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Abstract 

The focus of this research is improving the pulse output energy of a mid-IR pulsed acetylene-filled 

Hollow-core Optical Fiber Gas LASer (HOFGLAS) system. Pump pulses and acetylene molecules 

interact with each other inside hollow-core photonic crystal fiber that effectively confines light 

and allows for strong gain. This results in lasing at 3.11 μm and 3.17 μm lines based on population 

inversion of acetylene molecules, which are optically pumped at rotational-vibrational overtones 

near 1.5 μm using 1 ns pulse duration from an optical parametric amplifier (OPA). This acetylene 

laser operates with no cavity mirrors because of a high gain in a single pass configuration. There 

are few laser sources in the mid-IR region while there are many applications for having a laser 

source in this range such as remote sensing, hazardous chemical detection, and breath analysis. 

This adds to the importance of the acetylene-filled HOFGLAS system. Some of the applications 

like remote sensing require high power. So, we moved toward power scaling this laser system by 

optimizing the laser operation through maximizing the OPA alignment to improve its modal 

content using longer length of fiber to increase the interaction length and improving the beam 

quality of the mid-IR emissions. The highest pulse energy ever obtained in the 3 µm mid-IR region 

from the acetylene-filled HOFGLAS after applying the improvements is reported here (1.4 μJ). 

Higher mid-IR pulse energies can be achieved by improving the pulse energy achievable from the 

OPA pump source and working with longer pulse duration to decrease the bandwidth of the OPA. 

This operation demonstrates many novel properties of acetylene-filled pulsed mid-IR hollow-core 

fiber lasers. The excellent spatial beam quality at highest power and phenomenological scaling of 

saturation power and efficiency with pressure that we observe point to the promise of power 

scaling and motivate further development of numerical models of the laser for deeper insight into 

these effects. M2 measurement method was used to examine spatial beam quality and it was found 



  

to be fiber-dependent. For the improved setup, M2 was investigated at several input pump powers 

in addition to the reproducibility checks. M2 of 1.14 at the maximum output power motivates for 

beam combining to scale to higher power. The independence of efficiency on pressure is an 

evidence for reaching higher mid-IR power at a pressure where saturation behavior does not exist. 

achieving the highest mid-IR power to date, 1.4 μJ, encourages for building higher power OPA to 

produce high power mid-IR emissions. Taken as a whole, this laser exhibits novel behavior that 

motivates both numerical/theoretical investigation and further efforts to scale to higher powers. 
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Higher mid-IR pulse energies can be achieved by improving the pulse energy achievable from the 

OPA pump source and working with longer pulse duration to decrease the bandwidth of the OPA. 

This operation demonstrates many novel properties of acetylene-filled pulsed mid-IR hollow-core 

fiber lasers. The excellent spatial beam quality at highest power and phenomenological scaling of 

saturation power and efficiency with pressure that we observe point to the promise of power 

scaling and motivate further development of numerical models of the laser for deeper insight into 

these effects. M2 measurement method was used to examine spatial beam quality and it was found 



  

to be fiber-dependent. For the improved setup, M2 was investigated at several input pump powers 

in addition to the reproducibility checks. M2 of 1.14 at the maximum output power motivates for 

beam combining to scale to higher power. The independence of efficiency on pressure is an 

evidence for reaching higher mid-IR power at a pressure where saturation behavior does not exist. 

achieving the highest mid-IR power to date, 1.4 μJ, encourages for building higher power OPA to 

produce high power mid-IR emissions. Taken as a whole, this laser exhibits novel behavior that 

motivates both numerical/theoretical investigation and further efforts to scale to higher powers. 
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Chapter 1 - Introduction 

The first Continuous Wave (CW) beams started with gas lasers and they were used to make 

the first holograms and weld metals. Today, they have wide variety of applications such as in 

medicine and photolithography [1]. Gas lasers work based on population inversion between energy 

states of gas, which is the active media of the laser system. The laser medium is kept in a plasma 

tube. In electrically pumped cases, two electrodes for electrical discharge are installed at two ends 

of the tube and are followed by dielectric mirrors to form the cavity. Gas lasers may be defined as 

atomic gas lasers, molecular gas lasers, ionized gas lasers, etc. A good example for atomic gas 

lasers is He-Ne laser. Examples of molecular gas lasers are CO2, CO, and N2 gas lasers. Argon ion 

lasers and krypton ion lasers are examples of ionized gas lasers. In this introduction, He-Ne, Ar+, 

and CO2 lasers are explained briefly as examples of atomic, ionized, and molecular gas lasers. The 

newest generation of gas lasers operate in hollow optical fibers and are discussed in this 

dissertation [2-8]. Gas lasers have many distinct advantages such as their cheap active medium, 

high damage threshold, widely tunable wavelength range, and high efficiency especially in 

optically pumped gas lasers. By selecting the appropriate gas for the active medium, it is possible 

to create lasers with emission wavelengths ranging from the UV to the IR. This is possible due to 

the large range of emission lines in atomic, molecular, and ionized gasses.   

Despite many advantages, conventional gas lasers do have a few detriments. Although heat 

mitigation techniques specific to gases like gas flow have been developed, gas lasers still suffer 

from heat management at high pump powers. An additional challenge of using a gas as the laser 

medium is the relatively short interaction length between the pumping source and the gas. Gas 

lasers, operating in hollow optical fibers have the exciting potential to overcome these challenges. 
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The first successful gas lasers created was the helium-neon laser (He-Ne laser). Ali Javan, 

Bill Bennett, and Don Herriott worked on developing the first He-Ne laser for about two years at 

Bell Labs [1]. The first He-Ne laser emitted at 1153 nm.  However, at that time a laser that could 

operate in visible wavelength range was more desirable. So, other neon transitions were carefully 

investigated to find emissions in the visible region from He-Ne laser. The 633 nm emission line in 

He-Ne laser was found to have the highest gain in the visible range. Alan White and Dane Rigden 

made the first 632.8 nm red He-Ne laser in 1962 and it was the first visible CW laser [1]. The gain 

medium of the laser is a mixture of helium and neon gases, in the ratio of 10:1 respectively [9]. By 

pumping the system, helium atoms can be excited because the gas mixture is mostly helium. Due 

to collision of the excited helium atoms with neon atoms, some of neon atoms get excited to certain 

energy levels that could then radiate in three lasing lines (633 nm, 1.15 µm, and 3.39 µm) as shown 

in Figure 1.1. So, the population inversion and light amplification processes in a He-Ne laser starts 

with inelastic collisions of energetic electrons from the pump with the ground state of helium atoms 

in the gas mixture. The collisions excite helium atoms from the ground state to excited states. 

Collisions between these excited helium atoms and neon atoms in the ground state result in an 

efficient transfer of excitation energy from helium to neon. Excitation energy transfer increases 

the population of two upper levels in Neon and population inversion between Neon energy levels 

occurs. The medium then amplifies light in two narrow bandwidths at wavelengths of 633 nm and 

1.15 µm. The lower laser level is emptied by fast radiative decay to another lower energy state and 

reaching the ground state eventually [9]. The highly reflecting mirrors at two ends of the 

amplifying media produces lasing in particular spatial modes. Radiation in these modes will build 

up until gain saturation occurs and it results in a continuous laser beam output. The gain bandwidth 

of the He-Ne laser is dominated by Doppler broadening rather than pressure broadening because 
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of low gas pressure; therefore, produces a quite narrow bandwidth, e.g. only about 1.5 GHz full 

width half-max for the 633 nm transition [9]. A neon laser without helium can be constructed but 

its demonstration is difficult because with no helium, the neon atoms would be excited to lower 

excited states that won’t result in lasing lines. The laser was electrically pumped in early 

demonstrations i.e. the pump source of the laser was a high voltage electrical discharge between 

electrodes at two ends of the gas tube.  

The He-Ne laser was commercialized in 1965. The original He-Ne lasers could produce 

only around one milliwatt of output power and the main use of this laser was limited to holography. 

In 1965, the first 3D holograms were made by Emmett Leith and Juris Upatneiks at the university 

of Michigan [1].  

 

 

Figure 1.1: Energy level diagram for He-Ne laser, is reproduced from Ref. [9]. 
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The gas in the vacuum tube can be replaced by a different gas to produce new effects. Earl 

Bell demonstrated a mercury-ion laser in 1963 and Bill Bridges reported demonstration of the first 

argon-ion laser at Hughes Research Labs in 1964 [1].  

An ion laser is a gas laser that uses an ionized gas as its lasing medium [10]. The energy 

level transitions that contribute to lasing come from ions as shown in Figure 1.2. A downside is 

the large amount of energy required for the gas to be ionized and excitation between energy levels 

to happen. So, in electrically pumped cases, high current is required. Therefore, heat sinking and 

cooling mechanisms are needed. Applications of argon-ion lasers include uses in retinal 

phototherapy (for diabetes), lithography, and pumping other lasers. Argon-ion lasers can emit at 

several wavelengths ranging from the ultraviolet, to the visible, and though the near-visible light 

region, some of them are shown in Figure 1.2. Argon ion lasers can be designed to produce 

continuous-wave output of milliwatt levels to tens of watts. In 1965, a commercial 1 W argon ion 

laser by Raytheon’s Research Division was developed. 

 

 

Figure 1.2: Argon ion laser’s energy level diagram, is reproduced from Ref. [9]. 
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Using carbon-dioxide as the laser gain medium allows for the production of the highest 

achievable CW power levels. CW output power at 130 W and efficiency of  ~14% was achieved 

by the inventor of the CO2 laser, Kumar N. Patel of Bell Labs in 1965. Also, CO2 lasers have high 

slope efficiency, i.e. the ratio of output power to input pump power. The CO2 laser have emissions 

at 9.6 μm and 10.6 μm. The active medium consists of  ~ 20% CO2, ~ 20% N2, a few percent H2 

or Xe and a few percent of He. The proportions may vary in each particular CO2 laser. An energy 

level diagram of a CO2 laser is shown in Figure 1.3.  

 

 

Figure 1.3: Carbon-dioxide energy level diagram, is reproduced from Ref. [9]. 

 

The population inversion is achieved in the nitrogen molecules as the media is pumped. 

Collisional energy transfer between the excited nitrogen molecules and the carbon dioxide 

molecules excites carbon dioxide molecules from ground state to an excited state and lead to 

population inversion for laser operation between carbon dioxide molecules. On the other hand, the 

transition of nitrogen molecules to ground state happens through collision with cold He atoms. The 

remaining hot He atoms must still contribute in producing population inversion in carbon dioxide 
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molecules; so, they should be cooled down and the walls of the gas tube help in cooling process. 

CO2 laser can also be used in pulsed operation as well as in the CW operation. The 9.6 μm and 

10.6 μm wavelengths emission lines of CO2 lasers are useful because they are in a window for 

high atmospheric transmission and also many materials have strong absorptions in this range of 

wavelengths.  

In 1974, other gas lasers such as Helium-cadmium lasers, Nitrogen lasers, and helium-

xenon laser pumped by neutrons from pulsed nuclear reactors were announced [1]. In 1975, rare-

gas halide excimer lasers were demonstrated. For example, the first discharge-pumped xenon 

fluride laser at 351 and 352 nm and 130 mJ pulses from krypton fluoride laser were reported [1]. 

In 1987, top five gas lasers based on market sales were reported in Laser Focus World magazine: 

1) CO2 lasers 2) Ion lasers, 3) He-Ne lasers, 4) Excimer laser, and 5) He-Cd lasers. They also 

announced the top 4 laser devices: 1) Green He-Ne (543 nm), 2) Tunable He-Ne ( 632.8, 612, 604, 

594 nm), 3) a battery-powered handheld 1 mW red He-Ne, and 4) a red He-Ne laser pointer 

[1].Today, CO2 and excimer lasers are still being used due to the fact that no good competitors 

exist in their important range of wavelengths. On the other hand, He-Ne and ion lasers are being 

used today in the applications that require long coherence length and single-mode operation.  

Progress toward power scaling of the laser systems began in 1970 when US military 

researchers scaled two gas lasers to impressive power levels. The Air Force’s Airborne Laser 

Laboratory scaled CO2 lasers to 400 kW level and Navy built the mid-IR chemical laser up to two 

Megawatts power level. In 1981, a multi-megawatt hydrogen-fluoride laser from DARPA was 

reported [1]. In 2010, military researchers continued working on diode-pumped alkali vapor lasers, 

that are still the best options for megawatt power levels and could offer optical conversion 

efficiency of ~ 90%. The first demonstration of Diode Pumped Alkali Lasers (DPAL) took place 
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at Lawrence Livermore National Laboratory in 2002. Afterwards, many other developments are 

reported toward power scaling, achieving good efficiency, and improving beam quality. DPALs 

combine features of both solid-state lasers and gas lasers. They work based on diode excitation of 

atomic alkali vapors. Therefore, they have the ability to be pumped by a source with wide spectral 

emissions and this characterization distinguishes DPALs from previous demonstrations of alkali 

lasers since alkali lasers used to be pumped by coherent and narrow-band pump source [11]. 

DPALs solve problems of heat dissipation that limited the beam quality of kilowatt-class solid-

state lasers. In 2003, it was reported that commercially available near-infrared laser diodes could 

pump alkali vapors very efficiently. Afterwards, DPALs have been demonstrated for potassium, 

rubidium, and cesium vapors. In rubidium and cesium DPALs, slope efficiencies are about 50% 

[12, 13].  

There has been a number of optically pumped gas lasers demonstrations such as [14-22] 

that some of them can be pumped on resonance with the wavelength range that is covered by 

commercial pump sources. HBr gas cell, that was pumped at 1.3 μm, emits light at 4 μm with slope 

efficiency of 25% [20]. Later, 50% slope efficiency was obtained from HBr 4 μm cascade laser 

[23]. In main problem in using conventional gas cells in optically pumped gas lasers is the very 

short interaction length between pump and media. So, the system can be bulky and this limits their 

applications. Research has continued on new types of gas lasers that operate inside hollow-core 

optical fibers. Researchers are taking confinement and energy transfer techniques developed for 

solid-state lasers and applying them for gas lasers [1]. In 2010, the first time demonstration of this 

new generation of gas lasers happened in our research group where Kristan Corwin, Brian 

Washburn, and Wolfgang Rudolph lead the team. These lasers are named HOFGLAS, which 

stands for Hollow Optical Fiber Gas LASers [8, 24]. The first HOFGLAS, exciting 3 μm lasing 
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from acetylene with 1.5 μm nanosecond pump pulses and gain was so high in acetylene-filled 

HOFGLAS that lasing was observed, despite the fiber’s loss of 20 dB/m at 3 micron [6]. Then, 

Fetah Benabid, from Xlim research institute at university of Limoges (France) developed the 

hollow core fibers with hypocycloidal core shape, which reduces loss at 3 μm. As in solid-core 

fibers, the long interaction length improves energy transfer from pump to active media; however, 

the laser beam is guided in the hollow core (free space) rather than in a solid core. Host materials 

in solid core fibers are replaced by a gas in gas-filled hollow-core fibers. The threshold for 

nonlinear effects such as Stimulated Brillion Scattering is higher in gas-filled hollow fibers and 

they offer higher damage threshold and better heat management than solid core fiber lasers. By 

improving operation of the acetylene-filled HOFGLAS setup and using lower loss fibers in mid-

IR, near diffraction-limited beam quality and higher mid-IR pulse energy are obtained. A 

phenomenological study of the laser system promise further power scaling with maintaining good 

beam quality [25]. The group has demonstrated CW operation at 1280 to 1340 nm in a hollow-

core fiber filled with molecular iodine and pumped at 532 nm in University of New Mexico in 

2015 [5]. 

In chapter 2 of this dissertation, mid-IR solid core fiber lasers are discussed briefly and 

then all existing HOFGLAS systems up to this date including the mid-IR acetylene-filled 

HOFGLAS are introduced. Chapter 3 starts with an introduction on history of optical fibers. Then, 

loss measurement of optical fibers in mid-IR are discussed and the results of performing mid-IR 

cut-back measurements are presented for a hypocycloidal core Kagome hollow fiber. In chapter 4, 

the characteristics of the OPA pumped acetylene-filled HOFGLAS and the improvements on its 

setup are discussed in details. The published results of laser operations and beam quality 

measurements are investigated in chapter 5. Our attempts toward first time demonstration of 
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continuous wave HCN-filled HOFGLAS are discussed in chapter 6. Finally, future work plans on 

HOFGLAS systems in our lab are presented in chapter 7.  
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Chapter 2 - From fiber lasers to gas fiber lasers 

 2.1. Introduction to fiber lasers 

Fiber lasers have many applications in medicine, remote sensing, and security because of 

their excellent properties such as compactness, portability, good beam quality, high efficiency, and 

convenient heat management. Fiber lasers are replacing traditional gas lasers and solid-state lasers. 

Solid-core fiber lasers are lasers with optical fibers as their gain medium. They can be 

pumped from one side or from both sides and may have one of the architectures shown in Figure 

2.1. Usually solid-core fiber lasers are diode-pumped. To form a resonator, mirrors are placed at 

two ends of the fiber. Mirrors can be placed perpendicular to the fiber ends or one of them can be 

placed at an angle with respect to the beam propagation direction to detect laser output in a separate 

beam path. In laboratories, usually dichroic mirrors are used in front of the cleaved fiber ends and 

in commercial products, Fiber Bragg Gratings (FBG) at two ends of the fiber act as cavity 

reflectors.  

In most solid-core fiber lasers, the gain medium is a fiber doped with rare earth ions such 

as erbium (Er+3), ytterbium (Yb+3), thulium (Tm+3), neodymium (Nd+3), or praseodymium (Pr+3). 

Although the medium in solid-core fiber lasers are similar to traditional bulky solid-state lasers, 

the effects of small mode area and waveguiding result in achieving different laser properties such 

as obtaining higher gain or good beam quality.   

There are a few nonlinear processes that limit the power of fiber lasers such as Stimulated 

Brillouin Scattering, Stimulated Raman Scattering, surface damage, self-phase modulation, and 

self-focusing. For example, Brillouin scattering effect is related to the Ӽሺଷሻ medium nonlinearity 

and it causes an incident photon to be converted into a scattered photon with lower energy, that 

usually propagates in backward direction, and a phonon. If input power will be above a certain 
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threshold value, Stimulated Brillouin Scattering may reflect most of input beam’s power. Because 

there will be a strong nonlinear optical gain for the beam which propagates in the backward 

direction. Therefore, the generated weak counter-propagating beam, which is at a certain 

frequency, can be amplified strongly. As another example, Stimulated Raman Scattering may 

happen in a nonlinear medium, where pump and signal wavelengths propagate together. The signal 

wavelength, which is the longer wavelength beam (Stoke beam), can be amplified. In addition, 

excitation of lattice vibrations happens and increases the temperature inside the media. In other 

words, one pump photon can be converted to one lower-energy signal photon, and the difference 

of the photon energies is carried away by a phonon, which is a quantum of the lattice vibrations. 

It is also possible that an already existing phonon interacts with a pump photon to generate one 

higher-energy photon at a shorter wavelength (anti-stoke beam) but this process is usually weak 

especially at low temperature.  

Fundamentals and power scaling of a 2 µm Tm-doped silica fiber laser was reported [26]. 

This is a good example to understand the lasing mechanism in fiber lasers. The pump laser was at 

790 nm for this laser system. Using a 25 µm diameter silica fiber with NA of 0.08, laser efficiency 

of 64.5% was reported. In this laser operation, near diffraction limited output beam had 300W 

power for 500 W of launched pump power. An operation of this laser system using a 35 µm 

diameter silica fiber with NA of 0.2 resulted in a multimode output beam with 885 W power. 

Today, these lasers produce more than 1kW of CW power. The pump quantum efficiency in this 

laser is 1.84, which is more than 1. The reason can be found in the investigation of the importance 

of Cross Relaxation (CR) and Energy Transfer Upconversion (ETU) processes to the operation of 

Tm-doped silica fiber lasers. The slope efficiency of this laser is proportional to the Tm+3 
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concentration. ETU from the lower laser level recycles excitation as shown in Figure 2.2  [27] and 

CR is operating in the silica host efficiently because of a strong spectral overlap feature.  

 

 

Figure 2.1: Pumping architectures in fiber lasers: a) pumping from one side and cavity 
mirrors are placed perpendicular to the beam propagation direction. b) pumping from one 

side and one of the cavity mirrors is placed at an angle with respect to the beam 
propagation direction. c) bidirectional pumping and one of the cavity mirrors is placed in 

an angle with respect to the beam propagation direction. 

 

ETU, which is the energy transfer between different dopant ions, happens particularly in 

highly doped solid-state gain media. The mechanism behind this is usually the dipole–dipole 

resonant interaction between ions that are located very close to each other. Emission and 

reabsorption of fluorescence photons are also other mechanisms behind ETU over longer distances 
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inside media because the strength of the dipole–dipole interaction rapidly vanishes with increasing 

distance between the ions. ETU importance depends on the doping concentration strongly. 

In Cross Relaxation effect, an excited ion transfers part of its energy to another ion in the 

ground state. Therefore, both ions end up in some intermediate level. This process is helpful in the 

Tm-doped 2-μm laser as mentioned above but in other cases the laser efficiency can be degraded. 

 

 

Figure 2.2: Simplified energy level diagram of two Tm3+ ions (ions a and b). The main 
cross relaxation process between ions a and b and the laser transitions are shown, 

reproduced from Ref. [27]. 

 

The main cross relaxation for two Er3+ ions and laser transition as also shown in Figure 

2.3. Upper and lower lasing levels in Er-doped fiber lasers is different from Tm-doped fiber lasers 

but the lasing mechanism follows the same concepts. Silica fibers can not go far beyond 2 µm in 

wavelength because they get absorbing above this wavelength.  
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Figure 2.3: Simplified energy level diagram of two Er3+ ions (ions a and b). The main cross 
relaxation and laser transitions are shown in the figure. 

