
Distributed Discrete-Event Simulation in Concurrent Cy

by

Edward William Vopata

B. S., Kansas State University, 1986

A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computing and Information Sciences

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1989

Approved by:

Virgil E P >(allentine - Major Professor

^^ A1120S 301223

onsc
|QTO Table of Contents

V4>7
1. Introduction 2

2. Simulation 5

2.1. Concepts of Simulation 5

2.2. Causality 6

2.3. Queueing Networks 7

2.4. Traditional Simulation 9

2.5. Problems with Traditional Simulation 10

3

.

Distributed Simulation 11

3.1. Waiting Rules for Logical Processes 13

3.2. Deadlock 15

3.3. Distributed Simulation Strategies 18

4. Implementation of the Distributed Simulator 23

4.1. Motivation for Implementation 23

4.2. Programming Languages 23

4.3. The Distributed Simulation Environment 25

4.4. The Distributed Discrete-Event Simulator 26

4.5. Deadlock Detection and Resolution 37

5

.

Summary and Future Research ; 48

References 51

Appendix A: Multiprocessor Computer Systems 53

Appendix B: Message Passing 56

Appendix C: Graphics Simulator Interface 58

Appendix D: Stochastic Distribution Functions 64

Appendix E: Implementation Notes 66

Appendix F: Concurrent C Source Code for the Distributed
Simulator 71

- i

List of Figures and Tables

Figure 1.1
The Distributed Simulation Environment 2

Figure 2.1
Model of a Single Processor Computer System 5

Figure 2.2
- State Transitions [FRAN77] 7

Figure 2.3
Symbols of a Queueing Network Modeling 8

Figure 2.4
- Model of a Queueing Network 9

Figure 3.1
Simulation Model 12

Table 3.1
- Operation of Simulation Model in Figure 3.1 13

Figure 3.2
Simulation Model using the Waiting Rules 14

Table 3.2
- Operation of Simulation Model in Figure 3.2 15

Figure 3.3
- Deadlock Model 16

Table 3.3
Operation of the Deadlock Model in Figure 3.3 16

Figure 3.4
- Waiting Conditions for the Deadlocked Model in Figure 3.3 17

Figure 3.5
- Gridlock: An Example of Model Deadlock 18

Figure 3.6
Queueing Network Model of the Gridlock Example 18

Figure 3.7
Example of Deadlock Avoidance 19

Figure 4.1
Distributed Simulation Environment 25

List of Figures and Tables (cont.)

Figure 4.2
- Concurrent C Code for Creating Logical Processes Z/

Figure 4 .

3

- Process Layout of a Distributed Simulation Model 27

Figure 4.4
- Concurrent C Code for Receiving Incoming Messages 31

Figure 4.5
- General Algorithm for the Source Process "

Figure 4.6
- General Algorithm for the Queue Process "

Figure 4.7
- General Algorithm for the Server Process 3D

Figure 4.8
- General Algorithm for the Sink Process "

Figure 4.9
- General Algorithm for the Branch Process 30

Figure 4.10
- Probability of Selecting an Outgoing Line n

Figure 4.11
- General Algorithm for Selecting an Outgoing Line 37

Figure 4.12
- An Example of Local and Global Deadlock and Local

and Global Deadlock Detection 39

Figure 4.13
- General Algorithm for the Deadlock Resolver Process 40

Figure 4.14
- Concurrent C Code for Receiving Send and Res_Send

Messages ^

Figure 4.15
- Deadlock Resolution using intercept_transaction() 44

Figure 4.16
- Deadlock Resolution using the Get_Time transaction 45

List of Figures and Tables (cont.)

Figure A.l
- A Tightly Coupled Multiprocessor Computer System 53

Figure A.

2

- A Loosely Coupled Multiprocessor Computer System 54

Figure A.

3

The Distributed Simulation Environment on the KSU.CIS
Network of Minicomputers 55

Figure C.l
BNF notation for the Input Model 59

Figure C.2
- Description of the BNF Non-Terminals in Figure C.l 59

Figure C.3
- List of the Machines unsed in Figure C.2 60

Figure C.4
- Example of an Input Model 61

Figure C.5
- BNF Notation for the Collective Report 61

Figure C.6
- Description of the BNF Non-Terminals in Figure C.5 61

Figure C.7
- Example of a Collective Statistics Report 62

Figure C.8
Simulation Control Messages 63

Figure D.l
Stochastic Distribution Functions 64

Figure E.l
Command Line Switches 66

Figure E.2
- Stats_Report 67

Figure E.3
- Size_of Report 68

Figure E.4
- Out_Graph Report 70

Introduction

In recent years multiprocessor computer systems, such as networks

of mini- and microcomputers, have become an attractive alternative to

traditional uniprocessor computers. The programs that run on these

multiprocessor computer systems are called distributed programs and

are composed of multiple interacting processes. Each process runs on

a separate processor and uses message passing to interact with other

processes. Distributed programming languages, such as Ada [STAM85]

and Concurrent C [GEHA88], can be used to develop these distributed

programs. The programming languages provide many language level

facilities that make distributed programming easier.

GRAPHICS

FRONT-BJD

E
^-l

Minicomputer

Q-- ...
Minicomputer

-o-- ---
Minicomputer

"0
1 1 \ .

.-

.--'

'*o*
J

Minicomputer

Figure 1.1: The Distributed Simulation Environment

There are many applications for distributed programming. One

such application is distributed simulation [MISR86], [REED87]. This

thesis describes the implementation of a distributed discrete-event

simulator written in Concurrent C. The distributed simulator is part

of a distributed simulation environment for the development and simu-

lation of queueing network models. The distributed simulation

environment runs on a multiprocessor computer system and is composed

of the distributed simulator and a graphics front-end (Figure 1.1).

The graphics front-end allows users to graphically create queueing

- 2

network models. These models are then sent to the distributed simula-

tor where they are simulated.

The simulation of queueing network models has long been a task

where the computational requirements needed to simulate large and com-

plicated models have far exceeded the computational capabilities of

the fastest available machines [REED87]. The traditional approach to

simulation is to create a simulator that runs on a uniprocessor com-

puter. Simulations conducted on a uniprocessor simulator are generally

slow. Distributed simulation offers an alternate approach by distri-

buting the simulation on a multiprocessor computer system.

There are several problems involved in the development of a dis-

tributed discrete-event simulator. The major problem is that the

processes in the distribed simulation program may deadlock. There are

several strategies for coping with the deadlock problems [JEFF85],

[REED87], The distributed simulator discussed in this thesis uses a

deadlock detection and resolution strategy [CHAN81]. The deadlock

detection and resolution strategy is composed of a deadlock detection

mechanism for detecting and reporting occurrence of deadlock, and a

deadlock resolution mechanism for resolving the reported deadlocks.

The deadlock detection mechanism was implemented by Scott Hammond

[HAMM88] as part of the kernel of Concurrent C and the deadlock reso-

lution mechanism was implemented as part of the distributed simulator.

One of the goals of this thesis is to determine the practicality of

having a deadlock detection mechanism at the language level and a

deadlock resolution mechanism at the application level.

A distributed discrete-event simulator was implemented in the

distributed programming language Concurrent C and is capable of

- 3 -

simulating a wide variety of queueing network models that are sent by

the graphics front-end. These queueing network models are simulated on

a network of minicomputers . The language level deadlock detection

mechanism detects and reports deadlock, and the application level

deadlock resolution mechanism resolves the deadlock. The distributed

simulator also allows the graphics front -end to monitor the progress

of a simulation by sending statistical reports about the current state

of the simulation to the graphics front-end.

Chapter 2 discusses the basic concepts of simulating queueing

networks and the problems with the uniprocessor approach to simula-

tion. The basic concepts and problems of distributed simulation are

discussed in Chapter 3. Chapter 3 also surveys several distributed

simulation strategies for coping with the problems of deadlock.

Chapter 4 describes the implementation of the distributed simulator in

Concurrent C and the deadlock detection and resolution strategy used

by the simulator. Finally, Chapter 5 discusses the conclusions and

future research projects.

- 4

2. Simulation

2,1. Concepts of Simulation

Simulation is the creation and execution of a model of a physical

system. A system is an organized collection of independent interact-

ing elements that functions as a single unit. A physical system is a

real world system [REED87]. The simulation model is an abstract

representation, such as a computer program or a diagram. Figure 2.1

shows a model of a physical system.

Card Reader CPU Printer

Figure 2.1: Model of a Single Processor Computer System

A physical system can be conceptualized as a state machine. The

current state of the physical system is described by a system state,

and its behavior over time is described by a sequence of state transi-

tions. In the simulation model, the state of the system is modeled by

a collection of state variables, and state transitions are modeled by

events. The occurrence. of an event causes the state variables to be

modified . The set of values assigned to the state variables after an

event has occurred represents the current state of the simulation,

referred to as the simulation state. Each simulation state

corresponds to a state in the physical system. Time in the physical

system, referred to as physical time, is replaced in the simulation

model by the notion of simulated time. Each event has a timestamp

associated with it indicating the physical time when the corresponding

- 5

state transition occurs. [REED87].

In the simulation model, simulated time is maintained by a vari-

able called the clock or simulation clock [MISR86] . The clock holds

the current value of simulated time, which is the time up to which the

physical system has been simulated. There are two methods for advanc-

ing the simulation clock. In time-driven simulation the clock is

advanced one "tick" at a time, and every event that occurs at that

time is simulated. In event-driven simulation the clock is advanced

to the time of the next event, and then that event is simulated. Only

event-driven simulation will be discussed in this thesis.

2.2. Causality

One important aspect of simulation is maintaining causality.

With the exception of time travel in science fiction novels, physical

systems always obey the causality principle. This simply states that

the future cannot affect the past. Causality imposes a time ordering

on state transitions in the physical system. If a state transition

has some effect on another state transition the former must always

occur before the latter, i.e., the cause must always precede the

effect. [REED87]

.

The time ordering of state transitions in the physical system

imposes a time ordering on events in the simulation. In particular,

the order that events are simulated must be consistent with the order

that state transitions occur if the simulation is to faithfully repro-

duce the behavior of the physical system. For example, if state tran-

sition A in the physical system occurs at time 3 and has some influ-

ence on transition B occurring at time 5, then the simulation must

model event A before modeling event B. If event B is simulated before

event A, the simulation would not accurately model the physical sys-

tem. When events are not simulated in the correct sequence, causality

is violated and the simulation is said to be incorrect. [REED87].

Physical systems are classified by the manner in which state

transitions occur [FRAN 7 7] . In continuous- time systems , state transi-

tions occur gradually over a period of time (Figure 2.2 (a)). Weather

is an example of a continuous-time system. In discrete-time systems,

state transitions occur at specific instances in time (Figure 2.2

(b)). Discrete-time systems are often referred to as discrete-event

systems because the specific instances correspond to occurrences of

events . Queue ing networks are examples of discrete-event systems

.

This thesis will only consider the simulation of discrete-event sys-

tems and specifically, the simulation of queueing networks.

Time
Continuous-Tims Discrete-Time

Figure 2.2: State Transitions [FRAN77]

2.3_- Queueing Networks

A queueing network is a collection of stations (or service

centers) arranged in such a way that customers proceed from one to

another in order to fulfill their service requirements . In queueing

networks of computer systems, the stations represent the various sys-

tem resources (e.g. CPU's, channels, disk, and drums) while the

7 -

customers correspond to jobs in the system [BRUE80].

Each station has an associated queue in which jobs may wait prior

to receiving service. The stations are characterized by a service

time and the queues are characterized by a queueing discipline. The

service time is the amount of time required to service a job. The

queueing discipline determines the order in which jobs are removed

from the queue. "First In, First Out" (FIFO) and "Last In, First Out"

(LIFO) are two examples of queueing disciplines [BRUE80].

Figure 2.3: Symbols of a Queueing Network Model

Figure 2.3 shows several of the common symbols used to describe

queueing networks [GH0S85]. These symbols represent stations, queues,

and important points in the physical queueing network system. A

server symbol represents a station and a queue symbol represents a

queue. A source symbol represents the point where jobs enter the sys-

tem. A sink symbol represents the point where jobs leave the system.

The flow of jobs through the system is represented by a path. Branch

symbols show points where j obs may follow one of several possible

paths . Merge symbols show points where jobs on multiple paths merge

onto a single path. Figure 2.4 shows a model of a queue network in

terms of these symbols

.

Figure 2.4: Model of a Queueing Network

2.4. Traditional Simulation

The traditional approach to simulation is to create and execute a

simulation program on a uniprocessor computer. The simulation program

or simulator is composed of procedures. These procedures simulate the

behavior of the various elements in the physical system. For queueing

networks these procedures simulate the behavior of sources, servers,

queues, sinks, branches, and merges. Generally, there is only one

procedure for each type of element. Events model the arrival and

departure of jobs at a particular element. A procedure simulates the

behavior of an element by updating various state variables and by

scheduling new events as necessary.

Causality in the uniprocessor simulator is maintained by means of

a global clock variable and a data structure called the event list.

This event list contains a list of scheduled events. Simulation

progresses by removing the oldest event from the event list, i.e. the

event with the smallest timestamp. The clock is then advanced to the

time of the event and a procedure is called to simulate the event

.

After the procedure has simulated the event , the simulation is ready

- 9 -

to process the next event. By always processing the oldest event

first causality is never violated.

2.5. Problems with Traditional Simulation

There are several problems with the traditional approach to simu-

lation. The major problem is that uniprocessor simulations are often

slow. The single processor must both schedule and simulate every

event in the model , and as the number of events increases so does the

load on the single processor. Another problem is that uniprocessor

computers have a limited amount of physical memory space. The limited

memory space restricts the size of the event list and the number of

events that can be scheduled at any given instance in simulated time.

3. Distributed Simulation

An alternative to the traditional approach to simulation is dis-

tributed simulation. Distributed simulation is the creation and exe-

cution of a simulation program on a multiprocessor computer system. A

multiprocessor computer system consists of multiple processors con-

nected by a common bus or network. Multiprocessor computer systems

are discussed in Appendix A. The programs that run on multiprocessor

computer systems are composed of multiple interacting program routines

called processes. These processes are executed concurrently on

separate processors and interact by exchanging messages. Process

interaction by message passing is discussed in Appendix B.

A physical system can be visualized as some number of indepen-

dent, concurrently executing elements, i.e. physical processes, that

interact in some fashion. A natural method for partitioning a distri-

buted simulation program is to create a simulation model that is topo-

logically identical to the physical system. Each physical process is

modeled by a separate simulation routine called a logical process

(LP). Interactions between physical processes are modeled by exchang-

ing times tamped messages between corresponding logical processes. The

timestamp denotes the simulation time when the event occurs in the

receiving process. [REED87]. Partitioning a queueing network model

involves the creation logical processes for each source, server,

queue, branch, and merge in the simulation model.

A few basic rules must be obeyed by each logical process. A log-

ical process can receive and read the contents of messages, can gen-

erate and send new messages, and can update its internal state vari-

ables. No variables are shared between distinct logical processes.

- 11 -

Each process maintains a local clock variable containing the current

value of simulated time, i.e. the timestamp of the last message pro-

cessed by the logical process. The timestamp on each message gen-

erated by a process must be at least as large as the local clock of

the process sending the message. Otherwise, processes could create

events "in the past," a clear violation of causality. [REED87].

The execution of a distributed simulation is illustrated in Fig-

ure 3.1 and Table 3.1. Figure 3.1 shows a distributed simulation

model and Table 3.1 shows the events that occur during the execution

of the model. The simulated time in Table 3.1 shows the time at which

each event occurs. The first event that occurs is the servers (LP2

and LP4) requesting the next message from their respective queues (LP1

and LP3). Since both queues are empty, the servers must wait until

their requests are granted. At time 3 the source (LPO) generates a

simulated job and sends the message (Ml, 3) to LP1. The message is a

tuple representing the simulated job (Ml) and a the time of the event

(3). The queue (LP1) receives the message (Ml, 3) and accepts LP2's

request. LP2 receives the message (Ml, 3) and simulates servicing the

simulated job.

Figure 3.1: Simulation Model

Table 3.1: Operation of Simulation Model in Figure 3.1

Simulated

Time

Source

LPO

Queue

LP1

Server

LP2 LP3

Server

LP4

Sink

LP5

Request

Next msg
Request

Next msg

3
Send(M1,3) Ftecv(Ml,3t

Aceapt req. Recv(M1.3)

5 Send(M2.5) Recv(M2,5)

13

Accept req.

Send(M1,13)

Request

Next msg

Recv(M2.5)

Recv(M1,l3)

Accept req. Recv(M1.13)

23

Send(M2.23)

Request

Next msg

Recv(M2.23)

Accept req.

Send(Ml.23}

Request

Next msg

Recv(M2,23)

Recv(M1.23)

33

Send(M2.33)

Request

Next msg

Recv(M2,33)

A server services a simulated job by updating the timestamp of

the message and sending the updated message to the next logical pro-

cess. The formula for updating the timestamp of a messages is depen-

dent upon the timestamp of the (current) message (CTS), the timestamp

of the last message sent (LTS), and the service time (ST) of the

server. The formula for updating the timestamp of the current message

is: Maximum(CTS,LTS) + ST. If LTS is larger than CTS, the server was

busy processing the last simulated job when the current message

arrived and the current message had to wait in the queue for LTS - CTS

time units. If, however, CTS is larger than LTS, the server was idle

for CTS - LTS time units.

2.1. Waiting Rules for Logical Processes

An important concern in distributed simulation is insuring that

the principles of causality described in Chapter 2.2 are not violated.

Causality, in traditional uniprocessor simulation, was easily main-

tained by only processing one event (message) at a time, but in

L3

distributed simulation, multiple events (messages) can be processed

simultaneously, as shown in Table 3.1 at simulated time 23. The dis-

tributed simulation program must, therefore, prevent causality from

being violated. One method for preventing causality violations is to

apply the "Waiting Rules" for logical processes described in [CHAN81]

.

These rules specify how logical processes may send and receive mes-

sages. The Waiting Rules for logical processes are as follows:

(1) A logical process must wait on every possible outgoing line
on which it has sent a message until that message is
received.

(2) A logical process must wait until a message has arrived on
every possible incoming line before selecting the message
with the smallest timestamp to receive.

Source

LP6

Source

LP7

Queue

LP9

Figure 3.2: Simulation Model using the Waiting Rules

Figure 3.2 and Table 3.2 illustrates the execution of a simula-

tion model with respect to the Waiting Rules. The source (LP6) sends

the message (M3,8) to the merge (LP8). The merge does not have a mes-

sage on every possible incoming line so LP6 must wait until LP8

receives the message. When the source (LP7) sends the message

(M4,10), LP8 then has a message on every possible incoming line and

can select the message with the smallest timestamp (M3,8). LP8

receives the message (M3,8) and frees LP6. LP8 sends the message

(M3,8) to the queue LP9, where it is received. LP6 then sends its

next message (M5.10) to LP8 . The merge now has a message on every

possible incoming line, but both message have the same timestamp.

14 -

Therefore, LP8 selects one of the messages and sends it on. The other

message remains on the line until a message with a larger timestamp

arrives.

Table 3.2: Operation of Simulation Model in Figure 3.2

3.2. Deadlock

So urea

LPS

Source

LP7

Merge

LPS

Queue

LP9

Send{M3.8)

Sond(M4.10) Rscv(M3.8)

Send(M3.8J Recv(M3.8)

Send(MS.tO) flecv(M5.10)

Send(M5.10) Recv(M5.10)

Send{M6,l 1) flecv(M4,10)

Send(M4.10) Rscv(M4.10)

The major problem with the application of the waiting rules is

that they can cause deadlock [REED87], [CHAN81]. Deadlock is a state

where a set of logical processes is waiting for an event that will

never occur. Figure 3.3 and Table 3.3 show the execution of a simula-

tion model that deadlocks. The branch (LP11) in the model has a high

probability of sending message to the queue (LP12) and the queues

(LP12 and LP14) can only hold two messages.

Deadlock occurs when all the message received by the branch

(LP11) are sent to the queue (LP12). The first message received by

LP12 is given to the server (LP13). LP13 processes the message,

updates the timestamp, and tries to send the message (M7,25) to the

merge (LP16). LP16 has two incoming lines and must wait for a message

to arrive from LP15. Therefore, LP13 must wait until LP16 receives

the message. In the mean time, LP10 and LP11 have filled the queue

(LP12) and LP12 is no longer receiving messages. LP10 then sends

another message to LP11. LP11 receives the message and tries to send

- 15 -

it to LP12, but cannot, since the queue is full. Therefore LP11 must

wait until LP12 receives the message. LP10 then tries to send another

message to LP11, but cannot, since LP11 is not receiving. LP16 is

still waiting for a message from the server (LP15), LP15 is waiting

for the queue (LP14) to grant its request for the next message, and

the queue (LP14) is empty and is waiting for a message to arrive from

LP11. Since LP11 is still trying to send a message to LP12, the event

of LP11 sending a message to LP14 will never occur and a deadlock

state exists.

Figure 3.3: Deadlock Model

Table 3.3: Operation of the Deadlock Model in Figure 3.3

Source

LP10

Branch

1P11

Queue

LP12

Server

LP13

Queue

LP14

Server

LP15

Merge

LP16

Sink

LP17
Request Next

message
Request Nex!

message

Send{M7,l5} Racv{M7,!5)

Send(M7.15) Recv(U7.15) Recv(M7.15)

Send(M7,2S)

<waitlng>

5end(M8,i6) Recv(M8,16)

Send(M8.16) Recv{M8,16)

Send(M9.20J Recv(M9,20)

Send(M9.20) Recv(M9,20)

<QueueFULL>

Send(M11,28) Recv(MU.28)

Send(M11.2B)

<waitlng>

Send(M10,25)

<wa ilinq>

wailing lor

LPH lo Recv

message

waiting for

LP 12 to Recv
message

Full Queue.

Not Reeving

waiting for

LP13 to req.

next message

waiting lor

LP16 to Recv

message

waiting lor

LP11 to send

a message

waiting for

LPU to gram

request

has message
from LP 13.

waiting lor

message Irom

L P 1

5

waiting lor a

message from

LPie

Figure 3.4 shows the deadlocked simulation model. The arrows in

the figure represent the direction in which the logical processes are

waiting. The branch is said to be the critical point in the deadlock

state because it is where the deadlock originates.

Figure 3.4: Waiting Conditions for the Deadlocked Model
in Figure 3 .3

The deadlock illustrated in Figure 3.3 and Table 3.3 is called

"simulation deadlock" because it is caused by the waiting rules that

are used to maintain causality. Another type of deadlock is called

"model deadlock." Model deadlock is caused by the simulation faith-

fully modeling a physical system that deadlocks. Figure 3.5 shows a

model of a physical system that deadlocks. This model depicts traffic

deadlock or gridlock [PETE83]. Gridlock occurs when the streets or

the grid are filled with vehicles and a vehicle blocks each intersec-

tion. Figure 3.6 shows a queueing network model of the gridlock sys-

tem. The queues represent the streets in the system, the sources and

sinks represent the flow of traffic into and out of the system, and

the combined branch and merge points represent the intersections.

Deadlock occurs when the queues are filled with messages and a message

is waiting at each intersection.

JU»L
[=1 U

u u

D D

n n <

I
a

n3r=i r
Figure 3.5: Gridlock: An Example of Model Deadlock

Figure 3.6: Queueing Network Model of the Gridlock Example

.3.3. Distributed Simulation Strategies

There are three basic distributed simulation strategies for cop-

ing with the problem of simulation deadlock.

3_-2-A- Deadlock Avoidance

The first distributed simulation strategy for coping with simula-

tion deadlock is called deadlock avoidance [CHAN78]. The deadlock

avoidance strategy uses the Waiting Rules explained in Chapter 3.1.

Deadlock avoidance prevents deadlock from occurring by using NULL mes-

sages. A NULL message, in the form (NULL, timestamp) , is sent from one

logical process to another to represent that the corresponding physi-

cal process did not send a message at that time. NULL messages are

treated in much the same way as normal messages, except NULL message

do not affect the state variables of a logical process other than the

local clock.

Deadlock avoidance is handled by the branch LP's. Whenever a

branch sends a normal message at time t (M,t) on one of its outgoing

lines, the branch also sends a NULL message with the same timestamp

(NULL.t) on all other outgoing lines. The NULL messages allow the

logical processes to advance their local clock to the time of the

timestamp, without fear of violating causality. The logical processes

that receive the NULL messages, update the NULL messages and send them

to the next logical process in the simulation.

Queue

LPU

INULL.60)

Figure 3.7: Example of Deadlock Avoidance

Figure 3.7 illustrates how the deadlock avoidance strategy can

avoid the deadlock that occurs in Figure 3.4. The branch (LP11) sends

the normal message (M25.60) along the upper path and the NULL message

(NULL, 60) along the lower path. The normal message (M25.60) pro-

pagates through the queue (LP12) to the server (LP13) where it is pro-

cessed. LP13 then sends the normal message (M25.65) to the merge

(LP16). In the mean time, the NULL message (NULL, 60) propagates

through the queue (LP14) to server (LP15) where the NULL message is

processed. LP15 then sends the updated NULL message (NULL, 70) to the

merge. The merge now has a message on every possible incoming line

and can now select the message with the smallest timestamp, namely

(M25,65)

.

The major disadvantage of the deadlock avoidance approach is that

a large number of unnecessary NULL messages may be generated and sent

.

In addition to placing an extra burden on the communication system, a

significant amount of processor time may be spent processing the NULL

messages. Another problem is that the deadlock avoidance approach

does not provide a mechanism for detecting model deadlock.

3.3.2. Time Warp

The second strategy for coping with simulation deadlock is called

Time Warp or Virtual Time [JEFF85] . The Time Warp strategy copes with

deadlock by disregarding the Waiting Rules described in Chapter 3.1

and allowing messages to arrive in any order, even at the risk of

violating causality. The Time Warp strategy maintains causality by

providing a rollback and recovery mechanism. Whenever a message

arrives at a logical process that is not in the proper order (i.e.

violates causality) the rollback and recovery mechanism rolls the

simulation back to a point in simulated time (i.e. time warps the

simulation back in time) before the error occurred (the rollback) and

restarts the simulation at that point (the recovery). The rollback

and recovery mechanism is complicated by the fact that the logical

process may have sent messages before the erroneous message arrived.

Therefore, the rollback and recovery mechanism must also provide the

- 20 -

means for causing other logical processes to rollback and recover.

The major disadvantages with the Time Warp approach are the over-

head involved in saving the state information and performing the roll-

back and recovery, and the potentially large amount of memory required

to implement it. The Time Warp approach also does not provide a

mechanism for detecting model deadlock.

3_*3.-2.* Deadlock Detection and Resolution

The third distributed simulation strategy for coping with

deadlock, we will call deadlock detection and resolution. This stra-

tegy is also called the deadlock detection and recovery strategy

[CHAN81]. The deadlock detection and resolution strategy, like the

deadlock avoidance strategy, uses the Waiting Rules for logical

processes (Chapter 3.1). The deadlock detection and resolution stra-

tegy involves running the simulation until deadlock occurs, detecting

the deadlock, and resolving the deadlock, which will allow the simula-

tion to continue.

The deadlock detection and resolution strategy described in

[CHAN81] uses a special process called the "controller" to detect

deadlock. Deadlock detection is based upon knowing the process states

of the logical processes. The process state of a logical process

determines whether the process is waiting for the arrival of a mes-

sage, waiting for a message to be received, or neither. The con-

troller examines the process states and looks for occurrences of

"deadlocked knots" of processes, such as the example in Figure 3.4

where the deadlock knot of processes consists of LP11, LP12, LP13,

LP14, LP15, and LP16.

Once deadlock has been detected, the controller initiates

deadlock resolution. Deadlock resolution in the [CHAN81] strategy

involves making a series of distributed computations that will allow

the logical processes to advance their simulation clocks. The logical

processes, especially the merge processes, are then allowed to tem-

porarily disregard the Waiting Rules (Chapter 3.1) and accept all

incoming messages up to their new simulated time. The description of

the deadlock resolution computations appear in [CHAN81] and are sum-

marized in [REED87]

.

4. Implementation of the Distributed Simulator

4._1. Motivation for Implementation

In this section we discuss the implementation of a distributed

discrete-event simulator. The motivations for this thesis and the dis-

tributed simulator are as follows:

(1) to experiment with distributed programming and distributed
programming languages

(2) to develop a distributed simulation environment for the

simulation of queueing networks

(3) to determine the practicality of implementing a deadlock
detection mechanism in the distributed kernel of a distri-
buted programming language

(4) to develop a deadlock resolution mechanism for resolving the

deadlock detected by the above deadlock detection mechanism

4.2. Programming Languages

The selection of a programming language in which to implement the

distributed simulation is very important. The programming language

must provide facilities for handling distributed process management

and message passing, otherwise the programmer must create these facil-

ities. The facilities provided by a programming language are gen-

erally easier to understand and much more reliable.

General purpose programming languages such as C, Fortran, and

Pascal provide neither the distributed process management nor the mes-

sage passing facilities needed by the distributed simulator. General

purpose programming languages are , however, widely used in the imple-

mentation of traditional uniprocessor simulators.

Simulation programming languages such as Simula and Simscript are

specifically designed for the implementation of traditional

uniprocessor simulators. Simulation programming languages, however,

do not provide the required distributed process management nor the

message passing facilities.

Concurrent programming languages such as Concurrent Pascal and

Modula-2 provide a form of distributed process management. These

languages are, however, concerned with the mutual exclusion of shared

data objects and do not provide message passing facilities.

Distributed programming languages such as Ada and Concurrent C

provide both the distributed process management and the message pass-

ing facilities required by the distributed simulator.

4.2.1. Reasons for Selecting Concurrent C

We decided to use Concurrent C over Ada because Concurrent C pro-

vides several facilities that Ada does not. First of all, Concurrent

C provides both synchronous and asynchronous message passing facili-

ties, in the form of transactions and async transactions . Ada only

provides synchronous message passing facilities in the form of an

extended rendezvous . Concurrent C provides facilities for altering the

order in which messages are received based on the contents of the mes-

sages. Concurrent C does this by providing suchthat and by_ clauses in

their accept statements. Ada's accept statements only allow messages

to be received in FIFO order. The source code for the Concurrent C

compiler and run-time libraries were available, but no source code for

Ada was available at the time. The source code for the compiler and

the run-time libraries was needed to aid in the implementation of the

kernel level deadlock detection mechanism. Finally, Concurrent C was

portable to our multiprocessor computer system.

4.3. The Distributed Simulation Environment

The distributed simulation environment is designed to provide the

means for graphically creating and simulating models of queueing net-

works. The distributed simulation environment is composed of two

interacting components: the graphics front-end and the distributed

simulator (Figure 4.1). The distributed simulation environment runs

on a multiprocessor computer system. The graphics front-end runs on a

special purpose graphics machine and the distributed simulator runs on

a homogeneous collection of minicomputers. The details of this mul-

tiprocessor computer system are described in Appendix A.

GRAPHICS

FBOMT-&ID Minicomputer Minicomputer Minicomputer

^W°% "1
D—Or ~i r\J— ."^

t
1

i / 1

\

'tj-o''
Minicomputer

Figure 4.1: Distributed Simulation Environment

The graphics front-end provides the user interface for the dis-

tributed simulation environment. The graphics front-end allows the

user to graphically create and edit queueing network models. These

models will be sent to the distributed simulator where they will be

simulated. The simulator allows the graphics front-end to monitor the

progress of the simulation by providing statistical reports about the

state of the simulation. The graphics front-end takes these reports

and graphically displays them. A description of the graphics front-end

is given in [BUTLER]

.

The distributed simulator provides the means for simulating the

queueing network models. The distributed simulator take a simulation

model (input model) sent from the graphics front-end and creates a

simulation in accordance with the input model. The distributed simu-

lation then executes the model on a multiprocessor computer system and

collects statistical reports regarding the state of the simulation.

These reports are sent to the graphics front-end. The distributed

simulator is also responsible for coping with any deadlock states that

may occur.

4_.4_. The Distributed Discrete -Event Simulator

4.4.. 1,. Starting the Distributed Simulator

The distributed simulator is only started when the graphics

front -end is ready to send an input model . A "connection program"

(Appendix F, connect. c) opens a connection to the graphics front-end

and starts the "main process" of the distributed simulator on a single

processor. The main process receives the input model from the graph-

ics front-end and creates the simulation

.

The input model is a numeric representation of the graphical

queueing network model displayed by the graphics front-end. The input

model specifies the elements involved in the simulation and additional

information regarding the operation of the elements. These elements

will become logical processes in the simulation. Appendix C describes

the format of the input model and the communication interface between

the graphics front-end and the distributed simulator.

Once the main process has received the input model it proceeds to

create the simulation. A logical process is created for each element

- 26 -

in the input model on the processor specified by the input model.

Figure 4.2 show the Concurrent C code for the creation of each type of

logical process on processor X. The process id (pid) returned by a

create statement is used to allow other processes to send the created

process messages.

Pid_src = create Source {) processor (X)

Pid_srv = create Server () processor (X)
Pid_que = create Queue (

)

processor (X)
Pid_snk = create Sink <) processor (X)
Pid_brn = create Branch () processor (X)

Figure 4.2: Concurrent C Code for Creating Logical Processes

After all the logical processes have been created, the main pro-

cess creates a collector process, a terminator process, a set of ker-

nel level deadlock detection processes, and a set of deadlock resolver

processes. The collector and the terminator processes are created on

the same processor as the main process. A kernel level deadlock

detector process and a deadlock resolver process are created on every

processor involved in the simulation (See Figure 4.3).

