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INTRODUCTION

Thomas Jean Stieltjes, born in Holland in 1856, made many-

significant contributions to mathematics in the last quarter of

the nineteenth century. Among his interests were divergent and

conditionally convergent series, Riemann's z eta function, the

theory of numbers, and continued fractions. It was in connect-

ion with the latter that Stieltjes published a classical paper in

1894 entitled "Recherches sur les fractions continues". The

publication contained a wealth of new ideas; among other things,

it introduced a new concept of an integral, the modern "Stieltjes

Integral"

.

Although the Stieltjes definition of the integral differ s little

from that of Riemann, the difference is important. This impor-

tance is due primarily to the capacity of the Stieltjes integral to

take care of both sums and limits of sums. Consequently it has

become an ideal tool in physical applications. Attention will be

given later in this Report to applications to problems arising in

physics and statistics.

Frequent reference will be made to the analogy between the

Stieltjes integral and the Riemann integral. In such cases



familiarity with properties of the Riemann integral and a knowledge

of various proofs concerning such properties will be assumed. Sim-

ilarly, some knowledge of the theory of functions of bounded variation

will be assumed.

In this report the Stieltjes integral is considered only in respect

to functions of a single real variable. Various extensions and modi-

fications can be made in many of the theorems to include functions

of more than one real variable and also to include functions of a

complex variable.
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EXISTENCE OF THE STIELTJES INTEGRAL

Definition 1.1. Let f(x) and g(x) be defined and bounded on a

closed interval [a.bj. Let N be any subdivision of [a., b~] :

N = (a = a_ < a. < a < . . . <a = b), with a. . <1 x. ^a. , i = 1,2,
1
N 2 . ^ n i-I —

x i

. . . , n. Let the norm |N( be defined as the max (a. - a. , ). Let11 11 i-I

A§
i

= g(a^) " g( a
£

j)- Then the Stieltjes integral of f(x) with re-

spect to g(x) is defined:

The limit may or may not exist depending on what functions are used.

It is only when the limit exists that the integral is defined.

Before conditions on the functions can be discussed, it is neces-

sary to consider some of the elementary properties of the Stieltjes

integral and to prove a theorem that provides the basis for later

proofs. The proofs of these properties, being almost identical with

the corresponding ones for the Riemann integral, are consequently

In the following theorems k is a constant, the functions f(x)

and g(x), with or without subscripts, are, respectively, continuous

omitted.

and monotonically increasing on Fa,b~).

Theorem 1.1. Jdg(x) = g(b) - g(a).
a.



Theorem 1.3. fkf(x)dg(x) = k ff(x)dg(x).
J a. J<±

1.4. jjf^x) + f
2
(xj}dg(x) = yf

1
(x)dg(x) + yf

2
(x)dg(x).Theorem

Theorem 1.5. ft(x)d
Jg

(x) + g (x)] = jf(x)dg (x) + (f(x)dg (x).

Theorem I.6.- (f(x)dg(x) = |f(x)dg(x) + fi(x)dg(x), a<c<b.
"a. a. •£

Theorem 1.7. a<x<b, f
x
(x) f

2
(x) 3> ^(x^x) < /yxjdgfx).

Theorem 1. 8.

Theorem 1. 9.

/f(x)dg(x) < [f(x)| dg(x).

f(x)dg(x) < (g(b) - g(ajjmax|f(x)| , a<»x£b.

Theorem 1-10- /f(x)dg(x) = - /f(x)dg(x).

Theorem 1.11. |f(x)dg(x) =

With slight modifications the above theorems are also true if

g(x) is monotonically decreasing.

The following theorem is commonly called the "Integration by

Parts Formula" for the Stieltjes integral. Practically, it offers

a method of evaluation of the integral. Theoretically, it provides

a basis for the development of general conditions on the functions

to insure the existence of the Stieltjes integral.

rem 1. 12. If
f j

Theorem 1. 12. If fg(x)df(x) exists as a Stieltjes integral,

then
j f(x)dg(x) also exists.



n

Proof: Expansion of 2. g(x.) [~f(a ) - f(a )*"] yields
i=l iu i i-1-1

g(Xl )
[f(a

x
) - f(a

Q )j +g(x
2 )

Q(a
2
)-f(ai )J + ...

