

Q-ENHANCED TUNABLE FILTER DESIGN WITH
APPLICATIONS IN RECEIVER ARCHITECTURES

by

CHELSI KOVALA

B.S., Kansas State University, 2009
B.S., Kansas State University, 2009

A THESIS

submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

Department of Electrical Engineering
College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2012

Approved by:
Major Professor

William Kuhn

Copyright

CHELSI ANN KOVALA

2012

Abstract

Q-enhanced Filters have been researched extensively, but have not been often

implemented into receiver architectures due to inherent challenges in the design and stability of

these filters. However, recent works have successfully addressed Q-enhanced filter designs

which are viable for receiver implementation with tuning algorithms to achieve temperature

stability. This work continues these efforts with the redesign of a Two-Pole Q-Enhanced Band-

Pass filter tested at narrower fractional bandwidths than previous work of less than one percent

and considers potential significant improvements in receiver performance using this filer.

The Q-enhanced filter redesign ports the existing filter to a new integrated circuit

technology which performs better at higher frequencies. The redesign in particular addresses

problems in the previous design. The frequency divider design is modified, resistance tuning is

added, and additional modifications to the overall filter functionality are implemented. General

problems in obtaining an ideal passband shape by eliminating unwanted coupling are addressed.

The supporting software for the tuning algorithm is modified to use analog controls and shown to

achieve further narrowed bandwidths of 5 MHz and 2.5 MHz at center frequencies of 500 MHz,

which are demonstrated to be temperature stable. Future software modifications are described to

prepare the existing code base for the new filter design.

Potential applications for a Q-enhanced filter include improving the performance of

receiver designs. One of the most important performance parameters of a receiver is its spurious

response rejection. To explore this behavior, an automated test system is developed to

characterize receivers, and four receivers are tested. The test results are presented in a novel

graphical display, which is used to evaluate receiver performance and compare receivers. These

results motivated the development of a potential modified superheterodyne receiver architecture

using the Q-enhanced filter as an image filter and an IF filter. The viability of this receiver

design is tested and shown to provide significant improvements to receiver’s spurious rejection

response.

iv

Table of Contents

List of Figures ... viii

List of Tables ... xi

Acknowledgements ..xii

Dedication ... xiii

Chapter 1 - Introduction ... 1

1.1 Objective ... 1

1.2 Q-Enhanced Filter Development Primer .. 1

1.2.1 Integrated Filter Design .. 1

1.2.1.1 Previous Work ... 1

1.2.1.2 Q-Enhancement ... 1

1.2.1.3 Revised Integrated Circuit Block Diagram .. 2

1.2.2 Supporting Hardware and Software ... 4

1.2.2.1 Previous Work ... 4

1.2.2.2 Software Additions .. 5

1.3 Receiver Architectures and Filter Applications ... 5

1.3.1 Motivation ... 5

1.3.2 Prior Art ... 6

1.3.3 Research Accomplished.. 7

1.3.3.1 Spurious Rejection Response Testing System ... 7

1.3.3.2 Spurious Rejection Response Results .. 7

1.3.3.3 Filter Application ... 7

Chapter 2 - Q-Enhanced Filter Redesign .. 7

2.1 Design Overview .. 7

2.2 Porting Design to Different Integrated Circuit Technology .. 8

2.3 Asymmetry in the Passband .. 10

2.3.1 Sources of Asymmetry.. 10

2.3.1.1 Admittance Review ... 11

2.3.1.2 The First Source of Asymmetry.. 12

v

2.3.1.2.1 Origin of Asymmetry: Inductive Coupling ... 12

2.3.1.2.2 Circuit Design Solution: Resistance Tuning ... 15

2.3.1.3 The Second Source of Asymmetry ... 20

2.3.1.3.1 Origin of Asymmetry: Incorrectly Driven Coupling Capacitors 20

2.3.1.3.2 Circuit Design Solution: Corrected Loading .. 21

2.4 Additional Circuit Redesigns .. 23

2.4.1 Frequency Divider... 23

2.4.2 Amplitude Detector ... 28

Chapter 3 - Supporting Hardware and Software ... 31

3.1 Previous Work .. 31

3.2 Top-level Code Implementation.. 31

3.3 Software Additions... 32

3.3.1 Fine Tuning ... 33

3.3.1.1 Implementation .. 33

3.3.1.2 Results .. 38

3.3.2 Resistance Tuning ... 39

3.3.2.1 Implementation .. 39

3.3.2.2 Control Word and Passband Controls .. 40

Chapter 4 - Spurious Responses in Receivers... 41

4.1 Introduction to Receiver Architectures ... 41

4.1.1 Direct Conversion ... 42

4.1.2 Superheterodyne .. 43

4.1.3 Multiple Conversion Superheterodyne .. 44

4.1.4 Software Defined Radio ... 44

4.2 Spurious Responses in Receivers .. 45

4.2.1 Nonlinear Behaviors ... 47

4.2.1.1 Amplification ... 47

4.2.1.2 Mixer Spurs .. 47

4.2.1.3 Intermodulation Distortion .. 49

4.2.2 Spurs from Digital Synthesizers... 49

4.2.3 Image Frequency ... 50

vi

4.2.4 1/2IF & 1/3IF Spur Frequencies .. 51

4.3 Spurious Response Test System .. 52

4.3.1 Manual Measurement Process .. 52

4.3.2 Automated Measurement Development .. 53

4.3.2.1 – Quieting Detection Method.. 53

4.3.2.2 Physical Test Setup .. 54

4.3.2.2 LabVIEW Code Algorithm ... 57

4.4 Receiver Block Diagrams .. 58

4.4.1 VR-120... 58

4.4.2 VX-3 .. 59

4.4.3 Software Defined Radio ... 61

4.4.4 K-State Microtransceiver .. 62

4.5 Receiver Test Results ... 62

4.5.1 Checking for Mixer Spurs .. 63

4.5.2 Three Receivers Tuned to an HF Frequency ... 63

4.5.3 Three Receivers Tuned to Two Different Frequencies in HF Band 71

4.5.4 Two Receivers Compared at VHF Bands.. 76

4.5.5 The K-State Microtransceiver Spurious Rejection Response at UHF 79

Chapter 5 - The Q-Enhanced Filter as a Solution to SDR Architectures .. 81

5.1 – Spur Reduction Achieved by Changing the IF.. 81

5.2 – A New Architecture Using the Q-Enhanced Filter ... 86

Chapter 6 - Conclusion ... 87

6.1 System Status Summary .. 87

6.1.1 Integrated Circuit Redesign .. 87

6.1.2 Software Development ... 87

6.2 Receiver Spurious Response Conclusions .. 88

6.3 Future Work .. 88

6.3.1 Filter Layout .. 88

6.3.2 Filter Testing ... 88

6.3.3 Software ... 88

6.3.3.1 Fine Tuning Code Future Work .. 89

vii

Chapter 7 - Bibliography .. 90

Appendix A - IC Redesign ... 92

Appendix B - C Code ... 106

Appendix C - National Instruments LabVIEW Code... 122

Appendix D - Octave Code for Spurious Response Analysis.. 135

viii

List of Figures

Figure 1.1 – Q-Enhanced Filter Block Diagram ... 3

Figure 2.1 – ID versus VGS Curve Showing Quadratic and Linear Behavior 9

Figure 2.2 – Filter Response Showing Asymmetric Passband (Used with Permission [2]) 10

Figure 2.3 – Two Port Network (Used with Permission [2]) ... 11

Figure 2.4 – Topological Transformation of LC Tank Circuit .. 12

Figure 2.5 – ADS Circuit Simulating Admittance Parameters .. 14

Figure 2.6 – ADS Simulation Output of Admittance Parameters ... 14

Figure 2.7 – Range of Resistance Values .. 16

Figure 2.8 – Resistance Tuning Circuitry Topology .. 17

Figure 2.9 – Top View Resistance Tuning Circuitry ... 18

Figure 2.10 – Narrowed View Resistance Tuning Circuitry ... 19

Figure 2.11 – Resistance Tuning Circuitry Models .. 20

Figure 2.12 – Resistance Tuning Circuitry Models .. 21

Figure 2.13 – Top View Capacitive Coupling Circuit ... 22

Figure 2.14 – Narrowed View Ctuneblock from Fig. 2.13 .. 22

Figure 2.15 – Cell View Capacitive Coupling Circuit ... 23

Figure 2.16 – Top View Frequency Divider ... 23

Figure 2.17 –Frequency Divider Testbench .. 24

Figure 2.18 –Frequency Divider Simulation Output .. 25

Figure 2.19 –Frequency Divider Testbench to Test Bypass Capacitor ... 26

Figure 2.20 –Frequency Divider Circuit Narrowed View .. 26

Figure 2.21 –Frequency Divider Circuit to Test Bypass Capacitor Simulation Output with

Insufficiently Large Bypass Capacitor .. 27

Figure 2.22 –Frequency Divider Circuit to Test Bypass Capacitor Simulation Output with

Correctly Sized Bypass Capacitor ... 28

Figure 2.23 –Amplitude Detector Circuit ... 29

Figure 2.24 –Amplitude Detector Circuit Testbench ... 30

Figure 2.25 –Amplitude Detector Simulation Output .. 30

Figure 3.1 – Top Level Flowchart of Tuning Algorithm ... 32

ix

Figure 3.2 – Frequency Tuning Algorithm Flowchart: Revision 2 ... 34

Figure 3.3 – Get Frequency Algorithm Flowchart (Used with Permission [2]) 35

Figure 3.4 – Find Critical Oscillation Flowchart .. 36

Figure 3.5 – Fine Tune Flowchart ... 37

Figure 3.6 - Passband Variation without ... 38

Fine Tuning ... 38

Figure 3.7 – 2.5 MHz Bandwidth Passband with Fine Tuning .. 39

Figure 4.1 – Direct Conversion Receiver Block Diagram ... 42

Figure 4.2 – Superheterodyne Receiver Block Diagram .. 43

Figure 4.3 – Multiple Conversion Superheterodyne Receiver Block Diagram 44

Figure 4.4 – Superheterodyne Receiver Block Diagram .. 44

Figure 4.5 – Superheterodyne Receiver with Spectra .. 46

Figure 4.6 – Nonlinear Spurs ... 48

Figure 4.7 – Digital Spurs .. 50

Figure 4.8 – Image Frequency ... 51

Figure 4.9 – 1/2IF & 1/3IF Spur Frequencies ... 52

Figure 4.10 Fourier Spectrum Response to Quieting ... 54

Figure 4.11 – Test Setup for VR-120 & VX-3 ... 55

Figure 4.12 – Test Setup for SDR ... 56

Figure 4.13 – Test Setup for K-State Microtransceiver ... 56

Figure 4.14 – Spurious Rejection Response Test System LabVIEW Code Flowchart 57

Figure 4.15 – VR-120 Block Diagram - after [18] ... 59

Figure 4.16 – VX-3 Block Diagram - after [19] ... 60

Figure 4.17 – SDR Block Diagram - after [20] .. 61

Figure 4.18 – K-State Microtranciever - after [21] ... 62

Figure 4.19 – VR-120 3.6 MHz Tune Test Results .. 64

Figure 4.20 – VX-3 3.6 MHz Tune Test Results .. 66

Figure 4.21 – SDR 3.6 MHz Tune Test Results ... 69

Figure 4.22 – VR-120 3.6 MHz to 1 MHz Tune Comparison Test Results 71

Figure 4.23 – VX-3 3.6 MHz to 70 MHz Tune Comparison Test Results 73

Figure 4.24 – SDR-3 3.6 MHz to 22 MHz Tune Comparison Test Results 75

x

Figure 4.25 – VR-120 120 MHz Tune Comparison Test Results ... 76

Figure 4.26 – VX-3 150 MHz Tune Comparison Test Results ... 78

Figure 4.27 – K-State Microtransceiver Without & With the Fractional N-Synthesizer Test

Results ... 80

Figure 5.1 – K-State Microtransceiver 435MHz Tune Different IF Comparison Test Results 81

Figure 5.2– K-State Microtransceiver Varied IF Comparison Spur Residual 84

Figure 5.3 – Modified Superheterodyne Architecture Using Q-Enhanced Filters 86

Figure A.1 – Top Level View of Q-Enhanced Filter Schematic ... 92

Figure A.2 – Top Level View of Serial to Parallel Register Schematic ... 93

Figure A.3 – Single Cell View of Serial to Parallel Register Schematic .. 94

Figure A.4 – Narrowed View of Serial to Parallel Register Single Cell ... 94

Figure A.5 – Test Bench for Serial to Parallel Register ... 95

Figure A.6 – Simulation Output for Serial to Parallel Register ... 95

Figure A.7 – Simulation Output for Serial to Parallel Register ... 96

Figure A.8 – Top View of Differential Cores, Frequency Detectors, and Amplitude Detectors .. 97

Figure A.9 –Differential Core, Tuning Block, and Buffer ... 97

Figure A.9 –Differential Core Schematic ... 98

Figure A.10 –Differential Core Test Bench .. 99

Figure A.11 – Simulation Output of Differential Core .. 99

Figure A.12 – Buffer Circuit .. 100

Figure A.13 – Buffer Circuit Testbench .. 101

Figure A.14 – Simulation Output of Buffer Circuit ... 101

Figure A.15 – Top View of Frequency and Q-Enhancement Tuning Blocks 102

Figure A.16 – Narrowed View of Frequency and Q-Enhancement Tuning Block 102

Figure A.17 – Top View of Frequency Tuning Block ... 103

Figure A.18 – Narrowed View of Frequency Tuning Block ... 103

Figure A.19 – Cell View of Q-Enhancement Tuning Block .. 104

Figure A.20 – Top View of Capacitive Coupling and Resistance Tuning Blocks 105

Figure C.1 – Screen Shot of NI Code ‘XCVR_Spur_Scan’ Running ... 122

xi

List of Tables

Table 3.1 – Fine Tune Settings for 2.5 MHz Bandwidth ... 39

Table 3.2 – Word Sent from Microcontroller to Filter ... 40

Table 4.1 – VR-120 3.6 MHz Tune Test Results ... 65

Table 4.2 – VX-3 3.6 MHz Tune Test Results ... 68

Table 4.3 – SDR 3.6 MHz Tune Test Results ... 69

Table 4.5 – VR-120 3.6 MHz to 1 MHz Tune Comparison Test Results 72

Table 4.6 – VX-3 3.6 MHz to 70 MHz Tune Comparison Test Results ... 74

Table 4.7 – SDR 3.6 MHz to 22 MHz Tune Comparison Test Results .. 75

Table 4.8 – VR-120 120 MHz Tune Comparison Test Results ... 77

Table 4.9 – VX-3 150 MHz Tune Comparison Test Results ... 78

Table 4.10 – K-State Microtransceiver Without & With the Fractional N-Synthesizer Test

Results ... 80

Table 5.1 – K-State Microtransceiver Spurious Response, IF= 10.7 MHz 82

Table 5.2 – K-State Microtransceiver Spurious Response, IF= 6.5 MHz 83

Table 5.3 – K-State Microtransceiver 435MHz Tune Different IF Spur Residual 86

xii

Acknowledgements

My first thanks must go to Dr. Kuhn. I’ve enjoyed many of his classes and benefited

greatly from his teaching over several years. Dr. Kuhn truly enjoys his work and cares about

teaching that knowledge. I am so grateful to have honor of working under his tutelage.

Thank you also to the rest of my committee, Dr. Rys and Dr. DeVault. I appreciate your

time and feedback.

I must also thank Renee Strouts and Joel Schonberger. Their work has been essential to

my research. Joel in particular left a beautifully documented project for me and tirelessly

answered questions as I began to learn the existing system. I hope to find myself working with

engineers of his caliber, and superlative documentation skills, in the future.

A thanks also goes to Steven Melton and to Mathew Clewell. They have both been

excellent office mates this past year, providing many fun distractions, much good conversation,

intelligent technical advice and many sanity checks.

Thank you also to Joel Carroll for the use of a ‘MyDAQ’ and a willingness to answer a

string of questions about LabVIEW.

I am particularly grateful to my close friends Aimee Smith and Josh Zavala for their

encouragement and support this past semester. Their help, while dramatically different from each

other, has been much appreciated and I am grateful to them both.

I am grateful to so many people not mentioned here. I’m honored to have received the

time and effort so of many professors who were doubtlessly quite busy and still found away to

answer yet another question. I have studied with many students and learned a great deal from

them. I’ve known and learned with many people here at K-State and benefited from their insight.

Thank you.

xiii

Dedication

This thesis is dedicated to my parents, because they taught me to dream about learning.