Processor (main processor)

f. " \ f Deadlock^
Collector „

I J ^DetectorJ

G
('Deadlock^

l^ ResolverJ

Processor 1 Processor 2

Source Server

CH-hO-
Server

\Slnk /

f Deadlock^ f Deadlock^

I Detector J ^ Resolver J

f Deadlock^ f Deadlock"\

^Detector J ^Resolver)

Figure 4.3: Process Layout of a Distributed Simulation Model

Once all the processes have been created, the main process sends

"setup message" to each process (P) . This setup message contains a

27

list of process id's of the processes to which the process (P) can

send messages, and any additional information required by the process.

The additional information is provided by the input model.

4.4.2. Supporting the Distributed Simulator

The collector and the terminator are processes that support the

operation of the distributed simulator. The collector is responsible

for collecting and sending statistical reports to the graphics front-

end and the terminator is responsible for the termination of the simu-

lation.

Each logical process maintains a local simulation clock and a

collection of state variables. These state variables describe the

current state of the logical process. At predetermined intervals of

simulated time as specified in the input model, each logical process

will compose a "status report" of its current state variables and send

the report to the collector. After the collector has received a

status report from each logical process in the simulation, it sends a

"collective report" to the graphics front-end. The format of this

collective report is described in Appendix C.

After sending the collective report to the graphics front-end,

the collector waits for the graphics front-end to reply with a control

message. This control message is described in Appendix C and will

tell the collector to either continue the simulation or initiate

"simulation termination." The format of the control messages is

described in Appendix C. The collector waits for a control message and

does not accept status reports from the logical processes. The logi-

cal processes can still send status reports to the waiting collector,

- 28 -

but they must wait until the collector accepts the reports. This

keeps the logical processes from flooding the collector with status

reports and allows the graphics front-end to control the distributed

simulation. The Concurrent C source code for the collector process is

given in Appendix F (col.cc).

Three conditions can cause the collector to initiate simulation

termination: 1) the collector receives a terminate control message

from the graphics front-end, 2) the collector receives a status report

from a logical process whose simulation time exceeds a predetermined

threshold, or 3) the collector determines that all the messages gen-

erated by the source processes have been discarded. The predetermined

simulation time threshold is provided by the input model. The input

model can also specify the number of simulated jobs (messages) that a

source can produce or specify that the source can produce an infinite

number of jobs. In the latter case, the third condition is meaning-

less. After one of these termination conditions has been met the col-

lector initiates simulation termination by sending a "terminate mes-

sage" to the terminator process.

The terminator process, after receiving a terminate message from

the collector, sends a terminate message to every logical process in

the simulation. When a logical process receives a terminate message

it enters a termination phase. The termination phase consists of

sending a final status report to the collector, receiving and discard-

ing any outstanding messages, and terminating. After all the ter-

minate messages have been sent to the logical processes, the termina-

tor sends a terminate message to the collector and terminates. After

receiving the terminate message from the terminator, the collector

collects all the final statistical reports from the logical processes,

sends a final collective report to the graphics front-end, and ter-

minates . The Concurrent C source code for the terminator process is

given in Appendix F (term.cc).

The distributed simulator also makes use of several stochastic

distribution functions. These functions are used to generate random

variables. Each function is based on a particular statistical distri-

bution formula as described in [HALL88]. Stochastic distribution

functions are used to generate random variables for arrival times,

service time, and probabilities. Stochastic distribution functions

are used by the source, server, and branch logical processes. The

type of stochastic distribution function and the parameter for the

function are specified in the input model. The stochastic distribu-

tion functions used by the distributed simulator are discussed in

Appendix D. The Concurrent C source code for the stochastic distribu-

tion function appears in Appendix F (distrib.cc)

.

it-it-A- The Logical Processes of the Distributed Simulator

The logical processes of the distributed simulation perform the

actual simulation. The logical processes send and receive timestamped

messages that represent the jobs in the physical queueing network sys-

tem. In the distributed simulator, logical processes are implemented

as Concurrent C processes . To reduce the number of Concurrent C

processes in the simulation, the operation of the merge points was

incorporated into the queue, sink, and branch processes.

The processes in the distributed simulator use the Waiting Rules

described in Chapter 2.2 to maintain causality. The first Waiting

Rule is already provided by Concurrent C in the form of transactions .

Concurrent C transactions make a process wait until the message it has

sent is accepted (received) before allowing the process to continue.

The Concurrent C source code for implementing the second Waiting Rule

is shown in Figure 4.4. This section of code makes a process wait

until there is a message on every possible incoming line before

accepting the message with the smallest timestamp.

/* lam. Send is a transaction pointer to the Send transaction */
/* Num_In is the number of incoming lines */
/* Msg. Timestamp is the timestamp of the message (Msg) */

select (

accept Send(Msg)
suchthat (c_transcount (lam. Send) == Num_In)
by (Ms g . T ime s t amp

)

{ /* Process The Message Msg */ };
or

/* ... other transactions and alternatives ... */

}

Figure 4.4: Concurrent C Code for Receiving Incoming Messages

The suchthat and b^ clauses of the accept statement and the

c_transcount () function provided by Concurrent C makes the implementa-

tion the second Waiting Rule very easy. The c_transcount () function

returns the number of outstanding messages waiting at the transaction

specified by the function. The suchthat clause prevents the transac-

tion from being accepted until the suchthat expression is true. Once

the suchthat expression is true, the by_ clause sorts the outstanding

messages and selects the message with the smallest value that is

specified in the by expression. The code section is Figure 4.4 illus-

trates of operation of a merge point such as the one shown in Figure

3.2. This code section is incorporated into the queue, sink, and

branch processes to eliminate the need for a merge process.

A-it-l-I- Source

Figure 4.5 shows the general algorithm for the source process.

The source uses a stochastic distribution function to generate an

arrival time . The arrival time is used to update the source's local

simulation, clock. The source then generates a message using the

value of the updated simulation clock as the timestamp and sends the

message. The source process keeps track of the average arrival time

and the number of simulated jobs generated, and reports these statis-

tics to the collector. The Concurrent C source code for the source

process appears in Appendix F (source. cc).

Process Source
Begin

Time =0.0
Accept setup()
Loop

Time = Time + arrival_time(

)

Msg. Message = { Some message }

Msg. Timestamp = Time
Send(Msg)
{ Record statistics }

End Loop
End Process Source

Figure 4.5: General Algorithm for the Source Process

4.4.3.2. Queue

Figure 4 . 6 shows the general algorithm for the queue process . A

queue process maintains a fixed size queue buffer as specified by the

input model. The queue buffer is implemented as a linked list.

Incoming messages are always attached to the tail of the list

.

Dequeueing (i.e. removing a message for the queue buffer) is deter-

mined by a queueing discipline specified by the input model. There

are four queueing disciplines implemented in the queue process: FIFO

(First In, First Out), LIFO (Last In, First Out), SIRO (Service In

Random Order), and PRIO (Priority).

Process Queue
Begin

Accept setupO
Create a Que
Loop

Select
(Que NOT Full) :

Accept Send(Msg)
suchthat (There are Num_in messages)
by (smallest (Msg.Timestamp)

)

{ Put Msg in Que }

Or
(Que Not Empty) :

Accept Request ()

{ Get Msg from Que by Discipline
TReturn Msg

}

End Select
{ Record statistics }

End Loop
End Process Queue

Figure 4.6: General Algorithm for the Queue Process

The messages sent to the queue by other logical process are put

into the queue's queue buffer, unless the queue buffer is full. If

the queue's queue buffer is full, the queue process will not accept

any incoming messages until a message is dequeued. The server associ-

ated with the queue process requests messages from the queue. These

requests are granted unless the queue buffer is empty, in which case

the server must wait until a message becomes available in the queue

buffer. Because of this close relationship with the associated

server, the queue process is always created on the same processor as

its associated server.

The queue process handles NULL messages by keeping a special NULL

message queue buffer. This "NULL queue buffer" holds only one NULL

message . Whenever a queue receives a NULL message , it puts the NULL

message in the NULL queue buffer, which may overwrite a previously

received NULL message. This helps reduce the number of NULL messages

in the system. When the server requests a message and there is a NULL

message in the NULL queue buffer, the queue will give the server the

NULL message if the regular queue buffer isi empty. If, however, there

is a normal message in the regular queue buffer the queue will dequeue

and give the server a normal message and discard the NULL message if

the timestamp of the normal message is larger then the timestamp of

the NULL message.

The queue keeps track of the average time a message was in the

queue buffer and the average and the current number of messages in the

queue buffer. The queue process reports these statistics to the col-

lector. The Concurrent C source code of the queue processes appears

in Appendix F (queue. cc).

4-4._3-.3- Server

Figure 4.7 shows the general algorithm for the server process.

The server requests messages from its associated queue and waits until

the request is granted and a message is returned. The server then

uses a stochastic distribution function to generate a service time.

The service time is used to update the server's local simulation clock

and the timestamp of the message. The updated message is then sent.

The server keeps track of the average service time , the number of

simulated jobs serviced, and the utilization of the server (i.e. per-

cent busy)

.

The server processes services NULL messages in the same fashion

as normal messages are serviced by generating a service time, updating

the timestamp, and sending the NULL. The server, however, does not

record statistics for NULL messages. The Concurrent C source code of

the source process is given in Appendix F (source. cc).

Process Server
Begin

Time =

Accept setupO
Loop

Msg = Request (Msg)
Time • Maximum(Time, Msg. Timestamp) + service_time(

)

Msg. Timestamp = Time
Send(Msg)
{ Record statistics }

End Loop
End Process Server

Figure 4.7: General Algorithm for the Server Process

4.4.3.4. Sink

Figure 4.8 shows the general algorithm for the sink process. The

sink process receives messages and discards them. The sink, however

,

keeps track of the number of discarded messages, excluding NULL mes-

sages, and reports this statistic to the collector. The Concurrent C

source code for the sink process appears in Appendix F (sink.cc).

Process Sink
Begin

Accept setup(

)

Loop
Accept Send (Msg)

suchthat (there are Num_In messages)
by (smallest (Msg. Timestamp)

)

{ Discard Msg }

{ Record statistics }

End Loop
End Process Sink

Figure 4.8: General Algorithm for the Sink Process

4.4.3.5. Branch

Figure 4.9 shows the general algorithm for the branch process.

When a branch process receives an incoming message, it selects an out-

going line and sends the message on that line. NULL messages are pro-

cessed in the same manner. The actual Concurrent C source code for

the branch process is given in Appendix F (branch. cc).

Process Branch
Begin

Time »

Accept setupO

Loop
Select

Accept Get_Time()
{ TReturn Time }

Or
Accept Send (Msg)

suchthat (there are Num_In messages)
by (smallest (Msg.Timestamp)

{ Time = Msg.Timestamp
{ determine on which line to send message
and send the message. (See Figure 4.11)

}

}

End Select
End Loop

End Process Branch

Figure 4.9: General Algorithm for the Branch Process

The selection of an outgoing line is based on probabilities.

Each outgoing line of a branch has a predetermined probability of

being selected (Figure 4.9) as specified by the input model. The sum

of the probabilities of the outgoing line must total one (1.0). The

branch process uses the probabilities to calculate a "range" for each

outgoing line (Figure 4.9). The branch selects an outgoing line by

generating a uniform random variable (X) and determining the range in

which X falls (Figure 4.9). The general algorithm used by the branch

- 36 -

to select an outgoing line based on probabilities is shown in Figure

A. 10.

Una :: 0.50 - 50%

* Una 1 :: 0.20 - 20%

Line 2 :: 0.30 . 30%

Line Probability Range Comments

0.5 0.0 <= X < 0.5

1 0.2 0.5 <= X < 0.7

2 0.3 0.7 <- X < 1.0

Select Line
Select Line 1

Select Line 2

Figure 4.10: Probability of Selecting an Outgoing Line

The branch processes do not collect any statistical information,

but the branch processes are very important in the resolution of

deadlock. The branch processes aid deadlock resolution by providing a

"Get_Time" transaction. The Get_Time transaction allows a deadlock

resolver process to obtain the current simulation time (i.e. the

timestamp of the last message sent) of a branch process.

/* prob[i] is probability of selecting line i */

/* line[i] is outgoing line i */

/* Num_0ut is number of outgoing lines */

X = { Generate a Uniform Random variable in the
range 0.0 < X < 1.0 }

low - 0.0
For i - to Num_0ut Do

If (low <= X < prob[i] + low) Then
Send(Msg) on Line[i]
Exit For

End If
low = low + prob[i]

End For

Figure 4.11: General Algorithm for Selecting an Outgoing Line

4.5. Deadlock Detection and Resolution

We have implemented a deadlock detection and resolution strategy

to cope with the problems of deadlock. The deadlock detection and

- 37 -

resolution strategy is composed of a deadlock detection mechanism

implemented in the kernel of Concurrent C [HAMM88] and a deadlock

resolution mechanism implemented at the simulator level. The deadlock

detection mechanism is implemented as several "kernel level" processes

called "deadlock detectors." The deadlock resolution mechanism is

implemented as several "simulator level" processes called "deadlock

resolveers." A deadlock detector and a deadlock resolver are started

on every processor involved in the simulation.

4.5.. JL. The Deadlock Detection Mechanism

The deadlock detection mechanism was implemented as part of the

kernel of Concurrent C [HAMM88]. The deadlock detection mechanism was

implemented at the kernel level because process state information is

readily available at the kernel level. The kernel level deadlock

detectors use the process state information to determine if a knot of

deadlocked processes exists. If a deadlock detector finds a knot of

deadlocked processes, such as the one shown in Figure 3.4, it con-

structs a list of the processes involved in the deadlock (LP11, LP12,

LP13, LP14, LP15, LP16) and reports the list to a deadlock resolver

process

.

The deadlock detector processes are capable of detecting both

"local" and "global" deadlock [HAMM88]. Local deadlock consists of a

knot of deadlocked processes on a single processor, whereas global

deadlock consists of a knot of deadlocked processes distributed across

several processors. Figure 4.12 shows an example of both local and

global deadlock, and local and global deadlock detection.

- 38 -

HJI}G-'
[
Oesda*) I D«jOWCk 1

Figure 4.12: An Example of Local and Global Deadlock and
Local and Global Deadlock Detection

Local deadlock occurs on Processor 1 and is detected by the

deadlock detector on Processor 1. The deadlock detector constructs a

list of the processes involved in the deadlock (1, 2, 3, 4, 5, 6) and

reports the list to the deadlock resolver on Processor 1. Global

deadlock is distributed across Processors 2, 3, and 4. In this exam-

ple, the deadlock detector on Processor 4 detects the global deadlock.

The deadlock detector then constructs a list of the processes involved

in the deadlock (8, 9, 10, 11, 12, 13) and reports the list to the

deadlock resolver on Processor 4. As shown in Figure 4.12, the

deadlock detector processes can simultaneously detect and report mul-

tiple occurrences of deadlock.

A further explanation of the deadlock detection algorithm and the

deadlock detection mechanism appear in [HAMM88].

4.5.2. Deadlock Resolution Mechanism

The deadlock resolution mechanism is implemented as part of the

distributed simulator . We developed an algorithm for the resolver

- 39 -

processes that is capable of resolving both the local and the global

deadlock reported by the kernel level deadlock detectors. Our algo-

rithm does not require the complex distributed computations found in

the deadlock detection and resolution strategy described in Chapter

3.3.3, but instead, uses information provided by the kernel to resolve

deadlock. Our algorithm resolves deadlock by sending NULL messages,

similar to the ones used by the deadlock avoidance strategy described

in Chapter 3.3.1. Figure 4.13 shows the general algorithm we used to

implement the resolver processes.

Process Resolver:
Accept setupO
Loop

Accept report(List)
{ Deadlocked_List - List }

For { each Branch (B) in the Deadlocked_List } Do
State query_state(B)

If State -» Sending Then
Msg intercept_transaction (B)

Time Msg.Timestamp
Else /* State == Accepting */

Time » B.Get_Time()
End If
Res_Msg. Message NULL
Res_Msg.TimeStamp Time
For { each outgoing line (L) in B } Do

If B is not sending on L Then
Res_Send(Res_Msg) on line L

End If

End For
End For

End Loop
End Process Resolver

Figure 4.13: General Algorithm for the Deadlock Resolver Process

The deadlock resolver waits until a kernel level deadlock detec-

tor reports deadlock. A deadlock report takes the form of a list of

deadlocked process sent to the resolver. We call this list the

"Deadlocked List." The resolver then searches the Deadlocked_List for

occurrences of branch processes.

When the resolver finds a branch process in the Deadlocked_List

it calls the query_state() function to get the process state of the

branch. A branch process is either in an "Accepting" state (waiting

for a message to arrive) or in a "Sending" state (waiting for a sent

message to be accepted). The query_state() function is provided as

part of the modified kernel of Concurrent C to aid in deadlock resolu-

tion [HAMM88]. The resolver uses the process state of the branch to

determine the method for obtaining the timestamp of the last message

sent by the branch.

If the branch is in a Sending state, the timestamp of the last

message is contained in the message that the branch is currently send-

ing. The resolver, therefore, calls the intercept_transaction() func-

tion to obtain a "copy" of the message. The intercept_transaction(

)

function is also provided as part of the modified kernel to aid in

deadlock resolution [HAMM88]. Once the resolver has a copy of the

message, it can obtain the timestamp. However, if the branch is in an

Accepting state, the resolver must use the branch's Get_Time transac-

tion because there is no message to intercept. The value returned by

the Get_Time transaction is, however, the same as the timestamp of the

last message sent by the branch.

The resolver uses the timestamp of the last message sent as the

timestamp for a NULL message. A copy of this NULL message is sent on

every unused outgoing line of the branch to resolve deadlock. An

unused outgoing line is defined as any line on which the branch is not

currently sending a message. To prevent the resolver from being

blocked or even deadlocked itself, the resolver sends the NULL

- 41 -

messages as a asynchronous message. Asynchronous message passing is

described in Appendix B.

Since Concurrent C does not allow both synchronous and asynchro-

nous messages to arrive at the same transaction, an async transaction

called "Res_Send" was used. Figure 4.14 shows the Concurrent C code

used to implement the receiving synchronous "Send" and asynchronous

"Res_Send" messages. This code section is used by the queue, sink, and

branch logical processes to receive incoming messages and NULL mes-

sages sent by a deadlock resolver without violating causality.

The code in Figure 4.14 operates similarly to the code shown in

Figure 4.4. The Send transaction accepts an outstanding Send message

when the number of outstanding Send messages is the same as the number

of incoming lines and there are no outstanding Res_Send messages. If,

however, there are outstanding Res_Send messages, the Res_Send tran-

saction waits until the number of both the outstanding Send and

Res_Send messages is the same as the number of incoming lines before

accepting the Res_Send message with the smallest timestamp. The

Res_Send transaction then discards all other outstanding Res_Send mes-

sages and determines if there is an outstanding Send message with a

smaller timestamp. If there is, the Res_Send transaction accepts the

Send message with the smallest timestamp and processes it, otherwise

the Res_Send message is processed.

/* lam. Send: transaction pointer to transaction Send */

/* Iam.Res_Send: transaction pointer to transaction Res_Send */

/* Num_In: the number of incoming lines */

/* Msg.Timestamp: the timestamp of the message (Msg) */

select {

accept Send(Msg)
suchthat(c_transcount(Iam.Send) •" Num_In AND

c_transcount (Iam.Res_Send) == 0)

by (Msg . Timestamp

)

{ /* Process The Message "Msg" */ };

or
accept Res_Send(Msg)

suchthat (c_transcount (lam. Send) +

c_transcount(Iam.Res_Send) «- Num_In

by (Msg. Times tamp)
{ Res_Msg » Msg; }

;

while (c_transcount(Iam.Res_send) > 0)

accept Res_Send(Msg) { /* Discard Msg */ };

select {

accept send(Msg)
suchthat (Msg.Timestamp < Res_Msg. Timestamp)
by (Msg.Timestamp)
{ The_Message = Msg; };

or
The_Message Res_Msg;

}

/* Process The Message "The_Message " */

or

I* . . . other transactions and alternatives ... */

}

Figure 4.14: Concurrent C Code for Receiving Send and
Res_Send Messages

A NULL messages received by a logical process is processed and

sent to the next logical process in the simulation. Eventually the

NULL message will arrive at the "merge point" and resolve the

deadlock. Figure 4.15 shows an example of deadlock resolution using

the intercept_transaction() function. In this example, the merge

point at LP6 is waiting for a message from LP5. The server (LP5) is

not able to send a message because the branch (LP1) is blocked trying

to send to LP2 and the queue (LP4) is empty. The deadlock detector

detects the deadlock and reports the list of deadlocked processes

- 43 -

(LP1, LP2, LP3, LP4, LP5, LP6) to the resolver. The resolver finds

the branch (LP1) in the list and determines that LP1 is in a Sending

state. Therefore, the resolver uses the intercept_transaction() func-

tion to get a copy of the message (M,82) that LP1 is sending. The

resolver then sends the NULL message (NULL, 82) on the other outgoing

line of the branch. The NULL message is propagated through LP4 and

LP5, and the updated NULL message (NULL, 85) arrives at LP6, thus

resolving the deadlock.

!n18rcept_lransactlon()

t Oeadlock V
^ Resolver y

f Deadlock \

iDeleotofJ

Figure 4.15: Deadlock Resolution using intercept_transaction(

)

Figure 4.16 shows an example of deadlock resolution using the

Get_Time transaction. The queue (LP88) is empty and is waiting for a

message to arrive from LP90. The branch (LP90) is waiting for a mes-

sage from LP89 and the server (LP98) is waiting for LP88 to grant its

request. The deadlock detector detects the deadlock and reports the

list (LP88, LP89, LP90) to the resolver. The resolver finds the

branch (LP90) in the list and determines that LP90 is in an Accepting

state. Therefore, the resolver uses the Get_Time transaction to obtain

the current simulation time (1988) of the branch. The resolver con-

structs the NULL message (NULL, 1988) and sends a copy of the NULL

message on each outgoing line of LP88. One of the NULL messages

arrives at LP88 and resolves the deadlock.

{ Deadlock \
^ Datector /

Figure 4.16: Deadlock Resolution using the Get_Time transaction

A deadlock detector may at times report nonexistent deadlock.

Nonexistent deadlock is called "phantom deadlock" and can occur when

the deadlock detector detects the deadlock that the resolver is

currently resolving. Our deadlock resolution algorithm does not con-

cern itself with phantom deadlock, because phantom deadlock rarely

occurs and the resolution of phantom deadlock does not harm the simu-

lation. The deadlock resolver processes resolves phantom in the same

fashion as it resolves real deadlock. The only effects of resolving

phantom deadlock are that unnecessary NULL messages are generated and

sent.

The deadlock resolution mechanism is only concerned with resolv-

ing simulation deadlock. The deadlock detector mechanism, however,

is capable of detecting both simulation and model deadlock. There-

fore, the deadlock resolution mechanism should provide a mechanism for

distinguishing simulation deadlock from model deadlock. Our deadlock

resolver, however, does not currently identify model deadlock.

45

One method that could be used to identify model deadlock involves

keeping a "history list" of past deadlocks. This history list would

be composed of entries containing the Deadlocked_List and the times-

tamp of the NULL message sent to resolve the deadlock. The resolver

could detect model deadlock by comparing current (i.e. the most

recently reported deadlock) Deadlocked_List and the timestamp of the

current NULL message with entries in the history list. If the

resolver finds an entry in the history list that matches the current

Deadlocked_List and timestamp, the resolver can "suspect" model

deadlock. The resolver must, however, take into account that the

suspected model deadlock may actually be an occurrence of phantom

deadlock. The solution to this problem is to look for multiple entries

that match the current information, and if such entries are found,

then model deadlock would be detected.

Since model deadlock cannot be resolved, the deadlock resolver

could report the occurrence of the model deadlock to the collector.

The collector would then inform the graphics front-end that model

deadlock has occurred and terminate the simulation.

The implementation of alternative kernel level deadlock detection

mechanisms [HAMM88] may require the implementation of an alternative

deadlock resolution mechanism, particularly if the deadlock detection

mechanisms cannot provide a list of the deadlocked processes. Our

current deadlock resolution algorithms requires that the deadlock

detection mechanism provide the list of deadlock process, but we have

developed an alternative algorithm that does not require a

Deadlocked_List from the deadlock detector.

Our alternative algorithm takes a list of logical processes

provided by distributed simulator and constructs a new list of only

the branch processes. The deadlock resolver waits until a deadlock is

reported and then treats the list of branch processes as if it were

the Deadlocked_List . Our algorithm basically resolves a reported

deadlock by sending a NULL message on every unused outgoing line of

every branch process in the simulation. Our algorithm tends to flood

the simulation with NULL message, but deadlock is resolved. The Con-

current C source code for this algorithm is given in Appendix F

(resolver .cc)

.

- 47

5_. Summary and Future Research

5 .1. Summary

We have implemented a distributed discrete-event simulator in the

distributed programming language Concurrent C. Our distributed simu-

lator and the graphics front-end make up a distributed simulation

environment. The distributed simulation environment allows a wide

variety of queueing network models to be created and simulated. The

simulation of these queueing network models is conducted by the dis-

tributed simulator on the loosely coupled multiprocessor computer sys-

tem discussed in Appendix A.

Our distributed simulator uses a deadlock detection and resolu-

tion strategy to cope with the problems of deadlock that may occur

during the course of the distributed simulation. We developed the

deadlock resolution mechanism that is capable of resolving both the

local and global deadlock states reported by the kernel level deadlock

detection mechanism. Our deadlock resolution algorithm uses several

kernel functions and NULL messages to resolve the reported deadlocks.

Our distributed simulator was implemented in 2700 lines of Con-

current C source code, of which only 150 lines were devoted to the

deadlock resolver. The Concurrent C programming language greatly sim-

plified the task of developing the distributed simulator. The message

passing facilities provided by Concurrent C allow the Waiting Rules

(Chapter 3.1) used by the logical processes to be easily and cleanly

implemented

.

We have shown that deadlock detection in the kernel of a distri-

buted programming language and deadlock resolution at the application

level is a valid approach to distributed simulation. Because deadlock

detection was implemented in the kernel of Concurrent C, the deadlock

detector processes can use the process state information provided by

the kernel to rapidly detect deadlock and produce a list of deadlocked

processes. Furthermore , the deadlock detection mechanism can provide

kernel level deadlock resolution assistance facilities that will aid

in deadlock resolution. The deadlock resolution mechanism, imple-

mented at the application level, can readily access information that

is only available at the application level. The deadlock resolver

uses this information and the information provided by the deadlock

detector and its resolution assistance facilities to resolve deadlock.

The combination of these two mechanisms allows our distributed simula-

tor to quickly detect and resolve the deadlocks that interrupt a dis-

tributed simulation of a queueing network model.

5.2. Problems

One of the maj or problems encountered in the implementation of

the distributed simulator was the discovery of a "bug" in the AT&T C

compiler (version 4.1). Concurrent C uses the C compiler during the

final phases of program compilation. The bug manifest, whenever a

structure of 4 K-bytes (4096 bytes) or larger is passed as a parameter

or a message. The bug causes the distributed simulator to either

"hang" or "core dump." The bug was reported and certified by AT&T

Software Support and, according to them, will be corrected in version

4.3 of the C compiler . In the mean time , the sizes of parameters and

messages are limited to less than 4 K-bytes.

5.3. Future Enhancements

Many enhancements that could be made to improve the distribed

simulator. One enhancement is the implementation of new simulation

elements such as resource allocators and deallocators. A second

enhancement involves attaching job variables to the messages and

implementing routing control mechanisms within the logical processes.

The routing control mechanisms would use the job variables to deter-

mine the path the message would follow through the simulation instead

of leaving the decision to chance. A third enhancement involves modi-

fying our deadlock resolution algorithm to identify and cope with

model deadlock.

6. Future Projects

There are several future projects related to the distributed

simulator . One project could involve comparing the operation of our

distributed simulator that uses a deadlock detection and resolution

strategy with the operation of a distributed simulator implemented

using a deadlock avoidance strategy and one implemented using a "Time

Warp" strategy. A second project could involve comparing the opera-

tion of our simulator on our loosely coupled computer system with the

operation of our simulator on a tightly coupled multiprocessor com-

puter system. A third project could examine the application of the

distributed simulation of "Petri Networks."

- 50 -

References

[AT&T88] Enhanced TCP/IP WIN/3B, The Wollongong Group, Inc., 1987.

[BACH86] M. J. Bach, The Design of the UNIX Operating System ,

Prentice-Hall, 1986.

[BRUE80] S. C. Bruell, G. Balbo, Computational Algorithms for Closed
Queue ing Networks , North-Holland, 1980.

[BRYA79] R. E. Bryant, "Simulation on a Distributed System," Distri-
buted Computing Conference , 1979, pp. 544-552 .

[BUTLER] J. Butler, (unpublished notes), Kansas State University,
1988.

[CHAN78] K. M. Chandy & J. Misra, "A Nontrival Example of Concurrent
Processing: Distributed Simulation," IEEE COMPSAC 78 , 1978,
pp. 822-826.

[CHAN81] K. M. Chandy & J. Misra, "Asynchronous Distributed Simula-
tion via a Sequence of Parallel Computations," Communica-
tions of the ACM , Vol 24, No. 11, April 1981, pp. 198-206.

[FRAN77] W. R. Franta, The Process View of Simulation , North-Holland,
1977.

[GEHA88] N. H. Gehani, W. D. Roome, Concurrent C, AT&T Bell Labora-
tories, (Submitted for Publication).

[GEHA88b] N. H. Gehani, "Message Passing: Synchronous versus Asynchro-
nous", AT&T Bell Laboratories, (Submitted for Publication).

[GHOS84] J. Ghosh, "Asynchronous Simulation of Some Discrete Time
Models," Proc . Winter Simulation Conference , November 1984,
pp. 467-469.

- 51

[GHOS85] J. Ghosh, "Asynchronous Simulation of Discrete Event Simula-
tion, " Proc of the 18th Annual Simulation Symposium , 1985,
pp. 255-263.

[HALL88] M. Hall, Simulating a Distributed File System With Various
Types of Networks , Masters Report, Kansas State University,
1988.

[HAMM88] S. Hammond, Distributed Deadlock Detection in Concurrent C
Masters Thesis, Kansas State University, 1988.

[JEFF85] D. R. Jefferson, "Virtual Time," ACM Transactions on Pro-
gramming Languages and Systems , Vol. 7, No. 3, July 1986,
pp. 404-425.

[MISR86] J. Misra, "Distributed Discrete-Event Simulation," Computing
Surveys , Vol. 18, No. 1, March 1986, pp. 39-65.

[PEAC79] J. K. Peacock, J. W. Wong, E. G. Manning, "Synchronization
of Distributed Simulation Using Broadcast Algorithms," Proc.
of the Winter Simulation Conference , December, 1979, pp. 3-
10.

[PETE83] J. Peterson, A. Silberschatz, Operating System Concepts ,

Addison-Wesley Publishing Co., 1983.

[REED87] D. A. Reed, R. M. Fujimoto, Multicomputer Networks :

Message - Based Parallel Processing , The MIT Press, 1987.

[STAM85] R. A. Stammers, "Ada on Distributed Systems," Concurrent
Languages in Distributes Systems , G. L. Reijns and E. L.
Dagless (eds), Elsevier Science Publishers (North Hollond),
1985.

[UNIX86] UNIX Programmer 's Supplementary Documents , Volume 1, USENIX,
1986.

[WAIT87] M. Waite (editor), UNIX Papers for UNIX Developers and Power
Users , Howard W. Sam & Company, 1987.

52 -

Appendix A: Multiprocessor Computer Systems

Multiprocessor computer systems can be divided into two

categories : tightly coupled systems and loosely coupled systems

[WAIT87]. A tightly coupled multiprocessor computer system is com-

posed of two or more processors that share the same physical memory

.

The processors of a tightly coupled multiprocessor computer system are

generally on the same machine and are connected by a common bus. Fig-

ure A.l shows an example of a tightly coupled multiprocessor computer

system. The VAX 8650 and the CRAY XMP are two examples of tightly

coupled multiprocessor computer systems

.

Figure A.l: A Tightly Coupled Multiprocessor Computer System

A loosely coupled multiprocessor computer system is composed of

two or more processors that do not share the same physical memory. A

loosely coupled multiprocessor computer system is generally made up of

several uniprocessor computers connected by a network. Figure A.

2

shows an example of a loosely coupled multiprocessor computer system.

A network of minicomputers is an example of a loosely coupled mul-

tiprocessor computer system.

Machine Machine Machine

Processor Processor Processor

Memory Memory Memory

1
1

Figure A. 2: A Loosely Coupled Multiprocessor Computer System

The distributed simulation environment described in chapter k

runs on a loosely coupled network of minicomputer operated by the Com-

puting and Information Sciences Department at Kansas State University.

This network (KSU.CIS Network) is composed of AT&T 3B2/400, 3B2/310,

and 3B15 minicomputers, and Xerox 1186 graphics work stations. The

graphics front-end of the distributed simulation environment runs on a

Xerox 1186 graphics work station and the distributed simulator runs

the AT&T 3B minicomputers. The distributed simulator runs on the AT&T

3B minicomputers because the processes of Concurrent C can only be

distributed on a homogeneous multiprocessor computer system. The AT&T

3B minicomputers are homogeneous because they are object code compati-

ble. Figure A. 3 shows the distributed simulation environment conduct-

ing a distributed simulation on a section of the KSU.CIS Network. The

names of the minicomputers (i.e. november, hotel, echo, and phobos)

represent the "host" names of the minicomputers.

