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Introduction

In this report there is a discussion of summability of scries in general,
followed by an introduction to summability of Fourier Series. In that the
definition of "sum' of an infinite series is merely that - a definition - since
it is physically impossible to add up an infinite number of terms, other more
general definitions of a ""sum'" can hardly be faulted.

In addition, in many of the applications of series, it is not necessary
that the series be convergent. Often merely being summable in some sense
is sufficient and, indeed, some workers have used strictly divergent series
with a fair degree of success.

It is necessary to begin by citing a few fundamental definitions and
theorems. Not all theorems are proved and many important concepts and
theorems have to be omitted due to lack of space.

In dealing with many of the concepts and ideas, particular cases are
used. Thus, when an - L[ is referred to, one usually thinks of real (or
complex) numbers. However, in general, the definition or theorem usually
is valid in other instances, where Ian - L| refers to the ''distance between"
two elements a_ and L. In the next few paragraphs, the elements are numbers,
in the real (or complex) domain,

A sequence is defined as a function whose domain is the set of non-
negative integers, or portion thereof., If the function is denoted by £, its
value at n is given by f(n). The sequence itself is the set {(n, f(n)):n =0,1,2,... 1,

the set of all pairs (n, f(n)), with n a non-negative integer. Since the domain



is usually the same, it is customary to shorten the notation and just write
. 1
{f(n)} instead of {(n, f(n))}. Thus the sequence {{n, —)inl, 2, ... } would be
I

rl

written simply as -Ill—- . Also, {an} is used to denote the sequence { (n, an}}.

A sequence {an} may have different values a_ for different values of n,
Suppose that as n increases the different an's tend to cluster arcund some
fixed number L. If there is a number L such that Ian - L[ can be made
arbitrarily small for all sufficiently large n, the sequence {an} is said to
converge to L., Quantitatively, if, given €> 0, there is an N such that, for
all n > N, Ian - L|< €, then {an} converges to L. This can be written as
I11:_L'1:.'3r|;1 an = L. If no such limit exists, the sequence is said to diYErge.

A very important way of creating a sequence fsn} is by addition. Sup-

pose the elements to be added areu,, u,, ... , U osoeees Let

1 2

(1) :

w
I}

e’

+u_+... +u_= ,

n ul u2 un Zuk
k=1

[=-]
Consider z uk' that is consider the sum s as h increases without bound,
n
k=1

The limit of s , as n increases without bound, is called an infinite series.

i

The sequence {sn] given by (1) is called the sequence of partial sums of
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. th. R . 3 . . .
the scries. The n ' partial sumis s . If {s ]} converges to a limit Sasn
n n

increases without bound, li'm 57 S, then "the series converges to its surn
In—rco
S'"'. This is written as
w n
vu = lim ( T1.7. ) =
L% " nhe L%/
k=1 k=1
[==]

¥ ;
‘Theorem 1: A necessary condition for the convergence of AR that
K

k=1

l%iﬂra%uk = 0. A series is said to be divergent if its sequence of partial sums
is divergent.

Although a series may be divergent, it may still be useful. Much can
be done with a divergent series if it is handled by certain methods called
summability procedures. A summability process is defined as a method of
assigning a '"sum'' to a series. This report will be restricted to those
methods for which the '"'sum'' of a convergent series is the same as the sum
in the ordinary sense of convergence. Methods with this property are called

""'regular''. In order to preserve the analogy between convergence and sum-

mability, a summability process should satisfy the following conditions:

(=]

[==]
I. If Zuk = S, then Zuk =S -u_, and conversely.

0
k=0 k=1
= 7 = + = + .
II. If u S, LYk T, then L (uk Vk) sS4 T
k=0 k=0 k=0
III. If ?uk = S, then ka = oS, where g is any constant.