 

ZBLAN fiber lasers, ZBLAN= ZrF4-BaF2-LaF3-AlF3-NaF, and chalcogenide fiber lasers 

are the most important mid-IR fiber lasers. Chalcogenide fiber lasers have made great progress in 

operation in the mid-IR range of wavelength but Chalcogenide fibers have drawbacks such as 

nonlinearity, fiber strength, and stability.  

Ho3+:Pr3+-doped ZBLAN fiber laser may generate 2.94 µm output. At an operation where 

1150 nm strained InGaAs diode pump and 10 µm fiber with NA of 0.2 are used, this laser may 

produce around 2.5 W output power at slope efficiency of 32% [28].  

Er-doped ZBLAN fiber laser may produce tunable 2.7 to 2.9 µm stable output. The 975 

nm diode pump at 100 W power can be used to pump a 25 µm fiber with NA of 0.12 and the laser 

may produce up to 10 W output power [29].  
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In addition to the lasers mentioned above, Er:fluoride fiber laser may emit 2.8 µm beam. 

0.976 µm pump can be used to generate 2.5 W output power from Er:fluoride fiber laser [30, 31].  

Due to the low damage thresholds, usually solid-core fiber lasers lack the ability to provide 

the same power levels as conventional gas lasers or solid-state bulk lasers. On the other hand, at 

high powers, the output from solid-state fiber lasers usually have broad spectral linewidth because 

of nonlinear effects. Also, since the number of rare earth materials is limited, only certain laser 

wavelengths can be achieved from these lasers. 

The advent of hollow-core photonic crystal fiber (HC-PCF) and its ability to host gas for 

long interaction length enabled new generation of fiber lasers called gas-filled fiber lasers. There 

are nonlinear optical processes that limit power scaling in solid core fiber lasers as mentioned 

earlier in this chapter. Hence, in gas-filled fiber lasers, there is no solid host material and gain is 

provided by gas inside a hollow fiber core; thus, more power scaling is predicted. These lasers take 

advantage of both fiber and gas laser features.  

In the following section, gas-filled hollow core fiber lasers are discussed including 3 µm 

acetylene-filled fiber laser. There are not many laser sources in this range of wavelength because 

silica fibers get absorbing above 2.5µm and on the other hand quantum cascade lasers have 

difficulty in operation bellow 3.5 µm. Also, as mentioned earlier in this chapter, chalcogenide fiber 

have made great progress in operation in this range of wavelength but they have drawbacks such 

as nonlinearity, fiber strength and stability. So, there are not many laser sources in this range other 

than some conventional bulky gas lasers; however, there are many applications in medicine, 

hazardous gas detection, remote sensing, and defense. This fact makes the acetylene-filled hollow 

fiber laser that is discussed in this dissertation so special.  

  



16 

 2.2. Hollow-core Optical Fiber Gas LASers (HOFGLAS) 

Hollow-core Optical Fiber Gas Lasers (HOFGLAS) offer the possibility of producing the 

high average power and very good slope efficiency of gas lasers [13, 32-35] along with the merits 

of a fiber-based laser [36]. The first successful demonstration of acetylene-filled HOFGLAS by 

Jones et al. [8, 24] began a new chapter in gas and fiber laser research. Since then, HOFGLAS in 

a variety of gasses including HCN, CO, CO2 and I2 have been demonstrated [5-7, 24, 37], spanning 

a wide wavelength range, and even demonstrating CW operation [4, 5]. All existing HOFGLAS 

system are summarized in Table 2.1.  

Table 2.1: Existing HOFGLAS systems. 

HOFGLAS Year 
Pump / 

Wavelength 
(μm) 

Lasing 
lines (μm) 

Slope 
efficiency 

(%) 

Max 
output 
energy 

Fiber University 

pulsed  
C2H2-filled 

2010 OPA: 1.532 
3.114 & 

3.17 
12 0.5 μJ 

Hypocycloid 
Kagome 
HC-PCF 

KSU+UNM 

pulsed  
C2H2-filled 

2016 OPA: 1.532 
3.114 & 

3.17 
20 1.4 μJ 

Hypocycloid 
Kagome 
HC-PCF 

KSU 

pulsed  
C2H2-filled 

2014 

Amplified 
Modulated 
diode laser: 

1.432 

3.12 & 3.16 30 0.8 μJ 
Hypocycloid 

Kagome 
HC-PCF 

Bath 

CW  
C2H2-filled 

2016 
Diode-laser: 

1.530 
3.1-3.2 8.8 4 mW 

Hypocycloid 
Kagome 
HC-PCF 

Bath 

Pulsed  
CO2-filled 

2010 OPO: 2 4.37 & 4.3 20 100 μJ 
Silver-
coated 

capilary 
UNM 

Pulsed  
HCN-filled 

2010 OPA: 1.5413 
3.146 & 

3.092 
4 0.056 μJ 

Hypocycloid 
Kagome 
HC-PCF 

KSU 

CW 
 Iଶ-filled 

2015 
CW Nd:YVO4: 

0.532 
1.2-1.35 4 8 mW 

Hypocycloid 
Kagome 
HC-PCF 

UNM 
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Much of this success is owed to the progress in fabricating low loss hollow-core photonic 

crystal fibers (HC-PCF) that have formed the basis of efficient HOFGLAS systems. The fibers 

will be discussed in details in chapter 3 of this dissertation. 

Acetylene-filled HOFGLAS is very special because it can operate in 3 µm where there are 

not many laser sources [7, 35]. An improved demonstration of acetylene-filled HOFGLAS by 

Jones et al. was reported [6, 7] in which a ns optical parametric amplifier (OPA) pump was used 

to launch an acetylene-filled HOFGLAS. Consequently, a 3 μm laser was achieved with more than 

20% slope efficiency. Improved performance at 3 μm has also been demonstrated using a 

modulated, fiber-amplified diode laser as the pump at the university of Bath [3]. Hassan et al. [4] 

added a feedback fiber to the traditional HOFGLAS system; hence, the pump power required to 

produce 3 μm output is reduced. My report in this dissertation, highlights the power scalability and 

beam quality that can be achieved from a stable acetylene-filled HOFGLAS configuration using 

the OPA as the pump source [25]. The highest 3 µm pulse energy output of 1.4 µJ was achieved 

from an acetylene-filled pulsed HOFGLAS [2] using a 10.9 m length of hypocycloidal-core 

Kagome fiber filled with acetylene at 9.8 torr and in this operation, acetylene absorbed 8.2 µJ of 

OPA pump pulse energy along P(13) absorption line at 1.53 µm. This output laser pulse energy is 

nearly two times higher than the pulse energy reported in [3]. By increasing the pump power, 

higher power can be obtained from the setup. The laser operated at a constant slope efficiency of 

~ 20% with respect to the absorbed pump pulse energy, independent of the acetylene pressure.  

Also, the beam quality of the laser output was investigated using the scanning slit method described 

in [38, 39] to measure the beam waist along the focus to obtain the M2 of the 3 µm laser output. 

The characterization of the beam quality yields M2 of 1.15േ0.02 for the 3 µm output which reflects 

the near-diffraction limited performance of the laser. Since M2൑	1.2 results in ideal beam 
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combining [40, 41], the measured M2 of our HOFGLAS system makes it a perfect choice for 

coherent beam combining. The good beam quality also makes this laser an excellent source for 

applications such as machining, medicine and telecommunications [40-42]. 

A.V.V. Nampoothiri, et al. demonstrated the first continuous wave I2-filled HOFGLAS in 

2015 [5]. Continuous wave I2-filled HOFGLAS system consists of a negative-curvature 

hypocycloidal-core kagome hollow-core fiber filled with molecular iodine, 127I2. The fiber is 

chosen based on its low loss at laser wavelengths, ~1.3 µm, which is measured to be 30 dB/km. 

Although it is desirable to work with a hollow-core fiber which has low loss at both pump and 

lasing wavelengths, this fiber has relatively high loss, 42 dB/m, around pump wavelength, 532 nm, 

because of the sharp resonance in transmission spectrum that occurs at certain wavelengths due to 

overlapping of core mode and cladding modes [5]. The pump laser is a tunable frequency-doubled 

Nd:Vanadate laser at 532 nm for this demonstration and curved mirrors are used to build the cavity. 

Absorption features of iodine molecules in the visible spectral regions has been studied 

[43] and the emissions based on the excitation wavelengths may occur from ∼500 nm to 1340 nm. 

Previously, a pulsed version of lasing in I2 molecules has been observed in conventional fiber as 

well as continuous wave lasing. But, there is hope for more power scaling in gas-filled hollow-

core fibers compared to solid core fibers because of replacing the host materials with the gas. So, 

attempts were made toward demonstration of continuous wave I2-filled HOFGLAS. By tuning the 

pump laser on resonance with the desired molecular transition in I2 gas, lasing at three wavelengths 

around 1.3 µm are observed using an Optical Spectrum Analyzer (OSA). It is demonstrated that 

laser power is a function of outcoupler’s reflectivity and at the output mirror reflectivity of ~ 85%, 

maximum output power of ~ 8 mW has been obtained. Maximum efficiency of ~ 4% is reported 
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for this demonstration. Alignment of these lasers is a big challenge and makes them difficult to be 

demonstrated.   

HCN-filled HOFGLAS system was pumped with 1 ns pulses from the homebuilt OPA. A 

45 cm long kagome-structured HC-PCF was installed in the laser setup [7]. Pumping on P(10) , 

which is the transition from ground state to an overtone state of C-H  asymmetric stretch mod, 

results in lasing at P(10) and R(8) lines correspond to ~3092 nm and ~3146 nm. The maximum of 

56 nJ laser pulse energy was produced at 8 torr of HCN pressure which was about a factor 10 lower 

than the maximum laser pulse energy produced by acetylene laser under the same condition.  

CO and CO2-filled HOFGLASs were operated using 5 ns pulses from an OPO with 3.5 

GHz bandwidth and maximum energy of ~ 1 mJ at 2 µm. 1.5 m of a silver-coated capillary fiber 

with inner core diameter of 500 µm was used in the setup. Fused silica HC-PCFs were not 

transmitting in the spectral emission region (~4 µm) and chalcogenide fibers were not available at 

that time [7] In CO-filled HOFGLAS pumping on resonance with R (7) from ground state to an 

excited state results in lasing in R(7)  and P(6) lines related to ~4.65 µm and ~4.75 µm. In CO2-

filled HOFGLAS, pumping at R(22) results in lasing in multiple lines around 4.3 µm. The 

maximum laser pulse energy of ~ 100 µJ was obtained along with the laser efficiency of ~ 20 % 

and lasing threshold occurs around 40 µJ. The optimum pressure for lasing around 4.3 µm is ~ 100 

torr.  
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Chapter 3 - Mid-IR fiber loss measurement 

This chapter provides an introduction to the history of optical fibers and their propagation 

mechanism. Then, fiber loss measurements in the mid-IR are discussed. Finally, the results of mid-

IR fiber loss measurements are used to choose the best fiber for acetylene-filled HOFGLAS.  

 3.1. Optical fibers 

Optical fibers are famous for their outstanding waveguide properties. Their theory have 

been studied since the law of Total Internal Reflection (TIR) was discovered in the nineteenth 

century [44] and in early 1980s, telephone companies used them to rebuild their communications 

infrastructure. The first optical fiber had a higher refractive index core that was surrounded by a 

lower refractive index cladding, as shown in Figure 3.1. Afterwards,  progress in fabricating low 

loss optical fiber influenced the telecommunication industry and in 2009, C. K. Kao received the 

Nobel Prize in Physics “for ground-breaking achievements concerning the transmission of light in 

fibers for optical communication” [45]. 

 

 

Figure 3.1: Light guidance in an optical fiber based on total internal reflection. 
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 Light guidance in an optical fiber is described theoretically in Figure 3.1. ݊଴ is the index 

of refraction of the surrounding area that could be air, ݊௖௢௥௘ is the index of refraction of the fiber 

core and ݊௖௟௔ௗௗ௜௡௚ is the refractive index of the cladding. ߠ଴ is the angle of the incident light and 

 ௜ is the angle of internally reflected light. Other than the fact that refractive index of the coreߠ

should be higher than the refractive index of the cladding, ߠ଴ should be within the angle defined 

by the Numeric Aperture (NA) of the fiber.  Using the Snell’s law and fiber geometry, fiber NA 

can be defined as Equation 3.1 [46]. 

 
NA ൌ ݊଴Sinߠ଴ ൌ ට݊coreଶ െ ݊claddingଶ 

(3.1)

The NA for a Single Mode Fiber (SMF) is 0.12-0.14 and it is related to ߠ଴ of 15 degree, 

this information can be found on Thorlabs company’s website [47]. In Figure 3.2, the cross-section 

of a standard telecom fiber along with the Gaussian electric field’s fundamental mode distribution 

in the fiber is shown. It is clear that the electric field may penetrate into the cladding area but 

decreases very quickly in this region. The portion of the electric field that propagates in the 

cladding area is called the evanescent field. The telecom fibers are mainly based on fused silica 

and typically have a germanium-doped core.  

 

Figure 3.2: Fiber cross-section and fundamental mode of the electric field distribution in a 
single mode optical fiber. 
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Another fiber design involves the introduction of an array of microstructural elements. 

These so called microstructured fibers are also made of silica and they are similar to telecom fibers 

from the aspects of core diameter, cladding diameter, and NA. In particular, microstructured silica 

fibers have longitudinal holes in the cladding area.  These fibers are index-guided fibers and 

guiding is obtained by effect of TIR. Microstructured fibers are built of one material (exp. Silica) 

and light guiding is obtained by the presence of air-holes in the area surrounding the solid-core. 

Fabrication of honeycomb microstructured optical fiber of this kind enabled John L. Hall and 

Theodor W. Hansch to receive the Nobel Prize in 2005 for “ their contributions to the development 

of laser-based precision spectroscopy, including the optical frequency comb technique” [48].  

Figure 3.3 shows some sketches of a few types of photonic crystal fibers cited from [49]. 

 

 

Figure 3.3: Sketches of a few types of photonic crystal fibers. a) Endlessly single mode solid 
core photonic crystal fiber. b) Dual core photonic crystal fiber. c) Double-clad photonic 

crystal fibers. Sketches are reproduced from reference [49]. 

 

Capillary fiber is another fiber design and it is also made of silica but it is different from 

telecom fiber because its core is not a waveguide. Loss of capillary fibers goes as ~ 
ఒమ

௪బయ
 , where λ 

is the incident light’s wavelength and ݓ଴ is the free space beam waist of the incident light [50, 51]. 
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So, the loss in capillary fibers is high. The holes in Capillary and microstructured fibers can be 

filled with various materials which enable their use in tuning, switching, and nonlinear optics [52-

54].  

So far, I have mainly discussed optical fibers that confine light in the core region based on 

TIR. There is another important type of fibers called Hollow Core Fibers (HCF). Because the solid 

core in conventional fibers is the main factor that affect the fiber loss (e.g. Rayleigh scattering and 

phonon absorption), research was undertaken to demonstrate HCF as a means to produce a lower 

loss fiber. [55]. Theoretically, HCF may guide light with several orders of magnitude lower loss 

than conventional fibers [55] but thermal excitation at the fabrication process causes roughness at 

the core boundary and that increases their loss [56]. In a HCF, light can be confined in the air or 

vacuum core and transmitted with low loss. TIR is not a valid explanation of the light propagation 

in these fibers because the refractive index of air or vacuum is lower than the solid cladding. The 

Bell Telephone Laboratories developed the first commercial hollow-core waveguide system 

(WT4/WT4A millimeter-wave transmission system) for telecommunication in 1970s for 

microwave electromagnetic signals [57]. Later in 1980s, the first metal hollow-core waveguide 

was developed that was capable of working at optical frequencies [58]. 

Research on the development of dielectric HCFs resulted in the demonstration of hollow-

core Photonic Band Gap Fibers (PBGF) [59, 60]. Dielectric materials have very good transparency 

at optical wavelengths making them attractive candidates as guiding media for gaseous amplifiers 

[61]. Unfortunately, dielectric HCF only have high reflectivity over a narrow bandwidth because 

most dielectric materials have strong phonon absorption at long wavelengths. Dielectric HCF also 

have lower transmission because of their leaky confinement, making them unsuitable for use in 

long distance optical transmission. For PBGFs, there is a gap in frequency range, where light is 
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forbidden to propagate in the media. A typical SEM image of a PBGF and its guiding mechanism 

are shown in Figure 3.4. The term “bandgap” comes from solid state physics, which refers to an 

energy gap in a solid where electron states are forbidden to propagate. The first PBGF was 

demonstrated in 1999 [59]. PBGFs are independent of TIR and light mainly propagates in the 

air/vacuum core regardless of the difference between refractive indices of core and cladding. There 

is small overlap between core mode and cladding modes. Figure 3.5 summarizes the process of 

fabricating PBGFs by pressurization [62]. 

 

 

Figure 3.4: SEM image of a PBGF and its guiding mechanism based on constructive and 
destructive interference of the core mode and cladding modes [59].  

 

To summarize PBGFs, they are low loss but narrow bandwidth, limiting their widespread 

application. As an example, PBGF’s have been demonstrated to operate around 3 μm, but their 

bandwidth is limited to less than an octave. As we need more than this for our acetylene-filled 

HOFGLAS, we must look to a different fiber design for our application.  

In 2002, a new type of HCFs called Kagome-structured HCFs was demonstrated by 

Benabid et. al. [63]. Figure 3.6 shows a typical Kagome-structured HCF. They contain a periodic 

lattice in the cladding area and no photonic bandgap. They guide light through a mechanism akin 
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to Von Neumann and Wigner states [64] allowing both the core mode and cladding modes to exist 

at a certain wavelength with very low coupling. 

 

 

Figure 3.5: Fabrication and pressurization of PBGF, picture is cited from reference [62].  

 

The name “Kagome” is related to their cladding structure which looks like a Kagome 

basket. These fibers can be spliced to solid-core fibers as well.  Kagome HCFs are ultra-broad 

bandwidth and they have several transmission bands. This and the fact that we can pump in near-
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IR and see lasing in mid-IR is the main reason we use these fibers in our acetylene-filled 

HOFGLAS system. Since there is no PBG in the cladding, these fibers have higher loss than 

conventional fibers. The main contributor to the loss in a Kagome fiber is the core size, and it has 

been found that a smaller core increases the loss [65].  

 

 

Figure 3.6: Kagome HC-PCF sketch, cited from reference [49] Kagome basket is shown on 
the right which is the reason for the name of these fibers, reproduced from reference [66].  

 

In 2010, Wang et. al. [67] discovered that designing a kagome-structured HCFs with a 

negative curvature core boundary reduces the loss compared to a  regular kagome fiber. A typical 

SEM image of negative curvature kagome HCF is shown in Figure 3.7.   

A few months later, Gerome et. al. [68] reported that negative curvature Kagome fibers 

decrease the overlap of the core mode with the cladding modes and allow for their higher 

propagation transmission. The first fused silica kagome fiber with negative curvature was 

fabricated in 2011 [69] and the SEM image of this fiber is shown in Figure 3.8. Later, Chalcogenide 

glass kagome fiber with negative curvature was fabricated [70].  
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Attempts were later made to fabricate lower loss silica kagome fibers with negative 

curvature for the mid-IR [8, 71]. These fibers have been used for many applications such as 

surgical laser procedures and high precision micro machining applications [72, 73]. 

 

 

Figure 3.7: SEM image of negative curvature Kagome HCF. This picture is the cross 
section of a seven-cell three-ring fiber, which was sent to us from Xlim research institute.  

 

HC-PCFs are used in nonlinear optical phenomena such as high energy soliton formation, 

precision saturated absorption spectroscopy, the development of a gas-filled fiber Raman laser, 

and multi-octave spanning Raman frequency combs. In this dissertation, their application in 

demonstrating gas-filled hollow fiber lasers is highlighted. 

Our collaborator, Dr. Fetah Benabid from Xlim research institute in France, provide us 

with low loss negative curvature kagome fibers in the mid-IR. Since these fibers are made from 

silica, they begin absorbing above ~ 2.5 μm. So, these fibers have been optimized for operation at 

visible and near infrared wavelengths. Fiber fabricators have been using finite element analysis 
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software, like JCMwave, to optimize fiber loss in mid-IR region. Since it is computationally 

challenging to calculate the loss for these fibers, the fabricators use empirical rules to engineer 

new designs for low loss fibers. Therefore, they only have an estimation on the loss of these silica 

kagome HCFs. 

 

 

Figure 3.8: SEM image of the first silica negative curvature kagome HCF with less 
complicated cladding structure [69].  

 

In order to choose the best fiber to run our acetylene-filled HOFGLAS system, the loss of 

our negative curvature kagome HCFs in the mid-IR was measured by performing fiber loss cut-

back measurements. Also, we provide our collaborators with the mid-IR loss spectrum so they can 

compare our measurements to their estimations. So, in addition to choosing the best fiber to run 

our acetylene HOFGLAS, we have also contributed indirectly to the fabrication of lower loss fibers 

in the mid-IR. 
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 3.2. Mid.IR fiber loss measurements 

Results of mid-IR fiber loss measurements for a 2011 batch of Kagome HC-PCF using the 

idler of our homebuilt OPA are reported in reference [74]. Observing a few negative values for 

fiber loss during these measurements, a strong indication that our measurements are flawed, 

indicates problems in performing loss measurements using the idler source. Later, a blackbody 

radiation source was used to perform mid-IR loss measurements and some technical problems on 

the set up such as observing a water absorption peak in the monochromator or facing 

monochromator broken gear were reported [75]. Later, problems were fixed and mid-IR fiber loss 

measurements were performed using this method for some fibers. For smaller core size fibers, this 

method was not responsive because the light from the thermal source with extended area did not 

couple well for them. For the rest of the fibers, the output of our acetylene-filled HOFGLAS was 

used, which works at two mid-IR wavelengths, for the cut-back measurements. In the following 

sections, my contribution in each of these methods of mid-IR fiber loss measurements are 

explained.  

