
consensus  181 .*  *  .*  *. ...      *.*** *  * * ***** .* * *.  *.  *  ***. *..                         
 

Supporting Figure 2-1. HopAI1 is a conserved effector in both animal and plant pathogenic bacteria. 
Amino acid sequence of DC3000 HopAI1Pto (accession AA05440) was aligned with homologous sequences 
from other bacteria using CLUSTAL W. Homologous amino acid sequences are shaded by using 
BOXSHADE. St_VirA, Salmonella typhimurium VirA (accession A41481); Sc_s08402, Salmonella 
choleraesuis virulence-associated protein (accession S08402); Cv_VirA, Chromobacterium violaceum VirA 
(accession AAQ58983); Sf_OspF, Shigella flexneri OspF (accession AAP78969); HopAI1Psy, HopAI1 from 
P. syringae pv. syringae (accession ZP00128143). Asterisks and dots denote invariant and conserved 
residues, respectively. Strong homology between the two Pseudomonas HopAI1 and animal bacterial 
proteins exists throughout the entire protein, except for the N-terminus where the presumed type III 
secretion signal resides.  
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Supporting Figure 2-2 HopAI1 expression in primary transgenic plants enhances bacterial growth in 
plants 
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Supporting Figure 2-2. HopAI1 expression in primary transgenic plants enhances 
bacterial growth in plants. Six primary transgenic plants were sprayed with 50 �M 
estradiol. 24 h after the spray, hrpL- mutant DC3000 bacteria were inoculated into leaves, and 
bacterial population was determined 4 days later. Error bars indicate standard error. Western 
blot below the graph shows HopAI1-FLAG protein in individual transgenic plants one day 
after estradiol spray. This figure is contributed by Zhang J. 
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Supporting Figure 2-3 DC3000 wild type and flic- mutant strains cause similar disease symptoms on  

Arabidopsis plants 

 
 
 
 
 
 
 
 
 
 
 
 
 

Supporting Figure 2-3. DC3000 wild type and flic- mutant strains cause similar disease 
symptoms on Arabidopsis plants. DC3000 (left) and flic- mutant (right) strains were 
inoculated at 106 cfu/ml into Arabidopsis Col-0 plants. The inoculated plants were encubated 
in a 22ºC plant growth chamber to allow symptom development. Picture was taken 6 days 
after inoculation. This experiment was repeated two times with similar results.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

142 



Supporting Figure 2-4 Southern blot analysis of effector sequences in Ptab, Pph, and DC3000 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Supporting Figure 2-4. Southern blot analysis of effector sequences in Ptab, Pph, and 
DC3000. A total of 200 ng of plasmid DNA containing hopS1, hopAI1, hopAF1, hopT1-1, 
hopT1-2, hopAA1-1, hopF2, hopC1, and avrPto were digested with XhoI and SpeI to release 
the effector sequences and transferred to the membrane. Triplicated membranes containing 
equal amounts of DNA were hybridized with radio-labeled genomic DNA isolated from the 
indicated bacterial strains. Standard hybridization was carried out at 65°C, and membranes 
were washed to 0.5 × SSC at 65°C. This figure is contributed by Lin H. 
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Supporting Figure 2-5 DC3000 cfa-cma- double mutant deficient in coronatine systhesis slightly 
compromises NHO1-LUC suppression 

 

 

Supporting Figure 2-5 DC3000 cfa-cma- double mutant deficient in coronatine systhesis 
slightly compromises NHO1-LUC suppression. NHO1-LUC transgenic Arabidopsis plants 
were inoculated with DC3000 wild type and cfa-cma- mutant strains resuspended in 0.2mM 
luciferin at 107 cfu/ml. Arabidopsis leaves were detached and sprayed with 1mM luciferin 
containing 0.01% Triton X-100. Luminescence images were captured with a low light 
imaging system. Relative luciferase (LUC) activity was calculated with the WinView 
software provided by RoperScientific, Trenton, NJ.  
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Supporting figure 2-6 MeJA partially suppresses the Pph-induced NHO1-LUC activity  

 

 

Supporting Figure 2-6 MeJA partially suppresses the Pph-induced NHO1-LUC activity. 
NHO1-LUC transgenic Arabidopsis plants were encubated in a sealed 47-liter glass chamber.  
50µl 10% MeJA were added to a cotton swab inside the chamber. Same amount of ethonal 
were used as control. Arabidopsis leaves were detached at the indicated time points and 
sprayed with 1mM luciferin containing 0.01% Triton X-100. Luminescence images were 
captured with a low light imaging system. Relative luciferase (LUC) activity was calculated 
with the WinView software provided by RoperScientific, Trenton, NJ.  
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