This thesis is dedicated to my Grandma Verna, because she taught me how to have faith in my

dreams and work to achieve my dreams one pragmatic step at a time.

This thesis is dedicated to the souls that I have known along the path to this dream, because they

have taught me how to live and how to love. I hope in the end I have made their lives better as

they have made mine. Most of all, I wish them the courage to dream and the faith and passion to

achieve their dreams.

1

Chapter 1 - Introduction

 1.1 Objective
This thesis is divided into two parts. First, this thesis documents the redesign of the Two-

Pole Q-Enhanced Band-Pass Filter into a new integrated circuit (IC) technology. Problems in the

previous filter design are explained and solutions are explored. Additionally, the supporting

software is refined with additions and improvements to the pre-existing tuning algorithm and

changes to the supporting software and hardware needed for the redesigned IC portion of the

filter are explained. Second, this thesis considers the currently used methods for, and historical

emphasis placed on, characterizing a receivers spurious rejection responses. The development of

an automated test system to explore this behavior is described and the test results are presented in

a novel graphical format. Based on the demonstrated capability of the Q-enhanced filter and

insight from the spurious rejection response data, this thesis proposes a new receiver

architecture. Finally, this architecture is tested to determine if it could significantly improve a

receiver’s spurious rejection capability.

 1.2 Q-Enhanced Filter Development Primer

 1.2.1 Integrated Filter Design

 1.2.1.1 Previous Work

The existing Q-enhanced filter used as a starting point for this thesis was designed by

Renee Strouts based on circuit concepts developed in a class project. The original design is

documented in [1]. This active filter uses Q-enhancement to create a tunable variable bandwidth

bandpass filter. Q-Enhancement is explained thoroughly in both [1] and [2] and will only be

defined here briefly to lend context to this thesis’s discussion of the filter.

 1.2.1.2 Q-Enhancement

‘Q-enhancement’ refers to the technique of increasing the quality factor of an inductor,

capacitor, or tuned circuit [3]. The ‘quality factor’ is defined by the ratio of the energy stored to

2

the energy dissipated in these components. In general, Q is defined mathematically by equation

(1.1).

𝑄 = 2𝜋 × 𝐸𝑛𝑒𝑟𝑔𝑦 𝑆𝑡𝑜𝑟𝑒𝑑
𝐸𝑛𝑒𝑟𝑔𝑦 𝐷𝑖𝑠𝑠𝑎𝑝𝑎𝑡𝑒𝑑 𝑃𝑒𝑟 𝐶𝑦𝑐𝑙𝑒

 (1.1)

A more detailed explanation of Q and the associated RF models of inductors and capacitors can

be found in [2]. The important idea to understand here is that every inductor and capacitor

includes a non-ideal resistance which limits the components performance at sufficiently high

frequencies. This behavior is crucial to filter design because the Q of a filter fundamentally limits

its achievable bandwidth according to (1.2).

𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ = 𝑓0
𝑄

 (1.2)

where f0 is the center frequency of the filter passband and Q is the composite filter quality factor.

Typically, the overall Q of a filter has been limited by the inductors used. In particular, high Q

inductors are very difficult to manufacture in integrated circuits [4]. In this work off chip

inductors are used, but the previous theses and associated research include efforts to achieve high

Q on chip inductors [5]. Q-Enhancement is achieved in the filter in this thesis using cross

coupled field effect transistors.

 1.2.1.3 Revised Integrated Circuit Block Diagram

The top level block diagram for the revised Two-Pole Q-Enhanced Band-Pass Filter is

shown in Figure 1.1.

3

Figure 1.1 – Q-Enhanced Filter Block Diagram

4

Similar to previous designs, the filter’s input signal is driven into a differential cascoded

amplifier core, labeled ‘Front-End’. The second core, the ‘Back-End’ is an identical copy of the

Front-End with grounded inputs. The amplitude detection and frequency division circuits for the

Front-End and Back-end are driven by the cores via identical buffers to protect the filter from too

much loading. The filter is programmed via the serial to parallel register from a microcontroller

which runs the supporting software introduced in section 1.2.2. This communication is a bit

stream which controls the enabling of the buffers, amplitude detectors, and frequency dividers.

The rest of these bits control binary weighted cells of Q-enhancement, frequency tuning,

capacitive coupling and resistance tuning used to tune the filter center frequency, bandwidth and

shape of the passband. The LC tank circuits are off-chip resonators driven by the Front-end and

Back-end. The final output of the filter is driven differentially from the Back-End buffer.

The entire IC was ported to a .18µm SOI process technology which is lower power and

better performance at higher frequencies than the .5µm and .25µm SOI processes used

previously. Portions of the circuit were redesigned to add functionality, improve performance or

to fix problems in the existing filter. These modified circuit designs are shown shaded slightly

darker with a dashed outline in Figure 1.1. The serial to parallel register was increased from 64

bits to 96 bits to control additional circuitry. The intrinsic gain of the cascoded amplifier cores

was lowered to 1 to improve the dynamic range. Resistance tuning circuitry was added to cancel

unwanted coupling affects. The frequency dividers were redesigned entirely to eliminate internal

oscillation problems in the current design. Also, a pre-existing design flaw was discovered in the

amplitude detector circuit. The design changes to the frequency divider and the addition of the

resistance tuning are explained in section Chapter 2. The design flaw in the amplitude detector is

also explained in Chapter 2. The rest of the circuit design as ported to the new process is

documented in appendix A.

 1.2.2 Supporting Hardware and Software

 1.2.2.1 Previous Work

The filter is implemented on a circuit board using a microcontroller to program and tune

the filter for testing and implementation. In the previous thesis work by Joel Schonberger, a test

application was written in C# to create a graphical user interface (GUI) which allowed the user to

5

control the filter manually or provide settings to an automated tuning algorithm. The circuit

board, the supporting software written for the microcontroller, and GUI are documented

thoroughly in [2]. The review here is therefore brief and provided only as a basis for

understanding the additions to this supporting software described in this thesis.

 1.2.2.2 Software Additions

It has been a long time goal of the work this thesis continues to achieve fractional

bandwidths of one percent or less relative to the center frequency. Achieving this narrow

bandwidth required the addition of fine tuning in the existing automated tuning algorithm. Those

additions are implemented and tested and documented in Chapter 3 and Appendix B. The

changes to the filter design also create a need to modify the supporting code for the

microcontroller and the GUI. The changes to the code for the microcontroller are explained in

Chapter 3. Changes to the GUI are also suggested, but not yet implemented.

 1.3 Receiver Architectures and Filter Applications

 1.3.1 Motivation
A crucial issue in today’s wireless communication technologies is maximizing

throughput in the allocated spectrum. As a result increasing demands are being placed on

communication technology. According to Michael Marcus, retired associate chief for

Technology with the FCC, “Transmitters don’t use spectrum, receivers do.” [6] Therefore, if

receiver performance is improved, the spectrum can be used more efficiently. Given the rapidly

increasing popularity of devices using wireless technologies, the demand on the RF spectra is

growing. Improving receiver’s performance to meet this demand is an important goal.

Receiver performance is a complex topic with a long history. To improve upon current

designs it is necessary to quantify current receiver performance to accurately assess the current

state of the technology and gain insight into how it could be improved. The task of a receiver is

to detect and translate the signal it’s tuned to receive without being affected by any other signal.

One way to measure how well a receiver does this is to measure the receiver’s spurious rejection

response. This work attempts to address the need to measure receiver performance by developing

a spurious response rejection test system and developing a novel graphical format to display the

results.

6

The limiting factor in improving receiver performance is largely governed by the ability

to filter and completely isolate only the desired signal. As a result, much research has been done

to design optimal filters. Q-Enhancement has been considered as an option for use integrated

receivers in previous work [7] and [8]. However, it’s been assumed that the limited dynamic

range and high noise figure associated with Q-enhancement would compromise receiver

performance [9]. This research in this thesis characterizing receiver’s spurious rejection response

indicates this conclusion is not fully correct.

 1.3.2 Prior Art

There are many criteria used to evaluate various aspects of receiver performance

including but not limited to, sensitivity, noise figure, dynamic range, third order intercept, IF

rejection, and adjacent channel rejection. This criterion is used both by amateurs [10] and in

industry and academia [11]. Another technique often used to look mixing schemes is the so-

called ‘spur chart’ in which a diagram is developed to illustrate potential combinations of

incoming signal frequencies and their harmonics and fLO and its harmonics that a receiver may

respond to [12]. Despite the useful information this diagram contains, it is difficult to understand

quickly. Moreover, no information about the severity of the spurious response is identified.

Literature generally emphasizes the important causes of spurious responses in receivers

to be mixing, IF separation, harmonics and coupling with existing signals in the receiver [13].

Other work has explored automated testing spurious rejection responses to apprehend the full

complexity of receiver’s performance [14], [15].

Unfortunately, spur charts and the many various standards of receiver performances

mentioned above fail to yield an intuitive assessment of the receiver’s spurious response

rejection performance. Even the works on automated spurious response testing, while quite

thorough, didn’t offer a simple way to view and intuitively evaluate the receiver performance.

Chapter 4 in this work addresses a new automated spurious rejection response test system and

develops and demonstrates a useful, intuitive graphical display of the test results.

7

 1.3.3 Research Accomplished

1.3.3.1 Spurious Rejection Response Testing System

To understand and characterize receiver spurious rejection response an automated test

system was developed. This system allowed four receivers to be tested thoroughly over different

amplitude ranges and different frequencies. The system uses a ‘MyDAQ’ and a LabVIEW based

test GUI. This system is explained at length in section 4.3.

1.3.3.2 Spurious Rejection Response Results

The data obtained from the Spurious Rejection Test System proved extensive. A

graphical display of the results was developed providing insights into the four receivers tested.

Explanations for the spurious responses observed were analyzed and evaluated in section 4.5.

1.3.3.3 Filter Application

Finally, a modified superheterodyne receiver using the Q-enhanced filter is proposed in

Chapter 5. The potential improvements in spurious rejection are partially tested using the

Spurious Rejection Test System. The results strongly indicate this solution might provide an

excellent alternative to current receiver architectures.

Chapter 2 - Q-Enhanced Filter Redesign

 2.1 Design Overview
This Chapter documents the redesign of a two-pole Q-enhanced band-pass filter IC

originally designed by Renee Strouts [1]. The first section will explain briefly the process of

porting this design to a new technology. The next section will focus on the problems with an

asymmetrical passband in the previous filter design. The origin of this asymmetry is explained

theoretically and the solution in the hardware design is documented. Last, this section looks at

the circuits which were changed significantly from the original design or had intrinsic issues in

the original design.

8

 2.2 Porting Design to Different Integrated Circuit Technology
This section describes porting the previous IC design in a silicon-on-sapphire (SOS)

process to a bulk SOI process. The bulk SOI process runs on a lower power voltage and has a

smaller minimum length of .18µm than the SOS process. The new process also includes body

contacts and a different 𝑘𝑛′ value. As a result, porting the circuit design required re-biasing the

circuits and choosing new W/L ratios which matched the circuits design specifications.

In general, analog design using metal on oxide semiconductor field effect transistors

(MOSFETs or ‘FET’s) at an IC level is ruled by well-known equation (2.1)

𝐼𝐷 = 𝑘𝑛′

2
𝑊
𝐿

(𝑉𝐺𝑆 − 𝑣𝑡)2 (2.1)

for FETs in the active region neglecting Early effect. Long channel FETs in the triode region are

described by (2.2).

𝐼𝐷 = 𝑘𝑛′
𝑊
𝐿
�(𝑉𝐺𝑆 − 𝑣𝑡)𝑣𝐷𝑆 −

𝑣𝐷𝑆
2

2
� (2.2)

Also,

𝑘𝑛′ = µ𝐶𝑜𝑥 (2.3)

and

𝑉𝑂𝑉 = (𝑉𝐺𝑆 − 𝑣𝑡) (2.4)

The above equations are well known, but the quadratic term is only correct for FETs that are

‘long channel’ with a sufficiently small overvoltage. If the FET is ‘short channel’ or the

overvoltage is large enough, the equation for ID versus VGS the active region reduces to (2.5).

𝐼𝐷 = 𝑘𝑛′

2
𝑊
𝐿

(𝑉𝐺𝑆 − 𝑣𝑡′) (2.5)

Where the new threshold voltage, 𝑣𝑡′, is the interpolated VGS-axis intercept of the linear portion

of the ID versus VGS relationship. A particular case of this behavior in a FET is shown in Figure

2.1. This behavior is not typically explained in textbooks, but is consistently exhibited in

experimental data [16].

9

Figure 2.1 – ID versus VGS Curve Showing Quadratic and Linear Behavior

It’s easy to see in the ID versus VGS above that the quadratic behavior only lasts from

about VGS =.35 V to VGS = .8 V. After VGS increases past about .8 V, the current increases

linearly. This behavior, as stated above, may start nearly as soon as the FET is in saturation if the

length is small enough. The new process lengths used in the Q-enhanced filter redesign were so

small that most design work assumes that the FETs are short channel.

Two other equations are important during this design when a FET is used as a switch.

First, when the FET is ‘on’ so that it’s conducting current and in the triode region, the resistance

that signals see from drain to source, 𝑟𝑂𝑁, is given in (2.6).

𝑟𝑂𝑁 = 1
𝑘𝑛
′

2
𝑊
𝐿 �𝑣𝑔𝑠−𝑣𝑡�

 (2.6)

Simultaneously, the capacitance of the FET can be calculated using (2.7).

𝐶 = 𝑛𝑊𝐿𝐶𝑜𝑥 (2.7)

which can then be used to find the impedance of a FET using (2.8)

 𝑋𝑐 = 1
2𝜋𝑓𝐶

 (2.8)

The ‘n’ in (2.7) is a fractional value between zero and one determined by the signal path through

the FET and whether the FET is off, in triode or in saturation.

Finally, since the overall design of the previous IC was robust and working well, most

circuits could be redesigned by simply assuming the same biasing scheme and altering the W/L

ratio to compensate for the change in 𝑘𝑛′ . However, this assumed the body effect would be

negligible. While this would simplify porting the design, some circuits needed to be addressed in

more detail. In general good design practice dictated that all circuits needed to be simulated and

10

evaluated individually to ensure a robust design that matched, or ideally exceeded, its

predecessor’s performance.

 2.3 Asymmetry in the Passband
This section deals with pronounced asymmetry in the passband shape, a major problem in

the previous design. This problem is documented extensively in [2] and illustrated in Figure 2.2.

The theoretical origin of this asymmetry is investigated and determined to be a result of two

issues in the previous design: the non-idealities of inductive coupling with finite Q inductors and

an error in the original coupling capacitor circuit design.

Figure 2.2 – Filter Response Showing Asymmetric Passband (Used with Permission [2])

 2.3.1 Sources of Asymmetry
Both sources of asymmetry are explored and characterized mathematically using

admittances in [2]. However, there is an algebraic error in the solution describing the inductive

coupling, so the corrected solution is explained in section 2.3.1.2 followed by the circuit level

solution. To prepare a basis for explaining the hardware design solution to these asymmetries,

admittances are reviewed in section 2.3.1.1. Finally, the solution for the coupling capacitors

derived in [2] is presented in section 2.3.1.3 along with the circuit level solution.

11

 2.3.1.1 Admittance Review

The basic ideas of admittance are presented here to provide a context for the discussion

of characterizing the asymmetries in the passband. The definitions of y-parameters are shown in

Figure 2.3 and equations (2.9) – (2.13). Y parameters for inductors, capacitors and resistors are

derived in (2.14) – (2.16).

Admittance is defined as the inverse of impedance and can described with the two port

network shown in Figure 2.3.

Figure 2.3 – Two Port Network (Used with Permission [2])

This network allows the following definitions to be developed.

�𝑖1𝑖2
� = �

𝑦11 𝑦12
𝑦21 𝑦22� �

𝑉1
𝑉2
� (2.9)

Input port admittance

𝑦11 = � 𝑖1
𝑉1
�
𝑉2=0

 (2.10)

Reverse Transfer Admittance

𝑦12 = � 𝑖1
𝑉2
�
𝑉1=0

 (2.12)

Forward Transfer Admittance

 𝑦21 = � 𝑖2
𝑉1
�
𝑉2=0

 (2.11)

Output Port Admittance

 𝑦22 = � 𝑖2
𝑉2
�
𝑉1=0

 (2.13)

Using the definitions in (2.10) – (2.13) a resistor, capacitor and inductor, connected between

ports one and two, are characterized in the next three equations.