 3.2.1. Mid-IR fiber loss measurements using idler of OPA  

The HC-PCFs were received from our collaborators, Dr. Fetah Benabid, at Xlim research 

institute joint between the CNRS and the University of Limoges in France. The loss in mid-IR can 

be predicted based on estimations and scaling methods by our collaborators. Their 

characterizations of the fiber losses are for the near-IR and visible regions of light while we provide 

the measurements for the mid-IR. We could then provide them with the fiber’s mid-IR loss 

information for them to compare to their estimated loss spectrum. Once the fibers loss information 

is known, the lowest loss fibers can be used for our HOFGLAS systems and better experimental 

results can be obtained. Table 3.1 is a list of Kagome HC-PCFs and negative curvature Kagome 
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HC-PCFs with hypocycloidal core shape that were used in mid-IR loss measurements using the 

idler of the OPA.  

The results of these measurements are published in reference [74] and fiber #6, the 

highlighted row, was installed in acetylene-filled HOFGLAS later since the measured loss at mid-

IR was lower than the rest of the fibers. 
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Table 3.1: List of Kagome HC-PCFs received in 2011 from Dr. Fetah Benabid. Some of the 
fibers are Kagome with 7 missing cells and 3 rings in the cladding area and some are 

Kagome with 1 missing cell and 1 ring in the cladding area with hypocycloidal core shape. 

# 
Fiber Structure 

& 
Part Number 

Year 

Inner 
Core 

Diameter 
(μm) 

Initial 
length 

(m) 

Loss at 
1.5 μm 
(dB/m) 

Loss at 
~3.1 μm 
(dB/m) 

1 
110727-CFD-

K7C3RC11J11/ 
Kagome 

2011 85 2 0.122 2.5 

2 
110903-CFD-
K7C3RC20J8/ 

Kagome 
2011 112.5 10 0.267 10 

3 
110727-CFD-
K7C3RC3J16/ 

Kagome 
2011 85 10 0.3 5 

4 
110708-CFD-
K7C3RC5J5/ 

Kagome 
2011 87.5 10 0.237 3 

5 
110811-

YYW1RD1C6B2/ 
Hypocycloid 

2011 
 

58 
3 - 5 

6 
110811-

YYW1RD1C6B1/ 
Hypocycloid 

2011 64 5 4 2 

 

The approach to measure mid-IR fiber loss is the standard cut-back measurement 

technique. It is important to choose a source covering the mid-IR range and a detector with a good 

responsivity in the mid-IR. In the cut-back measurement method, the transmission of the light 

source through the initial length of the fiber is measured first. Then, without changing the light 

coupling into the fiber a specific amount of fiber from the exit port of the fiber is cut and the light 

transmission through the fiber is measured again, as shown in Figure 3.8. 
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Figure 3.9: Cut back measurement technique with one cut. ΔL1 is the first cut. PD is the 
photodetector. Si where “i” is 1, 2 are the transmitted signal measurements.  

 

Then, the fiber loss in terms of dB/m can be calculated [76] using Equation 3.2. 

 

ߙ  ൌ െ
10
ଵܮ߂

ൈ ଵ଴ሺ݃݋݈
ܵଶ
ଵܵ
ሻ (3.2)

 

The error bars can be calculated [75] using Equation 3.3. 

 

 
error	bar ൌ 	ඨሺ

ߙ݀
݀ ଵܵ
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݀ܵଶ

ሻଶሺܵ߂ଶ,errorሻଶ ൅ ሺ
ߙ݀
ଵܮ߂݀

ሻଶሺܮ߂ଵ	errorሻଶ 

 
 

(3.3)

By taking the differential from Equation 3.2 in terms of ଵܵ, ܵଶ, and ܮ߂ଵ the terms in 

Equation 3.3 are found. 

 

ߙ݀
݀ ଵܵ

ൌ
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(3.4)
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The fiber loss in terms of dB/m and the error bars were calculated for each wavelength in 

the mid-IR and were plotted in Origin software.  

The OPA is explained in section 4.3 in details. The idler of the OPA can cover the range 

of wavelengths from 2.3 μm to 3.6 μm depending on the crystal poling period (઩) and temperature 

as shown in Figure 3.10.  

 

 

Figure 3.10: Idler of OPA may generate nanosecond pulses from almost 2.3 μm to 3.6 μm at 
various combinations of crystal poling period and temperature. Crystal poling period is Λ. 

The figure is reproduced from Ref. [74].		
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The mid-IR loss spectrum of a  number of fibers from 2011 using the idler of the OPA 

were measured. Later, a tested hypocycloidal core shape kagome-structured fibers with measured 

loss of less than 5 dB/m in the mid-IR was used in the acetylene HOFGLAS system. This fiber 

had a 64 μm inner core diameter and 4 dB/m loss at 1.5 μm pump wavelength. The longest 

remaining piece of this fiber after cut-back measurements was used to operate the acetylene-filled 

HOFGLAS laser.  

A schematic of the fiber loss cut-back measurement using idler is shown in Figure 3.11. 

Although the cut-back measurements were performed very carefully, the input light coupling into 

the fiber is changed by tuning the crystal temperature and poling period. This is against the 

principle of cut-back measurements.  The coupling loss must be separated from fiber loss and to 

do so the light coupling efficiency should remain constant during the measurements. The 

observation of some negative values for fiber loss during these measurements were an evidence of 

the above statement. So, a thermal light source was used later to perform mid-IR cut-back 

measurements.  

 

Figure 3.11: Fiber loss measurement setup using the idler of the OPA. The idler of the OPA 
is separated from other OPA outputs using appropriate long pass filter (F). We used a 
window (W) to keep track of idler fluctuations using a PD (HgCdTe IR PD, PVI series, 

Boston Electronics). Beam has been focused on the HC-PCF and at the output we used a 
collimating CaF2 lens and appropriate ND filters. IR PD, PVI-2TE series, from Boston 

Electronics was used at B and measured the transmitted light, appendix A (a). 
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 3.2.2. Mid-IR fiber loss measurements using Blackbody commercial source 

Another batch of Hypocycloidal core-shape negative curvature Kagome fibers was 

received from Dr. Fetah Benabid in 2012. The fibers are listed in Table 3.2. 

Table 3.2: List of Kagome HC-PCFs received in 2012 from Dr. Fetah Benabid. Some of the 
fibers are Kagome with 7 missing cells and 3 rings with hypocycloidal core shape in the 
cladding area and some are Kagome with 1 missing cell and 1 ring in the cladding area 

with hypocycloidal core shape. 

# 
Fiber Structure 

& 
Part Number 

Year 

Inner 
Core 

Diameter 
(μm) 

Initial 
length (m) 

Loss at 
1.5 μm 
(dB/m) 

Loss at 
~3.1 μm 
(dB/m) 

7 
120221-CFD-K7C3R-

C15J03-fibre-1 
Hypocycloid 

2012 82 10 - - 

8 
fiber: 120223-CFD-

K7C3R-C32J03-fibre-3 
Hypocycloid 

2012 84 10 - - 

9 
12023-CFD-K7C3R-

C32J03-fibre-2 
Hypocycloid 

2012 80 10 - - 

10 
120221-CFD-K7C3R-

C15J03-fibre-2 
Hypocycloid 

2012 80 10 0.0966 0.8 

11 
120314-CFD-K1C6R-

C15J16 (fiber1) 
Hypocycloid 

2012 29 5 0.1 - 

12 
120314-CFD-K1C6R-

C15J16 (fiber2) 
Hypocycloid 

2012 28 5 2 - 

13 
120314-CFD-K1C6R-

C14J14 (fiber 1) 
Hypocycloid 

2012 29 5 2 - 

 

A commercial blackbody radiation source was purchased from Ocean Optics, called 

Coolred, and the spectrum of this source is shown in Figure 3.12.  This blackbody radiation source 
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covers the mid-IR wavelength range of interest. We couple the light emitted from this source into 

the test HC-PCFs and put the exit port of the fiber in front of our monochromator, as shown in 

Figure 3.13. The collimated beam enters the monochromator through the entrance slit and 

propagates all the way through the monochromator.  

A Bragg Grating inside the monochromator selects a certain wavelength and a photo 

detector (PDA20H model from Thorlabs) at the exit slit of the monochromator detects the light. 

The photosensitivity of this PD is for the range of 1.5 μm to 4.5 μm. 

 

 

Figure 3.12: Ocean Optics’s Coolred spectrum taken from company’s website. This 
blackbody radiation source covers the mid-IR range 

(http://www.acalbfi.com/uk/Photonics/Spectroscopy/Light-sources-and-
accessories/p/Infrared-Light-Sources--Cool-Red/0000001W1T_). 

 

The Monochromator’s grating can move by 23 steps per nanometer and it is controlled by 

a HyperTerminal program on a laptop so that we can scan over a range of wavelengths, appendix 

A(b).  
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Figure 3.13: Fiber loss measurement setup using a blackbody radiation source (Coolred 
from Ocean Optics). See text for details.  

 

As it is shown in Figure 3.13, the beam is coupled into the fiber using a CaF2 plano convex 

lens of focal length 25 mm in a two-axis lens mount from Thorlabs. The focusing lens focal length 

matches the test fiber’s NA and is optimized for coupling the fundamental mode of the 3 μm 

wavelength from the Blackbody source into the Kagome HC-PCF. The exit port of the fiber is 

supported two times by V-grove fiber holders from Newport company so that the entrance side of 

the fiber remains unchanged as we cut and cleave the fiber from that side. We also make sure not 

to put too much tension on the fiber. The fibers are coiled on a fiber spool to minimize bending 

loss of the fibers. A CaF2 lens is used to collimate the exit beam and send it to the monochromator. 

The fiber entrance and exit ends are on three-axis fiber stages from Newport. The collimating lens 

is also in a two-axis lens mount from Thorlabs. The NA of the fiber, collimating lens focal length, 

monochromator’s slit opening, and f/10 monochromator all are in agreement to have perfect beam 
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propagation inside the monochromator. Since there is only a small amount of coupling of the 

blackbody radiation source into a single mode HC-PCF, we use a lock-in detection system to 

measure the weak signal after the monochromator. We used a lock-in amplifier, SR510 model, 

from “Stanford Research Systems”. The lock-in amplifier filters out the noise and amplifies the 

signal that is in phase with the chopper frequency (reference frequency), as shown in Figure 3.14. 

 

 

Figure 3.14: Lock-in amplifier: the “Reference” signal is a square wave with frequency ωr 
that comes from a chopper in our set up. The “Signal” is Ssig Sin (ωrt+θsig) where θsig is the 
signal phase and ωr is the signal frequency defined by the chopper too. Lock in amplifier 

generates its own internal reference signal which is SL Sin (ωLt+θL). 

 

The way a lock-in works is that it amplifies the signal and then multiplies it by the lock-in 

internal reference signal using a multiplier as shown here: 

 

 
Soutput ൌ ܵsigܵ௅Sinሺ߱௥ݐ ൅ ݐsigሻSinሺ߱௅ߠ ൅ ௅ሻ (3.7)ߠ
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ܵoutput ൌ
1
2
ܵsigܵ௅Cos ቀሺ߱௥ െ ߱௅ሻݐ ൅ sigߠ െ  ௅ቁߠ

							 												െ
1
2
ܵsigܵ௅ݏ݋ܥሺሺ߱௥ ൅ ߱௅ሻݐ ൅ sigߠ ൅  ௅ሻߠ

(3.8)

Then the output goes through a low pass filter and both of the AC signals will be removed 

unless ω୐ will be equal to ω୰ . In this case, a DC signal, as shown in Equation 3.9, remains.  

Otherwise, no signal will be measured.  

 

 Soutput ൌ
1
2
ܵsigܵ௅cosሺ sigߠ െ ௅ሻ (3.9)ߠ

 

I performed the cut back measurement from the side of the fiber, which is in front of 

monochromator so input beam coupling efficiency remains constant during all measurements. We 

used this method for fibers with #s 7 to 10 from Table 3.2. After fixing the setup problems, the 

mid-IR loss spectrum for the hypocycloidal fiber #10 with core size of 80 μm is measured and it 

is shown in Figure 3.15. The initial length of the fiber was 490 cm. I performed the first cut for 

146 cm and the second cut for 136 cm (Green and Blue curves in Figure 3.15). We also consider 

a total cut of 282 cm (136cm+ 146 cm) shown as the black curve in Figure 3.16. 
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Figure 3.15: mid-IR fiber loss spectrum for a negative curvature Kagome fiber with core 
size of 80 μm. The fiber part number is: 120221-CFD-K7C3R-C15J03. Two cut-backs were 
performed (green : 146 cm and blue: 136 cm) and the black  is the fiber loss spectrum for 
the overall cut between initial length of fiber and final length (146 cm + 136 cm= 282 cm). 

 

By looking at the spectrum of mid-IR fiber loss after the total amount of fiber cut in Figure 

3.16, no negative value has been observed and the coupling efficiency stayed constant during the 

measurements.  
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Figure 3.16: mid-IR fiber loss measurement for the negative curvature Kagome fiber with 
core size of 80 μm. The fiber part number is: 120221-CFD-K7C3R-C15J03. This shows the 
fiber loss spectrum for the overall cut between initial length of fiber and final length (146 

cm + 136 cm= 282 cm). 

 

Fibers with #s of 11, 12, and 13 from Table 3.2 have a core size of about 29 μm and it was 

not possible to get enough coupling of the blackbody source into these fibers so we used the output 

of our acetylene-filled HOFGLAS, as explained in section 3.2.3., to measure the mid-IR loss for 

these very single mode fibers.  
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 3.2.3. Mid-IR fiber loss measurements using Acetylene HOFGLAS output 

For Kagome fibers with Inner core size of less than 80 μm, we use the output of our 

acetylene-filled HOFGLAS as the source to perform mid-IR cut-back measurements. We received 

two fibers in 2015 as listed in Table 3.3. The fiber #15, with the Inner core size 60/72 μm, was 

immediately installed in acetylene-filled HOFGLAS setup because it had an 11 meter length and 

we wanted to study the effect of fiber length on the HOFGLAS operation. As the mid-IR loss of 

this fiber was needed, another piece of similar fiber was requested from collaborators. In 2016, 

fiber #17 with similar characteristics was received.   

Table 3.3: List of received hypocycloidal core-shape Kagome fibers from France in 2015 
and 2016. 

# 
Fiber Structure 

& 
Part Number 

Year 

Inner 
Core 

Diameter 
(μm) 

Initial 
length 

(m) 

Loss at 
1.5 μm 
(dB/m) 

Loss at 
3 μm 

(dB/m) 

14 
I1501 

Hypocycloid  
2015 49/62 10+11 - - 

15 
H6510 

Hypocycloid 
2015 60/72 11 0.08 1.13 

16 
I9610B2 

Hypocycloid 
2016 30 10 0.14 - 

17 
J1601B2 

Hypocycloid 
2016 63/75 10 0.06 1.13 

 

The loss of fiber #15 (& #17) was measured using mid-IR output of Acetylene-filled 

HOFGLAS as shown in Figure 3.17. We keep track of the mid-IR beam fluctuations as well. The 

measured loss for fiber #17 is measured to be 1130 dB/km at 3.1 μm (Kushan Weerasinghe 

performed this loss measurement). 
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Figure 3.17: fiber loss measurement using mid-IR output of acetylene-filled HOFGLAS. 
Residual pump is filtered out from the mid-IR produced beam using a germanium filter 

and fluctuations of the beam can be tracked at C. A CaF2 lens was used to couple the beam 
into the test HC-PCF and the transmitted exit beam can be collimated and detected at D. 

 

 3.2.4. Conclusion of mid-IR loss measurements 

To summarize this chapter, the biggest challenges in performing cut-back measurements 

in the mid-IR are the source and the detection system. A TEC-cooled IR photo detector (PVI-2TE 

series, Boston electronics) was used as the detection system. The main challenge is having a light 

source that covers the mid-IR light region. Three different mid-IR sources were used. The first 

method, which was using OPA idler, gives an estimation for fiber loss in the mid-IR, but is 

imprecise for cut-back measurement since the coupling into the fiber entrance changes as the 

OPA’s temperature and poling period are tuned. Second round of cut-back measurements in the 

mid-IR was performed using a black-body radiation source (Coolred from Ocean Optics company) 

that covers the mid-IR range along with a monochromator at the exit port of the fiber. This method 

works well for larger core fibers but measurement of the loss of more single mode fibers was 
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difficult using this method due to a low amount of light coupling from the thermal source into a 

nearly single mode fiber. Finally, the stable output from the acetylene-filled hollow-core fiber laser 

system was used as the mid-IR source to measure fiber loss for all the small core size hollow-core 

photonic crystal fibers and this method was successful when we kept track of laser stability by 

looking into the input mid-IR beam fluctuations before the entrance of the test fiber. 
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Chapter 4 - Operation of the acetylene HOFGLAS 

Our group has created a new class of lasers known as Hollow-core Optical Fiber Gas LASer 

(HOFGLAS) which are based on population inversion [8]. I continued exploring HOFGLAS by 

studying the performance and scalability of gas-filled hollow-core photonic crystal fiber lasers [25, 

77-80]. In particular, I was able to improve the stability, efficiency, and output power of an OPA 

pumped acetylene-filled HOFGLAS based on population inversion. The power scalability of this 

system from only a few nJ to µJ level is highlighted. We also demonstrated many novel properties 

of acetylene-filled pulsed mid-IR hollow-core fiber lasers. The phenomenological scaling of 

saturation power and efficiency with pressure promise higher power sources in the future. This is 

a motivation to develop numerical models of the laser for deeper insight into these effects. In this 

chapter, we take steps toward characterizing and improving the performance of acetylene-filled 

HOFGLAS. 

 4.1. Acetylene-filled HOFGLAS Setup Overview 

The OPA-pumped acetylene-filled HOFGLAS setup is shown in Figure 4.1. The 1.5 μm 

OPA pulses with pulse duration of ~ 1 ns and repetition rate of 30 Hz are coupled into the hollow-

core photonic crystal fiber while both ends of the fiber are inserted inside vacuum chambers so 

they can be filled with acetylene gas at the desired pressure. The seed laser for the OPA is tuned 

on resonance with the P(13) absorption line of acetylene. Population inversion between the 

rotational-vibrational states of the molecular gas results in lasing at 3.11 μm and 3.17 μm 

wavelengths. Sensitive pyroelectric energy meters measure the 1.53 μm and produced 3 μm pulse 

energies at different points of the laser configuration. A germanium (Ge) filter is used for filtering 

off the residual 1.53 μm pump from the produced 3 μm output laser. The performance of the laser 
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is characterized for various acetylene pressures in the fiber at different input pump energies in 

terms of the output mid-IR energy.  

 

 

 

 

Figure 4.1: Pulsed HOFGLAS setup. The OPA is used as the pump source for 
HOFGLAS. The seed laser to the OPA is a continuous wave diode laser at 1532 nm 

and the pump laser to the OPA is a Q-switched Nd:YAG laser at 1064 nm. The HWP 
and PBS are used to control the input power that is sent to the vacuum chambers. 

Gas is contained inside hollow-core photonic crystal fiber. Mid-IR light passes 
through a 2-mm thick, uncoated germanium filter at 90 degree and is detected by 
pyroelectric energy meter. Two flipper mirrors are used to keep track of pump 
power and superposition of residual pump and 3 μm power before and after the 

vacuum chambers. Lens2 is from CaF2 material and Lens1 is a BK7 lens. 
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The gas is allowed to reach equilibrium through the length of the fiber over a span of a few 

hours. I will explain in section 4.2. of this chapter how we estimate the time for reaching the 

equilibrium condition. 

 4.2. Equilibrium condition for Acetylene molecules in HC-PCF 

The hollow core fiber is filled with gas and the pressure gauge is initially constant. This 

value changes with time as the distribution of gas inside the fiber reaches equilibrium. Afterwards, 

the pressure slowly decreases because of flows inside the vacuum chambers. The pressure value 

at equilibrium is reported as the exact pressure value. An example of this is shown in Figure 4.2. 

We show the change in pressure with time using a capacitance manometer (Baratron manometer, 

MKS Instruments). Initially, the pressure gauge shows a value of 1.77 torr. After about one and a 

half hours, the pressure drops to 1.6 torr. Later, the changes in pressure are slow with a small 

increase after reaching full equilibrium. We observe that the fiber is immediately filled with gas, 

which makes sense because the volume of the fiber is small in comparison to the volume of the 

vacuum chambers, Equation 4.1 and Equation 4.2. 

 ிܸ௜௕௘௥

௏ܸ஼
ൌ
ி௜௕௘௥ܮி௜௕௘௥ଶݎߨ
௏஼ܮ௏஼ଶݎߨ

 (4.1)

 

 
ܵி௜௕௘௥
ܵ௏஼

ൌ
ߨ2 ி௜௕௘௥ݎ ி௜௕௘௥ܮ
ߨ2 ௏஼ݎ ௏஼ܮ

 (4.2)

 

For a typical fiber with outer radius of 180 μm and 10.9 m length and two vacuum chambers 

each with radius of 15 centimeters and 30 cm length, the ratio of fiber volume to vacuum chambers 

volume is only ~ 0.0025 %. The ratio of fiber surface area to vacuum chambers surface area will 

be ~ 2.2 %.  
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On the other hand, it takes time for the gas to reach equilibrium condition inside 10.9 m of 

the fiber since acetylene molecules stick to the walls of tubes, vacuum chambers, and the fiber. 

We tried estimating the time it takes for this to happen. 

 

 

 

 

There were several experimental attempts to measure the time needed to fill the fiber with 

gas. One way to answer this is to monitor the Full Width Half Maximum (FWHM) and amplitude 

of the absorption signal of a continuous wave laser at 1532 nm  (Santec, Tunable semiconductor 

laser, TSL-210) passing through acetylene-filled HOFGLAS. The apparatus for this measurement 
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Figure 4.2: Recorded pressure from the front panel of a capacitance manometer 
(Baratron pressure gauge from MKS instruments) versus time recorded by stopwatch 

from the moment the speedy valve toward vacuum chambers gets closed and the fiber is 
filled with gas for about 120 minutes. 
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is shown in Figure 4.3. We apply a ramp voltage to the fiber laser’s piezo-electric transducer (PZT) 

which linearly scans the laser’s frequency over the P(13) acetylene transition at ~1532 nm. Figure 

4.4 is an example of the data recorded on an oscilloscope for applied ramp voltage (purple) to the 

PZT of the diode laser, transmission signal through HOFGLAS (yellow channel), and a Fiber Ring 

Cavity (FRC) as we scan the laser frequency for frequency calibration purposes (blue channel). 

