" THE DEVELOPMENT AND ANALYSIS OF A PORTABLE RUM TIME LIBRARY
ACCESSABLE TO ALL FORTRAN, COBOL AND PASCAL COMPILERS

UNDER THE UNIX SYSTEM 5 OPERATING SYSTEM

by

KENDALL ROBERT PAYNE

B.S., Baker University, 1982

A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

FKANSAS STATE UNIVERSITY
Hanhattan, Kansas

1984

CHAPTER 1

CHAPTER 2

MMM PPN D

.

1
2
3
!
5
6
7
8

=

| ALLl202 bbkhYk3
TABLE OF CONTENTS

INTRODUCTION.I.II.IllIlI.lll.Il.l.I-l.l.l.l.l.l.ll 5

Languages used in StUdy-IlI..l.l.'...‘.l.l.l.l..llll.

Fortran LU B B R T I B I I B B B I B B R I R I R R I R I BRI SN Y
COBOL L LI B B AR BB B B N B BRI R B B BN B BN DR B R R B B BN B RE B B B BN AR B B BN BRI A

Pascal LI B B R R I B BT B B I R B A B I B B B R B R B RO

Machines used in study..ececeeveccsnscecncconcscsnanss

~—~oou

TYPES OF SUBROUTINES IN RUN TIME LIBRARY...eseeees 9

Input/output roubines .icesisessseenessbvoseiessssnses 9
Flle Randlifg. cevenis o3 wesemine s suaavas s seavis s vees 10
Storage managementcececceccccssssssscasscscses 11
Conversion routines ..ceescesssessoscsassssscscssasas 12
Arithmetic routines: . ..cveecees rnonnenssssovsnes s suss 12
Logle routines ..ececvreeeevocecrcaceovonssvcencanaseee 13
Data transfer routines ..ccoevececcececcssccscnscsass 14
Control routines ...eevecececccsssssssssossesssesnsas 18
Pascal prefiX soseesessvvaesessssvesessspoeessssows 14

-10 COBOL verb Poutines LR TR B N R B I I BB B B I R B LB BB B O 15
11 Miscellaneous POUtines ® 9P F 0 0SS ES OSSN 15
12 Error handler LRI B B R B B IR BB NI B O B DU BRI BB I I A B 16

CHAPTER 3

PROCEDURE PARAMETERS...ceeecevcscccsccscncnnassss 17

Funetions ceeeses sasenee s sosoasis s eoenees s 5 sewenes sow 1T
ProCedures cauwws i saseviis senieis s senavess sawasessses 10
Procedures with no parametersccocevevese.e 18
Procedures with one parameterceveveeeoesess 19
Procedures with two parameters ...eeevesecevecesss 20
Procedures with multiple parameters .seeeseescsees 21

CHAPTER 4

.

CHAPTER 5

gguviuuauiuviuaiagmgyiur
.

CHAPTER 6

Rev

6.1
6.2 Final remarks

APPENDIX A L BRI B S R R B R B B B B B L B A A

APPENDIX B

APPENDIX C

BIBLIOGRAPHY

UNIX SYSTEM 5 LIBRARY ROUTINES ...ccevevne

THE PORTABILITY OF THE UNIX OPERATING SYSTEM

Security cosoes
1 Protection against overconsumption ...eeeces
2 Protection against unauthorized perusal
.3 Modes of access .
4 Password SecCUrity seececccssesesascaonsanccss
System recovery ..ssee.
1 File system ,.044.
.2 Bringing system up .sveces
3 HMemory dumpPS seeess
File integrity .seeeeecerecees
1 Updates of the file system
.2 Detection and correction of corruption
Overall perfOrmancCe ...sessscssssssnsscsases

CONCLUSION .cvevvsnvasnes

ss s s s

4,1 Routines in the UNIX library
4.2 UNRIX library versus Common library .e.eeeesss
4.3

se v e e

LI B)

* s s 000

LR R}

LR

4 9 88 8 eSS 0ENT PSSR

LR BN BB I B

*

LI B B B B I ST B S B I B A

*te e 0000

e v e e

P e Qs e GO EBPEBEBESESN

Can common library be ported over to UNIX?

8 % 05 8P 80U NSNS N ST

LI I IR R R]

I]

LI BT R B B R BRI N]

iEH CICIE IR T B R R O R B A BT B BT N B A A B R B L B LI

s e s e s s

® S8 P T P8OOSO EOSETSESESESTSE

LN

LRI I B B B A A A A

LI I R

s e s e e e RN

CIE B NI I * e

* e

* s e PP e e e

.

L BRI A BB U I N)

* e e e

e e e

U]

.

23

23
23
24

26
26
27
28
28
29
29
30
30
30
31
32
34

36

36
38
Lo
49
67

70

THIS BOOK
CONTAINS
NUMEROUS PAGES
WITH THE ORIGINAL
PRINTING BEING
SKEWED
DIFFERENTLY FROM
THE TOP OF THE
PAGE TO THE
BOTTOM.

THIS IS AS RECEIVED
FROM THE
CUSTOMER.

LIST OF TABLES

TABLE 1 ©Compilers used in StUlY .ssvvevwesss svurvusswsvenvass B

TABLE 2 Types of routines in common 1ibrary ...ceececeseeeees 9

TABLE 3 Subroutine Parameters ..cceeesssescscsssassonssssssnns 22

TABLE 4 Common routines (UNIX vs, Common Library)e.... 25

CHAPTER 1

INTRODUCTION

In this paper we are going to discuss the development of a portable
run time library system that will support requirements of different com=-
pilers under the UNIX operating system. We are going to study in depth the
run time libraries for CQOBOL, Fortran and Pascal. The purpose of doing
this study is to determine the feasibility for providing a common <collec-
tion of run time routines written in a low level language such as C or
TAL(Transaction Application Language) that could be available in program
environments on any target machine that runs under the UNIX system 5
operating system. We have included se#en different compilers in our study
of run time libraries. We analyzed the run time library routines in each
of the seven libraries and developed a portable run time library that con-
tains a total of 168 routines., The 168 routines is the number of unique
routines in the library. The 168 routines contains all of the library rou-
tines from the seven compilers with some overlap among the routines. This

can be seen by looking at Appendix A&,
1.1 LANGUAGES USED IN THIS STUDY

As was mentioned in the previous paragraph, we chose Fortran, COBOL
and Pascal as the languages we are going to analyze in our study. There
are two principle reasons for choosing the three above mentioned languages.

The first is that it gives us a wide cross-section of programming languages

that are used in a wide variety of applications. The second reason is that
these three languages are the most widely used high-level languages in

industry today.
1.1.1 FORTRAN

Fortran is a highly scientific language used primarily by engineers,
architects and physicists for scientific applications, We will study two
different Fortran compilers in this report, IBM and Tandem Fortran, The
Fortran libraries contain primarily arithmetic routines and some conversion
routines. The Tandem and IBM Fortran compilers give one a good representa-

tion of the types of routines found in Fortran run time libraries.
1.1.2 COBOL

COBOL, on the other hand, is primarily used for business applications.
In developing a common library of routines that interface with three dif-
ferent languages, we have included COBOL in the group because COBOL rou-
tines provide a library with a great deal of diversity. The COBOL language
is different from the cther languages in some significant ways. It's data
structure types and record formats are different, but more importantly, the
COBOL run time library is radically different from the Fortran and Pascal
run time librar?es. The three principle types of routines found in any
COBOL run time library are: conversion routines, internal arithmetic rou=-
tines and COBOL verb routines, The routines found in the COBOL run time
library are very distinguishable from those found in Fortran and Pascal
libraries. A1l COBOL run time libraries contain essentially the same set
of routines(we will discuss these routines later in the report). This 1is

the reason why we have included only one COBOL compiler in our study.

1.1.3 PASCAL

Pascal is mainly used in our educational institutions and in private
industry. It is good to use as a teaching tool because of it's strong typ-
ing and abundant number of data structures, Pascal is becoming quite popu-
lar in private industry today. It is being marketed on many home comput-
ers, In this report we have studied Pascal compilers that have come from
four different machines. The four that were used were: Tandem, IBM, ACT
and Perkin Elmer, Four different systems were used so that we could get a
good cross-section of the routines that are found in the library of a Pas-
cal compiler, Each Pascal compiler is unique in that it's routines are

slightly different than the routines of any other Pascal compiler,

1.2 MACHINES USED IN STUDY

We are incorporating the use of four different machines in this study.
The computers that were used are: Tandem, IBM, ACT and Perkin Elmer. These
machines were chosen primarily because they are representative of the
machines found out in industry today. The Tandem Nonstop II system was
included because we did an implementation of the I/0 run time routines on
the Tandem system for a Pascal compiler being developed for the Department
of the Navy. The Tandem Nonstop system is a relatively new machine and 1is
becoming widely wused in industry today. ACT is a computer used by DARCOM
ALMSA Corporation which is a division of the Department of the Army. IBH
is currently one of the largest corporations in the country. It has a
well-established tradition in the computer industry. They ceontinue to
market newer and better products all of the time, IBM is also very diver=-
sified, producing software and hardware for a wide range of machines from

home computers to large mainframes such as the new 4381 series. Perkin

Elmer equipment is also very widely used among large corporations, Perkin
Elmer software is versatile in that it will run in many different environ-

ments,

TABLE 1

COMPILERS USED IN STUDY

LANGUAGE MACHINE
Fortran IBH

Tandem
Pascal IBM

Tandem

ACT

Perkin Elrxer
COBOL IBM

In the following chapters we are going to look at: the different types
of routines found in a portable run time library, the subroutine parameters
of the run time routines, study the run time routines in the UNIX operating
system, and finally study the security, system recovery, file integrity,

and overall performance of the UNIX operating system.