+ g(x ) [f(a ) - f(a fi
n i- n n-i J

Letting x^ = a and-x^^ = b, the terms can be rearranged to yield

n

r
g(Xi) Q(a.) - f<Virj =

n
f(b)g(b) - f(a)g(a) - 5^(a.)[g(x

i+i
) - g(x.)j .

Now taking the limit of both sides as JN I

—> yields

fg(x)df(x) = f(b)g(b) - f(a)g(a) - ff(x)dg(x).

The following two theorems insure the existence of the Stieltjes

integral under the stated conditions.

Theorem 1.13. If, on the interval £a, b] , one of the functions

f(x) or g(x) is continuous and the other monotonic, the integral

j
f(x)dg(x) exists.

Proof: As consequences of Theorem 1.12 and the similarity

in behavior of monotonically increasing and decreasing functions,

it can be assumed without loss of generality that f(x) is continuous

and g(x) is monotonically increasing with g(b) y g(a) (since the

case g(b) = g(a) is trivial).

The object is to find a number I which is approximated by all



?rf(x'possible sums .^-r f(x.)£g associated with subdivisions of suffic-
1=1 1 i

iently small norm. For a given subdivision N, let rru and M. be

the minimum and maximum values, respectively, of the continuous

function f(x) for a. , C x < a , i = 1 , 2, . . . , n. For any choice of
l-l — - i

x. such that a. <x 4. a , i = 1,2,..., n, one has m 4z f(x ) ^ M .

1 i-I - i i i i i

Since g(x) is assumed to be monotonically increasing and £± g. ^.0,

i = 1,2,..., n,

n n q

(1) Xm ^g. ^ Zlf(x.) ^g. ^ 2m. Ag..
i-i i i i=li i i=li i

As is done in the theory of the Riemann integral, the extreme left-

hand side and the extreme right-hand side of expression (1) will be

referred to as the lower and upper sums, respectively, of the sub-

division N, and denoted as L.(N) and U(N).

In search of the desired number I, two numbers, I and J, will

be defined and shown to be equal. Let I = sup(all lower sums) and

let J 2 inf(all upper sums).

In order to establish the equality of the numbers I and J, it

will be affirmed that I ^ J and that if € > 0, there exists a xT >

such that

(2)

n

i^x.^g.-I

whenever \n(< *f . By virtue of having uniform continuity of f(x)

on jja.b] , inequalities (1) and L(N) < I < J < U(N), the desired



equality I = J and inequality (2) follow from the fact that if *f~ is

chosen so small that fx' - x"
| <*f implies

If(x') - f(x")| < § ,

g(b) - g(a)

then |N( < kT implies

n n

U(N) - L(N) = (M. - m.) A g. / e % Ag. = € .

1=1 1 1 1 ^ g(b) - g(a) i-1 i

Theorem 1.14. If, on the interval £a,b]], one of the functions

f(x) or g(x) is continuous and the other of bounded variation, the

.6

integral J~£(x)dg(x) exists.

Proof: As a consequence of Theorem 1. 12, it can be assumed

that f(x) is continuous and g(x) is of bounded variation on [_a.,hj .

If g(x) is of bounded variation, it can be expressed as the difference

of two monotonically increasing functions*. Let g(x) = g (x) - g (x).
1

r
b

2

Consequently, by Theorem 1.13 and Theorem 1.3, both ff(x)dg (x)

b J a 1

and - (f(x)dg (x) exist,
-'a. 2

Hence, by Theorem 1.5,

r
b

r*
Jf(x)d

gl
(x) - J^f(x)dg

2
(x) = Jf(x)d["

gi
(x) - g2

(xf] =
J<

f(x)dg(x).

In the previous theorems, existence of the integral was estab-

lished if at least one of the functions was continuous. The continuity

1 R. L. Jeffery, The Theory of Functions of a Real Variable , p. 121.



restriction is sufficient but not necessary. However it is necessary

that the two functions not have common discontinuities, as is illus-

trated by the following theorem.

Theorem 1.15. If f(x) and g(x) both have a non- removable

discontinuity at a point c, where a 4, c <b, then ff(x)dg(x) does

not exist.

Proof: For a < c < b and c a non- removable discontinuity for

g(x), let N be a subdivision not containing c and let a .< c<"a .