The free spectral range (FSR) of the FRC is ~97 MHz for the particular FRC. As we expected, the 

fiber is immediately filled with gas and FWHM and amplitude of absorption values jump from 

zero to a certain value. This happens much faster than we can record with our setup.  

 

 

 

Figure 4.3: Schematic setup for measuring FWHM and amplitude of 1532 nm absorption 
signal by acetylene molecules, BS: Beam Splitter, FRC: Fiber Ring Cavity, PD: Photo 

Detector. 
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We were able to estimate the amount of time it takes to reach equilibrium inside the gas-

filled fiber by recording the change in FWHM and amplitude of absorption signal of a 1532 nm 

continuous wave laser passing through the gas-filled fiber as we evacuate the fiber. The measured 

pressure falls to zero as the fiber is evacuated but the absorption signal remains for hours and its 

FWHM and amplitude change reasonably with time. Figure 4.5 is the amplitude of transmission 

signal through 10.9 m of acetylene-filled hollow-core fiber from the moment the speedy valve was 

opened over the course of 3 hours while Figure 4.6 shows the change in FWHM over the same 

time period. 

 

 

 

We concluded that it takes about 160 minutes for acetylene molecules at ~1.6 torr to reach 

equilibrium for this particular fiber. The acetylene in the fiber is then pumped using an OPA to 

produce a maximum pulse energy of 21 μJ with ~1 ns pulse duration, spectral width of 440 MHz 

Figure 4.4: Transmission through 10.9 m acetylene-filled hollow-core fiber at 1.77 torr 
along with the recorded ramp voltage and fiber ring cavity data with FSR of 97 MHz. 
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based on the time-bandwidth product, and a repetition rate of 30 Hz at 1.53 μm. I will explain the 

details of the OPA pump in the following section.  
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Figure 4.5: amplitude of transmission signal versus time recorded by stopwatch over the 
course of 3 hours. 
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 4.3. Optical Parametric Amplification 

 4.3.1. Nonlinear optics introduction 

To pump our pulsed HOFGLAS system, a high power pump source is needed. Tunability 

of the high power pump source is a plus since it enables us to work with different gases and pump 

at the desired wavelength. An Optical Parametric Amplifier (OPA) is a convenient choice since it 

fulfills these requirements. This section provides a brief introduction to nonlinear frequency 

conversion and, specifically to the OPA . 

Nanosecond laser pulses can achieve high intensities inside a media. At low intensities, the 

polarization depends linearly on the electric field, ܲ ൌ  where Ӽሺଵሻ is the electric ,ܧ଴Ӽሺଵሻߝ
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Figure 4.6: FWHM of transmission signal from 1532 nm continuous wave laser through 
10.9 m acetylene-filled fiber decreases over 3 hours from the evacuation moment. 
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susceptibility. At high intensities, the polarization depends on higher orders of electric field as well 

[81], 

 ܲ ൌ ଵܲ ൅ ଶܲ ൅ ଷܲ ൅ ⋯ ൌ ܧ଴Ӽሺଵሻߝ ൅ ଶܧ଴Ӽሺଶሻߝ ൅ ଷܧ଴Ӽሺଷሻߝ ൅ ⋯ (4.3)
 

For simplicity, both the electric field and polarization are written as scalar quantities. The 

second and third terms are the nonlinear parts of the polarization. The coefficients 

Ӽሺଶሻ, Ӽሺଷሻ, … , Ӽሺ௡ሻ are higher-order nonlinear susceptibilities and these are the source terms for 

nonlinear processes. Consequently, new frequencies can be generated through the dependence on  

higher orders of the susceptibility. The simplest nonlinear process can be generated through the 

second-order susceptibility, Ӽሺଶሻ. Our OPA can be described entirely by second-order effects as 

shown in Equation 4.4 and we will focus on this term for the rest of our calculation.  

 ଶܲ ൌ ଶܧ଴Ӽሺଶሻߝ (4.4)
 

The electric field can be assumed as having two components as shown in Equation 4.5. 

ܧ  ൌ ଴݁ି௜ꙍమ௧ (4.5)ܧ+଴݁ି௜ꙍభ௧ܧ

 

If we plug this into the polarization definition, the second-order polarization becomes  

 
ܲଶሺܧሻ ൌ

଴ߝ
4
Ӽሺଶሻܧ଴

ଶሺ݁ି௜ଶꙍభ௧ ൅ ݁ି௜ଶꙍమ௧ ൅ ݁ି௜ሺꙍమାꙍభሻ௧ ൅ ࢚ሺꙍ૚ିꙍ૛ሻ࢏ିࢋ ൅ 2 ൅ ܿ. ܿ. ሻ 
(4.6)

 

Each term in Equation 4.6 describes a particular second order process. The highlighted 

term in the above Equation 4.6 describes difference frequency generation. Difference frequency 

generation is the way of generating frequency component at longer wavelength from two shorter 

wavelengths components. Parametric amplification can be seen as stimulated difference frequency 

generation. All terms of Equation 4.6 are summarized in Table 4.1. 
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Table 4.1: Well-known nonlinear processes 

Nonlinear Processes Phase Matching 

Condition 

Second-harmonic generation (SHG) ߱௦ ൌ 2߱ଵ or ߱௦ ൌ 2߱ଶ 

Sum-frequency generation (SFG) ߱௦ ൌ ߱ଵ ൅ ߱ଶ 

Difference-frequency generation (DFG) ߱௦ ൌ ߱ଵ െ ߱ଶ 

Optical parametric amplification (OPA) ߱௦ ൌ ߱௣ െ ߱௜ 

 

In the nonlinear optical crystal, the pump photon (߱௣) decays into two less energetic 

photons called signal (߱௦) and idler (߱௜) so that the sum of their energies is equal to that of the 

pump photon, as shown in Figure 4.7.  

 When a specific nonlinear process is favored, we say it has been phase matched. We can 

determine phase matching by performing a simple calculation. First, the magnitude of wavevector, 

݇, of an optical field is as follows: 

 ݇ ൌ
݊ሺ߱ሻ߱
ܿ

ൌ
ሺ߱ሻ݊ߨ2

ߣ
 (4.7)

 

Where n(߱ ) is the index of refraction of the nonlinear optical media at a frequency, ω. ߣ 

is the wavelength of the applied field in vacuum.  



55 

 

 

 

Energy and momentum should be conserved, therefore, 

 
ω௜ ൅ ω௦ ൌ ω௣ 

(4.8)

 

௜࢑  ൅ ௦࢑ ൌ ௣ (4.9)࢑
 
 

Figure 4.8 shows a schematic of phase matching in a PPLN crystal that leads to producing 

a pulsed signal, idler, and residual pump at the output.  

԰߱௣

԰߱௦

԰߱௜

Figure 4.7: Optical Parametric process, 3-wave process. 
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Usually ࢑௜ ൅ ௦࢑ ൏  ,௣ because index of refraction of the media grows with ω. Therefore࢑

this phase matching condition can never be fulfilled in isotropic crystals. However, we can fulfill 

this condition by using a birefringent crystal. There are two indices of refraction in different 

directions in birefringent crystal and by setting an appropriate temperature, they can be used for 

phase matching of ordinary polarized beam and extraordinary polarized beam. 

Quasi-phase matching is a method in which a periodic structure of the nonlinear medium 

allows a positive flow of energy from higher power pump to lower power signal and idler beams 

described in Figure 4.9. In quasi-phase-matched crystals with periodically-modulated sign of the 

nonlinearity, e.g. Periodically-Poled Lithium Niobite, the artificially created grating compensates 

for the wave-vector mismatch. We may write the magnitude of phase mismatch for quasi-phase 

matching condition as shown in the Equation 4.10 and Equation 4.11, 

 
݇௣ െ ሺ݇௦ ൅ ݇௜ሻ ൌ ∆݇ 

(4.10)
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Figure 4.8: Simple schematic of Optical Parametric Amplification (OPA) using PPLN 
crystal. 
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 ∆݇ ൌ
ߨ2
Λ
ൌ
݊ሺ߱௦ሻ߱௦

ܿ
൅
݊ሺ߱௜ሻ߱௜

ܿ
െ
݊ሺ߱௣ሻ߱௣

ܿ
 (4.11)

 

 

 

 

Optical parametric gain is a function of coshଶfor the phase-matched condition ሺ݇߂ ൌ 0ሻ 

under the undepleted-pump approximation, as shown in Figure 4.10. In fact from second order 

nonlinear interaction term, Equation 4.4, in Maxwell’s wave equation solution in frequency 

domain, under the slowly varying amplitude approximation, weak nonlinear interaction, if 

ሺ݇߂ ൌ 0ሻ,	optical parametric gain has a function of coshଶ [82].  

 
ܩ ൌ coshଶሺܮ߁ሻ 

(4.12)

 

Where G is parametric gain coefficient and the definition for ߁ comes from  

1࢑

ଶ࢑

ଷ࢑

૛࣊
ࢫ

Period ࢫ

+ ‐

࢑

۳ሺ࣓૛ሻ

۳ሺ࣓૚ሻ

۳ሺ࣓૜ሻ

Figure 4.9: Quasi-phase matching condition, where can be related to pump frequency (ωp), 
ω2 can be related to signal frequency (ωs) and ω1 can be idler frequency (ωi) in Optical 

Parametric Amplification and Λ	is the poling period of the crystal. 
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ଶ߁  ൌ ቆ
݀eff

ଶ

݊ଷ
ቇ
2 ߱ଵ߱ଶܫpump

଴ܿଷߝ
 (4.13)

 

Where ݀eff is a nonlinear coefficient (pm/V) and ܫpump is pump intensity or power density 

(W/cm2). 

 

 

 

Table 4.2 list some OPAs that can generate 1532 nm and may be used in an acetylene-filled 

HOFGLAS system. In our homebuilt OPA, we used a 5 cm long magnesium oxide periodically 

poled lithium niobate crystal (MgO:PPLN). Quasi-phase matching happens inside this crystal 

between nanosecond 1064 nm Nd:YAG laser with ~ 200 μJ pulse energy and continuous wave 

1532 nm laser with ~ 70 mW power. Figure 4.11 shows the signal wavelength versus MgO:PPLN 

temperature for four poling periods. At a temperature of 105 centigrade degree and with the first 

poling period of the crystal (Λ=30 μm), the OPA produces 1532 nm pulses with about 23 μJ and 

almost 21 μJ of it is the measured maximum pulse energy at the surface of the HOFGLAS fiber 

Figure 4.10: Optical Parametric Gain coefficient under a weak nonlinear interaction 
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(after it passes through several optics). Using an appropriate long pass filter we can filter out the 

mid-IR idler and Nd:YAG pulses after the PPLN crystal. The homebuilt OPA has been described 

in detail in the next section.  

Table 4.2: List of some OPAs that generate 1532 nm [83, 84] 

Nonlinear 

Optical Crystal 

Pump (µm) Tunability range 

(µm) 

Regime Ref. 

PPLN 1.064 1.25-5.4 cw Breunig, Appl. Phys. B 105,99 (2011) 

PPLN 1.064 1.36-4.83 ns Meyers, Opt. Lett. 21, 591 (1996) 

 

 

Figure 4.11: Phased-matched signal wavelength versus MgO:PPLN crystal temperature, 
reproduced from Ref. [74]. 
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 4.3.2. Optical Parametric Amplification 

The OPA has three main elements which are a high-power pump laser, a seed laser which 

can be low power, and a nonlinear crystal satisfying the quasi-phase matching condition as shown 

in Figure 4.12. 

We use a Diode-pumped single mode passively Q-switched Nd:YAG laser at 1064 nm  

(Crylas FTSS 355-50, Serial#: 13978C1030-08110) to pump our home-built OPA. The Q value 

(or quality factor) quantifies the ability of a laser to store input light photon energy in laser cavity. 

Q-switching is a technique of increasing Q value to generate energetic pulsed light from (~ 0.1 ns 

to a few hundred ns).  

 

 

Figure 4.12: OPA setup that may produce 1532 nm pulses at 105 centigrade degree of the 
crystal’s temperature and the pulses can be used to pump in acetylene-filled HOFGLAS. 

 

There are several methods for Q-switching but our Nd:YAG is a passively Q-switched 

laser. This method uses saturable dyes inside the laser cavity medium and the losses are 



61 

automatically modulated with saturable dyes. The Dye material has its own energy levels matching 

those of the laser medium. Electrons of the lasing medium are pumped to higher energy levels. 

The dye atoms are excited to the same energy level and stay there for a short duration. During this 

short interval of time, photons emitted by de-excitation of laser medium atoms are not absorbed 

by the dye and exit the laser cavity. When the dye is in the ground state, it strongly absorbs the 

photons so no laser output is obtained. Thus, the Q value of the laser cavity is high or low 

depending on the state of dye atoms. 

 4.3.2(a). Seed Spectrum  

We seed our OPA with a narrow linewidth, continuous wave extended-cavity tunable diode 

laser (Orbits Lightwave, model: ETH-25-1532.83-2-PZ10-T). The seed laser has a single-mode 

operation at the wavelength of 1532 nm. We use a commercial Optical Spectrum Analyzer (OSA) 

to measure the spectrum of the seed laser, as shown in Figure 4.13. The maximum output power 

of the seed laser is 20 mW.  

 

 

Figure 4.13: Setup to measure the spectrum of the seed laser. An isolator has been used to 
protect the seed laser from any light reflection. A beam splitter sends only a small fraction 

of light to the OSA to work bellow the damage threshold of the OSA. 

 

The measured spectrum of the seed laser by the OSA is shown in Figure 4.14. The central 

wavelength is ~1532 nm as expected. The minimum resolution of the OSA is about 0.05 nm. 

Diode laser
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96% Beam 
block
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SNLO is a free software from AS-Phtonics designed to simulate nonlinear mixing 

processes. Based on SNLO calculations, if we increase the power of the seed laser, the amplified 

energy of the signal from the OPA will increase without reaching the damage threshold of our 

PPLN crystal.  

 

 

To increase the output power of our OPA, we incorporated an IPG-Photonics Erbium 

Doped Fiber Amplifier (model number: EAR-0.5-C-LP) with a maximum power of 500 mW, as 

shown in Figure 4.15. We have to run the laser below 300 mW to work below damage threshold 

of the isolator after the EDFA, which protects the EDFA from back reflections. Unfortunately, 

there was significant loss at the connection of the EDFA output fiber with the isolator because of 

damaged SNLO is a free software from AS-Photonics designed to simulate nonlinear mixing 

processes (PM) fiber ends. This resulted in a maximum cw power input to the OPA to be 50 mW.  

Figure 4.14: Measured spectrum of the cw extended-cavity tunable diode laser. 
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The setup is ultimately fiber coupled. A beam splitter has been used after the combination 

of an isolator and diode laser to prevent from exceeding the maximum input power to the EDFA. 

Since the input fiber of the EDFA is Polarization Maintaining fiber, a fiber coupled polarization 

controller has been used as well. The zoomed in version and zoomed out versions of the measured 

spectrum after the EDFA using the above setup have been shown in Figure 4.16. 

 

 

Figure 4.15: Schematic of the setup for measuring EDFA spectrum. BS: beam splitter, PM 
fiber: Panda Mode fiber. 

 

From Figure 4.16 (b) it is obvious that some power is not at the peak wavelength but since 

the vast majority of the power is at the peak wavelength, we can use this setup to seed  our OPA. 
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Figure 4.16: (a) Zoomed in version of the measured EDFA spectrum (b) Zoomed out 
version the measured EDFA spectrum. 

 

 4.3.2(b).Optimizing OPA output’s wavelength 

The MgO:PPLN crystal temperature is fixed  at a temperature of 105 centigrade degree. 

The generated nanosecond amplified signal from OPA has ~ 23 μJ pulse energy that is measured 

with a Ophir photonics power meter. We then look at the output spectrum of the OPA. This is done 

by coupling the OPA output into a free-space monochromator and measure the spectrum. But, 

there is a faster way to check the wavelength, as shown in Figure 4.17. We couple the OPA into a 

Single Mode Fiber (SMF) and then couple this into a broad bandwidth (~1 GHz) Fiber Bragg 

Grating (FBG) at 1532 nm. The transmission port of the FBG is fiber-coupled into a 25GHz PD 

and the nanosecond pulses at 1532 nm can be detected by a fast 4GHz Oscilloscope from 

Tektronix. If the OPA has no spectral component at 1532 nm then the transmission through the 

FBG will be zero. We can then optimize the observed transmission signal through the FBG on an 

oscilloscope by tuning the crystal temperature around 105 centigrade or tuning the poling period 

around  30 μm (first ઩ of the MgO:PPLN) and keeping track of the reflection and transmission 

ports of the FBG. Figure 4.17 shows how we use the same 25 GHz PD to look at both reflection 
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and transmission from a FBG on different channels of the fast scope using a beam splitter and 

creating time delay between the two sets of pulses. We used appropriate length of single mode 

fiber in the reflection port to create time delay.  

 

 

Figure 4.17: Schematic of the set up to optimize OPA output at 1532 nm. SMF: Single 
Mode Fiber, R: reflection port, T: Transmission port, C: connector, D: Delay fiber stage, 

BS: Beam splitter, PD: 25 GHz photodetector. 

 

 4.3.2(c).OPA pulse duration  

To measure the exact pulse duration of the 1532 nm signal from the OPA, we coupled the 

beam into the 25 GHz IR photodetector (New Focus, model: 1414) and recorded the data for a 

single shot using a fast oscilloscope, as shown in Figure 4.18. 

 

 

Figure 4.18: Setup for measuring pulse duration of OPA output. 
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The OPA pulse duration was measured to be ~ 1 ns, as shown in Figure 4.19. Data is 

recorded using a New Focus 25 GHz photodetector and a 4 GHz scope (Tektronix, CSA7404). 

Using the time bandwidth product for a Gaussian beam ሺߥ߂ ൈ  0.44ሻ, the minimum bandwidth~ݐ߂

of the OPA is calculated to be ~ 440 MHz. In the section 5.1.1., the minimum bandwidth of the 

OPA will be compared to the calculated absorption bandwidth of the Acetylene at the desired fiber 

length and pressure.   

 

 

Figure 4.19: Measured pulse duration of OPA output. 

 

 4.3.3.OPA alignment improvement  

The OPA was used for a couple months with several hollow-core optical fibers. In all of 

these attempts, the coupling into hollow-core fiber was power dependent, a typical data set for 

OPA pulse energies before and after a hollow-core fiber is shown in Figure 4.20. We double-
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checked the coupling into hollow-core fiber by backward coupling and overlapping the input and 

output beams. Multiple apertures were used along the optical set up to ensure the beam passed 

through the center of all optics. The focal length of the lens was matched with the numeric aperture 

of the fiber.  We began suspecting the mode quality of the OPA since these efforts did not pay off. 

Cameras that work well at low repetition rate and low energy costs more than 80k. So, I tried 

spatial filtering the OPA mode with pinholes at the focus of the telescopes before and after the 

PPLN crystal in Figure 4.12. Unfortunately, the pinholes burned at the OPA’s maximum power. 

 

 

Figure 4.20: Coupling efficiency into HC-PCF as a function of input pump pulse energy. 

 

 

At this point, I decided to rebuild the OPA from scratch. The crystal was removed from the 

setup to allow for proper adjustment of the YAG and seed laser. In particular, they must have 

roughly the same beam sizes and be spatially overlapped for a couple meters on the optical table. 
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Then I replaced the optics and the crystal and realigned the set up. The telescope before the crystal 

was made for compactness and consists of a +150mm focal length concave lens and a -50 mm 

biconcave. I replaced the -50 mm biconcave lens with a +50 mm concave lens to improve the beam 

overlap within the 5 cm PPLN crystal. An Ophir energy meter and FBG setup (explained in section 

4.3.2(b)) were used to optimize the power and wavelength at 1532 nm, respectively. I also kept 

track of the beam shape on an IR card while optimizing the OPA alignment. Afterward, the OPA 

output was coupled into the hollow-core fiber.  This eliminated the power dependent Coupling 

efficiency into HC-PCF, as shown in Figure 4.21. I concluded that this was mainly a result of 

improving the beam quality of the OPA. 

 

 

Figure 4.21: Coupling efficiency as a function of pump pulse energy after improvements of 
OPA alignment. 
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measurements of both of the signal and seed to determine their beam profiles. The Gaussian beam 

is narrowest at the waist (z ൌ zwaistሻ and away from the waist, the beam spreads with a hyperbolic 

outline. To determine the spot size as at each distance (z), knife edge measurement can be 

performed. These measurements are shown in Figure 4.22 and Figure 4.23 for the horizontal 

direction. In performing the horizontal knife-edge measurement, transmitted voltage signal was 

recorded after a razor blade at each transverse position as the razor blade is scanned across the 

beam using a translation stage from Newport Company. The spatial Gaussian intensity profile has 

a 
ଵ

ୣమ
 beam waist (߱ሻ. The transmitted power is related to the total power using Equation 4.14,  

where x is the transverse position defined by translational stage’s micrometer, P୲୭୲ corresponds to 

maximum power, and x଴ is related to the initial micrometer position: 

 Pሺxሻ ൌ
1
2
P୲୭୲ ቂ1 ൅ Erf ቀ

x െ x଴
߱

ቁቃ (4.14)

 

The error function, Erf, is defined as 

 Erfሺxሻ ൌ
2

√π
නeି୶

ᇲమ
dxᇱ

୶

଴

 (4.15)
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Figure 4.22: Horizontal Knife edge measurement for the seed laser before HC-PCF. Beam 
size is ~ 3mm and center of the beam is at 21.34 mm micrometer position. Vertical knife 

edge measurement is in agreement with these results. 