CHAPTER 2

TYPES OF SUBROUTINES IN RUN TIME LIBRARY

In this chapter we are going to look at the different categories of
routines that are in a common run time library. There are 12 different
types of routines in the 1library: input/output, file handling, storage
management, conversion, arithmetie, logie, data transfer, control, COBOL

Verb, Miscellaneous, the Pascal Prefix and the Error handling routine,

TABLE 2

TYPES OF ROUTINES IN COMMON LIBRARY

Input/Output File Handling
Storage Management Arithmetic
Logic Control

COBOL Verb Data Transfer
Conversion Pascal Prefix
Miscellaneous Error Handling

2.1 INPUT/QUTPUT ROUTINES

The first type of routines that we will look at is the input/output
routines, I/0 routines deal primarily with the reading and writing of
data. There are 26 different I/0 routines. Pascal is very strong in the
area of I/0, The Pascal compilers studied in this paper (with the excep-
tion of IBM) have a great number of I/0 routines in their libraries., This
indicates that I/0 plays an important role in the Pascal language. In
addition to the standard "read™ and "write" routines there are many other

forms of read and write routines contained within the libraries (see Appen-

10

dix A). There is also two forms of GET's and PUT'S . Each of the four
Pascal compilers has at least one GET and PUT routine in it's library. The
Tandem compiler has both forms of GET's and PUT's which allows one to work
with both random and sequential files, Neither Fortran compiler has any
I/0 routines, The IBM COBOL compiler has three I/0 routines: the write
routine, the read routine and an I/0 routine used for BSAM files, If one
is going to do a lot of I/0 then a Pascal compiler would be best suited to

meet those needs,

2.2 FILE HANDLING

Since file handling is related to input/output in many important ways;
we will discuss file handling routines next, File handling routines, as the
name implies, work with the manipulation of files. Text, stored in one
form or another is very often inputted or outputted to some type of file,
As was the case with the input/output routines, the Pascal library also
supports many different file handling routines. All four Pascal compilers
have the standard file routines EOF (end of file) , EOLN (end of line),
RESET, which moves the file pointer to the beginning of the file for read-
ing, and REWRITE, which reinitializes files for writing. ACT Pascal allows
more file management capabilities than the other three Pascal compilers do.
ACT contains the routines DONEFILE, GETPREASS, PUTPREASS and CHECKOPEN and
TEXTSTART which all perform maintenance cn a file system. Perkin Elmer
Pascal has a couple of routines that initialize file control Dblocks for
both internal and external files, The Fortran and COBCL compilers do not
deal with file handling much at all, The IBM COBOL compiler contains only
the open and close routines. The Tandem Fortran compiler has one routine

in it's library that assigns a file number to a given file, As can be seen

11

from Appendix A, Pascal is the dominant language to use for both

input/output and file handling.

2.3 STORAGE MANAGEMENT

Storage management is also another very important aspect of the Pascal
library. Storage management routines are concerned with the creation and
destruction of memory blocks and the management of internal memory space
within the computer, Pascal as was the case with I/0 and file handling
routines, has a great facility for storage management routines. ACT Pascal
contains nine storage management routines and IBM Pascal contains ten rou-
tines. The routines NEW, RELEASE, and MARK are contained in all four ver=-
sions of Pascal. IBM Pascal, besides having the basic storage routines,
concentrates on routines that deal with memory size. SIZEFREE, SIZEOF,
SIZESTACK, and SIZEHEAP all deal with the memory of the machine. ACT Pas-
cal has routines that deal mainly with pointers, creation of records and
blocks of storage. Tandem and Perkin Elmer Pascal both have just the basic
routines for storage management. The two versions of Fortran combined
contain no storage management routines. IBM COBOL has only one routine

RELEASE which deallocates space that was occupied by a given variable P,

12

2.4 CONVERSION ROUTINES

The next type of routines that we are going to look at are the conver-
sion routines, The conversion routines are designed to convert a number
from one form to another, An example of a conversion is a translation of a
binary number to a decimal. Conversions are done in both intermal and
external form. Most of the conversion routines contained in the common
library come from COBOL. The routines involve conversions on decimal
numbers, binary numbers internal and external floating point numbers 1in
COBOL and integer to reals and reals to integers in Fortran, COBOL has a
great facility for conversion routines. As can be seen from Appendix A,
the COBOL 1library contains 21 conversion routines, None of the four ver-
sions of Pasecal contain any conversion routines except for ACT Pascal which
has one routine for evaluating real numbers, The IBM version of Fortran
has two conversion routines, The conversion of an integer to a real number

and vice versa., Tandem Fortran has no conversion routines.

2.5 ARITHMETIC ROUTINES

The next type of routines that we are going to study is the arithmetic
routines. The arithmetic routines are used to perform mathematical func-
tions. Both versions of Fortran used in this study contain a great number
of arithmetic routines, Tandem Fortran contains 26 different routines and
IBM Fortran has 29 routines, This is many more than any of the other com=-
pilers have, Both libraries have: the common and natural logarithmic func-
tions, the square and square root functions, sine, cosine, tangent, the arc
functions, the hyperbolic functions, gamma functions, absolute value,
minimum and maximum value, and many functions for complex numbers. These

routines play an important role in many engineering applications and in the

13

hard sciences, The Tandem and IBH Pascal compilers have many of the more
standard mathematical routines, SINE, COSINE, etec, They both also have
some character manipulation routines, which neither Fortran compiler con-
tains. Both the Tandem and IBM libraries contain the routines CHR, PRED,
ORD, and SUCC. The ACT Pascal compiler contains only the essential arith-
metic routines, SINE, COSINE, ARCTANGENT, Natural logarithm, exponential
and square root, Perkin Elmer Pascal has no arithmetic routines., The IBH
COBCL compiler has four arithmetic routines, All of them involve internal
calculations using 30-bit binary numbers(see Appendix A). This allows one
to do internal decimal division, multiplication and flcating point exponen-
tiation, These are things that the Fortran and Pascal libraries do not

provide for,
2.6 LOGIC

in this section we shali look at the logic routines, Logic routines
are routines that are used to perform logical cperations between sets.
Pascal is the only one of the three types of compilers in this study that
contains any logic routines., There are five different logic routines that
are associated with the Pascal compilers talked about in this paper, Per-
kin Elmer Pascal has routines for COMPARE, AND, OR, and DIFFERENCE. These
are all routines that perform operations on sets. The "set"™ is an impor=-
tant data type in Pascal. IBM Pascal contains the routine CARD, a routine
that determines the cardinality of a set., See Appendix B for a description

of the logic routines,

14

2.7 DATA TRANSFER ROUTINES

The data transfer routines are routines that transfer data from
unpacked arrays to packed arrays and vice versa, There zre two routines in
this group., There are separated into this class because they are unique
and do not fit into any other category. The routines are "pack" and
Munpack". They are data types in Pascal, Pack takes an array of charac=-
ters and copies it into a packed array. Unpack does just the opposite; it
copies data from a packed array to an unpacked array. Both routines appear

in IBM Paseal.

2.8 CONTROL ROUTINES

These routines are put into the class "control routines™ because they
deal with printer overflow and spacing, hence the names printer overflow
and printer spacing (see Appendix B). The printer overflow routine is used
to control printer overflow testing and page ejection. The printer spacing
routine, as the name implies, is used to control printer spacing, Both

control routines are found in the IBM COBOL run time library.

2,9 PASCAL PREFIX

In this section, we will look at the Pascal Prefix, The Pascal prefix
is unique to Pascal and is a set of procedure heading declarations and the
necessary CONST and TYPE declarations. The Prefix is added at the Dbegin-
ning of each Pascal program and is used to call any of the supporting rou-
tines. All four versions of Pascal being studied contain the Pascal pre-

fix,

15

2,10 COBCL VERB ROUTINES

Mext we will look at a group of library routines known as the COBCL
verb routines, These routines all have a common identity; when executed,
they perform a function within the COBOL language. The verbs HOVE, ACCEPT,
DISPLAY, PERFORM, and STOP RUN are some of the standard functions and
appear in almost every COBOL program written, Other COBCL verbs such as
TRANSFORM, CLASS TEST, and SEGMENTATION appear freguently in COBOL pro-
grams, With the exception of the SCRT routine, these routines would be of
very little use to one using Pascal or Fortran. The sort routine would be
useful if one were to sort a file that contained thousands of records, The
sort routine along with all of the other COBOL verb routines would be
needed in order for one to have a common library in which COBOL can inter-

face with,

2.11 MISCELLANEOUS ROUTINES

These routines are categorized as miscellaneous routines because they
do not fit into any other of the previous ten classes of routines that have
been discussed in the last several sections, One can look at these rou-
tines as "leftover" routines that are often used for special purpcses,
There is a wide variety of routines in this category. IBll Pascal 1is well
known for it's general-purpose routines, IBM Pascal provides one with a lot
of diversity as a result of these routines, IBM Pascal has 14 different
miscellaneous routines, Tandem Pascal has one routine, namely CLOCK, which
keeps track of time according to Greenwich mean time. HNeither Fortran com-
piler has any miscellaneous routines. The IBM COBOL compiler has the rou-
tine DATE which is a call to the system to obtain the current data in

YY/MM/DD format. As one can see from Appendix A, IBM Pascal provides the

16

most support for miscellaneous routines.
2.12 ERROR HANDLER

The last type of run time routines we are going to look at is the
error handler. Each of the seven compilers in this study have an error
handling routine. The function of the error handler is to provide a place
to go in the event that a call is made to a routine that is not contained
in the common library. When a call is made to a routine that is nonex=
istent, one enters the error handler. An error message is emitted and the
process is either terminated or given the opportunity to make a call to a
different library module depending on‘the seriousness of the error, The
error handler is designed to handle exceptional cases., The error handling
routine plays an important role in the common library because there are

always exceptions in any programming enviromment.