Resistor: 𝑦21 = �𝑖2
𝑉1
�
𝑉2=0

= 𝑖2
𝑅𝑖1

= −𝑖1
𝑅𝑖1

= − 1
𝑅
 (2.14)

Capacitor: 𝑦21 = � 𝑖2
𝑉1
�
𝑉2=0

= 𝑖2
(−𝑗𝑋𝑐)𝑖1

= −𝑖1
(−𝑗𝑋𝑐)𝑖1

= −𝑗
𝑋𝑐

 (2.15)

Inductor: 𝑦21 = � 𝑖2
𝑉1
�
𝑉2=0

= 𝑖2
(𝑗𝑋𝐿)𝑖1

= −𝑖1
(𝑗𝑋𝐿)𝑖1

= 𝑗
𝑋𝐿

 (2.16)

12

By symmetry for these elements, 𝑦12will equal 𝑦21. A similar process could be used to find

𝑦11and 𝑦22, which should also be equal to each other by symmetry.

 2.3.1.2 The First Source of Asymmetry

As explained above, all inductors are limited by their Q value and have a small amount of

resistance. The previous work determined that the coupling between the inductors in the LC tank

circuits was not purely inductive due to the limited Q of the inductors [2]. As a result the

inductors introduced an unwanted coupling term 90º out of phase with the desired LC coupling

used in realizing the basic 2-pole response. To quantify and understand this unwanted coupling,

the impedance of the LC tank circuits are modeled mathematically in section 2.3.1.2.1.

 2.3.1.2.1 Origin of Asymmetry: Inductive Coupling

The LC tank circuits for the Q-enhanced filter are off chip and laid out using two discrete

inductors and a capacitor as shown in Figure 2.4.

Port1a

L1a L1b

C

Port1b

Vdd

Port2a

L2a L2b

C

Port2a

Vdd Port1a

L1a

L1b2C

Port1b

2CAC
Ground L1 L2

Port1a

Port1b

Port2a

Port2b

V1

+

-

V2

+

-

k

Rs1 Rs2

I1 I2

Figure 2.4 – Topological Transformation of LC Tank Circuit

This topology shown on the left of Figure 2.4 was used to allow the desired biasing. It is

not immediately obvious how to translate these two circuits into two port network. The

topological transformation required is shown in Figure 2.4, beginning with the topology of the

tank circuits and ending with the circuit rearranged into a two port network topology for

admittance analysis of the inductor coupling issue.

From Figure 2.4 it’s defined that 2L1a=2 L1b= L1. The capacitors are omitted since we

only need to consider the inductive coupling, shown as k in the last box to the right. Using these

definitions the forward transfer admittance can be derived as follows

𝐿1 = 𝐿2, 𝑅𝑠1 = 𝑅𝑠2 = 𝑅𝑠 ,𝑀 = 𝑘�𝐿1𝐿2 (2.17, 2.18, 2.19)

13

𝑉1 = 𝑗𝜔𝐿𝐼1 + 𝑗𝜔𝐿𝐼2𝑘 + 𝐼1𝑅𝑠 (2.20)

0 = 𝑗𝜔𝐿𝐼2 + 𝑗𝜔𝐿𝐼1𝑘 + 𝐼2𝑅𝑠 (2.21)

Solving (2.21) for 𝐼1 and letting 𝑋𝐿 = 𝜔𝐿

𝐼1 = − 𝐼2(𝑗𝑋𝐿+𝑅𝑠)
𝑗𝑋𝐿𝑘

 (2.22)

Substitute (2.22) into (2.20) where 𝑋𝐿 = 𝜔𝐿

𝑉1 = − 𝐼2(𝑗𝑋𝐿+𝑅𝑠)
𝑘

+ 𝑗𝑋𝐿𝐼2𝑘 −
𝐼2(𝑗𝑋𝐿+𝑅𝑠)𝑅𝑠

𝑗𝑋𝐿𝑘
 (2.23)

𝑦21 = � 𝐼2
𝑉1
�
𝑉2=0

= 1

−�𝑗𝑋𝐿+𝑅𝑠�𝑘 +𝑗𝑋𝐿𝑘−
�𝑗𝑋𝐿+𝑅𝑠�𝑅𝑠

𝑗𝑋𝐿𝑘

 (2.24)

Combining fractions, inverting and multiplying out yields

𝑦21 = 𝑗𝑋𝐿𝑘
−(𝑗𝑋𝐿+𝑅𝑠)𝑗𝑋𝐿−(𝑗𝑋𝐿+𝑅𝑠)𝑅𝑠

 (2.25)

𝑦21 = 𝑗𝑋𝐿𝑘
−(−1)𝑋𝐿2−𝑗𝑅𝑠𝑋𝐿−𝑗𝑋𝐿𝑅𝑠+𝑅𝑠2

 (2.26)

𝑦21 = 𝑗𝑋𝐿𝑘
𝑅2+𝑋𝐿2−𝑗2𝑋𝐿𝑅𝑠

 (2.27)

𝑦21 = 𝑗𝑋𝐿𝑘
�𝑅𝑠2+𝑋𝐿2�−𝑗2𝑋𝐿𝑅𝑠

��𝑅𝑠
2+𝑋𝐿2�+𝑗2𝑋𝐿𝑅𝑠

�𝑅𝑠2+𝑋𝐿2�+𝑗2𝑋𝐿𝑅𝑠
� (2.28)

𝑦21 = −2𝑋𝐿2𝑅𝑠𝑘

�𝑅𝑠2+𝑋𝐿2�
2+4𝑋𝐿2𝑅𝑠2

+ 𝑗𝑋𝐿𝑘�𝑅𝑠2+𝑋𝐿2�

�𝑅𝑠2+𝑋𝐿2�
2+4𝑋𝐿2𝑅𝑠2

 (2.29)

Now letting 𝑄 ≫ 1, so 𝑅𝑠 ≪ 𝑋𝐿 due to 𝑅𝑠 = 𝑋𝐿
𝑄� , all 𝑅𝑠2 go to zero.

𝑦21 = −2𝑅𝑠𝑘
𝑋𝐿2

+ 𝑗𝑘
𝑋𝐿

= 𝑘
𝑋𝐿
�− 2

𝑄
+ 𝑗� (2.30)

Last, we cancel the unwanted real component of y21 using the admittance of a resistor derived in

(2.10). The necessary resistance to eliminate the unwanted y21 admittance can be found by

summing that admittance with the admittance of a resistor and solving for the resistor. The

resulting resistance value is shown calculated in (2.27).

 �𝑅𝑠
2+𝑋𝐿2�

2+4𝑋𝐿2𝑅𝑠2

2𝑋𝐿2𝑅𝑠𝑘
≈ 𝑋𝐿2

2𝑅𝑠𝑘
≈ 𝑄𝑋𝐿

2𝑘
= 𝑅 (2.31)

where the real parts in (2.29) and (2.30) are shown having solved for the wanted resistance value.

From (2.31) we observe that in the ideal case y21 is equal to 𝑗𝑘
𝑋𝐿

 due to the quadrature relationship

between V and I in an inductor. This is the term needed in a coupled resonator filter to from the

desired passband response [17]. However, (2.31) shows an additional undesired “in-phase” term

14

as well. This term gives rise to the asymmetric shape seen in Figure 2.2 previously. This result in

(2.29) was confirmed using ADS. That simulation and its output are shown in Figure (2.5) –

(2.6).

Figure 2.5 – ADS Circuit Simulating Admittance Parameters

Figure 2.6 – ADS Simulation Output of Admittance Parameters

15

The simulation results in Figure 2.6 show agreement with the full form of the solution.

The next section describes the circuit level solution to the unwanted portion of the inductive

coupling in the next Q-enhanced filter design.

 2.3.1.2.2 Circuit Design Solution: Resistance Tuning

The work above shows that resistors interconnecting the LC tank circuits can be used to

cancel the asymmetry in the passband. According to the result in the previous section the

resistance value required will depend on frequency of operation, the strength of the coupling

between the inductors and the Q of the inductors. The k value, or the amount of coupling

between inductors, is documented in [2]. The range of frequencies considered is 400 MHz - 500

MHz. A typical range of Q values for on board inductors range from 5-20. Using this equation

and these ranges, a potential range of resistance values was calculated using the full form of the

solution and varying these parameters from the expected minimum to the expected maximum. A

table summarizing these results is shown in Figure 2.7.

16

Figure 2.7 – Range of Resistance Values

The range of resistance values predicted in Figure 2.7 range from .75 kΩ to 400 kΩ. However,

the 400 kΩ case uses a coupling of k=.0003. In [2] this coupling value was shown to be so small

that no significant asymmetry was produced in the passband. Therefore here, when choosing the

range of values to be implemented, values on the order of 400 kΩ were treated as open circuits .

Conversely, the lower range of resistance values result from much higher coupling values which

were also shown in [2] to cause significant asymmetry in the passband and were given more

emphasis when choosing resistance values for the circuit design.

A bank of binary weighted resistors were designed to interconnect the LC tank circuits in

the topology shown in Figure 2.8. Values were chosen to meet the range indicated in Figure 2.7,

but more importance was given to resistance values resulting from higher coupling coefficients

17

based on the results in [2], the available range of resistance values chosen is 750 Ω to 40 kΩ . The

circuit is shown at the top level in Figure 2.8 and with a closer in view in Figure 2.9.

LC Tank LC Tank

Rt

Port1a Port2a Port1b Port2b

Rb

Rlu

Rul

Figure 2.8 – Resistance Tuning Circuitry Topology

18

Figure 2.9 – Top View Resistance Tuning Circuitry

19

Figure 2.10 – Narrowed View Resistance Tuning Circuitry

The circuits in Figures 2.9 and 2.10 were implemented for each of the resistors shown in Figure

2.8 so these tuning circuits could cancel all possible geometries of inductive coupling.

These resistor banks were designed to be controlled by digital signals from the S/P

register driven through inverters to the gate of a FET. When the FET’s are on, they are driven in

the triode region. When the FETs are off they are seen in the circuit as small capacitors. The first

design consideration here was keeping the FET large enough that it’s on resistance was

negligible relative to the resistors it activated when on. The W/L ratio was calculated by

targeting a low on resistance relative to the resistors being driven using equation (2.32).
𝑊
𝐿

= 1

𝑟𝑂𝑁
𝑘𝑛
′

2 �𝑣𝑔𝑠−𝑣𝑡�
 (2.32)

Calculation shows a W/L ratio of 350 was adequate to produce RON value on the order of 2.5%

of the total resistance from port1 to port2 for the 750 Ω resistor when the FET was on.

The second design consideration was to ensure the impedance effects of capacitance due

to the FET when it’s off are sufficiently small. This restriction dictates that the W/L of the FET

be small enough that its impedance was large relative to the resistors it was driving, using

equations (2.7) and (2.8). The FETs used to produce the small RON were shown to produce a

20

complex impedance 14 times larger than the resistors, which should be sufficient to avoid

loading ports one and two when the FET is off. Figure 2.11shows the capacitances modeled for

the design in the on and off states.

Port1 Port2
R/2 R/2RON

Circuit

Circuit: On State

Circuit: Off State

Port1 Port2
R/2 R/2

Port1 Port2
R/2 R/2

1/6CFET

ROUTInverter

1/6CFET

1/6CFET

Figure 2.11 – Resistance Tuning Circuitry Models

 2.3.1.3 The Second Source of Asymmetry

 2.3.1.3.1 Origin of Asymmetry: Incorrectly Driven Coupling Capacitors

The second source of asymmetry in the passband shape was a result of errors in the

driving circuitry of the coupling capacitors used to offset the inductive coupling. The assumption

originally was that the capacitors, which were driven through a resistor via an inverter saw an

AC ground as shown in Figure 2.12.

21

Control Bit

Port1 Port2

Assumed
AC Ground

RX

Figure 2.12 – Resistance Tuning Circuitry Models

 However, these capacitors were connected between the front-end and band-end LC tank

circuits in the same topology used for the resistors in Figure 2.8. Unfortunately the two LC tank

circuits contain different signals, so the signals at port1 and port2 didn’t cancel each other. As a

result the gates of the FETs were not an AC ground.

Similar to section 2.3.1.2 the incorrect loading was modeled using Y-parameters and the

admittance needed to cancel the unwanted loading was found to be described by (2.33).

𝑦21 = 𝑅𝑋
𝑋𝐶2+4𝑅𝑋2

− 𝑗2𝑅𝑋
2

𝑋𝐶�𝑋𝐶2+4𝑅𝑋2�
 (2.33)

(2.33) shows for the unwanted real part of y21 to be negligible, XC must be much greater than RX.

This derivation and confirmation in simulation and tests with the Q-enhanced circuit is

documented in [2]. Section 2.3.1.3.2 describes the hardware solution to resolve this loading

problem.

 2.3.1.3.2 Circuit Design Solution: Corrected Loading

As (2.33) shows, the solution to mitigate the loading is to make the RX small relative to

the impedance of the capacitive impedance of the FET when it’s on. The XC of the FET is

calculated by equations (2.7) and (2.8) and can be used to estimate the necessary RX. The range

of coupling capacitor values were achieved as by implementing binary weighted banks of

capacitors, similar to the resistor scaling. The RX values for each bank of capacitors were scaled

down as the coupling capacitor values are increased. The schematic for this circuitry is shown

below in three views to explain the overall layout of the whole circuitry and provide views of the

lower level topology and smaller elements.

22

Figure 2.13 – Top View Capacitive Coupling Circuit

Figure 2.14 – Narrowed View Ctuneblock from Fig. 2.13

23

Figure 2.15 – Cell View Ctuneblock

 2.4 Additional Circuit Redesigns

 2.4.1 Frequency Divider

In the previous design the frequency divider circuitry lacked the desired sensitivity due to

an internal oscillation frequency documented in [2]. Many designs were considered as potential

solutions because the SOI process the filter was designed in didn’t have the digital circuitry that

could function reliably at the frequency ranges needed to divide down 500 MHz. However, the

new process D-Flip-Flop and inverter circuits performed well according to simulation and the

new frequency divider was designed as shown below in Figure 2.16.

Figure 2.16 – Top View Frequency Divider

This circuit works by using the inverters, self-biased using the resistors shown, and AC coupled

to amplify and shift DC offset of the signal to clock the first DFF. The series of 6 DFF provides

the desired division of 64 and an inverter is used as a buffer at the output to avoid loading issues.

24

According to simulation, this circuit takes a 10 mVPP differential sinewave at 500 MHz and

outputs a single ended digital square wave from 0 V to Vdd at 7.8125 MHz, 1/64 the original

frequency. The testbench and simulation output are shown in Figures (2.17) and (2.18).

Figure 2.17 –Frequency Divider Testbench

25

Figure 2.18 –Frequency Divider Simulation Output

The digital circuitry used in the new frequency divider design has the potential couple

into the low-level circuits within the die and needed a bypass capacitor, shown in the above

design, to smooth out any spikes in the power line. To ensure the cap was large enough to protect

the circuitry and keep the power input constant the circuit test bench was set up with a 1H

inductor in the power line to so that the circuit couldn’t draw current from the supply

immediately. Then the simulation was run to see if the circuit functioned correctly. The size of

the bypass cap was increased until the circuit maintained normal operation even with the

inductor in the power line. The testbench and the first part of the circuit in Figure 2.16 are shown

in Figures 2.19 and 2.20 followed by two output simulations. The first simulation output in

Figure 2.21 shows the circuitry performance with the bypass capacitor too small and the second

simulation output in Figure 2.22 shows the circuit performance with the bypass capacitor

sufficiently large.

26

Figure 2.19 –Frequency Divider Testbench to Test Bypass Capacitor

Figure 2.20 –Frequency Divider Circuit Narrowed View

27

Figure 2.21 –Frequency Divider Circuit to Test Bypass Capacitor Simulation Output with

Insufficiently Large Bypass Capacitor

28

Figure 2.22 –Frequency Divider Circuit to Test Bypass Capacitor Simulation Output with

Correctly Sized Bypass Capacitor

As shown by the simulation outputs the final bypass cap of about .7nF was large enough to

assure smooth and stable operation.

 2.4.2 Amplitude Detector

The last circuit discussed in detail is the amplitude detection circuitry. During simulation

a problem with the basic design was discovered. In the previous filter small signals were never

input to the amplitude detector due to problems with the frequency detector. As a result the

problem in the circuit design was never noticed. At this time a full solution to this problem is not

known, but the design flaw is detailed briefly here to document the problem to provide future

designers a basis to begin designing upon. The amplitude detection circuit as currently designed

is shown in Figure 2.23.

29

Figure 2.23 –Amplitude Detector Circuit

This circuit sets up a bias current using the current mirror with the PFETs at the top of the

circuit. The input signal is driven differentially through AC coupling capacitors to the input.