 

Based on our knife-edge measurements, the center of the seed laser and signal are well 

overlapped and their beam sizes are different. The beam size of the signal is 6.8 mm, more than 

twice the size of the seed laser, which is 3 mm. This changes our choice of focusing lens for 

coupling into the HC-PCF. The selected focusing lens provides a perfect match between the input 

OPA beam size and the numeric aperture of the fiber.  
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Figure 4.23: Horizontal Knife edge measurement for the OPA output beam at 1532 nm 
before HC-PCF. Beam size is ~ 6.8 mm and center of the beam is at 21.54 mm micrometer 

position. 

 

 4.4. Energy level diagram and spectrum 

Acetylene is a linear molecule with seven normal modes with two of them being doubly 

degenerate, as shown in Figure 4.24. Among these modes are a vibrational C-H symmetric stretch 

mode (ߥଵ) and a vibrational C-H antisymmetric stretch mode (ߥଶ). Their frequencies are shown in 

Table 4.3 in terms of cm-1 and Hz. One cm-1 is equal to 2.99793ൈ 10ଵ଴ Hz. So, I can convert 

frequencies corresponding to the modes of our interest ߥଵ and ߥଷ to Hertz and put them in the third 

column of Table 4.3. 
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Figure 4.24: Acetylene molecule and its normal modes. ν1 is the C-H symmetric stretch 
mode and ν3 is the C-H antisymmetric stretch mode. The relative motions of the atoms in 

the acetylene molecule are shown with small arrows under the atoms. 

 

An Acetylene molecule occupying a particular molecular vibrational and rotational state may 

absorb (emit) light to excite (decay) into other states. Fundamental molecular vibrational 

transitions can happen when the selection rules (∆ߥ௜ ൌ േ1ሻ are satisfied, this is similar to the 

simple harmonic oscillator problem. However, molecules do not behave exactly as independent 

simple harmonic oscillators as weak additional transitions, called overtones, are allowed. We are 

interested in the Transition from ground vibrational state to the overtone vibrational state of ν1+ 

ν3, referred to as P(13).  

Table 4.3: Frequencies related to the vibrational normal modes of interest of Acetylene 
molecule [85, 86]. 

Vibrational normal mode Frequency in 12C2H2 (cm-1) Frequency in 12C2H2 (Hz) 

ൈ	ଵ 3397.12 101.84ߥ 	10ଵଶ 

ൈ	ଷ 3316.86 99.44ߥ 	10ଵଶ 
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The seed diode laser for the OPA allows tunability of the pump wavelength on and off 

resonance with the P(13) transition of acetylene at 1.53 μm. The seed laser for the OPA is tuned 

on resonance with the P(13) transition line. This results in laser emission along the P(13) and R(11) 

transitions, as shown in Figure 4.25. The P branch is related to transitions between rotational levels 

with ∆ܬ ൌ െ1 while the R branch is related to rotational transitions with ∆ܬ ൌ ൅1. The Q branch 

is related to ∆ܬ ൌ 0 which can only happen if the vibrational angular momentum of either the initial 

or final levels is non-zero in order to conserve total angular momentum. This is not the case for 

us, so we observe no lasing in the Q branch.  The R branch (left side) and P branch (right side) 

absorption spectrum of acetylene molecules, borrowed from NIST, are shown in Figure 4.26. The 

measurements are from a 5 cm long gas cell at a pressure of 50 torr. The two lasing transitions that 

lead to emission around 3 μm are shown in the inset of Figure 4.25. 

 

 

Figure 4.25: Rotational-vibrational energy levels related to C-H symmetric stretch mode ν1 
and a C-H antisymmetric stretch mode ν2. 
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Figure 4.26: Data from NIST measurements for a 5 cm gas cell at 50 torr acetylene 
pressure. The R branch (left side) and P branch (right side). 

The spectrum for our laser is shown in Figure 4.27 at the highest pump pulse energy as we 

tune the seed on resonance with 1532 nm.  

 

Figure 4.27: Spectrum of the OPA-pumped Acetylene-filled HOFGLAS at the highest laser 
pulse energy. It is consistent with the data presented in chapter 5. 
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The R(11) laser line is at 3.11 μm and the P (13) lasing line is associated with the 3.17 μm 

wavelengths. Since P(13) is related to longer wavelengths, we assumed it must have lower energy 

than the R(11) lasing line. However, the observed spectrum does not agree with this assumption. 

The reason could be different polarizations of the lasing lines that affected the spectral measurment 

on using a polarization dependent monochromator. 

 

 4.5. Maximum theoretical efficiency calculation 

The maximum theoretical efficiency is 33% and it comes from simultaneous saturation for 

pump and lasing transitions. A steady state condition for the laser energy levels can be assumed to 

prove the maximum theoretical efficiency, as shown in Figure 4.28. 

 

Figure 4.28: Steady state condition for simultaneous saturation of pump and lasing 
transitions. n’ is the number of molecules in the Ground State (GS) and also rotational-

vibrational overtone state symmetric and antisymmetric stretch of C-H mode while pump 
transition is saturated and n” is the number of molecules in the destination energy level for 

R(11) and also P(13) lasing transition lines while these lasing transitions are saturated. 
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In the steady state condition while pump transition is saturated, ݊ᇱ is the number of 

molecules in the ground state and it is equal to number of molecules in the excited state. ݊" is the 

number of molecules in the destination energy level for R(11) and also P(13) lasing transition lines 

while these lasing transitions are saturated. When the pump and lasing lines are saturated 

simultaneously, ݊ᇱ must be equal to ݊". In this case, the number of absorbed photons equals to 

3݊ᇱE where E is the pump energy and number of lased photons equals 3 ݊"ܧᇱ where ܧᇱ is the laser 

energy and ܧᇱ equals to half of the pump energy. So, slope efficiency can be calculated as shown 

in Equation 4.17 and it results in 33% maximum theoretical efficiency. 

 
௢௨௧ܧ
௜௡ܧ

ൌ
2 ݊ᇱ

௣௨௠௣ܧ
2

3݊ᇱܧ௣௨௠௣
ൌ
1
3

 (4.16)

  

 4.6. Detection system 

As shown in the simplified version of the laser setup in Figure 4.29, we can measure the 

pump pulse energy before the HC-PCF and both the mid-IR and residual pump pulse energies after 

the HC-PCF. We measure the mid-IR laser pulse energy using a Germanium filter inserted 

perpendicular to the beam path.  

 

Figure 4.29: Simplified version of the setup of pump coupling into HC-PCF and measuring 
pump pulse energy as well as residual pump and mid-IR laser pulse energies. 
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Andrew Jones used the voltage signal of a photodetector to compute pulse energy. In this 

method, he measured the integrated pump voltage signals before and after the fiber as well as the 

signal after the Ge filter all in units of (Vൈps).  The voltage signal is recorded by a LabVIEW-

controlled oscilloscope and the calculation of the area is done in MATLAB. The code is in 

Appendix E of his PhD dissertation [74]. He used a “Coherent” Pyroelecteric energy meter to 

calibrate the integrated voltage signal and convert it to pulse energy. He was using the pyroelectric 

energy meter at A & B & C, shown in Figure 4.29, for both on and off resonance laser operations 

at each pump pulse energy. The measurements are usually done at seven pump pulse energies. The 

pump pulse energy incident on the fiber can be controlled with variable attenuators after the OPA. 

The calibration factor in terms of 
௡௃

௏ൈ௣௦
 is determined by applying a linear regression on the data 

and finding the slope. Although his method of calculating calibration factors is performed with 

upmost accuracy, the 3 μm pulse energy versus absorbed pump pulse energy usually appeared 

noisy [74].  

We went through a sequence of measurements to check linearity in response of the HgCdTe 

Photo Detector as well as energy meter linearity check at low energies. Finally, we noticed energy 

meter is noise sensitive and we may reduce this effect by using a rubber sheet under the power 

meter holder where it is in contact with optical table. But still at low energies the noise level was 

of the same order as the detected signal. So, we switched our energy meters to newer energy meters 

from Ophir that work better at lower pulse energies. We also used the external triggering to trigger 

the energy meters and this was helpful as well. By applying these corrections and measuring pulse 

energies directly at A & B &C in Figure 4.29 and taking data in relatively quiet lab, the amount of 

fluctuations on the produced 3 μm pulse energy was reduced and more stable laser system was 

obtained.  
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 4.7. Calculating absorption by the gas 

As shown in Figure 4.29, We measure input pump pulse energy at “A”, mid-IR laser pulse 

energy at “B” and combination of any residual pump and produced mid-IR laser pulse energy at 

“C”. Then, corrections must be applied for propagation through several optical components, 

coupling efficiency into the HC-PCF and fiber loss at pump wavelength to be able to reach the 

accurate measured pulse energies at the surface of fiber. We must account for the losses between 

measurement point “A” and the entrance of the fiber to know the exact pulse energy entering the 

fiber. A correction factor of 0.99 was applied for the transmission through a silver flat mirror, a 

BK7 plano-convex lens, and a BK7 window (all from Thorlabs).  On the right hand side of Figure 

4.29, the measured mid-IR pulse energy at “B” is lower than the actual mid-IR pulse energy at the 

exit of the fiber by a factor of (0.9481ൈ 0.8821), where 0.8821 stands for transmission through 

CaF2 window and a CaF2 collimating lens and 0.9481 stands for transmission through Germanium 

Filter perpendicular to the beam. Finally, the measured pulse energy at “C” should be divided by 

(0.8821ൈ0.99), where 0.8821 stands for transmission through CaF2 window and a CaF2 

collimating lens and 0.99 stands for transmission through a flipper silver flat mirror. All optics are 

from Thorlabs.  

With the reflective and transmissive components accounted for, we turn our attention to 

the coupling efficiency into the hollow core fiber. On the right hand side of Figure 4.29, we assume 

100% output coupling, meaning the measured pulse energies at the surface of the fiber is equal to 

the pulse just inside the fiber. At the entrance of the fiber, i.e. left hand side of Figure 4.29, there 

is loss of pump coupling into the HC-PCF. We may quantitatively find the coupling efficiency in 

addition to calculating the absorbed pump pulse energy only by gas.  
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The first step toward calculating absorption by only gas inside the fiber is in calculating 

pump coupling efficiency into HC-PCF. To do so, I used off resonance measurements for the 

residual pump at the exit port of the fiber (Pout in Figure 4.30) along with a pump ratio value 

calculated from the Equation 4.17. 

 
௢ܲ௨௧

௜ܲ௡
ൌ ݁ିఈ௅ 

(4.17)

 

Where ߙ is the absorption coefficient by fiber and L is the length of the fiber.  

 

Figure 4.30: Gas-filled fiber. “Measured Pin” is the input pump measured value of the 
outside surface of the fiber after applying all the corrections of transmission through optics 
in the set up.  “Measured Pout” is the measured residual pump at the exit port of the fiber 

after applying the corrections related to transmission through all optics in the set up. 

 

We are provided with  ߙ in terms of dB/m. So, the Equation 4.17 is used for a certain length 

of fiber. The ratio of 
௉೚ೠ೟
௉೔೙

 in terms of dB is used and the residual pump is measured at the exit port 

of fiber for off resonance case and it is divided by the calculated ratio of 	௉೚ೠ೟
௉೔೙

 to find coupled input 

pump energy at the inner surface of entrance port of the fiber. The coupled input pump at the inner 

surface of the fiber can be divided by measured input pump at the outer surface of the fiber and 

the coupling efficiency can be obtained as shown in Equation 4.18. 
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Coupled	 ௜ܲ௡ ൌ Coupling	efficency ൈ Measured ௜ܲ௡ 
(4.18)

 

Now, using the calculated coupling efficiency and on resonance data we can calculate the 

absorbed pump pulse energy only by gas as it has been summarized in Figure 4.31.  

 

 

Figure 4.31: Summary of coupling efficiency calculation on the left side and absorption by 
gas calculation through averaging of method I and method II on the right side. 

 

In order to do so, two methods have been used that are described in this section and Brian 

Washburn noticed that the result of the average of these two methods matches very well with 

solving a z dependent absorption differential equation and finding the absorption by gas. The two 

methods are summarized in Figure 4.31 for better clarification. Both methods use on resonance 

data to calculate power lost due to imperfect fiber guidance and then calculating the absorbed 

pump pulse energy by the gas is possible from  Equation 4.19.  

 
 

(4.19)
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ݏܽ݃	ݕܾ	ݎ݁ݓ݋݌	ܾ݀݁ݎ݋ݏܾܣ ൌ ݈݀݁݌ݑ݋ܥ ௜ܲ௡,௢௡ െ ௢ܲ௨௧,௢௡ െ ݎ݁ݓ݋ܲ  ݎܾ݂݁݅	݊݅	ݐݏ݋݈

 

Where “Coupled ௜ܲ௡,௢௡” is the on resonance data for input power at the inside surface of 

the fiber, “	 ௢ܲ௨௧,௢௡” is the residual pump power at the surface of the exit port of the fiber and 

“Power	lost	in	fiber” is the calculated pump power lost due to imperfect fiber guidance from 

method I or method II. In method I, we use the coupling efficiency, found from off resonance data 

as explained above, to measure coupled input pump power for the on resonance case and then 

multiply it with the power ratio from Equation 4.17 to estimate residual pump power at the exit 

port of the fiber. Then we calculate “power lost in fiber” by subtracting “estimated ௢ܲ௨௧,௢௡”	from 

“Coupled ௜ܲ௡,௢௡”  and use Equation 4.19 to calculate absorbed power by gas. In method II, we take 

the “Measured ௢ܲ௨௧,௢௡” data and move backward along the fiber length and divide this value by 

the power ratio from Equation 4.17 to find “estimated coupled ௜ܲ௡,௢௡”. Then we calculate “power 

lost in fiber” by subtracting “Measured ܲ ௢௨௧,௢௡”	from “estimated coupled ܲ ௜௡,௢௡”  and use Equation 

4.19 to calculate absorbed power by gas.  

The improvements described in chapter 4 were applied to the acetylene-filled HOFGLAS 

system and the experimental results for laser operation are presented and discussed in chapter 5. 

 

  



82 

Chapter 5 - Improved acetylene HOFGLAS operation results 

The improvements on the pulsed acetylene-filled HOFGLAS system were discussed in 

chapter 4 in detail. In this chapter, the improved output pulse energy of the mid-IR pulsed acetylene 

HOFGLAS system is reported. Some of the applications of this laser system like remote sensing 

require high power. So, power scaling this laser system was investigated by optimizing the laser 

operation through maximizing the OPA alignment to improve its modal content, using longer 

length of fiber to increase the interaction length, and improving the beam quality of the mid-IR 

emissions. The highest pulse energy ever obtained in the 3 µm mid-IR region from the acetylene-

filled HOFGLAS after applying the improvements is reported here, 1.4 μJ. Higher mid-IR pulse 

energies can be achieved by improving the pulse energy achievable from the OPA pump source 

and working with longer pulse duration to decrease the bandwidth of the OPA. This operation 

demonstrates many novel properties of the acetylene HOFGLAS. The excellent spatial beam 

quality at highest power and phenomenological scaling of saturation power and efficiency with 

pressure encourage for further power scaling, and motivate development of numerical models of 

the laser for deeper insight into these effects [87] . M2 measurement method was used to examine 

spatial beam quality and it was found to be fiber-dependent [77], [25, 78]. For the improved setup, 

M2 was investigated at several input pump powers in addition to the reproducibility checks [25, 

78]. M2 of 1.14 at the maximum output power motivates for beam combining to scale to higher 

power. The independence of efficiency on pressure is an evidence for reaching higher mid-IR 

power at a pressure where saturation behavior does not exist. achieving the highest mid-IR power 

to date, 1.14 μJ, encourages for building higher power OPA to produce high power mid-IR 

emissions. This laser exhibits novel behavior that motivates both numerical/theoretical 

investigation and further efforts to scale to higher powers. 
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 5.1 Acetylene-filled HOFGLAS operation results  

A 10.9 m negative curvature kagome HC-PCF is installed in the acetylene-filled 

HOFGLAS system. As it was discussed in chapter 3, the low loss of the kagome-structured HC-

PCFs over broad bandwidths make them an appropriate choice for HOFGLAS systems that require 

a long interaction length. The core of these inhibited coupling kagome HC-PCF have a 

hypocycloidal shape with negative curvature. This enhances the coupling inhibition between the 

core and cladding modes [88-90]. The HC-PCF that is used in this experiment has an outer 

diameter of 360 μm and the hypocycloid inner core diameter varies between 60 µm and 72 µm, as 

shown in Figure 5.1.  

 

Figure 5.1:7 cell, 3 ring, hypocycloidal-core kagome fiber cross section and loss spectrum in 
near-IR, we are provided with data from Xlim research institute. 1.13±0.05 dB/m is the 

fiber loss at 3 μm and 0.08 dB/m is the fiber loss at the pump wavelength of 1.53 μm. 
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This is fiber #15 from Table 3.3 and we picked this because of the low loss at the pump and lasing 

wavelength. The fiber loss was measured to be 0.08 dB/m at the pump wavelength (1.53 μm) and 

1.13±0.05 dB/m at the average lasing wavelength (3.1 μm). The loss at mid-IR was measured using 

the output of our acetylene HOFGLAS system. The measured loss is consistent with the empirical 

scaling laws for inhibited coupling into HC-PCF. Figure 5.2 shows the experimental setup of the 

acetylene-filled HOFGLAS, which is similar to Figure 4.1.  

 

 

Figure 5.2: Experimental setup for pulsed operation of acetylene-filled HOFGLAS system. 

 

A combination of half-wave plate and polarizing beam splitter are used as a variable 

attenuator to control the pump pulse energy. An anti-reflection (AR) coated BK7 lens with focal 

length 75 cm is used to couple the pump into the core of the HC-PCF. An AR coated BK7 window 

on one of the vacuum chambers was used to allow the pump pulses to be coupled into the HC-PCF 
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and a CaF2 window on the other vacuum chamber allows both the pump and laser pulses to leave 

the vacuum chambers.  

As discussed in section 4.3.3, improved modal content of the OPA output played an 

important role in achieving good energy coupling into the fiber. Average pump coupling efficiency 

is 52% after applying corrections for fiber loss at pump wavelength. The output beam is collimated 

with a CaF2 lens (focal length 150 mm). A germanium filter is  placed perpendicular to the beam 

at the output and it filters the residual pump and passes the produced mid-IR beam, enabling laser 

diagnostics. At several acetylene pressures, the performance of the laser is characterized in the 

fiber in terms of the produced mid-IR pulse energy and the results are discussed in the following 

sections. Also, the laser beam quality is investigated at various laser pulse energies.  

 5.1.1. Produced mid-IR pulse energy and laser efficiency 

The OPA wavelength is tuned on resonance to the P(13) absorption line in acetylene, 

corresponding to the transition between the vibrational ground state and the ν1+ ν3 rotational-

vibrational excited state (1.53 μm), which is Doppler-broadened to ~475 MHz and additionally 

pressure-broadened by ~11 MHz/torr [91]. Appendix B gives the Python code for calculating the 

linewidth of the absorption feature at a  given acetylene pressure and  it shows the transmission 

feature for the given pressure and fiber length.  

Population inversion between the rotational-vibrational states results in lasing at two mid-

IR wavelengths (3.11 μm and 3.17 μm) which are related to the R(11) and P(13) lines in acetylene 

molecules. They correspond to the transitions between the ν1+ ν3 rotational-vibrational excited 

state and the ν1 vibrational state, as shown in Figure 4.25.  

As discussed in section 4.6., using a more sensitive pyroelectric energy meter allows for 

better characterization of the laser. These energy meters are used to measure the 1.53 μm and 3 
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μm pulse energies at different positions in the laser configuration. As discussed in section 4.7., the 

germanium filter blocks the residual pump and makes the measurement of 3 μm laser pulse 

energies possible. It is possible to estimate the total pump pulse energy absorbed by gas 

experimentally. To do so, measurement of the input pump pulse energy before the vacuum 

chambers and the residual pump pulse energy after the vacuum chambers are needed in addition 

to careful consideration for coupling efficiency and fiber loss at pump wavelength. Figure 5.3, 

shows the 3 μm output pulse energy versus the pump pulse energy coupled into the fiber when a 

coupling lens of focal length f = 75 mm was used for several acetylene pressures. Saturation 

behavior is clearly observed below 9.8 torr.  

 

Figure 5.3: Plot of produced mid-IR pulse energy versus input pump pulse energy which is 
corrected for coupling efficiency of 52%. 
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By saturation behavior, I mean that as we increase the input pump pulse energy we observe 

no increase in produced laser pulse energy. We eliminated saturation behavior at most of the 

pressure ranges compared to our previous results.  We believe this is due to the longer fiber, lower 

loss in the fiber itself, as well as improvements in the HOFGLAS setup discussed in section 4.3.3. 

Figure 5.4 shows the produced 3 μm pulse energy from the laser as a function of the total pump 

pulse energy absorbed by acetylene in the fiber. In similar plots from Andrew Jones’ thesis [74], 

fiber loss was not  taken into account for the absorbed pump energy. Therefore, his reports are for 

the total absorption by gas and lost due to imperfect fiber guidance. Figure 5.4 reflects our best 

understanding of those losses at this time. 

