
SEQUENTIAL AND SIMULTANEOUS LIFTING IN THE NODE

PACKING POLYHEDRON

by

JEFFREY WILLIAM PAVELKA

B.S., Kansas State University, 2011

A THESIS

Submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Industrial and Manufacturing Systems Engineering

College of Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

2011

Approved by:

Major Professor

Dr. Todd Easton

ABSTRACT

Integer programs (IPs) are a commonly researched class of decision problems. These

problems are used in various applications to help companies, governments, or individ-

uals make better decisions by determining optimal resource allocations. While IPs are

practical tools, they require an exponential amount of effort to solve, unless P = NP .

This fact has led to much research focused on reducing the time required to solve IPs.

Cutting planes are a commonly used tool for reducing IP solving time. Lifting, a

process of changing the coefficients in an inequality, is often employed to strengthen

cutting planes. When lifting, the goal is often to create a facet defining inequality,

which is theoretically the strongest cutting plane.

This thesis introduces two new lifting procedures for the Node Packing problem.

The Node Packing problem seeks to select the maximum number of nodes in a graph

such that no two nodes are adjacent. The first lifting method, the Simultaneous Lifting

Expansion, takes two inequalities and combines them to make a stronger cut. It works

for any two general classes of inequalities, as long as the requisite graph structures are

met.

The second method, the Cliques On Odd-holes Lifting (COOL) procedure, lifts from

an odd-hole inequality to a facet defining inequality. COOL makes use of the Odd Gap

Lifting procedure, an efficient method for finding lifting coefficients on odd holes. A

computational study shows COOL to be effective in creating cuts in graphs with low

edge densities.

Contents

List of Figures . v

List of Tables . vii

1 Introduction 1

1.1 Motivation . 4

1.2 Contributions . 5

1.3 Outline . 6

2 Background Information 8

2.1 Integer Programming . 8

2.2 Polyhedral Theory . 10

2.3 Graph Theory . 13

2.3.1 Classical Induced Subgraphs . 15

2.3.2 The Node Packing Problem . 16

iii

2.3.3 Induced Subgraph Inequalities for Node Packing 17

2.3.4 Conflict Graphs . 19

2.4 Lifting . 21

3 Lifting in the Node Packing Polyhedron 26

3.1 Simultaneous Lifting Expansions in the Node Packing Polyhedron 26

3.1.1 SLE Examples . 34

3.2 Sequential Lifting to a Hole Inequality 39

3.2.1 OGL Extensions: Cliques On Odd-holes Lifting 46

3.2.2 A COOL Example . 49

4 Computational Results 52

5 Conclusion and Future Research 60

5.1 Future Research . 61

iv

List of Figures

2.1 A facet defining cut [28] . 13

2.2 A sample graph . 14

2.3 Induced subgraph examples . 16

2.4 Affinely independent points for H5, W6, and A5 19

2.5 Conflict graph . 20

2.6 Node packing graph for lifting example 23

2.7 Affinely independent points for lifting example 24

2.8 An odd bipartite hole [14] . 25

3.1 An example Simultaneous Lifting Expansion 28

3.2 Form of the SLE B matrix . 30

3.3 Form of the SLE B ′ matrix . 31

3.4 B matrix for SLE example . 31

3.5 BD and BD′∪{u} for SLE example . 32

v

3.6 B ′ for SLE example . 33

3.7 Cliqued hole transition [14] . 35

3.8 A larger SLE example . 37

3.9 Affinely independent points for SLE example 38

3.10 A (3,2,(1,3,2,3,2)) connection . 40

3.11 The Xi function . 43

3.12 Contraction of nodes 8 and 10 from lifting example (Figure 2.6) 46

3.13 COOL example graph . 49

3.14 Affinely independent points for COOL example 51

vi

List of Tables

3.1 Initial OGL coefficients for COOL example 50

4.1 COOL vs. NP computational results . 56

4.2 Additional computational results for edge density 0.1 58

vii

Chapter 1

Introduction

In the field of mathematical optimization, Integer Programs (IPs) are a powerful tool.

IPs are optimization problems where some or all of the decision variables must take

on integer values. Restricting variables to integer values is often necessary in modeling

decision problems, making IPs widely applicable for a vast array of industries. For

example, truck routing [33, 46, 47, 1], sports scheduling [16, 48], and capital budgeting

[19, 31] problems are all industry applications that have been modeled and improved

using IPs.

Though they are useful in modeling various applications, IPs are difficult to solve.

The most common method for solving IPs is called Branch and Bound. The first step

in this method is to solve the IP’s linear relaxation, which is identical to the IP except

that no variable is required to be integer. This linear relaxation is said to be the root

node of the branching tree. If the solution contains any non-integer variables, branching

1

occurs.

When branching from a node in the tree, two new problems are created. Each of

these problems, called child problems or child nodes, include every constraint from the

parent node. In addition, each child node contains a new constraint on one of the non-

integer variables. For example, say that x1 = 2.4 in the linear relaxation solution. Of

the two child problems created, one of them includes the constraint x ≤ 2. In the other,

the constraint x ≥ 3 is added. This procedure continues until all nodes are fathomed.

No branching will occur from a node that has been fathomed. Fathoming occurs

under three conditions: When the problem is infeasible, when the linear relaxation

solves to an integer value, or when the objective value for the node is worse than the

best known integer solution.

Clearly, this method can be quite inefficient, since exponentially many branches may

be created before a solution is found. Unfortunately, IPs are known to be NP-Hard

[32]. This means that there is no algorithm that can efficiently solve a general problem,

unless P = NP . For this reason, there has been much research focused on developing

methods to decrease IP’s solving time.

One research area that can improve IP’s solving time is cutting planes. Cutting

planes are inequalities that eliminate a portion of an IP’s linear relaxation space. They

are said to be valid if and only if they are not violated by any integer solution that

is feasible in original problem. These inequalities are often created by examining the

current set of constraints, and using that information to create stronger constraints. The

2

theoretically strongest possible cutting planes are called facet-defining inequalities. The

study of IPs and their facets is called Polyhedral Theory.

One method for creating strong cutting planes is through a process called lifting.

The main idea behind lifting is to take a known valid inequality and alter one or more

of its coefficients. By doing this intelligently, it is possible to create a valid cut that

is stronger than the original inequality. Lifting is a topic often covered in literature

[3, 6, 7, 24, 43], and lifting techniques have been shown to be useful for a wide range of

applications, from general IPs to Graph Theory problems.

A graph is an abstract representation of a system. A graph consists of a set vertices

and a set of edges. Vertices (also called nodes) typically represent entities in a system,

while edges (or arcs) represent some relationship between the entities. For example,

the vertices in a graph may represent cities on a map, while the edges represent a road

between two cities. Two nodes are said to be adjacent if there is an edge connecting

them.

The field of Graph Theory studies graphs, including various graph optimization prob-

lems. Popular Graph Theory problems include shortest route [5, 42], min-cost flow

[18, 20], and graph coloring problems [11, 12]. Graph Theory problems have found ap-

plications in transportation [21, 23, 52], scheduling [15, 30], forecasting [45, 50], and

even law enforcement [4]. Due to the discrete nature of the elements in a graph, Graph

Theory problems are often modeled and optimized using IPs.

This thesis focuses on one Graph Theory problem, the Node Packing problem (al-

3

ternatively known as the Independent Set problem). The objective of this problem is

to find the largest possible set of nodes, such that no two adjacent nodes are in the set.

This problem is known to be NP-Complete [32].

The Node Packing problem has been deployed in a diverse range of real-world situa-

tions, displaying its usefulness in practical applications. One such application is shown

in a paper by Zwaneveld, et. al. [53]. This paper discusses a method for routing trains

at a railway station. As one could imagine, there are many variables at play here (trains,

entering and departing routes, etc.). Solving this routing problem is very important for

the operators. An incorrect routing is not just bad for business, but a hazard to the

well-being of train passengers. As the paper shows, the Node Packing problem is ideally

suited to handle this logistical problem.

In other applications, the Node Packing problem has been deployed in genome map-

ping [27], machine scheduling [51], and sensor coverage [36]. Additionally, the concept

of conflict graphs can be extended to other IPs [2], and much of the Polyhedral Theory

developed on the Node Packing problem can be extended to these IPs as well.

1.1 Motivation

A common method for solving the Node Packing problem is to formulate it as an IP. The

main motivation of this thesis is developing methods to find valid inequalities for these

Node Packing IPs. There has been a significant amount of recent work in the area of

simultaneous lifting and Polyhedral Theory at Kansas State University [10, 17, 28, 34].

4

Much of this work has been focused on knapsack problems, a special class of IP problems.

In 2009, Conley [14] extended this research to the Node Packing problem. The result

was the uncovering of two previously undiscovered classes of graph structures, both of

which generate valid inequalities for the Node Packing polytope. Both of these structures

are combinations of previously known graph structures. This work left a new research

question: can new inequalities be created from the combination of any general graph

structures? One motivation for this thesis was to determine conditions under which this

is possible, as well as a method for creating them.

While working on this question, a new method for lifting to an odd-hole inequality

was discovered. While lifted odd-hole inequalities are not always helpful when solving

general Node Packing problems, they have been shown to be useful under certain con-

ditions [39]. The second aim of this research was to code and implement a this lifting

technique to determine when it is most effective.

1.2 Contributions

This thesis outlines two new methods for creating valid inequalities for the Node Packing

problem. The first method introduces the concept of a Simultaneous Lifting Expansion.

In certain circumstances, this method allows for the combining of two separate valid

inequalities into one, higher dimensional cut. The power in this method lies in the

fact that it allows for any two inequalities to be combined. This method is shown to

generalize Conley’s work, and creates previously undiscovered classes of facet defining

5

inequalities for the Node Packing polyhedron.

The second contribution is a method for lifting from a common graph structure,

the odd hole, to a facet defining inequality. Lifted odd-hole inequalities have been

studied previously [38, 39], but this research introduces a new method for finding lifting

coefficients, the Odd Gap Lifting (OGL) procedure. The exciting aspect of this procedure

is that it can find exact lifting coefficients without having to solve a decision problem.

The OGL procedure is a main component of the Cliques On Odd-holes Lifting (COOL)

procedure. COOL intelligently orders nodes for lifting to the odd hole, resulting in a

facet defining cut. A computational study was completed to test the COOL procedure

against a typical odd-hole lifting strategy. This study found COOL to be most effective

in graphs with a low edge density. COOL also performs well when the initial hole is

small.

1.3 Outline

Chapter 2 provides definitions and background information necessary to understand the

work done in this thesis. It provides the reader with a more rigorous understanding

of the subjects mentioned in this chapter. Topics in Integer Programming, Polyhedral

Theory, and Graph Theory are discussed.

Chapter 3 describes the lifting techniques derived for this thesis. The main results

are Simultaneous Lifting Expansions, the Odd Gap Lifting procedure, and the Cliques

On Odd-holes Lifting procedure. Relevant theorems are provided and proven for each

6

concept.

Chapter 4 describes a computational study testing the COOL procedure against a

common odd-hole lifting scheme. The study’s objectives and methodologies are outlined.

Results are provided, along with an analysis of the findings.

Finally, Chapter 5 provides a conclusion of the thesis work. Important findings

and concepts are discussed. Possible areas of future research are explored, along with

suggestions for pursuing them.