K— 1 ic

Then
j^g^J

can always be made greater than or equal to Q, a fixed

positive number. Also, for two suitable numbers, x and x' , on
k k

K> - «*>| > a.

with R some fixed positive number, regardless of how small a^. - a^

is made. Hence, for any J>0, there is a subdivision N for which

l
N

l ^.kT > anc* ^or which there exist sums lE.ffx.^g. and £f(xj)^g^

which differ numerically by at least QR. Consequently, since the

limit does not exist, the Stieltjes integral does not exist.

PROPERTIES OF THE STIELTJES INTEGRAL

The following theorems establish some of the most important

properties of the Stieltjes integral. In addition, the differential



nature of the symbol dg(x) is established, and the conversion of

certain Stieltjes integrals to Riemann integrals is discussed.

Theorem 2.1. If f(x) is defined and g(x) is differ entiable at

every point of a closed interval £a,bj and if f(x) and g'(x) are

Riemann integrable there, then f(x) is Stieltjes integrable with

respect to g(x) there and

(f(x)dg(x) = (f(x)g'(x)dx.

Proof: Let I = I f(x)dg(x). The Stieltjes definition of inte-

grability provides that for each £ > 0, there exists a ^ such

that

Zf(x.) (g(a.) - gfa.^j] - I

whenever )N| < .

Now, since g(x) is differentiable at every point of the closed

interval, the law of the mean is applicable and as a consequence

h

2If(x )g'(x|)Ax. - I
i=l i i i

with x^ <x| <x . As f(x) and g'(x) are integrable on ]~a,bj , and £

is arbitrary, an application of Bliss' Theorem yields

ft

'John M. H. Omsted, Real Variables , p. 149.



a
f(x)dg(x) and

x)g'(x)dx can be made less than any positive € , the two inte-
-'4.

grals must be equal. Hence the theorem is established.

Theorem 2. 1 provides a ready way of evaluating a certain type

of Stieltjes integral in terms of a Riemann integral. If g(x) = x,

a special case occurs, resulting in f(x)dg(x) =
J f(x)dx, where

the integral on the right is the ordinary Riemann integral.

As in the Riemann theory of integration, there are two very

useful mean value theorems for the Stieltjes integral. As corol-

laries, the familiar laws of the mean for Riemann integrals will

be obtained.

Theorem 2.2. (First Mean Value Theorem) If f(x) is con-

tinuous and g(x) is monotonically increasing on [a,h] , then there

exists a point t\ a £ t 1 < b, such that

b

(1)

Proof: Since g(x) and f(x) are integrable over £a,bj and since

f(x) is bounded over [a, hj , let M = sup [f(x)J and m = inf {f(xjj for

a £x ^b. Then

b

m [g(b) - g(a)] <
J
f(x)dg(x) < M [g(b) - g(a)] .

Hence there exists a p such that m <.p <M and



yf(x)dg(x) = p jg(b) - g(a)]

Since f(x) is continuous over £a,bj, there exists a point t', on

£a,b]] , such that p = f(t'). Thus

Jf(x)dg(x) = f(t') /g(b) - g(a)j

or, when written in integral form,

ff(x)dg(x) = f(t') fdg(x).

Corollary 2. 2. Let f(x) and h(x) be continuous on £a, b] and

let h(x) > on £a.,b"J . Then there exists a t' , a£t' ^b, such that

(2) /f(x)h(x)dx = f(t') fh{x)dx.

r x

Proof: Set g(x) = h(t)dt, a£x£b. By Theorem 2. 2

equations (1) and (2) are equivalent. Clearly g(x) is non-decreasing

since h(x) > 0, and the conclusion of the Corollary is immediate.

Theorem 2. 3. (Second Mean Value Theorem) Let f(x) and

g(x) be defined on £"a,b] with f(x) monotonically increasing on £a,b"3

and g(x) continuous over £a,bj . Then there exists a t
1 on [a, b]]

such that

Jf(x)dg(x) = f(a) [g(f ) - g(aj] + f(b) [g(b) - g(t')j .



Proof: By Theorem 1. 12 Jf(x)dg(x) and /g(x)df(x) both

exist. The Integration by Parts Formula yields

(f(x)dg(x) = f(b)g(b) - f(a)g(a) - ( g(x)df(x).

By the First Mean Value Theorem there exists a t' on [a,b] such

that

b

(g(x)df(x) = g(t') /f(b) - f(aj]

Thus

(f(x)dg(x) = f(b)g(b) - f(a)g(a) - g(t') |f(b) - f(afj

-'a-

= f(a) jg(t') - g(aQ + f(b) (g(b) - g(t'fj.