These capacitors have a small impedance relative to the FETs and biasing resistors connected to

the signal at the input. When there is a sufficiently large AC signal applied at the input, the core

FETs turn on shorting the drain voltage to ground and the voltage at the drain of both FETs

drops. Good sensistivity is ensured by biasing the core FETs close to their thresholds so that only

a small voltage is needed to turn them on. The output stage is a resistor and two capacitors in a

low pass configuration to filter the output signal. Ideally, a stable DC voltage is output which

drops quickly and significantly with the application of an input signal. During the design and

simulaiton of this circuit a problem was discovered with the design as illustrated in Figures 2.24

and 2.25.

30

Figure 2.24 –Amplitude Detector Circuit Testbench

Figure 2.25 –Amplitude Detector Simulation Output

31

As desired, this circuit produces a sharp decrease in the output voltage level in direct

proportion to the amplitude of the input signal. However the output simulation shows that after

the voltage drops sharply it slowly increases. This behavior was determined to be caused by the

time constant created by the resistors biasing the core FETs and the input capacitors. The

problem occurs because when one of the FETs is turned on, the voltage drops as the input signal

is still being applied, but the currents charging the input capacitor are not symmetrical. With the

FET on, a larger CGS is created, and then when it is off during the subsequent half of the cycle of

the input, the CGS is no longer the same value. As a result the input coupling capacitor stores up a

charge and slowly pushes the output voltage up again. This issue will need to be resolved before

the design is fabricated.

The rest of the circuits in the Q-enhanced filter were very similar to the original design

and are omitted in the body of this text. However for clarity and documentation, these circuits are

included in the appendix A where they are explained briefly and shown with their simulations.

Chapter 3 - Supporting Hardware and Software

 3.1 Previous Work
In the thesis preceding this work, C based support code was written to for a

dsPIC64FJ802 microcontroller to program and control the Q-enhanced filter. The

microcontroller sent a control word, 64 bits in length, to the filter’s serial to parallel register.

Additionally, C# code was used to create a GUI that allowed the user to interface with the filter.

Two versions of the C code on the microcontroller were developed: an automated, temperature

stable algorithm that took user settings and could achieve bandwidths of 20MHz-5MHz, and a

manual algorithm that allowed the user to manually set all the bits of the control word. As a basis

to understand the code modifications implemented and recommended in the future, the next

section briefly reviews the automated algorithm with the inclusion of resistance tuning.

 3.2 Top-level Code Implementation
The automated algorithm worked as shown in Figure 3.1. The first step in the algorithm

is setting all controls based on user inputs and initializing all additional settings. Next, the

32

algorithm tunes the front-end frequency, then the back-end frequency, sets the coupling controls,

sets the resistance tuning, waits the designated time interval and iterates. The only change at this

top level of the algorithm is the addition of the resistance tuning. The information for modifying

the code to implement this new hardware is detailed in section 3.3.2. The other additions to the

algorithm occur within the front-end tuning and back-end tuning blocks. These changes are

explained in section 3.3.1.

Figure 3.1 – Top Level Flowchart of Tuning Algorithm

 3.3 Software Additions
The first set of changes to the C code are additions implemented to improve the tuning

algorithm by using the fine resolution frequency and q-enhancement controls in the current filter

design. The second set of additions are needed to prepare the current code for the addition of the

33

resistance tuning capability. The next section on fine tuning explains the changes to the code

and documents the resulting improvements in the automated algorithm. The following section on

resistance tuning will describe the suggested implementation and hardware specifics needed to

implement passband symmetry control. Additionally, each of these sections enumerates the

additions to the C code and C# code that are needed.

 3.3.1 Fine Tuning

 3.3.1.1 Implementation

It was a long time goal of this work to achieve finer frequency tuning accuracy and

smaller bandwidth capability. In preparation for this goal external DACs were already

implemented on the circuit board with the microcontroller. These DACs were intended to

generate the necessary analog voltages to the pins on the filter which controlled the analog

frequency tuning and Q-enhancement controls, but were not tested and exercised in previous

work [2]. The analog circuits the fine-tuning explained in this section uses are essentially

identical to those in Figures A.17 and A.19. Figures 3.2 through 3.5 show the flowcharts for the

modified automated algorithm and are explained below.

The modified frequency tuning algorithm is shown in Figure 3.2 is identical to the

flowchart in [2], except for the addition of fine tuning which uses the analog controls,

implemented immediately after the course tuning which uses the digital controls. The ‘get-

frequency’ flowchart in Figure 3.3 for the front and back ends is unchanged. However the ‘find-

critical-oscillation’ flowchart in Figure 3.4 now includes the fine Q-enhancement tuning. The last

flowchart in Figure 3.5 is entirely new and documents the logical flow of the fine tuning

algorithm.

The fine tuning portion of the algorithm functions very similarly to the course tuning.

First, the fine tuning determines whether the current frequency is higher or lower than desired.

Second, the algorithm iterates to find the first analog setting to set the current frequency equal to

the desired frequency. Those analog settings are stored and then further incremented until the

frequency no longer equals the desired frequency. Those analog settings are compared to the

stored settings and the analog controls are set centered between them to achieve the closest

frequency to the desired frequency as possible.

34

Figure 3.2 – Frequency Tuning Algorithm Flowchart: Revision 2

35

Figure 3.3 – Get Frequency Algorithm Flowchart (Used with Permission [2])

36

Figure 3.4 – Find Critical Oscillation Flowchart

37

 Figure 3.5 – Fine Tune Flowchart

38

 3.3.1.2 Results

The fine-tuning code addition improved the algorithm’s performance. Without fine

tuning some settings at bandwidths on the order of 5MHz exhibited variation in gain and

bandwidth in the passband from one tuning iteration to the next. When the filter was

programmed and the automatic tuning algorithm run, the settings that were chosen by the tuning

algorithm were output to the GUI. These outputs showed a change ±1 in the digital q-

enhancement settings when the gain in the passband varied. This indicated that the tuning

algorithm needed additional precision to avoid fluctuation between two values in the algorithm.

Bandwidths below 5MHz were not achievable without producing unstable outputs from the

filter.

Figure 3.6 shows the passband variation caused by this quantization error in the tuning

algorithm. This behavior was captured by

setting the first trace of the spectrum analyzer

to capture the maximum value of the passband

and the second trace to capture the minimum

value of the passband. This variation between

tuning iterations was eliminated when the fine

tuning code was implemented.

After the fine tuning was

implemented, a temperature stable bandwidth

of 2.5MHz with a center frequency of 450

MHz, a fractional bandwidth of about .6%,

was achieved. Figure 3.7 shows a screen

capture of the filter tuned to this narrow bandwidth and the settings which achieved this

passband shape are shown in Table 3.2. This bandwidth and passband shape was maintained by

the algorithm which included the fine tuning when heated from 20ºC to 75ºC.

Figure 3.6 - Passband Variation without

 Fine Tuning

39

Figure 3.7 – 2.5 MHz Bandwidth Passband with Fine Tuning

Algorithm Settings
Bandwidth 5 MHz 2.5 MHz
Center Frequency 450 MHz
Frequency Tolerance .3 MHz
AD Threshold 1 3 2
AD Threshold 2 3 3
Q-Offset 2 2
Q-Back-Off 2 1
F-Offset 2 2
Capacitive Upper Tuning 8 5
Capacitive Lower Tuning 6 6
Capacitive UFLB Tuning 0 0
Capacitive LFUB Tuning 0 0

Table 3.1 – Fine Tune Settings for 2.5 MHz Bandwidth

These settings are dependent on the resistors used to cancel passband asymmetries and the Q of

the on chip inductors. These settings may need to be varied ±1 if one of these variables has been

changed. The addition of the more precise controls suggested in the future work should help to

mitigate uncertainty in these settings.

 3.3.2 Resistance Tuning

 3.3.2.1 Implementation

The resistance tuning code needs to be developed to utilize resistance tuning controls

described in section 2.3.1.2.2. This code can’t be fully tested without the new filter design, but

40

many of the necessary additions to the code-base are clear. Some of the modifications needed are

detailed below.

 3.3.2.2 Control Word and Passband Controls

The filter is programmed by the microcontroller via SPI communication. The current

code sends a 64 bit word to the filter. The new filter will have an additional 28 bits of data to set

the resistance tuning circuitry documented in section 2.3.1.2.2. The full 96 bit control word that

the serial to parallel register will need from the microcontroller is shown in table 3.3.

‘FENDCON’ and ‘BENDCON’ are the control bits for the front-end and back-end frequency

tuning, the amplitude detector and frequency divider. ‘CAPCON1’ and ‘CAPCON2’ are the

control bits for the capacitive coupling circuits. ‘RESCON1’ and ‘RESCON2’ are the control

bits for the passband asymmetry neutralization. RESCON1 and RESCON2 are unimplemented at

the time of this thesis’s publication.

FENDCON BENDCON CAPCON1 CAPCON2 RESCON1 RESCON2

 MSB LSB

Table 3.2 – Word Sent from Microcontroller to Filter

The resistance value needed to cancel asymmetries due to unwanted inductive coupling in

the LC tanks, calculated in section 2.3.1.2.1, is shown again in (3.1) and then expressed in terms

of coupling, k, and the Q of the filter.
−1
𝑅

= −2𝑋𝐿2𝑅𝑠𝑘

�𝑅𝑠2+𝑋𝐿2�
2+4𝑋𝐿2𝑅𝑠2

= −2𝑄𝑘
𝑅𝑠((1+𝑄2)2+4𝑄2) = −2𝑄2𝑘

2𝜋𝑓((1+𝑄2)2+4𝑄2) (3.1)

since 𝑅𝑠 = 𝑋𝐿
𝑄� . Letting 𝑄 ≫ 1, then 𝑅 ≪ 𝑋𝐿 and all 𝑅2 go to zero and this equation can be

expressed as (3.2) where we assume the Q of the filter is dominated by the Q of the inductors.
1
𝑅

= 𝑘
𝑋𝐿

2
𝑄

𝑦𝑖𝑒𝑙𝑑𝑠
�⎯⎯⎯� 𝑅 = 𝑄𝑋𝐿

2𝑘
 (3.2)

Note this resistance value assumes that the non-symmetry in the capacitive coupling discussed in

section 2.3.2 has been successfully mitigated by raising the resistor values between the inverter

and the FET’s they drive and the only resistance being canceled out by this tuning is due to the

inductive coupling. However, these resistors can also compensate for a capacitor coupling non-

idealities if needed; only the value will need to be modified.

41

The capacitive coupling is currently implemented as a manual input by the user. It’s

recommended that the resistance tuning be implemented the same way for testing. Eventually,

when the filter is fully tested a bandwidth and center frequency could be chosen and the

capacitive coupling and resistance tuning could be chosen based off of a lookup table. This

would require knowing the coupling value between the inductors either by user input or hard

coding.

Chapter 4 - Spurious Responses in Receivers

This chapter addresses the impact of filtering on receiver performance at an architectural

level. As a basis for cogent discussion, receiver architectures are briefly enumerated and a

superheterodyne architecture is explained in some detail as a foundation of further analysis.

Next, receiver performance is discussed focusing on the intrinsic limitations imposed by a

receiver’s ability to avoid spurious responses. An overview of spurious responses is presented

with a brief explanation of their origins in superheterodyne receivers. To observe these behaviors

in receivers a novel method of measurement and receiver characterization is described. Using

this evaluation method some commercial handheld radios, a software defined radio (SDR) and an

integrated radio are characterized. Finally in Chapter 5, a modified receiver architecture using a

tunable variable bandwidth Q-enhanced bandpass filter is presented and our testing procedure is

used to verify the validity of this solution.

 4.1 Introduction to Receiver Architectures
The two primary types of receiver architectures generally used in modern communication

systems are direct conversion and superheterodyne. Direct conversion receivers offer some

excellent performance advantages for wideband signals and have been almost universally

adopted by the cell phone industry. However, superheterodyne architectures still dominate

narrowband receiver technologies due to innate limitations in current technology and remain the

architecture of choice for wide coverage designs such as spectrum analyzers and software

defined radio front-ends. Superheterodyne receivers therefore may be favored in applications

such as sensor networks and cognitive radio. As explained in the introduction receiver

performance is a crucial issue in modern communication technology which limits spectra usage

42

and defines the demands put on the communication infrastructure. Four architectures are

addressed below and explained briefly. The various types of spurs and behaviors mentioned are

explained in 4.2.

 4.1.1 Direct Conversion

Direct conversion receivers use a 0 Hz IF frequency, converting the received signal

directly to baseband. These architectures typically include a preselect filter and a LNA before the

mixer. After the conversion to baseband lowpass filters are applied and amplification and

demodulation is accomplished. A basic block diagram of this receiver architecture is shown in

Figure 4.1.

VCO

Low Noise
Amp Mixer1 Low Pass

Filter1
Preselect

Filter Output

Demod

Amplifier1

Mixer2 Low Pass
Filter2 Amplifier2

0°

90°

Figure 4.1 – Direct Conversion Receiver Block Diagram

This architecture offers some nice potential performance capabilities. The most obvious

advantage of a 0Hz IF frequency is that there is no image frequency. Additionally the filter

design complexity is reduced somewhat because only a good lowpass filter is required. However,

this also means that the VCO is equal to the received frequency posing potential problems of fLO

feedthrough and crosstalk between nearby receivers. Another major problem is the DC offsets

innate in any 0Hz IF design. Resolving this using an AC coupled system is made more difficult

by the potential for very low frequency variations in the DC offset from variation in path or

coupling. Finally, when implementing in a CMOS process especially, 1/f noise becomes a

problem. For a narrowband radio, high 1/f noise requires excessive gain ahead of mixer in order

meet receiver noise figure goals. Such broad-band high gain creates strong spurious responses

43

when operating in a dense signal environment. So, while this architecture works very well for

wideband reception which doesn’t have demanding filter needs, narrow band applications are a

different matter because they put highly demanding restrictions on the lowpass filter roll off.

 4.1.2 Superheterodyne

Superheterodyne architectures are built around the central idea of converting the received

RF frequency to a lower intermediate frequency (IF) for filtering, amplification and

demodulation. These receivers typically include a preselect filter, a LNA, an image filter and a

mixer. Sometimes the image filter is omitted and an image rejection mixer is used instead. After

the signal is mixed to the IF, it is further filtered, amplifier and demodulated. A basic

superheterodyne receiver is shown in Figure 4.2.

VCO

Demod

Low Noise
Amp Mixer Bandpass

Filter
Preselect

Filter OutputImage
Filter IF Amplifier

Figure 4.2 – Superheterodyne Receiver Block Diagram

There are many advantages to heterodyning the received signal. The narrowband filtering

can be done at a lower fixed frequency reducing the design demands on the filters quality factor.

The amplification can be split between two different frequencies reducing the potential for

positive feedback. Additionally, the bulk of the gain can be provided at the lower IF frequency

where amplification is easier to achieve. A significant drawback to this architecture is the image

frequency inherent in the downconverting operation, even though image rejection has been well

studied and is often successfully mitigated by image reject filters and/or image reject mixers.

Another drawback is that the LO frequency used to downconvert the received signal will have

some phase noise which adds into the mixed spectrum, but this is inherent in any frequency

generation and conversion, including direct conversion applications. Also, if a phase locked loop

is used to control the VCO, fLO will have harmonics produced by the pulse train generated to

vary the control voltage. However, despite these design challenges this architecture still provides

44

the best performance for narrowband receivers since no other architecture sufficiently addresses

the filtering, coupling and noise challenges innate in narrowband reception.

 4.1.3 Multiple Conversion Superheterodyne

The superheterodyne receiver is often extended to double or triple conversion

architectures to help minimize the image response and increase the receiver’s spurious response

avoidance. A basic dual conversion receiver is shown in Figure 4.3.

VCO1

Demod

Low Noise
Amp Mixer1 Bandpass

Filter
Preselect

Filter OutputImage
Filter IF Amplifier

VCO2

Mixer2 Bandpass
Filter

Figure 4.3 – Multiple Conversion Superheterodyne Receiver Block Diagram

This architecture might upconvert a signal to a first IF and then downconvert to the final

IF, or down convert through two or more conversions to the final IF where the signal is

demodulated. In any case, the use of additional IF through multiple conversions significantly

reduces the problematic image frequency and theoretically helps reduce IF feedthrough as well.

 4.1.4 Software Defined Radio
Software defined radios (SDR) are a completely different architecture. The potential

flexibility available in a digital implementation is very attractive and many SDRs have been

developed. However, the need for an analog front end is inescapable due to the demands of high

frequency narrowband reception. A typical block diagram for a SDR is shown in Figure 4.4.