7

Chapter 2

Background Information

This chapter outlines the background information needed to understand the work done

for this thesis, including relevant concepts and definitions. The thesis draws from work

done in Integer Programming, Polyhedral Theory, and Graph Theory. A particular focus

is placed on lifting.

2.1 Integer Programming

Integer Programs (IPs) are optimization problems where decision variables are restricted

to integer values. These problems are solved to either maximize or minimize some

linear objective function, where the values of the variables are restricted by a number

of constraints. Let N = {1, 2, ..., n} contain the indices of the IP’s variables. In general,

IPs take the following form:

8

Maximize cT x

subject to Ax ≤ b

x ∈ Zn
+.

where c ∈ Rn, A ∈ Rm×n and b ∈ Rm.

The most commonly used technique for solving IPs is called Branch and Bound. The

first step in this method is to solve the linear relaxation of the IP. The linear relaxation

problem is identical to the original IP, except the integer restrictions are taken away. If

the linear relaxation solution contains one or more variable xi at a non-integer value, one

particular xi is chosen. The linear relaxation then branches into two new child problems,

both are identical to the linear relaxation with one added constraint. In particular, if

xi = q, one child problem adds the constraint xi ≥ dqe, and the other adds xi ≤ bqc.

One child is chosen to be solved, and process continues. If a node is infeasible, solved

to all integer values, or solved to an objective value worse than the best known integer

solution, it is fathomed and no branching occurs. The process continues until all nodes

are fathomed.

Unfortunately, Branch and Bound is computationally intensive. It requires solving a

linear program for each new branch, and the number of branches can grow exponentially.

For this reason, many techniques have been studied to try to improve solving time. One

such method is to use cutting planes, which are studied in Polyhedral Theory.

9

2.2 Polyhedral Theory

Polyhedral Theory is a fundamental area of research in mathematical programming.

This discipline studies the feasible space in integer and linear programs. This section

addresses important definitions and results from Polyhedral Theory that are essential to

this thesis.

A set S is said to be convex if and only if (λs1 +(1− λ)s2) ∈ S for all s1, s2 ∈ S and

λ ∈ [0, 1]. The convex hull of some set R, denoted as Rch = conv(R), is the intersection

of all convex sets S such that R ⊆ S.

The solution space of a linear inequality
∑n

i=1 αixi ≤ β is a half-space. Formally, the

half space is the set {x ∈ Rn :
∑n

i=1 αixi ≤ β}. Clearly, this set is convex. A polyhedron

is a finite intersection of half-spaces. A polytope is a bounded polyhedron.

Define P = {x ∈ Zn : Ax ≤ b} to be the set of all feasible points in an integer

program. A well known result is that P ch is a polyhedron. The feasible region of an

IP’s linear relaxation is denoted as PLR = {x ∈ Rn : Ax ≤ b}. It is trivial to see that

P ch ⊆ PLR.

Branch and Bound involves solving the linear relaxation of a problem, and any so-

lution that is in PLR but not in P is infeasible for the integer program. Therefore, a

solution found in PLR \ P ch may result in another set of branches. Clearly, removing

some of this extra linear relaxation space would lessen the likelihood of a problem solving

to a point that is not in P . This is the primary reasoning behind cutting planes.

10

A cutting plane is an inequality that is added to the set of constraints in the integer

program. A cutting plane
∑n

i=1 αixi ≤ β is said to be valid if and only if
∑n

i=1 αixi ≤ β

for all x ∈ P . In other words, there are no points in P that do not satisfy the inequality.

Clearly, not all valid inequalities will be useful. The usefulness of a cut is often related

to the dimension of the face that it induces on PLR.

The face F induced by a cutting plane is the intersection of the inequality at equality

with P ch, or F = {x ∈ P ch : αT x = β}. The dimension of this space is equal to the

maximum number of linearly independent vectors found on the face. These vectors can

be constructed by finding affinely independent points on the face.

A set of points x1, x2, ..., xd ∈ Rn
+ are affinely independent if and only if

∑d
j=1 λjxj = 0

and
∑d

j=1 λj = 0 is solved uniquely by λj = 0 for j = 1, 2, ..., d. To find linearly

independent vectors from a set of affinely independent points, select one xi then calculate

the vector between xi and xj for all j = 1, 2, ..., d where j 6= i. This process defines d−1

linearly independent vectors in the space. Thus, the dimension of any face is one less

than the maximum number of affinely independent points in the face.

A facet defining inequality induces a face on P ch of dimension dim(P ch) − 1. This

is the strongest class of cutting planes. If an integer programming formulation contains

every facet defining inequality, then P ch = PLR, and every basic solution to the linear

relaxation is an integer solution. This would mean that no branching is necessary to

solve the integer program.

To better illustrate the concepts of cutting planes and facet defining cuts, consider

11

the following integer program:

Maximize x1 + 2x2

Subject to 5x1 + 4x2 ≤ 20

3x1 + 5x2 ≤ 18

x1, x2 ∈ Z+.

Figure 2.2 provides a graphical view of this IP. Feasible solutions for PLR lie in the

area below both constraints in the first quadrant. All feasible integer solutions, the

points in P , are represented in the graph by large circles. The dashed line defined by

x1 + x2 ≤ 4 is a valid cutting plane, as it is satisfied by every point in P . Further, it is

a facet defining cut.

To show this, observe that P ch is a two-dimensional space. The inequality x1+x2 ≤ 4

is met at equality by two affinely independent points, (0,4) and (3,1), so it defines a face

on P ch of dimension 1. Since the inequality is valid and creates a face of size dim(P ch)−1,

it must be facet defining.

This example illustrates the usefulness of cutting planes in solving IPs. Notice that

the inequality eliminates all of the linear relaxation space in the triangle defined by points

A, B, and C. This reduces the chances for a linear relaxation to solve at a non-integer

point, meaning it is likely that less branching will occur while solving the problem.

12

y y y y y t

0 1 2 3 4 5 6

y

y

y

t

t

t

1

2

3

4

5

6

y y y

y y

y

t\
\

\
\

\
\

\
\

\
\

\
\

\
\

\
\

\
\

\
\

\
\

\
\

\
\

\
\

\
\

\
\\

\
\

b
b

b
b

b
b

b
b

b
b

b
b

b
b

b
b

b
b

b
b

b
b

b
b

b
b

b
b

b
b

b
b

b
b

b
b

bb

bb
@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

A

B
t

C

5x1 + 4x2 ≤ 20

3x1 + 5x2 ≤ 18

x1 + x2 ≤ 4

x1

x2

Figure 2.1: A facet defining cut [28]

2.3 Graph Theory

In mathematics, graphs are abstract representations of systems. They are used to high-

light certain relationships between entities, and are often useful as visualizations of

optimization problems. Their properties are studied in the field of Graph Theory.

A graph G = (V, E) is a set of vertices V and a set of edges E. The elements of E are

of the form {u, v} where u, v ∈ V . In visual representations, vertices (also called nodes)

13

Figure 2.2: A sample graph

are usually drawn as circles. If {u, v} ∈ E, an edge (arc) is drawn as a line connecting

vertices u and v. In this case, u and v are said to be adjacent. An example of a graph

is given in Figure 2.2.

The degree of vertex i, denoted deg(i) = |{{i, j} : {i, j} ∈ E}|, is the number of edges

incident to i in G. A walk is a set of vertices (v1, v2, ...vq) such that {vi, vi + 1} ∈ E for

i = 1, 2, ..., q − 1. Informally, a walk is a list of vertices such that it is possible to travel

from one vertex to the next through a connecting arc. A path is a walk without any

repeated vertices. A cycle is a path with the added condition that the last vertex in the

path is also the starting vertex.

Using Figure 2.2 as an example, note that deg(2) = 3 and deg(4) = 2. An example

of a walk is (2, 3, 8, 2, 1), which has a length of 4. The set (1, 7, 6, 8, 3) represents a path

of length 4, and (2, 8, 6, 7, 1, 2) is a cycle of size 5.

Many problems that are often set up and solved on graphs. The first famous example

14

of this was Euler’s Seven Bridges of Königsberg problem [9]. Other examples include

network flow problems [25, 35], the traveling salesman problem [8, 26], edge covering

problems [37, 44], and graph coloring problems [11, 12]. This research focuses on the

Node Packing problem, which is presented later in this chapter.

2.3.1 Classical Induced Subgraphs

Sometimes it is useful to consider only a section of a graph, called a subgraph. A

graph G′ = (V ′, E ′) is a subgraph of G = (V, E) if and only if V ′ ⊆ V, E ′ ⊆ E, and if

{u, v} ∈ E ′ then u, v ∈ V ′. A subgraph is called an induced subgraph if and only if E ′

contains all edges {u, v} ∈ E for all u, v ∈ V ′. Various subgraph structures are often

isolated and studied due to their special features in certain applications. The following

paragraph defines some of these structures; the clique, the hole, the anti-hole, the wheel,

and the star.

A clique with p nodes, denoted Kp, is a graph with edge set E(Kp) = {{vi, vj} : i, j ∈

V ′}. A hole with p nodes, Hp, is a graph with edge set E(Hp) = {{vi, v(i mod p)+1} : i =

1, 2, ..., p}. An anti-hole on p nodes, Ap, is a graph with edge set E(Ap) = E(Kp)\E(Hp).

A wheel on p nodes, Wp, has edge set E(Wp) = E(Hp−1) ∪ {{vp, vi} : i = 1, 2, ..., p− 1}.

A star on p nodes, Sp, has the edge set E(Sp) = {{vi, vp} : i = 1, 2, ..., p − 1}.

Examples of these structures can be seen in Figure 2.3. The subgraph induced by

nodes 1-6 is a wheel of size 6, or a W6. Nodes 7-10 induce a K4, 11-15 induce an H5,

and 16-21 induce an A6.

15

Figure 2.3: Induced subgraph examples

2.3.2 The Node Packing Problem

In a graph G = (V, E), a node packing is a set of vertices V ′ ⊆ V such that there is

no edge {u, v} ∈ E for any u, v ∈ V ′. The cardinality Node Packing problem seeks to

maximize |V ′|. Alternately, in the weighted Node Packing problem, each vertex in i ∈ V

is assigned weight wi ∈ R, and the optimization problem seeks to find the set V ′ such

that
∑

i∈V ′ wi is maximized.

The Node Packing problem is frequently solved as an IP. Each node i is assigned to

an IP variable, xi. If xi = 1 in the IP, then node i is included in the packing. Otherwise,

xi = 0 and node i is not in the packing. The weighted Node Packing problem is

formulated as an IP in the following manner:

16

Maximize
∑n

i=1 wixi

subject to xi + xj ≤ 1 for all {i, j} ∈ E

xi ∈ {0, 1} for all i ∈ V .

The set of all feasible solutions to the IP is denoted as PNP . Defining new facets of the

convex hull of this set, P ch
NP , is the focus of this thesis.

2.3.3 Induced Subgraph Inequalities for Node Packing

While the xi + xj ≤ 1 inequalities are sufficient to fully define a Node Packing problem,

there are more valid inequalities implicit in the structure of the graph. Many induced

subgraphs generate specific valid inequalities for the Node Packing problem [41]. For

example, take nodes 7-10 from Figure 2.3. These nodes induce a clique of size 4. Because

all nodes in a clique are adjacent to each other, no packing can contain two members of

the clique. Thus, if a Kp exists in the graph, the inequality
∑

i∈Kp
xi ≤ 1 is valid in the

IP formulation.

