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Abstract 

Paper mill sludge is a solid waste generated from the paper-making industry. Cellulose in the sludge 

can be hydrolyzed into glucose using a cellulase enzyme complex, which can then be fermented to 

produce value added chemicals, such as lactic acid.  The enzyme requirement for hydrolysis of the 

cellulose in paper sludge was benchmarked against paper pulp. Enzymatic requirements for 

complete conversion of cellulose in paper pulp was found to be 12 fpu cellulase, supplemented with 

5 egu of beta-glucosidase per gram of cellulose. However, beta-glucosidase supplementation had to 

be increased to 38 egu to obtain a similar level of hydrolysis in the case of paper sludge indicating a 

decrease in enzyme activity due to sludge components. 

 Response Surface Methodology (RSM) was used to study the lactic acid yield from paper sludge 

using enzyme dosage and temperature as parameters and operating in simultaneous saccharification 

and fermentation (SSF) mode. Maximum lactic acid yield of 0.75 g/g glucose was obtained within 

36 hours using 10 fpu cellulase supplemented with 32 egu beta-glucosidase at a temperature of 39 

degree C. Using the optimization function of the software, the optimal operational conditions for 

paper sludge hydrolysis were found to be 9 fpu cellulase, 12.5 egu beta-glucosidase at 40 degree C 

which resulted in a lactic acid yield of 0.58 g /g glucose.  

Lactic acid producing microbial cultures, Lactobacillus plantarum and Rhizopus oryzae were 

evaluated for fermentation of the pulp and sludge hydrolyzate at 125-ml shake flask and 2-L 

fermenter levels. In paper pulp media, the yields obtained by bacterial and fungal fermentations were 

0.89 and 0.36 g/g glucose, respectively. In the case of paper sludge, the yield remained same, but 



 

inhibition of bacterial growth occurred. This resulted in lower substrate uptake and productivity than 

those obtained in paper pulp. On the other hand, fungal growth rate was enhanced due to the high 

solids content of paper sludge. The yield of lactic acid from paper sludge using L. plantarum and R. 

oryzae was 0.88 and 0.72 g/g glucose, respectively. Microbial cultures native to the sludge were 

isolated and evaluated for their performance of lactic acid production. 
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CHAPTER 1 - Introduction 

As fossil fuel reserves deplete steadily, there has been increasing awareness and acceptance of 

biomass as a potential renewable source of energy and carbon. Production of biofuels and 

biomaterials has been a subject of extensive debate mainly because they are presently being 

made from cereal grains, and thus compete with the food chain. As a result, efforts are being 

made to shift to the next generation of biofuels and biomaterials derived from cellulosic sources 

(Sun et al. 2005). Making them from cellulose dramatically expands the types and amount of 

material available for their production. This includes agricultural byproducts (Mohaghegi et al. 

1992), energy crops such as fast-growing trees and grasses (Galbe et al. 2002) and many 

materials now regarded as wastes requiring disposal, such as municipal wastes and paper mill 

sludge (Lynd et al. 2001). The benefits of biomass conversion technology are:  increased national 

energy security; reduction in greenhouse gas emissions; use of renewable resources; foundation 

of a carbohydrate-based chemical process industry; and macroeconomic benefits for rural 

communities and the society at large. 

To make the production of biobased fuels and materials technically feasible and thus 

economically competitive with the available petroleum alternatives, the concept of biorefinery 

has been put forth by National Renewable Energy Laboratory (NREL). As with the 

petrochemical refineries, the biorefinery would integrate several conversion processes to produce 

transportation fuels, chemicals or products, including ones that are presently derived from 

petroleum. However, instead of crude oil, the starting material would be biomass in case of 

biorefineries.  

 Pulp and paper mills are one of the few present industries that incorporate some of the 

characteristics of such biorefineries in that they produce a combination of food, feed, power and 
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industrial and consumer products using biomass (Lynd et al. 2005). Primarily producing different 

types of papers, paper mills often produce different lignin-based by-products and generate a large 

part of their power requirements by burning some of their energy-rich waste streams. Their 

product base can be further broadened by utilizing the cellulose present in their principle waste 

stream, referred to as paper sludge; to produce organic chemicals via the biochemical pathway 

which comprises enzymatic hydrolysis and fermentation (Schmidt et al. 1997). 

Presently, paper sludge is disposed either in landfills or is burnt. If the cellulosic 

feedstock is utilized for production of useful chemicals, it would not only allow for additional 

revenues but will also have a positive effect on waste management. Though limited in 

availability, paper sludge is more promising for such bioconversion processes as compared to 

other lignocellulosic biomass because it already undergoes processing and thus no pretreatment 

is required. This makes it an attractive point-of-entry and proving ground for commercial 

processes featuring enzymatic hydrolysis of cellulose (Fan et al. 2006). 

Many studies have focused on production of different types of value-added chemicals 

from paper sludge. It has been studied as a substrate for production of carboxy methyl cellulose 

(Barkalow et al. 1985), activated carbon (Khalili et al. 2000) and for cellulase (Maheshwari et al. 

1994). It has been widely studied for suitability of conversion to ethanol (Lark et al. 1997; 

Ballesteros et al. 2002; Kadar et al. 2004; Yamshita et al. 2006: Marques et al. 2008) and lactic 

acid (Nakasaki et al. 1999; Lee et al. 2005; Marques et al. 2008). 

Lactic acid was discovered in 1780 by Carl Wilhelm Scheele, a swedish chemist who 

isolated the acid from sour milk as an impure brown syrup. The French scientist Frémy produced 

lactic acid by fermentation and this gave rise to industrial production in 1881. Pure and 

anhydrous racemic lactic acid is a white crystalline solid with a low melting point. It exists in 
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two optically isomeric forms, L(+) lactic acid and D(-) lactic acid. L(+) lactic acid is the 

biological isomer and is ubiqitous in the living kingdom as an important metabolite involved in 

several biochemical pathways. 

Pyruvate is the end product of glycolysis, the first set of steps for metabolic energy 

generation. Under aerobic conditions, it is completly oxidized to CO2 and water via the citric 

acid cycle and generates ATP . Under anaerobic conditions, no furthur oxidation and 

consequently, no ATP production occurs. However, the NAD+ reduced during glycolysis needs 

to be regenerated for glycolysis to continue. For this, the pyruvate is either converted to ethanol 

by the action of the enzyme pyruvate decarboxylase or to lactic acid by the action of lactate 

dehydrogenase, thereby regenerating the NAD+. This is the main route of lactic acid production 

in biological systems. (Wood BJ, Genera of Lactic Acid Bacteria, Springer.) 

Lactic acid is an important organic chemical used in several industries. Predominant 

among these is the food industry where it is used as  

• sodium or potassium lactate in meat, poultry and fish to extend shelf life  

• acidity regulator in beverages such as soft drinks and fruit juices.  

• preservative of vegetables such as olives, gherkins, etc. preserved in brine. 

• additive to hard-boiled candy, fruit gums and other confectionery products for reduced 

stickiness and a longer shelf life.  

• acidification agent for dairy products which also enhances the dairy flavor. 

Also, lactic acid is a natural sourdough acid, which gives the bread its characteristic flavor, and 

therefore it can be used for direct acidification in the production of sourdough. The esters of 

lactic acid with long chain alcohols are used as emulsifying agents in bakery products. 
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Besides these uses, lactic acid is also an important platform chemical and serves as the 

precursor of various other useful organic chemicals. For example, by dehydration it yields 

acrylic acid, oxidation produces malonic acid, while it is hydrogenated to produce 1-3 

propanediol. However, over recent years, the biggest surge in demand has been for the 

polymerization product, polylactic acid, a biodegradable plastic which has multiple applications 

in the packaging industry. Two molecules of lactic acid can be dehydrated to lactide, a cyclic 

lactone, which as biodegradable polyesters is currently used to manufacture tissue engineering 

materials such as resorbable screws and sutures.  It is also increasingly being used as an 

intermediate in the synthesis of high volume oxygenated chemicals such as propylene glycol, and 

the esters of lactic acid with low molecular weight alcohols are being used to produce 

environmental friendly solvents (Dutta et al. 2006). 