VCO

Demod

Low Noise
Amp MixerPreselect

Filter

OutputDigital
FilteringADC

Analog Front End

Software/Hardware Back
End

Figure 4.4 – Superheterodyne Receiver Block Diagram

45

 As shown some type of preselect filter is typically included with an LNA and

downconversion. Then the signal is sampled by the ADC, filtered and demodulated digitally.

These receivers are very complex and a full analysis of their inner workings is beyond the scope

of this work. They are introduced here as context for later discussions.

 4.2 Spurious Responses in Receivers
Spurious responses, or ‘spurs’, are defined as frequencies the receiver responds to which

are different than the frequency the receiver is tuned to receive. In general, the receiver will

respond to any signal which mixes to or distorts the IF or its modulation. These spurs can occur

through several mechanisms resulting from different aspects of the receiver architecture. These

spurious responses often occur when 2nd or 3rd harmonics of a received signal (produced in the

mixer or amplifiers preceding it when an input is sufficiently strong) mix to the IF with

harmonics of the VCO or other pre-existing frequencies in the receiver. Spurious responses also

occur when signals “feedthrough” due to inadequate filtering. Additionally, intermodulation may

occur when two strong off-channel signals mix directly to the RF channel or the IF. It’s also

noteworthy that some receivers may have a spurious response when tuned to receive specific

frequencies when no external signal is applied, due to an internally generated signal at that

frequency. These responses are referred to here as “birdies”.

To discuss spurs graphically Figure 4.5 is provided detailing the expected spectrums at

each major node of a typical superheterodyne architecture. The architecture includes a frequency

synthesizer with a TCXO and ADC and demodulation (DMOD) circuitry as these are quite

common in these designs. This figure is meant to show how real world spectrums should behave

in this architecture and assumes no spurious responses are occurring. The only non-idealities

shown are noise, other frequencies in the received signal’s environment, LO feedthrough, close

in synthesizer spurs around fLO and the fLO and fRF products from the mixer.

46

ADC,
DMOD

TCXO
Frequency
Synthesizer

Preselect
Filter

Image
Filter

IF
FilterLNA

IF
Amplifiers

Desired Signal

Desired Signal

Desired Signal

Mixer

Desired Signal

VCO Spectrum

fLO

Desired Signal

Desired
Signal

fLO Feedthrough

VCO

Figure 4.5 – Superheterodyne Receiver with Spectra

The first step in a superheterodyne receiver is the preselect filter. This filter ideally

eliminates all frequencies outside of the bandwidth the receiver is designed to receive. The next

step is low noise amplification to improve the noise figure of the receiver. The image reject filter

shown here isn’t always implemented in superheterodyne architectures, but it is shown here to

emphasize the need to address the potential spurious response caused by the image frequency.

Most superheterodyne receivers will implement an image reject filter or image reject mixer to

mitigate the image frequency. Also, the noise itself becomes amplified so that the signals of

interest are on a ‘noise pedestal’ following the image filtering. Next, the mixer uses fLO from the

VCO to downconvert the received signal. The VCO is driven by a frequency synthesizer using a

PLL which causes some phase noise and close in spurs with fLO. The spectrum after the mixer

will contain the upconverted spectrum, some amount of ‘LO feedthrough’ and the desired

downconverted spectrum. As long as these signals are not too strong and the IF is high enough,

the IF filtering will ideally eliminate all but the signal at the IF, as shown in the spectrum after

the IF filter. Last, the IF signal is amplified to ensure the demodulation circuitry has a strong

signal to interpret.

47

 4.2.1 Nonlinear Behaviors

 4.2.1.1 Amplification

One of the most important problems in receivers is the nonlinear nature of active devices.

Any active device which has a perfect sine wave as an input, such as an amplifier or mixer, will

output a signal which has harmonics besides the fundamental with magnitudes depending on the

design of the device and the power of the input signal. The linear region of the device is defined

as the range of operation over which the output signal contains harmonics which are so small

they are negligible. In the case that the device isn’t operating in the linear region the nonlinear

output will contain harmonics with significant amplitudes. The harmonics can be modeled

mathematically by expressing the output signal as a summation of the input signal using a

Maclaurin expansion as follows:

𝑣𝑂 = 𝐴1𝑣𝑖 + 𝐴2𝑣𝑖2 + 𝐴3𝑣𝑖3 + … (4.1)

Using trigonometric identities it’s easy to see the frequency harmonics coming from the

sinusoidal input evolving from this equation as follows:

𝑣𝑂 = 𝐴1𝑉𝑐𝑜𝑠(𝑤𝑂𝑡) + 𝐴2
2
𝑉2[1 + 𝑐𝑜𝑠(2𝑤𝑂𝑡)] + 𝐴3

3
𝑉3[3𝑐𝑜𝑠(𝑤𝑂𝑡) + 𝑐𝑜𝑠(3𝑤𝑂𝑡)] + … (4.2)

when

𝑣𝑖 = 𝑉𝑐𝑜𝑠(𝑤𝑂𝑡) (4.3)

Any simple sinusoidal signal passing through a non-linear device such as mixers or

amplifiers can be described this way. Looking at the above expression it’s clear that an input

signal of significant power will produce significant harmonics. So any strong signal which is in

the bandwidth of operation, or a signal outside this bandwidth which the preselect filter fails to

mitigate, can produce these harmonics. Additionally, the synthesizer fLO signal will contain

harmonics, or even if the LO is reasonably pure, the switching mixer used in nearly all designs

implicitly introduces LO harmonics in the mixing process itself.

 4.2.1.2 Mixer Spurs

All of these amplified signals and their harmonics have the potential to mix to the IF. In

particular, the potential combinations of RF and LO signals which can mix to the IF band are

predicted by the well-known equation:

𝑓𝐼𝐹 = 𝑀𝑓𝑅𝐹 + 𝑁𝑓𝐿𝑂 (4.4)

48

Obviously, good filtering is crucial because any unwanted received or internally generated signal

in the receiver is subject to this nonlinear behavior and could produce spurious responses if the

signal is strong enough. Given this nonlinear behavior, good gain control is also important to

minimize unnecessary creation of harmonics due to over amplifying a received signal. Figure 4.6

graphically depicts a potential development of this nonlinear behavior in a section of the

superheterodyne architecture.

Imperfect
Image
FilterLNA

Desired Signal

Mixer

VCO

VCO Spectrum

fLO

fRF, Desired Signal

fLO 2fLO 3fLO

2fRF

3fRF

Desired Signal
fLO Feedthrough

 fLO feedthrough

Desired Signal &
fIF=nfLO±mfRF

Nonlinear fLO

Shown

Figure 4.6 – Nonlinear Spurs

As shown in Figure 4.6 strong signals produce harmonics at regular intervals with

decreasing amplitudes. The desired signal at fRF mixes with fLO as expected. However it is also

possible that a signal near fRF will have a second harmonic that differs from the second harmonic

of fLO by fIF producing a signal at fIF which will distort the desired signal. Also, any time a signal

is a fractional value of fRF and is strong enough to produce harmonics, the harmonic may reach

the demodulation circuitry by mixing to the IF. We will refer to this as a sub-harmonic spurious

response.

49

 4.2.1.3 Intermodulation Distortion

Intermodulation distortion is another type of spurious response. However, this behavior

differs from other spurious responses described above because this is a result of two or more

signals at the input of the receiver interfering rather than one signal from the input mixing with a

signal internally generated in the receiver. This is a particularly difficult problem because the

spectrums in most environments on earth are full of strong signals at many frequencies. Signals

which are strong enough to produce harmonics could self-mix or mix to the IF through the

mixer. Intermodulation is an important issue in receiver performance, however due to time

constraints this issue is not addressed in this work.

 4.2.2 Spurs from Digital Synthesizers

Another major source of spurious responses in many receiver architectures today is

digital synthesizers. Digital synthesizers are used because they provide precise fine resolution

tuning of the VCO. A typical synthesizer includes a VCO, a temperature compensated crystal

oscillator (TCXO), division and filtering circuitry and a phase-frequency detector (PFD). There

are two major causes of spurious responses resulting from this circuitry: the TCXO and the

pulsed output from the PFD. The TCXO causes spurs because it provides a strong signal as a

reference which is often divided down to be used in the N synthesizer. The fundamental

frequency of the TCXO, and any frequency it is divided down to, could be a strong signal within

the receiver. These signals have the potential to mix with each other or unwanted incoming

signals to the IF.

The other major source of spurs, the PFD, compares the divided TCXO and VCO

outputs. Based on this comparison the PFD generates a varying voltage which is input to the

VCO to keep the VCO locked on the desired frequency. This modulation of the VCO frequency

creates spurs close in around the fundamental frequency that the VCO is producing. This

combined spectrum is the fLO input to the mixer. When a signal besides the desired RF enters the

mixer and is strong enough it will combine with a TCXO spur or a close in spur of the fLO and

may mix to IF band as shown in Figure 4.7.

50

Imperfect
Image FilterLNA

Desired Signal

Mixer

VCO

VCO Spectrum

fLO

fRF, Desired Signal

fLO 2fLO 3fLO

2fRF
3fRF

Desired
Signal fLO

Feedthrough

 fLO

feedthrough

Desired Signal &
Close In Interferer

Mixed to fIF

Nonlinear fLO

Shown

TCXO

Divided outputs
of TCXO

Close in
Interferer

Figure 4.7 – Digital Spurs

In these two cases the root problem is the additional frequency components inherent in

the frequency synthesizer design. The potential for either the TCXO or its subharmonics or the

close in spurs of fLO to mix with incoming signals is compounded by the nonlinear behavior or

amplifiers and mixers. Each of these undesired signals could produce additional harmonics when

amplified which also have the potential to mix to the IF.

 4.2.3 Image Frequency
A well known major spur problem specific to superheterodyne architectures, results from

a signal at the “image frequency”. For high side injection, the image frequency is above the fLO

signal by a frequency difference equal to the IF frequency placing it 2fIF above the frequency like

the receiver is tuned to. Conversely, if the receiver uses low side injection, the fLO frequency is

less than the desired RF frequency by the IF frequency and the image frequency is below the fLO

frequency by the IF frequency. In either case the difference between fLO and fRF and the image

51

frequency is the IF and results in an unwanted signal at the IF if there is a signal present at this

image frequency, fimage. Using symmetry the image frequency can be calculated using (4.5).

𝑓𝐼𝑚𝑎𝑔𝑒 = 𝑓𝑅𝐹 ± 2𝑓𝐼𝐹 (4.5)

where the sign of the addition is determined by the use of high or low-side injection respectively.

Figure 4.8 shows the image frequency mixed to the IF when the receiver uses high side injection.

Preselect
Filter

Image
FilterLNA

Mixer

Desired Signal

Image Frequency, fImageDesired Signal, fRF

VCO Spectrum

fLO

Local Oscillator Frequency
Leakage

fImagefRF
fLO

VCO

fLO mixed with both fImage and fRF

Figure 4.8 – Image Frequency

As shown the image frequency is located symmetrically about fLO with respect to fRF.

Without the image filter the image frequency will mix to the IF if neither the preselect filter or

the LNA have a narrow enough bandpass shape that the image frequency is suppressed.

 4.2.4 1/2IF & 1/3IF Spur Frequencies

The ½ IF spur problem is a less known but also significant issue in superheterodyne receivers. In

this case the 2nd harmonic of the LO frequency and the 2nd harmonic of the ‘half IF frequency’, a

frequency differing from fLO by one half the IF frequency, will have a difference equal to the IF.

As a result these frequencies will mix to fIF distorting the desired information at the

demodulation input. The ½ IF frequency can be calculated as follows:

𝑓1
2𝐼𝐹

= 𝑓𝐿𝑂 ± 1
2
𝑓𝐼𝐹 (4.5)

52

Figure 4.9 shows the 1/2IF problem graphically.

Preselect
Filter

Image
FilterLNA

Mixer

Desired Signal

Half IF Frequency, f½IF
Desired Signal, fRF

VCO Spectrum

fLO

 f½IFfRF
fLO

VCO

fIF from both (2f½IF x 2fLO)
and (fRF x fLO)

2fLO 3fLO

2fRF 2f½IF 2fLO

Local Oscillator Leakage, fLO

Figure 4.9 – 1/2IF & 1/3IF Spur Frequencies

 It’s noteworthy to consider the same concept works for the third harmonics of the fLO

frequency and the ‘one third IF frequency’, a signal located 1/3 of the IF frequency away from

the fLO. The third harmonics of these two signals will also differ by the IF as well. Beyond this

however, higher order spurs are typically not an issue as they are reduced enough in amplitude to

be negligible if they are mixed to the IF frequency. Figure 4.9 shows the ½ IF spur problem

graphically.

 4.3 Spurious Response Test System

 4.3.1 Manual Measurement Process
To investigate and characterize the spurious response of a “real world” radio receiver, it

is necessary to observe how a receiver tuned to a desired frequency responds to a wide range of

frequencies. To test receiver’s behavior, a signal was transmitted to the receiver using a signal

generator, and the output of the receiver was observed to see if the signal was detected. If a

signal was detected, the amplitude of the transmitted signal was decreased. This was repeated

53

until the receiver no longer received the transmitted signal. Then the frequency and the minimum

amplitude that the transmitted frequency was received at were recorded.

When performed manually, this process proved very time consuming as the following

calculation is shows

𝑇𝑀𝑒𝑎𝑠𝑢𝑟𝑒 = 𝑇∆𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 + 𝑇𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 = .5𝑠 + 1𝑠 = 1.5𝑠𝑒𝑐𝑜𝑛𝑑𝑠

where 𝑇∆𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦= the time needed to change the frequency of the signal generator and

𝑇𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒= the time needed to evaluate whether a signal is received. Taking the frequency range

divided by a step size of 10 kHz, chosen based on the bandwidth of the last IF filter, the number

of measurements becomes

𝑓𝑓𝑖𝑛𝑎𝑙 − 𝑓𝑖𝑛𝑖𝑡𝑖𝑎𝑙
∆𝑓

=
1𝐺𝐻𝑧

10𝑘𝐻𝑧
= 100000

and the time to evaluate multiplied by the number of measurements yields

100000 ∗ 1.5𝑠 ≈ 41ℎ𝑜𝑢𝑟𝑠

This omits the time it takes to decrement the amplitude when a quieting event occurs and is quite

optimistic about the time to manually tune and measure each frequency. Additionally, due to the

sheer number of measurements needed to scan an adequate frequency range human error is

increasingly likely. As a result it was determined an automated test setup was needed to obtain

this amount of data.

 4.3.2 Automated Measurement Development

 4.3.2.1 – Quieting Detection Method

The first step in automating this test was determining a reliable method of event

detection. When this test was done by hand the audio output of the receiver indicated when a

signal was reaching the IF by “quieting” which is a natural result when a CW signal is received

by a receiver in an FM mode. If no signal is reaching the IF the audible output of the receiver is

just static. If an FM signal reaches the IF, it will be demodulated and output through the audio

circuitry. In the case an unmodulated signal is received a fixed frequency is demodulated and the

audio output of a receiver will be quiet.

The static output of the receiver is just white noise at audible frequencies, so an FFT of

the digitized audio output from the receiver can be used to detect this ‘quieting’ event. First we

establish an average noise magnitude when no signal is received. When signal is receiver it can

54

be detected by noticing a decrease in the average noise magnitude as shown in Figure 4.10.

Using a MyDAQ the audio output from the receiver was digitized and stored in the computer

where LabVIEW code performed an FFT to analyze whether a signal was being received. The

threshold to determine whether an event had occurred was set as a relative change in dB,

typically 2dB. This made the system sensitive enough that it detected events with slightly greater

sensitivity than by listening to the static by ear. However, comparisons in the lab showed the

system agreed with manual event detection ± 2dB.

|F(w)| - white noise |F(w)|- Quiet

w w
Figure 4.10 Fourier Spectrum Response to Quieting

Next LabVIEW code was written to manage the testing process by controlling the signal

generator and detecting when the audio quieted indicating a spurious event. When a quieting

even is detected, the code recorded the frequency the signal generator was transmitting when the

event occurred and what amplitude the signal was reduced to that caused the event to stop

occurring. The LabVIEW code controlled an Agilent signal generator via a GPIO interface using

prewritten driver blocks provided with LabVIEW. This test system was used to test four radios:

1. VR-120

2. VX-3

3. SDR-14

4. K-State Microtransceiver

The test setup for these receivers is shown in the following section.