In addition,

IV. The process must be regular.
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Cesdro Summability

Consider the following series,

]. = + + 4+ o . 0 4 e
(1) Zan ag T a 2, a_ ,
n=0
and let
= f + +
s TagTa a_
and (= 0y 1 2y )
s +s ++ - - +s
_ _© n
%n n+1l
Ifl%}ir;} o, = A we say that the series given by (1) is Ce saro summable to A or

summable (C,1) to A. (Cesaro summability (C, a) can be defined for general

a a> -1). As an example consider the series

[==]
(2) Z(-l)n=l-l+1-1+1-'
n=0
hi ies di , but =X = 0, =1 =0y cnu h
This series diverges, but s S) 0 s, S3 0 so that
1 . .
—_— if n is odd
2
O- -
n
1 - . .
- + (2n + 2) if n is even,
. 1 . . . \
Hence the rlll.’r;} &, = = and the series given by (2) is Cesaro summable to
1
2

Theorem 1: Cesaro summability is a regular method.
Proof: Suppose that a given series is convergent, with sum A and,

therefore, lim s = A, Then for any € > 0, there exists a number m such
n—+w I



o

€ .
that |[s - A< e whenever n 2 m. Now consider
n

s +s +- - - +s5 -(nt+tl)A n
A = o) 1 n _ 1 f—(s A)
%n n+l1 n+l1 L'i
i=0
For n > m,
I 2
Un-'A=n+1 Z_. R -A)+n+l L(Si_A)
i=0 i=m
and hence
el 1 v
- —_— ¥ - o -
(3) [gn A{sn+1 ] \si A T L.lsi A
i=0 i=m
Since m is a fixed number
1 n%'-l £
] _ g O
() n+tl L lsi A 2
i=0

~

for all sufficiently large n, n> M, say. DBut since s - A< —5— fornzm

n

1 n-m-+1 g €
5 - & . & —
(3} 5+ Z<Si Al s 3 E:

1

i=m
Combining equations (3), (4), and (5), Ign - A|< e provided n > m + M, which
proves the theorem.

Summability (C, 1) can be generalized to summability (C, k) as follows:

Given a sequence {an} Sags 2 A e s B eee let
(0) _ .
Sn —a0+a1'r... +an,
1 ) 0
S()=5(01+S()+_ AS(O),

n 0 1 " %n



and, in general, for any given positive integer Kk,

(6) s(k) = s(k_l) + s(k—l) + + s(k—l) ;

n 0 1 n

k {0)
The sums 55‘1 ) are linearly expressible in terms of the sums s’ )

i

The

n+k

number of these sums which occur is ( -

). This clearly holds if k = 0,

and by induction it appears that the right side of (6) contains

ED () L) - O

0
terms of sil ). ([5], page 90) We now state the following definition:

k + k k
Definition: If C(k) = S( ) / (n ), forn=20,1, 2, ..., we say C( ) is the
n n k n
Cesaro mean of order k of the first n + 1 terms of the sequence séo), SEG), .
K - .
s(o), . and if lim C( ) = A (finite) for some k, then we say that \:'qa. is
n n=+e n L n

Cesaro summable of order k to the sum A, or simply summable n=0 (C; k)
to A.

A remark concerning notation should be made here. By examining
the definitions of (C, 1) summability and (C, k) summability it is seen that

(0)

= s for all n.
n

n
As an example of (C, k) summability, consider the following series:
1=2+3-4+5-6+7-....
Here 5, =1, s = -1, s, = 2, S, = -2,
n/2+1 if n is even
S -
n

-(n+1)/2 if nis odd,



o

s ts t... ts
0 1

i _ n : ; ; ;
and lim ¢ = does not exist. However putting k = 2 in
n-+® n n+1

the definition of (C, k) summability gives

I O R SR
{7) or
sflz)=(n+l) so+nsl+(n-1) sz+... -i-.?.sn_l-‘rsn.