This clique inequality is also facet defining in P ch
NP if the clique is maximal. For

a graph with n vertices, the set of n affinely independent points is simple to obtain.

Clearly, any point with xu = 1 for some u ∈ Kp and xi = 0 for all i 6= u will be feasible

and meet the clique inequality at equality. Let the set A1 contain each of these points,

p in total.

Since the clique is maximal, for any v 6∈ Hp, there will be some u ∈ Hp such that

17

{u, v} 6∈ E. This means that {u, v} is a feasible packing, and the point with xu = 1, xv =

1 and xi = 0 for all i 6= u or v meets the clique inequality at equality. If set A2 contains

all of these points, then A = A1 ∪ A2 contains n affinely independent points, showing

that the inequality is facet defining.

A hole with p vertices has the associated valid inequality
∑p

i=1 xi ≤ bp

2
c. This

inequality is valid for any size hole, and it is facet defining on the induced subgraph

if p is odd. This means that an H5 has an associated odd-hole inequality of
∑5

i=1 xi ≤ 2,

and this inequality defines a face on P ch
NP of at least dimension 4. Figure 2.4 gives the

five affinely independent points that show this.

A wheel of size p creates the Wp inequality bp−1
2
cxp+

∑p−1
i=1 xi ≤ bp−1

2
c. This inequality

is facet defining on the induced subgraph if p is even. So for a W6, the inequality

2x6 +
∑5

i=1 xi ≤ 2, defines a face on P ch
NP of at least dimension 5. Figure 2.4 gives the

six affinely independent points to illustrate this.

Similarly, for an anti-hole Ap, the inequality
∑p

i=1 xi ≤ 2 is valid, and facet defining

on the induced subgraph when p is odd. An A5 creates the inequality
∑5

i=1 xi ≤ 2, and

this inequality defines a face on P ch
NP of at least dimension 4. Again, Figure 2.4 shows

the five affinely independent points.

Unlike the maximal clique inequalities, the inequalities for wheels, odd-holes, and

odd anti-holes are not facet defining for P ch
NP in general. This thesis discusses a method

for lifting onto the odd-hole inequality to create a facet defining cut for the entire graph.

18

Figure 2.4: Affinely independent points for H5, W6, and A5

2.3.4 Conflict Graphs

Many of the Polyhedral Theory results developed for the Node Packing problem can

be extended to general binary IPs through conflict graphs [2, 40]. Conflict graphs are

created from IPs by creating a node to represent each variable in the problem, and

drawing edges between two nodes in conflict.

Let the conflict graph of a binary integer program be represented by G = (V, E).

Every variable xi in the IP is represented by a node i ∈ V . The edge {i, j} is in E if

setting both xi and xj to 1 is infeasible in the IP. To illustrate this, consider the following

binary IP:

Maximize 5x1 + 7x2 + 3x3 + x4 + 4x5

subject to 2x1 + 3x3 + 2x5 ≤ 4

4x1 + 2x2 + x5 ≤ 5

x1 + 2x3 + 3x4 ≤ 3

xi ∈ {0, 1} for all i.

19

Figure 2.5: Conflict graph

Examining the constraints reveals relationships between variable values in a feasible

solution. We can see from the first constraint that any solution where x1 = 1 and x3 = 1

is infeasible, since 2x1 + 3x3 = 5 > 4. So the conflict graph contains an edge between

nodes 2 and 3. Following this logic for all inequalities, the conflict graph in Figure 2.5

is obtained.

From this graph, one can deduce the Node Packing inequalities x1+x2 ≤ 1, x1+x3 ≤

1, x1+x4 ≤ 1, x3+x4 ≤ 1, and x3+x5 ≤ 1. Clearly, each of these constraints is valid for

the IP. Observe that nodes 1, 3, and 4 induce a K3, thus the inequality x1 +x3 +x4 ≤ 1

is valid. Further, since the clique is maximal, this inequality is facet defining for P ch.

Now consider the point x = (0.5, 0, 0.5, 0.5, 0). This point is in PLR, but is cut off by the

clique inequality. This illustrates that conflict graphs can help create useful inequalities

for binary IPs.

20

2.4 Lifting

Lifting is a technique used to strengthen a given inequality. It involves altering the

coefficients in an inequality in such a way that cuts out more non-integer space. This

technique takes a lower-dimensional inequality and builds up to a stronger, higher dimen-

sional cut. The technique was first introduced by Gomory [22], and many advancements

have been made since [3, 6, 7, 24, 43].

First, define the restricted space of P ch on the set D ⊆ N as P ch
D,K = conv{x ∈

P : xj = kj for all j ∈ D} where kj ∈ Z and K = (k1, k2, ..., k|D|). That is to say, the

restricted space only considers a subset of the variables in the problem. Each variable

with an index in D is forced to take on a fixed value, kj .

Let
∑

j∈D αjxj +
∑

j∈N\D αjxj ≤ β be a valid inequality for P ch
D,K . A lifting procedure

creates an inequality of the form
∑

j∈D α′
jxj +

∑
j∈N\D αjxj ≤ β ′ which is valid over

P ch. Lifting techniques are classified based on how coefficients are changed (up, down,

or middle lifting), how many variables are considered (sequential versus simultaneous

lifting), how strong the resulting cuts are (exact versus approximate lifting), and the

number of inequalities obtain (single or synchronized lifting).

In up lifting, every element in K is equal to zero, and the right-hand side β is not

altered in the lifted inequality. For down lifting, each element in K is set to its upper

bound, and the value of β is often decreased. There is also a middle lifting technique,

which is a combination of the other two.

21

Distinctions of sequential or simultaneous refer to how many variables are being lifted.

For sequential lifting, one variable is lifted at a time, thus |D| = 1. Often, this type

of lifting is sequence dependent, where the coefficients of previously lifted variables can

have an effect on the coefficient of the next variable. For simultaneous lifting, |D| ≥ 2,

and each variable in the set D is lifted at the same time.

Exact lifting procedures yield an inequality that is as strong as possible, such that any

increase in α′ or decrease in β ′ would make the inequality invalid. However, finding an

exact lifting coefficient is often difficult and may require solving a separate optimization

problem. In order to avoid the computational burden of finding exact lifting coefficients,

several approximate lifting techniques have been developed. These are faster, heuristic

approaches to determining lifting coefficients. While they may not yield the strongest

possible inequalities, the resulting inequalities are guaranteed to be valid and are often

strong enough to be effective [3, 6, 24].

To help illustrate the concept of lifting, consider the cardinality Node Packing prob-

lem on the graph in Figure 2.6. Notice that nodes 1-7 induce an H7, so
∑7

i=1 xi ≤ 3

is valid for P ch
NP and facet defining for the induced subgraph. To find an exact single

sequential up-lifting coefficient for node 8, solve the following IP:

Maximize x1 + x2 + x3 + x4 + x5 + x6 + x7

subject to xi + xj ≤ 1 for all {i, j} ∈ E

x8 = 1

xi ∈ {0, 1} for all i.

22

Figure 2.6: Node packing graph for lifting example

This formulation looks for the largest node packing that includes x8. If the optimal

objective value is Z, then α8 = β − Z. In this example, if node 8 is forced to be in the

node packing, then of nodes 1-7, at most one can be in the packing (namely, either 6 or

7). So α8 is equal to 3 − 1 = 2. Now, the lifted inequality is
∑7

i=1 xi + 2x8 ≤ 3. Moving

on to node 9, a new IP is set up to determine the maximum value of
∑7

i=1 xi + 2x8 if x9

is forced to 1. In this case, α9 = 0, because nodes 8 and 6 create a valid node packing

whose Z value is 3. Node 10 is lifted in similarly, with coefficient α10 = 1.

When this procedure is complete, the inequality
∑7

i=1 xi +2x8 +x10 ≤ 3 is obtained.

When determining the lifting coefficient for each point, the IP solution reveals a new

point on the face induced by the lifted inequality. Each new point is affinely independent

to the others since it contains a new variable. Thus, the dimension of the inequality is

increased by one with each new variable lifted. Figure 2.7 shows a matrix containing

23

Figure 2.7: Affinely independent points for lifting example

the 10 affinely independent points from this example. The first seven columns are the

independent points from the induced H7. The next three points are the solutions to the

IPs used to determine α8, α9, and α10, respectively.

It is also worth noting that, because the variables were lifted sequentially, a different

lifting order may create a different facet defining inequality. For example, if node 9

had been lifted first, followed by 8 then 10, the resulting inequality would have been

∑10
i=1 xi ≤ 3.

Simultaneous lifting is less common than sequential lifting in Node Packing problems,

but has been shown to be possible for certain structures. One example is the odd

bipartite hole presented by Conley [14]. An odd bipartite hole is a graph G = (V, E)

such that V can be partitioned into two sets Hp and Hq which both induce odd holes.

Further, E must contain every edge {i, j} with i ∈ Hp and j ∈ Hq. This graph is denoted

as OBPp,q. An OBP5,7 can be seen in Figure 2.8.

This structure is nearly identical to a complete bipartite graph, but with the excep-

24

Figure 2.8: An odd bipartite hole [14]

tion that the nodes in each of the bipartitions induce odd holes. In this structure, it is

clear that a valid node packing may not contain nodes from both odd holes. From this

fact, Conley deduces the following valid inequality for the structure, which is also facet

defining in the restricted space:
∑

i∈Hp
xi +

∑
i∈Hq

p−1
q−1

xi ≤ bp

2
c.

If a node packing contains nodes in Hp, it may only contain bp

2
c nodes, thus the

inequality is valid. If the node packing contains nodes in Hq, it will only contain b q

2
c

nodes. To keep the inequality valid, this is multiplied by
b p
2
c

b q
2
c

= p−1
q−1

. Thus, the inequality

is valid for P ch
NP .

This odd bipartite hole was one of the inspirations for the research in this thesis.

Where the odd bipartite hole combines two holes to create a new inequality, this thesis

presents a method for combining two general inequalities.

25

Chapter 3

Lifting in the Node Packing

Polyhedron

This chapter provides the main results of the thesis. The main topics are Simultaneous

Lifting Expansions, the Odd Gap Lifting procedure, and the Cliques On Odd-holes

Lifting procedure. Each result is defined and relevant theorems are provided. For clarity,

examples for each topic are included.

3.1 Simultaneous Lifting Expansions in the Node

Packing Polyhedron

The main focus of this research was to develop new methods for developing cutting

planes for the Node Packing problem. One inspiration for this research was work done by

26

Conley [14]. The focus of that paper is finding previously undiscovered classes of graph

structures that allow for simultaneous lifting in a Node Packing problem. Of particular

interest was how the paper was able to define inequalities for subgraphs that contain

combinations of classical graph structures, such as cliques and holes. One motivation

for this paper was to extend these findings to discover conditions when any two graph

structures could be combined to create a new inequality.

The result of this research is the Simultaneous Lifting Expansion (SLE). It requires

two valid inequalities for a Node Packing problem, with both inequalities sharing exactly

one node. Further, for each node in one inequality, the adjacencies to the other inequality

must be identical. In this situation, a method for combining the two original inequalities

to generate a new valid inequality is presented. The dimension of this new cut is equal

to the sum of the dimensions of the first two inequalities.

Prior to providing the major result of this section, the formal definition of a Simul-

taneous Lifting Expansion is required. Given a set of nodes D ⊂ V , the set D′ ⊆ V \D

is said to be an SLE of D if there exists a u in D such that for all i ∈ D, {u, i} ∈ E if

and only if {v, i} ∈ E for all v ∈ D′.