GRAPHICS

FRONT-BID

November Hotel Echo

AT&T 3B2/400 ATAT 382/400 AT&T 3B2/310

^w00^ "I

O-O:-- oo- --|.oo^

k
I

.'

'.
I

•'

'O-O'*Fred

(Xerox 1186 Graphics Work station

PhoOos

AT4T 3B15

Figure A. 3: The Distributed Simulation Environment on
the KSU.CIS Network of Minicomputers

Appendix B: Message Passing

Message passing facilities are used in distributed programs for

interprocess communication and synchronization. These facilities can

be classified into two categories: synchronous (blocking) and asyn-

chronous (non-blocking) . In the case of a synchronous message send,

the sender waits (blocks) until the receiver has accepted the message.

On the other hand, in the case of an asynchronous message send, the

sender continues execution after sending the message, without waiting

for the receiver to accept it. The difference between synchronous and

asynchronous message receives is similar [GEHA88b].

Concurrent C provides both synchronous (called transactions) and

asynchronous (called async transactions) message passing facilities.

A description of these facilities appears in [GEHA88] and a comparison

of the two message passing facilities appears in [GEHA88b] . The syn-

chronous message passing facilities are similar to Ada's

extended rendezvous which allows bidirectional communication between

the interacting processes. The asynchronous message passing facili-

ties, on the other hand, only allows unidirectional communication

between the interacting processes.

The logical processes of the distributed simulator use synchro-

nous message passing to send their normal messages. The deadlock

resolver processes use asynchronous message passing to send NULL mes-

sages, thus preventing the resolver processes from becoming blocked or

even deadlocked themselves. The main process of the distributed simu-

lator uses asynchronous message passing to distribute the process id's

and other "setup" information provided by the input model (as

described in chapter 4) to the logical processes and the terminator

process uses asynchronous message passing to send terminate messages.

Appendix C i Graphics Interface

The communication connection between the graphics front-end and

the distributed simulator is established by a special "connection pro-

gram" (Appendix F, connect. c). This program opens a "TCP/IP socket

port" [AT&T88] and waits for graphics front-end to connect to the

port. Once the graphics front-end has connected, the connection pro-

gram starts the distributed simulator. The reasons for using the con-

nection program is to resolve a naming conflict between the TCP/IP

accept () function and the Concurrent C accept statement. The TCP/IP

socket provides a reliable bidirectional network communication link

between the graphics front-end and the distributed simulator. TCP/IP

sockets are described in [AT&T88], [BACH86], and [UNIX86]. The com-

munication connection between the graphics front-end and the distri-

buted simulator is used to transfer the input model from the graphics

front-end to the distributed simulator and the collective statistics

report (Chapter 4) from the distributed simulator to the graphics

front-end.

C.l: Format of the Input Model

The "input model" is a numeric representation of the queueing

network model. The information contained within the input model will

tell the distributed simulator how to construct and distributed the

queueing network model. The distributed simulator can either obtain

the input model from the socket connection or from a file. If a

socket connection is used, the connection program establishes the

socket connection and starts the simulator. If, however, the input

model is to come from a file, the distributed simulator is started

directly. The file contains the same information that would have been

sent over the socket connection. Figure C.l shows the BNF notation for

the input model and Figure C.2 gives a description of the BNF nonter-

minals .

<Start>
<Begs>
<Ends>
<SoS>
<Node>
<Source>
<Sink>
<Q_Server>

<Branch>

<0ut_list>
<Stoch>
<Out ID>

<Begs> [<Node>]* <Ends> <SoS>
(99))

(99 1))

(98) <Term_Time> <Interval>)

<Source>
|
<Sink>

|
<Q_Server>

|
<Branch>

(ID) (<Stoch>) <Mach> <Virt> <Gen> <Out_ID>)

(1 ID) <Mach> <Virt> <Num_In>)

(2 ID) (<Stoch>) <Mach> <Virt> <Out_ID> <Num_In>
<Q_Size> <Q_Method> <Num_In>)

(3 ID) <Mach> <Virt> <Num_In> <Num_0ut>
(<Out_list>))

(Out_ID Prob) Jl-S
<Type> <Min> <Max> <Argl> [<Arg2>])

<ID>

Figure C.l: BNF Notation for the Input Model

<ID> : : an unique number for each logical process

<Mach> : : an unique number for each minicomputer
(a list of these values is given in Figure C.3)

<Virt> : : a Virtual Processor number (not used)

<Gen> : : the number of message a source logical process is

allowed to generate. If <Gen> = then the source is
allowed to generate an infinite number of messages.

<Num_In> : : the number of incoming lines to a logical process

<Num_Out> : : the process id of the destination logical process

<Q_Size> : : the size of the queue buffer, must be greater than zero

<Q_Method> : : the method for dequeueing message from the queue buffer
<Q_Method> = is FIFO
<Q_Method> =1 is LIFO
<Q_Method> 2 is SIRO
<Q_Method> =3 is PRIO (described in Chapter 4).

<Prob> :: the probability of selecting the outgoing line
The sum of all the probabilities of an "Outline-
must total one (1)

.

<Type> : : the type of stochastic distribution function
(described in Appendix D).

<Min> : : Minimum cutoff for the distribution function

If <Min> then Min is ignored

<Max> : : Maximum cutoff for the distribution function
If <Max> = then Max is ignored

<Argl> : : First argument for the distribution function

<Arg2> : : Second argument for the distribution function

<Term_Time> : : Termination Time specified by the graphics front-end

<Interval> :: Time Intervals (of simulated time) for sending
collective status reports

Figure C.2: Description of the BNF Non-Terminals in Figure C.l

In the BNF notation, the " [<X>] " indicates that <X> is optional,

the "[<X>]*" indicates that zero or more occurrences of <X>, and the

"[<X>]l-5" indicates that there may be one to five occurrences of <X>.

Machine Number Machine Host Name Model

foxtrot 3B2/400
1 golf 3B2/400
2 hotel 3B2/400
3 india 3B2/400
4 Juliet 3B2/400
5 kilo 3B2/400
6 lima 3B2/400
7 mike 3B2/400
8 november 3B2/400
9 hack 3B2/400

10 alpha 3B2/310
11 bravo 3B2/310
12 Charlie 3B2/310
13 delta 3B2/310
14 echo 3B2/310
15 phobos 3B15
16 deimos 3B15

Figure C.3: List of Machines used in Figure C.2

Figure C.3 shows a list of the computers that make up the loosely

coupled multiprocessor computer system on which the distributed simu-

lator runs (Appendix 1). The following list contains the machine

numbers used by the input model, the host name of the computer, and

the model of the computer. All of the following computer are products

of AT&T.

Figure C.4 shows an example of the input model of the queueing

network in Figure A. 3.

(99))

(00) (200 50.0) 8 100 1)

(3 1) 8 1 2 ((2 0.60) (3 0.40))

(22) (400 50.0) 2 4 10 1)

(2 3) (4 50.0) 15 4 10 1)

(24) (400 50.0) 14 5 10 2)

(1 5) 14 1)

(99 1))

(98) 200)

Figure C.4: Example of an Input Model

C.2: Format of the Collective Report

The collector process collects individual status reports from

each logical process and composes a collective statistics report. This

report is sent to the graphics front-end over the socket connection.

Figure C.5 shows the BNF of the collective statistics report and Fig-

ure C.6 gives a description of the BNF nonterminals. If, however, the

distributed simulator is obtaining the input model from a file, the

collective statistics report is displayed on the console.

<Start>
<Message>
<Node>
<Source>
<Q_Server>
<Sink>

=
[<Message>] <Interval> [<Node>]* "($$)"

- "(end)"
|

"(abort)"
|

"(deadlock)"
" <Source>

|
<Q_Server>

|
<Sink>

= (<ID>< Num_Left>)

(<ID> <Per_Busy> <Per_Full> <In_Q> <Through_Q>)

- (<ID> <Num_Sunk>)

Figure C.5: BNF Notation for the Collective Report

(end) :: indicates that the following report is the last report

(abort) :: indicates that an error occurred and the simulator is
aborting the simulation

(deadlock) indicates that model deadlock has occurred (not used)

($$) :: indicates the end of the current statistics report

<Interval> :: simulation time of the current statistics report

<ID> : : the unique identifier of each logical process

<Num_Left> : : the number of remaining messages that a source process
has left. If the source was to generate an infinite
number of messages , the value will be negative and
will represent the number of message that the source
has generated.

<Per_Busy> :: the percent utilization of a server process

<Per_Full> : : the percent capacity of a queue process

<In_Q> : : the number of messages currently in a queue process

<Through_Q> : : the number of messages that have passed through a

queue process

<Num_Sunk> : : the number of messages discarded by a sink process

Figure C.6: Description of the BNF Non-Terminals in Figure C.5

Figure C.7 shows an example a collective statistics report of the

queueing network described in Figure C.4. This report occurred at

simulation time 1200.

(1200.0000)
(0 76)

(2 38.7461 0.0000 12)
(3 34.8273 0.0000 12)

(4 88.4272 40.0000 4 13)
(5 13)

($$)

Figure C.7: Example of a Collective Statistics Report

Upon receiving the collective statistics report, the graphics

front-end will graphically display the report. The user can then

elect to continue or terminate the simulation . In either case, the

graphics front -end will send a simulation control message back to the

distributed simulation. Figure C.8 shows the format of the simulation

control messages. Upon receiving a simulation control message the

- 62 -

distributed simulator will either continue or terminate the simula-

tion.

"
((97)) " :: simulation continue control message

"
((96)) " : : simulation termination control message

Figure C.8: Simulation Control Messages

Appendix D: Stochastic Distributions Functions

The distributed simulator uses several stochastic distribution

functions to calculate service and arrival times. The stochastics

distribution functions use the drand01() function to obtain a pseudo-

random number. The drand01() function returns a floating point value

in the range of to 1 (0 <= drandOK) < 1). The drandOK) function

uses the random number generator provided in the C libraries. For the

BSD systems, the random number generator is the random() function,

which returns a value in the range of to 2,147,483,648 (2"31) (0 <=

random() < 2"31). For System V systems, the random number generator

is the lrand48{) function, which returns a value in the range of to

2,147,483,648 (2
A
31) (0 <= lrand48() < 2~31). The drand01() functions

takes the value returned by the random number generator function and

converted it to a floating point value in the range to 1.

Figure D.l shows the stochastic distribution function used by the

distributed simulation. "Type" is a numeric valued used in the input

model to identify each stochastic distribution function. "Argl" and

"Arg2" are values used as parameters for the functions.

Type Name Argl Arg2

Fixed time
1 Uniform a b
2 Poisson mean
3 Binomial n p
4 Expntl mean
5 Normal mean stdev
6 Gamma mean k
7 Beta kl k2
8 Erlang mean k
9 Lognormal mean stdev

10 Weibull shape scale

Figure D.l: Stochastic Distribution Functions

64 -

The stochastic distribution functions and their parameters are

described in [HALL88]. The source code for the stochastic distribu-

tion functions appears in Appendix F, distrib.cc.

- 65 -

Appendix E: Implementation Notes

The distributed simulator has several command line switches that

allow debugging and tracing facilities to be activated. These debug-

ging and tracing facilities cause the distributed simulator to display

pertinent information about the operation of the distributed simula-

tor. Figure E.l lists the command line switches and gives a brief

description of the function of each switch. Switches #0-16 are used

exclusively by the distributed simulator, switches #17-19 are unused,

and switches #20-31 are reserved for the deadlock detection mechanism.

The debugging and tracing facilities greatly aided the development and

debugging of the distributed simulator.

Switch # Description of Switch

tracing for the main process
1 tracing for reading the input model
2 tracing for creating the logical processes
3 tracing for Source logical processes
4 tracing for Sink logical processes
5 tracing for Server logical processes
6 tracing for Queue logical processes
7 tracing for Branch logical processes
8 tracing for the Collector process
9 tracing for Resolver processes

10 tracing for the stochastic distribution functions
11 tracing for the Terminator process
12 tracing of socket communication
13 tracing of the initial socket connection
14 create a statistics report (Stats_Report)
15 create a sizeof report (Size_of)
16 create an "Out Graph" (Out_Graph)

Figure E.l: Command Line Switches

Switch #14 causes the distributed simulator to produce a statis-

tics report (Stats_Report) . The Stats_Report is a formatted report of

the statistics collected by the collector. Figure E.2 shows a section

of a Stats_Report that was produced by the input model in Figure C.4.

66

~ Interval Number: 5 Interval Time: 1200.0000

Status: Normal

Source: Interval: 1200.0000 Simulation Time: 1156.0000
Inter Arrival Time Number

Ave STD MAX Left
48.167 5.241 61.000 76

Queue/Server: 2 Interval: 1200.0000 Simulation Time: 1158.3556
Queue: Full: 0.00Z Num Through Queue: 13

Average Time in Queue Average in Queue Num in
Ave STD MAX Ave STD MAX Queue

579.793 361.080 1009.500 1.154 0.361 2.000

Server: Busy: 38.75Z
Average Time In System Average Service Time Number

Ave STD MAX Ave STD MAX Serviced
50.135 34.274 128.287 37.401 32.616 128.287 12

Queue/Server: 3 Interval: 1200.0000 Simulation Time: 1104.9237
Queue: Full: 0.00Z Num Through Queue: 13

Average Time in Queue Average in Queue Num in
Ave STD MAX Ave STD MAX Queue

359.251 199.393 697.853 1.000 0.000 1.000

Server: Busy: 34.83Z
Average Time In System Average Service Time Number

Ave STD MAX Ave STD MAX Serviced
37.520 33.533 117.426 32.068 30.544 117.426 12

Queue/Server: 4 Interval: 1200.0000 Simulation Time: 1122.7053
Queue: Full: 40.00Z Num Through Queue: 14

Average Time in Queue Average in Queue Num in
Ave STD MAX Ave STD MAX Queue

149.415 114.783 340.605 1.929 1.033 4.000 4

Server: Busy: 88.432
Average Time In System Average Service Time Number

Ave STD MAX Ave STD MAX Serviced
254.258 172.769 552.041 76.367 68.925 216.002 13

Sink: 5 Interval: 1200.0000 Simulation Time: 1122.7053
Number Sunk: 13

Figure E.2: Stats_Report

Switch #15 causes the distributed simulator to produces a

"sizeof" report (Size_of). This report shows the sizes of the various

structures used by the distributed simulator. The Size_of report was

67 -

used to find structures that were larger then 4 K-bytes. Structures

may be larger than 4 K-bytes, if they are not passed as parameters.

(The 4 K-byte structure restriction is described in Chapter 5). Fig-

ure E . 3 shows a sample Size_of report

.

Size of Standard Types:
int 4

long 4

double 8

char 1

Values

:

MAXPROC 110
MAXFAN 5

D_NPR0CS 50
D_NP0RS 16

Size of Stochastic Distributions Structures:
struct fixed_rec 8

struct uniform_rec 8

struct poisson_rec 8

struct binomial_rec 12
struct expntl_rec 8

struct normal_rec 16
struct gamma_rec 16

struct beta_rec 16

struct erlang_rec 12
struct lognormal_rec 16
struct weibull_rec 16

struct distrib_rec 40

Size of Parameters

:

struct src_param 84
struct sink_param 32
struct srv_param 84
struct q_param 20
struct brn_param 116
struct col_param 2256
struct term_param 2256
struct res_param_rec 5352

Size of Process Table & Data Structures:
struct PS_REC 2252
union PS_Data_Rec 4

PS_Data_Rec * MAXPROC 440
struct Src_rec 48
struct Q_Srv_rec 56
struct Sink_rec 4

struct fan_rec 12
struct Branch_rec 68
struct queue_list_rec 144

Size of Statistics Structures:

- 68

struct src_stats_rec 44

struct q_stats_rec 64

struct q_srv_stats_rec 140
struct sink_stats_rec 20
struct col_rec 464
struct stats_rec 28
SET 16

Size of Message:
struct Item_rec 52

Other structures:
struct out_rec 28

struct out_list 3080
struct list_rec 24
CALLERS 24

OUTBUF 24

Figure E.3: Size_of Report

Switch #16 causes the distributed simulator to produce an

"0ut_Graph" report. The 0ut_Graph report contains the "ID" of each

logical process (the same as the ID from the input model), the process

id of the created logical process, and a list of the "ID' s
" of the

logical processes to which the process can send messages. Figure E.4

shows the Out_Graph report produced by the input model from Figure

C.4. The "To" field of the Source and Server gives the "ID" of the

process to which the Source or Server may send messages. The "#in"

field in the Branch, Queue, and Sink gives the number of incoming

lines. The "#out" field of the Branch gives the number of outgoing

lines and the "To" field of the Branch gives the "ID's" the process to

which the Branch may send messages. Process id's for the Collector

and the Terminator are also given in the Out_Graph report. The

0ut_Graph is used to check the correctness of the input model.

Source [0] pid[600002] To

[

1)

Branch [1] pid(800003] #in[1] #out[2] To [2] [3]

Server [2] pid[A00004] To

[

4]

Queue [2] pid[C00005] #in[1]

Server [3] pid[E00006] To[4]

Queue [3] pid[1000007] #in[1]

Server [4] pid[1200008] To[5]

Queue [4] pid[1400009] #in[2]

Sink [5] pid[160000A] *in[1]

Collector pid[180000B]
Terminator pid[lA0000C]

Figure E.4: Out_Graph Report

Concurrent C requires that a copy of the executable distributed

simulator be present on each processor involved in the simulation.

The path to the executable simulator is compiled into the simulator.

Before the simulator is started the executable simulator must be dis-

tributed to each processor involved in the simulation. A good future

enhancement could be to have the simulator automatically distributed

itself. An alternative approach would be to use remote file sharing.

Remote file sharing would allow each processor to have access to the

same copy of the executable simulator.

Appendix F: Concurrent C Source Code for the Distributed Simulator

F.l: Makefile

if Makefile for the Distributed Simulator — By Edward Vopata
t November 1988
CCC«/usrb/scott/ccc/bin/CCC
CCCLIB=/usrb/scott/ccc/lib/libmpcc50g.a

HDRS= dclr.h mach.h queue. h S(XTRAH)

XTRAH= set.h item.h stats. h distrib.h proc_param.h proc_table.h \
proc_spec.h rand.h

X2HDR- Pid.h defs.h spec.h graph.

h

SRCS=main.cc build. cc create. cc source. cc queue. cc server. cc sink.cc\
branch. cc stats. cc set.cc col.cc term.cc distrib.cc sock.cc \
sizeof.cc out_graph.cc stats_rpt.cc resolver.cc

0BJS=main..o build. .o create.. o source.. o queue.. o server.. o sink..o\
branch.. o stats.. o set..o col..o term..o distrib..o sock. .o \
sizeof..o out_graph. .o stats_rpt..o resolver..o

Dealock Detector library
XOBJS= dd.a
Distributed Simulator
XEQ=Dsim
Path to the Distributed Simulator
LOC=\"Sim/${XEQ}\"

#For SYS5 systems
CFLAGS= -g -DSYS5 -DSYS5_DIS +M -DDEADLOCK
CCCFLAGS = -g -DSYS5 -DSYS5_DIS -DDEADLOCK
LIB- -lm -lnet

#For BSD systems
#CFLAGS= -g +M
#LIB= -lm

${CCC} -c ${CFLAGS} S*.cc

t Make Dsim
${XEQ}: ${HDRS} ${OBJS}

cc ${CCCFLAGS} -o ${XEQ} ${OBJS} ${XOBJS} ${CCCLIB} S{LIB}
chmod 755 ${XEQ}

create.. o: ${HDRS} create. cc
${CCC} -c ${CFLAGS} -DLOCATE=${LOC} create. cc

dclr.h is dependent upon XTRAH include files,
dclr.h: S(XTRAH)

touch dclr.h

- 71 -

F.2: dclr.h

* dclr.h — by Edward Vopata

* This include file should be included in all simulation files.
* This file contains Defines of LP types, Queuing Methods, Message
* types, Stats status, extra process ID's, debugging names,
* graphics front-end interface values. This file also includes
* all the other include files in the proper order. <math.h> is
* also included here, therefore this program must be linked with
* the math library (-1m) <« READ THIS >». This file contains
* values to provide for Runtime debugging. To use this insert
* printf statements < if (debug[DEBUG_?????]) printf (XXXXX) ; >
* these debugging switches can be set at runtime (on the command
* line) and are handled by main(). Warning: debugging messages
* are numerous but very helpful in tracking, tracing, and finding
* any bugs still crawling around the program
* This file also declares some functions used by various functions
* in the program. THIS IS THE MAIN INCLUDE FILE.
* The other include files handle specialized definitions.

*/

/(define FALSE
I define TRUE 1

#define OUT_GRAPH_NAME "Out_Graph"
#define SIZE_OF_NAME "Size_Of"
/(define STATS_REPORT_NAME Stats_Report

"

/* Types of logical processes */
((define SOURCE /* Source entity */
//define SINK 1 /* Sink entity */
/(define QUE_SRV 2 /* Queue/Server entity */
/(define BRANCH 3 /* Branch entity */
/(define MAXTYPE k /* Number of different entities */

/* Maximum number of Logical Process
* Max number of fan out lines */

/(define MAXPROC 110 /* Max number of processes/entity */
/(define MAXFAN 5 /* Max number of Fan In/Out paths */

/* Queuing Disciplines */
/(define FIFO /* First In, First Out */
idefine LIFO 1 /* Last In, First Out */
#define SIRO 2 /* Service In Random Order */
//define PRIO 3 /* Priority Queueing */
/(define MAXPRIOR 20 /* Number of Priority values (0-MAX) */

/* Message Types */
/(define MSG_ERR -1 /* Error msg */
//define MSG_NULL /* NULL msg */
Idefine MSG_ITEM 1 /* Item msg */

/* Statistics status */

tfdefine STATS_NORMAL /* Normal Statistics */

((define STATS_FINAL 1 /* Final Statistics */

((define STATS_TERM 2 /* Termination Statistics */

/* Id's for extra processes */

jfdefine RES_ID (MAXPROC) /*

Sdefine COL_ID (MAXPROC+1) /*

((define TERM_ID (MAXPROC+2) /*

Resolver Address */

Collector Address */

Terminator Address */

/* Macro to determine MAX of 2 values */

((define MAX(a,b) ((a > b) ? a : b)

/**************** Debugging Switches ****************/

/* Name Bit pattern bit* Comment */

((define DEBUG_MAIN 0x00000001 /* 00:Main: msgs */

((define DEBUG_BUILD 0x00000002 /* 01: Build: building msgs */

((define DEBUG_CREATE 0x00000004 /* 02:Create: process creation */

jfdefine DEBUG_S0URCE 0x00000008 /* 03:SRC: Source debugging */

Idefine DEBUG_SINK 0x00000010 /* 04:SNK: Sink debugging */

(/define DEBUG_SERVER 0x00000020 /* 05:SRV: Server debugging */

((define DEBUG_QUEUE 0x00000040 /* 06:QUE: Queue debugging */

((define DEBUG_BRANCH 0x00000080 /* 07:BRN: Branch debugging */

((define DEBUG_COLLECT 0x00000100 /* OSiColi collection stats */

((define DEBUG_RESOLVE 0x00000200 /* 09: Res: Deadlock Resolver */

(Idefine DEBUG_DISTRIB 0x00000400 /* 10: Stats distributions */

(/define DEBUG_TERM 0x00000800 /* ll:Term: terminator */

((define DEBUG_SOCK 0x00001000 /* 12:Sock: getline, putline */

jfdefine DEBUG_DOCNT 0x00002000 /* 13 Connection msgs (Start) */

i/define STATS_REPORT 0x00004000 /* 14:Write stats to file */

((define SIZE_0F 0x00008000 /* 15:Print Size of Structures */

ifdefine 0UT_GRAPH 0x00010000 /* 16: Print Out Graph of Model */

/* Switches #17-19: unused */
/* Switches #20-31: reserved for the Deadlock Detection Mechanism */

((define DEBUG SCT20 0x00100000 /* 20 : Scott
((define DEBUG SCT21 0x00200000 /* 21 : Scott
((define DEBUG SCT22 0x00400000 /* 22 : Scott
((define DEBUG SCT23 0x00800000 /* 23 : Scott
((define DEBUG SCT24 0x01000000 /* 24 : Scott
((define DEBUG SCT25 0x02000000 /* 25 : Scott
((define DEBUG SCT26 0x04000000 /* 26 i Scott
#def ine DEBUG SCT27 0x08000000 /* 26 : Scott
((define DEBUG SCT28 0x10000000 /* 28 : Scott
((define DEBUG SCT29 0x20000000 /* 29 : Scott
//define DEBUG SCT30 0x40000000 /* 30 : Scott
((define DEBUG SCT31 0x80000000 /* 31 : Scott
j/def ine MAX DEBUG 32

/* Misc . Defines */
((define MAXLINE 128 /* Max Line Length

s Debugging
s Debugging
s Debugging
s Debugging
s Debugging
s Debugging
s Debugging
s Debugging
s Debugging
s Debugging
s Debugging
s Debugging

Flags
Flags
Flags
Flags
Flags
Flags
Flags
Flags
Flags
Flags
Flags
Flags

/* Types of graphic communication messages */
(Idefine SIG_TERM 96 /* Signal to terminate simulation
((define SIG_CONT 97 /* Signal to continue simulation

tfdefine SIG_SOS 98
#define SIG_BEGS 99
tfdefine SIG ENDS 99

/* Signal Start of simulation */
/* Signal Begin of simulation model data */
/* Signal End of simulation model data */

/* Include files:
* BEWARE: of how these includes are ordered
* Reordering them may cause problems.
* I originally ordered them by intuition

include <stdio .h>

^include <math.h>
^include
^include

'set .h"
' rand .

h

"

^include "item.h"
f include "stats .h"

include "distrib.h"
include "proc__table .h'

"proc_param.h"
proc_spec .h'

I include
^include

/

/* Standard C include file for FILE & NULL */
/* Standard C include for math functions */

/* Set operations */
/* Random number Generator Includes. */

/* Inter-Logical Process Includes */
/* Statistical Includes */

/* Distrib. function for serv & iit times */

/* Process Tables Includes */
/* Process Input Parameter Includes */
/* Process Specs Includes */

/* The largest possible timestamp
* Max Time Stamp. (HUGE: from <math.h>)
* MAX_TIME must appear after <math.h> has been included
*/

^define MAX_TIME (HUGE)

/* Handle different operating systems */

/* Don't forget: the "#" must be in Column 1 */
#ifdef SYS5 /* For 3b2's and 3bl5 Machines (System V systems) */

char *strchr(); /* == BSD's index */
char *strrchr(); /* == BSD's rindex */

define index(a.b) strchr(a.b) /* Map index to strchr */
// define rindex(a,b) strrchr(a.b) /* Map rindex to strrchr */

#else /* For BSD systems */
char *index(); /* BSD index
char *rindex(); /* BSD rindex

#endif

find char forward search */
find char reverse search */

char *malloc()

;

void f ree()

;

void getline()

;

void putline()

;

/* Allocate memory <standard function> */
/* Free memory <standard function> */
/* get a line from a socket */
/* put a line to a socket */

F.3: proc table .

h

* proc table. h — by Edward Vopata
**

* Process table definition.

*'

/* Source data */

struct Src_rec {

long num_Gen; /* Num of items a Source will generate */

/* if num_Gen == : Infinite Source */

int Out_ID; /* Id of LP at end of Outgoing line

struct distrib_rec dis; /* Distrib of arrival time of items *

};

/* Queue/Server data */

struct Q_Srv_rec {

int Q_size; /* Size of the Queue */

int Q_method; /* Method for de-queuing an item */

int Num_fan_in; /* Number of Incoming lines */

int Out_ID; /* Id of LP at end of Outgoing line */

struct distrib_rec dis; /* Distrib of arrival time of items */

};

/* Sink data */

struct Sink_rec {

int Num_fan_in; /* Number incoming lines */

};

/* Record for dealing with Fanout */

struct fan_rec {

int ID; /* Id of LP at end of Outgoing Lines */

double prob; /* Probability of taking the line */

};

/* Id of Incoming Line /

struct Branch_rec {

int Num_fan_in;
int Num_fan_out; /* Number of outgoing lines */

/* Note: the sum of the Fan_out [i] .prob must == 1.00 */

struct fan_rec Fan_out [MAXFAN] ; /* Id & prob of out lines */

};

struct PS_REC (

int num_nodes;
int Max_Hop_Count
int type[MAXPROC]
int mach[MAXPROC]
int virt[MAXPROC]

double sim_term_time

;

double stats_interval

;

long Total_Gen;

/* Number of logical processes */

/* Max. Hop Count */

/* Type of logical process */

/* Machine Number */

/* Virtual Processor Number */

/* Simulation Termination Time */

/* Statistics Transmission Interval */

/* Total number of Job to be Generated */

int Infinite_Src; /* TRUE is any source is infinite

in_sock; /* Socket for incoming data */

out_sock; /* Socket for outgoing data */
int
int

long debug;

process Collector
process Terminator

/* Runtime Debugging Flags */

Col_pid;
Term_pid;

/* Pid of Collector */

/* Pid of Terminator */

};

/* Variant Record of Process Id's (PID) */

union {

process Source Src_pid; /*

process Server Srv_pid; /*

process Sink Sink_pid; /*

process Branch Branch_pid; /*

long pid; /*

} ps_pid[MAXPROC]

;

process Queue Que_pid[MAXPROCJ

;

Pid of Source
Pid of Server
Pid of Sink
Pid of Branch
Generic Pid

/* Pid of Queue */

union PS_Data_Rec {

struct Src_rec
struct Q_Srv_rec
struct Sink_rec
struct Branch_rec

};

Src; / Source data */
Q_Srv; / Queue/Server data */

Sink; / Sink data */

Branch; /* Branch data */

F.4: proc param .h

* proc_param.h — by Edward Vopata
**
* process parameters
* used by all processes
**
*/

/* Short form for transaction pointers */
typedef trans void (*SEND) (ITEM) ; /* Normal Messages */
typedef async trans (*RES_SEND) (ITEM) ; /* Resolver Messages */

/* Parameter list for a Source Logical Process */
struct src_param {

int
double
double
int
long
int
SEND

/*
trans

ID; /* ID of the Source */
sim_term_time; /* Simulation Termination Time */
stats_interval; /* Statistics transmission Interval */
Max_Hop_Count

;

/* Hop Count for Null Messages */
num_Gen; /* Number of Items to Generate */
Out_ID; /* ID of LP at end of outgoing line */
send; /* Transaction pointer to Out_ID */
Transaction Pointer to Stats. Collector */
void (*stats) (struct src_stats Src_stats);

/* Random Distribution record for arrival time */
struct distrib_rec dis

;

long debug; /* Runtime debugging Flags */

/* Parameter list for a Sink Logical Process */
struct sink_param{

int ID; /* ID of the Sink */
double sim_term_time; /* Simulation Termination Time */
double stats_interval; /* Stats, transmission Interval */
int Num_Fan_In; /* Number of incoming lines */

/* Trans, pointer to Stats. Collector */
trans void (*stats) (struct snk_stats Snk_stats);
long debug; /* Runtime debugging Flags */

/* Parameter list for a Logical Server Process */
struct srv_param {

int
double
double
int
int
SEND

/*
trans

ID;
sim_term_time;
stats_interval

;

Max_Hop_Count

;

Out_ID;
send;

/* ID of the Server
/* Simulation Termination Time
/* Stats, transmission Interval
/* Max Hop Count for Null Messages
/* ID of LP at end of outgoing line
/* Trans. Pointer to Out_ID

Trans, pointer to Stats. Collector */
void (*stats) (struct srv_stats Srv_stats);

process Queue Que; /* PID of corresponding queue
struct distrib_rec dis; /* Random Distrib. rec for serv time
long debug; /* Runtime debugging Flags

- 77

/* Parameter list for a Logical Queue Process */
struct q_param {

int ID; /* ID of the Queue
int Q_size; /
int Q_method; /
int Num_Fan_In; /
long debug; /

};

Size of the Queue
Method for de-queuing items
Number of incoming lines
Runtime debugging Flags

/* Parameter List of Logical Branch Process */
struct brn_param {

ID of the Branch */
Simulation Termination Time */
Stats, transmission Interval */
Max Hop Count for Null Messages */
Number of incoming lines */
Number of outgoing lines (1-MAXFAN) */

* ID of LP at end of outgoing lines */
/* Note: the sum of the Fan_Out [i] .prob must 1.00 */

/* Probability of taking that line */
/* Trans. Pointer to ID */

int ID; /
double s im_te rm_t ime ; /
double stats_interval

! /
int Max_Hop Count

;

/
int Num_Fan_In; /
int Num Fan Out

;

/
struct {

int ID; '*
:

double prob;
SEND send;

Fan_Out[MAXFAN]

};

long debug; /* Runtime Debugging Flags

/* Parameter List of Stats. Collector Process */
struct col_param {

int ID; /* ID of the Collector */
struct PS_REC PS; /* A copy of the Process Table */

>;

/* Parameter List of Terminator Process */
struct term_param {

int ID; /* ID of the Terminator */
struct PS_REC PS; /* A copy of the Process Table */

};

F.5: proc spec .h

/*** *******

* proc_spec.h — by Edward Vopata
**
* Concurrent C process specifications.
**

*/
/* Process spec definitions */

/* The Logical Sink Process */

process spec Sink ()

async trans setup (struct sink_param Snk) ; /* Get Param. List */

trans void send (ITEM item); /* Incoming messages */

async trans Res_send (ITEM item);
async trans term (); /* Terminator trans. */

};

/* The Logical Source Process */

process spec Source (

)

async trans setup (struct src_param Src); /* Get Param. List */

async trans term (); /* Terminator trans. */

};

/* The Logical Server Process */

process spec Server ()

async trans setup (struct srv_param Srv)
; /* Get Param. List */

async trans term (); /* Terminator trans. */

};

/* The Logical Queue Process */

process spec Queue ()

{

async trans setup (struct q_param Que); /* Get Param. List */

trans void send (ITEM item); /* Incoming messages */

async trans Res_send (ITEM item);
async trans term (); /* Terminator trans. */

/* Get an item from the queu - used by corresponding Server */

trans void get_item(ITEM *item, double sim_time);

/* Get stats from queue - used by corresponding Server */

trans struct q_stats_rec stats (double sim_time);

};

/* The Logical Branch Process */

process spec Branch ()

{

async trans setup (struct brn_param Brn) ;
/* Get Param. List */

trans void send (ITEM item); /* Incoming messages */

async trans Res_send (ITEM item)

;

async trans term (); /* Terminator trans. */

trans double get_time();

};

/* The Terminator Process */

process spec Terminator ()

{

async trans setup (struct term_param term); /* Get Param. List */

async trans setupl(int num, process anytype Res [20]);
async trans term (); /* Start Termination */

};

/* The Stats. Collector Process */
process spec Collector ()

{

/* Collect Incoming Stats from Queue/Server */
trans void Que_Srv_stats (struct q_srv_stats_rec q_srv_stats)

;

/* Collect Incoming Stats from Sink */
trans void Sink_stats (struct sink_stats_rec sink_stats);

/* Collect Incoming Stats from Source */
trans void Src_stats (struct src_stats_rec src_stats);

async trans setup (struct col_param col); /* Get Param. List */
async trans term (); /* Terminator trans */

F.6: item.h

* item.h — Edward Vopata

* Definition of the message (item) used in inter-Logical process
* communication. This message contains the time_stamp and the type
* of the message. If the message is Real message then the Priority
* field contains the priority of the message, If the message is a
* Null msg then the Hop_Count field contains the number of hops
* remaining until the Null msg can be discarded (only servers
* decrement the Hop Count). Each Item contains a field that
* identifies the the source of the message (sources for real
* messages), almost anywhere for Null msgs. There is also a data
* field for additional information (This field is unused at the
* current time). Additional fields may be added to hold routing
* information and other useful data.