Now
(n+1) SO+n51= (n+1) +n(-1)=1

(n-l)s, +(n-2)s, =(n-12+(n-2)(-2) =2

3
etc.
If n is even, say n = 2r, the sum contains an odd number of terms, the last

of which is

s =nf/2+1l=1+1,
n

and the next to last two give

3sn_2 ¥ an-l = 3(nf2) + 2(-n/2) = r.

Hence equation (7) now reduces to

;(2) 1
n

=1+2,+...+I_‘+(I'+1)=—2—

(8) (r + L)(zr + 2).

Similarly, if n is odd, say n = 2r + 1, the sum contains an even number of

terms ending in

8 V]
w
-+
wn
1}

2((n - 1)/2)+1-(n+1)/2

(n+1)/z2=r+1



Hence relation (8) holds for both even and odd values of n.

(r +1)(2r + 1) for n even
t 2 1
. 12 ) = —E— (n+1)(n+2) o
(r +1)(2r + 3) for n odd.
Therefore for n even or odd,
_(2)
. (2) _ .. n .. (r + 1)(r + 2) _ 1
G G =l = 2> 38 BT + Llzr + 1 or 3) Z
2
and the seriesl - 2+3 -4+5 -6+ ... is a doubly indeterminate series

summable (C, 2) to the value -—-;—
Cesiro did not make the first generalization concerning summation by
arithmetic means. The first and most obvious generalization was made by

Holder, who defined a sequence of methods called the (H, k) methods. The

general (H, k) method is defined as follows:

{x] , () (r)
iy p TH tew: FH (0) _
H = , H ' =g,
n r+1 n n

%) 5. The (H, 0)
n

where Zu is said to be (H, k) summable to Sif lim H
n n-»o
method is simply ordinary convergence. The (H,1l) method is the same as
the (C, 1) method. Since the (H, k) sum is the (C,1) sum of {H, k-1), (H, q)
summability will always imply (H, g+p) summability for any integer p 2 0. In
fact, the (H, k) and (C, k) methods are equivalent for any intzger k > -1. (For

proof see [2], page 103).

The general summability (C, a), for a any real number > -1, can be



defined in a fashion similar to that for (C, k), for k a non-negative integer.

For such a definition the reader is referred to Orthogonal Functions by

o

Sansone, p. 94. Incidentally, the series Z(-—l)n is (C, a) summable to

n=0
1

> for any o> 0.

10
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Abel Summability

Consider the two series,

N

(1) /.2,
n=0

(2) and Z anrn.
n=0

Assume the series given by (2) converges for 0 <r <1. (This will always be
the case if the terms given in the series (l) are bounded). Let g(r) be the sum
of the series (2) and let Il_lﬁn olr) = g. If this is the case, the series (1) is
said to be summable by Abel's method to the value g, or Abel summable to
o.

Abel's method can be used to sum a divergent series. Consider, for

==

example, the series ‘Z(-l}n, already studied. This series is also summable

= 1
by Abel's method to t%eovalue - - In this case,
2 3 1
oglr)=1l-r+r -r T"'=l+r , for [r[<1,
& Phevators Tim ol =~
and thereifore rl_.n_} glr >

The following lemma will be needed to prove that Abel's method is

regular.

(=]
Lemma l: Let Za be a convergent series (with real or complex terms).
n
n=0

=]
n

Then the series Za. r converges for 0 <r =1, and its sum ¢g(r) is con-
n
n=0

continuous on the interwval [0,1]. The proof can be found in [8], page 108.
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Theorem 1: Abel's method of summation is regular.
Prooif: If the series (1) converges to g, then the above lemma implies
that the series (2) converges and its sum g(r) is continuous on the closed

interval 0 < r <1. This means that
13}3,1111 ofr) = o(l) = o,

which proves the theorem.

(=] [+~
T 1
Theorem 2: If \Ta is (C, 1) summable to the value g, then «(r) = ; a rr
L n L%n
n=0 n=0
[==]
exists for 0 £ r <1 and the series by

a_ is summable by Abel's method to &.
n=0

(i.e., A series which is (C, 1) summable is Abel summable to the same value).