 

Figure 5.4: Plot of produced mid-IR pulse energy versus absorbed pump pulse energy only 
by gas which is corrected for fiber loss. 
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Figure 5.3 and Figure 5.4 show results of operation of acetylene-filled HOFGLAS for the 

range of pump pulse energies achievable from the current OPA, while 10.9 m of the HC-PCF is 

used. When acetylene is used at pressures above 9.8 torr, the laser operates without observing any 

saturation behavior, and produces a maximum 3 μm pulse energy of 1.41 μJ at 9.8 torr. At this 

highest output pulse energy the slope efficiency is ~ 17% and the overall efficiency with respect 

to the input pump pulse energy is ~ 14%. Figure 5.4 also illustrates that for pressures below 9.8 

torr, the 3 μm output energy increases but eventually saturates as the absorbed pump pulse energy 

by the acetylene gas increases. The saturation points of mid-IR laser pulse energy are plotted 

against acetylene pressure in Figure 5.5. It clearly shows that the pump energy where saturation 

occurs increases as the acetylene pressure increases.  This is a positive indicator for higher power 

operation. It is possible that this laser system is limited by the number of molecules available for 

excitation, which explains why the output energy scales with pressure. The linear fit in Figure 5.5 

was extrapolated to higher fiber pressures. It suggests that the mid-IR laser may reach 2 μJ without 

saturation assuming we have a pump laser with sufficient energy. We expect this predicted power 

scaling at higher acetylene pressures if other factors, reduced transmission at pump and lasing 

wavelengths, pressure broadening, etc. do not limit the laser performance at the higher pump 

powers.   
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Figure 5.5: Observed saturation point versus acetylene pressure. 

 

The slope efficiency of the laser is obtained by fitting the linear region of each curve in 

Figure 5.4. Then the slope efficiency is plotted against acetylene pressure in Figure 5.6 (purple 

squares).We compare our laser efficiency with that of a diode pumped HOFGLAS configuration 

reported in [3]. We reported that our observed slope efficiency was independent of pressure in the 

range we were working at. The slope efficiency is defined as the mid-IR laser output power divided 

by absorbed pump power. It can be seen that the laser efficiency of the diode-pumped configuration 

varies over a wide range from ~ 8% to ~ 30%. However, the slope efficiency of our OPA pumped 

HOFGLAS system remains close to ~ 20% over the same range of acetylene pressures for which 
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the laser performance was investigated. This indicates that collisional relaxation is not limiting our 

laser performance in this regime.  This behavior suggest that we can scale the laser system by 

increasing the pump powers and pressures.  

 

 

Figure 5.6: Laser slope efficiency versus acetylene pressure.  

 

It is important to mention that we are in a regime of high pump saturation, meaning the 

amount of power absorbed by the gas varies along the length of the fiber, and with pressure, in a 

highly nonlinear way.  This is seen in Figure 5 of Ratanavis et al, [37].   

Threshold occurs when loss, including absorption of the gas, is equal to gain.  As pressure 

increases in a fiber, more power must be absorbed in order to create a population inversion 
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throughout the fiber.  However, the gain is not degraded, but rather increased, because there are 

more molecules contributing to lasing.  It is reasonable to think that the gain will not degrade with 

increasing pressure because we are in a regime where the linewidth is dominated by Doppler 

broadening while collisional broadening is only a minor contribution. Therefore, as pressure 

increases, the peak of the absorption coefficient alpha still increases.  We can observe this behavior 

by plotting absorbed pulse energy versus pressure in Figure 5.7. This plot resembles the curve for 

the absorption coefficient in CO2 at 10.6 um as a function of CO2 pressure shown in [92]. 

 

Figure 5.7: For a certain coupled input pump pulse energy, absorbed energy can be plotted 
versus pressure. 
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Indeed the nearly flat efficiency indicates that collisional losses do not dominate, and are 

probably slow compared to the other relevant laser lifetimes.  Therefore, both absorbed power and 

gain have increased in a proportional way, and so the slope efficiency above threshold remains 

unchanged.  

Threshold of lasing at each acetylene pressure was found by applying a linear fit to the 

linear regime of the graphs in Figure 5.4 and is shown in Figure 5.8. 

 

Figure 5.8: To find threshold of lasing at each acetylene pressure, linear fits have been 
applied to the plot of 3 μm power versus absorbed pump power. 

 

The intercept (b) and slope (a) of each linear fit can be used to calculate threshold values 

as shown by Equation 5.1 and Equation 5.2.  
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ݕ ൌ ݔܽ ൅ ܾ 

(5.1)

 

݈݀݋݄ݏ݁ݎ݄ܶ  ൌ െ
ܾ
ܽ

 (5.2)

 

As shown in Figure 5.9, for our setup, lasing threshold increases linearly with pressure. 

Experimentally, it was not possible to acquire data exactly at threshold because the amount of 

power detected by energy meter was within the background noise level of the energy meter and 

usually lasers are noisy at threshold.  

 

Figure 5.9: Threshold of lasing versus acetylene pressure. 
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Laser operation results are compared for the OPA pumped HOFGLAS and amplified 

modulated diode pumped HOFGLAS under the same condition (10 torr of acetylene pressure, ~ 

10.5 m fiber length, and relatively similar fiber loss at pump wavelength) as shown in Figure 5.10.  

 

Figure 5.10: At 10 torr pressure and ~ 10.5 m of fiber, laser operation results for OPA-
pumped (circle/ red plot) and amplified modulated diode-pumped (triangle/blue plot) have 

been compared together. The square/ black plot is the prior result of operating OPA-
pumped HOFGLAS with a shorter length of fiber ~ 1.5 m. 

 

Although fiber loss at 3 μm is reported about one order of magnitude smaller in the diode-

pumped HOFGLAS compared to OPA pumped HOFGLAS (1.13 dB/m for KSU and 0.1 dB/m for 

University of Bath), the laser slope efficiency is higher for the OPA pumped HOFGLAS under the 

same condition. But higher slope efficiency is obtained from the diode-pumped case at lower 
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pressures (~1.5 torr) as shown in Figure 5.11. The performance of two laser systems are different 

from each other that can be related to properties of the two pump sources.  

 

Figure 5.11: At ~1.5 torr of acetylene pressure and ~ 10.5 m fiber length, results from 
diode-pumped HOFGLAS and OPA-pumped HOFGLAS are compared. 

 

Laser operation results are compared for OPA pumped HOFGLAS operation for two 

different fiber lengths as shown in Figure 5.12. At Figure 5.12 (a), both operations are at ~10 torr 

of gas pressure and 1.5 μm fiber loss are relatively similar (~0.1 dB/m). Loss at 3 μm for the prior 

operation is reported to be ~5 dB/m and for the recent operation is 1.13 dB/m. At Figure 5.12 (b), 

both operations are at ~5 torr. Improved laser slope efficiency for the recent operation can be 

observed from both plots. 
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Figure 5.12: (a) At 10 torr pressure, but using different fiber lengths, laser operation 
results for OPA-pumped HOFGLAS have been compared together. The square/ black plot 

is the prior result of operating OPA-pumped HOFGLAS with a shorter length of fiber ~ 
1.5 m and the circle/ red plot is the OPA- pumped HOFGLAS result using 10.9 m of fiber. 

(b) Operation at 5 torr acetylene pressure. 

 

To study absorption linewidth in our acetylene HOFGLAS system, while pumping on 

P(13), I wrote a simple code in Python, Appendix B, to calculate absorption coefficient (α)  and 

compare transmission through Acetylene-filled fibers versus frequency for different pressures and 

fiber lengths. The code uses a Voigt profile generated by “Lm fit” from Python 

(https://lmfit.github.io/lmfit-py/). The Voigt profile is used in the definition of absorption 

coefficient by Equation 5.3. 
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Where, ݇௕ is the Boltzman costant, ݌ is the gas pressure and T is the gas temperature and 

S is the line strength that can be calculated in the code using NIST data [91] Then, we may use 

Beer’s law, Equation 5.4, to plot transmission through gas-filled fiber versus frequency.  

 

ܫ  ൌ ଴݁ሺିఈ௅ሻ (5.4)ܫ

 

Where ߙ is the calculated absorption	coefficient	ሺߥሻ from Equation 5.3 and L is the fiber 

length. I applied the code for different sets of fiber lengths and pressures and the results are plotted 

in Figure 5.13. In my experiment, I was working with 10 torr and 10.9 m (blue curve) and it is 

obvious that fractional transmission through this long length of fiber at 10 torr is 100%.  

 

Figure 5.13: Compare transmission through gas cells with different gas pressures and 
different fiber lengths. Transmission (I) has the unit of V in this plot, where I0 is 0.355 V. 
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 5.1.2. Optimized focusing lens 

In section 5.1.1., we used a focusing lens of 75 mm to couple the pump into the hollow-

core fiber. The numeric aperture of the fiber matches with this focal length but in this section, we 

replaced the focusing lens with a 125 mm focal length lens. This focal length of the lens that 

couples the OPA pump beam into the fiber is chosen such that the mode of the OPA pump beam 

has maximum overlap with the fundamental mode of the fiber. Figure 5.14 shows the beam with 

diameter D, which is the 
ଵ

௘మ
 intensity diameter of a collimated Gaussian beam, and d is the core 

diameter of fiber. Equation 5.5 should be used to find the optimum focal length of the lens for 

beam coupling into the hollow-core fiber [93].   In fact, numeric aperture of the beam (
ఒ

గఠబ
) should 

be matched with numeric aperture of the fiber through the lens (
ௗ

ଶ௙
). The factor 0.64 in Equation 

5.5 comes from fundamental mode matching condition in Figure 5.15. 

 

Figure 5.14: Beam coupling into hollow-core fiber. “D” is the beam diameter and “d” is the 
fiber core diameter. 

 

 
4 ൈ ݂ ൈ ߣ
ߨ ൈ ܦ

~0.64 ൈ ݀ (5.5)
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From section 4.3.3., we know the beam sizes for the OPA output at 1532 nm and seed laser 

at 1532 nm do not match. Since we care about maximizing the OPA coupling into hollow-core 

fiber, “D” in the above equation is equal to OPA beam diameter for ~6mm. Inner core size of the 

hollow-core fiber is 60μm/72 μm. So, a lens with the focal length of 12.5 cm will help in coupling 

more of the fundamental mode of the OPA beam into the fiber. 

After the light is focused at the fiber aperture, the free-space TEM00 mode width is 

proportional to the far-field divergence angle. In other words, since the plane where light leaves 

the fiber lies in the focal plane of the lens, the far field pattern is fed into the fiber. When the focal 

length is properly chosen, only the lowest order transverse mode has a low aperture loss, since the 

higher order transverse modes have greater angles of divergence [93]. In [93], the amplitude of a 

TEM00 beam with wavenumber k is defined (்ܧாெబబ
) and then the fiber modes are represented by 

their amplitude distribution (ܧாுభ೘). The coupling of each fiber mode to the TEM00 mode is 

determined by the overlap integral, which is a function of the Gaussian width. Numerical analysis 

was performed to plot the percentage of coupled energy as a function of the TEM00 mode width. 

Figure 5.15 shows the optimum spot diameter of the free-space beam is ~ 0.64ൈd to couple ܧாுభభ. 

This is mostly single mode coupling but with ~98% of that light coupling into the fiber. It also 

shows that if we choose the focal length of the lens to give the free-space beam a spot diameter of 

~ 0.5ൈd then a superposition of ܧாுభభand ܧாுభమwill couple 99.85% of the light into the fiber.  
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Figure 5.15: Plot of coupling efficiency of EH1m mode into the hollow-core fiber with radius 
of a. Optimum spot diameter of free-space beam is ~ 0.64ൈd [93]. 

 

 

To apply the above modification, the acetylene-filled HOFGLAS system was operated one 

more time using the optimized focusing lens. The plot of laser pulse energy versus input pump 

pulse energy is shown in Figure 5.16. 
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Figure 5.16: produced mid-IR laser pulse energy versus coupled input pump pulse energy.  

 

Acetylene-filled HOFGLAS was operated at three pressures and observations of saturation 

and slope efficiency are the same as the previous operation as shown in Figure 5.17. 
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Figure 5.17: A plot of slope efficiency as a function of acetylene pressure, where slope 
efficiency is the ratio of mid-IR power over absorbed power by gas. The purple plot is for 
obtaining the highest power operation that is discussed in section 5.1.1. and the red plot is 

the operation of the same setup for obtaining the highest mode quality. 

 

In Figure 5.18, the produced mid-IR pulse energy as a function of absorbed pump pulse 

energy is represented. The highest produced mid-IR laser pulse energy in this operation was ~ 1.17 

μJ, which is evidence for more single mode operation of the laser system based on above 

explanation. In section 5.2.1., I performed M2 measurement on the highest produced mid-IR laser 

beam while this focusing lens of 12.5 cm was installed inside laser system and M2 value of 1.15 

was obtained, demonstrating a near diffraction-limited operation of the laser system. 
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Figure 5.18: Plot of produced mid-IR laser pulse energy versus absorbed pump pulse 
energy only by gas. 

 

 5.2. M2 measurement of 3 μm output beam 

In this section, the mode quality of the produced mid-IR laser from acetylene-filled 

HOFGLAS will be investigated twice. Section 5.2.1. will present the near diffraction-limited 

performance of the laser system using the optimized focusing lens described in section 5.1. and 

10.9 m of fiber # 15 in Table 3.3. [25]. Section 5.2.2., describe the first time investigation of mode 

quality of acetylene HOFGLAS using fiber #6 in Table 3.1. [77]. 
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 5.2.1. Near diffraction-limited performance of acetylene HOFGLAS 

M2 measurements were performed to characterize the laser mode quality. M2 value 

provides information about the beam’s propagation properties and achievable brightness. The laser 

was operated at 10 torr and 1.53 μm pump coupling was optimized for single mode operation, as 

described in section 5.1., and 1.17 μJ was the maximum observed 3 μm pulse energy.  

The M2 measurement was performed by taking several beam profiles of the 3 μm laser 

output at the Rayleigh range and further away from the Rayleigh range of the focus of a fixed 

position lens in free space. The Rayleigh range of a Gaussian laser beam is the distance from the 

beam waist position on propagation axis where the beam radius is √2	times bigger than the beam 

waist. The beam profiles were measured using a CaF2 plano-convex lens of 150 mm focal length 

and scanning a 20-μm wide slit across the transverse axis (x) of the output beam at different 

positions along the propagation axis (z). Figure 5.19 represents a series of mid-IR laser beam 

profiles that were measured at the highest 3-µm pulse energy produced by the laser at the focus of 

the 150 mm focal length lens. This method measuring the M2 requires a few hours due to working 

with a low repetition rate laser (the 30 Hz repetition rate of our OPA is defined by the Nd:YAG 

laser which is the pump for the OPA). The laser operated stably through the measurement. The 

stable operation can be seen in the smoothness of the curves in Figure 5.19 and the small error bars 

in Figure 5.18. We also examined our data more closely for quantitative temporal stability 

information. The shot-to-shot variations on power were only about 10% as shown in the error bars 

of Figure 5.18. The 2% error bar on the large w values of Figure 5.20 are consistent with power 

fluctuations, since they are taken on 50 point averages and consequently should be  
ଵ଴%

√ହ଴
  or 1.4% , 

assuming random noise. The statistical error bar on the resulting M2 fit is only 0.014 at 1.15 μJ. 

Scaling this by the √50 gives ܯଶ ൌ 1.15 േ 0.15 for single-shot, assuming random noise. The 



105 

error bar shown in the plot reflects the uncertainty on the center wavelength of the 3 micron output, 

which dominates the uncertainty in the M2.  

 

Figure 5.19: Beam profile measurements along several axial positions in the Rayleigh range 
and further away from the Rayleigh range of a focusing lens in front of the collimated 3 μm 

beam. 

 

The beam widths for each profile in Figure 5.19 were obtained using the ISO standard D4σ 

method and were fitted to the definition of M2 [38, 94] with an averaged wavelength of 3.143 μm. 

Figure 5.20 shows beam widths as a function of axial position and an M2 value of 1.15±0.02 is 

obtained from fit to this data in a Matlab code, appendix C. The error in the M2 value, as explained 

above, comes from fitting the measured beam widths to the definition of M2 in [38] .  
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Figure 5.20: Beam waist values from the beam profile measurements are plotted versus 
axial position and fitted into the M2 definition. 

 

The M2 of the laser output was also measured for other produced mid-IR energies and the 

HOFGLAS was operated at 10 torr of acetylene pressure, as shown in Figure 5.21. We observed 

that the beam quality of the laser was almost uncompromised and at the highest pulse energy, we 

obtained M2 of 1.15±0.02. Then, the reproducibility of the M2 measurement was checked at two 

powers using a 50 μm wide slit. In both cases, the M2 values were reproduced, as shown in red at 

Figure 5.21. These results show the stable and near-diffraction limited performance of the 

acetylene-filled HOFGLAS system. 



107 

 

Figure 5.21: Plot of M2 as a function of 3 μm laser pulse energy. At two produced laser 
pulse energies, M2 reproducibility were checked under completely different laboratory 

situations. 

 

 5.2.3. First time investigation of Acetylene HOFGLAS mode quality 

The First-time mode quality was investigated  for fiber #6 in 2015 and an M2of 1.71േ0.19 

was obtained [77]. Then, attempts were made to use fibers with smaller core size and closer to 

single mode operation. In this section, I present the first results of beam quality measurements. We 

went through the same procedure as described in section 5.2.1, Figure 5.22 shows the results. A 

similar piece of the fiber was sent to Colorado and Andrew Jones performed an imaging using an 

InSb array on the passive guidance of a 3 μm beam through the fiber.  
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Figure 5.22: Beam widths versus axial position and the fit to data to find M2 value. 

 

He also checked that the modal content is not alignment sensitive. Since, our beam profile 

overlapped pretty well on the beam profile of his measurement and his measurement was not 

alignment sensitive, we concluded that our laser operation was fairly single mode, as shown in 

Figure 5.23. But, M2 results showed a value of 1.71േ0.19 and to have a near diffraction-limited 

operation M2 value it should be below 1.2 while an M2 value of 1 is for a perfect Gaussian beam 

[40]. 
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Figure 5.23: Red circles show the  transverse beam profile for the mid-IR emissions from 
our acetylene HOFGLAS measured in JRM lab and blue squares shows the beam profile of 
a passive guidance of 3 μm beam through the same fiber and imaging it using a InSb array 

in NIST at Colorado. 

 

It is important that a laser produces a beam with near diffraction-limited quality because a 

powerful method of scaling these laser systems to high power is through coherent beam combining 

of multiple acetylene HOFGLAS laser systems. This requires high mode quality and we were able 

to obtain the near diffraction-limited laser operation in our most recent results.  
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Chapter 6 - Continuous Wave HCN-filled HOFGLAS 

 6.1. Theory of HCN-filled HOFGLAS 

Chapters 4 and 5 have focused on the produced mid-IR laser from acetylene-filled 

HOFGLAS. In this chapter, attempts toward first-time demonstration of HCN-filled HOFGLAS 

is presented and my contribution to this work is highlighted.  

An analytical study of continuous wave HOFGLAS by our collaborators in University of 

New Mexico demonstrates the possibility of observing continuous wave lasing in HCN-filled 

HOFGLAS [37]. This laser is a small quantum cascade laser because the pump and laser 

wavelengths are different from each other for about 1% and the overall laser efficiency is predicted 

by numerical simulations to be ~55% for long interaction length of pump and gas medium. The 

possibility of obtaining high efficiencies for these lasers makes them a good candidate for coherent 

beam combining. The principle behavior of these small quantum defect lasers is defined by 

effective vibrational life times and rotational relaxation rates of the molecular gas [37]. HCN 

molecule has one bending (ߥଶ) mode and two stretching modes (ߥଵ	&	ߥଷ). The three atoms in HCN 

molecule have different masses and that is why none of HCN normal modes has a definite 

symmetry as shown in Figure 6.1. In each vibrational state of HCN molecule, rotational states 

population follows a Boltzmann distribution [95-97]. The possibility of continuous wave lasing in 

a HCN-filled HOFGLAS system is investigated for tuning the pump on resonance with transition 

from ܬ ൌ 8 ground vibrational state (000) to  ܬ ൅ ܬ∆ ൌ 9 excited vibrational state (002), which is 

݆  and observing lasing from	ଷ,ߥ2 ൌ 9 rotational state in the excited vibrational state (002), which 

is 2ߥଷ,	to ݆ ൅ ∆݆ ൌ 10  rotational state in the ground vibrational state (000) as shown in Figure 6.2.  
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Figure 6.1: HCN normal modes. The motions of the molecule’s atoms are indicated by 
small arrows around atoms. 

 

Based on the numerical calculations [37], it is possible to obtain the maximum predicted 

lasing efficiency with 5 torr of HCN pressure inside 1.5 m of 20 μm PBGF of 0.02 dB/m and pump 

power of 5 W while output coupling loss will be ~ 25%.  

One of the most important issues toward demonstration such a laser system is the resonator 

design. The resonator design can be based on dichroic optics or polarization optics.  Dichroic optics 

may reflect the laser wavelength and transmit the pump wavelength however very sharp dichroic 

mirrors are needed to be used in this small quantum defect laser because pump wavelength is only 

about 1% shorter than lasing wavelength. On the other hand, polarization optics may allow pump 

light with a certain polarization to enter the cavity resonator where all optics are very reflective for 

orthogonal polarization. Andrew Jones worked on continuous wave acetylene-filled HOFGLAS 
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designs based on polarization optics [74] but no lasing was demonstrated because of alignment 

challenges and lack of high power pump source. In the next sections, my contribution toward 

demonstration of continuous wave HCN-filled HOFGLAS using sharp dichroic mirrors for the 

laser resonator will be discussed in details. Laser setup is built and stability condition calculation 

for the proposed cavity is investigated in addition to performing recoupling measurement outside 

of the laser setup. 