V
#define DATA LEN 10 /* Size of Additional data

struct Item_rec {

double Time_Stamp; /*

double Arrive_Time; /•*

double Enter_in_Que; /*
int Priority; /*

int Item_type; /*

int Hop_Count; /*
int Id_of_Src; /*
char data[DATA_LEN]

; /*

Time spamp of the item */
Time item arrived in system */
Time Entered current Queue */
Priority of item */
Item type (Item or Null Msg) */
Hop count for Null Msg */
Id of the source */
Additional data */

typedef struct Item_rec ITEM;

81

?_.]_• queue , h

/**

* queue. h — by Edward Vopata
**
* The Queue is handled has a singlely linked list. Head & Tail
* pointers are used to maintain the Queue. A list of unused
* items is maintained by Free. When Head - Tail -» NULL then
* the queue is empty. When Free NULL then the queue is full.
* Null messages are maintained in a single item queue. New incoming
* Null messages are placed in the Null_Queue & may overwrite an old
* Null message (this is alright because the new null_msg is

* guaranteed to have a larger time stamp then the old null_msg.
* A Null_Msg_in_Q Flag indicates whether there is a Null_msg in the

* Null_Queue.
**

•/

/* An item in a queue */

typedef struct q_item_rec Q_ITEM;

/* An item in a queue */

struct q_item_rec {

ITEM Item; /* The item */

Q_ITEM *Next; /* Pointer to the next item */

};

/* Record for maintaining the queue */

struct queue_list_rec {

int ID; /* Id of Queue/Server */

int Max_Size; /* Maximum Size of Queue */

int Method; /* Method for de-queuing an item */

int Num_Elem; /* Number of items in the queue */

Q_ITEM *Head; /* Pointer to the Head of the Queue */

Q_ITEM *Tail; /* Pointer to the Tail of the Queue */

Q_ITEM *Free; /* Pointer to the List of unused Items */

Q~ITEM *Free_ptr; /* Pointer to Start of malloc'ed area */

STATS Que_Time; /* Time in Queue stats record */

STATS Que_Size; /* Number in Queue stats record */

ITEM Null_Queue; /* Null Message Queue */

int Null_Msg_in_Q; /* Null_Queue full Flag */

>;

/* Short form for the queueing record */

typedef struct queue_list_rec Queue_List;

F.8: distrib.h

*******/***
* distrib.h — by Edward Vopata
**
* Definition of Stochastic Distribution Functions. These Functions
* are used to generate arrival times and service times.
* The functions and their arguments are as follows:

type name
Fixed

1 Uniform
2

3

4

5

Poisson
Binomial
Expntl
Normal

6 Gamma
7 Beta
8 Erlang
9

10

Lognormal
Weibull

argl
<time:double>
<lower: long>
<mean:double>
<num: long>
<mean:double>
<mean:double>
<mean:double>
<kl:double>
<mean:double>
<mean:double>
< shape :double>

[arg2]

<upper : long>

<prob:double>

<stdev:double>
<k:double>
<k2:double>
<k: long>
<stdev: double>
<scale :double>

Optional

truncation for these
or max time == 0.0

* Two values min_time and max_time provide
* functions. If the values for min_time
* then the truncation is ignored for that values.
* If (min_time > 0.0 and the distrib value is < min_time) then the

* distrib value <- min_time.
* If (max__time > 0.0 and the distrib value is > max_time) then
* the distrib value <- max_time.
* This will truncated values. The function get_time generates a

* value using a predetermined distribution method. if the value
* is < then the value is re-generated. Therefore all values
* are positive.
* (Value >= 0.00). Time is assumed to be a real (double) value.
**

v
/* Stochastic Distribution Function Types */

((define FIXED
((define UNIFORM 1

((define POISSON 2

((define BINOMIAL 3

((define EXPNTL 4

((define NORMAL 5

Me fine GAMMA 6

((define BETA 7

((define ERLANG 8

((define LOGNORMAL 9

((define WEIBULL 10

/* Stochastic Distribution Function Parameters */

struct fixed_rec
struct uniform_rec
struct poisson_rec
struct binomial_rec
struct expntl_rec

double time; };

long lower, upper; };

{ double mean; };

{ long trials; double prob; };

{ double mean; };

struct normal_rec { double mean, stdev; };

struct gamma_rec { double mean, k; };

struct beta_rec { double kl, k2; };

struct erlang_rec { long k; double mean; };
struct lognormal_rec { double mean, stdev; };

struct weibull_rec { double shape, scale; };

/* Stochastic Distribution Function Record */
struct distrib_rec {

int type; /* type of distributions
int debug; /* Debugging flag <DEBUG_DISTRIB>
double min_time;
double max time;

Minimum time
Maximum time

};

/* Variant record of distribution records */
union {

struct fixed_rec fixed;
struct uniform_rec uniform;
struct poisson_rec poisson;
struct binomial_rec binomial;
struct expntl_rec expntl;
struct normal_rec normal;
struct gamma_rec gamma;
struct beta_rec beta;
struct erlang_rec erlang;
struct lognormal_rec lognormal;
struct weibull_rec weibull;

} DIS;

/* Function that returns a (double) value with some distribution
* used by source and server to get interarrival times (source)
* and service time (server).
*/

double get_time()

;

F.9: stats.

h

**
* stats. h — by Edward Vopata
**
* Records to be sent the the Statistics Collector by the
* Logical Processes &

* Records for storing the Stats, at the Collector until they can be
* sent to the graphics front end (et. al.).
* Functions for the collection of statistics by the
* Logical Processes.
* Stats_Init — Initialize a stats structure
* Stats_Val — Add a value to the stats structure.
* Note: must provide for average and STD.
* Stats_Mean — Return current Average
* Stats_STD — Return current standard deviation
*

* Each stats record contains the ID of the sender, the status of the
* stats, and the simulation time of the sender. The status
* indicates whether the stats are Normal (the LP will continue
* running), Final (the LP is waiting for a term trans.), or Term
* (the LP has exceeded the time specified by sim_term_time and is
* signaling the rest of the system that it's termination time).

* The Collector maintains a singlely linked list of col_rec's,
* containing the stats of the logical processes. These nodes are
* ordered by Interval_num (integer) (sim_time / stats_interval)

.

* A set (modified) indicates which logical processes (LP) were
* recorded in the node. The collector uses this set to determine
* when to send stats to the graphics front-end. Not all the stats
* that are collected are sent to the graphics front-end.
* Note: STD == Standard Deviation. LP - Logical Process(es).
**
*/

/* Source Stats,
struct src stats rec

int
int
double
double
double
double
long

ID;
status

;

s im_t ime

;

ave_iit

;

std_iit

;

max_iit

;

num_left

;

};

be sent to the Collecotor */

/* ID of the Source */
/* Stats. Status of the Source */
/* Simulation Time of the Source */
/* Average Inter-Arrival Time */
/* STD Inter-Arrival Time */
/* Max Inter-Arrival Time */
/* Number of item left to be generated. If
* this number is < then it represents the
* number of items that have been generated
* by an infinite sources.
*/

/* Queue Stats to be retrieved by the Server */
struct q_stats_rec {

double ave_time_in_q; /* Average Time in the Queue
double std_time_in_q; /* STD time in the Queue
double max_time_in_q; /* Man time int the Queue

};

double ave_in__q; /* Ave Number of items in the Queue

double std_in_q; /* STD Number of items in the Queue
double max_in_q; /* MAX Number of items in the Queue
double per_full; /* Percent full

long num_in_q; /* Number of items in the Queue
long num_through_q; /* Number of items though the queue

/* Queue/
struct q_srv_

int
int
double
double
double
double
double
double
double
double
long
struct

>;

Server Stats to be sent to the Collector */
stats_rec {

ID; f*
status; f*
s im_t ime

;

/
*

per__busy; />

ave_time_in_sys; /
H

std_time_in_sys

;

f*
max_time_in_sys

;

/*

ave_serve_time

;

/*

std_serve_time; /*

max_serve_time; /
i

num_served

;

/'

q_stats_jrec q_stats; /
i

ID of the Queue/Server
Status of the Queue/Server
Simulation Time of the Server
percent busy (Server)
Average time in the system
STD time in the system
Max time in the system
Average Service Time
STD Service Time
Max Service Time
Number of items Serviced
Queue Stats record

/* Sink Stats to be sent to the Collector
struct sink_stats_rec {

int ID; /*

int status; /*

double sim_time; /*

long num_sunk; /*

};

"/

Id of the Sink */

Status of the Sink */

Simulation Time of the Sink */

Number of items that have been sunk */

/* Statistics Record maintained by the Collector */

struct col_rec {

int i_num; /* Interval Number (sim_time/stats_interval)
SET modified; /* a set to indicate whether stats have been

/* collected for a particular logical process
/* Variant record array of LP statistics */

union {

*Src_stats; /*struct src_stats_rec
struct q_srv_stats_rec *Q_Srv_stats ; /

struct sink_stats_rec *Sink_stats; /

char *f ree_stats
; /'

} Stats [MAXPROC]

;

struct col_rec *Next; /

Source Stats
Queue/Server Stats
Sink Stats
Dummy ptr for Free

Pointer to next record */

};

struct stats_rec {

long num_val
double max_val
double sum_val
double sum_sq;

};

/*** Stats Structure ***/
/* number of values */

/* max value */
/* sum of all values */
/* sum of squares */

typedef struct stats_rec STATS;

void Stats_Init()

;

/* Initalize a Stats Structure */
void Stats_Val(); /* Add a value to a Stats Structure */
double Stats_Mean()

;

/* Return the average of a Stats Structure */
double Stats_STD(); /* Return the STD of a Stats Structure */

F.10: graph .

h

* graph. h — by Edward Vopata

* The Out_Graph: contains the number of incoming lines, the number
* of outgoing lines, and the "id's" of the logical process at the
* end of the lines.

»/

struct out_rec {

int num_in;
int num_out;
int out[MAXFAN];

};

/* Number of incoming lines */
/* Number of outgoing lines */
/* id's of lp at end of lines */

struct out_list { /* An out_rec of each lp */
struct out_rec out_graph[MAXPROC]

;

};

/* List used by Resolver processes */
struct list_rec {

int ID; /*
process Branch Brn_pid; /*
long state; /*
double sim_time; /*
struct list_rec *Next; /*

};

ID of branch process */
process id of branch */
state of last use */
simulation time of last use */
point to next record */

/* Resolver parameter record
struct res_param_rec {

int ID;
int ID2;
process resolver my_pid;
process deadlock dead;
struct PS_REC PS;
struct out_list out;
struct list_rec *list;

};

/* Resolver ID */
/* Resolver ID secondary */
/* process id of resovler */
/* process id of deadlock detector */
/* Structure of all lp process id */
/* Out_Graph */
/* Branch List */

F.ll: rand.h

/**
* rand.h -- by Edward Vopata

* Handle standard C function for generating random numbers.
* For BSD, the random number generator is random() which generates
* a long integer in the range of <= X < 2*31, The function
* srandom() is used to seed the random number generator.
* For SYS5, the random number generator that corresponds to random(

)

* and random() is called lrandA8() & srand48().
* Mapping the random number generator to rand and the seeding
* function to srand will allow different random number generators
* to be installed without too much pain.
* Generating random numbers in the Range of <= X < 1.0 (X is real)
* is handled by the function drand01(). This function makes use of
* the mapped rand() function. It may be possible to install a
* <= X < 1 random number generator to replace drandOK).
* Comments:
* random() & lrand48() generate fairly uniform pseudo random
* numbers.
* If the random number generators are not seeded then they will
* produce the same sequence of random numbers on every run.
* There are many possible method for generating the seed.
* 1. (getpid() * getppidO) — the produce of the process id
* and the parent process id is a fairly random number and
* makes a good seed value.
* 2. (time) — Some function using the time and date will
* also produce a good seed value.
* drand01() produces fairly uniform random numbers less
* then 1.00.
* 0.000 values are very, very rare. Disclaimer: This function
* may produce values X == 1.00 <E.W.V>
**

*/

/* Define SYS5 in Makefile when compiling on SYS 5 systems */
/* Random number generation functions (standard C functions */

#ifdef SYS5
long lrand48(); /* Generate a long X : <= X < 2*31 */
void srand48(); /* Seed the random number generator */

if define rand() lrand48() /* Map lrand48 to rand */
define srand(a) srand48(a) /* Map srand48 to srand */
#else /* BSD */

long random()

;

/* Generate a long X : <= X < 2"31 */
void srandomO; /* Seed the random number generator */

define rand() randomf

)

/* Map random to rand */
define srand(a) srandom(a) /* Map srandom to srand */
ifendif

/* provide a real (double) X : <= X < 1 random number */
((define drandOK) (((double) (rand() & Oxffffff) / Oxffffff))

F.12: set.h

/**
* set.h — by Edward Vopata

* Provide bitwise sets operations for large sets.
* MAXPROC == Maximum possible number of items in the set.
* CHUNKS == Number of longs (32 bit) needed to satisfy MAXPROC.
* Set operations include:
* set_clear : set all bits in the set to zero (0) (uses bzero)
* set_add : set the corresponding bit to one (1)
* set_union : Or the bits of two (2) sets together
* set_in : Determine if a bit is set
* set_full : Determine if all the bits in the set are set.
**
*/

/* Determine how many CHUNKS are needed */
#define CHUNKS ((MAXPROC / 32) + 1)

/* Number of bits in the set */
#define SETLEN (CHUNKS * 32)

/* Short form for a set */
typedef long SET [CHUNKS];

/* the set_clear function. Make sure to include the library
* with bzero. For 3b2's bzero is in -lnet
*/

Idefine set_clear(set) bzero(set , sizeof (set)

)

/* Forward definition of set functions */
void set_add (); /* Add an element to a set */
void set_union(); /* Union of 2 sets */
int set_in(); /* Is an element in a set? */
int set_full(); /* Is the set full? */

F.13: mach.h

/********************************
* mach.h — By Edward Vopata

* List of Machines names for use
* These names will be used to di
* This is very machine/network d
* MAX_MACH indicates the numbe
* WARNING: In order to Distribu
* all distributed proc
* Therefore distributi
* ksuvaxl and harris a

with coprocessor function.
stribute the logical processes,
ependent

.

r of possible machines.
ted Concurrent C to operate properly
ess must be on a compitible machine,
on will be made only on 3b2/3bl5's.
re included for completeness.

"/

It define MAX_MACH 19
((define MAX_VIRT 16
fdefine MAX PS 24

/* Number of machines */
/* Number of Virtual Processors per Machine */
/* Number of Processes per Virtual Processor */

char *mach name

[

I
" {

/* Machine No. Machine Name]Machine model */
/* */ "foxtrot"

,

/* AT&T 3b2-400 */
/* 1 */ "golf, /* AT&T 3b2-400 */
/* 2 */ "hotel", /* AT&T 3b2-400 */
/* 3 */ "india"

,

/* AT&T 3b2-400 »/
/* 4 */ "Juliet"

,

/* AT&T 3b2-400 */
/* 5 */ "kilo", /* AT&T 3b2-400 */
/* 6 */ " 1 ima "

,

/* AT&T 3b2-400 */
/* 7 */ "mike"

,

/* AT&T 3b2-400 */
/* 8 */ "november"

,

/* AT&T 3b2-400 */
/* 9 */ "hack"

,

/* AT&T 3b2-400 */
/* 10 */ "alpha"

,

/* AT&T 3b2-10 */
/* 11 */ "bravo"

,

/* AT&T 3b2-10 */
/* 12 */ "Charlie"

,

/* AT&T 3b2-10 */
/* 13 */ "delta"

,

/* AT&T 3b2-10 */
/* 14 */ "echo"

,

/* AT&T 3b2-10 */
/* 15 */ "phobos"

,

/* AT&T 3bl5 */
/* 16 */ "deimos"

,

/* AT&T 3bl5 */
/* 17 */ "ksuvaxl"

,

/* DEC Vax 11/780 */ /* No D-CCC */
/* 18 */ "harris"

,

/* Harris HCX 9 */ /* No D-CCC */
};

* ksuvaxl & harris were used as development machines. They are much
* faster then the 3b2's. ksuvaxl & harris were not compatible enough
* to do distributed process between the two, but they were able to
* allow the simulator to be tested on a single processor.
* Making debugging, much faster, and easier (DBX is a very, very nice
* symbolic debugger, while SDB has its drawbacks).
it***
*/

F.14: Pid.h

/*
* (c) Copyright 1985 by
* Computer Technology Research Lab, ATT Bell Laboratories.
* All rights reserved.
*/

/* Deadlock Detection Mechanism Includes */

#define c_NPROCS Oxffff
#define c_procpid(x) ((x).u_px < c_nprocs && (x).u_pid ==

\
c_procs[(x) .u_px] .p_pid ? c_procs + (x).u_px : 0)

#define MsgPID(P) ((c_pid) ((P) « 16)) /* u_seq == */

typedef long c_pid, c_tp;

typedef union {

c_pid u_pid;
c_tp u_tp

;

struct {

unsigned short U_tnum:5, /* transaction number */
U_seq:6, /* c_create() sequence I */

U_por:5; /* processor id */
unsigned short U_px; /* proc table index */

} U;

^define u_px U.U_px
#define u_por U.U_por
#def ine u_seq U. U_seq
#define u_tnum U.U_tnum
} c_pidu, c_tpu;

F.15:

/* Deadlock Detection Mechanism Includes */

process spec buildgraph(DEADMEN deadmen, Queryserv_tab Query_tab)
{ void trans load_callers (long Proc, CALLERS Callers);

void trans done();
};

process spec queryserv () {

void trans putdeadguys (DEADMEN_S Deadmen);
async trans intercept (c_pidu src_pid, c_pidu dst_pid,

TPTR_intercept_response response_tptr)

;

long trans getstate (c_pidu pid)

;

};

process spec deadlock (TPTR_report_deadlock report_deadlock,
Queryserv_tab_S Query_tab, long D_debug)

trans void putcallers (c_pidu Proc, CALLERS_S Callers);
async trans intercept (c_pidu src_pid, c_pidu xptr,

TPTR_intercept_response response_tptr)

;

void trans done();
long trans getstate (c_pidu pid);
async trans global_detect (DDMSG Ddmsg, c_pidu Newpid)

;

async trans term();
void trans enable_detect()

;

};

process spec ddagent (c_pidu origin, long seqno) {

int trans split (c_pidu Pid);
void trans abort (c_pidu Pid, long Seqno);
void trans rpt_deadlock (DDMSG DDmsg)

;

};

/*

*** THIS IS THE PROCESS SPECIFICATION FOR THE RESOLVER PROCESS ***

*/
process spec resolver () {

/* Three asynch transaction to get the resovler its parameters
* Because we could not pass structure larger then 4K because
* of an bug in the C-Compiler V, 4.1 (sadness).
*/

async trans setupl (int, int .process deadlock);
async trans setup2 (PS_REC)

;

async trans setup3 (struct out_list);

/* part of the intercept_transaction call */
async trans intercept_response (OUTBUF_S outbuf, int status);

/* transaction where a deadlock detector report deadlock */
int trans report (c_pidu pid);
async trans term(); /* Terminator */

>s

94

F.16: defs.h

/* Deadlock Detection Mechanism Includes */

#define D_NPROCS 50 /* same as NPROCS in libmpcc: nprocs.c */
((define D_NP0RS 16 /* same as NPORS in libmpcc: cc.h */
((define CALLERSIZE 6

((define OUTBUFSIZE 64
((define GDLISTSIZE 50
(fdefine TRUE 1

#define FALSE
((define DBG(x) (d_debug & (1 « (x)))

struct L_LIST {

c_pidu pid;
L_LIST *next;

};

typedef struct L_LIST LIST;

struct Dead_ID {

c_pidu pid;
long seqno;

};

typedef struct Dead_ID DEADID;
typedef struct Dead_ID GDLIST [GDLISTSIZE];

struct ddmsg_t {

process ddagent dda_id;
long msg_seqno;
DEADID dlist [GDLISTSIZE];

};

typedef struct ddmsg_t DDMSG;

typedef long CALLERS [CALLERSIZE];
typedef struct {

CALLERS callers;
} CALLERS_S;

typedef char OUTBUF [OUTBUFSIZE];
typedef struct {

OUTBUF outbuf;
} 0UTBUF_S;

typedef trans void (*TPTR_putcallers) (c_pidu, CALLERS_S);
typedef TPTR_putcallers TPTRS_putcallers [D_NP0RS];

typedef process deadlock DEADMEN [D_NP0RS];
typedef struct {

DEADMEN deadmen;
} DEADMEN_S;

typedef process queryserv Queryserv_tab [D_NPORS];
typedef struct {

Queryserv_tab query_tab;
} Queryserv_tab_S;

95 -

typedef async trans (*TPTR_intercept_response) (OUTBUF_S, int)

;

typedef int trans (*TPTR_report_deadlock) (c_pidu)

;

extern int c_por;

#define ISLOCAL(pid) (pid.u_por — c_por)

ifdefine ACCEPTSTATE(pid) (c_procs [pid.u_px] .p_state == c_wselect)
#define WAITSTATE(PID) (c_procs [PID.u_pxJ .p_state -= c_wservice || \

(c_procs [PID.u_px] .p_state « c_wmsg && \
c_procs [PID.u_px] .p_tccallee != 0))

/*

c_procs [pid.u_px] .p_tcout . tc_callerpid ~ pid.u_pid))
*/

Jdefine ASSERT(X.Y) \
if(!(X)) fprintf (stderr, "Xs Assertion failed\n",Y)

F.17: main.cc

#include <signal.h>
#include "dclr.h"

/**
* main.cc — by Edward Vopata
* Main program of the distributed simulator
* Usage:
* Dsim [-n] [x . .

.

]

* where "-n" indicates the use of "stream sockets" where the "n"
* is the socket descriptor.
* "x" is a Debugging Switch in the range 0..31.
* "x"'s may appear in any order.
*

* Description:
* 1. Allocation space of PS (process table) and PS_Data (process
* data table)

.

* 2. Determine whether "stream sockets" will be used. This is
* determined by a "-n" in the first argument. The "n" will
* be a socket descriptor. The "-n" is supplied by a start_up
* program which opens the socket connection and "exec"'s this
* program with a "-n". (See Start. c for description). This
* is done to resolve a naming conflict with Concurrent C and
* the socket libraries (the accept statement and the accept
* function). If "stream sockets" are used then the socket
* descriptor is store in PS->in_sock and PS->out_sock since
* both input and output will go to the same socket, and "Flag"
* is set to indicated that "stream sockets" will be used.
* 3. The Debugging Switches are set. If "stream sockets" are
* used then the first argument is ignored. The rest of the
* arguments indicate which switches to set. The integer value
* of each argument will cause a switch to be set. A list of
* the Debugging Switches and their functions appear at the
* bottom of this file.
* 4. If "stream sockets" are NOT used then the input data will
* come from a file. Prompt the user for the file name and
* open the file using (openO) to return a file descriptor.
* This will allow the same read and write routines to be
* used, since sockets are treated similarly to files.
* PS->in_sock gets the file descriptor, PS->out_sock is
* set to 1 (stdout) which will redirect the output to the
* terminal.
* 5. Call build_ps() to read the input data and build the PS_Data
* table, (see build. cc for description of build_ps()).
* 6. Call create_ps() to create the processes and build the PS
* table. create_ps will create the processes, handle process
* distributions, and process setup, (see create. cc for
* description of create_ps ())

.

* 7. Deallocate space used by PS and PS_Data, since the processes
* have already made a copy of the necessary data by this time.
**
*/

/* Forward Reference for build_ps, create_ps, and print_size */

void build_ps()

;

void create_ps{);
void print_size()

;

main(argc , argv)
int argc;
char **argv;
{

struct PS_REC *PS;
union PS_Data_Rec *PS_Data;
register i;

int debug_val

;

int Flag - 0;

char name [50]

;

/* Logical Process Table */
/* Logical Process Data Table */
/* Index */
/* Value of a argv string */
/* Flag to indicated real sockets */
/* File name, if not real sockets */

/* Concurrent C signal handler */
extern int c_onsig();

/* Redefine some signals:
* Bus Error to just core dump
* Illegal Instruction to just core dump
* Segmentation Violation to call c_onsig
*/

signal(SIGBUS,SIG_DFL)

;

signal(SIGILL,SIG_DFL)

;

(void) signal (SIGSEGV, c_onsig)

;

/* Allocate space for the Process Table */
PS - (struct PS_REC *) malloc (sizeof(struct PS_REC));

/* Allocate space for the Data Table */
PS_Data (union PS_Data_Rec *)

malloc (sizeof (union PS_Data_Rec) * MAXPROC)

;

/* Set All Debugging Switches to OFF */
PS->debug - 0;

/A:**
* Determine if "stream sockets" will be used. This is done
* by checking the first argument (argv[l]). If there is a
* '-' sign as the first character (argv[l][0J) then "stream
* sockets" will be used and the value after the "-" is the
* socket descriptor.
* Store the socket descriptor in both PS->in_sock and
* PS->out_sock since, the socket will be used for both
* input and output

.

* Set "Flag" to indicate "streams sockets" will be used.
**
*/

if (argv[l][0] « '-•)
{

sscanf (argv[l] , "-Zd" , &PS->in_sock)

;

PS->out_sock - PS->in_sock;
Flag = 1;

}

/***»***********,,,*

* Determine if any debugging switches are set. If "Flag" is
* set then skip to the next argument. Convert the argument
* to an integer (into debug_val) and set the corresponding
* bit in PS->debug. If the value is "SIZE_OF" then call
* function "print_size"

.

**
*/

for (i=l+Flag; i < argc; i++) {

/* If Debug Mode for Main, print the current argument */
if (PS->debugS,DEBUG_MAIN)

printf ("main:argv[Zd] - ' Xs ' \n" , i, argvfi])

;

/* Convert string to integer */
sscanf (argv[i]

,

"Xd" ,&debug_val)

;

/* Make sure debug_val is in the proper range befor
* setting the corresponding bit
*/

if (0 <= debug_val S.& debug_val < MAX_DEBUG)
PS->debug [« l«debug_val;

/* If the SIZE_0F switch is set then call function
* "print_size" to print the sizes of various
* structures

V
if ((l«debug_val)==SIZE_OF) { print size(); continue; }

}

/•••a**
* Handle the case where "stream sockets" are NOT used.
* In this case, input data will come from a file, so read
* in the file name, open the file using open (so we can use
* read and write), and setup the socket (now file)
* descriptors.
**
*/

if (!Flag) {

/* Prompt and read the input file name */
fprintf (stderr, "Enter Input File: ");
gets(name)

;

fprintf (stderr, "\n")

;

/* Open a file of input (use file descriptor)
* This will make the rest of the program think we
* are using sockets. PS->in_sock will be used for
* input.
*/

if ((PS->in_sock = open(name , 0)) < 0) {

fprintf (stderr, "main: File ' Xs' does Not Exist\n" ,name)

;

c_exit(0)

;

};

/* PS->out_sock will be used for output. So send the
* output to "stdout" (the terminal).
*/

PS->out_sock - 1;

/* Build the PS_Data Table */
build_ps(PS,PS_Data)

;

/* Create the Logical process and
* build the Process Table.
*/

create_ps(PS,PS_Data)

;

/* Clean up: Free allocated space for PS and PS_Data */
for (i=0; 1 < PS->num_nodes; i++)

free((char *) PS_Data[i] .Src)

;

free((char *)PS)

;

free((char *)PS_Data);

* Debugging Switches Identification and Functions

* Switch
*Number

*

* 1

* 2
* 3

* 4

* 5

* 6

* 7

Function

Debug Mode for main. cc
Debug Mode for build. cc
Debug Mode for create. cc
Debug Mode for source. cc
Debug Mode for sink.cc
Debug Mode for server. cc
Debug Mode for queue. cc
Debug Mode for branch. cc
Debug Mode for col.cc

(main program)
(read input data)
(create logical processes)
(source logical process)
(sink logical process)
(server process)
(queue process)
(branch logical process)
(stats, collector)

9 Debug Mode for resolver.cc (deadlock resolver)
* 10 Debug Mode for distrib.cc (stochastic distribution func

.

)

* 11 Debug Mode for term.cc (terminator process)
* 12 Debug Mode for sock.cc (socket communication)
* 13 Debug Mode for start. c (socket connection)
* 14 Print Report of collected statistics to file "Stats_Report

"

* 15 Print Size_of Report of sizes of various structures to
* file "Size_of"
* 16 Print Out_Graph Report of graph and pid's of simulation
* models to file "Out_Graph"
* 17-19 Unused
* 20-31 Used by Scott Hammond's Deadlock Detection Program.

*/

100

F.18: build. cc

//include "dclr.h"

/***, j,,,,^,^^^
* build. cc — By Edward Vopata
* Read the input model, parse the input model, create the process
* table, and process data table.

*/

/**
* Function:
* build_dis()
* Parameter:
* Ptr " point into the input model string
* dis - distribution record
* debug - debug flag.
* Summary:
* Parse the input model for the stochastic distribution functions
* and their parameters and store the information in "dis"

V
void build_dis()

;

static void build_dis (ptr, dis, debug)
char *ptr;
struct distrib_rec *dis;
int debug;
{

/* Get the function time, min, and max times */
sscanf (ptr, "Zd lit Zlf" , &dis->type, &dis->min_time,

&dis->max_time)

;

if (debug) /* Distrib tracing */
printf ("build_dis: type Zd min Zlf max Zlf\n",
dis->type,dis->max_time,dis->max_time)

;

dis->debug = debug;

/* Determine which type of function, and get the
* parameters from the input model.
*/

switch (dis->type) {

case FIXED:
sscanf(ptr,"Z*d Z*lf Z*lf Zlf", Sdis->DIS. fixed. time)

;

if (debug)
printf ("build_dis: Fixed: Zlf\n" ,dis->DIS. fixed. time)

;

break;

case UNIFORM:
sscanf (ptr, "Z*d Z*lf Z*lf Zld Zld",

4dis->DIS. uniform. lower, &dis->DIS .uniform. upper)

;

break;

case POISSON:

101

sscanf (ptr, "Z*d Z*lf Z*lf tit", &dis->DIS .poisson.mean)

;

if (debug)
print f

("build_dis:POISSON: Zlf\n" , dis->DIS .poisson.mean)

;

break;

case BINOMIAL:
sscanf (ptr, "Z*d Z*lf Z*lf Zld Zlf",

&dis->DIS. binomial. trials, &dis->DIS .binomial .p rob)

;

break;

case EXPNTL:
sscanf (ptr, "Z*d Z*lf Z*lf Zlf", &dis->DIS .expntl .mean)

;

if (debug)
print f("build_dis: EXPNTL: Zlf\n" ,dis->DIS .expntl .mean)

;

break;

case NORMAL:
sscanf (ptr, "Z*d Z*lf Z*lf Zlf Zlf",

&dis->DIS .normal .mean, &dis->DIS .normal . stdev)

j

break;

case GAMMA:
sscanf (ptr, "Z*d Z*lf Z*lf Zlf Zlf",

&dis->DIS. gamma. mean, &dis->DIS. gamma .k)

;

break;

case BETA:
sscanf (ptr, "Z*d Z*lf Z*lf Zlf Zlf",

&dis->DIS.beta.kl, &dis->DIS .beta.k2)

;

break;

case ERLANG:
sscanf (ptr, "Z*d Z*lf Z*lf Zlf Zld",

&dis->DIS.erlang.mean, &dis->DIS .erlang.k)

;

break;

case LOGNORMAL:
sscanf (ptr, "Z*d Z*lf Z*lf Zlf Zlf",

&dis->DIS.lognormal.mean, Scdis->DIS . lognormal .stdev)

;

break;

case WEIBULL:
sscanf (ptr, "Z*d Z*lf Z*lf Zlf Zlf",

&dis->DIS . weibull . shape , &dis->DIS .weibull . scale)

;

break;

default:
dis->type = FIXED;
dis->min_time = 0;

dis->max_time = 0;
dis->DIS. fixed. time 1;
break;

}

/**
* Function:
* build_ps()
* Parameter:
* PS - Process table
* PS_Data - Process data table
* Summary

:

* Read and parse the input model, store information in the
* process table and the process data table.
* The input model is discussed in Appendix C.