=
Proof: Let Zan be summable to the value S by the method of Cesaro,

(C,1); and let =
or) = ) ar’  (0sr<l).
n=0
Then
o(r) _ \E n ;3‘ ny _ c n
1-r (Lanr )( Lr )— anr ’
n=0 n=0 n=0
lr) = i(n + 1) -
2 Ont
(1-r1) _
n=0
2 [==]
(3) w(r) = (1 - 7) Z (n+1) o’nrn

n=0



jed
e

As a special case of (3), take a0 =1, a =0ifn>0, then

n
(4) 1=(-n)° Z(n + e,
n=0
Therefore,
. 2 {i , n
Plry - 8={1 ~ z) L(n + 1)(Un - S)r
n=0

Let € > 0 be given. Then there exists an integer N such that if n 2 N,

|o_ - S|< e. Therefore,
n

2 N n 2 ‘?“ n
o) =8| = 1-r|° ) @+ Do -S|+ [1-r]|"e )+ uet
n=0 n=N+1

Hence, by (4),

2
lcp(r)-SlS.Il—rl Z(n+1)lgn-S]r + ¢
Now, taking the limit,

N
lim lw(r)'sl<}§,’iﬂ [Il‘rlz Z(n+1)[cn-5[rn+ e]= €

n=0

Hence,
I]_._J_.E‘l w(r} = S.

From this it follows that a series which is summable by Cesaro’'s (C, 1}
method is summable to the same value by Abel's method. The converse of

this theorem is not true as can be seen from the following example. Consider



14

[ws]
: +1
the series E(—l)n (n +1). This series is not summable by Cesarc's (C, 1)
n=0
[+ 2]
. : ; Ay n+l ; :
method since lim ¢ does not exist. DBut ; (-1) (n + 1) is summable oy
n3® n L
n=0
Abel's method:
< +1 a <
ik n n - nn
\ (=1 + = Rl %
) (DT @ s — ) (-D'r
n=0 n=0
d 1 ) _ -1 B 1
1 2 - =
dr 1 ¥ 1+ 1) 4

Thus this series is summable by Abel's method but not by Cesaro's method.
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Fourier Scries
Before continuing, some facts concerning Fouricr series need to be
established. A function f(x) is said to be periodic of pericd 27, if it is defined
for all real x and if f{x + 27) = £(x) for all x. The transition frorm functions
having period 2w to functions having any period T (T > 0) can be effected by
a change of scale. In fact, suppose that I(t) has period T. Then a new

variab.e x can be introduced such that i(t), as a function of x, has pe-iod 27.

If
P
1 =
(la) t >
so that
2t
(1b) R g

then x + 27 corresponds to t + T, which means that f, as a function of x, has
period 2.

A trigonometric polynomial of order n can be defined as

a n
0 bNE kst . Tkx
(2) sn(x) = = + L(a cos = + bk sin

Kk )

k=1
where a, is a constant. It follows that sn(x} is periodic of period T = 2t.
Now consider a function f(x) that is periodic with period 2+ that has
the expansion

2, &
+ 2 '(ak cos kx + b, sin kx),

(3) fx) ~ =
k=1



(-
(et

where the sign ~ is read "is represented by''. The sign ~ is used when the
series is formed without knowing in advance whether it converges to the
function f{x). The sign ~ can be replaced by the sign = only if the series
actually does converge and its sum is f(x). The coefficients a.o, al{, and b
need to be determined for k=1, 2, 3, ... . It is assumed that the series
(3) and the series to be written soon, can be integrated term-by-term.
This is permitted in the case of uniform convergence.