 4.3.2.2 Physical Test Setup

Figure 4.11 shows the Spurious Rejection Test System running a test on the VX-3. The

lower corner shows the VR-120, which was tested using an identical setup. As shown the Agilent

signal generator was connected to the receiver to transmit signals and the audio output of the

55

receiver was connected to the input of the MyDAQ, where the signal was put through an ADC

and processed in LabVIEW.

Figure 4.11 – Test Setup for VR-120 & VX-3

Figure 4.12 shows the test setup running a test on the software defined radio. A small

screen capture of the SDR software running is shown to the lower right. The audio output from

the SDR originated from the software and was output through the computer’s audio and fed into

the MyDAQ. Again, the Agilent signal generator transmitted the signal to the receiver.

56

Figure 4.12 – Test Setup for SDR

Figure 4.13 shows the test setup for the K-State Microtransceiver. In this case the signal

from the Agilent signal generator was fed into the K-State Microtransceiver. However, the K-

State Microtransceiver doesn’t have an audio output, so its IF output was sent into the VX-3

receiver tuned to receive the IF frequency. Then the audio output of the VX-3 was fed into the

MyDAQ.

Figure 4.13 – Test Setup for K-State Microtransceiver

57

 4.3.2.2 LabVIEW Code Algorithm

The LabVIEW code developed to automate this Spurious Response Test System included

several screens of graphical code. To summarize its functionality Figure 4.14 shows the

programmatic flow for the LabVIEW code.

Event Detection

Start

Input Test
Frequency

Evaluate
Noise

Spurs?

Set Start
Frequency

Evaluate
Noise

Increment
Frequency

Event?

Stop

No

Yes

Max Freq Range
Exceeded?

Yes

Decrement
Amplitude

Evaluate
Noise

Event?

Record
Event

Yes

No

Reset
Amplitude

Yes

No

Event
Detection

No

Figure 4.14 – Spurious Rejection Response Test System LabVIEW Code Flowchart

The LabVIEW GUI takes user settings for the start frequency, frequency range,

frequency increment step size, the power of the base test signal and some operational settings.

Once started the program asks the user to input a frequency to establish a baseline for a noisy

output from the receiver. Once the user selects the frequency, the program commands that

frequency and the user has the opportunity to decide if that frequency produces a noisy output

58

typical of no signal being received. This test is important to determine whether or not a spur is

being received at the frequency used to establish the noise baseline. Once the user confirms that

this frequency will establish a correct baseline, the code takes over and controls the test

iterations.

The program sets the frequency at the starting frequency and increments through the

range in a specified step size equal to or less than the FM receiver’s signal bandwidth. If the

output at the receiver quiets, indicating a spurious response was generated for this transmitted

frequency, the LabVIEW code decrements the transmitted signals power and measures the

output again. The code repeats this process until the spur disappears and then records the

frequency the spur occurred at and the amplitude the input signal was reduced to when the spur

disappeared. Then the program resets the amplitude, increments the frequency and iterates the

process of testing for a spur at each frequency. The LabVIEW code is documented in appendix C

along with a screen capture of the VI running and instructions for running a test.

 4.4 Receiver Block Diagrams
This section introduces each of the four receivers mentioned in section 4.3.2. These

receivers spurious rejection responses are explored and compared using the previously described

method of measurement in the next section. The architectures used these receivers are two

multiple conversion superheterodyne architectures, a single conversion superheterodyne

architecture, and a software defined radio. Because the architectures used in these receivers is an

important basis for a cogent discussion of their spurious rejection responses, this section begins

with a brief overview of each architecture.

 4.4.1 VR-120

The VR-120 is a commercially available general coverage, .1 MHz to 1300 MHz, AM

and FM receiver that uses a triple conversion superheterodyne architecture. A simplified diagram

of the VR-120’s architecture, based on a more detailed block diagram in its service manual, is

shown in Figure 4.15. This diagram focuses on the FM modulated receive path since all tests

used this option on the receiver.

59

Switched
Filter Bank

Amplification
(LNA)

Filter
(SAW)

Mixer1
(Gilbert Cell)

Mixer2
(Single BJT)

fO=248.45MHz
BW ~ 1.2MHz

fO=15MHz
BW ~ 300kHz

Filter
(Ceramic)

IF
Amplification

VCO1 VCO2
Buffers, PLL, Filter

Demod

FM Detection/
Demodulation

Audio
Amplification

TXO, 14.55MHz

fO=450kHz
BW ~ 7.5kHz

•
•
•
•
•
•

Figure 4.15 – VR-120 Block Diagram - after [18]

As shown, the first stage of the receiver is a bank of preselect filters for each of the bands

the receiver can be tuned to detect. The received signal is then fed into a low noise amplification

stage and into the first mixer. The signal is mixed to the first IF at 248.45MHz and filtered. Next

the signal is mixed to the second IF at 15MHz and filtered again, followed by another

amplification stage. Last the signal is mixed down to a final IF of 450kHz, filtered and

demodulated.

 4.4.2 VX-3

The VX-3 is an amateur radio transceiver which includes a general coverage .5 MHz to

999 MHz receiver that uses a double conversion superheterodyne architecture receiver. The VX-

3 is capable of receiving a large number of different bands, similar to the VR-120. The full VX-3

block diagram from the service manual includes a separate receive path for each received band

which includes a preselect filter, amplification, the first mixer and various filters. To simplify the

diagram only the two receive chains used in collecting the data in this thesis are included along

with relevant RF circuitry and the demodulation stage.

60

76-300MHz

1.6-76MHz

47.25MHz

Diode
Switch

Limiter

Diode
Switch

Diode
Switch

Diode
Switch

11.7MHz

VCO Unit

430MHz
VCO/MOD

144MHz
VCO/MOD

50MHz
VCO/MOD

PLL Loop
Filters

Digital Circuitry

3.579545MHz 32.768KHz

PORT1

Diode
Switch

PORT1
Diode
Switch

Demod

Figure 4.16 – VX-3 Block Diagram - after [19]

As shown in Figure 4.16 the receive chains are each proceeded by a preselect filter and

followed by a diode switch used to control the bands processed. The receive chain for the 76-

300MHz band shown proceeds into a limiter to limit the maximum power of incoming signals, a

filter, an adjustable gain amplifier and a tunable filter. Last, another diode switch is used to direct

signal flow before this receive chain enters the path used for all narrowband frequency

modulated signals, the start of which is indicated in the figure above by ‘PORT1’. The 1.6-

76MHz receive chain follows its first diode switch with an adjustable gain amplifier and a mixer

before ending with another diode switch as it terminates in the final IF receive chain. The final IF

receive chain of this circuit takes the received signal, now mixed to 47.25MHz, through another

diode switch and into the final IF filter. Last, the IF is fed through another adjustable gain

amplifier, a limiter and a final diode switch. The demodulator than follows further downconverts

the signal to 450 kHz and delivers the information to the audio output.

61

 4.4.3 Software Defined Radio
The next receover is the software defined radio. This SDR was developed for radio

enthusiasts and can receive 0 Hz to 30 MHz.

Software
NCO

1 to 20
Decimation

1 to 20
Decimation

LP/BP
Filter

LP/BP
Filter

FM
Demod

Interpolate/
Resampler

Audio
Out

SDR-14
SpectraVue

Software

~8KHz OR ~48KHz
sample rates

Filter
Designer

 ADC

66.66MHz
Oscillator

30MHz LP
Filter

Direct Input
Port

HF Input
Port

Digital
Downconverter

AD6620

PIC
Processor

512Kx32
Memory

32 to 8 Bit
MUX CPLD

16 bit IQ or
Real Data

USB
Interface

Hardware portion of
SDR-14

Figure 4.17 – SDR Block Diagram - after [20]

As shown there are two inputs on the SDR, both of which feed into the ADC. The path

tested in this work was the ‘HF Input Port’. The ADC is driven with a 66.66MHz oscillator.

After the ADC the signal is passed into a digital downconverter. The data is processed and

buffered, and then sent via a USB interface to the software which completes the signal

processing using decimators, filtering and demodulation. The software uses a numerically

controlled oscillator allowing the user to choose how much of the spectrum to view and which

frequency to receive.

62

 4.4.4 K-State Microtransceiver
The K-State microtransceiver is a single conversion superheterodyne architecture

receiver designed on an integrated circuit and developed and tested at Kansas State University.

This transceiver works in the UHF band from approximately 350 MHz to 500 MHz and uses a

single IF filter at 10.7 MHz, coupled with an image-reject mixer to mitigate the need for narrow

image filtering after the LNA. The block diagram below shows the receive chain of the

transceiver.

Figure 4.18 – K-State Microtranciever - after [21]

The received signal enters first through the transmit-receive (TR) switch and then goes

into the tuned RF LNA. Next the signal is downconverted with an image reject mixer, amplified

through an adjustable gain amplifier and sent to an off chip IF filter. Last, additional

amplification is available in another chain of adjustable gain amplifiers and then the signal is fed

to the ADC and finally the analog IF output ports.

 4.5 Receiver Test Results
In this section the test results for the four receivers described section 4.4 are given and

analyzed to identify causes of spurious responses. The data is presented in a novel graphical

format which allows the various spurious responses to be observed. The data is then summarized

in a table followed by a brief discussion of the test results. The first tests run were on the VR-

120, VX-3 and the SDR where each receiver was tuned to receiver 3.6MHz. These tests

demonstrate the validity of this testing methodology by showing some of the known spurious

rejection issues addressed in section 4.3 in the data from the tests. The next set of tests compares

63

these receivers performance tuned to a different frequency using the same preselect filter to their

original behavior when tuned to 3.6MHz. The third set of tests evaluates the performance of the

VR-120 and the VX-3 tuned to two different frequencies which use different preselect filters and

their spurious rejection performance is compared. The last set of tests in this section explores the

K-State microtransceiver’s spurious rejection. Two revisions of the microtransceiver are tested,

one tuned to 392.6MHz using an integer N synthesizer and the other tuned to 435MHz using a

fractional N synthesizer. The naming convention adopted in the next sections was as follows:

1. fLO = the local oscillator frequency

2. fRX = the signal being transmitted to the receiver

3. fRF = the signal the receiver is tuned to receive

 4.5.1 Checking for Mixer Spurs

Since such emphasis is placed on mixer spurs as problems in receiver’s spurious response

rejection ability, the data obtained from the following test results was analyzed exhaustively to

determine if the spurious responses found were due to mixer spurs. To accomplish this, a simple

Octave function was written to analyze the data. The function took in all the data obtained from a

test, the first IF frequency, and a few additional parameters. Using this information the function

checked all the n and m coefficients up to a pre-designated maximum order to see if mixer spurs

could explain the spurious response. The code for this analysis is shown in appendix D.

 4.5.2 Three Receivers Tuned to an HF Frequency

The VR-120, the VX-3 and the SDR were tuned to 3.6 MHz and their spurious response

rejection was tested. The VR-120 was scanned from 100 kHz to 1 GHz, the VX-3 was scanned

over 100 kHz to 100 MHz, and the SDR was scanned from 100 kHz to 30 MHz. The full scan on

VR-120 provided interesting data, but the scan took more than 48 hours so the VX-3 was

scanned over a reduced range which included the full passband of the preselect filter. The SDR is

only able to receive 0 MHz - 30 MHz so this entire range was scanned. The data from these tests

are shown in graphical from in Figures 4.19 -4.27. The data is organized in Tables 4.1 – 4.10. In

each table the fRX is specified, the LO and IF frequencies and their subharmonics are listed, and

the image frequency and the 1/2IF and 1/3IF spurs are listed. Last, each table contains the

potential n and m values calculated as described in section 4.2 that may have produced the spurs

in the data shown.

64

 Figure 4.19 – VR-120 3.6 MHz Tune Test Results

VR-120

fRX (MHz) 3.600

Intermediate Frequencies, IF (MHz) 248.45, 15, .45

Local Oscillator Frequencies, fLO (MHz) 252.05, 263.45, 15.45

Name/Source Spur Observed (MHz)

Subharmonics of fRX 1.8, 1.2, .9, .72, .6 …

IF1 feedthrough, and subharmonics 248.45, 124.23, 82.82, 62.11, 49.69, 41.41…

IF2 feedthrough, and subharmonics 15, 7.5, …

IF3 feedthrough 0.45

fIMAGE=fLO+fIF1 500.5

f1/2IF=fLO±1/2fIF1 127.82, 376.275

f1/3IF=fLO±1/3fIF1 169.23, 334.87

65

Mixing operations = fIF=mfLO±nfRF fRF (MHz) m n

 36.52 2 -7

 42.61 2 -6

 51.13 2 -5

 63.91 2 -4

 71.5 -1 7

 72.53 3 -7

 85.22 2 -3

 100.1 -1 5

 101.54 3 -5

 255.65 2 -1

 507.7 3 -1

 752.55 -2 1

 759.75 4 -1

Table 4.1 – VR-120 3.6 MHz Tune Test Results

Figure 4.19 shows four views of the data from the spurious response rejection scan of

VR-120 receiver tuned to 3.6 MHz. The first graph at the top right of Figure 4.19 shows the data

from 100 kHz to 1 GHz. The spurs beyond about 130 MHz were mostly suppressed except for

the image frequency at 500.5 MHz, feedthrough at 248.45 MHz, the first IF, and a few higher

frequency spurs, the strongest of which were can be explained as mixer responses with m and n

coefficients listed in Table 4.1. The next graph at the bottom left of Figure 4.19 shows a

narrowed data range of 100 kHz to 130 MHz. This range of data shows a multitude of spurs. This

data demonstrates the receiver’s response to subharmonics of the IF by showing spurs at 124.45

MHz, 82.82 MHz, 62.11 MHz, and 49.69MHz. This graph also shows a spur at 15 MHz,

implying that the receiver may experience some IF feedthrough from the second IF. Spurious

responses at frequencies predicted by the m and n coefficients in Table 4.1 are also shown. It’s

noteworthy that one of the stronger responses at 33.6 MHz isn’t predicted in the tabulated data.

The graph to the lower right shows a further narrowed view of the data from 50 MHz to 130

MHz which shows additional spurious responses predicted in table 4.1. The last graph in the

upper right shows a close in view of the spurious rejection response near the fRX frequency, 3.6

MHz. This graph in particular highlights the effects of nonlinear amplification. Spurious

66

responses down to the 1/6 subharmonic frequency of fRX are shown. Another notable feature of

this close in view is the spurious responses to signals out to roughly 295 kHz on either side of

fRX. This response could be due to the phase noise of the LO, or the combined IF bandpass filter

responses, or some combination of both. Last, there are two spurious responses immediately

adjacent on either side of fRX, significantly less strong, which indicate they are at the edges of the

final IF filter’s roll off. These signals are ±10 kHz which is consistent with the known ≈7.5 kHz

bandwidth of the final IF.

 Figure 4.20 – VX-3 3.6 MHz Tune Test Results

VX-3

fRX (MHz) 3.605

Intermediate Frequencies, IF (MHz) 47.25, .45

Local Oscillator Frequencies, fLO (MHz) 50.85, 46.8

67

Name/Source Spur Observed (MHz)

Subharmonics of fRX 1.8, 1.20, .9, .72, .6…

IF1 feedthrough, and subharmonics 47.25, 23.625, 15.75, 11.81, 9.45, 7.87, 6.75…

IF2 feedthrough 0.45, .225…

fIMAGE=fLO+fIF1 98.100

f1/2IF=fLO±1/2fIF1 27.225, 74.475

f1/3IF=fLO±1/3fIF1 35.105, 66.605

Mixing operations = fIF=mfLO±nfRF fRF m n

 9.075 2 -6

 13.615 2 -4

 14.015 -1 7

 15.045 3 -7

 18.155 2 -3

 24.525 -1 4

 24.825 -2 6

 28.545 -3 7

 29.575 5 -7

 31.235 4 -5

 32.705 -1 3

 33.305 3 -6

 34.505 5 -6

 39.045 4 -4

 41.405 5 -5

 43.075 -5 7

 44.105 7 -7

 49.045 -1 2

 49.655 -2 3

 49.955 -3 4

 50.135 -4 5

 50.255 -5 6

68

 51.455 7 -6

 51.575 6 -5

 51.755 5 -4

 52.055 4 -3

 52.655 3 -2

 54.465 2 -1

 57.605 -7 7

 60.305 -5 5

 61.745 7 -5

 66.605 -3 3

 67.205 -7 6

 70.475 -6 5

 74.475 -2 2

 77.185 7 -4

 78.085 4 -2

 83.555 -4 3

Table 4.2 – VX-3 3.6 MHz Tune Test Results

Figure 4.20 shows four graphs of the VX-3’s spurious response rejection when the

receiver is tuned to 3.605 MHz. The graph at the top left shows the spurious response of the

receiver over 100 kHz to 90 MHz. The spurs from 90 MHz to 100 MHz were completely

suppressed. The data in this graphs shows strong spurs at the subharmonics of the first IF

frequency, 23.625 MHz and 15.745 MHz. A very strong spur from IF feedthrough is shown at

47.25 MHz. Many additional spurs are also shown in this range, a number of which are predicted

by mixing operations in Table 4.2. The 1/2IF and 1/3IF spurs are also shown in this data at

27.225 MHz, 74.475 MHz, 35.105 MHz and 66.605 MHz. The graph in the lower left shows a

narrowed view of the data from 0 kHz to 4 MHz. The data in this graph shows spurious

responses down to the 1/4 subharmonic frequency of fRX, at 1.805 MHz, 1.185 MHz and

.895MHz. Additionally, spurious responses at .445 MHz and .225 MHz indicate the receiver fails

to block signals at the second IF and its 1/2 subharmonic frequency. The graph at the bottom

right shows a close in view from 3.45 MHz to 3.75 MHz which shows a spurious response to

69

signals around fRX that looks very similar to a typical phase noise plot of a LO with a spread of

spurious responses ±175 kHz around fRX. The last graph in Figure 4.20 at the top right shows the

first IF feedthrough and three responses which are close to values predicted in Table 4.2 at

49.245 MHz, 52.655 MHz and 54.455 MHz. Both the IF feedthrough and the spur at 54.455

MHz show a similar range of nearby spurious responses to the spread observed around fRX

indicating that the phase noise of the LO, or a filter bandpass response, or some other

unidentified phenomenon is affecting this spur.