When expressed in terms of integrals,

b t' t*

Jf(x)dg(x) = f(a)

J
dg(x) + f(b) dg(x).

Corollary 2.3. If f(x) and h(x) are continuous on £a,bj and

if f(x) is monotonically increasing on £a, b] , then there exists a

t'i a<t'^b, such that

(3)
j
f(x)h(x)dx = f(a) I h(x)dx + f(b)

j
h(x)dx.

Proof: If g(x) is defined as in Corollary 2. 2, the result

follows immediately from Theorem 2. 3. Equation (3) is
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sometimes referred to as the Weierstrass form of Bonnet's Theorem .

Many of the theorems from Riemann integration can be extended

to the Stieltjes integral. One such extension results in the following

theorem which is analogous to the familiar Duhamel's theorem for

Riemann integrals.

Theorem 2. 4. If f(x) and g(x) are continuous on [a,b"]J, h(x)

monotonically increasing on £a, hj and N = ^a = x^< x^< ...<x= tf^-

is a subdivision of jja, bj with x ^ rv — x
' x

i
— s

i
—

^

or
k — 1 k k k — 1 k K

k = 1,2,..., n, then

n
b

lim )g(s ) [Mx, ) - h(x ,]] = ff(x)g(x)dh(x).
|N(->0 k=l k#ev

k L k
v k-l J

6V v
'

n

Let ^ -
i&
m
o£ f(r

k)8(sk) &<xk
>

" ^.i!! and

i I

(N]-»0

The expressions, 07 and tr£ , differ only in respect to having a

different argument for f(x). Since f(x) is continuous on £a,b^,

it is also uniformly continuous on £a,b] . Hence jf(r^) - f(s
k )| £

if d~ is chosen sufficiently small. Therefore,

~[f(r
k

) - f(s
kj]

[g(-
k

&(x
k

) " h(Vl )]

David V. Widder, Advanced Calculus, p. 138.
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h

14

[h(b) - h(an Max 1 g(x)X —1

a<x<b I

Hence lim err = lim -
j
f(x)g(x)dh(x). Thus the theorem is

IN|->0
1

|NpK) J<x

established. If h(x) = x, the theorem reduces to the conventional

form of Duhamel's principle.

THE PROBLEM OF MOMENTS

In "Recherches sur les fractions continues" Stieltjes proposed

and solved completely the following problem which he called the

4
"Problem of Moments" :

Find a bounded non-decreasing function g(x) on the interval

(0,c») such that its moments,

oo

xndg(x), n = 0,1,2,...,

have a prescribed set of values

(1) xndg(x) = U
n

, n = 0, 1, 2,

Stieltjes frequently used such concepts as mass and stability

from mechanics in solving analytical problems. In accordance

J. A. Shohat and J. D. Tamarkin, The Problem of Moments, p. vii.



with this, dg(x) can be considered as a mass distributed over

[x, x + dxj so that /dg(t) represents the mass distribution over
-'o

the segment [0,xj. Then

ixdg(x) and I x^dg(x)

o °

represent, respectively, the first (statical) moment and the second

moment (moment of inertia) with respect to of the total mass

( dg(x) distributed over the real semi-axis (o,°°).

Generalizing, Stieltjes called I x
n
dg(x) the n-th moment, with

Jo

respect to 0, of the given mass distribution characterized by the

function g(x).

Stieltjes made the solution of the Moments-Problem (1) depend-

ent upon the nature of the continued fraction corresponding to the

integral

(2) i(z,g)=/MzL r^y £L - Hi. + IIz. - £l+ . .

.

z + y z 2 z 3 24

r^y j_L j-if ±1+ 1
1 +

l

a
l
z

|

a2 l

a 3 z
|

a4

and upon the closely related "associated" continued fraction

(3)
^2 ^3

jz + c^
|

z "^c
2 Jz+c-j

derived from (2) by "contraction":



Making use of the theory of continued fractions, he showed that

in (2) all the a. are positive.
1

He further showed that this necessary condition is also suf-

ficient for the existence of a solution of the Problem of Moments

(1). In terms of the given sequence this condition is equivalent

to the positiveness of the following determinants:

An -.