It is also assumed that the function f(x) is integrable. Thus, integrating

both sides of (3) from -7 to w, we get

T a.O I s ™
5 f{x)dx~—z-5 ol Z(akj coskxdx+bkj sin kx dx).
- k=1 -

w -

Since, for n # 0,

™ X=T

(4a) S cos nx dx = [i%n?r-l—)i] =0
- X=-T

and
T cos nxT "

(4b) y sin nx dx = l:- —n—-] = 0,
=Tk x:—ﬂ-

all integrals in the sum vanish, so that

™

(5) S £(x) dx ~ T,
-

Next, multiply both sides of (3) by cos nx, n # 0, and integrate the re-

sult from -w to m, as before, obtaining
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T 1':10 m {_‘9 T
3 {{x) cos nx dx ~ Tg cos nx dx + L(akg cos kx cos nxdx
- - k=1 -

yig
+ ka sin kx cos nx dx).

Using (4a) the first integral on the right vanishes. Since the trigonometric
functions are pairwise orthogonal, all integrals in the sum also vanish except

one. The only one remaining is the coefficient of a_:
n

T 2
Scos nx dx = .

-

Thus
T

(6) S f(x) cos nx dx ~ a m.
="IT:

In a2 similar manner

T

(7) 5 f(x) sin nx dx ~ bnn’.
-1

From (5), (6), and (7) it follows that it is suitable to let

)
1l
1
o
L
Loa
L

%S\ f(x) cos nx dx (n
-

(8)

o
I
0

i
L
&

1 T
= S‘ f(x) sin nx dx (n e )
-7

The coefficients a and b defired in (8) can be calculated and are called
n n
the Fourier coefficients of the function f(x), with respect to the trigonometric

functions and the trigonometric series with these coefficients is called the



1g&

Fourier series of f(x),
As an example of a function expanded in a Fourier series, consider the

function f(x) = x, (-m <x < w). Since {(x) is an odd function,

> T ; X=T > W
b -—5 x sinnxdx = - — [x cos nx] _ +—Scosnxdx
n T Yy ™ x=0 Lol

2 1+1
= - — cos nw = ———(-l)11
n n

Therefore, for - v <x <7,

x ~ 2(sin x - sinéax + sin33x - . )

Suppose f(x) is of period 27 and

= (=]
f(x) ~ —éu— + Z(ak cos kx + bk sin kx),
k=1

th
then the n~ partial sum sn(x) can be expressed as

a n
0
= s E + i ,
sn(x) > + (akcos kx bk sin kx)

k=1

If the values of the Fourier coefficients are substituted,

T n

1 1

sn(x) = — g f(t) [T + Z(cos kt cos kx + sin kt sin kx)] dt
' -ﬁ kzl

@]
H
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9 (x) = ! Trft [ ¥  k(t-x) | dt
(N th—_ﬁ ()Lz Lco&.n x_l 4

- k=1
But, it can be shown that

1 n in(n 1 )
_ 51nn-r—z—u

(10) > + Xcos ku 7 ein (ol 2]

k=1

Substituting (10) into (9) with (t - x) replacing u,

) i
sin{n + —)u
2

2 sin (u/2)

1 T-X
sn(X) = = g f(x + u)
-T-X

sin(n + —2—) u

Since f(x + u) and are periodic in u with period 2w and the

2 sin (u/2)
interval [-7 -x, w-x] has length 2w, the integral over the given interval is
the same as the integral over [-m, 7). Hence

1 T sin{n+ —)u
(11) sn(x) = g S f(x +u) du.
-

2 sin (u/2)

The equation (11) will be used in the next chapter.