In other words, u and every member of D′ are adjacent to the same members of D.

So, for any v ∈ D′, the subgraph induced by D is identical to the subgraph induced

by (D ∪ {v}) \ {u}. For an example, refer to Figure 3.1. Let D = {1, 2, 3, 4, 5} and

D′ = {6, 7, 8, 9, 10}. Here, D′ is an SLE for D, with u = 5. Note that the nodes in D

induce an odd-hole, as does D \ {u} ∪ {v} for all v ∈ D′. In addition, D′ ∪ {5} induces

27

Figure 3.1: An example Simultaneous Lifting Expansion

a wheel, making this structure an SLE of a wheel on a hole. In such a situation, the

following theorem provides the valid SLE inequality.

Theorem 3.1.1 Let D ⊂ V and D′ be a simultaneous lifting expansion of D in re-

gards to node u. Furthermore, let
∑

i∈D αixi ≤ β and
∑

i∈D′∪{u} α′
ixi ≤ β ′ be valid in-

equalities of P ch
NP . Then the Simultaneous Lifting Expansion inequality

∑
i∈D\{u} αixi +

αu

β′

∑
i∈D′∪{u} α′

ixi ≤ β is a valid inequality of P ch
NP .

Proof: Let x ∈ PNP . Clearly
∑

i∈D\{u} αixi + αuxu ≤ β and
∑

i∈D′∪{u} α′
ixi ≤ β ′

since they are valid inequalities. Furthermore 1
β′

∑
i∈D′∪{u} α′

ixi ≤ 1. Since xu ≤ 1, and

all members of D′ ∪ {u} are adjacent to the same members of D \ {u}, one obtains

∑
i∈D\{u} αixi + αu

β′

∑
i∈D′∪{u} α′

ixi ≤ β. Thus, the SLE inequality is valid.

2

28

Recall the example in Figure 3.1, with D = {1, 2, 3, 4, 5}, D′ = {6, 7, 8, 9, 10}, and

u = 5. Notice that D induces an odd-hole, so the inequality
∑5

i=1 xi ≤ 2 is valid for

P ch
NP . Also, D′ ∪ {5} induces a wheel, with valid inequality 2x10 +

∑9
i=5 xi ≤ 2. So the

SLE inequality
∑4

i=1 xi + 1
2
(2x10 +

∑9
i=5 xi) ≤ 2 is valid for P ch

NP .

While having a valid inequality is certainly important, it is more useful to know

the dimension of the face it induces. The next theorem provides a lower bound for the

dimension of the SLE inequality. Prior to providing this result, let ξi be the point in Rn

created by the ith column of an n × n identity matrix.

Theorem 3.1.2 Let D ⊂ V and D′ ⊆ V \ D be a simultaneous lifting expansion of

D in regards to node u. If
∑

i∈D αixi ≤ β defines a face of dimension r in PNP
D ,

∑
i∈D′∪{u} α′

ixi ≤ β ′ defines a face of dimension s in PNP
D′∪{u} and the face in PNP

D contains

at least one point with xu = 1, then the SLE inequality
∑

i∈D\{u} αixi+
αu

β′

∑
i∈D′∪{u} α′

ixi ≤

β defines a face of dimension at least r + s in PNP .

Proof: By assumption, there exists a set of r + 1 affinely independent points, BD, in

PNP where
∑

i∈D αixi = β for all x ∈ BD. Additionally, there exists a set of s+1 affinely

independent points, BD′∪{u}, in PNP
D′∪{u} where

∑
i∈D′∪{u} α′

ixi = β ′ for all x ∈ BD′∪{u}.

Let y be some point in BD where xu = 1 and y′ be any point in BD′.

Define B1 = {x : x ∈ BD, xu = 0} ∪ {(x − ξu) + y′ : x ∈ BD, xu = 1} and

B2 = {x + (y − ξu) : x ∈ BD′∪{u} \ {y′}}. Let B = B1 ∪ B2, so B has r + s + 1

columns. Figure 3.2 shows the format of B, where X is a |D′ ∪{u}| × |D′ ∪ {u}| matrix

whose columns contain either all zeros or y′|D′∪{u} depending upon the value of xu in

29

Figure 3.2: Form of the SLE B matrix

the corresponding point in BD.

To show that B is affinely independent, let B ′
2 be the matrix created by subtracting

the column in B equal to (y−ξu+y′) from every column in the B2 matrix. Let B ′, shown

in Figure 3.3, be B1 ∪ B ′
2. This makes every entry in the upper-right portion of the B

matrix zero and every entry in the lower-right portion equal to x − y′ for x ∈ BD′∪{u}

and x 6= y′. Since the points in BD′∪{u} are affinely independent, the points x − y′ for

x ∈ BD′∪{u} and x 6= y′ are linearly independent.

By assumption, the r points in the upper-left portion B ′ are affinely independent.

They are also independent from the points on the right, due to the zero entries in the

upper right portion. Further, each point of these r + s + 1 points clearly meet the SLE

inequality at equality. Thus this inequality has dimension at least r + s and the result

follows.

2

As an example, refer back to the discussion of the graph given in Figure 3.1. Recall

that D′ = {6, 7, 8, 9, 10} is an SLE of D = {1, 2, 3, 4, 5} in regards to node 5, and the

SLE inequality for this structure is
∑4

i=1 xi +
1
2
(2x10 +

∑9
i=5 xi) ≤ 2. Figure 3.4 shows the

30

Figure 3.3: Form of the SLE B ′ matrix

Figure 3.4: B matrix for SLE example

B matrix for this structure. All 10 points in the matrix meet the inequality at equality.

The BD and BD′∪{u} matrices, which contain the affinely independent points for

the original structures, are found in Figure 3.5. Note that BD contains five affinely

independent points which define a face of dimension four in PNP
D , while BD′∪{u} contains

six affinely independent points defining a face of dimension five in PNP
D′∪{u}. Let the point

y be the third column in the BD matrix, and let y′ be defined by the second column in

the BD′∪{u} matrix.

The points to the left of the dashed line in Figure 3.4 define the matrix B1. For these

points, the top 4 entries are identical to the BD matrix. If the fifth entry was equal to

31

Figure 3.5: BD and BD′∪{u} for SLE example

zero in the BD matrix, the rest of the entries in the column are zeros. If the fifth entry

was equal to one, then the final five entries come from point y′.

For the B2 matrix (the final five points in B), the first four entries come from y.

The final six entries are identical to one column in the BD′∪{u} matrix. Note that the

column in BD′∪{u} associated with y′ was excluded, because this column would have

been a duplicate of the third column in B1 (the column associated with y).

The B ′
2 matrix is created by subtracting the column associated with y from every

column in B2. The union of B ′
2 and B1 defines B ′. Figure 3.6 shows this matrix

partitioned into four quadrants. Due to the presence of the zeros in the upper-right

quadrant, it is clearly evident that the five points on the left are independent from the

five on the right. Since each of the five leftmost points came from BD, an independent

matrix, they are affinely independent. Similarly, the five points on the right all come

from BD′∪{u}. The only alteration to these points was the subtraction of y′, which also

came from BD′∪{u}. Thus all of these points must be affinely independent.

32

Figure 3.6: B ′ for SLE example

Since there are ten affinely independent points meeting the SLE inequality at equality,

this inequality must define a face of P ch
NP of at least dimension 9. This is exactly r+s, as

the theorem states. The results of this example illustrate the following corollary, which

follows directly from Theorem 3.1.2:

Corollary 3.1.3 Let D ⊂ V and D′ ⊆ V \D be a simultaneous lifting expansion of D in

regards to node u. If
∑

i∈D αixi ≤ β is facet defining for PNP
D and

∑
i∈D′∪{u} α′

ixi ≤ β ′ is

facet defining for PNP
D′∪{u}, then the SLE inequality

∑
i∈D\{u} αixi +

αu

β′

∑
i∈D′∪{u} α′

ixi ≤ β

is facet defining for PNP
D∪D′

2

In addition, the SLE inequality can be facet defining for P ch
NP when the conditions of

the next corollary are fulfilled.

Corollary 3.1.4 Let D ⊂ V and D′ ⊆ V \ D be a simultaneous lifting expansion

of D in regards to node u. If
∑

i∈D αixi ≤ β defines a face of dimension r in PNP
D ,

33

∑
i∈D′∪{u} α′

ixi ≤ β ′ defines a face of dimension s in PNP
D′∪{u} and r + s + 1 = |V |, then

the SLE inequality
∑

i∈D\{u} αixi + αu

β′

∑
i∈D′∪{u} α′

ixi ≤ β is facet defining for P ch
NP .

2

3.1.1 SLE Examples

In his paper [14], Conley introduces two new structures, the odd bipartite hole and the

cliqued hole. The valid inequality for both structures can be derived using SLE.

Recall the odd bipartite hole discussed in chapter 2. An odd bipartite hole is a graph

G = (V, E) such that V can be partitioned into two sets Hp and Hq which both induce

odd holes. Further, E must contain every edge {i, j} with i ∈ Hp and j ∈ Hq. This

graph is denoted as OBPp,q . An OBP5,7 can be seen in Figure 2.8.

To derive the SLE inequality for the OBP5,7, let D = {1, 2, 3, 4, 5, 6}, D′ = {7, 8, 9, 10, 11, 12},

and u = 6. Note that the nodes in D create a wheel, while D′ ∪ {u} creates an odd-

hole. For a general case, if u is some element of Hq , then D = {i : i ∈ Hp} ∪ {u} and

D′ = {j : j ∈ Hq \ {u}}. From this, we can see that the SLE inequality for the OBHp,q

is
∑

i∈Hp
xi +

b p

2
c

b q

2
c

∑
j∈Hq

xj ≤ bp

2
c.

Conley’s other primary structure is the cliqued hole. This is a structure with m

cliques such that if one vertex is selected from each of the m cliques, the resulting

induced subgraph graph is a hole. Formally, a graph G = (V, E) is a cliqued hole if

and only if V can be partitioned into m sets, P1, P2, ..., Pm such that E = ∪m
i=1{{v, w} :

34

Figure 3.7: Cliqued hole transition [14]

v, w ∈ Pi}
⋃
∪m

i=1{{v, w} : v ∈ Pi, w ∈ P(imodm)+1}. Such a graph is denoted CHm,P

where P is a vector containing the size of each clique in the graph. Figure 3.7 shows a

transition from a hole to a cliqued hole for a CH5,P , P = (2, 2, 2, 2, 2).

In this structure, the SLE procedure can be applied iteratively to derive Conley’s

cliqued hole inequality. In this case, D consists of the nodes that make up the hole,

while D′ is made from the nodes in one of the cliques. Recall that the SLE inequality

is of the form
∑

i∈D\{u} αixi + αu

β′

∑
i∈D′∪{u} α′

ixi ≤ β. Since D induces a hole, αu = 1,

and since D′ ∪ {u} induces a clique, β ′ = 1 and α′
i = 1 for all i ∈ D′ ∪ {u}. Because of

this, the inequality becomes
∑

i∈D∪D′ xi ≤ bm
2
c. Repeating the same procedure for each

clique in the CHm,P , the final inequality becomes
∑

i∈V xi ≤ bm
2
c.