Industrially, Lactic acid is manufactured either using a chemical or a biochemical route. 

The chemical route involves the hydrolysis of lactonitrile using strong acids that yields a racemic 

mixture. The biochemical process involves fermentation of sugars such as glucose and lactose 

(Vadlani et al. 2008) using appropriate microorganisms.  

The objective of the present work is to compare lactic acid production from paper pulp 

and paper sludge and devise an efficient bioprocess for the conversion of paper sludge into lactic 

acid using appropriate cellulase enzymes and efficient microbial cultures. 
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CHAPTER 2 - Hydrolysis of paper mill pulp and sludge to 

constituent sugars using cellulase enzyme complex 

Introduction 

 

Cellulose is the most abundant organic material on earth. It has a huge potential to serve as a 

renewable source of energy and carbon to meet the burgeoning world demand for fuels and 

chemicals. However, low-cost technologies to use cellulose as a feedstock to produce chemicals 

are yet to be developed. One of the chief roadblocks in this regard is the recalcitrance of 

lignocellulosic biomass against hydrolysis to yield constituent sugars, a primary requirement for 

processing them further into the desired products (Himmel. 2007). In nature, what is one of the 

most important processes for carbon recycling, is carried out by some fungi and bacteria. 

Cellulolytic fungi produce a host of hydrolases, commonly referred to as the cellulase enzyme 

complex, which acts in tandem to progressively break down cellulose.  Bacteria have complexed 

cellulase systems called polycellulosome organelles that are exposed on bacterial cell surface 

that aid in more efficient uptake of the released glucose by preventing loss by diffusion (Zhang et 

al. 2004). 

Chemically, cellulose is a linear condensation polymer consisting of D-glucose joined 

together by β-1,4-glycosidic bonds with a degree of polymerization (DP) ranging from 100 to 

20,000 (Lee et al, 2002). Anhydrocellobiose is the repeating unit of cellulose. Coupling of 

adjacent cellulose chains and sheets of cellulose by hydrogen bonds and van der waal's forces 

results in a parallel alignment and a crystalline structure with straight, stable supra-molecular 
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fibers of great tensile strength and low accessibility (Zhang et al. 2004). This makes cellulose 

breakdown difficult. 

The widely accepted mechanism for enzymatic cellulose hydrolysis involves synergistic 

actions by endoglucanase (EC 3.2.1.4), exoglucanase or cellobiohydrolase (EC 3.2.1.91), and β-

glucosidase (EC3.2.1.21). Endoglucanases hydrolyze accessible intramolecular β-1,4-glucosidic 

bonds of cellulose chains randomly to produce new chain ends; exoglucanases processively 

cleave cellulose chains at the ends to release soluble cellobiose or glucose; and β-glucosidases 

hydrolyze cellobiose to glucose. These three steps occur simultaneously to degrade cellulose(Lee 

et al. 2002). This complex has been found to be remarkably resistant to inhibitors except product 

and substrate inhibition resulting from cellobiose and cellulose respectively (Howell et al. 1975). 

Improving biomass hydrolysis using fungal cellulase has been a very active area of 

research in recent years. The biotechnology companies, Danisco and Novozymes Inc. have taken 

the lead in this and have reported significant reduction of enzyme costs for the cellulose-to-

ethanol process from US$5.40 per gallon of ethanol to approximately 50 cents per gallon of 

ethanol (Moreira, 2005). The two main strategies pursued to achieve this goal are (i) an 

economical improvement in the production of cellulase enzyme complex by process 

improvisation such as low-cost media components and fungal strain enhancement; (ii) designing 

of a more efficient cellulase enzyme complex so as to reduce enzyme requirements by designing 

better cocktails and by individual component improvement by processes such as protein 

engineering (Moreira, 2005). 

However, the enzyme costs for lignocellulosic hydrolysis needs to go down further to 

make bioprocessing a commercial reality. NREL estimates total value to be around 10 cents to 

produce a gallon of ethanol (Stephanopolous, 2007). 
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Different lignocellulosic materials have been studied for their use as substrates in 

biochemical conversions. Lynd and his coworkers, 1996, were the first to study the suitability of 

paper sludge for biochemical conversion. They studied thirty six different types of paper sludges 

for their amenability to hydrolysis and reported that different sludges vary in their level of 

enzymatic susceptibility. Nakasaki and coworkers (1999) were the first to study lactic acid 

production from different types of sludge including paper mill sludge. In a sequential process of 

hydrolysis and fermentation, using carboxy methyl cellulase (EC 3.2.1.4.), they reported a 

saccharification level of 50% that yielded a solution with 10g/l glucose after 100 hours. Romani 

and coworkers (2007) evaluated the effect of various operational conditions on the hydrolysis of 

sludge. These include the effect of surfactant addition, cellulase to solids ratio and liquid to 

solids ratio. In the most recent study, Marques and coworkers (2008) reported complete 

saccharification as well as fermentation in a study investigating the suitability of recycled paper 

sludge for lactic acid production. 

All previous studies used one-factor-at-a-time variation which is not appropriate method for 

use in process optimization. It is time consuming, cannot determine the effect of all possible 

combinations of factors, and is not very accurate because cellulase has partial beta glucosidase 

activity and vice versa which means that it is not possible to hold one level constant while 

changing the other.   In this study, the results from these experiments were used to fix the design 

space, that is, to determine the highest and the lowest levels of factors to generate a model using 

RSM that can then be used for process optimization. 

Additionally, none of these studies tested β-glucosidase as a variable. Minimizing the β-

glucosidase requirement is as important as minimizing cellulase requirement to bring down the 

total enzyme cost. 
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Different substrates have varying amenability to enzymatic hydrolysis. Consequently, 

hydrolysis experiments were performed to determine the maximum extent of hydrolysis possible, 

hydrolysis levels resulting from different levels of enzyme addition as well as the time required 

for hydrolysis. This set of experiments therefore, is a prerequisite whenever studies requiring 

lignocellulosic hydrolysis are to be undertaken.  

The factors tested in this study are the effect of two enzymes: cellulase, the primary 

cellulose hydrolyzing enzyme; and β-glucosidase: the enzyme which breaks down cellobiose, a 

glucose dimer that is generated by the action of cellulases. The cellulase mixtures obtained 

commercially are often deficient in β-glucosidase and must be supplemented with β-glucosidase. 

Other accessory enzymes such as xylanase, furfuryl esterase are used while hydrolyzing complex 

substrates (Margeot et al. 2009). However, they were not required in this case as the cellulose 

fiber present in paper pulp and sludge has already been stripped of all other components that in 

native lignocellulosics bind to cellulose and prevent enzyme access. The optimum temperature 

and pH for the enzymes were specified by the manufacturer and thus their values were 

maintained as suggested.   

Materials and methods 

 

Feedstock  

Bleached softwood paper pulp and paper mill primary clarifier sludge (before 

dewatering) were obtained from Crompton mill, MeadWestvaco. Softwood paper pulp is 

obtained by kraft pulping of heart-wood obtained from softwood tree species. Lignin is 

completely stripped of the process of bleaching. The clarifier sludge is the suspended solids in 



 9 

the wastewater stream of the paper mill that pass through the filter screens and settle to the 

bottom of the clarifier tank. Sludge is recovered and subsequently dewatered before disposal. 