Application of Summability Procedures to Fourier Scries
The idea of summability is especially applicable in the study of Fourier
series, since there exist continuous functions whose Fourler serics diverge
at some points. First, an integral formula for the arithmetic mean of the
pariial sums of a Fourler series will be developed. Suppose

a ©
0 ' ;
f(x) > z (a.k cos kx bk sin kx)
k=1
and
3'0 n
= m— -+ i .
sn(x) 5 + z (ak cos kx + b, sin kx)
k=1

k

For the arithmetic mean of the partial sums,

so(x) + sl(x) T oisaw T sn(x)

Gn(x) = 7 £ 1 2
we get
a n
0 T n-ktl .
= el ol +b .
on(x) 5 + /. = (ak cos kx i Sin kx)
k=1
From (l1) of the previous chapter it is known that
) 1
1 T sin (n + —Z—)u
= du;
sn(x) - f{x + u) > stn (a/2) u
-7
therefore
i I
1 f(x + u) e, .
= — k+ —) u du.
o ) = T _Zsia(u/z) L % ( 5 udu
=i k=0

From the identity,
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rl

) 1

n . 1;:05 sin (u/2) sin{k + —)u
Sin. Ik + i & 2 ; -
2 2 sin (u/2)
k=0

T

N

L. {cos ku - cos(k + 1)u)
0 1 - cosnu

=

2 sin (u/f2)

sin2 (nu/2)
sin (u/2)

it follows that

1 i Sinz (nu/2)
() g ] = et g iy 4 du |
" () - 2 sina(u/Z)

which is the desired formula. The integral given in (1) is sometimes called
the Feje’r integral expression for the mean cn(x). As a consequence, if

f(x) =1 for all x, then sn(x) =1lforn=1, 2, ... and therefore cn(x) =1 for

n=1, 2, ... . This then implies that
1) -7 2 sin (u/Z
2
sin (nu/2) o,
The function is called Fejer's kernel.

z sinz(ul 2)

Theorem 1: The Fourier series of an absolutely integrable function f(x)
nb

(i e.‘g [f(x) ldx exists) of period 27 is (C, 1) summable to i(x) at every
a

point of continuity and to the value

fx+0) + £{x - 0)

48]

at every point of jump discontinuity.
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This theorem is usually called Fejér's Theorem.

Proof: Since at points of continuity, it is also true that

f(x+ 0) + f{x - 0)

£(x) = - :

it is sufficient to prove the relation

f(xx + 0) + f(x - 0)

é}g} on(x) = > , for all x.
To show this it is sufficient to prove that
1 (" sin®(nu/2) £(x + 0)
) B8, Betul— e m= Sy,
Lalhl 2 sin”(u/2)
and
0 2
1 in =
(4) %ll_'r{é = S i(x + u) — (r;u/z) du = f(x 5 0)
- 2 sin (u/2)

Both integral expressions are obtained in the same way, hence only the

first will be considered. Since the integrand of (2) is an even function,

(5) 11 S‘TT sinz(nu/Z) du
T 2 ’
2 ™Yy 2 sin(u/2)
so that
f(x + 0) 1 (7 sin?*(nu/Z)
2 = — g f{x + 0) —'-—"—"'-z-—'—'— d'l.l
0 2 sin (u/2)

Thus from (3), it follows that it remains to prove the formula

T
1 =
(6) lim — [flx+wj - £(x + C)]
0 2
RO T sy 2 sin”(u/2)

2
oo EE) s.eg,



Let € > 0 be given; then, since 12me f(x +u) = £{x + 0), it follows that
u-rx

u~x

(7) |f(x + u) - f(x + 0)|< ¢

for 0 <u =§, if § > 0 is sufficiently small. Now divide the integral in (6)

into two integrals:

L2
5 s Colae & u) e £ 5 ) ] Stinlsl, {nu/2)

0 2 sinz(uIZ}
(8)
T . 2
12=—1-S [£(x +u) - £(x + 0)] iﬂ’_gﬂ du.
L 2 sin (u/2)

Then {7) implies that

L]