In the last several paragraphs, we have discussed the 12 different
types of routines found in a common run time library. Each type of routine
plays an important role in providing a well-rounded run time library. In
chapter three, we are going to look at the different types of subroutine

parameters,

17

CHAPTER 3

SUBROUTINE PARAMETERS

In the previous chapter, we looked at the different types of routines
in a common run time library, In this chapter we are going to look at sub-
routine parameters. There are two different kinds of subroutines found in
run time libraries, procedures and functions, We will first discuss func-

tions and then four different categories of procedures,

3.1 FUNCTIONS

A function is a block of statements within a program which form an
independent and separate component, This block of statements constitutes a
subprogram which performs a particular set of operations on a supplied set
of arguments and returns a single value. Each time the function is
invoked, control transfers to the block of statements defined for that
function. After these statements have been performed, execution returns to
the statement from which the function was called. In the ccamon library
that we have designed, the routines that fall into the category of func-
tions are the conversion, logic and arithmetic routines. The memory size
routines within the storage management routines are also functiomns. Of the
file-handling routines, there are only two functions: EOF and EOCOLN, which
return the boolean values true or false, The return values of the memory
size routines are of type integer. The return values and parameters of the
conversion routines are of many different types: integer, real, floating
point and binary. The parameters and return values for the arithmetic rou-

tines likewise consist of heterogeneous data types: integer, real, complex,

18

double-precision real, boolean and char, However most of the data types
are the numeric data types: integer, real and complex. The data types of
the logic routines can be composed of any definable type. As we have seen,
functions appear in many different places within the run time library, but

are most prominent in the area of conversion and arithmetic routines,

3.2 PROCEDURES

Procedures are subroutines that, when invoked, execute a block of
statements and return a number of values to the calling program. These
values are passed back to the calling routine through parameters, There
may be one or more parameters in a procedure heading, Procedures, when
invoked, transfer control to the statements of the procedure's definition
and establish the correspondence between arguments and parameters, After
execution of the subroutine statements, control is returned to the state-
ment which immediately follows the statement which invoked the procedure,
In this paragraph and the ones to follow, we will look at procedures within
the common run time library. There are four different categories of pro-
cedures, We have classified them into groups of procedures with no parame-

ters, one parameter, two parameters and multiple parameters,

3.2.1 PROCEDURES WITH NC PARAMETERS

The first type of procedure we are going toc locok at 1is those rpro-
cedures that have no parameters, The procedures within the run time
library that fall into this category are the initialization, wutility and
control routines. The initialization routines make sure all necessary
files are open, the file tables are initialized and the control blocks are

set up and initialized. The control routines that were discussed earlier

19

are used to control printer overflow testing and printer spacing. The
third set of routines that fit into this category are the utility programs.,
These all come from the IBM COBOL library. They are the SORT, SEGMENTA=-
TION, CHECKPOINT and STOP RUN., As can be seen from Appendix B, none of
these regquire any parameters. There are few run time routines that have no
parameters. Most of the run time routines have one or more parameters,
They are more complex and require that data be passed back and forth,

These procedures will be discussed in the following paragraphs.

3.2.2 PROCEDURES WITH ONE PARAMETER

In this paragraph, we will look at procedures with just one parameter.
This one parameter c¢an be of many different types, Most of the one-
parameter procedures are found in the I/0, file handling and miscellaneous
routines. The I/0 routines contained in this category are the GET and PUT
routines and the READLN and WRITELN routines. All of the I/0 routines
declare the variable to be of type "filetype", MFiletype® corresponds to
the type of the file that is to be created, Many file handling routines
also fit in the one-parameter group. 4s was the case in the I/0 routines,
the parameter variables are of type "filetype"., Most of these procedures
came from the ACT Pascal compiler. A few of the storage management rou-
tines have procedures with only one parameter. The RELEASE, HARK and
REMOVE routines contain just one parameter, The parameter types are nor-
mally of type text or of type item-type. The miscellaneous routines are
the 1last large group of one-parameter routines. The main routines in the
set of miscellaneous routines that have one parameter are the date and time
routines., All three of these pass a string of characters as the parameter,

The SEEK routine, which generates random numbers, also has just one parame-

20

ter. It passes a parameter of type integer. There are a few other system
routines such as MESSAGE, HALT SETCC and TRAPATTN that contain just one

parameter in their procedure declaratiomns,

3.2.3 PROCEDURES WITH TWO PARAMETERS

In the last paragraph, Wwe looked at procedures that have just one
parameter, In this section we are going to look at procedures that have
two parameters. The principle group of run time routines that fall into
this category are the I/0 routines that involve reading and writing bytes
and characters and the storage management routines, The first parameter
corresponds to a file which is to be read from or written to or a structure
that is to be created. The second parameter gives us the location in which
the data is read from, to be stored at, the type of data being read or
written, or gives us the dimensions of the structure that is to be com-
pleted, For example, the read routines all have file-type as the first
parameter(see Appendix A). The second parameter corresponds to the type of
data being read. The write routines also have two parameters. Like the
read routines, the first parameter is of type "filetype" and the second is
of the type of data that is being written. The BSAM read used for COBOL
has the first parameter again being defined of type "filetype" while the
second parameter consists of an array of characters. HMany of the pro=-
cedures that involve creating new blocks and records have two parameters in
their procedure declarations. The routines NEWBLOCK, NEWRECORD, STORESIZE,
NEWINIT and SEEK all are two-parameter procedures, For a description of
these routines, see Appendix B. The first parameter in NEWBLOCK and
NEWRECORD is of the type of structure that is to be created; the second

parameter is of type integer which corresponds to the number of bytes that

21

need to be allocated to the new structure., The routine STORESIZE has as
it's parameters, the variable P which is of type pointer-type and second
parameter size-to-store which 1is of type integer. "Size-to-store®”
corresponds to the number of bytes of data that need to be stored. NEWINIT
and SEEK have as their first parameters "filetype", HNEWINIT has the vari-
able R, which is of type "rectype", as it's second parameter, while SEEK

has seek-location which is of type integer as it's second parameter,

3.2.4 PROCEDURES WITH MULTIPLE PARAMETERS

The procedures that have more than two parameters, have been grouped
into a category called procedures with multiple parameters, Most of the
multiple parameter procedures occur in the input/output and storage manage-
ment run time routines. The I/0 routines of multiple parameters consists
of read and write routines that work with strings and numerical data. In
the case of each routine, the first parameter corresponds to the type of
file the data is read from. The second, third and remaining parameters
correspond to the variable that the data is to be read from or written to
and the dimensions of the variable. The storage management routines that
have multiple parameters are the Pascal NEW and DISPCSE routines, In each
case, the first parameter corresponds to the pointer type. The second
parameter corresponds to the size of the structure that is to be created or
destroyed and the following parameters are the ordinal data types, A third
set of procedures that have multiple parameters are the data transfer rou=-
tines PACK AND UNPACK. In both cases, the first parameter corresponds to
the array that 1s to be packed or unpacked, The seccnd parameter
corresponds to the size of the array that is to be packed or unpacked. The

rest of the parameters are used to perform the other maintenance functions

22

of the packing/unpacking process.,

In this chapter we have studied two different types of subroutines:
procedures and functions., We divided procedures into four differeant
groups: procedures with no parameters, one parameter, two parameters and
multiple parameters, We have summarized this information on subroutines

versus types of routines in table three below.

TABLE 3

SUBROUTINE PARAMETERS

-—— - - - - - - - —— - — - - -

SUB ROUTINE TYPES OF ROUTINES
FUNCTIONS Arithmetic

Logic

Conversion

Storage Management(memory size)

1O PARAMETER Initialization
PROCEDURES Utility
Control

Error Handler

ONE PARAMETER Input/Qutput

PROCEDURES (get, put,readln,writeln)
File Handling
Miscellaneous

THO PARAMETER Input/Cutput(bytes & characters)

PROCEDURES Storage Management

MULTI PARAMETER Input/QOutput

PROCEDURES (strings & numerical data)

Storage !Management
Data Transfer

23

CHAPTER 4

UNIX SYSTEM 5 LIBRARY ROUTINES

In the last several chapters we have been discussing the routines and
parameters of the common run time library. Now we are going to turn our
attention to the routines that are in the UNIX system 5 run time library,
The common run time library is going to interact with the UNIX operating

system, Therefore, we need to study the UNIX operating system routines.
4,1 ROUTINES IN THE UNIX LIBRARY

The routines that are in Appendix C are routines that are common to
the the UNIX system. These routines are functions that directly invoke
UNIX system primitives. The library under the UHIX system 1is used to:
maintain the file system, to create and destroy processes, keep a log on
all processes currently running in the system, and to keep a schedule of
all processes that are running or determine who can do what and when. The
run time library also updates the directory system under UNIX which 1is a

hierarchical structure that begins with a root directory.
4,2 UNIX LIBRARY VERSUS COMMON LIBRARY

There is little in common between the UNIX run time library and the
common library of run time routines for COBOL, Fortran and Pascal. There
are five routines that are common between the two libraries: READ, WRITE,

OPEN, CLOSE, and TIME. The reason for the big difference in the libraries

24

is that the UNIX library is designed to maintain and keep track of all of
the resources within the system and the common library developed for the
above mentioned three languages is designed for use by individual users of
the system. The portable run time library is used by individuals who are

Wwriting programs to run on the system.

The UHIX system could have some practical use for some of the routines
in the portable run time library from time to time for use in maintaining
the UNIX operating system, For example, UNIX could use the file handling
routines to update files and directories. The storage management routines
could be used when one creates and destroys blocks of memory. The control
routines would be useful in controlling spacing and overflow by an I/0 dev-
ice, The miscellaneous routines in the common library also c¢ould be used
for special purposes, For example, if one wanted to time the execution of
a given subroutine within a program, he could insert the call for the rou-
tine CLOCK before and after the subroutine call and get the time it takes

in milliseconds to execute the subroutines.

4.3 CAN COMMON LIBRARY BE PORTED OVER TO UMNIX?

If one had a lot of time and patience, he could port the common
routines(those routines not on UNIX) over to the UNIX library. The rou-
tines in the common library would have to be modified s¢ that they could be
integrated with the current routines under UNIX to form one package which
runs on one machine, These modifications, however, would take a lot of
time and patience since the routines in the common library come from
several machines. In the common library that has been designed, there are
seven different run time libraries representing four different machines.

For each compiler we would have to port the software from the native

25

machine over to the host machine which in this case is UNIX. This would
take a lot of time and dedication but it could be done, The routines that
are directly common between the two libraries are in Table 4 below. For

more detail on the Unix library routines see Appendix C.