The moisture content of pulp and sludge were 83 and 90% respectively on a wet basis. They 

were stored in plastic buckets at 4°C in the cold room until use.  

Enzymes  

The enzyme units for cellulase activity is Filter paper unit (fpu), which is that amount of 

enzyme that causes 1μmol of reducing sugar equivalents release in 1 min from  Whatman filter 

paper at 50°C and pH 4.8. Endoglucanase unit (egu) is defined as the amount of enzyme which 

releases 1.0 μmol of glucose units from cellobiose per min under the same assay conditions. The 

enzymes used were NS50013 (cellulase) and NS50010 (β-glucosidase) with activities of 70 fpu/g 

and 250 egu/g respectively. They were obtained from Novozymes inc. and were a part of their 

complete biomass hydrolysis kit. The enzymes were stored at 4°C in plastic bottles, away from 

sunlight. 

Compositional analysis  

 The water content of the sludge was determined by using convection oven drying 

method. Three gm of wet paper pulp and paper sludge each were weighed and left to dry in a 

convection oven at 80°C for 24 hours. Analysis by Denver Infrared Moisture Analyzer, Model 

IR35 (Fisher Scientific, USA), confirmed that the samples were completely dried.  The weight of 

the dried samples were then determined. The difference in weight is the moisture content of the 

material. The carbohydrate content of the dried paper pulp and paper sludge was determined by a 

two-step quantitative hydrolysis process according to NREL/TP-510-42618 

(www.nrel.gov/biomass/pdfs/42618). The samples were centrifuged and the pellet was air dried 

http://www.nrel.gov/biomass/pdfs/42618�
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to a constant weight. A 0.3gm air dried sample was weighed in an Erlenmeyer flask and 

hydrolyzed by adding 3 ml of 72% (w/w) sulphuric acid and agitating the mixture for 1 hour. 

This was followed by a second hydrolysis at 121° C in 4% (w/w) sulphuric acid (adjusted by 

diluting the above mixture with 84 ml water) for 1 hour in an autoclave. Each sample was then 

centrifuged and the supernatant analyzed for pentose and hexose sugars by HPLC using a 

Shimadzu CBM-20A HPLC system connected to a Shimadzu RID-10A refractive index detector. 

A monosaccharide column (300 x 7.8 mm; Phenomenex, Calif.) was used and the analysis 

conditions maintained were 80°C, mobile phase 0.0025M sulphuric acid, retention time 15 

minutes and flow rate 0.4 ml/min. Values for weight percent cellulose in the sample were 

calculated using the following equation, 

% 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = ��
𝑔𝑔 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
𝑔𝑔 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

�
𝑄𝑄𝑄𝑄1

+  �
𝑔𝑔 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑔𝑔 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
�
𝑄𝑄𝑄𝑄2

 ×  �
𝑔𝑔 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

𝑔𝑔 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
�
𝑄𝑄𝑄𝑄2

� × 100 

A similar calculation was followed for the hemicellulose content by replacing glucan 

with xylan. 

Enzymatic hydrolysis 

Enzymatic hydrolysis was performed in 125 ml Erlenmeyer flasks with a working 

volume of 20 ml. Cellulose content in the flask was maintained at 2% w/v. The flasks were 

incubated at a temperature of 45°C in a temperature controlled shaker and at an agitation rate of 

120 rpm (Innova 2025, New Brunswick scientific, NJ). Enzymes were added as per the 

requirement of each individual experiment. All experiments were done in triplicate. Hydrolysis 

was carried out for 32 hours, after which no further increase in glucose levels were observed. 

Pulp hydrolysis was carried out in aqueous media, which had equal volumes of distilled 

water and 0.01 M citrate buffer at pH 5.2, the optimum conditions for cellulase activity. Paper 
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sludge obtained was in a liquid form (90% moisture) and had a pH of 7.5. Thus, the required pH 

could not be obtained using citrate buffer. Instead, concentrated hydrochloric acid was used to 

adjust the pH of the sludge to 5.0. The sludge was then autoclaved before enzymatic hydrolysis 

to prevent contamination.   

Calculations and statistical analysis  

Product yield (Yp/s) is based on the amount of product synthesized (g) divided by the 

amount of substrate consumed (g). Theoretically, the maximum yield of glucose is 1.1g/g from 

cellulose and the maximum yield of lactic acid is 1g/g from glucose. Productivity is calculated 

by final product concentration divided by the time taken for fermentation. All shake flask level 

experiments were done as triplicates and the average values are reported. The standard deviations 

are depicted as error bars in the figures. 

Results and discussion 

Composition 

 

Paper sludge was found to have a moisture content of 90%. Paper sludge consists of an 

organic fraction which are materials of plant origin such as polysaccharides and lignin and an 

inorganic ash fraction. The inorganic fractions result from different additives such as silica, lime, 

clay introduced in the production stream at various stages of paper manufacturing. Table.1-1 

summarizes the composition of the paper sludge sample used in this study. Paper pulp was found 

to be mostly cellulosic with 91% glucan and 6% xylan content, on a dry basis. 
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Enzymatic hydrolysis 

Paper pulp hydrolysis. A two gm sample of pulp was dispersed in 100 ml citrate buffer, 

and cellulase at three different levels were added, ranging from 5-20% of the pulp weight. The 

flasks were incubated in a rotary shaker. Samples were collected after 4, 12, 24, 36 hrs and 

analyzed for glucose and cellobiose concentrations.   

Hydrolysis increased progressively from 50% to 82% when the enzyme loading was 

increased from 5% to 20% respectively (Figure1-1).  However, the marginal increase of glucose 

release with increasing enzyme loading decreased progressively. 

The next experiment assessed the effect of β-glucosidase supplementation on hydrolysis. 

The three cellulase levels used previously were supplemented with 5egu of β-glucosidase. As can 

be seen from the graph (Figure1-2), addition of β-glucosidase had a significant positive affect on 

the amount of glucose release at all cellulase loadings in addition to faster reaction kinetics, 

particularly in the initial stages. Cellulase has partial cellobiose cleaving activity and thus 

cellobiose accumulation occurs in the initial stages of hydrolysis (Data not shown). This then 

slowly gets hydrolyzed to glucose.  Supplementation with β-glucosidase hastens the breakdown 

of the cellobiose leading to faster glucose release. If the amount of cellulase is low, there would 

be insufficient β-glucosidase activity, which would result in a lower glucose release as part of it 

will remain bound as cellobiose.  Addition of β-glucosidase in such a case increases the level of 

glucose release. 

Paper sludge hydrolysis. As was the case for paper pulp, the first set of hydrolysis 

experiments was done using only cellulase. It was observed that even with progressively higher 

levels of cellulase, the concurrent increase in glucose was very low. Additionally, a large amount 

of cellobiose accumulation occurred (data not shown). This suggested β-glucosidase inactivation, 
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probably due to enzyme immobilization by one or multiple components of sludge. Thus, the next 

experiments were done by progressively increasing β-glucosidase concentration and keeping the 

cellulase level constant at 12 fpu. (Figure1-3) Finally, at 38 egu, a similar hydrolysis level was 

observed as in the case of paper pulp using the same level of cellulase supplemented with 5 egu 

β-glucosidase. Table 1-2 compares hydroysis pattern of paper pulp and paper sludge. 

Conclusion. The cellulose present in both the feedstocks tested were found to be very 

amenable to hydrolysis under proper conditions. Such a high degree of hydrolysis using similar 

enzyme levels and within similar residence times has not been reported In the case of other 

lignocellulosic biomass. 