Figure 4.21 – SDR 3.6 MHz Tune Test Results

SDR

fRX (MHz) 3.60

Intermediate Frequencies, IF (MHz) Unknown

Local Oscillator Frequencies, fLO (MHz) Unknown

Name/Source Spur Observed (MHz)

Subharmonics of fRX 1.8, 1.20, .9, .72, .6…

IF1 feedthrough, and subharmonics Unknown

Table 4.3 – SDR 3.6 MHz Tune Test Results

Figure 4.21 shows two views of the data obtained from the spurious rejection scan from

100kHz to 30 MHz of the SDR tuned to 3.6 MHz. The first graph to the left shows full view of

the data. The table for these spurs is brief and incomplete because this receiver architecture

departs significantly from the superheterodyne receivers making the calculations of spurious

response which were done for the VR-120 and the VX-3 impossible for the SDR. It is possible

70

an image frequency response exists for this receiver, but the LO frequencies are variables

defined in the software which are not immediately visible to the user, making it difficult to

predict the image frequency by calculation. The same argument is applicable to calculations for

other typical spurious responses. Also, this receiver employs many digital elements at software

and hardware levels, including an ADC, which has the potential to produce any number of

spurious responses. A detailed analysis of these specifics and this architecture is outside the

scope of this thesis. However, it’s noteworthy that there are a number of spurious responses

shown for this receiver. The graph to the right in Figure 4.21 shows a narrowed view of the data

from 0 kHz to 5 MHz and it’s particularly interesting to note that strong spurious responses occur

for frequencies down to the 1/5 subharmonic frequency of the tuned RF frequency. Clearly this

receiver architecture is subject to nonlinear amplification behaviors.

The data collected from spurious response rejection scans of the VR-120 and the VX-3

were very similar to one another. Both receivers showed very strong IF feedthrough and mixing

behaviors, however a surprisingly consistent and strong spurious response to subharmonics was

observed emphasizing the problems due to nonlinear amplification and the need for improved

filter solutions in the front end. The data from the SDR was different in many ways, but

exhibited an important similarity to the VR-120 and VX-3 in that it shared sensitivity to the

subharmonics of the fRX. All three receivers performed poorly for portions of these scans. Even

the SDR, which is relatively expensive and draws significant power, suffered from many

spurious responses.

It’s worth noting here as well, that in the data below there are a number of spurious

responses included which are unexplained. However, due to sheer amount of data represented in

even a single graph, it is beyond the scope of this thesis to analyze all of the data exhaustively.

However, the data demonstrates well known behaviors in receivers supporting the validity of this

testing methodology. These tests also show additional insight into receiver’s spurious response

rejection not emphasized adequately in current research. The graphical display of results lends an

easy intuitive understanding of a receiver’s ability to block unwanted signals and characterize a

receiver’s performance.

71

 4.5.3 Three Receivers Tuned to Two Different Frequencies in HF Band

Figure 4.22 – VR-120 3.6 MHz to 1 MHz Tune Comparison Test Results

VR-120

fRX (MHz) 1.000

Intermediate Frequencies, IF (MHz) 248.45, 15, .45

Local Oscillator Frequencies, fLO (MHz) 249.45, 263.45, 15.45

72

Name/Source Spur Observed (MHz)

Subharmonics of fRX .5, .33, .25, .2, 16…

IF1 feedthrough, and subharmonics 248.45, 124.23, 82.82, 62.11, 49.69, 41.41…

IF2 feedthrough 15, 7.5…

IF3 feedthrough 0.45…

fIMAGE=fLO+fIF1 497.9

f1/2IF=fLO±1/2fIF1 125.225, 373.675

f1/3IF=fLO±1/3fIF1 166.63, 332.26

Mixing operations = fIF=mfLO±nfRF fRF (MHz) m n

 35.78 2 -7

 41.74 2 -6

 50.09 2 -5

 250.45 2 -1

Table 4.5 – VR-120 3.6 MHz to 1 MHz Tune Comparison Test Results

Figure 4.22 shows a comparison of the VR-120’s spurious rejection response tuned to

receive 1 MHz to the VR-120’s spurious rejection response tuned receive to 3.6 MHz presented

in section 4.5.2. The two graphs to the right provide a graphical display of the data from the new

test from 100 kHz to 60 MHz. The image frequency, 1/2IF and 1/3IF spurs, shown in Table 4.5,

are outside the range of this scan. The graph at the top right shows several responses including a

spur at the second IF, 15 MHz, and another spur very close to its 1/2 subharmonic frequency at

7.66 MHz. This behavior is nearly the same as the first scan with fRX tuned to 3.6 MHz. The 1/5

subharmonic frequency of the first IF is shown clearly at 49.69 MHz showing IF feedthrough is

still a major problem for frequencies at the IF and its subharmonics. The spurs at 35.78 MHz and

50.09 MHz are predicted as mixer spurs in Table 4.5 and differ from the first scan as expected,

since fLO changes with fRX. The narrowed frequency range from 100 kHz to 1 MHz in the graph

to the lower right of Figure 4.22 shows strong spurs down to the 1/6 subharmonic frequency,

exactly like the first scan reemphasizing that subharmonics of frequencies that produce spurious

responses are a serious issue. Similar to the first scan the spread of spurs right around fRX is

about ±290 kHz on either side and two there are two spurious responses are immediately

adjacent to fRX, but much reduced in strength. Whether the source of this spread of spurs is LO

73

phase noise or IF bandwidths, the behavior appears invariant when the receiver is tuned to

different frequencies.

Figure 4.23 – VX-3 3.6 MHz to 70 MHz Tune Comparison Test Results

VX-3

fRX (MHz) 70.000

Intermediate Frequencies, IF (MHz) 47.25, .45

Local Oscillator Frequencies, fLO (MHz) 22.75, 46.8

74

Name/Source Spur Observed (MHz)

Subharmonics of fRX 35, 23.3, 17.5, …

IF1 feedthrough, and subharmonics 47.25, 23.625, 15.75, 11.81, 9.45, 7.87, 6.75…

IF2 feedthrough 0.45, .225…

fIMAGE=fLO+fIF1 117.250

f1/2IF=fLO±1/2fIF1 93.625, 140.875

f1/3IF=fLO±1/3fIF1 101.5, 133

Mixing operations = fIF=mfLO±nfRF fRF (MHz) m n

 11.665 1 -6

 23.335 1 -3

 35.005 1 -2

 41.125 -1 4

 54.835 -1 3

 62.415 2 -3

 76.125 3 -4

 82.255 -1 2

Table 4.6 – VX-3 3.6 MHz to 70 MHz Tune Comparison Test Results

Figure 4.23 shows a comparison of the VX-3’s spurious rejection response tuned to

receive 70 MHz to the VX-3’s spurious rejection response tuned receive to 3.606 MHz presented

in section 4.5.2. The two graphs to the right provide a graphical display of the data from the new

test from 100 kHz to 90 MHz. The image frequency, 1/2IF and 1/3IF spurs, shown in Table 4.6,

are outside the range of this scan. The graph at the top right shows a number of responses

including a strong IF feedthrough and its second harmonic, in this case stronger than the actual

fRX, similar to the first VX-3 scan. Several additional mixer spurs are shown as well, predicted in

Table 4.6, which differ as expected from the first VX-3 scan since fLO is varied to receive a

different fRX. The narrowed frequency range from 68 MHz to 72 MHz shown in the lower right

of Figure 4.6 shows a close in view of fRX. This view shows some close-in spurious responses

that are not predicted in tabulated data. This view also shows the same spread of spurs roughly

±175 kHz around fRX as observed when the VX-3 was tuned to 3.605MHz, again indicating this

behavior is invariant when the fRF is changed.

75

Figure 4.24 – SDR-3 3.6 MHz to 22 MHz Tune Comparison Test Results

SDR

fRX (MHz) 22

Intermediate Frequencies, IF (MHz) Unknown

Local Oscillator Frequencies, fLO (MHz) Unknown

Name/Source Spur Observed (MHz)

Subharmonics of fRX 11, 5.5, 2.75, 1.375, …

IF1 feedthrough, and subharmonics Unknown

Table 4.7 – SDR 3.6 MHz to 22 MHz Tune Comparison Test Results

Figure 4.24 shows a comparison of the SDR’s spurious responses when tuned to receive

22 MHz to the SDR’s spurious responses when tuned receive to 3.6 MHz. The graph on the right

in Figure 4.24 shows the new data from 100 kHz to 30 MHz. As in the first scan there are a

number of spurs in the data not predicted in the tabulated data due to the additional complexity

of the software driven variable components and digital circuitry. The new data dramatically

emphasizes the issue of subharmonics by showing strong second and third order responses at 11

MHz and 5.5 MHz.

This section shows that each of these receiver’s spurious response behaviors contain

consistent trends even when fRF is changed. A major problem that causes strong spurious

responses in receivers is IF feedthrough and its subharmonics. Signals too close to the fRF create

spurs as do harmonics of fLO and fRF, but there are a number of spurs which aren’t explained even

by these predictions.

76

 4.5.4 Two Receivers Compared at VHF Bands
This section shows the VR-120’s and the VX-3’s spurious rejection responses when

tuned to different bands that make use of different preselect filters than the last two sections.

These responses are compared and their data analyzed. Differences and similarities between

these responses and those in the last two sections are addressed

Figure 4.25 – VR-120 120 MHz Tune Comparison Test Results

VR-120

fRX (MHz) 200.000

Intermediate Frequencies, IF (MHz) 248.45, 15, .45

Local Oscillator Frequencies, fLO (MHz) 448.45, 263.45, 15.45

Name/Source Spur Observed (MHz)

Subharmonics of fRX 100, 66.67, …

IF1 feedthrough, and subharmonics 248.45, 124.23, …

IF2 feedthrough 15, 7.5, …

IF3 feedthrough 0.45, …

fIMAGE=fLO+fIF1 696.9

f1/2IF=fLO±1/2fIF1 324.225, 572.675

f1/3IF=fLO±1/3fIF1 365.63, 531.26

77

Mixing operations = fIF=mfLO±nfRF fRF m n

 156.7 3 -7

 162.11 2 -4

 216.15 2 -3

 219.38 3 -5

 229.07 -2 5

 232.3 -1 3

 257.56 4 -6

 284.83 5 -7

 286.34 -2 4

 291.75 -4 7

 309.07 4 -5

 318.76 -3 5

 324.22 2 -2

 348.45 -1 2

Table 4.8 – VR-120 120 MHz Tune Comparison Test Results

Figure 4.25 shows a comparison of the VR-120’s spurious rejection response from 140

MHz to 380 MHz, tuned to receive 200 MHz. The overall behavior of the spurious rejection

response is quite similar to this receiver’s response when tuned to receive 3.6 MHz or 1 MHz.

Subharmonics of the fRF and the IF frequencies are outside the range of this scan, however the

graph on the left of Figure 4.25 shows strong feedthrough for the first IF at 248.25 MHz. The

1/2IF spur at 324.22 MHz is also plainly observed along with a number of mixer spurs predicted

in Table 4.8. A narrowed view of the data from 199.5 MHz to 200.5 MHz is shown on the right

of the figure with a range ±295 kHz on either side of fRF of nearby spurious responses. Also there

are two slightly strong spurs immediately adjacent to fRF at ±10 kHz indicating the roll off of

the final IF filter.

78

Figure 4.26 – VX-3 150 MHz Tune Comparison Test Results

VX-3

fRX (MHz) 150.000

Intermediate Frequencies, IF (MHz) 47.25, .45

Local Oscillator Frequencies, fLO (MHz) 197.25, 46.8

Name/Source Spur Observed (MHz)

Subharmonics of fRX 75, 50, …

IF1 feedthrough, and subharmonics 47.25, 23.625, …

IF2 feedthrough 0.45, .225

fIMAGE=fLO+fIF1 244.500

f1/2IF=fLO±1/2fIF1 173.625, 220.875

f1/3IF=fLO±1/3fIF1 181.5, 213

Mixing operations = fIF=mfLO±nfRF fRF m n

 75 1 -2

 122.25 -1 2

 147.26 -2 3

 148.35 4 -5

 159.75 -3 4

Table 4.9 – VX-3 150 MHz Tune Comparison Test Results

79

Figure 4.26 shows a comparison of the VX-3’s spurious rejection response from 50 MHz

to 250 MHz, tuned to receive 150 MHz. The overall behavior of this spurious rejection response

is significantly better than when the VX-3 was tuned to receive 3.6 MHz or 70 MHz. The

response is amazingly spur free. The graph on the left shows a strong 1/2 subharmonic frequency

response at 75 MHz. The image frequency is shown at 244.5 MHz and a few mixer spurs

predicted in Table 4.9 are shown, including 122.25 MHz and 159.75 MHz. The graph on the

right shows the same spur spreading around fRF of about ±175 kHz as seen in the test results

from the previous two sections. Additionally, a repeated pattern of spurs is shown to the left of

the tuned frequency perhaps due to some digital circuitry. Last, a mixer spur is shown at 147.25

MHz.

In this section as well as the previous two, subharmonics are the most common problem.

This source of spurs is demonstrated in every test indicating that this issue a universal problem

even across varying radio architectures. While other responses were observed, such as IF

feedthrough, 1/2IF and 1/3IF spurs, and mixer spurs, there is a large number of unexplained

behaviors in these spurious responses. The graphical representation provides insight into the

receiver performance and guides the designer when looking at the receiver about which

frequencies to consider when assessing spur blocking capabilities.

 4.5.5 The K-State Microtransceiver Spurious Rejection Response at UHF

This section looks at the K-State microtransceiver spurious rejection response for two

cases: first, the receiver is tuned to receive 392.6 MHz using only the integer N synthesizer and

second, the receiver is tuned to receive 435 MHz and is using the fractional N synthesizer. These

plots show the spurious responses in both cases demonstrate some expected behaviors and allow

an easy comparison to be made about how the fractional N synthesizer impacts the spurious

response.

80

Figure 4.27 – K-State Microtransceiver Without & With the Fractional N-Synthesizer Test

Results

K-State Microtransceiver

fRX (MHz) 435.0 392.6

Intermediate Frequency, IF (MHz) 10.7 10.7

Local Oscillator Frequency, fLO (MHz) 445.7 403.3

Name/Source Spur Observed (MHz) Spur Observed (MHz)

Subharmonics of fRX 217.5, 145, 108.75, 87, 72.5, … 196.3, 130.8, 98.15, 78.52, …

IF1 feedthrough, and subharmonics 10.7, 5.35, … 10.7, 5.35, …

fIMAGE=fLO+fIF1 456.4 414

f1/2IF=fLO±1/2fIF1 440.35, 451.05 397.95, 408.65

f1/3IF=fLO±1/3fIF1 442.13, 449.26 399.73, 406.86

Table 4.10 – K-State Microtransceiver Without & With the Fractional N-Synthesizer Test

Results

Figure 4.27 shows the graphical display of two spurious rejection response tests results

from the K-State microtransceiver. The first test shown in the graph on the left was run with 100

kHz steps and the second test shown in the graph to the right is a test run with 50 kHz steps. It

was determined that the step size should be 10 kHz for future tests, however these tests still show

important behaviors such as IF feedthrough, subharmonic responses, and strong image responses.