For both of these structures, the SLE results agree with Conley’s findings. This

illustrates that SLEs generalize Conley’s work. In addition, SLEs allow for the creation

35

of a wide range of valid inequalities in seemingly chaotic graph structures. Consider the

following example from the graph shown in Figure 3.8.

This graph exhibits multiple SLEs. First, consider the H5 induced by nodes 1-5.

Node 6 may be lifted to the H5 inequality to obtain
∑6

i=1 xi ≤ 2. Because nodes 7-11 have

the same adjacencies as node 6, they are an SLE of nodes 1-6 in regards to node 6. Nodes

6-11 induce a W6 with inequality
∑10

i=6 xi +2x11 ≤ 2. So
∑5

i=1 xi +
1
2
(2x11 +

∑10
i=6 xi) ≤ 2

is a valid inequality.

Next, notice that nodes 12-17, together with node 5, induce an H7 with inequality

x5 +
∑17

i=12 xi ≤ 3. Nodes 12-17 are an SLE of nodes 1-11 in regards to node 5, thus

∑4
i=1 xi + 1

2
(2x11 +

∑10
i=6 xi) + 1

3
(x5 +

∑17
i=12 xi) ≤ 2 is valid.

Finally, nodes 17-21 induce an A5 with inequality
∑21

i=17 xi ≤ 2. Nodes 18-21 are

an SLE of nodes 1-17 in regards to node 17. So, the final SLE inequality is
∑4

i=1 xi +

1
2
(2x11 +

∑10
i=6 xi) + 1

3
(x5 +

∑16
i=12 xi) + 1

6
(
∑21

i=17 xi) ≤ 2 is valid. Further, each SLE

inequality was created from two structures that were facet defining on their induced

subgraphs. Thus, the final inequality is facet defining for P ch
NP . Figure 3.9 shows a set of

21 affinely independent points that meet this inequality at equality, confirming that the

cut is indeed facet defining. These points were constructed in the manner described in

Theorem 3.1.2 for creating the B matrix, applied iteratively in the order that the sets

were lifted.

Prior to this research, the inequality
∑4

i=1 xi +
1
2
(2x11 +

∑10
i=6 xi)+ 1

3
(x5 +

∑16
i=12 xi)+

1
6
(
∑21

i=17 xi) ≤ 2 would not have been obtainable by any other obvious lifting procedure.

36

Figure 3.8: A larger SLE example

37

Figure 3.9: Affinely independent points for SLE example

Observe that the initial inequality with x6 sequentially lifted was
∑6

i=1 xi ≤ 2. In

any sequential or simultaneous up lifting technique, no coefficient in the initial valid

inequality is modified. Since x5 decreases from α5 = 1 to α′
5 = 1

3
, no up lifting technique

can be used to generate it. Furthermore, many coefficients have moved from αi = 0 to

α′
i > 0 so several variables are up lifted.

In some bizarre sense, SLE is performing both simultaneous up and down lifting

at the same time. Furthermore, it presents how to merge two valid inequalities in a

lifting procedure. To the best of the author’s knowledge, this is the first such example

38

presented in the literature. Consequently, this method creates previously undiscovered

classes of facet defining inequalities.

3.2 Sequential Lifting to a Hole Inequality

Odd-holes are a common graph structure that manifest in many Node Packing problems.

However, their associated Node Packing inequality is not facet defining in general for

P ch
NP . This section describes a sequential lifting method that creates a facet defining

cut from an odd-hole inequality. This method is based on the “gaps” between node v’s

adjacencies in the hole. Before providing the results of this section, several definitions

are needed.

Let Hp be a hole with vertices v1, ..., vp. Let v ∈ V \ V (Hp). Let the vertices

vj1, vj2, ..., vjq ∈ V (Hp) be adjacent to v with ascending indices in Hp. Denote the size

of the jk gap as sjk
= (j(k mod q)+1 − jk) mod p. If sjk

is odd, then the jk gap is said to

be an odd gap with ojk
= 1, and tjk

= 0. If sjk
is even, then the jk gap is said to be an

even gap with ojk
= 0, and tjk

= 1. An odd gap is said to be minimal if sjk
= 1, while

an even gap is minimal if sjk
= 2.

The number of odd gaps between v and Hp is defined as go
v =

∑q
i=1 ojk

. Similarly, the

number of even gaps is defined as ge
v =

∑q
i=1 tjk

. Clearly,
∑q

k=1 sjk
= p and ge

v + go
v = q.

Note that, for an odd hole, p is odd. So, for
∑q

k=1 sjk
= p to hold, go

v must be odd.

The connection between v and Hp can be classified by (go
v, g

e
v, S) where S is an ordered

39

Figure 3.10: A (3,2,(1,3,2,3,2)) connection

set containing the sizes of each gap in the connection, (sj1 , sj2, ..., sjq). A (go
v , g

e
v, S)

connection is said to be minimal if sjk
∈ {1, 2} for all vjk

adjacent to v.

Figure 3.10 provides an example for calculating these values. The value of sji
can be

seen as the number of edges between vertex xji
and xji+1. In this figure, sj1 = 2−1 = 1,

so the j1 gap is an odd gap of size 1. Continuing on for all xji
, sj2 = 5 − 2 = 3, sj3 =

7−5 = 2, sj4 = 10−7 = 3, and sj5 = 1−10 = −9 ≡ 2 (mod 11), so sj5 = 2. This means

there are three odd gaps and two even gaps, so go
v = 3 and ge

v = 2. The connection to v

is denoted (3, 2, (1, 3, 2, 3, 2)).

For a graph with induced odd-hole Hp, the inequality
∑p

i=1 xi ≤ bp

2
c is valid for the

Node Packing polyhedron. The face it induces on P ch
NP is of dimension at least p− 1, as

40

mentioned in Chapter 2. To lift vertex v into this inequality and increase the inequality’s

dimension, it is necessary to find the maximum αv for which the resulting inequality is

still valid. The following theorem shows that this coefficient, αv, can be calculated from

the value of go
v in a minimal connection.

Theorem 3.2.1 Given a graph G = (V, E), an induced odd-hole Hp with the associated

inequality
∑

i∈Hp
xi ≤ bp

2
c, and a node v with a minimal (go

v, g
e
v, S) connection to Hp, the

exact coefficient for lifting v to the odd-hole inequality is αv = bgo
v

2
c.

Proof: To find αv, it is necessary to know the maximum number of hole nodes that can

be in a valid packing that contains v. Alternatively, one needs to find the point PNP

with xv = 1 that maximizes
∑p

i=1 xi. Call this maximum value hmax. Clearly αv is equal

to bp

2
c − hmax.

Since v is the only node being lifted, it suffices to consider only the induced subgraph

of Hp ∪ {v}. Further, since v is in the packing, any node adjacent to v cannot be in

the packing thus vj1, vj2, ..., vjq can be removed from the subgraph. After the deletion of

these nodes, the resulting subgraph is a collection of vertex disjoint paths.

Since v has a minimal (go
v, g

e
v, S) connection to Hp, all that’s left in the graph after

these deletions is a set of ge
v disjoint nodes. Clearly, the maximum node packing will

contain all of these nodes, so hmax=ge
v. This gives αv = bp

2
c − ge

v. Since p is odd,

αv = p−1
2

− ge
v. and 2αv + 1 = p − 2ge

v.

From the equations given above,
∑q

k=1 sjk
= p. Since the connection is minimal,

there must be go
v many sjk

’s equal to 1 and ge
v many sjk

’s equal to 2. Thus, go
v +2ge

v = p,

41

and go
v = p − 2ge

v. So 2αv + 1 = go
v, αv = go

v−1
2

, and since go
v is odd, αv = bgo

v

2
c.

2

To extend this result, it is necessary to expand a minimal (go
v, g

e
v, S) connection to

any general (go
v, g

e
v, S) connection. This can be done by increasing the size of the hole

through adding pairs of nodes. The new nodes are non-adjacent to v, and are both

inserted into the same jk gap. This way, ojk
and tjk

are not effected. The only change

is that and sjk
and p are both increased by 2. It is obvious that this process can

be repeated iteratively to create any arbitrary (go
v, g

e
v, S) connection. Using this hole

expansion method, a stronger theorem can be shown.

Let the hole expanding function Xi : (Z+,Z+,Z
q

+) → (Z+,Z+,Z
q

+) be defined as

Xi((g
o
v, g

e
v, S)) = (go

v, g
e
v, S

′) where S ′ = S+2ξi and ξi is the ith column of a q×q identity

matrix. This (go
v, g

e
v, S

′) connection describes a new graph, G′, with an induced hole

H ′
p+2. The exact lifting coefficient for node v on this new connection is denoted α′

v.

To illustrate this function, consider the example in Figure 3.11. The figure shows

the graph described by the connection (3,2,(1,1,2,3,2)), and how the X3 function effects

the associated graph.

Theorem 3.2.2 Given a graph G = (V, E), an induced odd-hole Hp with the associated

inequality
∑

i∈Hp
xi ≤ bp

2
c, and a node v with a (go

v, g
e
v, S) connection to Hp, the exact

coefficient for lifting v to the odd-hole inequality is αv = bgo
v

2
c.

Proof: Theorem 3.2.1 shows that, for any minimal (go
v, g

e
v, S) connection, αv = bgo

v

2
c.

42

Figure 3.11: The Xi function

Since the Xi function can be applied iteratively to the minimal (go
v , g

e
v, S) connection

to create any (go
v, g

e
v, S) connection, it is sufficient to show that one application of the

function does not affect αv.

Assume that, for some (go
v, g

e
v, S) connection, αv = bp

2
c − hmax = bgo

v

2
c. Apply Xi to

this connection. Then it is necessary to find α′
v = bp+2

2
c − h′

max.

As in the last theorem, since v is the only node being lifted, it suffices to consider only

the induced subgraph of H ′
p+2 ∪ {v}. Since v is in the packing, the nodes vj1, vj2 , ..., vjq

cannot be in the packing and can be removed from the subgraph.

After deleting these nodes, the resulting subgraph is a collection of vertex dis-

joint paths. Further, the only difference between the induced subgraphs on H ′
p+2 \

{vj1, vj2, ..., vjq}∪{v} and Hp \ {vj1, vj2 , ..., vjq}∪{v} are the two nodes added by the Xi

function. Since these two nodes are adjacent, only one of them can be added to the pack-

ing. So, h′
max = hmax+1. This means that α′

v = bp+2
2
c−(hmax+1) = bp

2
c+1−hmax−1 =

43

αv. Thus Xi does not affect the lifting coefficient for v and the result follows.

2

The consequence of Theorem 3.2.2 is that finding αv can be done in O(n) time by

checking the adjacencies between v and Hp, then calculating the corresponding go
v. This

process is referred to as the Odd Gap Lifting (OGL) procedure. This is an improvement

over other odd-hole lifting schemes, which typically find these coefficients by setting up

small Node Packing problems.

OGL provides a means for creating a sequential lifting scheme for odd-hole inequal-

ities. It provides the exact coefficient for the first node lifted to the inequality, as well

as an upper bound on the coefficient for any nodes lifted thereafter. Exact coefficients

for the rest of the nodes can be determined by running OGL on groups of nodes.

For some graph G = (V, E) and some A ⊆ V , let τA be the contraction of A in G.

Let the contracted graph be G′ = (V ′, E ′) where V ′ = {τA} ∪ V \ A and E ′ = {{i, j} :

{i, j} ∈ E, i, j 6∈ A} ∪ {{τA, j} : {i, j} ∈ E, i ∈ A, j ∈ V \ A}. The node τA is also

known as the supernode of A.