The increase in enzyme requirements observed for sludge is undesirable. There needs to 

be further studies to investigate if this is due to enzyme adsorption or enzyme inhibition, possibly 

caused by the presence of heavy metal ions. The enzyme could also become irreversibly 

adsorbed to other components present in sludge such as lignin, clay or calcium carbonate and 

thus become unavailable for sludge hydrolysis. This could be tested by techniques such as 

Fourier Transform Infra Red (FTIR) spectroscopy. Also, it is well known that most enzymes are 

inhibited in the presence of heavy metal ions. Paper sludge has a considerable heavy metal salt 

content (Poikio et al. 2007) that could also decrease enzyme activity. One could also dialyze to 

remove metal ions and repeat hydrolysis to compare hydrolysis activity. This would simulate 

membrane separation. If the component/components responsible for increased enzyme 

requirement is recognized, eliminating them from entering the waste stream would effectively 

decrease the difference in enzyme requirements of paper pulp and sludge and decrease process 

cost considerably. 
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Table 2.1 Composition of paper sludge 

Components Concentration (w/w%) 

Cellulose 21.1 ± 1.1 

Hemicellulose 4.1 ± 0.3 

Lignin 13.9 ± 0.6 

Ash 46.5 ± 1.4 

 

 

 

Table 2.2 Comparison of enzymatic hydrolysis of paper pulp and paper sludge 

 Paper pulp Paper sludge 

Maximum glucose release 0.93a 0.94a 

Glucose release at 12fpu cellulase only 0.81a 0.23b 

Required β-glucosidase supplementation for 

maximum glucose release (in egu) 

5 38 

For a single parameter, values with same superscript do not vary significantly. Values with 

different superscripts differ significantly (P <0.05)  
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Figure 2.1 Paper pulp hydrolysis at varying cellulase levels 
 

 

Time (h)

0 5 10 15 20 25 30 35

G
lu

co
se

 re
le

as
e 

( g
/g

 c
el

lu
lo

se
)

0.0

0.2

0.4

0.6

0.8

1.0

3 fpu
6 fpu
12 fpu

 

Figure 2.2 Paper pulp hydrolysis at varying cellulase levels and supplemented with 5 egu β-
glucosidase 
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Table 2.3 Hydrolysis of paper sludge with constant cellulase level of 12 fpu and varying β-
glucosidase concentrations 
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CHAPTER 3 - Fermentation of sugars derived from paper pulp and 

paper sludge to L(+) Lactic acid using Lactobacillus plantarum and 

Rhizopus oryzae. 

Introduction 

 

After the sugars have been released by the action of enzymes, they can then be converted to a 

variety of fermentation products using suitable microorganisms. Manipulating the growth 

conditions suitably leads to increase in the level of the desired product and suppression of by-

product formation.  

Lactic acid bacteria (LAB) 

Lactic acid bacteria are a group of Gram positive bacteria that produce lactic acid as a 

result of carbohydrate fermentation. These microbes are used in the production of fermented 

food products. Lactobacilli vary in morphology from long, slender rods to short, round cocci. 

Some species are aerotolerant and may utilize oxygen through the enzyme flavoprotein oxidase, 

while others are anaerobic (Codon, 2006). The growth is optimum at pH 5.5-5.8 and temperature 

of 32-35°C. They are heterotrophic and generally have complex nutritional requirements because 

they lack many biosynthetic capabilities.  

Based on the pathway followed for carbohydrate metabolism, LAB can be grouped into 

two categories (Wood BJ, Genera of Lactic Acid Bacteria, Springer.) 
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• Homofermentative LAB catabolize glucose through the glycolytic pathway to yield two 

moles of pyruvate and two moles ATP per mole glucose consumed. Intracellular redox 

balance is maintained through the oxidation of NADH, concomitant with pyruvate 

reduction to lactic acid. Thus, two moles of lactic acid are formed for every mole of 

glucose consumed. 

• Heterofermentative LAB use the pentose phosphate pathway. One mole Glucose-6-

phosphate is dehydrogenated to 6-phosphogluconate and then decarboxylated which 

yields a mole each of carbondioxide and pentose-5-phosphate (P5P). P5P is then cleaved 

into one mole glyceraldehyde phosphate (GAP) and one mole acetyl phosphate. GAP 

enters the glycolytic pathway, while the acetyl phosphate is reduced to ethanol. Thus, one 

mole each of lactic acid, ethanol and CO2 is formed from a mole of glucose.  

 

Different species of homofermentative Lactobacillus are used industrially to produce 

lactic acid from sugar or starch-rich sources. Lactobacillus plantarum, the LAB used in this 

study, is one such species. Lactic acid yields obtained are very high and the fermentation time is 

lowered. A yield of 98% has been reported (Vadlani et al. 2007) while productivities can go up 

to 2.1 g/l/h (Reddy et al. 2008). However, the drawbacks associated with using bacterial cultures 

like L.plantarum is that supplementation of the media with organic supplements such as peptone 

and yeast extract is required (Chopin, 1993). This increases the production cost and also makes 

downstream processing difficult.  

Rhizopus oryzae 

Fungi belonging to the genus Rhizopus are saprophytic and utilize dead and decaying 

matter as their source of nutrition. They release large amounts of different types of extracellular 
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hydrolytic enzymes to be able to effectively metabolize nutrients from their surroundings. This 

property has been exploited industrially to produce different enzymes, primarily, lipase and 

cellulase. Rhizopus sp. also produce a wide range of low molecular weight organic acids. For 

example, some species of Rhizopus such as R.oligosporus and R. oryzae are able to produce large 

quantities of lactic acid. However, different strains differ in their ability to produce this acid. R. 

oryzae strain NRRL 395 has been identified as a very efficient producer of lactic acid (Soccol et 

al. 1994 ; Oda et al. 2003). 

Several studies report the use of R. oryzae for the production of lactic acid from starch-

based materials (Akerberg et al. 2000: Huang et al. 2003; Linko et al. 2006). However, only a 

limited number of studies report fermentation using Rhizopus sp. on lignocellulosic substrates. 

Meiura et al report (2004) the production of lactic acid from corncob hydrolyzate using 

Rhizopus. 25 g/l of L-lactic acid was produced from the hydrolyzate containing 55 g/l of pentose 

and hexose sugars. In another study, Woiciechowski et al (1999) studied wood hydrolyzate as a 

substrate for the fungal fermentation to produce lactic acid and reported a yield of 0.58 g/g total 

sugars. 

The yield and productivity associated with the fungal fermentations is less than that 

obtained in bacterial fermentations. The maximum yield reported using R. oryzae is 0.85 g lactic 

acid per gram starch (Huang et al. 2005). This is because only a part of the carbon is used for the 

formation of the desired product and the rest of the flux is diverted to by-products such as xylitol, 

glycerol, ethanol, CO2 and fungal biomass. Another drawback is that most fungal fermentations 

require aerobic conditions.  In oxygen deficient conditions, R. oryzae starts to produce more 

ethanol, and lactic acid production decreases (Skory et al. 1998). Provision of aeration needs 

additional infrastructure and the energy associated with provision of aeration is significant. 
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However, in spite of the above constraints, fungal fermentations are often used by 

industry because of certain distinct advantages. Due to the way they grow, either as mycellial 

mats or as pellets, downstream processing becomes easier. Nutrient supplementation with 

inorganic salts is sufficient; an additional organic nitrogen source is not required, thus bringing 

down the cost of the media (Soccol, 1994). Certain strains of the fungus have amylolytic activity, 

which decreases the enzyme requirements for starch hydrolysis (Linko et al. 2006). Fungal 

strains can partially utilize pentose sugars for lactic acid production unlike bacteria which can 

use them only for growth requirements. This is a significant advantage when the substrate is 

cellulosic biomass as it has substantial pentose sugar content.   Finally, the fungal biomass 

generated can be used for a variety of purposes such as chitosan isolation (Pochanavanich et al. 