u n u,

U
l

U
2

u un n+1

U
n

U
n+1

U
2n

n = 0, 1, 2,

A
ni =

U
l

U
2

U
2

U
3

U
n+1

U
n+2

U U
,n n+1

U
n+1

U
n+2

U
2n

U
2„+ l

n = 0, 1, 2,

If the solution is unique, the problem is referred to as a

"determinate" Moment-Problem. If there is more than one solution,



in which case there are infinitely many solutions, the Moment-

Problem is said to be "indeterminate". Stieltjes further gave an

effective construction for certain solutions of the Moment-Problem

which in the indeterminate case turns out to possess important

minimal properties. Here the denominators of the successive

approximants to the continued fractions (Z) and (3) play an impor-

tant role. In passing, Stieltjes introduced an important new prop-

osition dealing with the convergence of series of functions of a

complex variable (Stieltjes- Vitali Theorem) which leads to a com-

plete solution of the problem of convergence of the continued fraction

(2) in the complex plane. Here Stieltjes showed that the Moment-

Problem (1) is determinate or indeterminate depending on whether

the continued fraction (2) is convergent or divergent.

PHYSICAL APPLICATIONS

As was indicated earlier in this Report, the Stieltjes integral

is very useful in the definition of certain physical concepts which

involve a combination of discrete distributions and continuous dis-

tributions. In particular, distributions of mass can be expressed

in terms of a Stieltjes integral.

As an illustration of this, assume the physical notion of mass

is undefined in our mathematical system. It should be noted that

the mathematical situation about to be described can be closely



approximated by a physical one in which mass is well defined. A

particle can be approximated by a small pellet of matter, and a

curve with a mass distribution can be realized by a fine wire of

heavy material. The masses of these physical objects can be de-

termined by weighing.

Consider a plane curve whose equations can be given para-

metrically, the arc length s being the parameter:

x = x(s) and y = y(s).

Assume that x(s) and y(s) are both continuous on [j),l7] wher

L is the total length of the curve. The position of a point on the

curve can be determined by a single coordinate s. A particle on

the curve is to be thought of as a quantity of mass situated at a

geometrical point of the curve. It may be defined mathematically

as follows:

Definition 4. 1

.

A particle of mass, m, at a point, s, of the

curve x = x(s), y = y(s), is the number pair (s, m).

Definition 4. 2. A distribution of mass on the curve x - x(s),

y = y(s), is a function, M(s) such that

M(0) = 0, M(s) is non-decreasing on Q), LJ .

The mass of the segment of the curve between any two points s = a

and s = b (0 C a <b < L.) is

(1) M(b) - M(a) .



If, for example, the distribution consists entirely of n parti-

cles

(2) (s
k ,
m
k

), k = 1, 2, . . . , n

where < s. < s_ < . . . ^ s ^ L, then

M(s) = As

= m
i

<S
2

= m
1
+ . • + m .

n- 1
S
n-l^

S <S
n

+ . . + m
n

s < s
n ~ < L .

That is, M(s) is a step function with jump at the point s^.

Adopting the convention that a particle situated at the point b of

Definition 4. 2 is to belong to the segment (a,b) and a particle at a

is not to belong, the mass of the segment (a, b) is given by (1) whe

M(s) is described by equations (3). The total mass of the wire is

M(L). The mass of the particle at s^ is

m
k

= M(s
k

) - M(s ), k=l,2,...,n.

Definition 4. 3. The density of distribution M(s), at a point a,

is M'(a_|_), whenever this right-hand derivative exists.

This latter definition conforms to the intuitive notion of den-

sity. Average density of a wire is thought of as mass per unit



length. The average density of the arc (a,b) of Definition 4. 2 is

M(b) - M(a)

b - a

and the limit of this as b approaches a is M'(a+ ). For a continuous

distribution, the total mass is the integral of the density

M(L) = /M'(s)ds.

This follows from the fact that M(s) is absolutely continuous. For

an arbitrary distribution, another formula can be written using the

Stieltjes integral

M(L) = fdM(s).

Proceed next to the determination of the moment of inertia

about an axis of a mass distribution. For the set (2) it is

n

m, r ,

k=l k k

where r, is the distance of the particle (s. , m. ) from the axis,
k k k

Now proceeding to find the moment of inertia about the x-axis

of a distribution M(s) on the curve x = x(s), y = y(s), let the

points
^

sk^o ^ e a subdivision N of the interval £s ^L. If

a total mass is divided into separate parts, the moment of inertia

of the whole is the sum of the moments of inertia of the parts.