 

Figure 6.2: Energy level diagram for HCN molecule based on HITRAN information. 
Pumping candidate is from ground vibrational state to 2ν3 excited state and there is the 

possibility of observing continuous wave quantum defect lasing. 
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 6.2. HCN-filled HOFGLAS configuration 

A new HCN-filled HOFGLAS setup was built after receiving sharp plano dichroic mirrors 

from Precision Photonics company to be used as the cavity resonator. The dichroic mirrors have 

different transmission and reflection at different wavelengths and they are made to be used in our 

specific laser system. Figure 6.3 is a schematic of the setup. Pump, fiber, and resonator will be 

discussed in details in the subsections. Pump is a collimated beam with 5 mm beam waist. A 

customized high power polarization-dependent Faraday isolator with the aperture size of 7 mm 

was purchased from Thorlabs Company and a combination of Quarter Wave Plate (QWP) and Half 

Wave Plate (HWP) were used to turn input polarization and maximize pump power after the 

isolator. To attenuate the pump at the alignment stage in addition to create a second pump beam 

path for backward coupling, a combination of Polarizing Beam Splitter (PBS) and a Half Wave 

Plate (HWP) are used after the isolator. A 15 mm aspherical coupling lens was selected to be used 

before and after the vacuum chambers based on matching the fundamental pump mode coupling 

into the 20 μm Photonic Band Gap (PBG) fiber from NKT Photonics Company (HC-1550-02), the 

concept has been described in chapter 5, section 5.1.2. After the laser cavity, another dichroic 

mirror has been used to distinguish pump from laser wavelengths and detect them using 

appropriate detection system that could be an Optical Spectrum Analyzer, a combination of large-

area photodetector and scope, or a power meter. Maximum coupling efficiency of ~ 70% was 

achieved for pump coupling into the fiber. This reported coupling efficiency is the ratio of pump 

power at the output of the fiber and the input power recorded before the focusing lens at the 

entrance side of the fiber. So, corrections for passing through vacuum chamber windows, a 

spherical lens, and fiber loss have not been considered. Unfortunately, the only aspherical lenses 

with 15 mm focal length in the market have small aperture size (~ 5 mm) which is about the beam 
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size (5mm). So, the lens might clip the pump beam if the beam won’t hit perfectly at the center of 

the lens. This might affect on the spatial intensity distribution of the pump beam and affect on the 

amount of pump coupling into the fiber. A telescope may not be used to solve this problem because 

a telescope changes the beam size and a new lens with adjusted focal length should be used to 

satisfy the perfect mode matching. The new lens will have a smaller focal length and physically it 

is not possible to put the lens closer to the fiber end because fiber end is inside vacuum chamber; 

however, lens is placed outside of the vacuum chamber. The thickness of the front window and 

flange thickness of the vacuum chambers are limitation for getting as close as we want to the fiber 

end.  

 

Figure 6.3:HCN-filled HOFGLAS setup. Pump is an Erbium Doped Fiber Amplifier at ~ 
1.5 μm. A combination of Quarter Wave Plate and Half Wave Plate have been used to tune 
polarization of the incident pump light on the polarization dependent Faraday Isolator for 

maximum pump power. A combination of a Polarizing Beam Splitter and a Half Wave 
Plate are used for attenuating the pump in the alignment procedure. Dichroic Mirror1 and 
Dichroic Mirror 2 are used as cavity resonators. Focusing lenses (L) are used to focus the 

pump on the Hollow Core Photonic Crystal Fiber before the Vacuum Chamber and 
collimating beams after the Vacuum Chamber. Dichroic Mirror 3 is used to distinguish 
pump and laser beams to detect them at A and B using appropriate detection system. 

 

Using Kagome fibers with very small core size like fibers with #s 11, 12, and 13 from 

Table 3.2., which are hypocycloidal core shape with 1 missing cell and 6 rings in the cladding, 
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might be a solution. Because their core size of ~ 28 μm almost match with the numerical 

calculation in [37]. In the numerical calculation using a 20 μm core diameter fiber and 5 W power 

has been assumed and if 28μm fiber will be used instead the power level should be scaled up to ~ 

10 W for the same cavity with the certain amount of loss. I did not have access such fibers at the 

time of working on this setup and never tried it. In the following subsections, the pump, fiber, and 

cavity resonator, that are used the HCN-filled HOFGLAS, are discussed. 

 

 6.2.1. High power 1.5 μm continuous wave pump 

A high power 1.5 μm continuous wave Erbium Doped Fiber Amplifier (EDFA) from 

Manlight company (HWT-EDFA-3RU-46-1) was used as the pump source for HCN-filled 

HOFGLAS operation. Figure 6.4 is a picture of the EDFA, which is a double clad fiber amplifier 

that can go up to 40 watts of CW power. Figure 6.5 shows a measured output power from the 

EDFA versus its current.   

 

Figure 6.4: Picture of the high power (up to 40W) EDFA from Manlight company, 1.5 μm 
fiber amplifier, HWT-EDFA-3RU-46-1. 
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Figure 6.5: Measured output power from Manlight 1.5 μm fiber amplifier, HWT-EDFA-
3RU-46-1. 

 

In high power double clad amplifiers, the single mode core with small numeric aperture is 

surrounded by a lower index and higher numeric aperture cladding area. Therefore, cheaper 

multimode pump can be used. The signal wavelength, that should be amplified, is coupled into the 

single mode doped core and pump is mainly coupled into the cladding area to excite transitions in 

the core’s dopant ions. The amplified signal light propagates through the fiber and there are Fiber 

Bragg Gratings (FBG) at the two ends of the fiber that act as cavity mirrors. The spectral contents 

related to the pump and amplified signal are dependent on the dopant material in the fiber, in our 

case Er. The Manlight EDFA that we used is a two-stage amplifier, i.e. a low power preamplifier 

stage and a high power amplifier stage. The preamplifier stage is for proper seeding of the second 

high power amplifier stage. In the preamplifier stage a single clad doped fiber is used and input 

coupled mW level CW power will be amplified to a hundred mW.  If the high power stage won’t 

be seeded appropriately, then Amplified Spontaneous Emission (ASE) in the high power stage 
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causes self-lasing. Self-lasing produces large spikes in output power and it may damage fiber due 

to nonlinear effects such as fiber-fuse.  

The high power Manlight EDFA has a collimator at its output. The beam, which propagates 

in free space after the EDFA collimator, is then fiber-coupled and a small fraction of it is sent into 

an Optical Spectrum Analyzer (OSA). Figure 6.6 shows the measured spectrum of the EDFA 

output.  

 

Figure 6.6: High power Manlight EDFA output spectrum, which is measured by OSA. The 
spectrum is recorded by Manasa Thirugnanasambandam. 

 

We expected to observe most of the power at the desired wavelength of ~ 1537 nm for 

running the HCN-filled HOFGLAS but as the spectral content of the EDFA was investigated, it 

was found to be contaminated with ASE when seeded at wavelengths <1550nm. About 50% of the 

output power was distributed in the ASE wavelengths. Therefore, nearly 50 percent of the EDFA 

power can not be used as pump power in the fiber. But, still we may achieve 15-20W at ~1537nm 
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and should be able to hit pump power levels beyond the threshold of lasing in HCN-filled 

HOFGLAS based on the calculation [37]. 

The output of the EDFA is randomly polarized. On the other hand a polarization dependent 

faraday isolator must be used to protect the EDFA from back reflections. Therefore, combination 

of a Half Wave Plate (HWP), Quarter Wave Plate (QWP), and Polarizing Beam Splitter (PBS) 

were used to linearly polarize the EDFA output. There was a maximum of ~20% loss in the pump 

power as the beam passes through HWP, QWP, PBS, and the Faraday isolator. 

 6.2.2. Hollow-core fiber with small core size 

The numerical calculation predicted an operation with 20 μm core size of a HC-PCF. We 

used a 10 μm core size PBG HC-PCF to make the setup work which lowers the required pump 

power. The fiber was purchased from NKT Photonics, HC-1550-02 and its cross section is shown 

in Figure 6.7. The fiber has low loss (0.015 dB/m) around 1.5 μm and its loss spectrum is shown 

in Figure 6.8. 

 

Figure 6.7: NKT Photonics, PBG fiber cross section. The fiber has 10 μm core sizer and 
fiber part number of HC-1550-02. The fiber can be filled with gas and the Numerical 

Aperture of this fiber is ~ 0.2. 
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Figure 6.8: NKT Photonics, PBG fiber (HC-1550-02) loss around 1550 nm (black curve). 
The fiber has low loss around 0.015 dB/m. 

 

The two ends of the fiber are installed inside vacuum chambers. Fiber holder design is 

shown in Figure 6.9. Two ultra-torr vacuum fitting adaptor, SS-1-UT-A-4, from Swagelok were 

purchased and welded to a cylindrical stainless steel tube from both sides. Then, the fiber holder 

was leak-checked before being used in vacuum chambers. For the side of fiber holder, inside 

vacuum chamber, the fiber slides through a drilled rubber cascade and the SS-1-UT-A-4 inner 

parts push against the rubber cascade for sealing purpose. The other side of the fiber holder, outside 

of vacuum chamber, is designed to keep the fiber straight and improve light coupling into the fiber. 

No rubber cascade and inner parts of SS-1-UT-A-4 are desired on this side to reduce the tension 

on the fiber. One S-50-KM from A & N Corporation is welded to the last flange of vacuum 

chambers in order to hold the fiber holder inside chamber and seal it from the atmosphere.  
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Figure 6.9: Fiber holder design: two ultra-torr vacuum fitting adaptor, SS-1-UT-A-4, from 
Swagelok were welded to a cylindrical stainless steel tube from both sides. For the side of 

fiber holder inside vacuum chamber, the fiber slides through a drilled rubber cascade and 
the SS-1-UT-A-4 inner parts push against the rubber cascade for sealing purpose. The 
other side of the fiber holder, outside of vacuum chamber, is designed to keep the fiber 

straight and improve light coupling into the fiber. No rubber cascade and inner parts of 
SS-1-UT-A-4 are desired on this side to reduce the tension on the fiber. One S-50-KM from 

A & N Corporation is welded to the last flange of vacuum chambers in order to hold the 
fiber holder inside chamber and seal it from the atmosphere. Little black double-sided 

arrows show where the threads are. 

 

 6.2.3. Resonator 

Precision Photonics Company made a stack of sharp flat dichroic mirrors, whose 

transmission and reflection at our pump and lasing wavelengths are different. Transmission versus 

wavelength of a number of these mirrors are shown in Figure 6.10.  Producing such mirrors is 

challenging because the pump and laser wavelengths are very close together, pump wavelength is 

1536.7 nm and the lasing wavelength is 1547.4 nm. Among these mirrors, I selected the one with 

part number SN-46 because it has ~ 99% transmission at pump wavelength, ~1536.7 nm, and ~ 

99% reflection at laser wavelength, 1547.4 nm. The transmission and reflection of SN-46 dichroic 

mirror are shown in Figure 6.11 and Figure 6.12 respectively.  
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Figure 6.10: Transmission as a function of wavelength for the stack of sharp dichroic 
mirrors received from Precision Photonics Company in 2012. 

 

 

Figure 6.11: Transmission of SN-46 flat dichroic mirror around 1536 nm. 
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The SN-46 has ~ 99.5% transmission at ~1536.7 nm (pump wavelength) and ~ 99.9% 

reflection at ~ 1547.4nm (lasing wavelength). So, it is perfect to be used in HCN-filled HOFGLAS 

resonator. 

 

Figure 6.12: Reflection of SN-46 flat dichroic mirror around 1547 nm. 

 

 6.3. Stability conditions of HCN-filled HOFGLAS cavity 

In this section, calculations for the stability condition of the proposed HCN-filled 

HOFGLAS is presented. The Ray Transfer Matrix (RTM) or ABCD matrix technique is usually 

used for optical designing and it is important to lasers community because it acts as a tool for 

analysis of the stability conditions of laser cavity [92]. Similar ABCD law can be used for Gaussian 

beams.  The typical solution of fundamental TEM00 mode for the time-independent propagating 

optical Gaussian beam is shown in Equation 6.1. 
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In Equation 6.1, q (z) can be defined in terms of elements of ABCD matrix as in Equation 

6.2. [92]. 

 
௭ݍ ൌ

ଵݍܣ ൅ ܤ
ଵݍܥ ൅ ܦ

 
(6.2)

 

Details about equations 6.1 and 6.2 can be find in [92]. So, I will proceed with discussing 

ABCD matrix role in understanding the stability of a laser cavity and specifically the laser cavity 

for our HCN-filled HOFGLAS system.  

 6.2.1. Cavity stability condition 

In this section, stability condition for a typical optical resonator is discussed. This optical 

cavity consists of two mirrors with radius of curvatures R1 and R2 that are separated by distance L 

as shown in Figure 6.13. The ABCD matrix for a roundtrip (starts at mirror 1) inside this cavity  

given by matrix in Equation 6.3, where ݃௜ ൌ 1 െ ௅

ோ೔
; ݅ ൌ 1,2 [98]. 

 

 
ܦܥܤܣ ൌ ൤

2 ଵ݃݃ଶ െ 1 ଶ݃ܮ2
ሾሺ2 ଵ݃݃ଶ െ 1ሻଶ െ 1ሿ ଶ݃ܮ2/ 2 ଵ݃݃ଶ െ 1

൨ 
(6.3)

 

To see which type of resonator is stable and which is unstable, it is useful to look at the 

plot of a stability diagram of ݃ଶ versus ଵ݃ in Figure 6.14 [98].   
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Figure 6.13: A typical cavity with two curved mirrors. M1 and M2 are the cavity mirrors 
and L is the distance between two cavity mirrors. Geometrical optics analysis provides 

information about the modal content of the output beam [99]. 

 

All cavity configurations are unstable unless they correspond to points that are located in 

the area which is highlighted. This area is enclosed by a branch of the hyperbola and the coordinate 

axes. The stability condition of a cavity can be expressed as Equation 6.4 [98]. 

 

 
െ1 ൏ ݃ଵ݃ଶ ൏ 1 

(6.4)

 

If the beam position stays close to the optical axis even after bouncing back and forth many 

times between the mirrors, the system is stable; if the beam naturally walks off one of the surfaces 

of the mirrors, it is unstable. Equation 6.4 which describes the stability condition for a laser cavity, 

can be represented in terms of the elements of ABCD matrix as shown in Equation 6.5. 

 െ1 ൑
ܣ ൅ ܦ
2

൑ 1 (6.5)

Equation 6.5 can be written as Equation 6.6. 
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 0 ൑
ܣ ൅ ܦ ൅ 2

4
൑ 1 (6.6)

 

By deriving the ABCD matrix for the cavity configuration and solving Equation 6.6, 

stability condition for the optical cavity can be found.  

 

 

Figure 6.14: Stability diagram of a laser cavity, reproduced from Ref. [98]. 

 

 6.2.2. HCN-filled HOFGLAS Cavity 

The specific configuration for the cavity that we used is our HCN-filled HOFGLAS system 

is shown in Figure 6.15. It consists of two thin lenses, a HC-PCF, and a resonator. 
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Figure 6.15: (a) HCN-filled HOFGLAS cavity with two intra-cavity thin lenses and the HC-
PCF inside the cavity. (b) To write the ABCD matrix we may ignore the HC-PCF. 

 

This cavity is a combination of flat mirror and lens instead of using curved mirrors. The 

laser beam gets started inside the cavity, it bounces back and forth between the two mirrors and 

during its propagation inside the cavity, it gets focused and also collimated by two aspheric lenses. 

To analyze the stability of such a cavity, first of all we may ignore the existence of the HC-PCF in 

the cavity because is delivers the beam from one point to another point with total internal reflection 

without affecting on its propagating properties. Then we may multiply the propagation matrixes 

through the free-space and lenses inside the cavity for one round-trip and we must care about the 

sequence of multiplication of matrixes together. The one-way ABCD matrix is represented by 

(a) 

(b) 
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Equation 6.7. The beam travel starts from M1. It encounters a length “d” (free space matrix), 

reaches a focusing element with focal length “f”, propagates for a distance equal to “f” in free-

space, reaches an aperture, travels in free-space for distance “f”, reaches another identical lens 

with focal length “f”, and finally propagates for a distance “d” to reach the second mirror M2.  
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Calculating the right hand side of Equation 6.7 will result in the ABCD matrix for one-way 

as shown by Equation 6.8. 
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It is interesting to know that instead of ቈ
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beam expander transfer matrix which is ቂെ1 2݂
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ቃ for two identical focal lengths and if the focal 

lengths where not identical the transfer matrix becomes ቎
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௙భ
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቏. 

Now it is possible to compute the transmission matrix of a round-trip beam propagation for 

the unit cell as shown in Equation 6.9 and Equation 6.10. 
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 Combining Equation 6.10 and Equation 6.6. will result in Equation 6.11. 

 

 
ܣ ൅ ܦ ൅ 2

4
ൌ 1 (6.11)

Equation 6.11 means that for this specific configuration the cavity is always stable if the 

beam will be perfectly collimated and there will be perfect coupling between beam and fiber end. 

Analytical calculation for multiplication of matrixes is written in a Python code and has been 

attached in appendix D. The code also applies stability condition on the ABCD matrix for a 

roundtrip beam travel in the cavity. 

For a beam which is not perfectly collimated or there is not ideal coupling between laser 

beam and fiber end, the left hand-side of Equation 6.11 will be equal to a complicated function of 

distances and focal lengths. We may simplify this function using some realistic values for d and f 

to get a better understanding of the stability condition. ABCD matrix in Equation 6.12 will be 

obtained for one way travel inside the laser cavity under the assumptions of having identical lenses 

and symmetry inside the optical cavity, if there won’t be a perfect match between fiber end and 

focal point of the lens, the ABCD matrix will be described as Equation 6.12.  
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Where a is the distance between the focal point of one of the lenses and fiber end. ABCD 

matrix for a roundtrip beam propagation inside the cavity can be calculated using Equation 6.12. 
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Figure 6.16: HCN-filled HOFGLAS cavity with two intra-cavity thin lenses and the HC-
PCF inside the cavity. To write the ABCD matrix, the HC-PCF is being ignored. The 

picture is for not perfectly collimated beam. 

 

Using the Python code for values of 15 mm focal length, and d equal to 5 mm, the stability 

condition can be simplified. From the results, it is clear that when the value of a is very close to f 

the cavity is stable (less than ~1 mm different). The code has also been checked for different values 

of d. The cavity is always stable for the perfectly collimated beam. But, the imperfect coupling of 

the beam into the fiber make the cavity unstable. It is interesting to know that in this case, distance 

between mirror and lens matters. For using a lens with focal length 15 mm d should not be more 

than 30 mm to have a stable cavity with slightly imperfect coupling. Experimentally, we should 

be very creative to put lens and cavity mirror that close together.  
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 6.3. Recoupling measurement 

Prior to running the HCN-filled HOFGLAS setup, a recoupling measurement was 

performed and the setup for this measurement is shown in Figure 6.17. Commercial continuous 

wave 1.5 μm laser which is tunable diode laser from Santec Company is being fiber-coupled to an 

optical circulator and the wavelength is being set on ~1547nm (HCN HOFGLAS lasing 

wavelength). An optical circulator is a fiber optic device that may separate optical beams that 

propagate in opposite directions inside an optical fiber. Our optical circulator has 3 ports and it is 

designed in a way that beam entering any port exits from the next. Optical circulator is a non-

reciprocal optics that means properties of beam changes as it passes through the device in the 

opposite direction. This may happen by breaking the symmetry for example using a magnetic field 

or Faraday rotator, which is a polarization rotator based on the Faraday effect. The circulator I 

used was very lossy itself and I took into account the amount of its loss for propagations from at 

port 1 to port 2 and from port 2 to port 3 for calculating recoupling efficiency, the amount of loss 

in each transmission is ~ 4.8 dB.  

Laser is connected to port 1 of circulator and the exit beam at port two passes through a 

splice of the SMF port to a 10 μm PBG fiber. There is an estimated splice loss for the amount of 

2.8 dB. Then the beam is collimated in free-space by an 15 mm focal length aspheric lens the 

dichroic mirror is being used to recouple the beam back into the circulator. The beam is detected  

and optimized at port 3 of the circulator using a fiber-coupled large area photo detector. Recoupling 

efficiency of  98% is obtained. The focal length of the lens plays an important role in the recoupling 

efficiency. The lens should match the beam diameter in free space with the fiber numeric aperture 

as well as coupling more of the fundamental mode into the hollow core fiber using Equation 5.5. 



131 

 

Figure 6.17: Recoupling measurement setup. An optical fiber-coupled circulator with three 
SMF ports is used. CW laser is connected to port 1. SMF fiber in port 2 is spliced to a PBG 
fiber and beam leaves PBG fiber to free-space through a 15 mm focal length aspheric lens. 

The collimated beam gets reflected at the Dichroic Mirror and gets recoupled into the 
circulator and leaves the circulator through port 3 and gets detected by a fiber-coupled 

large area Photo Detector. 

 

 6.4. Challenges in HCN-filled HOFGLAS operation 

Alignment of the setup has been a big issue because of interference of the forward and 

backward beams inside the laser cavity. We experimentally understood that tapping continuously 

on an optics mount may help in observing the interference pattern on the scope and working toward 

optimizing the recoupled beam. Unfortunately, no lasing was observed from this laser system so 

far. Currently, Manasa Thirugnanasambandam, postdoc in our research group, in continuing the 

work on this laser setup and she has even faced some new challenges as it is described in the future 

work of this laser system in the next chapter.  
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Chapter 7 - Future work 

 7.1. Future work for acetylene-filled HOFGLAS  

 7.1.1. Further power-scaling 

As shown in this dissertation, OPA pumped acetylene-filled HOFGLAS is exhibiting novel 

behaviors such as excellent beam quality at highest power and efficiency independent of pressure. 

All these properties are encouraging for further power scaling. One way to scale the laser system 

to higher power is to access to higher power pump. Our pump is a homebuilt one stage OPA with 

a PPLN crystal. Kushan Weerasinghe, graduate student in our research group, is working toward 

building a two stage OPA by holding the current OPA as the first stage and using a KTP crystal in 

the second stage.  

 7.1.2. Laser modeling 

Phenomenological scaling of saturation power and efficiency with pressure that we observe 

motivate further development of detailed numerical models of the laser for deeper insight into 

these effects. These lasers are complicated, and that to explain them requires an accurate numerical 

model.  One of the most important considerations in the laser modeling should be pump saturation.  

We are in a regime of high pump saturation, meaning the amount of power absorbed by the gas 

varies along the length of the fiber, and with pressure, in a highly nonlinear way.  