TABLE 4

COrRMON ROUTINES

(UNIX Library versus Portable Library)

Read
Write
Open
Close

Time

26

CHAPTER 5

THE PORTABILITY OF THE UNIX OPERATING SYSTEN

In this chapter we are going to look at some of the features of the
System 5 version of the UNIX operating system to determine whether it can
operate in a portable environment or not. These features need to be
checked out carefully in order to maintain the integrity of the UNIX
operating system and to he sure the interfaces between UNIX and the common
run time library work properly. The features we shall look at are: secu=-
rity, system recovery, file integrity and overall performance, We will

look at each of these features in turn,
5.1 SECURITY

When the UNIX system was first developed security was not included
with the package. The original system had a vast number of problenms.
Since that day efforts have been made to provide different means of secu-

rity to the UNIX system.
5.1.1 PROTECTION AGAINST GVER-CONSUMPTION

The area of security in which UNIX is the weakest 1is in protection
against system crash, The problem results in lack of checks for excessive
consumption of resources, The most notable thing is that there is not a
limit on the amount of disk storage used either in total space allocated,
or in the number of files or directories allowed, In the system 5 version,
users are prevented from creating more than a set number of processes

simul taneously. Unless users are in collusion it is unlikely that anyone

&k

can stop the system altogether. Excessive consumption of disk space files
and swap space can easily occur acecidentally in malfunctioning programs as
well as at the comﬁand level. The UNIX system is defenseless against this
kind of abuse., When the system does crash, there are methods that can be
used to bring the system back up again, The methods of system recovery are

discussed later on in this paper.
5.1.2 PROTECTION AGAINST UNAUTHORIZED PERUSAL

The protection of UNIX against use by unauthorized persons 1is much
better than that against a sudden crash of the system. For protection,
each UNIX file has associated with it eleven bits of protection information
together with a user identification number and user group ID., Hine of the
protection bits are used to determine an individuzl's rights for reading,
writing and executing a given file, The last two bits of each file's pro-
tection information are called the set-UID and set-GID bits. The =set=UID
and set-GID bits are used so that one may write a program which is execut-
able by others and which maintains files accessible to others only by that

program. These are used only when the file is executed as a program.

There are a number of special cases involving access permissions,
Since execution of a directory as a program is a meaningless operation, the
execute-permission bit for directories is taken instead to mean permission
to search a directory for a given file during the scanning of a pathname,
If a directory has execute permission, but no read permission for a given
user, he may access files with known names in the directory, but may not
read(list) the entire contents of the directory. Write permission on a
directory is interpreted to mean that the user may create and delete files

in that directory. It is impossible for any user to write directly to any

28

directory.

The only major problem involving profection against unauthorized per-
sonnel involves that of the "super-user" who is able to read any file and
write any non-directory. The superuser is able to change the protection
mode and the owner UID and GID of any file to invoke privileged system

calls,

5.1.3 MODES COF ACCESS

The first necessity for a secure system is arranging that all files
and directories have the proper protection modes, Traditionally, UNIX
sof tware has been exceedingly permissive in this regard. Essentially =&all
commands create files that are writable by everyone, 1In the current ver-
sion, this policy may be easily adjusted to suit the needs of the installa-
tion or the individual user, Associated with each process and it's descen-
dents is a mask which allows individual users to determine the wmode of
accessibility that they wish. The standard mask, set by login, allows all

permissions to the user himself and to his group and no others,

5.1.4 PASSWORD SECURITY

On the issue of password security, UNIX is probably better than most
systems, Passwords are stored in encrypted form which outside the serious
attention by specialists in the field, provides a reasonable means of secu-
rity. Since both the encryption algorithm and the encrypted passwords are
available, exhaustive enumeration of passwords 1is feasible to a point.
Users should choose a password that is at least six characters long and
randomly chosen from an alphabet which includes special digits and special

characters. The set-UID notion must be carefully used if any security is

29

to be maintained., The first thing to remember is that a writable-set-UID

file can have another program copied onto it,

5.2 SYSTEM RECOVERY

In the System 5 version of UNIX, like any other system, crashes are
bound to happen from time to time, When they occur, one needs to know the

procedures for system recovery.

5.2.1 FILE SYSTEM

The first thing one does following a crash is to check the consistency
of the file system. This is done by the File System Check Program(FSCK)
which is an interactive file system check and repair program. FSCK is per-
formed on all systems that were in use at the time of the crash, If any

serious file problems are found, they should be repaired immediately.

If disks are in need of repair, the first thing that one should keep
in mind is that an addled disk should be treated gently. It should not be
mounted unless necessary. If the data on the disk is valuable, the disk

should be copied before surgery is performed on it,

FSCE is adept at diagnosing and repairing disk problems, It first
identifies all of the files that contain bad blocks or blocks that appear
in more than one file. Any such files are then identified by name and FSCK
requests permission to remove them from the system. FSCX will also repert
on incorrect link counts and will request permission to adjust any that are

erroneous,

30

5.2.2 BRINGING SYSTEM UP

After the file system has been taken care of, one tries to boot the
system up. The following steps are taken as a general strategy to get the
system up and running again: boot an older system version and/or minimum
configured system, boot from the backup root-file system, boot from another
disk pack or the secondary disk drive and finally if all else fails, have
the hardware checked out. If the system will not boot, it is caused by one
of four things: hardware problems, an improperly configured system, a cor=-

rupted boot section on a disk, or a corrupted root file system,

5.2.3 MEMORY DUMPS

All messages printed by the UNIX system are saved in a circular buffer
containing wmemory starting at the symbol PUTBUF, These messages can be

looked at by examining the memory dump using crash(1m).

All file systems should be taken care of before attempting to look at
the dumps, The dump should be read into the file with the pathname
/usr/tmp/core, To print the process table at the time of the crash, one
executes the command PS =-EL =C /usr/tmp/core. One executes the command

MJHO"™ to list the users who were on the system at the time of the crash,

5.3 FILE INTEGRITY

The integrity of the file system is maintained by continual updates to
the file system and detection and correction of corruption within the sys-

tem, Each of these will be be discussed in turn.

When a UNIX operating system is brought up, a consistency check of the

file systems is always performed. This precautionary measure helps to

31

ensure a reliable enviromment for the file storage on the disk, The 5.0
file system features a large internal block size compared to a lot of sys-
tems. The block size is 1024 bytes instead of 512 bytes. This increases the
performance of the I/0 bound applications. The size of the internal system
buffers is also 1024 bytes. For a 1024 byte block file system, data

transfers to and from disk are in 1024 byte operations.

5.3.1 UPDATES OF THE FILE SYSTEM

Every working day hundreds of files are created, modified and removed.
Every time a file is modified, the UNIX operating system performs a series
of updates, These updates, when written on disk, yield a consistent file
system. There are five types of system updates. They are: superblock,
inodes, indirect blocks, data blocks(directories are files), and free-list

blocks,

The superblock contains information about the size of the file system,
the size of the inode list, part of the free-block list, the count of free
blocks, the count of free inodes and part of the free-inode 1list, The
superblock of a mounted file system is written to the file system whenever

a file system is unmounted or a sync command is issued,

The inode contains information about the type of incde, the number of
directory entries linked to the inode, the list of blocks claimed by the
inode and the size of the inode., An inode is written to a file system upon

closure of the file associated with the inode.

There are three types of indirect blocks, single-indirect, double-
indirect and triple indirect blocks, A single-indirect block contains a

list of some of the block numbers claimed by an inode. A double-indirect

32

block contains a list of single-indirect block numbers. 4 triple-indirect
block contains a list of double-indireect block numbers, Indirect ©blocks
are written to the file system whenever they have been modified and
released by the operating system. More precisely, they are queued for

eventual writing.

Data Blocks may contain file information on directory entries, Each
directory consists of a file-name, Data blocks are written to the file
system whenever they have been modified and released by the operating sys-

tem,

The last form of update is the First-Free-List Block. The free-list
blocks are a list of all blocks that are not allocated to the superblock,
inodes, indirect blocks, or data blocks, Each free list block contains a
count of the number of entries in this free-list block and a partial list

of free blocks in the systen.

5.3.2 DETECTION AND CORRECTION OF CORRUPTION

A file system can become corrupted in a variety of ways. The most
common of these ways are improper shutdown procedures and hardware

failures.

The elimination of corruption in the 5.0 file system is taken care by
the File System Check Program(FSCK). FSCK uses the redundant structural
information in the UNIX file system to perform several consistency checks.,
When the UNIX operating system is brought up, a consistency check of the
file systems should always be performed. This precautionary measure helgps

to ensure a reliable enviromment for file storage on disk,

33

When a file system has been corrupted by one of the two ways mentioned
above, the problem 1is detected and then taken care of. A quiescent file
system(an unmounted system not being written on) may be checked for struc-
tural integrity by performing consistency checks on the redundant data
intrinsic to the file system, The redundant data is either read from the
file system or computed from other known values, A quiescent state is
important during the checking of a file system because of the multipass

nature of the FSCK program,

One of the most corrupted items is the superbleck., The superblock 1is
prone because every change to the file system's blocks modifies the super-
block, The superblock and it's associated parts are most often corrupted
when computer is halted and the command involving output to the system was

not a sync command.

An individual inode is not as likely to be corrupted as the super-
block, However, because of the great number of active inodes, there is
almost as likely a chance for corruption in the inode 1list as in the super-

block,

Indirect blocks are owned by the inode, Therefore, inconsistencies in
indirect blocks directly affect the inode that owns it, Inconsistencies
that can be checked are blocks already claimed by another inode and block

numbers outside the range of the file system,

There are two types of data blocks, plain data bloeks and directory
data Dblocks, Plain data blocks contain the information stored in a file,
Directory data blocks contain directory entries, FSCK does not attempt to

check the validity of the contents of a plain data block. Each directory

34

data block can be checked for inconsistencies involving directory inode
numbers pointing to wunallocated inodes, directory inode numbers greater
than the number of incdes in the file =system, incorrect directory inode
numbers for M," and ",," and directories which are disconnected from the
file system. In addition, the validity of the contents of a directory's

data bloeck is checked.

Free 1ist blocks are owned by the superblock, therefore inconsisten=-
cies in free-list blocks directly affect the superblock, Inconsistencies
that can be checked are a 1list count out of range, block numbers out of
range, and blocks already associated with the file system, If there is any
problems with the free-block list, the FSCK may rebuild the list execluding

all blocks in the list of allocated blocks that contain bad data.