Recall that finding an exact lifting coefficient for node v involves knowing the node

packing that maximizes value of the existing inequality, given that v must be included

in the packing. Thus, OGL finds the maximum allowable contribution of αvxv to the

odd-hole inequality, assuming xv equals one. Similarly, if OGL is run on supernode

τA, it assumes all member of A are equal to one and finds the maximum allowable

contribution of ατA
xτA

=
∑

i∈A αixi to the odd-hole inequality. Clearly, it must be true

44

that ατA
=

∑
i∈A αi.

Let L ⊂ V \ V (Hp) be the set of vertices that have been lifted to the odd-hole

inequality in some sequential lifting scheme. Call v the next node to be lifted, and let

Lv = {i : i ∈ L, {i, v} 6∈ E} be the elements in L not adjacent to v. Let Y be a subset of

Lv that defines a valid node packing, so {i, j} 6∈ E for all i, j ∈ Y . Note that Y may be

the empty set. If OGL is used to find ατY ∪v
, then ατY ∪v

−
∑

i∈Y αi is a candidate for αv.

Once a candidate has been found for every feasible Y , αv equals the minimum of these

candidates. The smallest candidate value is chosen because it is the one that keeps the

inequality valid for all node packings.

To illustrate this, refer back to the sequential lifting example from Figure 2.6. As-

sume that nodes 8 and 9 have already been lifted to the odd-hole, giving the inequality

∑7
i=1 xi + 2x8 ≤ 3. The next node to be lifted is node 10. Currently, L = {8, 9} and

L10 = {8}. There are two subsets of L10 that define a valid node packing, namely {8}

and ∅. The value of ατ∅∪{10}
is simply the OGL coefficient for node 10, which is 1. For

τ{8,10}, the contracted graph is shown in Figure 3.12. The OGL coefficient for this su-

pernode is 3, so the candidate for α10 is ατ{8,10}
− α8 = 3 − 2 = 1. The true value of α10

is the minimum of these two candidate values, so α10 = 1.

Of course, checking all subsets of Lv could necessitate running OGL 2|Lv | times. This

means that finding lifting coefficients in this manner takes exponential time. Luckily,

there are ways to intelligently determine lifting order and cut down on the necessary

computation. This is the aim of the Cliques On Odd-holes Lifting procedure, which is

45

Figure 3.12: Contraction of nodes 8 and 10 from lifting example (Figure 2.6)

discussed in the next section.

3.2.1 OGL Extensions: Cliques On Odd-holes Lifting

To minimize the number of subsets of Lv that need to be considered, another well known

graph structure can be utilized. Any node in a clique is connected to all other clique

members. So if the only nodes lifted before node v are members of a clique containing

v, node v may be lifted in with its OGL coefficient. Then when determining the lifting

coefficient of a node outside of the clique, it is immediately known that any subset of

Lv that contains two members of the clique does not constitute a valid node packing.

Thus, by lifting large cliques of nodes together, the number of subsets of Lv that need

46

to be checked is cut down drastically. This is the idea behind the Cliques On Odd-holes

Lifting (COOL) procedure.

The COOL procedure seeks to efficiently determine a facet-defining inequality based

on an odd-hole. Of course, depending on lifting order, an odd hole can give rise to

multiple facet-defining inequalities. COOL seeks an order that lowers the necessary

computational load. The main idea is to keep the number of feasible subsets of Lv as

low possible.

The first step in the COOL procedure is to determine the OGL coefficient for each

node in V \ Hp. This only requires O(n2) effort, and the results are valuable. Since

OGL gives an upper bound for the sequential lifting coefficient, it is immediately known

that any node with an OGL coefficient of zero will be lifted in with that zero no matter

when it is lifted. Thus, to keep |Lv| as low as possible, these nodes are removed from

the graph.

Next, the COOL procedure examines the nodes whose OGL coefficient is at the

maximum possible value, bp
2
c. These are nodes that are adjacent to every node in Hp,

and thus Hp ∪ {v} induces a wheel. If a node is lifted in with this value, any node not

adjacent to it must be lifted in with a zero. Again, zero coefficients mean that a node

can be removed from the graph. It is thus advantageous to lift in these nodes whose

OGL coefficient is bp

2
c.

Of course, the natural inclination is to add as many of these nodes as possible. So,

ideally, the next COOL step would be to find the maximum clique containing these

47

nodes. Unfortunately, finding a maximum clique is NP-Hard [32]. There are, however,

many polynomial time algorithms for finding a maximal clique. Once COOL finds a

maximal clique of these wheel-inducing nodes, the identity of each member is stored.

Any node not adjacent to every clique member will be lifted in with a zero coefficient

and can be removed from the graph.

After this is done, COOL proceeds by finding large cliques of unlifted nodes. Every

member of the first clique may be lifted with its OGL coefficient. Beyond the first clique,

the lifting coefficient must be found by running OGL on the supernodes created by v

and each feasible subset of Lv. Since COOL stores the identity of each clique lifted, the

structure of all such feasible subsets is known.

Let Ki denote the ith clique lifted in the COOL procedure. A feasible subset Y ⊆ Lv

is of the form {y1, y2, ..., yk} where k is the number of cliques lifted so far, and yi ∈ Ki

or yi = ∅. The size of any one clique is bounded by n, the number of nodes. Clearly, the

number of feasible subsets is then bounded by nk.

As COOL is running OGL for each feasible subset of Lv, if zero is ever found as

a candidate for αv, node v is removed from the graph. If a clique ever loses one of

it’s members, COOL checks all other unlifted nodes to determine if the clique is still

maximal. If it is no longer maximal, another node is added to the clique.

Once all nodes are either lifted or known to be zero, the procedure terminates and

outputs a COOL inequality. This inequality is facet defining and may be added to the

IP formulation of the Node Packing problem. The above-described method was coded

48

in C++ for a computational study. Methodology and results of this study are found in

chapter 4.

3.2.2 A COOL Example

Figure 3.13: COOL example graph

Consider the graph shown in Figure 3.13. Notice the H7 induced by nodes 1-7 with

associated inequality
∑7

i=1 xi ≤ 3. The COOL procedure initiates by finding the OGL

coefficient for nodes 8-16. The results are shown in Table 3.1. Since nodes 8, 14, and

49

15, have an OGL coefficient of 0, they can be removed from further consideration.

Table 3.1: Initial OGL coefficients for COOL example

Node 8 9 10 11 12 13 14 15 16

OGL Coefficient 0 1 2 1 1 1 0 0 2

Next, COOL searches for nodes whose OGL coefficient equals bp

2
c, which in this case

is 3. None exist, so the procedure proceeds by finding a maximal clique of the remaining

nodes. Say that it finds the K3 induced by nodes 10, 11, and 12. Each of these nodes is

lifted in with its OGL coefficient, making the inequality
∑7

i=1 xi + 2x10 + x11 + x12 ≤ 3.

Now, L = K1 = {10, 11, 12}, and COOL looks for another maximal clique.

Say that the clique detection procedure finds nodes 9 and 16. To lift in node 9, the

subsets of L9 must be known. In this case, L9 = {10, 12} and the supernodes that must

be checked are τ{9,10}, τ{9,12}, and τ{9}. The value of ατ{9} is already known to be 1. Then

ατ{9,10}
is calculated to be 2, so the candidate for α9 is ατ{9,10}

− α10 = 2 − 2 = 0. Since

a candidate was calculated to be 0, node 9 is removed from the graph.

Moving on to the next node in the clique, L16 = {10, 11, 12}. The candidate values

from τ{10,16}, τ{11,16}, τ{12,16}, and τ{16} are found to be 1, 1, 1, and 2 respectively. The

minimum of these candidates is 1, so α16 = 1.

The second clique has now been lifted, but since it lost one of its members (node

9), COOL looks at the remaining unlifted nodes to determine if any can be added to

the clique. The only candidate is node 13, which is not adjacent to 16, so it cannot

be added to the clique. This means that the second clique is now done, K2 = {16},

50

Figure 3.14: Affinely independent points for COOL example

L = {10, 11, 12, 16}, and the inequality is now
∑7

i=1 xi + 2x10 + x11 + x12 + x16 ≤ 3.

COOL proceeds by finding the next maximal clique. In this case, node 13 is the only

node left, so it is the final clique. The subsets of L13 = {10, 11, 16} that need to be

checked are the ones that contain at most one member of K1 and one member of K2.

The sets that satisfy this condition are ∅, {10}, {11}, {16}, {10, 16} and {11, 16}. While

checking these candidates, COOL finds that ατ{10,13,16}
= 3, making the candidate for α13

equal to ατ{10,13,16}
−α10−α16 = 3−2−1 = 0. So node 13 is removed from the graph, and

the procedure is complete. The final COOL inequality is
∑7

i=1 xi+2x10+x11+x12+x16 ≤

3, which is facet defining in P ch
NP as shown by the points in Figure 3.14.

51

Chapter 4

Computational Results

Because OGL does not involve solving an integer program to find lifting coefficients, it

stands to reason that COOL would be more efficient than traditional methods for lifting

to an odd-hole inequality. This hypothesis was tested on various random problems, using

C++ coding language and the ILOG CPLEX 10.0 callable library [13]. The study was

performed on an Intel (R) Core i7 computer with a 1.58 GHz processor and 3.0 GB of

RAM.

The main goal of this study was to determine the time necessary to create a facet

defining inequality from an odd-hole inequality through sequential lifting. This was done

using two methods; first by COOL, then again by solving Node Packing problems for

each variable to be lifted.

The study was executed on randomly generated weighted Node Packing instances.

Objective coefficient values are uniformly distributed between 1000 and 2000. Node

52

adjacencies in each problem were determined based on some edge probability parameter.

This parameter is a number between zero and one that represents the probability that

any two nodes are adjacent. Once the graph is created, the code uses a depth-first search

method to find 20 odd-holes of a specified size. Each hole is lifted by both methods to

create facet defining cuts.

The COOL procedure is run as outlined in the previous chapter, using a well-known

method for finding maximal cliques: After identifying which nodes are eligible to be

lifted, the induced subgraph on this set of nodes is considered. The degree of each node

is calculated, and the node with the minimum degree is removed from the subgraph.

Nodes are removed until all d remaining nodes have degree d − 1. Ties are broken first

by the lowest objective function coefficient, then by the lowest variable index.

The second procedure creates a Node Packing problem to determine exact lifting

coefficients for every variable, after completing two preprocessing steps. The first step

identifies all nodes with two or fewer adjacencies in the hole. It has been observed

previously that such nodes will never have a positive lifting coefficient in the odd-hole

inequality [39], a result which now follows directly from the theorems provided in section

3.2.

The second preprocessing step applies an idea from COOL: It searches for nodes

adjacent to every node in the hole (nodes that, together with the hole, induce a wheel)

and finds a maximal clique of these nodes. These nodes are lifted with a coefficient of

bp

2
c. As in COOL, any node not adjacent to every member of this clique is lifted with a

53

zero coefficient.

After this preprocessing, the procedure (hereafter referred to as the NP procedure)

creates a Node Packing problem to find the exact lifting coefficient of every unlifted node.

This problem is solved using the default settings of CPLEX’s mixed integer programming

solver. Lifting is done in ascending order of variable indices.