2002) and for addition to animal feed (Kusumaningtyas et al. 2006). 

Numerous studies have been undertaken in an effort to increase the productivity of fungal 

cultures. Of these different approaches, the most common is to optimize process parameters such 

as aeration and pH, modifying morphology and immobilization on solid supports. One of the 

important factors affecting lactic acid production in Rhizopus is morphology. Generally, fungal 

mycellia tends to grow as clumps and this morphological form is a poor producer of lactic acid. 

Studies report different methods of making the fungus grow in the form of flocs (Yua et al. 2007) 

or very small pellets (Bai et al. 2003) which increases the level of mass transfer, and 

consequently, the yield. Yua et al (2007) observed yields of 0.87 g/g and a productivity of 

1.73g/l/h while working with a medium with 12.5% glucose if the fungus was allowed to grow as  

floc. By immobilizing the fungus on polyurethane foams implanted using ion beams, yields of 

0.8g/g glucose was obtained (Fan et al. 2008).  
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This study, will test a well-known homofermentative lactic acid bacteria, L. plantarum, and a 

fungus, R. oryzae for their performance in the production of lactic acid from paper pulp and 

paper sludge. All studies involving production of lactic acid from paper sludge have utilized 

different bacterial species belonging to the genus Lactobacillus. No studies have been reported 

that use R.oryzae for fermentation of sugars from paper sludge though it has been studied for 

production of lactic acid using other lignocellulosic substrates (Park et al. 2004).  

Simultaneous saccharification and fermentation (SSF) 

 Biomass conversion is a two step process involving initial hydrolysis and subsequent 

fermentation. These two steps can be carried out sequentially or simultaneously. SSF is the 

spatial and temporal integration of the hydrolysis and fermentation steps. In it, the enzymes and 

the inoculum are added to the bioreactor at the same time at the beginning of the reaction and the 

process is then allowed to proceed until completion. SSF has been widely reported to result in 

better yields due to avoidance of product inhibition (Philippidis et al. 1993) as well as decreasing 

the total process time (Lee et al. 2004). However, the temperature optima for hydrolysis and 

fermentation are often very different and the temperature for SSF lies somewhere between the 

two optima. The difference in temperature and initial substrate concentration as compared to the 

sequential process leads to changes in kinetics and thus yield and productivity values.  

Fermentation studies are typically first carried out at shake flask levels to determine the effects 

of the factors being tested and to identify the optimum conditions. However, to determine the 

actual yield and productivities obtainable under optimized conditions, fermentation is performed 

in bioreactors or fermenters. Laboratory scale fermenters typically range from 1-10 liters in 

capacity and has computer controlled main consoles accurate control of process conditions. For 

example, it maintains a constant pH by monitoring and adjusting it to the optimum level by the 
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addition of requisite quantities of acid or base via peristaltic pumps. Fermenters allow for 

effective agitation and efficient mass and heat transfer. All these factors lead to much higher 

nutrient uptake by the microbes and thus greater product concentration and yield can be 

achieved. The results obtained using fermenters can be scaled up to pilot and industrial levels of 

operation. 

 

Materials and methods 

Microbial cultures: L.plantarum 35423 and R. oyzae  strain NRRL-395 were obtained 

from American type culture collection (ATCC). All dehydrated media were procured from 

Difco, BBL, USA, and the analytical grade chemicals were procured from Fisher Scientific, 

USA. 

Inoculum preparation 

L. plantarum: Glycerol stocks of the culture was prepared and stored at -80° C. The 

thawed glycerol stock solution was inoculated in deMan Rogosa Sharpe (MRS) broth, specific 

for LAB and allowed to grow for 15 hours, to be used as inoculum. 

R. oryzae: Lyophilized cultures were inoculated on plates containing potato dextrose 

agar. Spores were collected from the plates by washing them with water and Tween 80. They 

were then inoculated in a liquid mineral medium for germination.  The medium was adjusted 

such that the spore count was maintained at 107 spores/ml. The composition of the medium was 

glucose 20g/l, ammonium sulphate 3g/l, zinc sulphate 0.02g/l, potassium phosphate 0.05g/l 

magnesium sulphate 0.075 g/l and calcium carbonate 10g/l. Insoluble calcium carbonate was 
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found to be necessary for the spores to germinate. The spores were allowed to germinate for 24 

hours and the solution was used as inoculum.  

Fermentation in shake flasks 

Experiments were performed in 125 ml Erlenmeyer flasks containing 20ml of the culture 

medium. Three different carbon sources; synthetic glucose, pulp and sludge hydrolyzate were 

compared for their performance in fermentation. The starting pH of the media was set at 5 as the 

hydrolyzates were adjusted to that pH during enzymatic hydrolysis. In case of L.plantarum, the 

pulp and the sludge hydrolyzate were supplemented with 5 g/l peptone, the temperature of 

fermentation was maintained at 37°C and fermentation duration was 28 hours. For R.oryzae, 

medium supplementation was done with 5g/l ammonium sulphate as the nitrogen source, 

fermentation temperature was 35°C and fermentation duration was 72 hours. Inoculation was 

done with 5% v/v of inoculum and fermentation was allowed to proceed in an orbital shaker  

(Innova 23025, New Brunswick Scientific, NJ ) under constant agitation of 150 rpm. Samples 

were collected at intervals and were centrifuged, filtered and analyzed for lactic acid and residual 

glucose concentration using HPLC. The conditions maintained for analysis were as reported in 

chapter I.  

Fermenter experiments 

After the hydrolysis and fermentation experiments using shake flasks, the study was 

scaled up to a 2 L fermenter (Biostat B. B. Braun Biotech International GMbH Melsungen, 

Germany). In bioprocessing applications, it is desirable to have a higher initial substrate 

concentration so that higher product concentrations are obtained to ensure an economical 

operation. A product concentration of 40 g/l of product has been identified as an economically 
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viable point (Fan et al. 2005). Thus, paper pulp and glucose was added in quantities that would 

make it possible to achieve a glucose concentration of 40g/l in the medium. However, paper 

sludge hydrolyzate could not be adjusted appropriately as increasing the glucose content would 

necessitate drying which would adversely affect its amenability to hydrolysis.  Thus glucose was 

maintained at 20g/l in this case.  

The synthetic glucose media was directly inoculated while the paper pulp and paper 

sludge media was first hydrolyzed using cellulase enzyme levels determined by the hydrolysis 

experiments described in chapter I, and then inoculated. Similar conditions of temperature and 

starting pH were maintained as in the shake flask experiments. The agitation rate was 300 rpm. 

pH was maintained using 2N sodium hydroxide solution in case of synthetic glucose media and 

pulp hydrolyzate. No pH change was observed in sludge hydrolyzate due to the buffering action 

attributed to the high ash content, and thus no pH control was required. Additionally, air was 

pumped in during the entire period of fermentation at the rate of 2 volume/ volume/ minute 

(VVM) during fungal fermentation. 

 

SSF 

The enzyme at the required dosages and 5% (v/v) of the L. plantarum inoculum, grown in 

MRS media for 24 hours were added to sludge that had been pH adjusted and autoclaved. 

Additionally, the sludge was supplemented with 5g/ l of peptone. SSF was allowed to proceed 

for 36 hours. 