Free list blocks are owned by the superblock, therefore inconsisten-
cies in free-list blocks directly affect the superblock., Inconsistencies
that can be checked are a list count out of range, block numbers out of
range, and blocks already associated with the file system. If there is any
problems with the free-block list, the FSCK may rebuild the list excluding

all blocks in the list of allcecated blocks that contain bad data.
5.4 OVERALL PERFORMANCE

The overall performance of the UNIX System 5 is comparable with that
of other systems, In the area of security, UNIX does not provide very good
protection against system crash, but provides adequate protection against
unauthorized perusal and destruction of the system with exception of the
superuser. Each process within the system and descendants of that process

have what 1is called a "mask"™ which allows an individual to determine his

35

own mode of access, The password security provided by UNIX system 5 is

better than that of most other systems.

UNIX does provide for system recovery if for some reason the system
should go down. FSCK(HM) 4is an function on the System-5 version of UNIX
that detects and repairs problems with files., When all files have been
repaired one then attempts to boot the system up, There is a set strategy
that is used to boot the system fcollowing a crash. First one would boot an
older system or a minimum configured system, If this does not work then
one boots using the backup root system. If this also fails, one then tries
to boot the system using another disk pack or a secondary disk drive, If

all else fails, one then must check out the hardware.

The integrity of the file is maintained by two major comporents: file
updates, and detection and correction of corruption within the system.
There are five kinds of updates: superblock, inodes, indirect blocks, data
blocks, and free-list blocks., A file system can be corrupted in two major
ways: shutdown procedures and hardware failures, It 1is the job of the
FSCK(File System Check Program) to detect and correct corruption within the
file system, FSCK is able to eliminate most of all errors that occur
within the file system, This maintains a high rate of integrity within the

system,

36

CHAPTER 6

CONCLUSION

6.1 REVIEW

In this paper we have studied the development of a portable run time
library system that supports requirements of three different compilers run-
ning under the UNIX operating system. We first studied the twelve dif-
ferent types of run time routines that must exist in a common library in
order for it to be functionable, The twelve different types of library rou=-
tines are: input/output, data transfer, file handling, control, storage
management, single used(COBOL), conversion routines, the prefix call,
arithmetie, logie, error handling, and miscellanecus routines. As we have
learned from earlier chapters, there is a wide variation among the types of
routines in the library both in terms of the languages they support and the

functions that they.perform.

Next we studied the parameters of the run time procedures, In our
study we divided them into five categories, Procedures with no parameters,
procedures with one parameter, procedures with two parameters, procedures
with multiple parameters and functions, The routines that fit the category
of no-parameters routines are the initialization, COBOL verb and the con-
trol routines, The routines that are in the one-parameter group are the
file handling and miscellaneous routines, Most of the I/0 and storage
management routines have more than one parameter, The arithmetic and

conversion routines fit the category of functions,

37

In chapter four we looked at the routines found in the UNIX operating
system library. We found that the routines here have very little in common
with the routines in our portable run time library. The UNIX run time
library is used to maintain the resources of the system. The portable run
time library is designed to accommodate the needs of the individual user to

the accomplish the tasks that he needs to have done,

In the last chapter, we studied the security, system recovery, file
integrity and overall performance of the UNIX system 5 operating systeum,
It is important to have a system that is secure and one that can be main-

tained on a daily basis, That ensures that it runs at maximum efficiency.

The primary function of the common run time library is to provide one
with a great amount of flexibility in allowing individual users to write
software in a portable enviromment using Pascal, Fortran and/or COBCL., A
second function of the common library is to allow one to interface with a
wide variety of run time routines, In all, there are 168 different rou-
tines that are needed in order to make the library portable., Of the three
languages that are studied, COBOL has the most unusual set of routines in
the conversion and COBOL verb routines. Including COBOL compilers in our

library provides a great deal of diversity to the library.

38

6.2 FINAL REMARKS

In this paper we have discussed in detail the requirements needed for
the development of a common run time library to be built under the UNIX
operating system. It is possible to develop a run time library for all For=-
tran, COBOL and Pascal compilers provided that all of the above mentioned
qualification are met. It would take a great deal of time and research to
actually implement this portable run time library but it could be done if

one is determined teo do it.

A portable run time 1library that includes routines from three
languages: COBOL, Fortran, and Pascal can be an important toocl when on has

to work in many different enviromments.

APPENDICES

38

APPENDIX A

SUBROUTINES FOR COMMON LIBRARY

40

31

Many of the routines appear in more than one compiler, What we have
done in the tables listed in Appendix 4 is show the relationship between
the run time routines versus the compilers, If a given compiler contains a
certain routine then an 'X' is placed in that slot of the table. The 166
run time routines is the minimum number of routines that is needed for the
commen run time library to be portable and efficient.

LIST OF ABBREVIATIONS

TAN e & & svaowines s s svwns TANDEHM

PE eessssesscacssesnsesss PERKIN ELIMER

CBL evesecconnasessnsoesse COBOL

EXL 4 suswensssvenensssnee Bxternal

INt seavesssssonneessenen Internal

BAiO :sasmeines s i shamas ¢ 3 o Dinary

Float veveevsvevererenses Floating Point Humber

PR 5 yuemacsy ¢ 5 sopmes & § e POWEP

42

!
0
m |
(S

!
== 1

1
5 |
= |
=
.
o 1
2T

1

|
-1

!

1

I

1

!

1

]

1

!
=3 1
= 1
O 9
«“ 1
< |
o)

]

1

1

[

1

1

[

1

B

E

=

2

=

=

H

H o= e e e e iy —m e e e . e e e i T Emm e e e e

n -5 »d

I = c s e e e e e i e o e e —— —— —— ———

Il == e e e e e e e e e . s e e e ———

b4 d g] o]

H o= mm e e e e e e e e e e e e e e e = —

1 L Ee] "4 > e PGS PS >4 L b4 b b4 B

nopd d g L] bd Bd 4 P4 bd bd B4 D4 P B B4 B4 B4 D4 B B

““ bg b4 P4 b M4 > bd g B4 B4 b4 B b b B PE B B B

"

Il == e e s = e e = R e e e R e e - e e e Fee e ——
fl

I

"

n £

n £)

n 7]]

1] 1) | 9 L]

n £ @ .ﬂ) t..la.

f 3 LEe? 0% wipl

n 19 O K

1] o WA o o « M.tgt

] « (=l T P reirerﬂ o
" Peirer.ﬂ @ O O O m
n |+ 5, O 0 ,wv.thn.nen ~ 0
n N R N = R~ I IV = Q0N A B AP o
n Q cb.@.@ﬁ.wrﬂeeeeeeee.mt
T = I - - 0T TOL DD 0p o= =
[T R S R T B B S S B R < R e RPN R, I -
oL IOV O0L L ESLLLLO 0NN
N zpoAapEmEEmNECEEEEEE Tz =SHHMM

43

CBL

FORTRAN

::T
IBM

PASCAL

FILE HANDLING

|1}

e e A W A e A EER e mmam i e femr e e = —— -

]
b
P4 B4 P4 b4 o]
e b4 b4 M4 2 obd b4 pd B4 B4 B4 >
Pdbd B B B b MY L]]
B4 bd Dg bd B4 E
>
[SRS)
L
£, nm
o nnaE il
L \.l\nﬂ.hl ® eluﬁm | 9
-
mv-fl\{ 2 o ﬂﬂeeommm
2 o tﬂ ooy eferrkggs
Q Omm ZoQasuonono 9
llmCSHFLtceonotteoox
oA B QOO0 KPP OAH0AHD I 5, L O
L HENEE LN OUDAODOMLOD MM

(1) == File Control Block Initialization for internal files,
{2) == File Control Bloeck Initialization for external files.

Ly

1
i

FORTRAN

PASCAL

STORAGE MANAGEMENT

4
1
1
I

—— e Sem A e L s EE k. e R e e e ——

E R N R

P opd b4 B Bd B D

New

New?
Dispose
Dispose!
Release
Mark
Newbl ock
Newrecord
Storesize
Hewinit
Seek
Remove
Sizefree
Sizeof
Sizestack
Sizeheap

45

1
[
1
|
I

IBH

CBL

L]
1
I
I

IBH

|
1

FORTRAN
o i i

TAN

i IBM

ACT

PASCAL

t
t

Float/pt
al
al

to Int Decim
to Ext Decim

Binary to

Float/pt

Float/pt
Float/pt

Decimal

Float/pt

Decimal to Bin
Flcat/pt

Decimal
Decimal

Float/pt
Decimal

Int. Float/pt

Float/pt

Decimal
Int. Flcat/pt

Ext. Float/pt
Float/pt

Binary to

Float/pt

Flcat/
Decimal
Decimal to Bin
Decimal
to Bin Int/pwr 10
Float/pt
to Binary
Decimal to
Sterling report
Int Decimal to

to Int Decimal

Integer to real

to Binary

to Int,
Ext., Float/pt
to Int.

Bin.
to Ext.

Int,
to Ext.

Int.
to Ext.

Int.
to Int,

Ext.
to Int,
to Int,

Int.
to Ext.

Ext.

Int.