& . 2 T . 2
nlcgf SO wet [ BB g
0 2 sia (u/2) T 0 2 sin (u/2)

which implies, from (5), that

€
(9) |11[ e for any n,

For the other integral,

1 T
|12| < = S lt(x + u) - £(x + 0) |du,
2mn sin (8/2) 78 -
hence
(10) IIZI < -% for all sufficiently large n.

The relation (6) follows from (8), (9), and (10), which proves the theorem.
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A discussion similiar to the one above concerning Cesiro summability

can also be presented involving Abel summability. First, calculate the sum

of the series

1
= - (0 <r<l).

t r cosn®

S ~18

For this sum, consider the series

(==}
1
= + ZZn, z = r{cos ® + i sin ©).
=1
Since z: =r<l
[+=]
1 n 1 z 1+ =z l+rcos o + irsin &
—_ F Z Z = e— = = : : =
2 2 1 -2z 2(1 - z) 2{(l - rcos @ - irsin @)
n=1

(1 + rcos @ + irsin ¢p){l - rcos @ + irsin ¢
2
)

2[{1 - rcos @) + r2 sin‘2 w]

l—rz-'rZirsincp

2(1 - 2rcoso T rZ)

But
-] [=-3
1 n 1 n -
—§—+zz =—Z—+Zr {cos nto + isin no),
n=1 n=1
therefore
@ 2
1 1-
2 +Zrncosncp= z (0 =r<l).
2 1-2 +
=1 -2rcosgptr



o
wn

1 2

. ; ; =T . . —

The function > of the variables r and @ 1s called Poizzon's
l-2rcoswpr

kernel,
By applying Abel's method to a function whose Fourier seriecs iz known,

the following series is formed:

a w
0 Toon .
- = e + +
(11) i{x, ) > L r (a.n cOSs nx bn sin nx),
n=1

where 0 = r <1.
For convenience of study it is best to represent the functicn f(x, r) zs

an integral. Recalling the definitions of a_ and bn’ (11) can be written as

1 T 1 = n i
(12) flx, r) = g g f(t) dt + — Zr S f(t) cos n(t - x) dt.
-

n=1

=]

: : 1 n : . :
Since the series g + Z r cos n{t - x) converges uniformly in t, it can

n=1

therefore be integrated term-by-term. Thus (12) can be written as

m @
f(x, r) = Lﬂ_g £(t) [—-12— + z rn cos nft - x)] dt,

n=1
or
I T 1 - rz
(13) f(x, r) = e f(t) > dt (0 =r <1).
T ¥ l-2rcos(t-x)+r

The integral given in (13) is known as Poisson's integral. Note that if
f(x) =1, then aG/Z =1, a_ = 0, bn = 0, for n> 0, and hence f(x,r}) =1, so that

(13) becomes



1 P 1- g ,
1= 3 > dt (0 = r<l).
T -mr I -2rcos(t-x)+r '
Theorem 2: Let f(x) be an absolutely integrable function of period 2%. Then

Ill_ﬁx f(x, r) = {(x) at ever'y point where f(x) is continuous, and

flx+ 0) + £f(x - 0)
2

Ilg’zfl f(x, r) =

at every point where f(x) has a jump discontinuity.

In other words, the Fourier series of f(x) is summable by Abel's method
to the value f(x) at every point of continuity of f(x) and to the value
—;:- [f(x + 0) + £(x - 0)] at every point of jump discontinuity of f{x). The proof
of this theorem is essentially identical with the proof of Theorem 1l given
earlier in this chapter.

Some other applications will now be stated without proof; the proofs can
be found in any standard text on the subject.
Theorem 3: If two continuous functions of period 27 have the same Fourier
series, then they coincide. (i.e. The Fourier series of a continuous func-
tion determines that function completely]).
Theorem 4: If two absolutely integrable functions of period 27 have the same
Fourier series, then they coincide on [0, 2m] except, at most, finitely many

points.
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ABSTRACT
This report includes a gencral discussion on summability of scries
followed by an introduction to summability of Fourier series. Since the
definition of the "sum' of a series is merely a definition, it can he rnade
more general. These more general definitions, called summability pro-
cedures, can even be used to find the "sum'' of a divergent series. A sum-

mability process must satisfy the following conditions in order to keep a close

analogy between convergence and summability:;

[==] ==
I If Z K = S, then Zuk =S -u_, and conversely.