Results and discussion 
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Shake flask experiments 

L. plantarum: The lactic acid concentration and residual glucose was determined after 

fermentation and the results obtained are presented in Table 2-1. As can be observed, glucose 

utilization as well as yield was high in paper pulp and synthetic media. However, in case of 

paper sludge, there was a considerable amount of residual glucose which resulted in lower lactic 

acid concentration. Even when the fermentation was allowed to continue for more time, no 

significant decrease in glucose concentration was observed (Data not shown).To obtain the cell 

count, the sludge was dilution plated along with a control; synthetic medium as the control that 

had the same glucose concentration and was fermented under the same conditions. The colony 

forming units (CFU) in control and sludge hydrolyzate media were 2.1 × 108 and 9.2 ×107 

respectively. This suggested that inhibition of bacterial growth had occurred. When using paper 

sludge as a medium for microbial growth, some studies report complete conversion of available 

glucose (Li et al.2004) (Marques et al.2008) while others observed a suppression of bacterial 

growth and thus incomplete glucose utilization (Yamashita et al. 2008). It may be postulated that 

paper sludges vary widely in their compositions, particularly with respect to minor additives such 

as heavy metal salts that act as inhibitors, and thus account for the difference in observations.  

 

R. oryzae: The observed residual glucose and lactic acid concentrations at the end of 72 

hour of fermentation are presented in Table 2-2. Contrary to the observation in case of L. 

plantarum, R. oryzae performed better in paper sludge media than in paper pulp or synthetic 

glucose media. This could be due to better growth of the fungus as the media had large amount 

of suspended material that enhanced fungal mycellial growth (Li et al. 2003).  Complete 

consumption of glucose was observed, even at the shake flask level, unlike in the case of L. 
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plantarum. However, the efficiency of substrate utilization, represented by a yield of 0.37g/g, for 

synthetic medium was much lower than that obtained by using L. plantarum (0.97g/g). 

Additionally, substantial by-product formation was observed in all the three media. The major 

by-products were ethanol and malic acid at concentrations 2.3 and 1.7 g/l, respectively.  

Fermenter experiments 

L .plantarum: The profile of glucose and lactic acid concentration with time for the three 

fermenter runs are presented in Figure 2-1, 2-2 and 2-3 respectively. A similar trend in glucose 

consumption was observed as in the shake flask level. However, the lactic acid concentration 

was higher due to higher glucose consumption in the fermenter than in the respective shake 

flasks levels. In all the three cases this was presumably due to better process control.  

R .oryzae: Only paper sludge as a substrate was evaluated in this experiment. The time 

course profile of glucose consumption and lactic acid production is shown in Figure 2-4. No 

byproduct formation was observed. Due to better aeration conditions in the fermenter, the fungus 

produced only lactic acid while it tends to produce ethanol in oxygen limiting conditions (Skory 

et al. 1998). Because the carbon flux was not diverted to the production of by-products, the lactic 

acid yield and concentration increased to 13.6g/l and 0.68g/g glucose respectively. However, 

because fungal fermentation takes so long, the productivity was very low (0.16g/l/h). 

The yield, concentration and productivity values obtained in the fermenter runs 

conducted are presented in the form of a table (Table 2.3). 

SSF 

SSF was carried out using paper pulp and sludge at the shake flask level.  No significant 

increase in the amount of lactic acid production was observed in either paper pulp or paper 
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sludge as compared to sequential hydrolysis and fermentation.  Though there was no yield 

increase, a substantial decrease in total process time and thus enhanced productivity was 

observed. Sequential hydrolysis and fermentation took 18 and 28 hours respectively resulting in 

46 hours of total time required while SSF was complete within 36 hours. The same results were 

obtained when SSF was carried out using paper sludge (Figure 2-5). 

Conclusions. In fermentation experiments using L. plantarum, it was observed that yield 

changes were not large when the bacteria were grown on different substrates. This is because, 

irrespective of the source, the same sugar is metabolized (glucose) and no change in yield occurs. 

However, the presence of inhibitors in paper sludge slows the growth and product formation rate 

since lactic acid production is partly growth associated. Slow growth limits sugar uptake, and as 

a result, the final product accumulation. Slow product formation and low final product 

concentration decreased the productivity value in case of paper sludge media.  Further studies are 

needed to identify the inhibitors and assess their effect on growth and product formation rates. 

Eliminating inhibitors from the waste stream could decrease the difference in concentration and 

productivity values between paper pulp and paper sludge. 

To make lactic acid production from R. oryzae more competitive, further studies are 

required for increasing yield and productivity by implementing the strategies discussed earlier in 

the chapter to evaluate their effectiveness in paper sludge media.  
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Table 3.1 Lactic acid production in shake flask using different carbon sources and L. 
plantarum 

 Initial glucose 
concentration 
(g/l) 

Residual glucose 
concentration 
(g/l) 

Final lactic acid 
concentration 
(g/l) 

Yield (g/g 
glucose) 

Synthetic media 10 3 6.7a 0.98a 

Paper pulp 10 3.2 6.5a 0.96a 

Paper sludge 10 5.7 3.6b 0.84b 

Values with same superscript do not vary significantly. Values with different superscripts differ 

significantly (P <0.05)  

 

Table 3.2 Lactic acid production in shake flask using different carbon sources and 
Rhizopus oryzae 

 Initial glucose 
concentration (g/l) 

Residual glucose 
concentration (g/l) 

Final lactic acid 
concentration (g/l) 

Yield (g/g 
glucose) 

Synthetic media 20 0 7.4a 0.37a 

Paper pulp 20 0 7.8b 0.40b 

Paper sludge 20 0 10c 0.50c 

Values with same superscript do not vary significantly. Values with different superscripts differ 

significantly (P <0.05)  
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Table 3.3 Lactic acid production using different carbon sources in a fermenter 

 Concentration (g/l) Yield(g/g glucose) Productivity (g/l/h) 

Paper pulp (L.plantarum) 35.6 0.89 0.82 

Paper sludge (L.plantarum) 13.4 0.67 0.32 

Paper sludge (R.oryzae) 13.6 0.68 0.16 

Paper sludge (SSF) 14.0 0.70 0.52 
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Figure 3.1 Fermentation profile of synthetic glucose media using L. plantarum 
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Figure 3.2 Fermentation profile of paper pulp hydrolyzate media using L. plantarum 
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Figure 3.3 Fermentation profile of paper sludge hydrolyzate media using L. plantarum     
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Figure 3.4 Fermentation profile of paper sludge hydrolyzate media using R. oryzae     
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Figure 3.5 Simultaneous saccharification and fermentation of paper sludge using  
L. plantarum 



 32 

 

CHAPTER 4 - Determining the optimum enzyme dosage for sludge 

hydrolysis using response surface methodology (RSM) 

Introduction 

 

Response surface methodology (RSM) is a collection of statistical design and numerical 

optimization techniques often used to optimize industrial processes. RSM includes aspects of 

experimental design, hypothesis testing, and regression analysis. The experimental design aspect 

deals with the choice of suitable variables and their levels, and regression analysis enables a 

mathematical form to be fitted to the observations. Hypothesis testing is relevant to both these 

processes (Morton H, http://www.stat.auckland.ac.nz/~iase/publications/18/BOOK2/B4-7.pdf.) 

In other words, RSM searches for the input combinations, called the independent 

variables, which optimize the simulation output, referred to as the response, within a 

predetermined design space. This is done by- 

• Fixing the experimental design space. 

• Designing appropriate experiments within the design space and performing them. 

•  Using the quantitative data from these experiments to determine and simultaneously 

solve multivariate equations. 