Int,
Sterling non repor

CONVERSION ROUTINES
Sterling non repor

Ext.
Bin,
Ext,
Int.
Int.
Int,

bq M

—— e e S e e e S . e Emam Em R e R e e e W R AR e ek S e SR s S e e mme mmam em Eeem T e e e e e e EmE e

—— e - o —— . e m Em i MR e RN e e e SRS e emm mm e s e et e = e Er Emam R EmER T Emm e e e e e EmE

>4

e— SR e Smls e e e e T TR o dhda e e R e gmem e e e e e e e e mem MmN AR S A H AR EmAR W M S T e SN W R . ———

e A RS e mm am s TR SR UL e G S e e e e Em e N eSS A R Em AR A e e e MR MR e T s B eSS A e e et e o =

Real to integer

Evalreal

46

]
nJa =
"
:C.E
1 1
Ww—-—q —
n 1
n 1=
T~
==
nez
ne y--
"o
o il =
WE)
" B4
"

W == | ==
n

1] =
n]

1] m
1

H -
"

n [
i 2
=M
nw |-
"
o=t

" o, e
1] .
1]

1 -
"

ARITHMETIC ROUTINES

b b b b
bd b4 bd b4 D4 BE PG B b4 B B Bd B B Bd Bd bd Bd B4 Bd DG B B4 g oPe be bd M >4
bd ba bd B B b P PG B4 P P4 >4 b4 e b b4 B pd ba EC - g 4
L2 b bd b4 b4 b b b Bq bd b b B4 B bd b4 bd
»d bl b bd b g
£ L] P bd b b > b bd b4 bd bd b b b
Q wWoMoH
+ Q v YO) FE)
m [T =] =} . - s] Q
% B) B = GEE 8O & 5
im msne ~ © moowr 4]
Lo — 0O d 3 OO) Gy LH] OoOo] ﬂ
& oo i “o b 2R o B » b & 1 o o
o@ﬂo L) cccVﬂﬂn o 3 o8 0 000w o o
1 O .4 0O mn FE e I T = O] .muar....hu = —
1 42 [1}] CEdd4 Q0 L) We o ﬂgjﬂo L+14] 3%
ﬂ = mig te°Motmmt S 0+ 0 © o |) ~r
S Qoo n o mnSb n s I O 4 A (I B P [eMoes) —~ o~ [oA
. 0 2 -4 O @ OO LWL BHOdomn P - 00T (o5 [T S - N m P
umoa@ctmigaeeeoﬁMm = MP.Ena (S0 ct((Bw
2 [QO [= I o W« W WO o 0 . WS 33T ¢« & A0 0T ONZAOA
®W O M O kO M O By by O @A K QCo0oLOOHO ., VO ocDOoO00XLLLIoBHAHM
T 0NN =tNOUOMHMON NI SHD A HMNALAOD AZA 08N 0000HALALOM S HHKE KL

(1) == Internal Decimal Multiplication

(2) == Internal Decimal Division

(3) -- Exponentiation of Internal Decimal Base by Binary Exponent

47

PASCAL
[—

|
]
1

LOGIC ROUTINES

Pq DG D4 M

Compare
And

Or
Difference
Card

DATA TRANSFER ROUTINES

"4 g

Pack
Unpack

b Pd B B P4 D B B M

COMTROL ROUTINES
Printer Overflow
Printer Spacing
COBOL VERB ROUTINES
Segmentation

Stop Run

Sort
PREFIX CALL

Transform
Class Test
Accept
Checkpoint
Display
Perform

Move

48

CBL |
|
I
1

FORTRAN

PASCAL

MISCELLANEQOUS

>4

>4 PEPq P4 P4 4 4 PE b4 PG PG 4 B4

i

»q b4 <

>4

Juliandate

Time
Clockleft

Date

Page
Clock
Wallelock
Seed
Terminal
Getparm
Message
Halt

ERROR HANDL ING

Setce
Trapattn
System
Undefined

APPENDIX B

A SHORT DESCRIPTICON CF LIBRARY ROUTINES

CONTAINED IN THE COMMON RUN TIME L IBRARY

49

50

INPUT/QUTPUT ROUTINES

- -
)

GET(F : file-type);
=-- advances the current file position to the next component
of a sequential disk file and assigns the value of the
component to the file buffer,

GET'(F : file-type)};
-= advances the current file position to the next component
of a random disk file and assigns the value of the component
the file buffer,

PUT(F : file-type);
-- appends the value of the buffer variable to & sequential
disk file,

PUT'(F : file-type);
-- appends the value of the buffer variable to a random disk
file,

READ(F : file-type, pl..pn : any=-type);
-- transfers a data item or a set of data items from a
terminal or file and assigns the data item(s) to a variable,
The F represents a text-file and the pl..pn represent
read-parameters,

READCHARACTER(F : file=-type, c : char);
-- assigns a variable(of type char) the next character read
from either a file or terminal,

READSTRING(F : file-type, str : string, str-size : integer);
-— assigns the variable STR{of type string) one or more
characters read from either a file or terminal,

READBYTE(F : file-type, b : char<0:7>);
-- assigns a given variable the next byte read from either
a terminal or file,

READSHORTINTEGER(F : file-type, s-int-value : integer);
-- converts a character string to an integer in
internal form where the integer is in the range of -2%#16 to
28815,

READINTEGER(F : file-type, int-value : integer(32));
== the same as readshortinteger except that the range
is -2#232 tg 2##32,

READSHORTREAL(F : file-type, s-real-value : real);
- converts a character string to a real number stored
in internal form. The range is +/-1.16%10%277 and the
precision is 6 digits,

READREAL(F : file-type, real-value : rezl);
== the same as readshortreal except the precision
is 11 digits,

READLN(F : file-type); _
— assigns the file buffer the next character read after an
end of line character,

WRITE(F : file-type, pl..pn : any-type);
== transfers a data item or a set of data items stored in a
variable(s) to either a disk file or terminal.
The F represents a text-file and the pl..pn represent
write-parameters.

WRITECHARACTER(F : file-type, ¢ : char);
-- Writes one character to a disk file or terminal,

WRITEBYTE(F : file-type, ¢ : char<0:7>);
-= ywrites one byte to either a disk file or a terminal.

WRITESTRING(F : file-type, str : string,
str-size : integer, field-width : integer);
-- writes a string of characters out to a disk file or
terminal.

WRITESEORTINTEGER(F : file-type, ivalue : integer,
field=-width : integer);
- converts the integer stored in internal form to a
character string and writes it to either a file or terminal,

WRITEINTEGER(F : file-type, ivalue : integer(32),
field=width : integer);
-- same as writeshortinteger except that the precision
is 11 digits.

WRITESHORTREAL(F : file-type, rvalue : real,
field=-width : integer, decimal-places : integer);
-— converts an extended floating-peint number to a
character string and outputs the value to either a file or
terminal, The integer is displayed in exponential form.
The precision is 7 decimal places,

WRITEREAL(F : file-type, rvalue : real, field-width : integer,
decimal-places : integer);
-- same as writeshortreal except that the precision is 16
decimal places,

WRITELN(F : file-type);
-— writes an end=-of=line character out tc a disk file
or sends a carriage return to a terminal,

52

IQINIT == this procedure reads the assign messages and sets up
the file table, If any external file names are assigned to
any of the logical file names in the file table, the external
file is converted to internal form and placed in the
appropriate entry in the file table, This procedure is called
once by all object programs at the start of execution.

BSAM I/O(F : file=type);
== (used strictly for COBOL programs) processes input/
output statements for direct or relative files accessed
sequentially,

BSAM READ(F : file-type, text : array[0..n] of char);
-- (COBCOL) reads routine segments of a logical record and
assembles them into a complete logical record.

FILE HANDLING ROUTINES,

- - -
M+ttt

FILENU}BER(filenum : integer);
-- obtains a the file number from the system and assigns
it to the given file,

FILCPY(F : file-type):
-- greates a backup or duplicate copy for a given file,

IFCEB -- File Control Block initializing procedure for internal
files.

EFCB =-- File Control Block initializing procedure for external
files.,

RESET(F : file-type);
— resets the current position to the beginning of the file,

REWRITE(F : file-type);
— discards the current file-type and defines F to be
an empty file,

EOF(F : file-type) : boolean;
== returns a boolean value of end-of-file to the calling
program, If end-of=file is reached the value TRUE is
returned. .

EOLN(F : file-type) : boolean;
— returns a boolean value of end-of-line to the calling
program, If end-of-line is reached the value TRUE is
returned,

EXTEND(F : file-type);
== advances the position of the file F to the end of the
file so that additional components can be appended to the
file,

STCPY(F : file-type);
- ¢opies a structure from one file to ancother,

OPEN(F : file-type);
-= opens a file.

CLOSE(F : file-type);
— closes a file,

DOMNEFILE(F : file-type);
== this procedure is called when the file F is no longer
going to be needed.

53

CLOSEALL(F1..FN : file-type);
— simul taneously closes all files that are currently open,

GETPREASS(F : file-type);
-- (PASCAL) checks that the file F satisfies the
preassumptions for a get by the Pascal Standard,

PUTPREASS(F : file-type);
== (PASCAL) checks that the file F satisfies the
preassumptions for a put by the Pascal Standard.

CHECKOPEN(F : file=type);
-- checks to see that the file F satisfies the open before
any I/0 is attempted,

PROGRAM ENTRY -- (PASCAL) this procedure initializes the file
tables for the files used in a given program and makes sure
that all of the necessary files are open so that the progranm
can begin execution.

PROGRAM EXIT -- (PASCAL) this procedure makes sure all files
used in the program are closed and then terminates execution
of the program.

TEXTSTART(F : file=type);
== this procedure tells the system what file is to be used
until further notice is given, This avoids the need to
specify the file on every call.

54

STORAGE MANAGEMENT ROUTINES

NEW(P : pointer-type, size : integer,
const ¢l..cn : ordinal-types);
- allocates a new undefined variable for the varizble P
which is of the domain=type P and assigns a reference to this
variable for P,

REW'(P : record of pointer-type, size : integer,
const cl..cn : ordinal-types);
—= same as NEWY except that the domain type P must be a record
type with variants,

DISPOSE(P : pointer-type, size : integer,
const c¢l..cn : ordinal-types);
~= indicates that the storage occupied by the variable P
is no longer neecded, The variable P becomes inaccessible
and P and all other pointers which reference that variable
become undefined,

DISPOSE'(P : record of pointer-type, size : integer,
const el,.cn : ordinal-types);
-- same as DISPOSE except this procedure must be used in
association with NEW'.

RELEASE(P : pointer-type);
-= this procedure deallocates space that was occupied by the
variable P,

MARK(P : pointer-type);
-- stores in the pointer P a value that may be later used as
the parameter of the procedure RELEASE,

NEWBLOCK(block : bufftype , blocksize : integer);
-- creates a block of storage space of size "blocksize! to a

given program,

HEWRECORD(record : rectype , recsize : integer);
-- greates a new record for a given record type Rectype.

STORESIZE(P : pointer-type, size-to-store : integer);
-= defermines how much storage space is needed for a
variable P which is of domain pointer-type.

BEWINIT(F : file-type, R : rectype);
-- creates and initializes a new record R for the record
type Rectype.