*/

void build_ps(PS,PS_Data)
struct PS_REC *PS;
union PS_Data_Rec *PS_Data;

{

int type, id; /* Indexes */
int Done • FALSE; /* Flag */
register i, fan_num; /* Indexes */
char *ptr; /* pointer into the line */
char line[MAXLINE+l]

; /* Incoming line of the input model */

/* Initialize some variables */
PS->num_nodes = 0;

PS->Total_Gen 0;

PS->Max_Hop_Count = 0;

PS->Infinite_Src » FALSE;

while (!Done) {

/* get a line from the socket */
/* line "((type id) ????)" */

getline(PS->in_sock,line,PS->debug&DEBUG_SOCK)

;

/* Ignore lines that begin with a "#" or a "\n" */
if (line[0] — '#') continue; /* $ in column 1 */
if <line[0] -= /n') continue; /* True blank line */

/* point to "(type id) ????" */

ptr = index(line,
'

(
') + 1;

ptr index(ptr,
'

(

') + 1;

/* Get the type and id of the logical process */
sscanf (ptr, "2d Xd" , Stype, &id)

;

if (PS->debug&DEBUG_BUILD) /* Build tracing */
printf("Build: NewLine = [Xs] \n" ,ptr) ;

if (PS->debug&DEBUG_BUILD) /* Build tracing */
printf ("Build: (type id) = (Xd Xd) \n" , type, id)

;

ptr index(ptr,
'

)

') + 1;

if (PS->debug&DEBUG_BUILD) /* Build tracing */
printf ("Build: NewLine » [Xs] \n" ,ptr)

;

/* Determine the type of logical process, create a
* entry in the PS_Data table, and parse the input

* model and store the information in the PS_Data
* table.
*/

switch (type)

{

case SOURCE: /* For Source LP's */
PS->num_nodes += 1;
PS->type[id] = SOURCE;
PS_Data[idJ .Src =

(struct Src_rec *)malloc (sizeof (struct Src_rec));

ptr = index(ptr, '

(
'

) + lj
build_dis(ptr, &PS_Data[id] .Src->dis,

PS->debug&DEBUG_DISTRIB)

;

ptr - index(ptr,
•

)
'

) + 1;

/* "iit servt ngen fanout ((x x) (x x) ..)"*/
sscanf (ptr, "Zd Zd Zld Zd",

&PS->mach[id],
&PS->virt[id]

,

SePS_Data[id] .Src->num_Gen,
&PS_Data[id] .Src->Out_ID)

;

if (PS->debug&DEBUG_BUILD) {

printf ("Build:Src: (Zd Zd) mach Zd virt Zd
type, id, PS->mach[id] , PS->virt [id])

;

printf ("nGen Zld Out_ID Zd\n",
PS_Data[id] .Src->num_Gen,
PS_Data[id] .Src->Out_ID)

;

}

/* Is the source an infinite one? */
PS->Total_Gen += PS_Data [id] .Src->num_Gen;
if (PS_Data[id] . Src->num_Gen »= 0)

PS->Infinite_Src = TRUE;
break;

case SINK: /* For Sink LP's */

PS->num_nodes += 1;
PS->type[id] = SINK;
PS_Data[id] .Sink -

(struct Sink_rec *)malloc (sizeof (struct Sink_rec));

sscanf (ptr, "Zd Zd Zd",
&PS->mach[id]

,

S,PS->virt[id]

,

&PS_Data[id] . Sink->Num_fan_in)

;

if (PS->debugSDEBUG_BUILD) {

printf ("Build.-Sink: (Zd.Zd) mach Zd virt Zd ",

type,id,PS->mach[id] , PS->virt [id])

;

printf ("Num_fan_in Zd\n",
PS_Data[id] . Sink->Num_fan in);

}

break;

case QUE_SRV: /* The Queue & Server LP's */
PS->num_nodes += 1;

PS->type[id] = QUE_SRV;
PS->Max_Hop_Count += 1;
PS_Data[id] .Q_Srv -

(struct Q_Srv_rec *)malloc(sizeof (struct Q_Srv_rec));

ptr " index(ptr,
'

(
') + 1;

build_dis(ptr, &PS_Data[id] .Q_Srv->dis,
PS->debug&DEBUG_DISTRIB)

;

ptr index(ptr,
'

)

') + 1;

sscanf(ptr, "Zd Zd Xd Xd Xd Xd"

,

&PS->mach[id]

,

&PS->virt[id]

,

&PS_Data[id] .Q_Srv->Out_ID,
&PS_Data[id] .Q_Srv->Q_size,
&PS_Data[id] .q_Srv->Q_method,
&PS_Data[id] .Q_Srv->Num_fan_in)

;

if (PS->debug&DEBUG_BUILD) {

printf CBuild:Q_Srv: (Zd Zd) mach Xd virt Zd ",

type, id, PS->mach[id] , PS->virt [id])

;

printf ("Out ID Xd Qsize Xd Qmeth Zd tin Zd\n",
PS_Data[id] .Q_Srv->Out_ID,
PS_Data[id] .Q_Srv->Q_size,
PS_Data[id] .Q_Srv->Q_method,
PS_Data[id] ,Q_Srv->Num_fan_in)

;

}

break;

case BRANCH: /* The branch LP's */
PS->num_nodes += 1;

PS->type[id] = BRANCH;
PS_Data[id] .Branch -

(struct Branch_rec *)malloc(sizeof (struct Branch_rec))

;

sscanf (ptr, "Zd Zd Zd Zd",
&PS->mach[id],
&PS->virt[id]

,

&PS_Data[id] . Branch->Num_fan_in,
&PS_Data[id] . Branch->Num_fan_out)

;

ptr = index(ptr, '

(

') + 1;

if (PS->debug&DEBUG_BUILD) {

printf ("Build:Branch (Zd Zd) : mach Zd virt Zd ",

type,id,PS->mach[id] , PS->virt[id])

;

printf ("#In Zd #Out Zd\n",
PS_Data[id] . Branch->Num_fan_in,
PS_Data[id] . Branch->Num_fan out)

;

}

fan_num = PS_Data [id] . Branch->Num_fan_out

;

for (i=0; i < fan_num; i++) {

ptr - index(ptr,
'

(

') + 1;
sscanf (ptr, "Zd Zlf",

&PS_Data[id] . Branch->Fan_out [i] .ID,
&PS_Data[id] . Branch->Fan_out [i] .prob)

;

if (PS->debug&DEBUG_BUILD)
printf ("Build:Branch Zd: FanOut:ID Zd prob: Zlf\n"

id,

PS_Data[id] .Branch->Fan_out [i] .ID,
PS_Data[idj . Branch->Fan_out [i] .prob)

;

ptr = index(ptr, '

)

') + 1;
if (PS->debug&DEBUG_BUILD)

printf ("Build: NewLine = [Zs] \n" ,ptr)

;

break;

/* Indicates End of Input Model */
case SIG_ENDS: /* "((99 1)) message */

/* Wait for the "SIG_ENDS */
if (PS->debug&DEBUG_BUILD)

printf ("SIGNAL: (Zd Zd)\n" , type, id)

;

break;

/* Indicates the Start of the simulation */
case SIG_SOS:

/* Get Termination Time and Stats interval */
sscanf (ptr, "Zlf Zlf ",

&PS->sim_term_time, &PS->stats_interval
)

;

if (PS->debug&DEBUG_BUILD)
printf ("sim_term_time Zlf stats_interval Zlf\n",

PS->sim_term_time, PS->stats_interval)

;

Done = TRUE;
break;

default

:

fprintf (stderr, "Build: Unknown type (Zd)\n" , type)

;

}

PS->Max_Hop_Count += 1; /* Deal with HOP counter */

F.19: create. cc

((include "dclr.h"
if include " graph, h"
^include "Pid.h"
^include "defs.h"
#include "spec.h"
#include "mach.h"

/**************************+**************************************«**
* create. cc — by Edward Vopata

* Create and distribute the logical processes, create the
* deadlock detector and resolver processes. Send every process
* its parameter table
««M*****«**t**«**»«*t»tM4t»,ttty,t„t,1 , 1 ,jM ,tt„ til ,1„,1Mi#|liVr
*/

SEND get_send_tp()

;

* Function:
* get_send_tp()
* Parameter:
* PS - process table
* ID - logical process ID
* Summary:
* return a transaction pointer to the logical process ID.««**tt**»»»«*tiMHHjm»Htm1MH 4, 1 ,1„t4,„,tlM„,HM , tl]llll(

*/
static SEND get_send_tp(PS,ID)
struct PS_REC *PS;
int ID;

{

/* Determine the type of logical process and
* return a transaction pointer to it
*/

switch(PS->type[ID]) {

case QUE_SRV:
return PS->Que_pid[ID] .send;

case BRANCH:
return PS->ps_pid[ID] .Branch_pid.send;

case SINK:
return PS->ps_pid[ID] .Sink_pid. send;

default

:

fprintf (stderr, "get_send_tp: Invalid Type (Zd)\n",
PS->type[ID])

;

return NULL;
}

}

* Function:
* create_ps()

* Parameter:
* PS - Process table
* PS_Data - Process data table
* Summary:
* 1. Create & distribute the logical processes, record pid in PS
* 2. Create Collector & Terminator process
* 3. Build an Out Graph
* A. Create & distribute deadlock detectors and resolvers
* 5. Set up deadlock detectors and resolvers
* 6. Set up the other logical processes.
**
*/

void create_ps (PS,PS_Data)
struct PS_REC *PS;
union PS_Data_Rec *PS_Dataj
{

register i,j,id; /* Indexes */
int num_VP =0; /* Number of processors */

#ifdef SYS5_DIS
int Mach_VP [MAX_MACH] ; /* list of machines */
int VP[D_NP0RS]; /* list of processors */

tfendif

union param_rec { /* variant record of parameter tables */
struct src_param src;
struct sink_param sink;
struct srv_param srv;
struct q_param que;
struct brn_param brn;
struct col_param col;
struct term_param term;

} Param;
/* Transaction pointers to the collector */

trans void (*src_stats_tp) (struct src_stats);
trans void (*srv_stats_tp) (struct srv_stats);
trans void (*snk_stats_tp) (struct snk_stats);

struct out_list *out; /* Out graph */

/* Deadlock Detection definitions */
Queryserv_tab_S Qs_tab;
DEADMEN_S de admen;
CALLERS caller;
process buildgraph Build_graph;

process resolver Res [MAX_MACH]
; /* list of resolvers */

char hostname[10] ;

' /* name of the hosts machine */
lnt hostid; /* id of the hosts machine */

/* get the name of the host machine, the machine that the
.

* distributed simulator started on.

V
gethostname(hostname, 10)

;

/* Find the id of the host */
for (i-Oji < MAX_MACH; i++)

if (strcmp(hostname,mach_name[i]) — 0) hostid i;

/* Start any other processors as needed */
tilde t SYS5_DIS

bzero(Mach_VP,sizeof (Mach_VP))

;

for (i=0; i < PS->num_nodes; i++) {

if (Mach_VP[PS->mach[i]] == && PS->mach[i] != host id) {

Mach_VP[PS->mach[i] j
=

c_processor(mach_name(PS->mach(i]] .LOCATE)

;

}

}

#endif

/* For each logical process in the process table (PS)
* create the logical process on the specified processor
*/

for (i-0; i < PS->num_nodes; i++) {

switch(PS->type[i]) {

case SOURCE: /* The Source LP */
PS->ps_pid[iJ .Src_pid = create Source ()

//ifdef SYS5_DIS
processor(Mach_VP[PS->mach[i]

]

)

#endif

if (PS->debug&DEBUG_CREATE) /* Create tracing */
printf("Create: Source Created on machine 2s\n"

mach_name [PS->mach [i]])

;

break;

case SINK: /* The Sink LP */
PS->ps_pid[i] .Sink_pid » create Sink ()

ifdef SYS5_DIS
processor(Mach_VP[PS->mach[i]

]

)

Ifendif

if (PS->debug&DEBUG_CREATE) /* Create tracing */
printf("Create: Sink Created on machine 2s\n"

mach_name[PS->mach[i]])

j

break;

case QUE_SRV: /* The Queue and Server LP */
PS->ps_pid[i] .Srv_pid « create Server ()

ififdef SYS5_DIS
processor(Mach_VP[PS->mach[i]]

)

ifendif

PS->Que_pid[i] - create Queue ()
#ifdef SYS5_DIS

processor(Mach_VP[PS->mach[i]
]

)

#endif

if (PS->debug&DEBUG_CREATE) /* Create tracing */

printf("Create: Queue/Server created on machine Zs\n"
mach_name [PS->mach [i)])

;

break;

case BRANCH: /* The Branch LP */
PS->ps_pid[i] .Branch_pid - create Branch ()

#ifdef SYS5J3IS
processor(Mach VP [PS->mach[i]]

)

Sendif

if (PS->debug&DEBUG_CREATE) /* Create tracing */
printf ("Create: Branch created on machine Zs\n",

mach_name[PS->mach[i]
])

;

break;

default:
fprintf(stderr, "get_send_tp: Invalid Type (Zd)\n",

PS->type[i]);
break;

}

}

/* Create the Collector and Terminator */
PS->Col_pid • create Collector ();
PS->Term_pid = create Terminator ();

/* Build an Out Graph. A list of the process to whom
* a logical process can send messages
*/

out - (struct out_list *)malloc (sizeof (struct out_list));
bzero(out, sizeof (struct out_list))

;

bzero(deadmen.deadmen, sizeof (DEADMEN_S))

;

bze ro(Qs_tab. que ry_tab, sizeof (Que ryserv_tab_S)
)

;

for (i=0; i < PS->num_nodes; i++) {

switch(PS->type[i)) {

case SOURCE:
out->out_graph[i) .num_in = 0;
out->out_graph[i] .num_out = 1;
out->out_graph[i] .out[0] = PS_Data[i] . Src->Out_ID;
break;

case SINK:
out->out_graph[i] .num_in = PS_Data[i] . Sink->Num_fan_in;
out->out_graph[i] .num_out • 0;
break;

case QUE_SRV:
out->out_graph[i] .num_in • PS_Data[i] .Q_Srv->Num_fan_in;
out->out_graph[i] .num_out 1;
out->out_graph[i] .out[0] = PS_Data[i] .Q_Srv->Out ID;
break;

case BRANCH:
out->out_graph[i] .num_in = PS_Data[l] .Branch->Num_fan_in;
out->out_graph[i] .num_out • PS_Data[i] .Branch->Num_fan_out

;

for (j=0; j < out->out_graph[i] .num_out; j++) {

out->out_graph[i] .out [j] •

PS_Data[iJ .Branch->Fan_out[j 1 .ID;
}

break;

default: fprintf (stderr, "Invalid type (Zd)\n" , PS->type [i])

;

}

/* Create the Deadlock Detector processes */
bzero(VP,slzeof (VP))

;

VP[0] - 0;

for (i=0 , num_VP-l ; i < MAX_MACH; i++)
if (Mach_VP[ij != 0) VP[num_VP++] = Mach_VP[ij

for (i=0; i < num_VP; i++) {

[i] " create resolv
_DIS
processor(VP[i]

)

;

Res[i] - create resolverf) /* Create a resolver */
#ifdef SYS5 DIS

(fendif

c_setpriority(Res[i] ,-15)

;

Qs_tab.query_tab[VP[i]] = create queryservf)
#ifdef SYS5_DIS

processor(VP[i]
)

;

ifendif

>

for (i=0; i < num_VP; i++) {

deadmen . deadmen [VP [i
J

create deadlocks
_DIS
processor(VP[i]

)

create deadlock(Res [i] . report ,Qs tab, PS->debue)
#ifdef SYS5 DIS

ifendif

c_setpriority(deadmen.deadmen[VP[i]
] ,-20) ;

Build_graph- create buildgraph(deadmen. deadmen, Qs_tab.query_tab)

;

/* The the deadlock detection mechanism about the graph of
* the simulation (Out Graph)
*/

for (i=0; i < PS->num_nodes; i++) {

if (out->out_graph[i] .num_out == 0) continue;
bzero(caller,sizeof (CALLERS))

;

for (j=0; j < out->out_graph[i] .num_out; j++) {
id = out->out_graph(i] .out [j]

;

if (PS->type[id] — QUE_SRV)
caller[j) = (long)PS->Que_pid[id]

;

else caller[j] - PS->ps_pid[id] .pidj

if (PS->type[i] •• QUE_SRV) {

caller[j] « (long) PS->Que_pid[i]

;

}

Build_graph.load_callers(PS->ps_pid[i] .pid, caller)

;

Build_graph.done()

;

/* Send the resolver its parameter table */
for (i=0; i < num_VP; i++) {

Res[i) .setupl(RES_ID,i,deadmen.deadmen[VP[i]])

j

Resjij .setup2(*PS)

;

Res[i] .setup3(*out)

;

}

/* create transaction pointers to the collector */
src_stats_tp PS->Col_pid. Src_stats

;

srv_stats_tp = PS->Col_pid.Que_Srv_stats;
snk_stats_tp » PS->Col_pid.Sink_stats

;

/* For each logical process in the process table
* send the LP its parameter table.
»/

for (i=0; i < PS->num_nodes ; i++) {

switch(PS->type[i]) {

case SOURCE: /* The Source LP */
if (PS->debug&DEBUG_CREATE) /* Create tracing */

printf("Create: Source setup\n");
Param.src .ID i;

Param.src.sim_term_time • PS->sim_term_time

;

Param.src. stats_interval - PS->stats_interval

;

Param.src .Max_Hop_Count « PS->Max_Hop_Count

;

Param.src. num_Gen - PS_Data[i] . Src->num_Gen;
Param.src. Out_ID - PS_Data [i] .Src->Out_ID;
Param.src. send - get_send_tp(PS, Param.src .Out_ID)

;

Param.src. stats - src_stats_tp;
Param.src. dis = PS_Data [i] .Src->dis

;

Param.src. debug = PS->debug;
PS->ps_pid[i] .Src_pid.setup(Param.src)

;

break;

case SINK: /* The Sink LP */
if (PS->debug&DEBUG_CREATE) /* Create tracing */

printf ("Create: Sink setup\n");
Param.sink.ID i-
Param.srv.sim_term_time = PS->sim_term_time;
Param.sink.stats_interval = PS->stats_interval

;

Param.sink.Num_Fan_In = PS_Data [i] .Sink->Num_fan_in;
Param. sink. stats snk_stats_tp;
Param. sink. debug = PS->debug;
PS->ps_pid[i] .Sink_pid.se tup (Param. sink)

;

break:

case QUE_SRV: /* The Queue S, Server LP */
if (PS->debug&DEBUG_CREATE) /* Create tracing */

printf("Create: Queue/Server setup\n");
Param. que. ID = i;

Param. que. Q_size - PS_Data [i] .Q_Srv->q_size

;

Param. que. Q_method • PS_Data[i] .Q_Srv->Q_method;
Param.que.Num_Fan_In = PS_Data [i] .Q_Srv->Num_fan_in;
Param.que. debug « PS->debug;
PS->Que_pid[i] .setup (Param.que)

;

Param.srv.ID i;

Param.srv.sim_term_time PS->sim_term_time

;

Param.srv.stats_interval = PS->stats_interval

;

Param.srv.Max_Hop_Count = PS->Max_Hop_Count

;

Param.srv.Out_ID - PS_Data [i] .Q_Srv->Out_ID;
Param.srv.send = get_send_tp(PS,Param.srv.Out_ID)

;

Param.srv. stats srv_stats_tp;
Param.srv. Que PS->Que_pid[i]

;

Param.srv. dis PS_Data[i] .Q_Srv->dis

;

Param.srv. debug = PS->debug;
PS->ps_pid[iJ .Srv_pid.setup(Param.srv)

;

break;

case BRANCH: /* The Branch LP */
if (PS->debug&DEBUG_CREATE) /* Create tracing */

printf("Create: Branch setup\n")j
Param.brn.ID = i;

Param.brn.sim_term_time • PS->sim_term_time

;

Param.brn.stats_interval PS->stats_interval

;

Param.brn.Max_Hop_Count - PS->Max_Hop_Count

;

Param. brn . Num_Fan_In =PS_Data [i] . Branch->Num_fan_in

;

Param.brn.Num_Fan_Out =

PS_Data(i] .Branch->Num_fan_out

;

for (j=0; j < Param. brn. Num_Fan_Out; j++) {
Param. brn. Fan_0ut [j] .ID =

PS_Data[i] . Branch->Fan_out [j] .ID;
Param. brn. Fan_Out [j] .prob =

PS_Data[i] . Branch->Fan_out
[j] .prob;

Param. brn. Fan_Out[j] . send=
get_send_tp(PS,PS_Data[i] .Branch->Fan_out [j] .ID)

;

Param. brn. debug = PS->debug;
PS->ps_pid[i] .Branch_pid.setup(Param.brn)

;

break;

default:
fprintf (stderr, "Create :Invalid type (ld)\n", PS->type [i])

;

break;
}

/* Send the Collector's parameter table */
Param. col. ID COL_ID;
Param.col.PS = *PS;

PS->Col_pid.setup(Param.col)

;

/* Send the Terminator's parameter table */
Param.term.ID - TERM_ID;
Param.term.PS = *PS;
PS->Term_pld. setup(Param. term)

;

PS->Term_pid.setupl(num_VP,Res)

;

/* If Switch 16 is set, create an Out Graph report */
if (PS->debug&OUT_GRAPH) /* OUT GRAPH */

print_out_graph(PS,out,Res,num_VP)

;

free(out); /* Clean up */

F.20: source . cc

include "dclr.h"

/••A***
* source. cc — by Edward Vopata

* The Source Process.
* This process generates messages at a specified arrival rate and
* sends the message to a specified logical process. The source
* represent a point in the physical system where jobs enter the
* system.

*/
process body Source ()

{

process Source lam; /* Source's Process id */
ITEM Item; /* A message »/
STATS iit; /* inter-arrival time stats */
struct src_stats_rec Src_stats; /* Source Statistics */
struct src_param Param; /* Source's Parameter table */
double arrive_time; /* arrival time */
long i_num = 0; /* Interval number */

/* Seed the random number generator */
srand(getpid() * getppidO);

/* Get the Source's Process id */
lam - (process Source)c_mypid()

;

/* Get the Source's Parameter table */
accept setup(Src) {Param Src; };

/* Initialize the Statistics */
Stats_Init(&iit)

;

Src_stats.ID = Param. ID;
Src_stats. status - STATS_NORMAL;
Src stats. sim time » 0.0;

for (;;) {

/* get an arrival time using a distribution function */
arrive_time get_time (Param. dis)

;

/* Has the simulation termination time been exceeded? */
if (Param. sim_term_time > &&
Src_stats.sim_time + arrive_time > Param. sim_term_time) {

Src_stats. status = STATS_TERM;
break;

}

/* Has a stats interval occurred? */
if (i_num != (long) ((Src_stats . sim_time + arrive_time) /

Param. stats_interval)) {

115

/* If so, calculate a new i_num */
i_num = (long) ((Src_stats.sim_time + arrive_time) /

Param.stats_interval)

;

/* Calculate new stats */

Src_stats.ave_i.it = Stats_Mean(&iit)

;

Src_stats.std_iit « Stats_STD(&iit)

;

Src_stats .max_iit = iit .max_val

;

Src_stats .num_lef t Param.num_Gen - iit.num_val;

/* Send the stats to the collector */
(*Param. stats) (Src_stats)

;

if (Param. debug&DEBUG_SOURCE) /* Source tracing */
printf("Source Xd: Sending Stats\n" ,Param. ID)

;

}

/* Record stats for current message */
Stats_Val(&iit,arrive_time)

;

Src_stats . sim_time += arrive_time;
if (Param. debug&DEBUG_SOURCE) /* Source tracing */

printf("Source Xd: Arrival Time %lf\n",
Param.ID,arrive_time)

;

/* Generate a new message */
Item.Time_Stamp
Item. Arrive_Time
Item. Priority
Item. Item_type
Item.Id_of_Src
ltem.data[0]

/* Send the message */
(*Param.send) (Item)

;

if (Param. debug&DEBUG_SOURCE) /* Source tracing */
printf ("Source Xd: Sending Item Zlf\n",

Param. ID, Item.Time_Stamp)

;

/* Has a terminate message arrive? or
* Has the source generated the specified number of
* messages?
*/

if (c_transcount(Iam. term)
|

((Param. num_Gen > 0) && (iit.num_val >= Param. num_Gen))) {

Src_stats. status - STATS_FINAL;
break;

}

if (Param. debug&DEBUG_SOURCE) /* Source tracing */
printf ("Source Xd: Sending Final Stats\n" , Param. ID)

;

/* Calculate Final Statistics */
Src_stats.ave_iit = Stats_Mean(&iit)

;

Src_stats.std_iit = Stats_STD(&iit)

;

Src_stats .max_iit = iit.max_val;
Src_stats .num_lef t = Param. num_Gen - iit.num_val;
(*Param. stats) (Src_stats)

; /* Send the Final Stats */

Src_stats.sim_time

;

/* Time st amp */
Src stats. sim time; /* Start Time */
rand() X MAXPRIOR; 1* Priority */
MSG_ITEM; /* Normal Message */
Param. ID; /* Id of source */
'\0'; /* NO extra data */

/* Send Null_Msg with a VERY large Time Stamp */
Item.Time_Stamp - MAXJTIME; /* VERY LARGE TIMESTAMP */
Item.Arrive_Time = Src_stats.sim_time;
Item. Priority = 0;

Item.Item_type - MSG_NULL;
Item.Id_of_Src - Param.ID;
Item. data [0] = '\0'

;

(*Param. send) (Item) ; /* Send the NULL message */

accept termO; /* Accept the terminate message */

if (Param.debug&DEBUG_SOURCE) /* Source tracing */
printf ("Source Xd: Terminated\n" ,Param. ID)

;

/* Terminate */

F.21: server . cc

#include "dclr.h"

/**********************************
* server. cc — by Edward Vopata

* The Server Process:
* The server is a station in the
* services jobs and sends them to
* server gets it jobs from its as

physical system. The server
the next logical process. The

sociated queue.

*/
process body ServerO
{

process Server lam;
struct srv_param Param;
struct q_srv_stats_rec Srv_stat
STATS sys_time;
STATS serve_stats;
ITEM Item;
double serve_time;
double sum_serve_t ime = 0.0;
long i_num = 0;

/* Server's process id */
/* Server's parameter table */
/* Server's Statistics */
/* system time stats */
/* service time stats */
/* message buffer */
/* service time */
/* sum of the service times */
/* interval number */

/* Seed the random number generator */
srand(getpid() * getppidO);

/* Get the Server's Process id */
lam = (process Server)c_mypid()

;

/* Get the Server's Parameter table */
accept setup(Srv) {Param • Srv; };

/* Initialize the server's statistics table */
Srv_stats. ID
Srv_stats. status
Srv_stats . sim_time
Srv_stats.num_served =

Stats_Init(isys_time)

;

Stats_Init(&serve_time)

for (;;) {

Param. ID;
STATS_NORMAL;
0.0;
0;

/* Get a message for the server's associated queue */
Param.Que.get_item(&Item,Srv_stats.sim_time)

;

if (Param. debug&DEBUG_SERVER) /* Server tracing */
printf("Srv Xd: Get_item time Zlf\n",

Param. ID, Item.Time_Stamp)

;

/* Is this a normal messages? */
if (Item.Item_type !- MSG_ERR) {

/* Generate a service time */

serve_time = get_time (Param. dis)

;

if (Param. debug&DEBUG_SERVER) /* Server tracing */
printfCSrv Zd: serve_time %lf\n",

Param.ID, serve_time);

/* Has simulation termination time been exceeded? */
if (Param.sim_term_time > (1

Srv_stats.sim_time+serve_time > Param. sim_term_time)
{

Srv_stats. status STATS_TERM;
break;

}

/* Has an interval occurred? */
if (i_num != (long) (MAX(Srv_stats . sim_time + serve_time,

Item.Time_Stamp + serve_time) / Param. stats_interval)

)

{

}

/* If so, update i_num */
i_num - (long) (MAX(Srv_stats.sim_time + serve_time,
Item.Time_Stamp + serve_time) / Param. stats_interval

)

;

/* Calculate server statistics */
Srv_stats.ave_time_in_sys - Stats_Mean(&sys_time)

;

Srv_stats.std_time_in_sys " Stats_STD(&sys_time)

;

Srv_stats . max_time_in_sys = sys_time .max_val

;

Srv_stats.ave_serve_time = Stats_Mean(&serve_stats)

;

Srv_stats.std_serve_time = Stats_STD(&serve_stats)

;

Srv_stats .max_serve_time = serve_stats .max_val

;

Srv_stats.per_busy - (Srv_stats . sim_time) ?

(double)(100 * sum_serve_time)/Srv_stats.sim time :

0.0;
Srv_stats .q_stats =

Param. Que. stats (Srv_stats.sim_time)
\

/* Send stats to collector */
(*Param. stats) (Srv_stats)

;

/* Update simulation clock and the message's timestamp
* Clock MAX (timestamp, Clock) + service time
V

Srv_stats.sim_time • Item.Time_Stamp =

MAX(Srv_stats.sim_time + serve_time,
Item.Time_Stamp + serve_time);

/* Only record stats for normal messages, ignore
* NULL messages.
*/

if (Item.Item_type == MSG_ITEM) {

sum_serve_t ime += serve_time;
Srv_stats .num_served += 1;

Stats_Val(Siserve_stats,serve_time)
;

Stats_Val(&sys_time,
Srv_stats.sim_time - Item. Arrive Time);

}

else {

/* If the message is a NULL message, then
* decrement the NULL'S hop counter
*/

Item.Hop_Count -= 1;

}

/* Send a normal message, or a NULL with a hop
* counter that is greater than zero (0).
* DO NOT send NULL message with hop counters
* equal to zero (0)

.

*/
if (Item.Item_type « MSG_ITEM

|
| Item.Hop_Count != 0) {

if (Param.debug&DEBUG_SERVER) /* Server tracing */
printfCSrv 2d: Sent item time Zlf\n",

Param.ID, Item.Time_Stamp)

;

(*Param. send) (Item) ; /* Send the message */

}

else {

/* Set final stats flag */
Srv_stats. status - STATS_FINAL;
break;

}

/* Has a terminate message arrived? */
if (c_transcount (lam. term)) {

Srv_stats. status - STATS_FINAL;
break;

}

/* Calculate final statistics */
Srv_stats.ave_time_in_sys - Stats_Mean(S.sys_time)

;

Srv_stats.std_time_in_sys - Stats_STD(&sys_time)

;

Srv_stats.max_time_in_sys = sys_time .max_val

;

Srv_stats.ave_serve_time Stats_Mean(&serve_stats)

;

Srv_stats.std_serve_time = Stats_STD(&serve_stats)

;

Srv_stats.max_serve_time = serve_stats .max_val

;

Srv_stats.per_busy = (Srv_stats.sim_time) ?