Both COOL and the NP procedure lift to each of the 20 holes found by the depth-

first search. The total lifting time is tracked for each procedure. Additionally, as a

measure of cut strength, the LP relaxation is solved for the original problem, the problem

with COOL cuts, and the problem with NP cuts. All LPs are solved with CPLEX’s

linear programming optimizer. The change in objective value gives a rough measure

of the usefulness of each procedure’s cuts. The study also keeps track of the number

of variables with non-zero coefficients in each inequality, which helps to indicate the

number of variables that will be affected by the cut.

Three input variables control what type of problem is solved. These variables are

the size of the graph, the edge probability parameter, and the size of hole to be lifted.

Prior research [39] has suggested that odd-hole inequalities are most likely to be useful

on graphs with lower edge densities. For this reason, the study was run with edge

probability parameters of 0.1, 0.2, and 0.3. The number of nodes was either 100, 200,

or 300. The hole sizes used were 5, 9, and 13. This gives 27 total combinations, each of

which was run ten times.

Statistics for each factor combination are provided in Table 4.1. This table contains

54

the average of each value over all ten replications. The “Cut Time” columns display the

average time taken to lift all 20 hole inequalities. Entries in the “IP/COOL” column

show IP cut time divided by COOL cut time. The “LP % Change” columns contain

the average percentage decrease in the problem’s linear relaxation solution when cuts

were added. The “# Vars” columns contain the average number of variables in the

inequalities with non-zero coefficients, including the hole nodes.

The data suggests that COOL is indeed a significant improvement over NP in most

instances. Over all trials, the NP procedure took 10% longer than COOL to complete

the cuts. This result is heavily skewed to the 0.3 edge density, size 13 hole problems

that took longest to run. In the worst case studied, COOL was slower than NP by a

factor of three. However, in most instances, COOL was hundreds to thousands of times

faster than NP.

On the lowest density graphs, COOL was uniformly fast no matter the value of the

other parameters. This is encouraging, because low density graphs are where odd-hole

inequalities are most useful. However, COOL’s limitations were seen on the most edge-

dense graphs when the initial hole sizes are large. In particular, the only times that NP

outperformed COOL were on the 0.3 density, size 13 hole instances with 200 and 300

nodes. In both of these situations, COOL displayed large variations in total cut times.

In the 200 node case, COOL was actually faster than NP in seven of the ten replica-

tions. However, COOL’s total cut times ranged from 21 seconds to 197 seconds, while

NP was always between 61 and 70 seconds. Over all ten replications, standard deviations

55

Table 4.1: COOL vs. NP computational results

COOL NP COOL NP # Vars # Vars
Edge Hole # of Cut Time Cut Time NP/ LP % LP % in COOL in NP

Density Size Nodes (Sec) (Sec) COOL Change Change Cuts Cuts
100 0.000 0.091 - 10.0 10.1 5.3 5.3

5 200 0.005 0.422 91.67 8.1 8.2 5.6 5.6
300 0.005 0.972 211.28 7.3 7.2 6.0 6.0
100 0.002 0.666 416.06 11.9 12.2 10.4 10.4

0.1 9 200 0.005 3.058 650.60 11.1 11.1 11.3 11.3
300 0.003 6.224 2007.61 11.1 10.6 12.1 12.0
100 0.002 1.911 1273.93 14.1 13.9 15.8 15.8

13 200 0.011 7.774 694.06 14.5 14.4 17.6 17.5
300 0.014 14.66 1032.47 13.7 13.2 18.5 18.3

0.1 Density Averages 0.01 3.98 786.31 11.3 11.2 11.4 11.3

100 0.002 1.216 759.88 20.4 19.8 6.9 6.8
5 200 0.011 4.453 404.85 17.5 17.0 7.8 7.6

300 0.006 9.105 1468.52 15.6 13.9 8.4 8.0
100 0.006 5.267 849.52 26.4 24.7 14.2 13.8

0.2 9 200 0.030 23.27 780.84 24.8 21.9 16.1 15.4
300 0.084 40.87 485.38 22.5 19.3 17.1 16.1
100 0.033 9.394 283.79 28.2 26.9 21.8 21.1

13 200 0.414 49.42 119.37 29.2 24.9 25.0 23.7
300 1.581 78.19 49.44 27.1 23.1 26.4 25.1

0.2 Density Averages 0.24 24.58 102.0 23.5 21.3 16.0 15.3

100 0.002 3.480 2174.94 30.2 28.2 8.7 8.5
5 200 0.013 15.47 1227.80 25.9 23.8 9.7 9.7

300 0.020 36.55 1818.33 22.0 20.4 10.2 10.3
100 0.034 12.47 363.52 36.5 34.1 18.6 17.7

0.3 9 200 0.408 50.71 124.28 34.7 30.0 21.4 20.2
300 1.802 120.59 66.94 32.6 25.8 23.0 21.2
100 1.116 21.60 19.36 40.6 37.7 29.2 27.6

13 200 74.92 64.77 0.86 39.0 33.6 34.3 31.6
300 618.32 184.05 0.30 36.2 30.7 36.4 34.1

0.3 Density Averages 77.40 56.63 0.73 33.1 29.4 21.3 20.1

Overall Averages 25.88 28.39 1.10 22.6 20.6 16.2 15.6

56

were found to be 53.1 for COOL, while only 2.93 for NP. A two sample t-test found no

significant difference in mean cutting time with a p-value of 0.561. The 95% confidence

interval for the difference of the two means (COOL - NP) is (-27.9, 48.2).

In the 300 variable case, NP was faster than COOL in every instance. COOL took

anywhere from 227 to 1717 seconds, with a standard deviation of 442. NP was again

more stable, with total times ranging from 179 to 192 and a standard deviation of 4.43.

A two sample t-test found a statistically significant difference in the means with a p-

value of 0.013. The 95% confidence interval for the difference of the two means (COOL

- NP) is (118, 750).

In general, COOL’s large time deviations only existed in the high-density, large hole

cases. The basic problem occurs because multiple vertices with non-zero coefficients

exist, and thus COOL’s exponential run time manifests. Consequently, COOL should

probably not be used in these type of instances.

An interesting result is that the COOL inequalities tended to contain more variables

with non-zero coefficients. This may be due to the fact that COOL lifts entire cliques at

one time, instead of looking for new nodes individually. The COOL cuts also reduced

the LP relaxation solution by a higher percentage, suggesting that they are just as strong

or stronger than the randomly lifted NP cuts. This is likely due to the higher number

of non-zero coefficients, and the clique tie-breaker rule that eliminates nodes with low

objective value coefficients.

Since the results of this study suggested that COOL runs efficiently on the lowest

57

Table 4.2: Additional computational results for edge density 0.1

COOL NP COOL NP # Vars # Vars
Problem Hole Cut Time Cut Time NP/ LP % LP % in COOL in NP

Size Size (Sec) (Sec) COOL Change Change Cuts Cuts
1500 13 1.92 1147.94 599.20 8.7 7.4 22.4 21.5
1500 17 19.98 2076.65 103.96 10.6 8.7 30.0 28.9
1500 21 209.52 3122.49 14.90 12.0 9.5 37.4 36.2
2000 5 0.10 174.21 1684.84 2.9 2.6 7.8 7.5
3000 5 0.25 628.55 2514.19 2.4 2.0 8.4 7.8
4000 5 0.45 1548.44 3464.07 1.8 1.5 8.5 7.9
AVERAGE 38.70 1449.71 37.46 5.0 4.1 19.1 18.3

density graphs, more tests were run with an edge density parameter of 0.1. These tests

were run with greater initial hole sizes and with a larger number of variables. Five

replications of each scenario were run. Results of these trials are shown in Table 4.2.

This data suggests that COOL continues to perform well with a large number of

variables as long as the initial hole is small. In these cases, COOL completed its cuts

thousands of times faster than NP. As hole sizes grow, the gap between NP and COOL

decreases noticeably.

These extra trials continue to show that COOL cuts decrease the LP relaxation

objective value more than the NP cuts. On average, COOL dropped the objective value

1% more than NP. COOL also continues to generate inequalities with more non-zero

coefficients.

Looking at all of the data, it can be said that COOL performs well on graphs with a

low edge density. COOL is also very efficient when lifting to a small initial hole. COOL

struggles to compete with NP on medium density graphs when lifting to larger sized

58

holes.

These results suggest that the creation of a modified COOL algorithm could be bene-

ficial. This algorithm would run COOL in the right circumstances, then switch to NP or

some approximate method when appropriate. For instance, it appears that inequalities

with more than 30 non-zero coefficients cause problems for COOL. A modified COOL al-

gorithm may decide to approximate lifting coefficients after the first 30 nodes have been

lifted. Such a procedure could still create useful cuts, while minimizing computational

time.

59

Chapter 5

Conclusion and Future Research

This research proposed two different methods for lifting in the Node Packing problem.

The first was the Simultaneous Lifting Expansion, which combines two known inequal-

ities to create one stronger inequality. Simultaneous lifting in Node Packing problems

has only been addressed once in the literature [14], so this research represents a signifi-

cant advancement to this area. SLE allows for the creation of valid inequalities that are

unachievable by currently known methods.

The second contribution is the Cliques On Odd-holes Lifting procedure. This method

takes an odd-hole inequality and sequentially uplifts variables to create a facet defining

cut. This method is unique in that it does not solve an Integer Program to find lifting

coefficients. Instead, it makes use of the Odd Gap Lifting procedure, which determines

lifting coefficients by examining node adjacencies.

Several Node Packing branch and cut algorithms have made use of lifted odd-hole

60

inequalities [29, 38, 39, 49]. Research has suggested that these inequalities are generally

not as useful as other cuts (e.g. clique inequalities), but are more likely to be useful

under certain circumstances. In particular, lifted odd-hole inequalities are most useful

when edge densities are low. This is exactly the situation in which COOL performs best,

suggesting that COOL is a viable option for these branch and cut procedures. As such,

an implementation of COOL in the right circumstances may be beneficial in solving IPs.

5.1 Future Research

The work done for this thesis points to several areas for future research. Possible future

research exists for both theory and computation. In particular, SLE may motivate more

theoretical research, while COOL encourages more computational research.

While SLE provides interesting theoretical properties, the requisite underlying struc-

tures are unlikely to occur in general Node Packing instances. As such, application of

SLE would be of little practical use. Still, there is little known about simultaneous lifting

in Node Packing problems, and continued research in this area may yet provide practical

results and new facet defining structures.

Concepts from SLE may also be applied to simultaneous lifting procedures in other

classes of Integer Programs. SLE takes two facet defining structures with a common

node, and creates a new facet defining cut through a mix of up and down lifting. This

is, to the best of the author’s knowledge, the first simultaneous lifting method that

can do this. It may be possible to create similar methods in other Integer Program-

61

ming problems. For example, there may be some analogous method for combining two

overlapping cover inequalities in a knapsack problem.

Computational results for COOL indicate that it may be fit for implementation in

commercial software under the right conditions. More computational studies should be

completed before this can be known for sure. Further research may point to particular

conditions when lifted odd-hole inequalities are beneficial in solving IPs.

While COOL provides an improved method for lifting to odd-holes, other researchers

have suggested that approximated inequalities can be found quickly and perform about

as well as exact inequalities [29, 38]. It may be useful to complete a computational study

comparing run-times and cut qualities of COOL with an approximate method. Such a

study could highlight the advantages of using COOL over an approximate method.