56

SEEK(F : file-type, seeklocation : integer);
-- moves the current pointer to the lcocation given in the
parameters,

REMOVE(S : string);
-- causes trailing blanks of a string S to be removed,

SIZEFREE : integer;
— returns the size in bytes of the unused area of storage
between the stack and the heap.

SIZEQF(X : var/type identifier) : integer;
— returns the number of bytes of storage occupied by a
variable of the same type as X. X may be either a type or
variable identifier.

SIZESTACK : integer;
-- returns the size in bytes of the area of storage currently
occupied by the stack holding local variables of active
procedures and functions.

SIZEHEAP : integer;
-- returns the size in bytes of the area currently occupied
by the heap from which variables are allocated by the
standard procedure NEW.

CONVERSION ROUTINES

EXT. FLOAT TO INT. DECIMAL(X : float) : real;
=- converts an external floating point
number to an internal decimal,

EXT. FLOAT TO BINARY(X : float) : binary;
-= converts an external floating point number

to a binary number,

EXT, FLOAT TO INT. FLOAT(X : float) : float;
-- converts an external floating point number
to an internal floating point number.

BINARY TO INT. DECIMAL(xX : binmary) : real;
-- converts a2 binary number to an internal
decimal.

BINARY TO EXT. DECIMAL(X : binary) : real;
== converis a binary number to an external decimal.

BINARY TO INT, FLOAT(X : binary) : float;
-- converts a binary to an internal floating point
number,

BINARY TO EXT, FLOAT(x : flcat) : binary;
— converts a binary to an external floating point
number,

INT. FLOAT TO EXT. FLOAT(x : float) : float;
-- converts an internal floating point number
to an external floating point number,

INT., DECIMAL TO EXT., FLOAT(X : real) : float;
-= converts an internal decimal to an external
floating point number,

INT. DECIMAL TO BINARY(X : real) : binary;
-- converts an internal decimal to a birary number,

EXT. DECIMAL TO BINARY(X : real) : binary;
-- converts an external decimal to a binary number,

INT. DECIMAL TO INT. FLOAT(X : real) : float;
-= converts an internal decimal to an
internal flcating point number,

EXT. DECIMAL TO INT, FLOAT(X : real) : flecat;
- converts an external decimal to an
internal floating point number,

58

INT, FLOAT TO INT, DECIMAL(X : flocat) : rezal;
== converts an internal floating point number teo an
internal decimal.

INT, FLOAT TO EXT, DECIMAL(X : float) : real;
-- converts an internal floating point number
to an external decimal.
INT, FLOAT TO BIN. INT/PWR 10(X : float) : binary;
— converts an internal floating point
number to a binary integer and a power of 10 exponent,

INT, FLOAT TO BINARY(X : float) : binary;
-- converts an internal floating point number to
a binary number.

INT, DECIMAL TO STERLING REPORT(X : rezl) : sterling;
-- converts an internal decimal to
a Sterling report,

INT, DECIMAL TO STERLING HNON=-REPORT(X : real) : sterling;
-= converts an internal decimal to
a Sterling non-report,

STERLING !NON-REPORT TO INTERNAL DECIMAL(X : Sterling) : real;
- converts a Sterling non=-report
to an internal decimal,

INTEGER TO REAL(X : integer) : real;
== (FORTRAN) converts an integer value to a real value.

REAL TO INTEGER(X : real) : integer;
— (FORTRAN) converts a real value to an integer value,

EVALREAL(X : real) : target-machine-real;
== converts the real number represented by character strings
to the target machine representation of a real number.

ARITHMETIC ROUTINES

NATURAL LOGARITHM(x : integer/real/complex) : real/complex;
-= returns the natural logarithm of x where x is of type
real. (y = 1ln x)

COMMON LOGARITHM(x : integer/real/complex) : real;
— returns the common logarithm of x where x is of type real.
(y = log(10) x)

EXPONENTIAL(x : integer/real/complex) : real/complex;
— returns the value of the base of the natural logarithm
raised to the power x. (y = e#%x),

SQUARE ROOT(x : integer/real/complex) : real/complex;
— returns the sgquare root of x (y = x#¥(1/2))

NUARE(x : integer/real) : real;
- returns the square of x (y = x#%2)

ARCSINE(x : real) : real; -- returns the arcsine of x
(y = aresin x)

ARCCOSINE(x : real) : real; — returns the arccosine of x
(y = arcos x)

ARCTANGENT(x : integer/real) : real;
-- returns the arctangent of x (y = arctangent x)

SINE(x : integer/real/complex) : real/complex;
- returns the sine of x (y = sin x)

COS (x : integer/real/complex) : real/complex;
-- returns the cosine of x (y = cos x)

TANGENT(x : real) : real;
-- returns the tangent of x (y = tan x)

COTANGENT(x : real) : real;
-- returns the cotangent of x (y = cot x)

HYPERBOLIC SINE(x : real) : real;
-- returns the hyperbolic sine of x (y = sinh x)

HYPERBOLIC COSINE(x : real) : real;
-- returns the hyperbolic cosine of x (y = cosh x)

HYPERBOLIC TANGENT(x : real) : real;
— returns the hyperbolic tangent of x (y = tanh x)

ABSOLUTE VALUE(x : integer/real/complex) : integer/real/complex;
-- returns the absolute value of x (y = |x!})

MAXTMUM VALUE(x : integer/real) : integer/real;
-- returns the maximum value of the set
(y = max(x , X, X voe.. X)) where x is either an integer or
real,

MINIMUM VALUE(x : integer/real) : integer/real;
== returns the minimum value of the set
(y = oin{(x , X, X eeees X }) where x is either an integer or
real,

TRUNCATICN(x : real) : integer/real;
— returns the value of x truncated to an integer value,
(x must be of type real)

GAMMA(x : real) : real; -- returns the antiderivative of x

LOG GAMMA(X : real) : real;
— returns the log of the antiderivative of x.

HODULO(x,y : integer/real) : integer/real;
- returns the modulo of z (z = remainder(x/y))

TRANSFER OF SIGN(x : integer/real) : integer/real;
== returns the resultant number # (-1).

POSITIVE DIFFERENCE(xX : integer/real) : integer/real;
=- returns the positive difference of x and min(x,y)
(z = x - min(x,y))

D. P. PRODUCT(x,y : real) : double(#);
-- returns the double precision product of two numbers x and

Y-

(#) == A Double Precision real number,

LRIGTH(e : char) : integer;
— returns the length of a character iten.

LINELENGTH(f : text) : integer;
— returns the number of character positions in the remainder
of the current line of f.

ROUMD(x : real) : integer; -- returns to nearest integer to x.
NEAREST WHOLE NUMBER(x : real) : integer;

-=- returns the nearest whole number to x. X must

be a positive real number,
ODD(x : integer) : boolean; -- returns true if the integer is odd
OBTAIN REAL OF COMPLEX(x : complex) : real;

-=- returns the real part of a complex number i. e.
the x value in (z = x + yi).

60

61

OBTAIN IMAGINARY PART OF COMPLEX ARGUMENT(x : complex) : real;
— returns the imaginary part
-of a complex number i.,e, the y value in (z = x + yi}.

OBTAIN CONJUGATE OF COMPLEX ARGUMENT(x : complex) : complex;
== return the conjugate of x + yi i. e. x = yi.

EXPRESS REAL IN COMPLEX FORM(x : reazl) : real;
-- express real number in the form x + yi
where x is the real part and y is the imaginary part., 1In
this subroutine y = 0.

PRECISION INCREASE(x : real)} : real;
-- Ilncrease the number of digits a number is allowed
to oceupy.

PRED(x : ordinal-type) : ordinal-type;
== returns the predecessor of X.

ORD (x : ordinal-type/pointer=-type) : integer;
== returns the integer ordinal number associated with
the value of x.

SUCC(x : ordinal-type) : ordinal-type;
-— returns the successor of x.

CHR(x : integer) : char;
== returns the character value whose ordinal value is Xx.

MOST SIG., REAL ARG(x : real) : real;
-= obtain the most significant part of the real argument.

INT, DECIMAL MULTIPLICATION(x : real) : real;
== (COBQOL) Internal Decimal Multiplication, oultiplying
a 30 digit number by a 30 digit number to obtain a product
that is 60 digits in length and is stored internally in
the system.

INT, DECIMAL DIVISION (x : real) : real;
-- (COBOL) Internal Decimal Division, divide a 6U-digit
number by a 30-digit number to obtain the quotient which is
stored internally by the system,

FLOATING POINT EXPONENTIATION (x : real) : real;
-- (COBOL) returns a floating point number
tnat is written in exponential form.

EXP INT DEC BASE BY BIN EXP(x : real) : real;
-- {COBOL) Exponentiation of an Internal Decimal Base
by a2 binary exponent,

62

LOGIC ROUTINES

——— - —— -
——mmmEsEE=E==SCEZ=

COMPARE(s1,s2 : set of any-type);
—— performs a set compare on two different sets,

AND(s1,s2 : set of any-type) : set of any=-type;
== preturns a resultant set which is the intersection of
two sets,

OR(s1,s2 : set of any-type) : set of any-type;
-= returns a resultant set which is the union of two sets,

DIFFERENCE(s1,s2 : set of any-type);
-=- performs a set difference on two sets.

CARD(s : set-type) : integer;
== returns the number of elements in the set X,

DATA TRANSFER ROUTINES

- -
=SS oS-SS CS=========CS

PACK(A : array[m .. n] of T, I : integer,
Z : packed array [U..V] of T);
-- copies data from an unpacked array to a packed arrzy.
The variables !, H, U, V are of type integer and the
variable T is of any definable type.

UNPACKED(Z : packed array [U..V] of T,
A : array [m,.n] of T, I : integer);
-- copies data from a packed array to an unpacked arrzy.
The variables !, N, U, V are of type integer and the
variable T is of any definable type.

COHTROL ROUTINES

e e e S =SS EEE

PRINTER OVERFLOW -- is used to control printer overflow testing
and page ejection.

PRTITER SPACING =-- is used to control printer spacing.

63

COBOL VERB ROUTINES

-
R

HOVE(T : text);
--(COBOL) used when one or both operands are variable in
length. It is also used for READ and WRITE statements
processed in conjunction with the same record-area clause,

TRANSFORM(Item : item-type);
-=(COBOL) used to translate variable length items.