(double) (100 * sum_serve_time)/Srv_stats.sim_time
:

Srv_stats.q_stats -

Param. Que .stats (Srv_stats . sim_time)

;

(*Param.stats)(Srv_stats); /* Send final stats */

accept term(); /* Accept terminate message */

/* Terminate */

F.22: queue . cc

inc lude " dc 1 r .
h

"

^include "queue .h"

/**
* The Queue Processes:
* Queuing and dequeue messages.
* functions:
* Init_Que_list — Initialize the Queue
* get_Que_item — Get an item from the queue using some method
* put_Que_item — Put an item into the queue
* processes:
* Queue — The queue process.
*

**
* The Queue:
* A queue is a single linked list. When the queue process starts
* up a segment of memory is malloc'ed off for the queue. A
* linked list of free queue items is maintained in the Free
* linked list. The actual queue is maintained by Head and Tail.
*

* Enqueuing:
* When an Item is to be Enqueued, a free node is removed from the
* Free list (must adjust the Free pointer, and links). This node
* is attached to the tail of the queue and the item is inserted
* into the node. The links must be adjusted. If the list is
* empty then Head == Tail == NULL. If there is only one (1) item
* in the list then Head == Tail, and Tail points to the node
* containing the item.
*

* Dequeueing:
*

**
*/
/**
* Function: Init_Que_list (

)

* qp : pointer to Queue Structure
* ID : ID of the Queue
* Max_Size : Size of the Queue
* Method : Method of dequeueing
*

* Initialize the queue. Allocate memory for the queue. Link up
* the Free list. Head & Tail = NULL. Init. Stats, structures.
**
*/

static void Init_Que_list(qp, ID, Max_Size, Method)
Queue_List *qp;
int ID;
int Max_Size;
int Method;
{

register i; /* Index */

qp->ID • ID; /* Note Id of Queue */

qp-->Max Size • Max_Size
qp >Method = Method;

qp ->Num Elem • 0;

qp >Head = NULL;
qp->Tail = NULL;

/* Note Size of Queue */
/* Note Queuing Method */
/* The Queue starts out as Empty */
/* Head doesn't point anywhere */
/* Tail doesn't point anywhere */

qp->Null_Msg_in_Q = FALSE; /* The Null Msg Queue is Empty */

Stats_Init(5[qp->Que_Time)
; /* Init. Time in Queue Stats */

Stats_Init(&qp->Que_Size)
; /* Init. Queue Size Stats */

/* Allocate Memory for the Queue. */
/* Free points to this memory */

qp->Free_ptr = (Q_ITEM *)malloc(sizeof (Q_ITEM) * Max_Size);

/* Print Warning If malloc fails */
if (qp->Free_ptr « NULL) {

fprintf (stderr, "Queue Xd: malloc failed\n" ,qp->ID)

j

c_exit(3); /* Abort if malloc failed */

}

/* Set up a pointer to the Free list */
qp->Free = qp->Free_ptr

;

/* Link the Free list nodes together */
for (i-0;i < Max_Size - 1; i++) {

qp->Free[i] .Next » & (qp->Free [i+1])

;

}

/* The Last Free list node points to NULL */
qp->Free[i] .Next = NULL;

/**
* Function: get_Que_item(

)

qp
item
method
sim time

pointer to Queue Structure
pointer to the gotten item
Dequeueing Discipline
Simulation Time of calling server

* Get an item from the queue. Return an item (in item) from the
* queue using the dequeueing method. Try to return (Real)
* messages first. If the queue is empty and there is a Null Msg,
* then return the Null message. Copy the item into the item
* (parameter) and attach the item_node to the head of the Free
* list.
** ******
*l

static void get_Que_item(qp, item, method, sim_time)
Queue_List *qp;
ITEM *item;
int method;
double sim_time;
{

Q_ITEM *Range; /* Range pointer */
Q_ITEM *ptr; /* Temporary pointer */

int count; /* counter */

/* Are there any messages in the queue? */
if (qp->Num_Elem > 0) {

/* Is there a NULL msg in the NULL msg queue with a timestamp
* smaller then the current simulation time, then discard the
* NULL messages.

V
if (qp->Null_Msg_in_Q £,& qp->Null_Queue . Time_Stamp <« sim time)
qp->Null_Msg_in_Q = FALSE;

/* Determine the range of valid messages */
for (Range = qp->Head, count=l;

(Range->Next != NULL &&
Range->Next->Item.Time_Stamp <= sim_time);
Range • Range->Next, count++)

;

/* Handle the case where their is either 1 item in the queue
* or there is 1 item in the proper range.
* if head " range == tail : only 1 item in the queue
* if head « range != tail : only 1 item in the proper range
*/

if (qp->Head "» Range) {

item = qp->Head->Item; /* Get the item */
ptr - qp->Head; /* ptr -> to item to free */
if (qp->Head « qp->Tail) /* There is 1 item in the queue */
qp->Head qp->Tail = NULL; /* Set Head & Tail to Null */

/* The Queue is now empty. */
e l se /* There is 1 item in the range */

qp->Head = qp->Head->Next
; /* Head -> to next item */

else {

/* Determine which queueing discipline to use */
switch (method) {

case LIFO: /* Last In, First Out Method */

item = Range->Item; / Get the item */

/* Traverse the list until ptr->Next == Range */
for (ptr=qp->Head; ptr->Next != Range; ptr = ptr->Next);

/* If Range == Tail : adjust tail */
if (Range « qp->Tail) {

qp->Tail = ptr; /* Tail ptr */
qp->Tail->Next = NULL; /* Fix Tail->Next */

>

/* If Range != Tail: link across */
else ptr->Next = ptr->Next->Next

;

ptr - Range; /* ptr must point to the item to be freed */
break;

case SIRO: /* Service In Random Order Method */

register loc.i; /* indexes */
Q_ITEM *t_ptr; /* Temporary pointers */

/* Get a random number loc:: <= loc < count */
loc = rand() % count;

/* If loc ==
: then remove the head item */

if (loc == 0) {

item = qp->Head->Item;
t_ptr = qp->Head;
qp->Head = qp->Head->Next

;

}

else {

/* Find the loc item (ptr->Next == loc item) */
for (ptr=qp->Head, i=l ; i<loc ;ptr=ptr->Next , i++)

•

item = ptr->Next->Item; / Get the item */
t_ptr ptr->Next; /* Item to free */

/* Are we removing the tail item? */
if (ptr->Next == qp->Tail) {

qp->Tail = ptr; /* Move the tail */
qp->Tail = NULL; /* Adjust the next pointer */

}

/* Link across */
else ptr->Next ptr->Next->Next

;

}

/* t_P tr is pointing to the item to be freed */
ptr t_ptr; /* set ptr to point to item to free */

}

break;

case PRIO: /* PRIority Ordering Method */

{

int maxprior; /* max priority item value */
Q_ITEM *p_ptr; /* pointer to max priority item */

maxprior = qp->Head->Item. Priority

;

p_ptr = qp->Head;

/* Find the item in head -- Range with the max
* Priority. Set max_priority to priority of the
* Head item and examine priorities through the
* Next link. So ptr->Next == item with max
* priority (unless max_priority is Head)

.

*/
for (ptr»qp->Head; ptr I- Range; ptr » ptr->Next) {

if (ptr->Next->Item. Priority > maxprior) {

maxprior = ptr->Next->Item. Priority

;

p_ptr ptr;

}

}

/* If Max priority is the Head item */
if (P_Ptr "" qp->Head) {

item = qp->Head->Item; / Get the item */
ptr = qp->Head; /* ptr -> item to free */
qp->Head » qp->Head->Next

;

/* Adjust Head */

else { /* Max Priority is ptr->Next */
item " p_ptr->Next->Item; / Get the item */

ptr p_ptr->Next; /* ptr -> item to free */

/* Did we remove the last item? */

if (ptr ~ qp->Tail) {

qp->Tail p_ptr; /* Move the Tail */

qp->Tail->Next • NULL; /* Adjust Tail->Next */

}

else p_ptr->Next = p_ptr->Next->Next

;

}

}

break;

case FIFO: /* First In, First Out Method */

default: /* The default method is FIFO */

item = qp->Head->Item; / Get the Head item */

ptr • qp->Head; /* ptr -> to item to free */

qp->Head « qp->Head->Next ; /* Move the Head */

break;

}

}

/* Record Queue Statistics, adjust the number in queue, &

* Free the item pointed to by ptr (attach it to the free list)

*/
Stats_Val(Srqp->Que_Time,sim_time - item->Enter_in_Que) ;

Stats_Val(&qp->Que_Size, (double) count)

;

qp->Num_Elem -= 1; /* The queue has 1 less item now */

/* Attach the item -> by ptr to the head of the free list */

ptr->Next " qp->Free; /* ptr->Next -> to the Free list */

qp->Free ptr; /* Free -> to ptr */

}

else { /* Handle Null Msgs If the Queue is Empty */

item qp->Null_Queue ; / Get the null message */

qp->Null_Msg_in_Q = FALSE; /* The Null queue is now empty */

>

* Function: put_Que_item(

)

qp
item
sim time

pointer to Queue Structure
pointer to the item to be put in the queue
Simulation Time of calling server

Put an item into a Queue. Free nodes are in a list pointed to by
qp->Free, qp->Head points to head of queue, qp->Tail points to

tail of queue. Items are enqueue at the tail of the queue.
Note: qp->Tail . Item.Enter_in_Q & qp->Num_Elem.
Don't forget to handle links.

Handle Null messages separately. Do Not Queue them. There is a

Single Null message Queue for Null messages. Put incoming Null
messages in this Queue,

- 125 -

* Overwriting the old Null msg, Set the Null_Msg_in_Q Flag.
**

*/
static void put_Que_item(qp, item, sim_time)
Queue_List *qp;
ITEM *item;
double sim_time;

{

if (item->Item_type -- MSG_ITEM) { /* This is a Valid Message */

/* Empty Queue case */
if (qp->Head -- NULL) qp->Head = qp->Free;
else qp->Tail->Next = qp->Free; /* Otherwise case */

/* Get a free Item node */
/* Fix up Free list */

qp->Tail = qp->Free;
qp->Free = qp->Free->Next

;

qp->Tail->Next - NULL;
qp->Tail->Item *itemj /* Put Item in Queue */
qp->Tail->Item.Enter_in_Que « sim_time; /* Record Entry Time */
qp->Num_Elem += 1

;

/* Note: Queue Count */

}

else { /* This is a Null Message */
qp->Null_Queue - *item; /* Put Null Msg in Null Queue */

qp->Null_Msg_in_Q TRUE; /* There is a Que ' d Null Msg */

}

/**
* The Queue Process.
* The queue process accepts in<

* until the associated server
queue is full, the queue wil

coming messages, and buffers them
is ready to process them. When the
1 refuse to accept incoming msgs.

**

*/
process body Queue()

{

process
struct
struct
Q_ITEM
Queue_List
double
int
int
ITEM
ITEM

Queue lam;
q_param Param;
q_stats_rec q_stat
Range;
Q:
Time =0.0;
Count

;

Done = FALSE;
Res_item;
item;

/* Queue ' s process id */

/* Queue's parameter table */
/* Queue's statistics table */
/* pointer into the queue */

/* the queue buffer */
/* simulation time */
/* Count */
/* Flag */
/* Resolver NULL message */
/* Normal message */

/* Get Queue's process id */
lam = (process Queue) c_mypid()

j

/* Initialize the Resolver NULL message */
Res_item.Time_Stamp = 0.0;
Res_item.Item_type = MSG_NULL;

/* Get Queue's parameter table */

accept setup(Que) {Param = Que; };

/* create a queue buffer */

Init_Que_list (&Q, Param. ID, Param. Q_size, Param. Q_method)

;

for (;;) {

if (Param. debug&DEBUG_QUEUE) { /* Queue tracing */

printf("Queue 2d: #In Xd c_tc.Send Xd c_tc .Res_send 2d\n",
Param. ID, Param. Num_Fan_In, c_trans count (lam. send)

,

c_transcount (Iam.Res_send))

;

printf ("Done Xd Q.Num_Elem 2d Param. Q_size 2d\n"

,

Done,Q.Num_Elem, Param. Q_size)

;

}

bump_seq(); /* For Scott's Deadlock Detectors */

select {

/* If there is a message in the Queue, and the
* server request a message, then give it to the
* server

V
(!Done && (Q.Num_Elem > || Q.Null_Msg_in_Q))

:

accept get_item(Item, sim_time)

{

Time = sim_time;
get_Que_item(&Q, Item, Param. Q_method, Time)

;

};

/* During termination, return a "Error" to the server */

or (Done)

:

accept get_item(Item, sim_time)
{ Item->Item_type = MSG_ERR; };

/* If the queue is not full */
or (!Done && Q.Num_Elem < Param. Q_size)

:

/* Accept a normal message, if there are Num_Fan_In
* outstanding messages and there are no Resolver
* NULL messages

.

V
accept send (Item)
suchthat (c_transcount(Iam.send) ~ Param. Num_Fan_In &&

c_transcount (Iam.Res__send) == 0)
by (Item. Time_S tamp)
{ item Item; }

;

put_Que_item(&Q,&item,Time)

;

/* During terminations, discard all incoming messages */

or (Done)

i

accept send (Item) {};

/* Accept a Resolver NULL message if there are Num_Fan_In
* outstanding normal and Resolver NULL messages.
»/

or (!Done)

:

accept Res_send (Item)
suchthat (c_transcount (lam. send) +

or

c_trans count (Iam.Res__send) >=

Param.Num_Fan_In)
by (Item. Time_S tamp)
{ Res_item = Item; };

/* Accept all other outstanding Resolver NULL messages */
while (c_transcount(Iam.Res_send) > 0)

accept Res_send(Item) {};

/* If the Queue is not Full */
if (Q.Num_Elem < Param.Q_size) {

/* Determine if there are any normal messages
* with a timestamp with a smaller value

V
select {

accept send (Item)
suchthat (Item.Time_Stamp < Res_item.Time_Stamp)
by (Item. Time_Stamp)
{ item = Item ; }

;

or
item = Res_item;

}

/* put the message in the queue */
put_Que_item(&Q,&item,Time)

;

/* The server will request the stats from the queue */

accept stats(sim_time) {

/* Calculate and return stats */

for (Range = Q.Head,Count=0 ; Range != NULL &&
Range->Item.Time_Stamp <= sim_time;
Range = Range->Next ,Count++)

;

q_stats . num_through_q = Q.Que_Time .num_val

;

q_stats .ave_time_in_q = Stats_Mean(&Q.Que_Time)

;

q_stats.std_time_in_q = Stats_STD(&Q.Que_Time)

;

q_stats . max_t ime_in_q = Q.Que_Time .max_val

;

q_stats .ave_in_q = Stats_Mean(&Q.Que_Size)

;

q_stats.std_in_q = Stats_STD(&Q.Que_Size)

;

q_stats .max_in_q = Q .
Que_Size .max_val

;

q_stats.per_full = (double) (100*Count)/Param.Q_size;
q_stats .num_in_q Count;
treturn (q_stats)

;

>;

or
/* accept the terminate message */

accept term() {};
Done = TRUE;
f ree((char *)Q.Free_ptr)

;

or (Done)

:

terminate; /* Terminate */

}

c_sch(); /* swh : schedule another process */
}

>

F.23: sink.cc

#include "dclr.h"

/***********•**
* sink.cc — by Edward Vopata

* Accept incoming messages and discard them. Keep track of the
* number of discarded messages and report this statistics to the
* collector. May have to timeout and send stats periodically, in
* case the sink received the final generated message.

*/

void do_sink(); /* the do_sink() function */

/ ** ******** ********
* Function:
* do_sink()
* Parameter:
* item - the item to be discarded
* Param - Sink's Parameter table
* Stats - Sink's Stats table
* i_num - Inteval number
* Summary:
* discard the item and record and report stats as needed.
**
*/

void do_sink(item, Param, Stats, i_num)
ITEM *item;
struct sink_param *Param;
struct sink_stats_rec *Stats;
long *i_num;
{

if (Param->debug&DEBUG_SINK) /* Sink tracing */
printf("Sink Xd: Item arrived Time Ilf\n",

Param->ID, item->Time_Stamp)

;

/* Is it time to send stats? Is I_num different then the
* current interval
V

if (*i_num != (long) (item->Time_Stamp / Param->stats interval))
{

/* If so, update i_num and send stats to the collector */
*i_num - (long) (item->Time_Stamp / Param->stats_interval)

;

(*Param->stats) (*Stats)

;

if (Param->debug&DEBUG_SINK) /* Sink tracing */
printf ("Sink Xd: Sent Stats\n", Param->ID)

;

/* Keep track of the number of Normal messages discarded */
if (item->Item_type -- MSG_ITEM) Stats->num_sunk += 1;

/* Keep track of simulation time */
if (item->Item_type == MSG_ITEM &«, item->Time_Stamp != MAX_TIME)

Stats->sim_time = MAX(item->Time_Stamp, Stats->sim_time)

;

}

/**
* The Sink Process:
* Accept incoming messages and call do_sink().
* Handle both normal and Resolver NULL messages.
* The Sink represent a point in the physical system where jobs
* leave the system.

*/

process body Sink ()

{

struct sink_stats_rec Sink_stats; /* Sink Statistics */
struct sink_param Param; /* Sink Parameter List */
process Sink lam; /* Id for c_transcount */
long i_num =0; /* Current Stats interval */
int Done « FALSE; /* Termination Flag */
ITEM Res_itemj /* Resolver NULL message */
ITEM item; /* Normal message */

lam = (process Sink)c_mypid() ; /* Get Sink's process id */

/* Initialize Res_item */
Res_item.Time_Stamp - 0.0;
Res_item.Item_type = MSG_NULL;

/* accept Paramter table */
accept setup(Snk) {Param - Snk; };

/* Initialize Stats report */
Sink_stats.ID - Param. ID;
Sink_stats.sim_time 0;

Sink_stats .num_sunk = 0;

Sink_stats. status = STATS_NORMAL;

for (;;) {

bump_seq(); /* For Scott's Deadlock Detection */
select {

(!Done)

:

/* Accept a normal message if there are Num_Fan_In
* outstanding messages and NO Resolver NULL msgs
* by the smallest timestamp.
*/

accept send(Item)
suchthat(c_transcount(Iam.send) -- Param. Num_Fan_In &&

c_transcount(Iam.Res_send) -- 0)
by (Item.Time_Stamp)
{ item - Item; } ;

if (Param. debug&DEBUG_SINK) /* Sink tracing */
printf("Sink Zd: !Done: Real Item arrived Time Zlf\n",

Param. ID, item.Time_Stamp)

;

/* Deal with the message */
do_sink(&item, &Param, &Sink_stats,&i_num)

;

or (Done)

:

/* During termination discard all incoming messages */
accept send(Item) {};

or (!Done)

:

/* Accept Resolver NULL messages if there are
* NUM_FAN_IN normal and Resolver NULL msgs, by
* smallest time stamp
*/

accept Res_send(Item)
suchthat (c_transcount(lam. send) +

c_transcount (Iam.Res_send) >=

Param. Num_Fan_In)
by (Item.Time_Stamp)
{ Res_item « Item;};

/* Accept all other Resolver NULL msgs */
while (c_transcount(Iam.Res_send) > 0)

accept Ressend(Item) {};

if (Param. debug&DEBUG_SINK) /* Sink tracing */
printf ("Sink Zd: !Done: Item arrived Time Zlf\n",

Param.ID, Res_item.Time_Stamp)

;

/* Determine if there is a normal message with a
* smaller timestamp. Deal with the messages by
* calling do_sink().
*/

select {

accept send (Item)
suchthat (Item.Time_Stamp < Res_item.Time_Stamp)
by (Item.Time_Stamp)
{ item Item; >

;

if (Param. debugS,DEBUG_SINK) /* Sink tracing */
printfCSink Zd:Real send: Item arrived Time Zlf\n",

Param.ID, item.Time_Stamp)

;

or
item = Res_item;
if (Param. debug&DEBUG_SINK) /* Sink tracing */

printfCSink Zd:Dealing with Res : " , Param. ID) ;

printf ("Item arrived Time Zlf\n" , item.Time_Stamp)

;

}

/* Deal with the message */
do_sink(&item,SiParam,&Sink_stats,S[i_num)

;

/* Accept terminate message */
accept term() {}

;

if (Param. debug&DEBUG_SINK) /* Sink tracing */
printfCSink Xd: Terminate Mode\n", Param.ID);

/* Send final Stats */

Done = TRUE;
Sink_stats. status = STATS_FINAL;
(*Param. stats) (Sink_stats)

;

if (Param.debug&DEBUG_SINK)
printf ("Sink Xd: Terminate Mode\n", Param.ID);

or (!Done)

:

/* timeout & send stats */
delay 2; /* Delay 2 seconds */
(*Param. stats) (Sink_stats)

;

or (Done)

:

terminate; /* Terminate */

>
'

}

133

F.24: branch. cc

#include "dclr.h"

ft******************* ***************+**+******* tit********************
* branch. cc — by Edward Vopata
*

* The branch logical process.
* accept incoming messages, select an outgoing line and send the
* message. Deal with Resolver NULL messages. Return the current
* simulation time of the branch.

*/

static void do_branch()

;

Z**
* Function: do_branch
* Parameter:
* item — The incoming messages
* Param — The Parameter of the Branch
* Time -- The Simulation Clock
* i_num — Interval number
* Purpose:
* This function takes a message (item) and determines which
* outgoing path to send the message on and sends it. This function
* also propagates a null message on all other outgoing paths when
* there is an interval change, in order to propagate the simulation
* time and aid in statistics collection.
**
*/

static void do_branch(item, Param, Time, i_num)
ITEM *item; /* Incoming Messages */
struct brn_param *Param; /* Branch Parameters */
double *Time; /* Simulation Clock */
long *i_num; /* Interval Number */

register i,j; /* Index Variables */
double prb; /* Line selection Variable */
double rnd; /* Line selection Variable */

/* Update the Branch's Simulation Clock */
*Time = item->Time_Stamp;

/* Print Time Stamp of Message if Debug Mode On */
if (Param->debug&DEBUG_BRANCH) /* Debugging */

printf("Branch Xd: Got an Item Time = $ld\n",
Param->ID, *Time)

;

/* Determine which outgoing line to send the message on.
* 1. Select a random number
* 2. Divide the path probabilities into ranges
* 3. Determine in which range the random number falls
* 4. Send the message on that path.

*/
rnd = drandOlO; /* Get a uniform random number */
prb - 0.0; /* Initialize the lower range */

/* Step through the list of possible paths */
for (i=0; i < Param->Num_Fan_Out ; i++) {

/* Is the random number in the range of
* prb <» rnd < Path.prob + prb?

*l
if (prb <= rnd && rnd < Param->Fan_Out [i] .prob + prb) {

/* If So, Send the message */
(*Param->Fan_Out [i] .send) (*item)

;

/* If Debug Mode, Print Timestamp */
if (Param->debugScDEBUG_BRANCH)

printf("Branch Id: Send Item %d\n",
Param->ID,Param->Fan_Out [i] .ID)

;

/* We Found the Correct Path,
* so break out of the loop
*/

break;
}

/* Otherwise adjust the lower range to
* the lower range plus the Path.prob
*/

prb += Param->Fan_0ut [i] .prob;

}

/* Example of Range calculation:
* Three out going paths, with probabilities 0.2, 0.3, and 0.5.
* rnd is the selected random number.
* Range check : prb <• rnd < Path.prob + prb
* Range check 1: prb 0.0, Path.prob - 0.2
* Range : 0.0 <= rnd < 0.2 + 0.0
* If rnd is in range 0.0 to 0.2 then path 1 is selected
* update : prb prb + Path.prob = 0.0 + 0.2 " 0.2
* Range check 2: prb - 0.2, Path.prob = 0.3
* Range : 0.2 < rnd < 0.3 + 0.2
* If rnd is in range 0.2 to 0.5 then path 2 is selected

update
* Range check 2

Range

prb = prb + Path.prob 0.2 + 0.3 - 0.5
prb 0.5, Path.prob - 0.5

. 5 <= rnd < 0.5 + 0.5
* If rnd is in range 0.5 to 1.0 then path 3 is selected
*

**
* Note the PATH probabilities MUST sum to 1.0.
**
*/

/* Send nulls on other lines at interval transisition
* This is used to propagate statistics collection and
* to do some minor deadlock avoidance

.

v

- 135 -

/* Is this a new interval? */
if (*i_num != (long) (item->Time_Stamp / Param->stats_interval)

)

/* If Debug Mode, print timestamp */
if <Param->debug&DEBUG_BRANCH)

printf ("Branch Xd: Sending NU11 Xlf\n",
Param->ID, item->Time_Stamp)

;

/* Calculate the new interval number */
*i_num - (long) (item->Time_Stamp / Param->stats_interval)

;

/* Build a Null Message */
item->Arrive_Time - item->Time_Stamp; /* Same Timestamp */
item->Item_type MSG_NULL; /* a Null MSG */
item->Hop_Count • Param->Max_Hop_Count

; /* Hop Counter */
item->Id_of_Src - Param->ID; /* Id of the Branch */
item->data[0] - '\0'; /* No extra data */

/* Send the Null MSG on all paths except the one
* that the original message was sent on.

V
for < j =0

;
j < Param->Num_Fan_Out

; j+ +)

if (j 1= i) (*Param->Fan_0ut[i] .send) (*item)

;

Process Id of the Branch */
Branch Parameters */
Simulation Clock */
Interval number */
Flag */
Resolver Message */
Incoming/Outgoing Message */

process body
{

process

Branch ()

Branch lam; /
struct brn param Param; /
double Time - 0.0; /
long i num =

; /
int Done = FALSE; /
ITEM Resitem; /
ITEM item; /

srand(getpid() * getppidO);
lam (process Branch)c_mypid()

;

/* Seed the random number */
/* Get Branch's Process Id */

/* Create a phony null message */
Res_item.Time_Stamp - 0.0;
Res_item.Item_type - MSG_NULL;

accept setup(Brn) { Param » Brn; }; /* Get Branch's Parameters */

/* Loop Forever */
for (;;) {

bump_seq(); /* For Scott's deadlock detection */
select {

/* accept a normal messages, if there are Num_Fan_In
* messages and NO resolver NULL messages, by smallest
* timestamp, and deal with the messages (do_branch())

.

*/
(IDone)

:

accept send(Item)

136

suchthat (c_transcount(lam. send) == Param.Num_Fan_In &&
c_transcount (Iam.Res_send) == 0)

by (Item. Time_Stamp)
{ item = Item; }

;

do_branch(&item, &Param,&Time,&i_num)

;

/* At termination, receive all incoming messages and
* discard them.
*/

or (Done)

:

accept send(Item) {};

/* Receive a resolver NULL messages, if there are
* Num_Fan_In normal and Resolver messages, by smallest
* time stamp
*/

or (I Done)

:

accept Res_send(Item)
suchthat (c_transcount(lam. send) +

c_transcount (Iam.Res_send) >=

Pa ram. Num_Fan_In

)

by (Item.Time_Stamp)
{ Res_item = Item; };

/* Discard the rest of the Resolver NULL messages */
while (c_transcount(Iam.Res_send) > 0)

accept Res_send(item) {};

/* Determine if there is a normal message with a
* smaller timestamp, if so, get it. then deal
* with the message, (do_branch())

.

*/
select {

accept send (Item)
suchthat (Item.Time_Stamp < Res_item.Time_Stamp)
by (Item.Time_Stamp)
{ item =Item; };

or

{ item Res_item; }

}

do_branch(&item, SParam, ScTime, Si_num)

;

/* Return the current Time */
accept get_time() {treturn Time; };
if (Param.debug&DEBUG_BRANCH) /* Debugging */

printf ("Branch Xd: Time Zlf\n", Param.ID, Time);

/* accept the terminate messages */
accept term() {}; Done - TRUE;

or (Done):
terminate; /* Terminate alternative */

}

c_sch(); /* swh : schedule another process */

137

F. 25 : col .cc

#include "dclr.h 1*

/********* **++****+*+
* col.cc — by Edward Vopata
**
* The Collector Process.
* Collects stats reports from the logical processes and compiles
* a Collective Stats Report. The Collective Stats Report is
* sent to the Graphics Front-end.
*** iti(il. itieitiritir

*i
/* Status of the Collector */

f define NOT_DONE
fdefine TERM_TIME 1

#define ALL_SUNK 2

void M_Error()

;

struct col_rec *get_rec();
struct col_rec *get_ptr();
void free_rec()

;

void adjust_rec()

;

void Send_Stats()

;

void Print_Stats()

;

int Wait_resp();

tfdefine E_MALLOC 1 /* Error return code: Malloc Failed */

/* Malloc Failed Error Function */
static void M_Error(sock,err_msg)
int sock;
char *err_msg;
{

/* If malloc fails, the print an error msg, and
* send the graphics front—end a "(abort)" msg.
*/

fprint f (stderr, "Zs\n" ,err_msg)

;

put line (sock, "(abort) " .FALSE)

;

c_exit(E_MALLOC);
}

/* Create a new stats report record */
static struct col_rec *get_rec(i_num, sock)
long i_num;
int sock;

{

struct col_rec *ptr;

/* malloc off a new stats report record */
ptr = (struct col_rec *) malloc (sizeof (struct col_rec));
if (ptr — NULL) M_Error(sock, "Get_rec: Malloc Failed");

/* Initialize the record. */
ptr->i_num = i_num;

set_clear(ptr->modif ied)

;

bzero(ptr->Stats, sizeof (ptr->Stats))

;

ptr->Next = NULL;
return ptr;

}

/* Get a pointer to the requested stats record */
static struct col_rec *get_ptr(head, tail, i_num, sock)
struct col_rec *head;
struct col_rec **tail

;

long i_num;
int sock;

{

struct col_rec *ptr;
register i;

/* Are the pointers already pointer to the
* desired record? If so, return the pointer
*/

ptr - *tail;
if (head->i_num == i_num) return (head);
if (ptr->i_num « i_num) return (ptr);

/* Otherwise search the list and find the
* correct record
*/

if (ptr->i_num < i_num) {

for (i-ptr->i_num +1; i <» i_num; i++) {

tail get_rec(i_num,sock)

;

ptr->Next = *tail;
ptr = *tail;

}

return (*tail);
}

ptr head;
while ((ptr - ptr->Next) !- NULL)

if (ptr->i_num -= i_num) return (ptr);

return (NULL)

;

/* Free up a used stats record */
static void f ree_rec(ptr)
struct col_rec *ptr;
{

register i;

ptr->Next - NULL;
for (i=0; i < MAXPROC; i++) {

if (ptr->Stats[i] . f ree_stats !- NULL) {

free ((char *) ptr->Stats [i] . f ree_stats)

;

ptr->Stats[i] .free_stats = NULL;
}

}

free((char *)ptr)

;

}

/* clean of the stats list after sending stats to the
* graphics front-end. Free up the used record
*/

static void adjust_rec(head, tail , Send, Final , sock)
struct col_rec **head, **tail;
SET Send, Final;
int sock;

{

struct col_rec *ptr;
int i_num;

ptr - *head;
*head = ptr->Next;
i_num - ptr->i_num; /* unlink the record */
free_rec (ptr); /* and free it */
set_clear(Send) ; /* Clear the Send Set */
set_union(Send, Final) ; /* Note any Finalized LP's */
if (*head — NULL) {

*head = *tail = get_rec(i_num + l,sock);
}

else {

ptr » *head;
while (ptr != NULL) {

set_union(Send,ptr->modif ied)

;

ptr = ptr->Next;

}

)

/A***/

/* Send stats to the graphics front end. Send the stats
* record that is at the head of the stats list

V
static void Send_Stats(Param, head, status)
struct col_param *Param;
struct col_rec *head;
int status;
{

char line[MAXLINEJ

;

register i, sock;

sock = Param->PS .out_sock;

/* Do we have to send status this time? */
switch (status) {

case TERM_TIME;
case ALL_SUNK:

put line (sock, "(end) " , Param->PS . debug&DEBUG_SOCK)

;

break;

case NOT_DONE:
default

:

break;
}

/* Send simulation time */

if (status «- NOT_D0NE
|

| Param->PS.sim_term_time -- 0.0)
sprintf (line, "(Z.41f)

",

(head->i_num * Param->PS. stats_interval) +

Param->PS .stats_interval)

;

else
sprintf (line, " (Z.41f)

" , Param->PS .sim_term_time)

;

put line(sock, line, Param->PS .debugScDEBUG_SOCK)

;

/* For each logical process in the process table */
for (i-0; i < Param->PS.num_nodes ; i++) {

/* If the stats record was modified by the
* LP, then send its stats to the graphics front-end */

if (set_in(head->modif ied, i)) {

switch (Param->PS. type[i]) {

case SOURCE: /* The Source LP */
sprintf (line, "(Zd Zld)",i,

head->Stats[i] . Src_stats->num_lef t)

;

break;

case QUE_SRV: /* The Queue & Server LP */
sprintf (line, "<Zd Z.41f Z.41f Zld Zld) - ,i,

head->Stats[i]
.
Q_Srv_stats->per_busy

,

head->Stats[i] .q_Srv_stats->q_stats .per_full

,

head->Stats[i]
.
Q_Srv_s tat s->q_s tats .num_in_q,

head->Stats[i]
.
Q_Srv_stats->num_served)

;

break;

case SINK: /* The Sink LP */
sprintf (line, "(Zd Zld)",i,

head->Stats [i] .Sink_stats->num_sunk)

;

break;

default:
fprintf (stderr, "Send_Stats: Invalid type (Zd)\n",

Param->PS.type[i])

;

break;
}

/* send the report */
putline(sock, line , Param->PS . debug&DEBUG_SOCK)

;

}

}

/* send the "($$)" to denote the end of the current
* report
*/

put line (sock, "($$) " , Param->PS . debug&DEBUG_SOCK)

;

/* If Switch #14 is sent then record all the statistics
* in the Stats_Report File.
*/

if (Param->PS.debug&STATS_REPORT)
Print_Stats(Param, head, status)

;

142

}

/* Wait for a response from the graphics front end */
static int Wait_resp(Param)
struct col_param *Param;
{

/* Incoming line */

register Done;
int type, ID;
char line[MAXLINE]
char *ptr;