= 0
k=0 k=1
I I‘qu =S, Yv. =T, then Z(u +v.)=S+ T
e > LY kT Vi
k=0 k=0 =0
[==] [+=]
III. If Zuk = S, then zcxuk = qS, for ¢ any constant
k=0 k=0

IV. The summability process must be regular. A process
is said to '"'regular" if the process sums every convergent
series and when applied to a convergent series gives the
sum of the series in the usual sense.
The first method of summation considered was developed by Cesaro.
Cesaro's method, or (C,1l) method, is defined as follows:

Consider the series

¥

a , and let
n

n=0



an.d (n = O: 1: Z)

o

If }11-1'1; g = A, then Z a is Cesaro summable, or {C,1) summakle, tc A.
n n
n=v

Also, (C,1) summability can be generalized further to (C, k) surnmability

for any given positive integer k. Let

(0) . .
~ ! 4+ e 0
Sn a,o a.l T a-n;
and, in general,
s(k) = s(k-l) + s{k-l) +. . . F s(k-l). (=1, 2, )
n 0 1 n
= k
The series Za is said to be summable (C, k) to A if lim C( ) = A, where
n nes n
n=0 s(k)
C(k), the Cesiro mean of order k, is given by, C(k) = _._..E___
n n n + ky
k

A second method of summation was developed by Abel. Abel's

method is defined as follows. Consider the two series,

(1) N

and

(2) i nrk.
o



W

Assume the scries (2) converges for 0 <r <1. (This will always Le truc if

the terms of (1) are bounded). Let glr) be the sum of (2) and lctl‘{é&ﬁ ={r) = c.

If this is the case, the series (1) is said to be summable by Abel's rnethod to
g. It can be shown that a series that is (C, 1) summable is also Abel sumrable
to the same value. The converse is not true,

A function f(x) that is periodic with period 2« with the expansion

a )
i(x) ~ - + {a cosnx+b sin nx)
7 n n

n=1

is said to be represented as @ Fourier series with ag @ and b the Fourier
n 6

coefficients defined as follows:

f(x) cosnxdx;n=20, 1, 2,

)
1]

and

o
1

™
1
—_ \g‘ f(x) sinnx dx; n =1, 2,
s

-

th ; ;
The n  partial sum of the Fourier series can be expressed as

1
sin (n + T) u

i}
sn(x) = -l—— j‘ i(x +u) du .
i - 2 sin (u/2)

Applying Cesaro's (C,1) method to a Fourier series, it can be shown

that




4

¢ - . e x «
The above integral is usually called Iejer's integral and the function

P
sin (nu/ 2) , i
is called Fejer's kernel.

2
2 sin” (u/2)
Theorem 1l: The Fourier series of an absolutely integrable function
b
f(x) (i.e. ‘S) |f(x) |dx exists) of period 2w is (C, 1) summakble tc {{x) at every
¢ 1
point of jump discontinuity to the value —- [f(x + 0) + f(x - 0)]. This
theorem is usually called Fejér's theorem.

Similarly applying Abel's method to a function whose Fourier series

is known, the following series is formed:

==1

a
f{x, r) = -EQ + Z rn (an cos nx t bn sin nx).

n=1
This can be written as
1 e 1 r‘2
f(x, r) = >z \Sﬁ i(t) > dt (0 =r <1).
L - l-2rcos(t-x)+r
2
1l -~

This integral is known as Poisson's integral and the function >
l-2rcosg+r

is called Poisson's kernel.
Theorem 2: The Fourier series of f(x) is summable by Abel's method
to the value f(x) at every point of continuity of f(x) and to the value

]
== [f(x + 0) + £(x - 0)] at every point of jump discontinuity of f(x).