• Estimating the main effects, interaction effects and quadratic effects of the explanatory 

variables, and based on this, generating the shape of the response surface under 

investigation. 

http://www.stat.auckland.ac.nz/~iase/publications/18/BOOK2/B4-7.pdf�
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• Finally, using this response surface, identifying the optimum point where all 

specifications can be met. 

 

There are different classes of designs included in RSM that are used in different 

production situations. A central composite design (CCD) is an experimental design for building a 

second order (quadratic) model for the response variable without setting up a complete three-

level factorial experiment (Anderson, RSM simplified).  

The design consists of three distinct sets of experiments: 

1. A factorial design in the factors studied, each having two levels. 

2. A set of centre points, experimental runs whose values of each factor are the medians 

of the values used in the factorial portion. This point is often replicated in order to 

improve the precision of the experiment. 

3. A set of axial points, experimental runs identical to the centre points except for one 

factor, which will take on values both below and above the median of the two 

factorial levels, and typically both outside their range. All factors are varied in this 

way.  

 RSM has been widely used for process parameter optimizations such as enzymatic 

hydrolysis for recycled paper (Liu et al. 2009) and for production of lactic acid from apple 

pomace (Gullon et al. 2007).  

Process optimization involves not only finding the best output, but also minimizing the 

amount of inputs. Because the cost of enzymes is one of the most significant process costs, it 

would be desirable to operate the process at a point where the maximum sugar release is obtained 
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per unit amount of enzyme used.  Thus, a design that could predict the hydrolysis levels 

depending on the amount of enzymes would be very useful. Response surface methodology was 

used to generate such a model. However, since this process is economically operated as SSF 

(Phillipidis et al. 1993), it would be more meaningful to include temperature as one of the 

explanatory variables and the yield of the final product as the response variable rather than to 

consider saccharification in isolation.  

Methods 

 

 Using RSM the effect of three operational variables: concentrations of the two enzymes 

(cellulase and β-glucosidase); and temperature was studied on the response variable, lactic acid 

concentration during SSF. This experimental approach is useful to investigate multiple 

parameters affecting a reaction simultaneously and also identifies interactions among the 

parameters when present. An estimate of the enzyme levels corresponding to different hydrolysis 

levels obtained in the above experiments was used to set the upper and lower limits of the 

enzyme loadings. Table 3.1 shows the ranges of the operational variables used for this design. 

The microorganism used is L .plantarum as it has higher yield and productivity values than R 

.oryzae. 

 

A 23 factorial central composite experimental design (CCD) was set-up with six axial points and 

six replications at the center point resulting in a total of twenty runs. The experimental design 

matrix is described in Table 3-2. The runs were conducted, accordingly, for thirty six hours and 

the lactic acid concentration determined. Experimental data from the CCD was analyzed using 

RSM algorithm Design Expert 7.1 (Stat-ease, Minn. USA) and fitted according to Eq. (1) as a 
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second-order polynomial equation including main effects and interaction effects for each 

variable:                                                                                                                          
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                           (1)  

where, y = predicted response, 𝛽𝛽o = constant coefficient, 𝛽𝛽i= linear coefficient, 𝛽𝛽ii= 

quadratic coefficient, and 𝛽𝛽ij= interaction coefficient. Analysis of variance (ANOVA) and 

contour plots were generated using Design Expert 7.1. Optimized values of three independent 

variables for maximum lactic acid yield were determined using a numerical optimization 

package of Design Expert 7.1. Numerical optimization searches the design space using a fitted 

model to find the optimized values of independent variables that maximizes the response 

variable (Brijwani et al. 2009).  

SSF -- To 20 ml of paper sludge that had been autoclaved and supplemented with 5 g/l 

peptone. Enzymes were added at the levels identified by the software, inoculum was added and 

were incubated at different temperatures as defined by the software. 

Results and discussion 

Analysis 

 SSF experiments were conducted as outlined in the methods section and a polynomial 

second order equation was generated by the software using in the values obtained in those 

experiments. The quality of fit of the second order equation was expressed by the coefficient of 

determination, R2, and its statistical significance was determined by F-test and the significance of 

each coefficient was determined using Student’s t-test. As shown in table 3-3, the model F value 
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of 73.9 implies that the model is significant.  An R2 value of 0.985 and a very close adjusted R2, 

0.962, showed that the model can be very precise for predictions. A reasonably low value of 

coefficient of variation (CV), 7.71 proved that the experimental runs conducted were precise. 

The significance tests of each of the coefficients (Table 3-3) showed that all the factors tested 

were significant. However, the factor with the maximum influence was cellulase level followed 

by β-glucosidase. Both the factors had a uniformly sloped positive effect on the yield all through 

their variation range, but the slope for cellulase was much steeper than that of β-glucosidase 

(Figure 3-1). Temperature was found to have a moderate degree of negative correlation to lactic 

acid production (Figure 3-2). Temperature and β-glucosidase showed a significant interaction 

effect.  

Process optimization 

 Using Design Expert 7.1, the design space was explored with the fitted quadratic model 

to arrive at optimum levels of the independent variables. The optimized variables were found 

using a desirability objective function that assigns relative importance to the variables. To 

maximize lactic acid yield, the solution with the maximum desirability gave an operation 

condition of enzyme concentrations of 10 fpu of cellulase and 35 egu β-glucosidase at 38°C to 

achieve a maximum lactic acid yield of 0.75g/g glucan. However, this point is at the corner of 

the design space and it is obvious that higher levels of enzyme would lead to higher yields. 

Beyond this, the yield cannot go up as the maximum lactic acid yield obtainable in case of paper 

sludge is 0.75 g/g glucose. Thus the yield will plateau beyond this design space. To optimize the 

process such that higher lactic acid yield can be achieved with the minimum amount of enzymes, 

the relative importance of minimizing the enzyme requirements was increased to the same level 

as that of maximizing product yield. In this case, the maximum desirability gave an operation 
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condition of 8.5 fpu cellulase, 12.5 egu β-glucosidase at 40°C which would result in 0.58 g lactic 

acid per gram of glucan present in the media.  

The data from the initial hydrolysis experiments clearly demonstrates that β-glucosidase 

has a very significant effect on time of hydrolysis and has some effect on the total amount of 

glucose released. The correlation of β-glucosidase with lactic acid concentration was found to be 

smaller than that expected from the one-factor-at-a-time results. This is due to the mode of action 

of the two enzymes used.  β-glucosidase quickly removes the bottleneck caused by cellobiose 

accumulation by cleaving it into glucose units. Thus, it hastens the reaction. However, instead of 

28 hours as in the case of the hydrolysis experiments, SSF was allowed to proceed for 36 hrs. In 

this additional time, the residual β-glucosidase activity of the cellulase can hydrolyze the 

cellobiose units thus decreasing the effect of β-glucosidase addition. This result confirms that 

reported by Marques et al (2008) where they observed the same level of hydrolysis with and 

without β-glucosidase supplementation when supplemented with high cellulase loadings (25 

fpu/g carbohydrates) and a high residence time of 72 hours. Thus, a proper level of β-glucosidase 

supplementation effectively brings down the cellulase loading as well as hydrolysis time. 

The desirable temperature for the operation of SSF was predicted to be around 38°C, 

confirming that microbial growth is much more susceptible to temperature deviations from the 

optimum than enzymatic hydrolysis. As can be seen from Figure 3-2, when the temperature is on 

the lower range, the effect of increasing enzymes is directly translated into increasing yields. But 

as the temperature starts to increase, even if saccharification increases due to higher enzyme 

concentrations, the sugar cannot be utilized effectively by the microorganisms to produce the 

acid. 
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Using the results from the design experiment, the total enzyme requirement of the 

process, for hydrolysis levels greater than 90% was estimated to be 280 μl/ gm of carbohydrates. 