/* Get a line from the graphics front-end (blocking) */
getline(Param->PS.in_sock,line,Param->PS.debug&DEBUG_SOCK)
ptr = index (1 ine, '(') + 1;
ptr = index(ptr, '

(

') + 1;
sscanf (ptr, "%d Xd" , Sttype, &ID)

;

if (Param->PS.debug&DEBUG_SOCK)
printf ("Wait_resp: Zs\n" , line)

;

/* What type of control message was it? */
switch(type) {

case SIG_CONT:
Done = FALSE;
break;

/* It was a continue message */

case SIG_TERM: /* It was a terminate message */
Param->PS.Term_pid.term()

;

Done = TRUE;
break;

default:
fprintf (stderr, "Wait_resp: Invalid Type (Zd)\n" , type)

;

Done
break;

FALSE;

}

return Done;

/* the Collector Process
* receives stats reports from each logical process and keeps a
* list of the report, when a complete report is obtained the
* report is sent to the graphics front-end.
*/

process body Collector ()

{

struct col_param *Param;
struct col_rec *head,*tail,
SET Send;

SET Final;

int Done => NOT DONE;
double Time;
long Total_Sunk;

/* Col parameter table */
ptr; / pointer to the stats list */

/* used to determine is a */
/* stats report is complete */
/* used to indicate LP's */
/* have completed. */

long Sunk[MAXPROC]

;

lot Sink_Flag = FALSE;
long i_num;
register ID, status, i;

/* create a parameter table and accept the table */
Param - (struct col_param *) malloc (sizeof (struct col_param))

;

accept setup (col) {(*Param) » col; };

if (Param->PS.debugS,DEBUG_COLLECT) /* Collector tracing */
printf("Col: Collection Starting\n")

;

/* Initialize the stats list */
bzero(Sunk, sizeof (Sunk))

;

head - tail = get_rec(0,Param->PS.out_sock)

;

set_clear (Send);
set_clear (Final);
for (i=0; i < Param->PS .num_nodes ; i++)

if (Param->PS.type(i] — BRANCH) set_add(Final , i)

;

set_union(Send, Final)

;

for (;;) {

if (Pa ram->PS . debug&DEBUG_COLLECT

)

printf ("Col: Collection Looping\n");

/* accept reports from each LP.
* record the stats in the stats list.
* don't forget to modify SEND and FINAL
* as needeed.
*/

select {

/* Collect Source Stats */
accept Src_stats (src_stats)
{

if (Param->PS.debug4DEBUG_C0LLECT)
printf("Col:Src Zd status Xd time Z.41f\n",

src_stats.ID, src_stats . status,
src_stats.sim_time)

;

ID = src_stats.ID;
i_num - (long) (src_stats.sim_time /

Param->PS.stats_interval)

;

status src_stats . status

;

Time = src_stats . sim__time ;

ptr = get_ptr(head,&tail,i_num, Param->PS.out_sock)

;

if (status =- STATS_FINAL
|

| status •» STATS_TERM)
set_add(Final, ID);

if (ptr == NULL) treturn;

if (ptr->Stats[ID] .Src_stats -= NULL) {

ptr->Stats[ID] .Src_stats -

(struct src_stats_rec *)

malloc (sizeof (struct src_stats_rec))

;

if (ptr->Stats[ID] .Src_stats == NULL) {

M_Error(Param->PS .out_sock,
"Col:Src_Stats: Malloc Failed");

}

}

*(ptr->Stats[ID] .Src_stats) - src stats;
};

if (ptr != NULL) {

set_add(ptr->modified, ID);
set_add(Send, ID);

}

if (Param->PS.debugS.DEBUG_COLLECT)
printf("Col: Source Stats\n");

/* Collect Queue and Server Stats */
or accept Que_Srv_stats (q_srv stats)

{

if (Param->PS.debug&DEBUG_COLLECT)
printf ("Col :0;/Srv Zd status Zd time Z.41f\n",

q_srv_stats.ID, q_srv_stats. status

,

q_srv_stats.sim_time)

;

ID - q_srv_stats.IDj
i_num (long) (q_srv_stats.sim_time /

Param->PS.stats_interval)

;

status = q_srv_stats. status;
Time = q_srv_stats . sim_time

;

ptr - get_ptr(head, Sttail, i_num, Param->PS .out_sock)

;

if (status == STATS_FINAL || status « STATS_TERM)
set_add(Final, ID);

if (ptr -- NULL) treturn;

if (ptr->Stats[IDJ .Q_Srv_stats — NULL) {

ptr->Stats[ID] .Q_Srv_stats =

(struct q_srv_stats_rec *)

malloc (sizeof (struct q_srv_stats_rec))

;

if (ptr->Stats[ID] .Q_Srv_stats -= NULL) {

M_Error(Param->PS.out_sock,
"Col:Q_Srv_Stats: Malloc Failed");

}

*(ptr->Stats[ID].q Srv stats) = qsrv stats;
};

if (ptr != NULL) {

set_add(ptr->modif ied, ID);
set_add(Send, ID);

}

if (Param->PS.debugS,DEBUG_COLLECT)
printf ("Col: Queue/Server Stats\n");

/* Collect Sinks Stats */
or accept Sink_stats (sink stats)

{

if (Param->PS.debugS,DEBUG_COLLECT)
printf ("Col:Sink Id status Xd time Z.41f\n",

sink_stats . ID, sink_stats . status

,

sink_stats.sim_time)

;

ID = sink_stats.ID;
i_num - (long) (sink_stats.sim_time /

Param->PS . stats_interval
)

;

status = sink_stats. status;
Time = sink_stats.sim_time;
ptr = get_ptr(head, Stail, i_num, Param->PS .out_sock)

;

if (status ~ STATS_FINAL
|

| status == STATS_TERM)
set_add(Final, ID);

if (ptr != NULL) {

if (ptr->Stats[ID] .Sink_stats — NULL) {

ptr->Stats[ID] .Sink_stats =

(struct sink_stats_rec *)

malloc (sizeof (struct sink_stats_rec))

;

if (ptr->Stats[ID] .Sink_stats =- NULL) {

M_Error(Param->PS.out_sock,
"Col:Sink_Stats: Malloc Failed");

}

}

*(ptr->Stats[ID] .Sink_stats) = sink_stats;
}

};

/* Keep track of the number of message sunk
* by all the sinks. If all the messaes have
* been sunk
*/

if (ptr != NULL) {

set_add(ptr->modified, ID);
set_add(Send, ID);
Sunk[ID] = ptr->Stats[ID] .Sink_stats->num_sunk;
SinkFlag = TRUE;

}

or accept term() {}; /* accept the terminate messages */

or (Done) : delay 1;

}

if (!Done) {

/* Send start termination message to terminator */
if (status == STATS_TERM) {

Param->PS.Term_pid.term()

;

Done = TERM_TIME;
continue

;

}

/* Determine if all the messages have been sunk */
if (!Param->PS.Infinite_Src && Sink_Flag) {

Total_Sunk - 0;
for (i-0; i < Param->PS.num_nodes; i++)

Total_Sunk += Sunk[i];
Sink_Flag - FALSE;

if (Param->PS.debug&DEBUG_COLLECT)
printf ("Col: T_Sunk Zld T_Gen 21d\n",

Total_Sunk,Param->PS. Total Gen);

/* If all the messages are sunk, then
* send start termination message
* to terminator
*/

if (Total_Sunk -- Param->PS .Total_Gen) {

Param->PS.Term_pid.term()

;

Done - ALLSUNK;
continue;

}

}

/* If a complete stats report exist,
* Send the stats to the graphics front-end
* and await its response. If Wait_Resp
* return TRUE, then the Graphics front-end
* has sent a terminate control messages
*/

if (set_full(Send,Param->PS.num_nodes)) {

if (Param->PS.debug&DEBUG_COLLECT)
printf ("Col: Sending Stats : (Zd)\n" .Done)

;

Send_S tats (Pa ram, head, NOT_DONE)

;

adjust_rec(&head,& tail, Send, Final, Param->PS.out_sock)

;

if (Wait_resp(Param)) break;

if (Param->PS.debug&DEBUG_COLLECT)
printf("Col: Sending Stats : (Zd)\n" .Done)

;

>

else {

/* send The FINAL stats report */
if (set_full(Final, Param->PS. num_nodes)) {

if (head != tail) {

Send_Stats(Param,head,NOT_DONE)

;

ad j us t_rec(&head,& tail, Send, Final,
Param->PS.out_sock)

;

if (Wait_resp(Param)) break;
if (Param->PS.debug&DEBUG_COLLECT)

printf< "Col: Sending Stats : (2d) \n" .Done)

;

else {

Send_S tats (Pa ram, head, Done)

;

if (Param->PS.debugiDEBUG_COLLECT)
printf ("Col: Sending Final Stats\n");

break;
}

}

}

)

/* Clean up the used stats record */
while (head != NULL) {

ptr = head;
head • head->Next;
free_rec(ptr)

;

}

/* During Termination */
/* Clean up */

free((char *) Pa ram)

;

/* Discard any outstanding stats reports */
for (;;) {

select {

accept Src_stats (src_stats) {};
or accept Que_Srv_stats (q_srv_stats) {};
or accept Sink_stats (sink_stats) {};
or accept term() {};
or terminate;
}

}

F. 26 : term. cc

^include "dclr.h"
^include "graph. h"

((include "Pid.h"
^include "defs.h"
^include "spec.h"

/it***
* term.cc — by Edward Vopata

* The Terminator process:
* 1. Waits for the collector to report termination.
* 2. Send terminate message to every Logical process
* 3. Send terminate message to every Resolver
* A. Send terminate message back to the collector
* 5. Terminate.

*/
process body Terminator ()

{

struct term_param Param; /* Terminator Parameter Table */
process resolver Res[20]; /* List of Resolver Processes */
int num_Res; /* Number of Resolver Processes */
register i; /* Index */

/* Receive the Parameter Table and the List of Resolvers */
accept setup (term) { Param = term; };
accept setupl (num.res) {

num_Res num;
for (i=0; i < num_Res; i++)

Res[i] - (process resolver)res [i]

;

for (;;) {

select {

/* Wait for the collector to report termination */
accept term() {};

if (Param. PS. debug&DEBUG_TERM) /* Tracing */
printf ("Term: Terminate Recv'd\n")

;

/* For each logical process, send a
* terminate message
*/

for (i=0; i<Param.PS.num_nodes; i++) (

switch (Param. PS. type[i]) {

case SOURCE: /* To Source LP */
Param. PS. ps_pid[i] .Src_pid. term()

;

if (Param. PS. debugS.DEBUG_TERM)
printf ("Term: Source Xd Term\n",i);

break;
case BRANCH: /* To Branch LP */

Param.PS.ps_pid[i] . Branch_pid. term()

;

if (Param. PS. debug&DEBUG_TERM)
printf ("Term: Branch Xd Term\n",i);

break;
case SINK: /* To Sink LP */

Param.PS.ps_pid[i] . Sink_pid. term()

;

if (Param.PS.debug&DEBUG_TERM)
printf ("Term: Sink Xd Term\n",i);

break;

case QUE_SRV: /* to Queue and Server LP */
Param.PS.Que_pid[i] . term()

;

Param.PS.ps_pid[i] . Srv_pid. term()

;

if (Param.PS.debug&DEBUG_TERM)
printf ("Term: Queue/Server id Term\n",i);

break;
default:

fprintf(stderr, "Term: Invalid Type (Zd)\n",
Param.PS.type[i]

)

;

}

}

/* Send a terminate message to each Resolver */
for (i=0; i < num_Res; i++)

Res[i] .term()

;

/* Tell Collector That Termination is Complete */
Param.PS.Col_pid.term()

;

or terminate; /* Terminate */
}

150

F.27: resolver.cc

(/include "dclr.h"
^include "graph. h"

^include "Pid.h" /* Scott's Pid includes */
((include "defs.h" /* Scott's DL includes */
iPinclude "spec.h" /* Scott's DL includes */

* resolver.cc — by Edward Vopata
************»****t*t«*«(,m,lmHMjitlM4t,j, (t,i„,iltjtl4rtMHtt
* The deadlock resolver process.
* 1. Create a list of all the branches in the simulation
* 2. Wait for deadlock to be reported
* 3. For each branch int the simulation
* a. Determine it's state.

If the branch is sending, intercept the messages and get
* the timestamp

If the branch is accepting, query the branch for the
* current time.

b. send a Resolver NULL message on every unused outgoing line
* of the branch

*/

* Function:
* setup_graph(

)

* Parameter:
* Param - resolver parameter table
* Summary:
* Create a list of all the branches in the simulation.
**********»«***»#*«*»**********««««**************»«*.**«##*,**,(
*/

static void setup_graph(Param)
struct res_param_rec *Param;
{

struct list_rec *list; /* The list of branches */
register i; /* index */

Param->list - NULL; /* Empty List */

/* Step through the process table (PS) */
for (i»0; i < Param->PS.num_nodes; i++) {

/* If the logical process is a branch, create a new
* list element and add the element to the list
*/

if (Param->PS.type[i] — BRANCH) {

if (Param->list »= NULL) {

/* If the list was empty before */
Param->list »

(struct list_rec *)malloc (sizeof (struct list rec));
list • Param->list; ~~

}

151

else {

/* If the list was NOT empty before */
list->Next =

(struct list_rec *)malloc (sizeof (struct list_rec));
list » list->Next;

}

/* Put in some extra useful information */
list->ID = i;

list->Brn_pid - Param->PS .ps_pid[i] . Branch pid;
list->Next = NULL;

}

}

* The Resolver Process.
*******«»•*************«*#********»***»*»*»»**»*„,„,»«**********#**
*/

process body resolverO
{

register i,id,t_id; /* Indexes */
struct res_param_rec *Param; /* Resolver Parameter table */
struct list_rec *list; /* List of branches */
struct list_rec state; /* Past state information */
ITEM Item; /* Resolver NULL message */
int Done = FALSE; /* Termination Flag */
struct {

'

RES_SEND Res_send; /* Transaction Pointer to Dest */
long pid; /* Process ID of Destination */

} brn_line;

/* Allocate space for the parameter table, it is large */
Item.data[OJ '\0'

;

'

Param = (struct res_param_rec *)
malloc(sizeof (struct res_param_rec))

;

/* Get the resolvers Process id */
Param->my_pid « (process resolver)c_mypid(

)

;

/* Get the parameter table, takes three transactions */
accept setupl(ID,ID2,dead) {

Param->ID = ID;
Param->ID2 - ID2;
Param->dead - dead; }; /* pid of deadlock detector */

accept setup2(PS) { Param->PS = PS; }; /* process table */
accept setup3(0ut) {Param->out = Out; }; /* Out Graph */

if (Param->PS.debug&DEBUG_RESOLVE) /* Resolver tracing */
printf("Resolver: Setup Complete\n"

)

;

/* get the list of branches */
setup_graph(Param)

;

for (;;) {

select {

(!Done): /* wait for a deadlock report */
accept report(pid) {

if (Param->PS.debug&DEBUG_RESOLVE) /* Resolver tracing */
print f

("Resolver: Deadlock reported\n")

;

t re turn 0;

};

/* Once deadlock is reported, Resolver it */
list • Param->list;
if (Param->PS.debug&DEBUG_RESOLVE) /* Resolver tracing */

printf ("Resolver: list XX\n" , list)

;

/* For each branch in the list */
while (list != NULL) {

id • list->ID;
/* Get the state of the branch */

state. state =

Param->dead.getstate(Param->PS.ps_pid[id] .pid)

;

/* If in a RUNNING State, abort resolution */
if ((state. state & OxF8000000) »• (3«27)) break;

/* If in a SENDING State, intercept the message */
if ((state. state & OxF8000000) == (2«27)) {

/* DO NOT REMOVE THIS SECTION OF CODE */
if (Param->PS.debug&DEBUG_RESOLVE)
printf ("Resolver: Intercept, form XX to ZX\n"

,

Param->PS.ps_pid[id] .pid,
state. state S. 0x07FFFFFF)

;

Param->dead.intercept(Param->PS.ps_pid[id] .pid,
(state. state & 0x07FFFFFF)

,

Param->my_pid. intercept_response)

;

accept intercept_response(item, status) {

if (status =- 0) {

bcopy(item.outbuf , & Item, sizeof (ITEM))

;

state. sim_time « Item.Time_Stamp;

else {

fprintf (stderr, "Could Not intercept\n")

•

}

}

else {

/* If state is ACCEPTING, query the branch */
state, sim time =

}

Param->PS.ps_pid[id] . Branch_pid.get_time(
)

;

/* Create a Resolver NULL message, using the
* t * ~

* c

V

* time obtained from the intercepted message
* or from the branch itself

Item.Item_type MSG_NULL;
Item. Time_S tamp Item. Arrive_Time state . sim_time

;

Item.Hop_Count = Param->PS .Max_Hop_Count

;

Item.Id_of_Src » Param->ID;
ltem.data[0] = '\0';

/* For each outgoing line of the branch */
for (i=0;i < Param->out.out_graph[id] .num_out ; i++) {

t_id = Param->out .out_graph[id] .out [i]

;

/* Get a transaction pointer of the destination */
switch (Param->PS. type[t_id]) {

case BRANCH:
brn_line.pid =

(long)Param->PS.ps_pid[t_id] .Branch_pid;
brn_line .Res_send

Pa ram->PS
.
ps_pid [t_id] . B ranch_pid . Res_send

;

break;
case SINK:

brn_line.pid *

(long)Param->PS.ps_pid[t_id] .Sink_pid;
brn_line.Res_send

Param->PS
.
ps_pid [t_id] . Sink_pid . Res_send

;

break;
case QUE_SRV:

brn_line.pid =

(long)Param->PS.Que_pid[t_id]

;

brn_line .Res_send =

Param->PS
.
Que_p id [t_id] . Res_send

;

break;
default:

fprintf (stderr, "Resolver: Invalid type (Zd)\n",
Param->PS. type[t_id])

;

/* If the branch is sending on that line,
* ignore it.
*/

if ((state. state & 0xF8000000) =- (2«27) &&
((state. state & 0X07FFFFFF) == brn_line

.
pid)) {

continue;
}

/* otherwise send the resolver NULL message
* as an asynchronous message
V

(*brn_line.Res_send) (Item)

;

}

/* Record current State information */
state. ID list->ID;
state. Next - list->Next;
if (Param->PS.debug&DEBUG_RESOLVE)

{

printf("old state ZX new state = 2X\n",
list->state, state. state)

;

printf("old sim_time - Zlf new sim_time - Zlf\n",
list->sim_time, state. sim_time)

;

}

(*list) • state;
list - list-> Next;

}

/* Tell deadlock detector, that deadlock has been
* resolved.
*/

Param->dead.enable_detect()

;

if (Param->PS . debug&DEBUG_RESOLVE

)

printf ("Resolver: RESOLUTION COMPLETE\n")

;

f flush(stdout)

;

fflush(stderr)

;

or
(Done): /* During termination, ignore deadlock reports */
accept report(pid) {

if (Param->PS.debugS,DEBUG_RESOLVE)
printf ("Resolver: Deadlock reported: Ignored\n")

;

treturn 0;

};

or

/* accept a terminate message */
accept term() {};

Param->dead. term()

;

Done = TRUE;
or
(Done)

:

terminate; /* Terminate */

c_sch(); /* Schedule another process */
delay 1.0; /* wait a while */

F.28: set.cc

^include "dclr.h"

* set.cc — by Edward Vopata
*

* Set operations:
* A Set is composed of an array of long integers (16 bits).
* The sets are manipulated by bit operations. The size of the SET
* is determined by the number of CHUNKS

*/

* Function:
* set_add()
* Parameter:
* set - The Set
* elem - The Element to be added to the SET
* Summary:
* Set the bit in the set corresponding to elem

*/
void set_add (set, elem)
SET set; /* The SET */
int elem; /* Element to add to the SET */

register shift, entry; /* Shift and entry variables */

/* Make sure elem is in proper range */
if ((elem < 0) || (elem > SETLEN - 1))

fprintf (stderr, "add_set: element (*d) out of range \n" , elem)

•

else {

shift = elem Z 32; /* Calculate which bit in a entry */
entry = elem / 32; /* Calculate which entry */

/* Set the proper bit in the set */
set [entry] |- (long)(l « shift);
/* printf ("set_add:set Zx set[0] Zx\n" , set , set [0])

; */

}

/*****************#****#**********»«*****«*»«****««*«*«*********
* Function:
* set_union()
* Parameter:
* setl - A Set
* set2 - Another Set
* Summary:
* create the union of two sets. setl <- setl UNION set2

»»t»»tMM*»**» (, t»H„,(4»»M.,M4„„ f„M„M4]|MttlttH(tH((t
*/

void set_union (setl,set2)

SET setl, set2;

{

register i; /* Index */

/* Do the union by setting every bit in setl that is set
* also set in set2. Use bitwise OR.
*/

for (i=0; i < CHUNKS; i++) setl[i] |= set2[i]j

/**
* Function:
* set_in()
* Parameter:
* set - A set
* elem - An element
* Summary:
* Determine if the element "elem" is in the set.
* Return: (FALSE) if "elem" is NOT in the set.
* 1 « (elem X 32) (TRUE) if "elem" is in the set.
**
*/

int set_in(set,elem)
SET set; /* the Set */
int elem; /* the element in question */

register shift, entry; /* Shift and Entry */

/* Make sure "elem" is in the proper range */
if ((elem < 0) || (elem > SETLEN - 1))

fprintf (stderr, "in_set: element (2d) out of range\n" , elem)

;

shift - elem X 32; /* Offset from the start of a chunk */
entry - elem / 32; /* Determine which chunk */

/* Determine if elem is in the set */
return (set[entryj & (1 « shift)); /* Return or NOT */

/**
* Function:
* set_full()
* Parameter:
* set - A Set
* max - Number of bits to check
* Summary:
* Determine if there are "max" number of bits set in the Set.
* Returns: (FALSE) if there are not "max" bits set
* 1 (TRUE) if there are "max" bits set
****»**«***»*******«**********»+*******#****•*»»***********«**.#»*!
*/

int set_full(set ,max)
SET set;
int max

;

{

register i, shift, entry; /* Shift and Entry */

/* Make sure "elem" is in the proper range */
if ((max < 0) || (max > SETLEN))

fprintf (stderr, "full_set: max (Id) out of range\n" ,max)

;

shift = max X 32; /* Offset from the chunk */
entry = max / 32; /* determine proper chunk */

/* determine if all the bits in the chunks less then
* entry are set. If not return FALSE.
*/

for (i=0; i < entry; i++) {

if ((set [i] i OxFFFFFFFF) != OxFFFFFFFF) return FALSE;
}

/* Check the last (entry) chunk (which may only be a
* partial chunk) to determine if "shift" number of
* bits are set.
*/

if ((set [entry] & (long)((l « shift) - 1)) !=
(long) ((1 « shift) - 1))

return FALSE; /* If not return FALSE */

/* If we get here then there were "max" bits set
* so return TRUE
*/

return TRUE;

F.29: stats. cc

include "dclr.h"

/**
* stats. cc — by Edward Vopata
**
* Function for gather statistical information. These function use
* the Stats structure defined in "stats. h".
*

* Stats_Init — initialize a Stats struct
* Stats_Val — add a value to a Stats struct
* Stats_Mean — calculate the average of a Stats struct
* Stats_STD — calculate the standard deviation of a Stats struct
*

* These function kept track of the number of values added to the
* Stats struct, the sum of the values, the sum of the values~2,
* and the maximum entered value.
**

V
/***,**********************
* Function :

* Stats_Init()
* Parameter :

* p - pointer to a STATS structure
* Summary i

* Initialize the values within the STATS structure.
* number of value, sum of the value, and sum of the values square
* are assigned 0, max value is assigned -1 (a very small value).
**
*/

void Stats_Init(p) /* Initialize a "stats' structure */
STATS *p;

'

{

p->num_val =0; /* number of value <= */
/* max. value <= -1 (very small value) */
/* sum of the values <= */
/* sum of the values~2 <= */

p->max_val = -1.0
p->sum_val - 0.0
p->sum_sq = 0.0

}

/**
* Function :

* Stats_Val()
* Parameter:
* p - pointer to a STATS structure
* v - floating point value
* Summary :

* Update a STATS structure with value v. First check to see if
* v is a maximum value and if so, store v in max val

.

* update num_val, sum_val, and sum_sq.
**
*/

void Stats_Val(p,v) /* Add a value to a "stats" structure */
STATS *p; '

double v;

{

/* Update the max. value if necessary */
if (v > p->max_val) p->max_val = v;
p->num_val +- 1

;

/* we have another value, increment */
p->sum_val += v; /* add the value to the sum */
p->sum_sq +- (v * V) ; /* add the value~2 to sum_sq */

/* print the values of the STATS structure */
/* Needs to have a Debug Flag */

/*

printfcsTATS-ZX val = rid, sum_val tit, sum_sq llf max Zlf\n",
p,p->num_val,p->sum val,p->sum sq,p->max val):

*/
"

}

/****»*************#********»**»***««**»»*******»*»*****+»*#,***«
* Function :

* Stats_Mean()
* Parameter:
* p - pointer to a STATS structure
* Summary :

* Calculate the mean (average) of all the values that have been
* added to the STATS structure. If there has been no values added,
* then return 0. (Prevents divide by zero errors).
* Seturn:

* mean = sum_val / num_val

.

*/

doiale Stats_Mean(p) /* Return the mean value from STATS struct */
STi'S *p;

{

/* calculate and return the average of the Stats struct */
return (p->num_val != 0) ? p->sum_val/p->num_val : 0;

/**-'*************************-i,***tn,-n,* i:n,i,.i,.l, i, i, i, i, ti, 1, i, 1, i, i, i, i, i, ict, i. i!i, ttt, i,

' Function :

Stats_STD()
* Parameter:
* p - pointer to a STATS structure
* Summary :

* Calculate the Standard Deviation (STD) of a STATS structure.
* (Beware of structures that have not had values added to them).
* Return:
* STD = square_root((sum_sq / num_val) - (mean * mean)

)

•/
double Stats_STD(p)
STATS *p;

{

double avg; /* Average of a STATS structure */

if (p->num_val « 0) return 0; /* Check for no values in STATS */
else

/* Calculate average of STATS, (could call Stats_Mean()
) */

avg • p->sum_val / p->num_val;
/* Calculate and return the standard deviation of the
* Stats struct. May have problems with negative values.
*/

return sqrt(p->sum_sq / p->num_val - avg * avg);

161

F.30: sock.cc

^include "dclr.h"

I **
* sock.cc — by Edward Vopata
*

* sock.cc — handle socket or file interaction.
* getline — read a line from a socket or file.
* putline — write a line to a socket of file.
* These functions handle the input and output to the socket or file
* as necessary. Each function has 3 parameters (sock, line, debug).
* sock : is the socket descriptor or file descriptor, getline and

putline assume that the socket or file is correctly open.
* line : is the the input/output string, it is 128 character long.
* debug : is a flag to enable debugging. In debug mode getline and
* putline will print what was read on the socket/file in

getline, and what WAS written on the socket/file after
* the write was completed.
**
*/

/**
* Function:
* getlineO
* Parameter:
* sock - socket/file descriptor
* line - input buffer
* debug - Debugging flag
* Summary:
* Read a line of data from the socket into the buffer "line".
* Description
* 1. Clear the input buffer. Zero file "line" (bzero).
* 2. Read from the sock (descriptor) into line (size MAXLINE).
* 3. Make sure the line ends with a null (\0), since the line will
* be treated as a string.
**
*/

void getline(sock, line, debug)
int sock; /* Socket/file descriptor */
char *line; /* I/O buffer */
int debug; /* Debugging flag */

/* Clear the buffer (to zero) */
bzero (line, (sizeof (char)*HAXLINE))

;

/* Read the socket/file into the buffer */
readfsock, line, MAXLINE)

;

/* Put a Null (\0) at the end of the buffer */
line(MAXLINE-l] - '\0';

/* If Debug Mode then Print the original line and flush
* standard out to make sure the line is displayed. */

if (debug) {

printf ("getline: [*s]\n", line);
fflush(stdout)

;

}

* Function:
* putline()
* Parameter:
* sock - socket/file descriptor
* line - output buffer
* debug - Debugging flag
* Summary:
* Write a line of data from buffer "line" to the socket.
* Description:
* 1. Pad the line with spaces on the right to form a line
* of length — MAXLINE.
* 2. Write the padded line to the socket (or file).

*/
void putline(sock, line, debug)
int sock; /* Socket/file descriptor */
char *line; /* I/O buffer */
int debug; /* Debugging flag */

char outline[130]
; /* outgoing line */

/* Pad the outgoing line with blank on the right */
sprintf (outline, "*-127s\n" , line)

;

/* If Debug Mode then Print the outgoing line */
if (debug) printf ("putoutline: [Is]\n", outline)

;

/* Write the outgoing line to the socket or file */
write (sock, out line, 128)

;

/* If Debug Mode then Print the original line and flush
* standard out to make sure the line is displayed. */

if (debug) {

print f("put line: [Xs] \n" , line)

;

fflush(stdout)

;

>

* May want to redo this section using "fgetsO" to read in lines
* and "fprintfO" to write lines. This will require a "FILE"
* pointer, which can be create by using "fdopen" on the socket
* descriptor.
* — Ed Vopata

F.31: distrib.cc

/^include <math.h>
ji include "rand.h"
((include "distrib.h"

I ** ****************************
* distrib.cc — by Edward Vopata
***„, **„**
* Stochastic distribution functions.
* the get_time() function returns a service or arrival time,
* based on the specified stochastic distribution function and
* parameters.
*** j******,^
*/

/* Forward Declaration of the stochastic distribution functions */
long binomial ()

;

long poissonf)

;

long uniform();
double beta()

;

double erlangO;
double expntl()

;

double gamma()

;

double lognormalf)

;

double normal ()

;

double weibull()

;

/**t****M»*** t***i*Mt**«**t,»tHtMli*t»MH1MJ|M„„)ht4)ltHt]llll)1
* Function:
* get_time()
* Parameter:
* dis - specifies the stochastic distribution function to use,
* and the parameter to use with the function.
* Summary:
* Use the specified stochastic distribution function to generate
* a random variable. The get_time function is used to generate
* service and arrival times.
* Returns:
* a floating point value greater than zero (0). Note: the time
* return may be zero (0).