Therefore the moment of inertia desired will be



n

I

where is the moment of inertia of the arc (s^
^,

s^). Let

y(s") = max y(s)
a- - S c S c-.

k-l ^ s £ sk

and

y(sM = minK sk-l < s < sk
y(s)

The mass of the arc (s, , , s, ) is M(s n )
- M(s, , ). If this mass

k-l k k' k-l

were concentrated in a particle at s^ or s^. , mass would have

been moved nearer to or farther from the x-axis, respectively.

The moment of inertia is increased if mass is moved farther from

the axis. Consequently

h

^y2
(s.)[M(Sk)-M(sk _ l )]

^ 51 i ~2Ty2
(s")jM(s ) - M(s

k _ 1
7jk=l k k=

By Theorem 1.13 both extremes of these inequalities approach the

same limit as (Nl—>0. Hence

I = y (s)dM(s).

To illustrate this consider the following example.

Example. Let the parametrically represented curve be the

straight line

y = s x = 1 - s < s £{T



Let the distribution be a combination of a continuous one in which

the density is proportional to the distance from the end point s =

and a discrete one consisting of the two particles ( 1 , 2), (/2~,4).

FT
More explicitly

M(s) = M (s) + M (s) ,

2

r
s

2
where M (s) = tdt = _s

1 >L ?.

M_(s) .= , £s <_1_ ;

2
JT

= 2 , 1 ^s <f2~ ;

= 6 , s = J~Z" .

Then the moment of inertia about the x-axis is given by

I =
A

_s_ dM (s)

2
^

s dM (s) +
T 1

o -O

^3 2 2
_s_ds +J_,1, 2 + _1.(\[2) 4 = 5

2 2 vT }

2

The Stieltjes integral is also used quite extensively in statis-

tics. Again, much of its importance is due to its capacity to take

care of both sums and limits of sums. As a consequence it is

unnecessary to state theorems once for a discontinuous distribution

and again for a continuous distribution.

To indicate other uses of the integral, suppose F(x) is a dis-

tribution function. Let g(x) be a continuous function in the range
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of F(x), which will be taken to be finite, a to b. Divide the range

into n parts at the points a = Xq < < < ... ^ x
1 ^ X

n
= ^'

Take t. to be on the i-th subinterval. Then
1

S = gftplj^) - F(a[[ + g(t
2
)[F(x

2
) - F^Tj +. . . + g(t

n
)^F(b) - Ffr^jj.

As the norm of the subdivision approaches zero, the limit can be

written as the Stieltjes integral

(i) y^(X)dF(x)

.

a

Then if F(x) is the distribution function of a distribution

possessing a continuous frequency function, the Stieltjes integral

becomes the ordinary Riemann integral

g(x)f(x)dx

where

dF(x) = F'(x)dx

= f(x)dx in (1) .

If F(x) is the distribution function of a discontinuous distri-

bution, the sum S must tend to a limit. Then the Stieltjes integral

includes such a summation as a particular case.

The Stieltjes integral can also be used in defining the moments

of a distribution,



U' = xrdF(x) ,

r
CD

or in defining the moments about the mean,

oo

U = ( (x - U 1

)

r
dF(x).

r J 1

-oo

Also it enables one to see the relationship between various

test statistics when these statistics are expressed in terms of

Stieltjes integrals. In this case too, much of the statistical impo

tance of the Stieltjes integral lies in its descriptive value.
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The primary purpose of this Report is to give a brief analysis

of the Stieltjes integral. Although the development is restricted to

functions of a single real variable, modifications and extensions

can readily be made to include functions of two real variables and

also functions of a complex variable. The analysis consists not only

of considering conditions on the functions insuring the existence of

the Stieltjes integral, but also of considering conditions under which

the Stieltjes integral is not defined. Some of the special properties

of the Stieltjes integral, such as the Integration by Parts Formula,

are developed.

Since the Stieltjes integral is a generalization of the Riemann

integral, analogous properties such as the Mean Value Theorem

and Duhamel's principle are developed.

The method Stieltjes used in first introducing this particular

type of integral in the paper he published on continued fractions is

included. In addition, this discussion includes a consideration of

the Problem of Moments as Stieltjes analyzed it.

The ability of the Stieltjes integral to include both sums and

limits of sums makes it an ideal tool in physical applications. As

a result, many times it is possible to take care of "distributions"

that are partly discrete and partly continuous with a single formula.

For this same reason the Stieltjes integral is extremely important in

theoretical mathematics.