In every size problem tested for this thesis, COOL performed admirably in low edge

weight graphs. However, the procedure’s exponential nature began to show on medium

density problems when lifting to larger holes. It would be beneficial to further define

COOL’s limitations to determine when approximation methods are preferable to COOL.

This data would inform the creation of a modified COOL procedure, which runs COOL

in situations when it is most advantageous, and uses another method otherwise.

Finally, once a modified COOL procedure has been created, it could be implemented

in a branch and cut routine and tested against a commercial optimization software.

This could further define the conditions in which lifted odd-hole inequalities improve IP

solving time. Similar tests have been run previously, but not with the COOL method.

62

Bibliography

[1] Arunapuram, S., K. Mathur, Solow, D. (2003). “Vehicle Routing and Scheduling

with Full Truckloads,” Transportation Science, 37 (2), 170-82.

[2] Atamtürk, A., Nemhauser, G., Savelsbergh, M. (2000). “Conflict Graphs in Solving

Integer Programming Problems,” European Journal of Operational Research, 121,

40-55.

[3] Atamtürk, A. (2004). “Sequence Independent Lifting for Mixed-Integer Program-

ming,” Operations Research, 52 (3), 487-491.

[4] Assuncao, T., Furtado, V. (2008). “A Heuristic Method for Balanced Graph Parti-

tioning: an Application for the Demarcation of Preventive Police Patrol Areas,”

Advanced in Artificial Intelligence - IBERAMIA 2008. Proceedings 11th Ibero-

American Conference on AI, 62-72.

[5] Avella, P., Boccia, M., Sforza, A. (2004). “Resource Constrained Shortest Path

Problems in Path Planning for Fleet Management,” Journal of Mathematical Mod-

elling and Algorithms, 3 (1), 1-17.

63

[6] Balas, E., Zemel, E. (1984). “Lifting and Complementing Yields All the Facets

of Positive Zero-one Programming Polytopes,” in Mathematical Programming, Pro-

ceedings of the International Conference on Mathematical Programming, R.W. Cot-

tle et al., eds., 13-24.

[7] Balas, E., Ng, S. (1989). “On the Set Covering Polytope. II, Lifting the Facets with

Coefficients in 0,1,2,” Mathematical Programming, 45, 1-20.

[8] Balas, E. (1999). “New Classes of Efficiently Solvable Generalized Traveling Sales-

man Problems,” Annals of Operations Research, 86, 529-88.

[9] Biggs, N., Lloyd E., Wilson, R. (1986). Graph Theory, 1736-1936. Oxford University

Press.

[10] Bolton, J. (2009). “Synchronized Simultaneous Lifting in Binary Knapsack Polyhe-

dra,” MS Thesis, Department of Industrial and Manufacturing Systems Engineer-

ing, Kansas State University.

[11] Bourgeois, N., Della Croce, F., Escoffier, B., Murat, C., Paschos, V. (2009). “Prob-

abilistic Graph-coloring in Bipartite and Split Graphs,” Journal of Combinatorial

Optimization, 17 (3), 274-311.

[12] Carmia, M., Dell’Olmo, P., (2002). “Constraint Propagation in Graph Coloring,”

Journal of Heuristics, 8 (1), 83-107.

[13] The CPLEX Solver on ILOG’s Home Page, http://www.ilog.com/.

64

[14] Conley, C. (2009). “Cliqed Holes and Other Graphic Structures for the Node Pack-

ing Polytope,” MS Thesis, Department of Industrial and Manufacturing Systems

Engineering, Kansas State University.

[15] Dell’Olmo, P., Speranza, M. (1996). “Graph Models for Multiprocessor Scheduling

Problems with Precedence Constraints,” Foundations of Computing and Decision

Sciences, 21, 17-29.

[16] Easton, K., Nemhauser, G., Trick, M. (2003). “Solving the traveling tournament

problem: A combined integer programming and constraint programming approach,”

Practice and Theory of Automated Timetabling IV. 4th International Conference,

PATAT 2002, Selected Revised Papers (Lecture Notes in Comput. Sci. Vol.2740),

2003, p 100-9.

[17] Easton, T., Hooker, K. “Simultaneously Lifting Sets of Binary Variables into Cover

Inequalities for Knapsack Polytopes,” Discrete Optimization, Special Issue: In

Memory of George B. Dantzig, 5 (2) May 2008, 254-261.

[18] Erlebach, T., Hall, A. (2004). “NP-Hardness of Broadcast Scheduling and Inap-

proximability of Single-Source Unsplittable Min-Cost Flow” Journal of Scheduling,

7 (3), 223-41.

[19] Finn, Frank J. (1973). “Integer Programming, Linear Programming and Capital

Budgeting.” Abacus, 13, 180-192.

65

[20] Frangioni, A., Gentile, C. (2007). “Prim-based Support-graph Preconditioners for

Min-cost Flow Problems,” Computational Optimization and Applications, 36 (2),

271-287.

[21] Goczyla, K., Cielatkowski, J. (1995). “Optimal Routing in a Transportaion Net-

work,” European Journal of Operational Research, 87, 214-22.

[22] Gomory, R. (1969). “Some Polyhedra Related to Combinatorial Problems,” Linear

Algebra and its Applications, 2, 451-558.

[23] Grabowski, J., Skubalska, E. (1985). “Optimization of the Transportation Network

Structure with Respest to the Flow Costs,” Archiwum Automatyki i Telemechanika,

30, 3-21.

[24] Gu, Z., Nemhauser, G., Savelsbergh, M. (2000). “Sequence Independent Lifting in

Mixed Integer Programming,” Journal of Combinatorial Optimization, 4, 109-129.

[25] Guerriero, G., Tseng, P. (2002). “Implementation and Test of Auction Methods for

Solving Generalized Network Flow Problems with Separable Convex Cost,” Journal

of Optimization Theory and Applications, 115 (1), 113-44.

[26] Gutin, G., Karapetyan, D. (2010). “A Memetic Algorithm for the Generalized Trav-

eling Salesman Problem,” Natural Computing, 9 (1), 47-60.

[27] Harely, E., Bonner, A., Goodman, N. (2001). “Uniform Integration of Genome

Mapping Data Using Intersection Graphs,” Bioinformatics, 17 (6), 487-94.

66

[28] Harris, A. (2010). “Generating an Original Cutting-plane Algorithm in Three Sets

(GO CATS),” MS Thesis, Department of Industrial and Manufacturing Systems

Engineering, Kansas State University.

[29] Hoffman, K., Padberg, M. (1993). “Solving Airline Crew Scheduling Problems by

Branch-and-Cut,” Management Science, 39 (6), 657-82.

[30] Irani, S., Leung, V. (2003). “Scheduling with Conflicts on Bipartite and Interval

Graphs,” Journal of Scheduling, 6, 287-307.

[31] Iwamura, K., Liu, B. (1999). “Dependent-Chance Integer Programming Applied

to Capital Budgeting.” Journal of the Operations Research Society of Japan, 11,

117-127.

[32] Karp, R. (1972). “Reducibility among Combinatorial Problems,” in Complexity of

Computer Computations, R. E. Miller and J. W. Thatcher, eds., Plenum Press, New

York 85-103.

[33] Kaufman, D., Nonis, J., Smith, R. (1998). “A Mixed Integer Linear Programming

Model for Dynamic Route Guidance,” Transportation Research, Part B (Method-

ological), 32B (6), Aug. 1998, p 431-40.

[34] Kubik, L., (2009) “Simultaneously Lifting Multiple Sets in Binary Knapsack Inte-

ger Programs,” MS Thesis, Department of Industrial and Manufacturing Systems

Engineering, Kansas State University.

67

[35] Kumar, S., Gupta, P. (2003). “An Incremental Algorithm for the Maximum Flow

Problem,” Journal of Mathematical Modelling and Algorithms, 2 (1), 1-16.

[36] Lam, M., Liu, Y. (2006). “Active Sensor Network Deployment and Coverage

Enhancement Using Circle Packings,” 2006 IEEE International Conference on

Robotics and Biomimetics, ROBIO 2006, 520-525.

[37] Liberti, L., Alfandari, L., Plateau, M. (2009). “Edge Cover by Connected Bipartite

Subgraphs,” Annals of Operations Research, 167, 1-23.

[38] Mannino, C., Sassano, A. (1994). “An Exact Algorithm for the Maximum Stable

Set Problem,” Computational Optimization and Applications, 3 (3), 243-58.

[39] Nemhauser, G., Sigismondi, G. (1992). “A Strong Cutting Plane/Branch-and-

Bound Algorithm for Node Packing,” The Journal of the Operational Research

Society, 43 (5), 443-457.

[40] Olmes, Z., Kun Myon Choi, Min Young Chung, Tae-Jin Lee, Hyunseung Choo

(2005). “RWA Based on Approximated Path Conflict Graphs in Optical Networks,”

Computational Science and Its Applications - ICCSA, 448-58.

[41] Padberg, M. (1973). “On the Facial Structure of Set Packing Polyhedra,” Mathe-

matical Programming, 5, 199-215.

[42] Pape, U. (1974). “Implementation and Efficiency of Moore-algorithms for the Short-

est Route Problem,” Mathematical Programming, 37 (1), 212-22.

68

[43] Park, K. (1997). “Lifting Cover Inequalities for the Precedence-Constrained Knap-

sack Problem,” Discrete Applied Mathematics, 72 (3), 219-241.

[44] Plesnik, J. (2001). “Minimum Cost Edge Subset Covering Exactly k Vertices of a

Graph,” Journal of Combinatorial Optimization, 5 (3), 275-86.

[45] Raj, V. (2008). “Better Performance of Neural Networks Using Functional Graph

for Weather Forecasting,” 12th WSEAS International Conference of Computers,

826-31.

[46] Ruiz, R., Maroto, C., Alcaraz, J. (2004). “A Decision Support System for a Real

Vehicle Routing Problem,” European Journal of Operational Research, 153 (3), 16

March 2004, 593-606.

[47] Toth, P. (1997). “An Exact Algorithm for the Vehicle Routing Problem with Back-

hauls,” Transportation Science, 31 (4), Nov. 1997, 372-85.

[48] Urban, T. (2003). “Scheduling Sports Competitions on Multiple Venues,” European

Journal of Operational Research, 148 (2), 16 July 2003, 302-11.

[49] Verweij, B., Aardal, K. (1999). “An Optimisation Algorithm for Maximum Indepen-

dent Set with Applications in Map Labelling,” Algorithms - ESA 696. Heidelberg:

Springer Berlin.

[50] Wang Qiang, Gao Bin, Jia Cui-xia (2008) “Complete Graph Algorithm Based on

Four Level Forecast Model,” Journal of China Academy of Electronics and Infor-

mation Technology, 3, 623-6.

69

[51] Waterer, H., Johnson, E., Nobili, P., Savelsbergh, M. (2002) “The Relation of Time

Indexed Formulations of Single machine Scheduling Problems to the Node Packing

Problem,” Mathematical Programming, Series B, 93, 477-494.

[52] Yun-Wu Huang, Ning Jing, Rundensteiner, E.A. (2000). “Optimizing Path Query

Performance: Graph Clustering Strategies,” Transportation Research Part C

(Emerging Technologies) 8C, 381-408.

[53] Zwaneveld, P., Kroon, L., van Hoesel, S. (2001). “Routing Trains Through a Rail-

way Station Based on a Node Packing Model,” European Journal of Operational

Research, 128, 14-33.

70