*/
double get_time(dis)
struct distrib_rec dis;
{

double time; /* arrival or service time */

do {

/* Determine which distribution function to use */
switch(dis. type) {

/* If FIXED, time <= the fixed. time parameter */
case FIXED:

time - dis. DIS. fixed. time:

if (dis. debug) printf("Fixed time = Zlf \n" , time)

;

break;

/* If UNIFORM, time <» uniformO */
case UNIFORM:

time = uniform(dis. DIS. uniform. lower, dis. DIS. uniform. upper)

;

if (dis. debug) printf("Uniform time - Zlf\n" , time)

;

break;

/* If POISSON, time <= poisson() */
case POISSON:

time poisson(dis. DIS. poisson. mean)

;

if (dis. debug) printf("Poisson time « Zlf \n" , time)

;

break;

/* If BINOMIAL, time <= binomial() */
case BINOMIAL:

time = binomiaKdis. DIS. binomial .trials, dis. DIS. binomial. prob)
;

if (dis. debug) printf("Binomial time = Ilf \n" , time)

;

break;

/* If EXPNTL, time <- expntK) */
case EXPNTL:

time = expntl(dis. DIS. expntl. mean)

;

if (dis. debug) printf("Expntl time - Ilf \n" , time)

;

break;

/* If NORMAL, time <= normal () */
case NORMAL:

time normal(dis. DIS. normal .mean, dis. DIS. normal .stdev)

;

if (dis. debug) printf("Normal time = Zlf\n" , time)

;

break;

/* If GAMMA, time <= gammaO */
case GAMMA:

time = gamma (dis. DIS. gamma, mean, dis. DIS. gamma, k) ;

if (dis. debug) printf("Gamma time • 21f \n" , time)

;

break;

/* If BETA, time <- beta() */
case BETA:

time = betafdis. DIS. beta. kl.dis. DIS. beta. k2)

;

if (dis. debug) printf("Beta time = Zlf \n" , time)

;

break;

/* If ERLANG, time <= erlangO */
case ERLANG:

time = erlang(dis. DIS. erlang. mean, dis. DIS. erlang. k) ;

if (dis. debug) printf("Erlang time = %lf \n" , time)

;

break;

/* If LOGNORMAL, time <= lognormalo */
case LOGNORMAL:

time = lognormal (dis . DIS . lognormal .mean, dis .DIS . lognormal . stdev)

;

if (dis. debug) printf("Lognormal time - Zlf \n" , time)

;

break;

/* If WEIBULL, time <= weibull() */
case WEIBULL:

time weibull(dis. DIS. weibull. shape, dis. DIS. weibull .scale)

;

if (dis. debug) printf ("Weibuil time • Zlf \n" , time)

;

break;
}

/* Keep doing this until a positive time value is found
* (This may loop forever in some cases?
V

} while (time < 0.0)

;

/* Truncate the functions if min or max time is set (> 0) */
if (dis.min_time > 0.0 && time < dis .min_time) time = dis .min_time

;

if (dis.max_time > 0.0 && time > dis .max_time) time • dis .max_time

;

return time; /* return the time */

* Stochastic Distribution Functions *

* These function are from Monte Hall's Thesis [HALL88] *
**
*/

I* Discrete Statistical Distributions */

/* INTEGER UNIFORM [a,b] RANDOM VARIATE GENERATOR */
/* */
/* This function requires two integer bounds as input */
/* parameters which represent the range in which the */
/* integer random variates are generated. */
/* */

long uniform(lower, upper)
long lower, upper;
{

long c;

c « (long) (lower + (upper - lower) * drandOlO);
return (c)

;

f* POISSON RANDOM VARIATE GENERATOR */
/* */
/* This poisson distribution is usually used to model */
/* the number of arrivals in a given amount of time. */
/* It is related to the exponential function. The mean */
/* is required as an input parameter, and an integer */
/* random variate is generated. */

£__ */

v

long poisson(mean)
double mean;

{

long n;

double x,y;

n = 0;

if (mean > 6.0) return ((long)normal (mean, sqrt (mean)))

;

else {

y exp(-l * mean)

;

x = drand01()

;

while (x >- y) {

n = n + 1;

x = x * drandOK) ;

}

return (n)

;

}

}

/* BINOMIAL RANDOM VARIATE GENERATOR */
/* */
/* According to the SIMSCRIPT book description from */
/* which these functions were borrowed, the binomial */
/* distribution represents the integer number of */
/* successes in n independent trials, each having prob- */
/* ability of success p. */
/* */
/*

,J

long binomial(num,prob)
long num;
double prob;
{

register i;

long sum = 0;

for (i - 0; i < num; i++)
if (drand01() <= prob) sum +- 1;

return (sum);
}

/••a***,

/* Continuous Statistical Distributions */

/* BETA RANDOM VARIATE GENERATOR */
/* */
/* The input parameters to beta are two variables, which */
/* when put together in the formulas below determine the */
/* mean (mu) and standard deviation (sd) of the distri- */
/* bution: */
/* */
/* mu = kl / (kl + k2) */

/* sd = sqrt((kl * kZ) / (sqr(kl + k2) * (kl + k2 + 1) */
/* */
/* v
double beta(kl,k2)
double kl,k2;

{

double x;

}

x = gamma (kl,kl)

;

return (x / (x + gamma(k2,k2)))

j

J* ERLANG RANDOM VARIATE GENERATOR */
/* */
/* An erlang function is a special case of a gamma */
/* function when k is an integer. If k = 1, then the */
/* erlang function is the same as the exponential */
/* function. The mean (x) and a constant (k) are the */
/* input parameters to the function. An extra test was */
/* added to this code to assure that the value of the */
/* variable e was not equal to zero, primarily so the */
/* logarithm function would not be passed a parameter */
/* equal to zero. */
/* */
ft */

double erlang(mean,k)
double mean;
long k;

{

register i;

double e;

do {

e = 1.0;
for (i=0; i < k; i++) e •» drandOK);

} while (e — 0.0)

;

return (-(mean/k) * log(e));

/* EXPONENTIAL RANDOM VARIATE GENERATOR */
/* */
/* The input parameter for an exponential distribution */
/* is the mean (x). The variance for an exponential */
/* distribution is simply the square of the mean. */
/* */
/* v
double expntl (mean)
double mean;
{

double y;

while ((y = drandOK)) == 0.0);
return { (-mean) * log(y))

;

GAMMA RANDOM VARIATE GENERATOR

The gamma function requires a mean (x) and a constant
(k) as input parameters. If k is an integer, then
this function is the same as the erlang function. If
k is equal to one, this function is the same as the
exponential function. If k is equal to one-half,
this function is the same as the chi-square distri-
bution. The density function for this distribution
is given below:

f(x) -
((1 / (k-1)! * pow(b,k)> *

pow(x,(k-l)) * exp(-x/b))

where the following holds:
k > 0, b > 0, and x >-

and the mean is: x = k * b
and the variance is: var = sqr(b) * k

The gamma function has smaller variance and more
control in parameter selection, and therefore more
realistically represents observed data, such as
service times. It is often used in preference to the
exponential function, and is closely related to the
beta and erlang functions, according to the SIMSCRIPT
book from which these functions where borrowed.

double gamma (mean, k)
double mean, k;

{

double z,a,b,d,e,x,y,w, v;
long kk;
register i;

z - 0.0;
kk - (long) k; /* truncation of k */
d = k - kk; /* fractional of k */

if (kk != 0) {

do {

e = 1.0;
for (i=0; i < kk; i++) e *= drandOK);

} while (e — 0.0);
z - -(log(e));
if (d — 0.0) return((mean / k) * z);

}

a - 1.0 / d;

b = 1.0 / (1.0 - d) ;

y 2.0;

while (y > 1.0) {

}

x = pow(drand01 () ,a)

;

y - (pow(drandOK) ,b)) + x;

}

w - x / y;
while ((v = drandOK)) == 0.0);
y - -(log(v))

;

return ((w * y + z) * (mean / k));

/* LOG NORMAL RANDOM VARIATE GENERATOR */
/* */
/* This function requires a mean and standard deviation */
/* (sigma) as input parameters. The log normal function */
/* is often used to characterize skewed data. The mean */
/* and variance of this distribution function are given */
/* below: */
/* */
/* mu = exp(mean + (sqr(sigma) / 2)) */
/* sig - exp((mean * 2) + (sqr(sigma))) * */
/* ((exp (sqr(sigma))) - 1) */
/* */
/* v
double lognormalfmean, stdev)
double mean, stdev;

{

double s,u;

s - log((stdev * stdev) / (mean * mean) + 1);
u = log (mean) - (0.5 * s);
return (exp(normal(u, sqrt (s))))

;

}

I* NORMAL RANDOM VARIATE GENERATOR */
/* */
/* The normal distribution function provides a "bell- */
/* shaped curve". It requires the mean (mu) and stan- */
/* dard deviation (sigma) as input parameters. If in- */
/* appropriate relative values of mean and standard */
/* deviation are entered, it is possible that the "tail" */
/* of the function can extend into the negative region */
/* of the graph (x-axis). This could cause some */
/* complications in regard to generating service times, */
/* which have no meaning if negative. An extra test was */
/* added to this code to recalculate a new random */
/* variate if a variate of less than zero is generated. */
/* */
/* „'j

double normal (mean, stdev)
double mean, stdev;
{

double q, r, s , x,xx,y
, yy

;

- 170

do {

s = 2.0;
while (s > 1.0) {

x = drand01()

;

y (2.0 * drandOK)) - 1;

xx x * x;

yy - y * y;
s xx + yy

;

}

while ((x drandOK)) == 0.0);
r = sqrt((-2.0) * log(x)) / s;

q r * stdev * (xx - yy) + mean;
} while (q <= 0.0)

;

return (q)

;

/* WEIBULL RANDOM VARIATE GENERATOR */
/* */
/* This function can represent several families of */
/* distribution functions depending on the values of the */
/* input parameters. If the shape parameter is equal to */
/* one, then this function is the same as the exponen- */
/* tial function with a mean equal to the scale para- */
/* meter. There is also a similarity between this */
/* function and the gamma distribution when the shape */
/* parameter is set equal to two. */
/* */
/* */

double weibull (shape , scale)
double shape, scale;
{

double x;

while ((x = drandOK)) « 0.0);
return (scale * pow((-log(x)) , (1 . / shape)));

}

F.32: stats rpt .cc

#include "dclr.h"

/**
* stats_report .cc — by Edward Vopata

* function Print_Stats()

-- create a file of the collective
* statistical reports. This is a more complete report then what
* is sent to the graphics front-end.
**

*/

/* Statistics Report Status */
#define NOT_DONE
#define TERM_TIME 1

#define ALL_SUNK 2

/**
* Function:
* Print_Stats(

)

* Parameter:
* Param - collector parameter table
* head - pointer to the head of the
* status - status of the collector
* Summary:
* add a collective statistics report to the "Stats_Report " File
* Description:
* open the file "STATS_REPORT_NAME" (defined in dclr.h) and
* write the current statistics report to the file. This report
* is in a human readable format.
**

*/
void Print_S tats (Param, head, status)
struct col_param *Param;
struct col_rec *head;
int status;
{

FILE *fp; /* File pointer */
register i; /* Index */
double Time; /* Interval Time */

/* Open the file */
fp = fopen (STATS_REPORT_NAME, "a");

Time = (head->i_num * Param->PS .stats_interval) +

Param->PS . stats_interval

;

/* Print header, with interval number and interval time */
fprintf (fp, "\n")

;

fprintf(fp, "- ====„„„„: ,

\n "J
.

fprintf (fp, "-- Interval Number: Z-41d ", head->i_num)

;

fprintf (fp, "Interval Time: Z-14.41f ==\n", Time);
fprintf (fp, "-====—==«=«—..======«====")

;

fprintf (fp, "= -—======-—„„_„«,Vl
.

)
.

/* Print Status of Collector */
switch (status) {

case TERM_TIME:
fprintf (fp, "Status: Termination Time reached\n");
break;

case ALL_SUNK:
fprintf (fp, "Status: All Sunk\n");
break;

case NOT_DONE:
default:

fprintf (fp, "Status: Normal\n");
break;

}

/* For each logical process that has reported statistics
* print the stats for that lp.
*/

for (i=0; i < Param->PS.num_nodes; i++) {

if (set_in(head->modif ied, i)) {

switch (Param->PS.type[i)) {

case SOURCE:
/* Print Source Statistics */

fprintf (fp,"\n -
)

;

fprintf (fp, "Source: Z2d Interval: Z.41f
fprintf (fp, "Simulation Time: Z.41f\n",

head->Stats[i] .Src_stats->sim_time)

;

fprintf (fp," Inter Arrival Time
fprintf (fp," Ave STD MA
fprintf (fp,"Z8.31f Z8.31f Z8.31f

head->Stats[i] . Src_stats->ave_iit,
head->Stats[i] . Src_stats->std_iit

,

head->Stats[i] .Src_stats->max_iit,
head->Stats[i] . Src_stats->num_lef t)

;

break;

, i.Time)

;

Number\n")

;

Left\n")

;

Z41d\n",

case QUE_SRV:
/* Print Queue and Server statistics */

fprintf(fp, "\n")

;

fprintf (fp, "Queue/Server: Z2d Interval: Z.41f
fprintf (fp, "Simulation Time: Z.41f\n",

head->Stats[i] .Q_Srv_stats->sim_time)

;

fprintf (fp, "Queue: Full: Z6.21fZZ Num Through Queu
head->Stats[i] .Q_Srv_stats->q_stats .per_full,
head->Stats[i] .Q_Srv_stats->q_stats.num through q

fprintf(fp,"\n");
"

fprintf (fp," Average Time in Queue ")
fprintf (fp, "Average in Queue Num in\n");
fprintf (fp," Ave STD MAX Ave
fprintf (fp, "STD MAX Queue\n")

;

fprintf (fp, "Z8.31f XS.ilt Z8.31f ",

head->Stats[i] .Q_Srv_stats->q_stats .ave_time_in_q
head->Stats[i] .Q_Srv_stats->q_stats.std_time_in_q

Time)

;

e: Zld",

);

173

head->Stats[i] .Q_Srv_stats->q_stats . max_time_in_q)

;

fprintf (fp, "Z8.31f Z8.31f Z8.31f Z41d\n",
head->Stats[i]

.
Q_Srv_s tat s->q_s tats .ave_in_q,

head->Stats[i] .Q_Srv_stats->q_stats.std_in_q,
head->Stats [i] .Q_Srv_stats->q_stats . max_in_q,
head->Stats[ij

.
Q_Srv_stats->q_stats .num_in_q)

;

fprintfffp, "\n")

;

/* Print the Server Stats */
fprintf(fp, "Server: Busy: Z6.21fZZ\n",

head->Stats[i] .Q_Srv_stats->per_busy)

;

fprintf (fp, " Average Time In System ");

fprintf(fp, "Average Service Time Number\n");
fprintf(£p," Ave STD MAX ");

fprintf (fp, "Ave STD MAX Serviced\n")

;

fprintf(fp, "Z8.31f Z8.31f Z8.31f ",

head->Stats [i] .Q_Srv_stats->ave_time_in_sys,
head->Stats [i]

.
Q_Srv_stats->std_time_in_sys

,

head->Stats[i]
.
Q_Srv_stats->max_time_in_sys)

;

fprintf (fp, "Z8.31f Z8.31f Z8.31f Z41d\n",
head->Stats[i] .Q_Srv_stats->ave_serve_time

,

head->Stats[i]
.
Q_Srv_stats->std_serve_time

,

head->Stats [i]
.
Q_Srv_stats->max_serve_time

,

head->Stats [i j .
Q_Srv_stats->num_served)

;

break;

case SINK:
/* Print Sink Stats */

fprintf (fp, "\n")

;

fprintf (fp, "Sink: Z2d Interval: Z.41f ",i,Time);
fprintf (fp, "Simulation Time: Z.41f\n",
head->Stats [i] . Sink_stats->sim_time)

;

fprintf (fp," Number Sunk: Zld\n",
head->Stats[i] . Sink_stats->num_sunk)

;

break;

default:
fprintf (stderr, "Print_Stats: Invalid type (Zd)\n",

Param->PS. type[i])

;

break;
}

}

}

fclose(fp); /* Don't forget to close the file */

}

F.3_3: out graph . cc

^include "dclr.h 1*

inc lude "graph .
h

"

#include "Pid.h"
inc lude "defs.h"
^include "spec.h"

* out_graph.cc — by Edward Vopata
***^ + * Alt.

* function : print_out_graph() creates a file "OUT_GRAPH_NAME" as
* defined in dclr.h containing the Out Graph of the input model.
* The Out Graph is a list of the logical process and the process
* which they may send messages. The Out Graph is very useful in
* insuring that the input model was correctly received.

*/

* Function:
* print_out_graph(

)

* Parameter:
* PS : Process table
* Out : Out Graph
* Res : List of resolver processes
* num_VP : Number of resolver processes
* Summary:
* Print an Out Graph of the logical process and who they can
* send messages to.
* Description:
* open the file "OUT_GRAPH_NAME" (defined in dclr.h).
* for each logical process write it's process id, the number of
* incoming line, the number of outgoing lines, and the ID of any
* logical process that the process can send messages (if
* appropriate). Also print the process id of the collector,
* terminator and all the resolver processes.

*/
void print_out_graph(PS , Out , Res , num_VP

)

struct PS_REC *PS;
struct out_list *Out;
process Resolver *Res;
int num_VP

;

{

FILE *fp; /* File pointer */
register i,j; /* Indexes */

/* Open the file */
fp = fopen(OUT_GRAPH_NAME, "w")

;

/* For each logical process in the process table (PS) */
for (i=0;i < PS->num_nodes; i++) {

/* For each type of logical process */
switch (PS->type[i]) {

175 -

}

case SOURCE:
/* For the Source: print ID, pid, and ID of destination */

fprintf(fp, "Source [%3d] pid[ZX] To[Z3d]\n" , i,
PS->ps_pid[i] .pid, Out->out_graph[i] .out [0])

;

break;

case SINK:
/* For the Sink: print ID, pid, number incoming liens */

fprintf (fp, "Sink [Z3d] pid[ZX] #in[Z3d]\n" , i,
PS->ps_pid[i] .pid, Out->out_graph[i] .num_in)

;

break;

case QUE_SRV:
/* For the Server: print ID, pid, ID of destination */

fprintf(fp, "Server [Z3d] pid[ZX] To[Z3d] \n" , i,
PS->ps_pid[i) .pid, Out->out_graph[i] .out [0])

;

/* For the Queue: print ID, pid, number of incoming lines */
fprintf(fp, "Queue [Z3d] pid[ZX] #in[Z3d] \n" , i,

PS->Que_pid[i] , Out->out_graph[i] .num_in)

;

break;

case BRANCH:
/* For the Branch: print ID, pid, number incoming lines,
* number of outgoing lines, and the list of destinations
*/

fprintf(fp, "Branch [Z3d] pid[ZX] #in[Z3d] #out[Z3d] To ",i,
PS->ps_pid[i] .pid, Out->out_graph[i] .num_in,
Out->out_graph[i] .num_out)

;

for (j=0;j < Out->out_graph[i] .num_out
; j++)

fprint f (fp, " [Z3d] " ,Out->out_graph[i j .out[j])

;

fprintf (fp, "\n")

;

break;
}

}

/* Print pid of Collector, Terminator and every Resolver */
fprintf (fp, "Collector pid[ZX] \n" ,PS->Col_pid)

;

fprintf (fp, "Terminator pid[ZX] \n" ,PS->Term_pid)

;

for (i-0 ; i<num_VP ; i++)
fprintf (fp, "Res [Z3d] pid[ZX] \n" , i.Res [i])

;

fclose(fp); /* Don't forget to close the file */

176 -

F.34: sizeof.cc

((include "dclr.h"
((include "graph. h"

^include "Pid.h"
((include "defs.h"
#include "queue. h"

/****** it********************************* ********* tic** ******h^+^+h^^
* sizeof.cc — by Edward Vopata
***+
* function: print_size()
* Creates a file of name "SIZE_OF_NAME" defined in dclr.h. The
* generic name is "Size_Of". This function prints the sizes of
* various structures used by the simulator. The Size_Of report is
* very useful in finding structure larger than 4K. (The AT&T C
* compiler (Ver 4.1) has a bug in which when passing structures
* of larger then 4K cause the program to hang or dump core).
* Scott Hammond and I found the previously unknown bug. AT&T
* techincal support certified that the bug was original, and will
* be corrected in the Ver 4.3 update.
it***
*/

/*** *************
* Function:
* print_size()
* Summary:
* print the sizes of various structures used by the distributed
* simulator
* Description:
* open the file "SIZE_OF_NAME" (defined in dclr.h), print the
* size of the various structures (using the C sizeof() function).

*/
void print_size()
{

FILE *fpj /* File pointer */

fp = fopen(SIZE_OF_NAME, "w")
; /* Open the file */

/* Standard types like int, char, double */
fprintf (fp, "\nSize of Standard Types:\n");
fprintf(fp, "int Zd\n" , sizeof (int))

;

fprintf (fp, "long %d\n" , sizeof (long))

;

fprintf (fp, "double Zd\n" , sizeof (double))

;

fprintf (fp, "char 2d\n" , sizeof (char))

;

/* Values used by the simulator */
fprintf (fp, "\nValues:\n")

;

fprintf (fp, "MAXPROC Zd\n" , MAXPROC)

j

fprintf (fp,"MAXFAN Zd\n" .MAXFAN)

;

fprintf (fp, "D_NPROCS Zd\n" , D_NPROCS)

;

fprintf (fp, "D_NPORS %d\n" , D_NPORS
)

;

/* Size of Stochastic Distribution Function Structures */
fprintf (fp, "\nSize of Stochastic Distributions Structures

:
\n")

;

fprintf (fp, "struct fixed_rec Zd\n" , sizeof (struct fixed_rec));
fprintf (fp, "struct uniform_rec Zd\n" , sizeof (struct uniform_rec))

;

fprintf (fp, "struct poisson_rec Zd\n" , sizeof (struct poisson_rec))

;

fprintf (fp, "struct binomial_rec %d\n",
sizeof (struct binomial_rec))

;

fprintf (fp, "struct expntl_rec Zd\n" , sizeof (struct expntl_rec))

;

fprintf (fp, "struct normal_rec Zd\n" , sizeof (struct normal_rec))

;

fprintf (fp, "struct gamma_rec Zd\n" .sizeof (struct gamma_rec))

;

fprintf (fp, "struct beta_rec Zd\n" , sizeof (struct beta_rec));
fprintf (fp, "struct erlang_rec Zd\n" , sizeof (struct erlang_rec))

;

fprintf (fp, "struct lognormal_rec Zd\n",
sizeof (struct lognormal_rec))

;

fprintf (fp, "struct weibull_rec Zd\n" , sizeof (struct weibull_rec))

;

fprintf (fp, "struct distrib_rec Zd\n" , sizeof (struct distrib_rec))

;

/* Parameter for the various logical processes */
fprintf (fp, "\nSize of Parameters

:
\n")

;

fprintf (fp, "struct src_param Zd\n" , sizeof (struct src_param))

;

fprintf (fp, "struct sink_param Zd\n" , sizeof (struct sink_param))

;

fprintf (fp, "struct srv_param Zd\n" , sizeof (struct srv_param));
fprintf (fp, "struct q_param Zd\n" , sizeof (struct q_param))

;

fprintf (fp, "struct brn_param Zd\n" , sizeof (struct brn_param))

;

fprintf (fp, "struct col_param Zd\n" , sizeof (struct col_param));
fprintf (fp, "struct term_param Zd\n" , sizeof (struct term_param>)

;

fprintf (fp, "struct res_param_rec Zd\n",
sizeof (struct res_param_rec))

;

/* Process Table and Processes Data Sizes */
fprintf (fp, "\nSize of Process Table & Data Structures: \n")

;

fprintf (fp, "struct PS_REC Zd\n" , sizeof (struct PS_REC));
fprintf (fp, "union PS_Data_Rec Zd\n" , sizeof (union PS_Data Rec))

;

fprintf (fp, "PS_Data_Rec * MAXPROC Zd\n",
sizeof (union PS_Data_Rec)*MAXPROC)

;

fprintf (fp, "struct Src_rec Zd\n" , sizeof (struct Src_rec));
fprintf (fp, "struct Q_Srv_rec Zd\n" , sizeof (struct Q_Srv_rec));
fprintf (fp, "struct Sink_rec Zd\n" , sizeof (struct Sink_rec))

:

fprintf (fp, "struct fan_rec Zd\n" , sizeof (struct fan_rec));
fprintf (fp, "struct Branch_rec Zd\n" .sizeof (struct Branch rec));
fprintf (fp, "struct queue_list_rec Zd\n",

sizeof (struct queue_list_rec))

;

/* Size of Statistics Collection Structures */
fprintf (fp, "\nSize of Statistics Structures: \n")

;

fprintf (fp, "struct src_stats_rec Zd\n",
sizeof (struct src_stats_rec))

;

fprintf (fp, "struct q_stats_rec Zd\n",
sizeof (struct q_stats_rec)

)

;

fprintf (fp, "struct q_srv_stats_rec Zd\n",
sizeof (struct q_srv_stats_rec))

;

fprintf (fp, "struct sink_stats_rec Zd\n",
sizeof (struct sink_stats_rec)

)

;

fprintf (fp, "struct col_rec ' Zd\n" .sizeof (struct col_rec)
)

;

fprintf (fp, "struct stats_rec Zd\n" , sizeof (struct stats rec))-
fprintf (fp, "SET Zd\n",sizeof(SET))

;

/* Size of Messages: (Item and Null) */
fprintf (fp, "\nSize of Message

:
\n")

;

fprintf (fp, "struct Item_rec Zd\n" .sizeof (struct Item_rec));

/* Size of Miscellaneous Structures */
fprintf (fp, "\nOther structures :\n")

;

fprintf (fp, "struct out_rec ?d\n" , sizeof (struct out_rec));
fprintf (fp, "struct out_list Zd\n" , sizeof (struct out_list));
fprintf (fp, "struct list_rec Zd\n" , sizeof (struct list_rec)):
fprintf (fp, "CALLERS Jld\n" .sizeof (CALLERS))

;

fprintf(fp,"OUTBUF 2d\n" .sizeof (CALLERS))

;

fclose(fp); /* Don't forget to close the file */

179

F.35: connect .

c

/**
* connect. c — by Edward Vopata
**
* This is the startup program. This program opens a socket
* connection and "exec's" the Distributed simulator. This
* program passes the distributed simulator the socket descriptor,
* and the arguments that the startup program was started with.
* This program was designed to run on a AT&T 3b2-400 running
* WTN/3B TCP/IP.
******************** * ********************** ****** ******** ***********
*/

#include <stdio.h>
((include <sys/types .h>
^include <netinet/in.h>
if include <sys/socket .h>
ifinclude <netdb.h>

((define DEBUG_DOCNT 13 /* Debugging switch of socket connection */
#define MAX_DEBUG 32 /* Maximum number of debugging switches */

int debug =0; /* debug flag */
/* Max number of arguments + NULL + socket number */

char *argo[MAX_DEBUG +2]; /* Argument list */
char name_str[50]

; /* Path to the distributed simulator */
char sock_str[10 J ; /* socket descriptor string */

ma in (a rgc , a rgv

)

int argc;
char **argv;
{

int i, jj /* indexes */
int sock; /* socket descriptor */

/* create a new command line to be exec'ed */
for (i=l; i<argc; i++) {

argo[i+l] - argv[i]
;

/* if DEBUG_DOCNT switch is on set debug flag */
if (atoi (argv[ij) -= DEBUG_DOCNT) debug - 1;

argo[argc+l] = argv[argc++]

;

/* open the socket */
do_connect(Scsock)

;

strcpy(name_str, SIMULATION)
; /* Put Program name in argo[0] */

argo[0] • name_str; /* Put -<socket_no> in argo[l] */

/* put socket id into a string, prefaced with a '-' */
/* make sure to remove the '-' when you read it */
/* use '-' to id the socket number */

sprintf (sock_str, "-2d", sock)

;

argo[l] - sock_str; /* Put -<socket_no> in argo[l] */

}

if (debug) printf ("argc Zd\n",argc); /* DOCNT tracing */

/* Put argv[l. .argc-1] -> argo [2. .argc J */
for (i=0; i <= argc; i++)

if (debug) printf ("argo[Zd] - ,

Xs
, \n",i, argo[i]);

/* Exec the distributed simulator */
execv(SIMULATION, argo)

;

printf ("EXEC Failed\n"); /* This should never be printed */

* Function:
* do_connect()
* Parameters:
* sock - socket descriptor
* Summary:
* TCP/IP socket server. Waits until someone tries to connect to
* the "xeroxsim" socket port. Then open a reliable STREAM socket.

*/
do_connect (sock)
int *sock;
{

struct sockaddr_in sin;
struct sockaddr *addr;
struct servent *sp;
int s, *addrlen;
int accept ()

;

/* Get tcp/ip service "xeroxsim" */
sp " getservbyname("xeroxsim" , "tcp");
if (sp « NULL) {

fprintf (stderr, "xeroxsim: Couldn't find service\n");
exit(l)

;

}

bzero ((char *) Ssin, sizeof (sin))

;

/* Open a socket port */
if (debug) printf ("xeroxsim: getting socket\n");
if ((s - socket (AF_INET, SOCK_STREAM, 0)) < 0) {

if (debug) printf ("socket failed\n");
exit(l)

;

)

sin.sin_family AF_INET;
sin.sin_addr.s_addr htonl (INADDR_ANY)

;

sin.sin_port = sp->s_port;

/* bind the socket to the "xeroxsim" service */
if (debug) printf ("xeroxsim: attempting bind\n");
if (bind (s, (struct sockaddr *) Ssin, sizeof (sin)) < 0) {

perror("xeroxsim: bind failed");
exit(l)

;

}

/* Wait until someone tries to connect to the service */

if (debug) print f
("xeroxsim: listening\n")

;

listen (s, 1)

;

/* When they connect, accept the connection and get a
* socket descriptor for the connection.
* (the accept () function conflicts with the Concurrent C
* accept statement, so this program must be a regular C
* program, that exec's the Concurrent C distributed
* simulator)

.

*/
if (debug) printf("xeroxsim: accept\n");
(*sock) = accept (s, addr, addrlen);

/* Do_connect tracing */
if (debug) printf ("sock = %d\n" , *sock)

;

if (debug) printf ("xeroxsim: accepted\n")

;

/* Since we are exiting, tell it no more data is to be
* read or sent.

v
shutdown (s, 2) ;

close(s); /* Close the service */

F.36: Xerox.

c

* Xerox. c — By Edward Vopata
*

* Xerox. c is a program used to test TCP/IP socket communication.
* This program simulates the socket operation of the graphics
* front-end. The program first opens a socket connection to the
* distributed simulator. If this fails the program exits, otherwise
* the program will prompt the user for a file name. This file will
* contain the input model. The program will read the input model
* and send it to the distributed simulator. The program will then
* wait until the distributed simulator send stats reports back.
* These stats reports will be displayed, and the user can either
* cause a continue or a terminate simulation control message to be
* sent back. (This program runs only on a 3B2 with WIN/3B2 TCP/IP).

V
^include <stdio.h>
if include " /us r/netinclude/sys/ types, h"
include " /us r /net include /sys/ socket .h"
include H /usr/netinclude/netinet/in.h"
t include "/usr/netinclude/netdb.h"

/* The hostname (machine name) where the */
/* distributed simulator resides */

ifdefine HOSTNAME "november"

main(argc.argv)
int argc;
char **argv;
{

int i; /* index */
int sock; /* the socket descriptor */
int flag = 0; /* flag for handling "(end)" */
char inline[129]; /* the incoming message */
char outline[129]

; /* the outgoing message */
FILE *f; /* the input model file */

/* Open the connection and get the socket descriptor */
doconnect (&sock)

;

/* Get the file name of the input model and open the file */
printf("Enter File Name ==> ");

fflush(stdout)

;

gets(inline)

;

printf ("\n")

;

if((f - fopen(inline, "r")) « NULL)
{printf("Bad File: '2s' .\n", inline) ; close(sock); exit(l);)

I* Send the input model to the distributed simulator */
bzero(inline, sizeof (inline))

;

while (fgets (inline, 128, f) != NULL) {

printf ("Sending:
|
2s

|

\n" , inline)

;

I*

spr intf (outline, "Z-128s" , inline)

;

write (sock, out line ,128)

;

bzero(inline, size of (inline))

;

}

fclose(f); /* Close the file, we're done with it */

do {

do {

/* Read in the incoming messages (blocking read) */
bzero(inline , sizeof (inline))

;

if (read(sock, inline, 128)«0) break;

/* if the message is an "(abort)" then ABORT */
if (inlinejl] — 'a') ABORT(sock);

/* if the message is an "(end)" then set flag */
if (inline[l] == 'e') flag = 1;

/* Print the line */
printf ("Recv'd: |Zs|\n", inline);

/* when a "($$)" is encounted exit the loop */
if (inline[l] -= '$'

|| inline[2] == •$') break;
} while (1);

/* If the flag is set then we done, exit the loop */
if (flag) break;

/* Prompt the user for either a continue or a terminate */
/* if response is "q" then ABORT */
/* " "a" then send terminate control msg */
/* "((96 0))" */
/* otherwise send a continue control msg */
/* "((97 0))" */

printf ("Enter Reply ==> ");

f f lush(stdout)

;

gets(inline)

;

switch (inline [0]) {

case q
case 'a'

case *\0'

default
}

ABORT(sock)

;

sprintf (outline, "2-128s", "((96 0))"); break;

sprintf (outline, "2-128s", "((97 0))"); break;

/* Send the Simulation Control Message */
printf ("Sending:

|
Is

|
\n" .outline)

;

fflush(stdout)

;

write (sock, outline, 128)

;

} while (inline[0] != 'a');

close(sock); /* close the socket */

V
ABORT - close the socket and exit the program

ABORT(sock)
int sock;

{

close(sock); /* close the socket */
exit(l)

;

}

/*
* doconnect() —
* returns - socket descriptor in "s".
* side effects - may open a socket

.

* if doconnect cannot open the socket it will exit{).
*/

doconnect (s)

int *s;

struct sockaddr_in server;
struct hostent *hp;
struct servent *sp;

/* Get Host Name (See #define above) */
hp = gethostbyname(HOSTNAME)

;

/* If gethostbyname fails, then print error message and exit */
if (hp « NULL) (

fprintf (stderr, "Unknown host\n");
exit(l)

;

}

/* Get TCP/IP server (The distributed simulator) */
sp = getservbyname("xeroxsim" , "tcp");

/* If the distributed simulator has not been started */
/* then print error message and exit */

if (sp — NULL) {

fprintf (stderr, "Can't find server xeroxsim\n")

;

exit(l)

;

}

/* TCP/IP Socket setup */
bzero ((char *) iserver, sizeof (server))

;

bcopy (hp->h_addr, (char *) {.server. sin_addr, hp->h_length)
;

server . sin_family = hp->h_addrtype

;

server. sin_port - sp->s_port;

/* Open a STREAM socket (reliable bidirectional) */
*s socket (AF_INET, SOCK_STREAM, 0);

/* If the open fails, print error message and exit */
if (s < 0) {

printf("error creating socket\n");
exit(l)

;

}

/* Establish the connection: */
/* If the connection fails, print error message and exit */

if (connect (*s, (char *) &server, sizeof (server))< 0) {

print f
("connect failed\n") ; exit(l) ; }

/* Success: return the socket descriptor */
print f

("connected! !
t
\n")

;

Distributed Discrete-Event Simulation in Concurrent C

by

Edward William Vopata

B. S., Kansas State University, 1986

AN ABSTRACT OF A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computing and Information Sciences

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1989

Abstract

In this thesis we describe the implementation of a distributed

discrete-event simulator for the distributed simulation of queueing

network models. The distributed simulator is written in the distri-

buted programming language Concurrent C [GEHA88] and runs on a loosely

coupled multiprocessor computer system. The distributed simulator

implements the distributed simulation algorithm proposed in [CHAN81]

and uses a deadlock detection and resolution strategy to cope with the

problems of deadlock. The deadlock detection and resolution strategy

makes use of the distributed deadlock detection mechanism that is

implemented as part of the kernel of Concurrent C and described in

[HAMM88], and a deadlock resolution mechanism implemented as part of

our distributed simulator. We have shown that deadlock detection in

the kernel of a distributed programming language and deadlock resolu-

tion at the application level is a valid approach to distributed simu-

lation.