 

 7.2. Future work for HCN-filled HOFGLAS 

 7.2.1. Thermal damage of the fiber at higher power 

As mentioned at the end of chapter 6, alignment of the setup due to interference of forward 

and backward beams inside cavity is still a big issue and should be solved. Manasa 
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Thirugnanasambandam, postdoc in our research group, in continuing the work on this laser setup 

and she has faced some additional challenges as described here.  

100 mW of pump power was used for alignment of the HCN-filled HOFGLAS setup 

initially. The pump power was increased in steps to check for power dependent coupling. At ~2W 

of pump power (EDFA seeded at 1537nm), the PBG fiber, mounted in the typical vacuum-

compatible fiber holders, was damaged as shown in Figure 7.1 and the pump coupling into PBG 

fiber was power dependent as shown in Figure 7.2.  

 

 

Figure 7.1: a0The burning end of HC-PCF when 2W of pump power at 1532 nm was 
coupled into the fiber. The ends of the HC-PCF as seen under a camera b0 before and c0 

after damage. The pictures are taken by Manasa Thirugnanasambandam. 

 

Figure 7.1 shows the burning end of a 10 µm diameter PBG at ~2 W of pump at 1537 nm. 

The cleaved ends of the fiber before and after damage are compared in Figure 7.1 as well. A series 

of test experiments were performed to find the cause of the damage. The damages are attributed to 

the minor imperfections in the mode matching between the pump laser mode and the fundamental 

mode of the fiber along with the pump power lost due to free-space coupling using aspheric lenses 

causes heating of the stainless steel vacuum-compatible parts of typical fiber holders used in 

HOFGLAS systems so far. This results in irreversible damage to the ends of the HC-PCF which 
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was observed at ~2W of pump power. The damage to the fiber ends could be avoided by using 

heat shields or cooling the fiber holders.  

 

 

A test experiment was done in free-space by heat shielding the fiber holder using an iris 

and it was possible to couple pump powers upto ~15W into the HC-PCF without any damage. 

Efforts are underway to redesign the vacuum compatible fiber holders that are typically used in 

the HOFGLAS setup. 

 7.2.2. Other pumping configurations 

Alternate pumping configurations can be considered as well. New pump configuration 

should help us win on the pump intensity given our limits on the input pump power that can be 

coupled into the fiber based on damage thresholds. Bidirectional pumping configuration is an 

option. In bidirectional pumping configuration, pump power is coupled from both ends of the fiber 

Figure 7.2: The pump coupling efficiency as a function of pump power incident on 
the fiber when a heat shield was used in front of the fiber holder. 
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therefore the overall pump power increases. We may also work on the possibility of quasi-

continuous wave pumping, which will help reduce the average power without compromising on 

the pump intensities required for population inversion and lasing. Consequently, it may solve the 

problem of the thermal damage on the fiber. 
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Appendix A - Tips for loss measurements with monochromator 

a) Appropriate ND filters should be used to keep the signal amplitude observed from Photo 

Detector ( PVI-2TE Series, Boston Electronics) between 10 and 20 mV.  

b) Always should park motor, that controls the grating, at home position using the 

HyperTerminal program at the end of the day. In this case, if there will be a power outage in the 

lab, we will be still confident about grating position in the following day. The number of steps per 

nanometer for the monochromator can be checked by transmitting 1.5 μm laser beam through the 

monochromator and finding the motor positions related to the first and second order diffraction 

positions and then calculate the steps per nanometer.  

 

݉ ൌ	
41250 െ 4650

1533
ൌ 23.87 

 

 

 

Where m is the number of steps per nanometer. If accidentally any unreasonable number 

is entered in the HyperTerminal, disconnect a white wire that is attached to the motor chip. In this 

way, the HyperTerminal runs the program; however, the grating position does not actually move. 

Then the hyperterminal can be sent to the previous position again while the wire is still 

disconnected and then recalibration for the monochromator can be performed at this point.  
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Appendix B –Fractional transmission through acetylene-filled fiber  

""" 
By Neda Dadashzadeh and Brian Washburn 
 
This is a Python code. 
Calculates FWHM of voigt abosrption profile for acetylene at certain pressure. 
absorption(v)=S*(p/(kb*T))*Voigt(v) where S is line strength (see references 
2 & 4). NIST SRM data of 10% transmission through a 5 cm  
acetylene cell of 50 torr in pressure was used to calculate line strength. 
 
References 
[1] Swann et al., Applied Optics vol 17, (2000) 
[2] NIST special publication 260-133, 2001 edition 
[3] Jun Ye Ph.D. thesis 
[4] Hennigsen et al, Opt. Express 13 (2005) 
[5] Olivero, J. J.; R. L. Longbothum (February 1977).  
"Empirical fits to the Voigt line width: A brief review". 
 
 
All units in meters, kilograms, seconds, except pressure in units of torr 
 
""" 
import numpy as np 
from matplotlib import pyplot as plt 
from lmfit.models import VoigtModel 
 
plt.close('all') 
print ' '  
 
# universal constants 
kb = 1.3806503*1e-23  # J/K, Boltzmann constant 
amu=1.66054e-27       # atomic mass unit in kg   
c = 2.99792458*1e8    # m/s, speed of light 
NA= 6.022140857*10**23 #Avogadro's number 
 
#----------------------------------------------------------------------------- 
# Define functions 
 
# Lorentian gamma as a function of pressure (in torr) 
def gL(p):   
    a=11.479e6  # 11.4 MHz per torr, from Ref [1], Table 4 
    return (a*p+58.529e6)/2 # 58.529MHz comes from intercept of linear fit to data from 

Ref[1] 
 
 



140 

 
# Gaussian FWHM as a function of temperature (in Kelvin), and frequency 
def FWHMG(T,f0): 
    # m is acetylene molecular [mass/amu] which is 26 for acetylene 
    #Gaussian fwhm = f0*[2*sqrt(2)*sqrt(NA*kb)/c]*sqrt(T/NA*M) where NA*M=m 
    # 2*sqrt(2)*sqrt(NA*kb)/c=7.16*10**(-7) 
    return f0*7.16*10**(-7)*np.sqrt(T/26) 
 
#to go from Gaussian fwhm to Gaussian sigma use the following ratio 
ra=2*np.sqrt(2*np.log(2)) 
     
 
# Voigt absorption profile of acetylene 
def av(p,T,f): 
    # determine frequency dependent absorption based on a Voigt profile 
    # Functional form: absorption(v)=S*(p/(kb*T))*Voigt(v)  (see Ref. [4]) 
    # use nist data Ref[2] to determine line strength S 
    # nist measured 0.1 transmission thru 5 cm cell of acetylene at 50 torr 
 
    f0=f[f.size/2]     # center frequency in Hz 
        
    mod = VoigtModel()      # create model class 
    ra=2*np.sqrt(2*np.log(2)) #to go from Gaussian fwhm to Gaussian sigma 
     
    # use nist data to compute the line strength S 
    p_nist=50.0         # nist pressure in torr 
    T_nist=298.0        # nist temperature in Kelvin 
    a_nist=-(1/0.05)*np.log(0.1) # compute gas absorption (in 1/m) from Ref[2] 
    fwhmG_nist=FWHMG(T_nist,f0) # Gaussian FWHM of nist data 
    sig_nist=fwhmG_nist/ra #Gaussian sigma of nist data 
    gam_nist=gL(p_nist) # Lorenztian gamma of nist data 
         
    # create voigt based nist data to compute S 
    av_nist=mod.eval(x=f, amplitude=1, center=f0, sigma=sig_nist, gamma=gam_nist) 
    # compute line strength 
    S=a_nist/(((p_nist*133.32)/(kb*T_nist))*av_nist[(f==f0)][0])  
 
    # create absorption as a function of pressure and temperature 
    fwhmG=FWHMG(T,f0)      # gaussian FWHM at given temperature  
    sig=fwhmG/ra 
    gam=gL(p)             # lorenztian gamma at given pressure   
    # evaluate model 
    y=mod.eval(x=f, amplitude=1, center=f0, sigma=sig, gamma=gam) 
    return S*(p*133.32)/(kb*T)*y 
  
def voigt_fwhm(gfwhm,lfwhm): 
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# use approximate express to relate voigt fwhm to gaussian and lorenzian fwhm 
# expression from [5] 
    return 0.5346*lfwhm + np.sqrt(0.2166*lfwhm**2 + gfwhm**2) 
     
def compute_fwhm(x,y): 
# compute the fwhm of a function y(x) 
    ymax=max(y)       # peak absorption at line center 
    x0=y.argmax(axis=0) 
    y=y/ymax 
    index1 = 0 
    index2 = 0 
    for i in range(len(y)): 
        if y[i] >= 0.5 and index1 == 0: 
            if abs(y[i] - 0.5) > abs(y[i-1] - 0.5): 
                index1 = i -1 
            else: 
                 index1 = i 
        elif y[i] <= 0.5 and index1 > 0: 
            if abs(y[i] - 0.5) > abs(y[i-1] - 0.5): 
                index2 = i - 1 
            else: 
                index2 = i 
            break 
    bx1 = x[index1] 
    bx2 = x[index2] 
    return abs(bx1-bx2) 
    
#----------------------------------------------------------------------------- 
 
# system parameters 
l0=1532.83042e-9            # center wavelength in m 
f0=c/l0                 # center frequency in Hz 
T=298.0                 # temperature in Kelvin 
pressure_set=np.array([     10,     50.254154,  222.768414, 495.04092,  0.93])                 # 

pressure in torr (10 torr) 
fiber_length_set=np.array([ 10.9,   0.05,       0.05,       0.05,       0.8])   
p=10 
# define frequency array for absorption feature    
numf=1e6              # number of frequency points 
ran=1.0e11              # frequency range about center frequency 
df=ran/numf 
f=(np.linspace(1,numf,numf)-numf/2-1)*df+f0 
 
 
fwhmG=FWHMG(T,f0)      # gaussian FWHM at given temperature   
gam=gL(p)           # lorenztian gamma at given pressure  
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ra=2*np.sqrt(2*np.log(2)) #to go from Gaussian fwhm to Gaussian sigma 
sig=fwhmG/ra         # gaussian sigma at given temperature 
fwhmL=gam*2             # lorenztian fwhm at given pressure  
 
def transmission(pressure, fiber_length): 
    ab=av(pressure,T,f)            # Voigt absorption as a function of frequency  
    # Using the value of half of the maximum (b), I could find two related  
    # frequencies and then calculate fwhm: 
    I0=0.376 # input power is linearly dependent to initial voltage signal 
    return I0*np.exp((-1)*ab*fiber_length)  
 
voltage_signal_set = np.zeros(shape=(6,1000000)) 
for i in range(len(pressure_set)): #len(pressure_set) 
    voltage_signal = transmission(pressure_set[i],fiber_length_set[i]) 
    #print 'voltage_signal is %0.3f' %voltage_signal 
    voltage_signal_set[i] = voltage_signal     
     
ab=av(p,T,f)            # Voigt absorption as a function of frequency   
 
# Using the value of half of the maximum (b), I could find two related  
# frequencies and then calculate fwhm: 
 
ag=ab[(f==f0)][0]       # peak absorption at line center 
b=ag/2 
index1 = 0 
index2 = 0 
for i in range(len(ab)): 
    if ab[i] >= b and index1 == 0: 
        if abs(ab[i] - b) > abs(ab[i-1] - b): 
            index1 = i -1 
        else: 
            index1 = i 
    elif ab[i] <= b and index1 > 0: 
        if abs(ab[i] - b) > abs(ab[i-1] - b): 
            index2 = i - 1 
        else: 
            index2 = i 
        break 
              
bx1 = f[index1] 
bx2 = f[index2] 
fwhmv=abs(bx1-bx2) 
I0=0.376 # input power is linearly dependent to initial voltage signal 
 
# compute voigt FWHM from approximate equation 
fwhmVapprox = voigt_fwhm(fwhmG,fwhmL) # compute from approximate equation  
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#----------------------------------------------------------------------------- 
print 

'________________________________________________________________________' 
"""print '# space steps: %d' % numz""" 
print ' ' 
print 'Pressure = %0.3f torr' % p 
print 'Frequency resolution of %0.5f MHz' %(df/1e6) 
print ' ' 
print 'Gaussian FWHM = %0.3f MHz' % (fwhmG/1e6) 
print 'Gaussian sigma = %0.3f MHz' % (sig/1e6) 
print 'Lorentzian gamma = %0.3f MHz' % (gam/1e6) 
print 'Lorentzian FWHM = %0.3f MHz' % (fwhmL/1e6) 
print ' ' 
print 'voigt FWHM= %0.3f MHz' % (fwhmv/1e6) 
print 'voigt FWHM= %0.3f MHz from approximate equation' % (fwhmVapprox/1e6) 
print ' ' 
# to be able to plot experiment data and theory data on the same graph have to go from 

absolute frequency to the relative frequency 
#to go from absolute frequency to relative frequency that corresponds to data, I shiftet the 

frequency with respect to seperation of two peaks of experimental data and theory 
# number 195579966241375.28 Hz comes from the shift between experiment data dip and 

theory optical power dip 
def f1(f): 
    return [(x - f0) /1e6 for x in f] 
relativefrequency= f1(f) 
 
print 

'________________________________________________________________________' 
 
 
# plot data 
"""plt.figure(1) 
plt.plot(relativefrequency,ab) 
#plt.xlim((f0-1e9)/1e12,(f0+1e9)/1e12) 
plt.xlim(-2000,4000) 
plt.grid(True)""" 
 
#filename='experiment data vs freq.txt' 
#directory='R:\\LUMOS (Corwin)\\Researchers\\Neda Dadashzadeh\\' 
#pathname=  directory + filename 
 
#   Set each variable: (time,Ramp,cell,ring,ref) equal to a column of the data 
#frequency, transmission = np.loadtxt(pathname, delimiter='\t', usecols=(0,1), 

unpack=True) 
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plt.figure(2) 
plt.plot(relativefrequency,voltage_signal_set[0],'b',label='Neda Calc.,10 t,10.9m') 
plt.plot(relativefrequency, voltage_signal_set[1],'red', label='Swann,50.254 t,0.05m') 
plt.plot(relativefrequency, voltage_signal_set[2],'g', label='Swann,222.768 t,0.05m ') 
plt.plot(relativefrequency, voltage_signal_set[3],'y', label='Swann,495.041 t,0.05m') 
plt.plot(relativefrequency, voltage_signal_set[4],'black', label='Rajesh,0.93 t, 0.8m') 
plt.plot(relativefrequency, voltage_signal_set[5],'orange', label='Nist,50 torr, 0.05m') 
plt.xlabel('relative frequency  (MHz)') 
plt.ylabel('Voltage signal (V)')  
#plt.ylabel('Voltage signal2 (V)')  
#plt.ylabel('Voltage signal3 (V)') 
#plt.ylabel('Voltage signal4 (V)')   
#plt.ylabel('Voltage signal5 (V)') 
#plt.ylabel('Voltage signal6 (V)') 
#plt.xlim((f0-1e9)/1e12,(f0+1e9)/1e12) 
plt.xlim(-20000,20000) 
plt.grid(True) 
plt.legend(bbox_to_anchor=(1.05, 1), loc=9, borderaxespad=9.) 
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Appendix C – Beam width calculation / Matlab code 

%Written by Kushan and Neda. 
% This is a Matlab code. 
% The code calculates the beam waist of a laser beam using the slit scan data  
% beam waist for ideal slit w = 4*<x^2> 
% but for realistic slit w= 4* (<x^2> - f /12); where f is the slit width 
% <x^2> = ( intergration (I(x,y)*x^2)dx )/ integration (I(x,y) dx) this 
% defines for distribution where <x> =0 ;  
% therefor we need to find <x> of our data set and take that in to account 
% for our calculation 
  
  
% include your data in an excell file. Both mathlab file and excell file 
% should be in same folder otherwise you have to specify the path for 
% excell file 
% use second columon to include your position (x value) and 3rd column for 
% power values 
  
  
% if you are manually enter the data please use line 29 and 34 to enter x 
% values and powers respectivly. If you do so, lines 24,25,27and 28 should be 
commented 
  
  
%____________________________________________________________________________
___________% 
  
clc; 
clear; 
close all; 
  
% choose data path. 
  
filename= 'R:\LUMOS (Corwin)\Researchers\Kushan Weerasinghe\M^2 data\M^2 5-9-
2016\point12.xlsx' % if excell file in a different folder use this line   
  
%filename= 'test16.xlsx' ;% include the excell file name here 
  
A=xlsread(filename); 
  
x=A(:,2); % position 
p=A(:,3); % power 
  
%x=[10.7    10.8    10.9    11  11.1    11.2    11.3    11.4    11.5    11.6    
11.7    11.8    11.9    12  12.1    12.2    12.3    12.4    13]; 
%x=[7:.05:5.6];  % enter your micro meter readings here 
  
y=zeros(1,length(x)); % for store relative positions 
y(1)=0; % setting staring point as zero 
  
sw=.02; % slit width in mm 
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%p=[5   13.5    26.5    45.4    62.2    77.2    91.2    98.8    102.4   98  
92.8    84.4    73.6    57.6    45.6    30.8    20.8    13.2    7.8]; % enter 
your volatges here 
  
for i=1:length(x)-1 
    y(i+1)=x(1)-x(i+1); %geting the position relatively to the starting point 
end 
%Calculating mean of postion <x> 
meanx=0; 
inte1=0;  
% meanx= integration (I(x,y)*x)/ integration (I(x,y)) 
for i=1:length(x) 
    px(i)=((p(i)/1.6)*(y(i)))*10^-3 ; 
  
end 
for i=1:length(x) 
     
    pt(i)=(p(i)/1.6)*10^-3; 
end 
% using trapizoidal method to calculate integraion 
for j=1:length(x)-1 
meanx=meanx+(.5*(px(j)+px(j+1))*(x(j+1)-x(j))); 
inte1=inte1+(.5*(pt(j)+pt(j+1))*(x(j+1)-x(j))); 
end 
meanx=meanx/inte1; 
%____________________________________________% 
%calculating second moment <x^2> 
  
for i=1:length(x) 
  pxx(i)=((p(i)/1.6)*(y(i)-meanx )^2)*10^-3 ;   
    
end 
pmax=max(pt); 
pmax2=pmax/(exp(1)); 
for k=1:length(x) 
    w(k)=pmax2; % *(1/e position) 
end 
% plotting results to see whether these make sense or not. 
  
subplot(2,1,1) 
,plot(x,pt,'*r',x,w,'b'),xlabel('position(mm)'),ylabel('voltage(mV)'),legend(
'experimental data','1/e line') 
subplot(2,1,2),plot(y,pxx,'*') 
inte=0; 
inte1=0; 
% using trapizoidal method to calculate integraion 
for j=1:length(x)-1 
inte=inte+(.5*(pxx(j)+pxx(j+1))*(x(j+1)-x(j))); 
inte1=inte1+(.5*(pt(j)+pt(j+1))*(x(j+1)-x(j))); 
end 
x2=inte/inte1; %second moment 
w=sqrt(4*x2); 
ws=sqrt((x2-(sw^2/12))*4);%beam waist (1/e, HWHM) 
figure(2) 
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plot(x,pt,'*r') 
xlabel('position(mm)') 
title('Beam profile') 
ylabel('voltage(V)') 
formatSpec='beam waist is %0.4f mm (HWHM at 1/e)'; 
fprintf(formatSpec,w) 
formatSpec='beam waist with slit correction is %0.4f mm (HWHM at 1/e)'; 
fprintf(formatSpec,ws) 
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Appendix D – ABCD matrix calculation and cavity stability 
condition, Python code 

 

""" 
@author: Neda Dadashzadeh 
 
Created on Mon Jul 17 19:12:13 2017 
 
This code, defines ABCD transfer matrixes and multiplies them together 
for one way travel in a defined laser cavity and then it calculates ABCD matrix 
for a roundtrip travel in the laser cavity.  The stability condition is then 
investigated: 0<(A+D+2)/4<1.  
This is an analytical solution. 

 
""" 
 
import sympy as sp 
from sympy import * 
import numpy as np 
from matplotlib import pyplot as plt 
 
 
#Define matrix elements 
 
f = sp.IndexedBase('f') 
 
w, x, y, z = sp.symbols('w x y z', cls=sp.Idx) 
 
 
f1_new = -1/f[w] 
f2_new = -1/f[x] 
# f_bazar = -(f[z]+f[y])/(f[y]+f[z]) 
b = sp.Symbol('b') 
a = sp.Symbol('a') 
d = sp.Symbol('d') 
e = sp.Symbol('e') 
 
# define matrixes 
 
A = sp.Matrix([[1,5],[0,1]]) 
B = sp.Matrix([[1,0],[(-1/15),1]]) 
C = sp.Matrix([[1,a],[0,1]]) 
#D = sp.Matrix([[1,0],[f_bazar,1]]) 
E = sp.Matrix([[1,a],[0,1]]) 
F = sp.Matrix([[1,0],[(-1/15),1]]) 
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G = sp.Matrix([[1,5],[0,1]]) 
 
# multiply matrixes for one way trip 
 
ZZ = (A*(B*(C*(E*(F*G))))) 
 
# calculate roundtrip travel for symmetric cavity  
 
final_matrix = ZZ * ZZ  
 
# simplify the solution 
 
simple = sp.simplify(final_matrix) 
 
# Stability condition  
 
result= (2+simple[0,0] + simple[1,1])/4 
 
# stability condition should be between zero and 1.  
 
 
N = 1000 
 
x = np.linspace(0, 15, N) 
 
def g(x): 
   return 64*x**2 - 144*x + 81 
     
plt.plot(x,g(x)) 
 
gg=g(x) 
 
# figure out for what x values stability condition is between zero to 1.  
index1 = 0 
index2 = 0 
 
for i in range(len(gg)): 
    if gg[i] >= 0 and index1 == 0: 
        if  1 >= abs(gg[i]): 
            index1 = i 
         
              
xx1 = x[index1] 
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