This compared favorably to all earlier studies reporting the enzymatic requirements of sludge 

hydrolysis. This result could be partly due to the nature of the sludge, but is mostly attributed to 

the fact that the model could thoroughly search the design space, much more effectively than can 

be possibly done by actual experimentation to identify points of maximum hydrolysis as well as 

highest yield per unit of enzyme used.  

Conclusion. Optimizing operational conditions to obtain the maximum amount of 

product with the minimum input costs and time is a primary requirement for designing an 

economically feasible bioconversion process. In this regard, the model generated in this study is 

a very powerful tool to determine the point in the design space at which to operate by taking into 

consideration the cost of the individual enzyme and the product so that highest economic gains 

can be made. Though different sludge samples may vary slightly in their enzymatic 

requirements, such models can be prepared by varying the upper and lower limits accordingly to 

determine their ideal enzyme dosages. 
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Table 4.1 Variables and experimental design region for response surface 

Factor Name Units Type Low    
actual 

High   
actual 

Low  
coded 

High  
coded 

A cellulase fpu/g 
cellulose 

numeric 3.5 10 -1 1 

B  β-glucosidase egu/g 
cellulose 

numeric 12.5 38 -1 1 

C temperature °C numeric 35 45 -1 1 

Response variable- Lactic acid yield, units-g/l. 

 

Table 4.2 Experimental design with the real values of lactic acid yield 

Run                  Factor A(fpu/g)       Factor B(egu/g)      Factor C(°C)      Response(g/l) 
 

   1 10.50 38.00 35.00 0.72 
 2 7.00 4.00 40.00 0.43 
 3 7.00 25.00 40.00 0.53 
 4 7.00 4.00 40.00 0.74 
 5 7.00 25.00 40.00 0.55 
 6 7.00 25.00 40.00 0.55 
 7 7.00 25.00 40.00 0.53 
 8 13 25.00 40.00 0.7 
 9 3.50 12.50 45.00 0.14 
 10 10.50 12.50 35.00 0.58 
 11 7.00 25.00 48.41 0.16 
 12 7.00 25.00 40.00 0.53 
 13 10.50 25.00 45.00 0.65 
 14 3.50 37.00 45.00 0.2 
 15 1.00 25.00 40.00 0.1 
 16 10.50 12.50 45.00 0.61 
 17 7.00 25.00 31.59 0.34 
 18 7.00 25.00 40.00 0.54 
 19 3.50 37.00 35.00 0.41 
 20 3.50 12.50 35.00 0.12 
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Table 4.3 Regression analysis for the second order polynomial model 

Factor Coefficient estimate Standard error F value P value 

Intercept 0.54 0.014 73.9 <0.0001 

A-A 0.20 9.526e-003 430.45 <0.0001 

B-B 0.077 9.526e-003 65.31 <0.0001 

C-C -0.0039 9.526e-003 16.77 0.0022 

AB -0.021 0.012 2.92 0.1186 

AC 0.019 0.012 2.27 0.1629 

BC -0.041 0.012 10.98 0.0078 

A2 -0.044 9.273e-003 22.19 0.0008 

B2 0.022 9.273e-003 5.49 0.0411 

C2 -0.097 9.273e-003 108.78 <0.0001 
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Figure 4.1 Response surface showing the effect concentration of two enzymes on lactic acid 
yield. 

 

 
R1 

0.74 

0.1 

X1 = A: A 
X2 = B: B 

Actual Factor 
C: C = 40.00 

  50.00 
  75.00 

  100.00 
  125.00 

  150.00 

50.00   
75.00   

100.00   
125.00   

150.00   

0.21   

0.35   

0.49   

0.63   

0.77   

  R1   

  A: A     B: B   



 42 

  

Figure 4.2 Contour plot showing the effect of β-glucosidase concentration and temperature 
on lactic acid yield. 
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CHAPTER 5 - Microbial isolates with enhanced lactic acid 

production from paper sludge 

Introduction 

Isolation and screening of microorganisms from natural sources is one of the most 

common methods of obtaining superior performing microbial strains for use in industrial 

production. Many examples exist in literature in which strains with different desirable 

characteristics have been isolated from nature. For example, Adnan et al. (2007), isolated 

naturally occurring strains of Lactobacillus from tapai (fermented tapioca), that were resistant to 

very high lactic acid concentrations.  

In this study, a marked decrease in growth of the ATCC cultures was observed when 

inoculated in paper sludge. This suggested that the presences of some component/ components in 

the sludge are detrimental to microbial growth. Additionally, it was observed that when the 

medium was hydrolyzed without autoclaving, at the end of hydrolysis, some lactic acid 

accumulation occurred. This was possibly due to the action of lactic acid bacteria native to the 

sludge. The hypothesis here is that the native lactic acid bacterial populations that had been 

growing in the same medium for generations could have developed some resistance to these 

inhibitory substances by evolutionary mechanisms and thus were more efficient lactic acid 

producers. 
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Method 

Preparation of a selective medium  

A medium for the selective isolation of acid producing bacteria was prepared. Solid MRS 

medium was prepared by adding agar to MRS broth. Before autoclaving the medium, citric acid 

was used to bring down the pH to 5.2. 0.0025g/l of antifungal agent cycloheximide and 0.05 g/l 

bromocresol green, a pH indicator which is green at pH above 5 and turns yellow at a lower pH 

was added to MRS agar. The media was autoclaved and used for plating the sludge solution. It 

was observed that the acid produced by the acid producing colonies diffused into the medium 

which resulted in fainter, bigger yellow zones, often around a group of colonies. This made it 

difficult to identify the colonies that were actually producing the acid. To prevent diffusion, 

calcium carbonate at a concentration of 20g/l added during the preparation of the medium. This 

effectively prevented acid diffusion and the halos were darker and more distinct around the 

actual acid producing colonies.  

Isolation  

The hydrolyzed sludge was enriched with 5g/l peptone and incubated at 37°C for 24 

hours. To maintain a low oxygen environment suitable for LAB, 100 µl of this hydrolyzed 

sludge was pour plated instead of spread plated on the above described agar. The plates were 

incubated at 37°C for two days. Colonies that grew on the plates were streaked individually on 

fresh plates to obtain pure cultures. 

Each of the isolated cultures was gram stained and the gram positive strains were 

subjected to the gel plug test (Gibson et al. 1945) to determine if the isolate is a 

homofermentative or a heterofermentative species. The isolates that tested negatively for the 
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tested were those that did not produce any CO2 and were homofermentative LAB. They were 

grown in MRS media as well as on sludge hydrolyzate and their lactic acid production levels 

were tested against the ATCC culture. 

Results and Discussion 

Five colonies were selected from both the glucose and the lactose media that showed the 

biggest acid zones. By the gel plug test, all the isolates were confirmed to be homofermentaive 

lactic acid bacteria. In the synthetic medium, all of these isolates had lactic acid yields and 

productivities similar to the ATCC culture. On inoculating them in sludge media, it was found 

that even in this medium, the highest concentration of lactic acid that could be achieved were 

similar to that obtained in the case of ATCC cultures (Table 4-1). A screening technique that has 

a higher throughput and sensitivity would thus be required for isolating strains that can produce 

higher lactic acid concentration, provided such species are present in the sludge. 

 

Table 5.1 Lactic acid concentration obtained by fermentation using bacterial isolates on 
paper sludge hydrolyzate 

Culture Concentration (g/l) 

L. plantarum ATCC 0.74a 

O1 0.73a 

O2 0.69b 

O3 0.67b 

O4 0.71a 

O5 0.73a 

 Values with same superscript do not vary significantly. Values with different superscripts differ 

significantly (P <0.05). 
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