CLASS TEST(Item : item=-type);
--(COBOL) used to perform class tests for variable-length
items and those fixed-length items over 256 bytes long,

SEGMENTATION -- (COBOL) used to load segments of a program that
are not in core storage and to pass control from one segment
to the other,

STOP RUN == (COBOL) controls exiting from the program and is
entered when a program receives initial control,

SORT -- acts as an interface between the COBOL calling program
and the Sort/llerge progran.

ACCEPT(T : text);
-- (COBOL) is called to read from SYSIN or from the
operator's console at execution time. For SY¥SIN,
a logical record size of 80 is assumed.

CHECKPOINT -~ (COBOL) is used when checkpoints are taken in a
program,

DISPLAY(T : text);
-- (COBCL) is used to print, punch or type data usually in
limited amount.

PERFORM(T : text);
-- (COBOL) is a call to a paragraph heading in COBOL.
Execution is transferred to that paragraph name and the
statements under that heading are executed.

64

PASCAL PREFIX

- -
R

A set of procedure heading declarations and the necessary CONST
and TYPE declarations. The prefix is added to the beginning of
each Pascal program and is used to call any of the supporting
routines,

MISCELLANEOUS ROUTINES

-
]

DATE(Date=string : Actualdate);
-- returns the date in yymmdd format,

JULIANDATE(JDate=string : Actualddate);
-=- returns the date in yy/ddd format.

TIME(Tine-string : Actualtime);
-- returns the time in yynmddhh format.

CLOCK : integer;
-=- returns the number of milliseconds of central
processor time used during execution of the program,

CLOCKLEFT : integer;
— returns the number of milliseconds of central
processor time remaining to be used during execution,

WALLCLOCK : integer;
-=- an integer function of no arguments returns the time in
seconds in 00:00:00 GIT

SEED(I : integer);
-- the random number generator used to generate integers
randomly,

TERMINAL(F : file=type) : boclean;
-~ returns true if the peripheral device associated with the
file F is a terminal,

GETPARM(S : string-type, Len : integer);
-=- returns the program parameters supplied on the operating
system command line or control card used to execute the
program,

MESSAGE(S : string-type);
— writes the string S into the job executicn log (the SYSHSG
data set in 0S and VS systens) or to the terminal in
interactive systems,

65

HALT(S : string-type);
-- terminates the program with a traceback and duap of local
variables if the program was appropriately ccmpiled,

SETCC(RC : integer);
== sets the completion code to the value RC.

TRAPPATTN(Y : integer);
-= indicates that N or fewer attention interrupts from the
terminal should be counted but otherwise ignored.

SYISTEM(S : string-type, RC : integer);
-- submits the string S to the host operation system to be
executed as a command and stores the return code
(condition code) from that command in RC. The
interpretation of the string S depends on the host operating

system.

UNDEFINED(U : rezl) : boolean;
— a boolean function with a real number zs it's argument;
this function always returns false,

66

ERROR HANDLER

~- a routine designed to handle calls made to routines not
contained within the common library. The error handle
prints an error message and either terminates the

process or enables the process to continue execution at the
point af'ter the error occurred depending on the

severity of the error,

APPENDIX C

LIBRARY FUNCTIONS TO INVOKE SYSTEM PRIMITIVES

LIBRARY FUNCTI CKE UNIX SYSTE!M PRIMITIVES,

ACCESS == determines accessibility of a file.
ACCT -- enable or disable process accounting.
ALARM -- set a process's zlarm clock,

BRK -- change data segment space allocation,

CHDIR =-- change working directory.

CHMNOD == change mode of a file,

CHOWN == change owner and group of a file

CHROOT =-- change root directory.

CREAT -- create a new file or rewrite an existing one.
DUP == duplicate an open file descriptor.

FXECL -=- execute a file,

EXIT -- terminate a process,

FCNTL == file control.

FORK == create a new process.

GETPID -- get process, process group, and parent process IDs,
GETUID -- get real user, effective user, real group, and effective
group IDs,

IOCTL =-- control device that performs a variety of functions on
character special files,

KILL -- send a signal to a process or 2 group of processes,

LINE == link to a file,

LOCKING -- provide exclusive file regions for reading or writing.
LSEEEK =-- move read/write file pointer,

MKNOD -- make a directory or a special or ordinary file,

MOUNT -- mount a file system,

NICE -~ change priority of a process.

OPEN -- open a file for reading or writing,

PAUSE -- suspend process until signal,

PHYS == allow a process to access physical addresses.,
PIPE == create an interprocess channel.

PROFIL -- execution time profile.

PTRACE =-- process trace.

READ -- read from a file,

REBOOT -- reboot the system,

SETPGRP -- set process group ID,

SETUID, SETGID -- set user and group IDs.

SIGNAL -- specify what to do upon receipt of a signal.
STAT =-- obtain file status.

STIME =-- set time,

3YNC -- update super=block,

TIME == obtains the value of time in seconds since 00:00:00
January 1, 1970

TIMES -= gets process and child process times,

ULDMIT -- get and set user limits,

UMASK -- set file creation mode mask.

MOUNT -- unmount a file systenm.

UNAME == get name of current UHNIX system.

UNLINE -- remove directory entry.

USTAT == get file system statisties.

UTIME -- set file access and modification times.

UVAR == returns system specific configuration information.
WAIT == wait for child process to step or terminate.

JRITE == write on a fie.

GHT,

69

BIBLIOGRAPEHEY

ACT PASCAL PROGRAM LOGIC MANUAL , Advanced Computer Techniques

Corporation, Hew York, NY, (January 1983), pp. 6.1-6.11.

Administrator's Guide, THE UNIX SYSTEM, Issue 1, January 1983,
pp. 121=127.

! ol] 3 c COMPILER AND LIBRARY

VERSION 2 PROGRAMMERS GUIDE, International Business Nachlnes
Corp., New York, NY, (July 1972), pp. 277-81.

1Bk y I3 UAGE REFERENCE LIANUAL
Internation Bu31ness Machines, San Jose, CA (May 1674),

pp. 117-23.

Joy, W. N. , S. L. Graham and C.B,Haley, BERKELEY PASCAL USER'S
MANUAL VERSION 2.0, University of Berkeley Computer Center
Library, Berkeley, CA (1980).

Horris, Robert and Ken Thompson, PASSYUORD SECURITY: A CASE HISTORY
Bell Laboratories, Murray Hill, NJ, p. 6.

NON-STOP SYSTEMS, TANDEM FORTRAN 77 REFERENCE MANUAL, Tandenm
Computers Inc., Cupertino, CA (October 1982), pp. 4.2.1=4.2.5.

Payne, Kendall R, PASCAL RUNTIME [TBRARY, Tandem Nonstop II,

Manhattan, KS, (December 1983).

PERXIN : | u D IGUAGE HMANUAL AND RUNTIUME
SUPPORT REFERENCE MANUAL, Perkin Elmer Corp. - Computer Systems
Division, Oceanport, MNJ, (1980), pp. 10.27-10.32.

Perkin, Hal, PASCAL 8000 REFERENCE MANUAL/VERSICH 2.0
Cornell University, USA (August 1¢80), pp. 45-55, 57-64,

Ritchie, Dennis M., ON THE SECURITY OF UMNIX, Bell Laboratories,
Murray Hill, NJ, pp. 1-3.

SYSTEM 3 UNIX OPERATION SYSTEM USER MANUAL, Vol 1 Unisoft Corp.,

Berkeley, CA (1983),

Thompson, K. UNIX IMPLEMENTATION, Bell Laboratories, Murray Hill, lJ,
PP. 7‘8-

UNIX SYSTEM USER'S MANUAL, SYSTEM 5, Western Electric Company (1983),
Crash(3), pp. 1=3.

70

THE DEVELOPMENT AND ANALYSIS OF A PORTABLE RUNTIME LIBRARY
ACCESSABLE TO ALL FORTRAN, COBOL AND PASCAL COMPILERS

UNDER THE UNIX SYSTEM 5 OPERATING SYSTEM

by

KENDALL ROBERT PAYNE

B.S., Baker University, 1982

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Secience

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1984

ABSTRACT

This paper discusses and analyzes the development of a portable run
time 1library that will support compilers for three different languages:
COBOL, Fortran and Pascal, The compiler will run under the UNIX System=5

operating systen.

The portable run time library will contain twelve different types of
routines: input/output, file handling, storage management, arithmetic,
logic, data transfer, control, the Pascal prefix, COBCL verb routines, the
error handler and miscellaneous routines. Different groups of routines are
applicable to different compilers, The I/0, file handling, storage manage-
ment, data transfer, the Pascal prefix and the miscellaneous routines apply
primarily to Pascal. The arithmetic and logic routines are common to both
Pascal and Fortran while the COBOL verb routines, the control routires and
the conversion routines relate to COBCOL. The error handler routine applies

to all three languages.

The routines in the run time library czn be divided into two different
categories according to their parameters, The two categories are functions
and procedures. The routines that are functions are the arithmetic, logic
and conversion routines, The group of routines classified as procedures
can be subdivided into four groups: procedures with no parameters, one
parameter, two parameters and multiple parameters., The initialization,
utility, control and error handling routines are 2all procedures with no
parameters., A1l input/output routines and most of the file handling rou-

tines will have one or more parameters depending on the nature of the rou-

tine, The storage management and data transfer routines all have two or

more parameters,

The library routines in the UNIX system 5 run time library have very
little in common with routines in the portable run time library. The rou-
tines in the Unix library: maintain the file system, create and destroy
processes, Kkeep a log of all processes currently running on the system and
keép a timetable of all running processes. On the other hand, the routines
in the portable run time library are tailored to perform functions for the

individual user,

There are four important features that should be taken into considera=-
tion when determining whether the UNIX operzting system can operzte in a
portable enviromment or not, They are security, system recovery, file
integrity and overall performance, These features also play an important
role in maintaining the integrity of UNIX and determining whether the
interfaces between UNIX and the portable run time library function prop-

erly.

The primary functions of the run time library are to provide flexibil-
ity in allowing users to write software in a portable enviromment using
Fortran, COBOL and Pascal and to allow an individuzl to interface with =z

wide variety of different routines,