More importantly it’s also clear that, as expected, the use of the fractional N synthesizer

81

increases the number of spurious responses significantly. However, the overall performance of

this receiver exceeds the other receivers showing an overall robust spurious rejection response.

Chapter 5 - The Q-Enhanced Filter as a Solution to SDR

Architectures

The results in Chapter 4 showed many responses were a result of subharmonic

frequencies of the IF frequencies or fRF, or the result of other nonlinearities due to amplification

which then mixed with the LO. There were also a number of spurious responses which were

unexplained. If a frequency synthesizer is used with significant spurs and/or phase noise the

increase in the number of spurious responses rose significantly. These results provoked the

question about what would happen to a spurious response if the IF were changed. The Q-

enhanced filter provides that type of ability, so if varying the IF were to improve the spurious

response significantly, the Q-enhanced filter could be a valuable IF filter in a receiver.

 5.1 – Spur Reduction Achieved by Changing the IF
To test how spurious responses changed when the IF was shifted, the spurious response

rejection test with the K-State Microtransceiver was rerun where the receiver was tuned to 435

MHz with two different IF filters. This was accomplished by changing the external IF filter and

varying the LO accordingly. Figure 5.1 shows these results and Tables 5.1 and 5.2 show some

expected responses to these tests respectively.

Figure 5.1 – K-State Microtransceiver 435MHz Tune Different IF Comparison Test Results

82

K-State Microtranciever

fRX (MHz) 435.000

Intermediate Frequency, IF (MHz) 10.700

Local Oscillator Frequency, fLO (MHz) 445.700

Name/Source Spur Observed (MHz)

Subharmonics of fRX 217.5, 145, 108.75, 87, 72.5, …

IF1 feedthrough, and subharmonics 10.7, 5.35, …

fIMAGE=fLO+fIF1 456.4

f1/2IF=fLO±1/2fIF1 440.35, 451.05

f1/3IF=fLO±1/3fIF1 442.13, 449.26

Mixing operations = fIF=mfLO±nfRF fRF m n

 228.2 -1 2

 300.7 -2 3

 331.6 3 -4

 336.95 -3 4

 354.42 4 -5

 358.7 -4 5

 443.56 5 -5

 444.17 7 -7

 447.23 -7 7

 447.84 -5 5

 880.69 2 -1

 902.11 -2 1

Table 5.1 – K-State Microtransceiver Spurious Response, IF= 10.7 MHz

83

K-State Microtransceiver

fRX (MHz) 435.000

Intermediate Frequency, IF (MHz) 6.500

Local Oscillator Frequency, fLO (MHz) 441.500

Name/Source Spur Observed (MHz)

Subharmonics of fRX 217.5, 145, 108.75, 87, 72.5, …

IF1 feedthrough, and subharmonics 6.5, 3.25, …

fIMAGE=fLO+fIF1 448.0

f1/2IF=fLO±1/2fIF1 438.25, 444.75

f1/3IF=fLO±1/3fIF1 439.33, 443.67

Mixing operations = fIF=mfLO±nfRF fRF m n

 224 -1 2

 296.5 -2 3

 329.5 3 -4

 332.75 -3 4

 351.9 4 -5

 354.5 -4 5

 438.25 2 -2

 439.33 3 -3

 440.2 5 -5

 440.57 7 -7

 442.8 -5 5

 443.67 -3 3

 444.75 -2 2

 889.5 -2 1

Table 5.2 – K-State Microtransceiver Spurious Response, IF= 6.5 MHz

Figure 5.1 shows a number of spurious responses for both IF frequencies, including all

the expected known problems at subharmonics or from mixing spurs or image frequencies. Upon

review, it is also clear that many of those responses occur at different frequencies. Furthermore,

many of the unexplained responses also seem to differ between the two tests. To emphasize this

point Figure 5.2 shows the results from this test in two forms: first, the graph on the left shows

84

both spurious responses on the same plot, and second, the graph on the right shows the two

responses with all spurious responses in common between the two tests removed.

Figure 5.2– K-State Microtransceiver Varied IF Comparison Spur Residual

 It’s obvious looking at these two plots that the number of spurious responses has been

decreased dramatically. All the mixer spurs and the image frequency are gone as expected, but

the majority of the unexplained responses are also removed. This is a strong indication that a

variable IF frequency could significantly improve a receiver’s spurious response if implemented

intelligently. Table 5.3 shows an exhaustive list of the spurs which remain after eliminating the

responses which are in common within ±100 kHz.

K-State Microtransceiver

IF = 10.7 MHz IF = 6.5 MHz

Frequency (MHz) Spur (dBm) Frequency (MHz) Spur (dBm)

108.75 -23 108.75 -23

145 -48 145 -48

198.61 -27 198.61 -21

214.35 -23 214.4 -27

217.5 -72 217.5 -71

223.92 -23 223.9 -41

223.95 -23 224 -62

238.35 -23 238.35 -21

242.99 -33 242.99 -33

243 -31 243 -31

266.35 -26 266.24 -30

85

276.6 -27 276.59 -21

281.39 -38 281.39 -39

281.4 -36 281.4 -36

290.99 -33 290.99 -31

291 -31 292.1 -22

292.2 0 292.23 -38

295.35 -27 295.45 -30

319.79 -41 319.79 -28

338.99 -35 338.99 -50

339 -33 339 -47

354.42 -44 354.46 -39

377.4 -52 377.4 -54

396.59 -65 396.59 -69

396.6 -63 396.6 -67

415.79 -67 415.79 -70

415.8 -65 415.8 -68

434.99 -121 434.99 -120

435 -120 435 -118

440.16 0 440.2 -54

440.35 -67 440.24 -52

442.13 -67 442.2 -47

443.56 -58 443.6 -62

444.51 -51 444.65 -62

447.84 -57 447.88 -73

454.2 -63 454.39 -49

473.39 -61 473.39 -56

473.4 -60 473.4 -51

492.59 -44 492.59 -58

492.6 -45 492.6 -57

500.79 -41 500.81 -48

511.8 -45 511.8 -48

526.19 -28 526.19 -22

530.99 -46 530.99 -34

531 -44 531 -30

86

550.19 -39 550.19 -37

550.2 -38 550.25 -29

739.99 -30 739.99 -28

759.99 -31 759.99 -31

760 -28 760 -29

764.99 -22 764.99 -21

769.99 -22 769.99 -23

Table 5.3 – K-State Microtransceiver 435MHz Tune Different IF Spur Residual

A more thorough analysis of this data could likely yield insight into the K-State

Microtransceiver’s spurious response. However, given the significant improvement from just

varying the IF, it’s possible that more than one tunable filter could be used in a receiver further

improving a receiver’s spurious response. The Q-enhanced filter is too noisy to be used as a

preselect filter, but it could work as a narrow bandpass filter immediately preceding the mixer

providing a narrowband tuned – RF capability. The next section explores this receiver

architecture concept.

 5.2 – A New Architecture Using the Q-Enhanced Filter
Figure 5.3 shows a modified single conversion superheterodyne receiver architecture

which uses two tunable variable bandwidth filters. These filters are assumed to be the Q-

enhanced filters addressed earlier in this thesis.

ADC,
DMOD

TCXO
Frequency
Synthesizer

Preselect
Filter

Image
Filter

IF
FilterLNA

IF
AmplifiersMixer

VCO

Tunable, Variable
Bandwidth

Tunable, Variable
Bandwidth

Figure 5.3 – Modified Superheterodyne Architecture Using Q-Enhanced Filters

87

This architecture would use Q-enhanced as both as an image reject filter and as an IF

filter. Tunable filters at these nodes in the receiver would allow significant tunability enabling

the same spurious response avoidance capability as shown in section 5.1. Additionally, these

filters could provide very narrow fractional bandwidths further reducing the production of spurs.

It’s important to recognize that these filters would need to be tuned by an intelligent algorithm

which avoided spurious responses as it tuned to receive the desired signal. The full nature of this

algorithm isn’t addressed here, but is mentioned to explain that the potential of this receiver

architecture could only be realized with adaptive control of the tunable filters.

Chapter 6 - Conclusion

 6.1 System Status Summary

 6.1.1 Integrated Circuit Redesign

The Q-enhanced variable bandwidth tunable filter integrated circuit was fully redesigned

in a new integrated circuit technology. Problems in the existing design with the frequency

divider and amplitude detector circuitry were addressed and solutions implemented. The

incorrect loading of the capacitive coupling circuitry in the current design was fixed in the new

design. Resistance tuning was implemented in the new design to cancel asymmetry in the

passband due to inductive coupling. The biasing of the Q-tuning cells was altered and the gain of

the differential cores was dropped to improve the dynamic range at higher Q enhancements. The

new designs were simulated to test for functionality.

 6.1.2 Software Development
The automated tuning algorithm was improved first to include fine tuning and then to

include an optimized binary search routine for determining the fine and course tuning values.

The improved algorithm was able to achieve a 2.5MHz bandwidth and maintain that bandwidth

when heated from room temperature to 75ºC. The microcontroller code was prepared for the

resistance tuning by modifying the portion of the algorithm which programs the filter and

receives commands from the test application. Changes needed in the test application code were

enumerated, but not implemented.

88

 6.2 Receiver Spurious Response Conclusions
A novel graphical description of receiver’s spurious responses was obtained through a

test system developed to characterize receivers. Four receivers were tested using this system and

their responses were compared and analyzed. The graphical description provides an intuitive

understanding of a receiver’s abilities to reject frequencies it is not tuned to receive. These test

results emphasize that a dominant issue in receiver spur block capability is subharmonics

rejection and IF feedthrough. These test results also indicate that the Q-enhanced filter could

provide a viable improvement in receiver architectures. A potential receiver architecture was

proposed and its viability as a way to improve spurious response rejection in receivers was tested

using the K-State microtransceiver.

 6.3 Future Work

 6.3.1 Filter Layout

The new filter design is due to be fabricated in June. The final schematic design should

be reviewed and the layout completed. Additionally, all simulations should be repeated with the

extracted data from layout included to account for parasitics and ensure a robust design.

 6.3.2 Filter Testing

The new filter should be tested thoroughly to ensure basic functionality, observe if the

design corrections were successful in mitigating flaws in the current design, and fully determine

the viability of this filter as a potential solution in receiver architectures. A new embedded board

should be fabricated to place inductors close together to allow the automatic coupling adjustment

algorithms to be researched and developed.

 6.3.3 Software

The code changes in the microcontroller should be tested by programming the new chip.

Further optimization is possible in the tuning algorithm and increases in tuning speed might be

achievable and should be explored. The test application needs to have some additional

functionality incorporated to fully test and explore the behavior of the filter. Additional error

checking and event handling would be useful in both systems to ensure robust functionality.

89

 6.3.3.1 Fine Tuning Code Future Work

The fine tuning C code on the microcontroller is fully implemented. However, both the

course and fine tuning portions of the algorithm currently use linear searches to find the best

value and the tuning speed might be significantly increased if this search was optimized. Also,

three of the blocks in Figures 3.2-3.5 were highlighted by the use of bold dashed outlines. These

blocks should be unnecessary with the successfully redesigned filter so that these values can be

to zero when testing, assuming the sensitivity issues in the amplitude detector are corrected.

The fine tuning code required modifying only two files in the original microcontroller

code. The original code is documented entirely in [2], but the modified C code is contained in

appendix B. The fine tuning code currently makes use only of the settings from the filter test

application documented in [2]. However, the frequency tolerance and amplitude detection

thresholds for the front and back ends are used in the course tuning portions of the algorithm. It

would be useful to extend the functionality of the GUI to control the fine tuning directly by

implementing additional thresholds for the frequency amplitude thresholds in the commands sent

to the microcontroller.

The C code on the microcontroller needs to be modified to include additional bits in the

control word used to program the filter. The GUI should be modified to include the ability to

tune the resistance values. Eventually the automated algorithm should be automated to include a

look up table which chooses the resistance based on the desired center frequency and bandwidth.

90

Chapter 7 - Bibliography

[1] R. Strouts, Automatic Tuning of Q-Enhanced Integrated Differential Bandpass Filters in a
Silicon-On-Sapphire Process, Manhattan, KS: Dept. Elect. Eng., Kansas State
University, 2009.

[2] J. Schonberger, Fourth-Order Q-Enhanced Band-Pass Filter Tuning Algorithm
Implementation and Considerations, Manhattan, KS: Dept. Elect. Eng., Kansas State
University, 2010.

[3] B. Kuhn, "Fully integrated bandpass filters for wireless transceivers - Problems and
Promises," Proc. IEEE Midwest Symp. Circuits and Systems, pp. 69-72, 2002.

[4] A. Boutz, Inductors in LTCC Utilizing Full Tape Thickness Features, Manhattan, KS: Dept.
Elect. Eng., Kansas State University, 2009.

[5] A. Boutz and B. Kuhn, "Measurement and Performance of Embedded LTCC Inductors
Utilizing Full Tape Thickness Feature Conductors," IMAPS/CICMT, January 2009.

[6] M. Marcus, "The Future of Sharing Satellite Downlink Bands with Terrestrial
Communications," in 2012 IEEE Radio & Wireless Week, Santa Clara, CA, 2012.

[7] W. B. Kuhn, N. Yanduru and A. Wyszynski, "Q-Enhanced LC Bandpass Filters for
Integrated Wireless Applications," IEEE Transactions on Mricrowave Theory and
Techiques, vol. 46, no. 12, pp. 2577-2586, Dec 1998.

[8] R. Duncan, K. MArtin and A. Sedra, "A Q-Enhanced Active-RLC Bandpass Filter," in
IEEE Int Symp. on Circuits and Systems, 1993.

[9] W. Kuhn, D. Nobbe, D. Kelly and A. Orsborn, "Dynamic range performance of on-chip RF
bandpass filters," IEEE Transactions on Circuitrs and Systems II: Analog and
Digital Signal Processing, vol. 50, no. 10, pp. 685-694, Oct. 2003.

[10] R. b. S. Ford, "WiNRADiO WR-G31 DDC Excalibur Software Defined Receiver," QST, pp.
48-51, January 2012.

[11] T. S. Rappaport, Wireless Communications, Upper Saddle River, NJ: Prentice-Hall, Inc,
2002.

[12] Unknown, "Mixer Spur Chart," P-N Designs. Inc, 12 January 2010. [Online]. Available:
http://www.microwaves101.com/encyclopedia/mixer_spurs.cfm. [Accessed 20th
April 2012].

91

[13] R. G. Huenemann, "Receiver Spurious Response Measurements," IEEE Trans. On
Communication Technology, vol. 17, no. 3, pp. 417-419, 1969.

[14] R. G. Huenemann and C. L. R. Chapman, "Automatic Receiver Spurious Response
Measurements - Some Preliminary Results," IEEE Comminication Technology
Group, pp. 561-564, 1970.

[15] V. I. Mordachev, "Automated Douple- Frequency Testing Technique for Mapping Receiver
Interference Responses," IEEE Transactions on Electromagnetic Compatability, vol.
42, no. 2, pp. 213-225, 2000.

[16] S. Melton, Cryogenic Temperature Characteristics of Bulk Silicon and Silicon-on-Sapphire
Devices, Manhattan, KS: Dept. Elect. Eng., Kansas State University, 2012.

[17] W. B. Kuhn, W. Stephenson and A. Elshabini-Riad, "A 200 MHz CMOS Q-Enhanced LC
Bandpass Filter," IEEE Journal of Solid State Circuits, vol. 31, no. 8, pp. 1112-
1122, 1996.

[18] Unknown, "Communications Receiver VR-120, Technical Supplement," VERTEX
STANDARD CO., LTD. Printed in Japan, 2001.

[19] "VX-3R Operating Manual," VERTEX STANDARD CO., LTD., Tokyo, Japan.

[20] Unknown, "Spectral Analysis Program," MOETRONIX, 2007.

[21] W. Kuhn, N. E. Lay and e. al, "A Microtransceiver for UHF Proximity Links Including
Mars Surface-to-Orbit Applications," Proceedings of the IEEE, vol. 95, no. 10, pp.
2019-2044, 2007.

92

Appendix A - IC Redesign

This section of the appendix details the circuits not discussed in the body of the work. It

presents the full schematic and then steps down level by level to explain the various portions of

the design, including simulations and test benches where needed.

 A.1 Top Level View of Q-Enhanced Filter Schematic

Figure A.1 – Top Level View of Q-Enhanced Filter Schematic

This figure shows the top view of the design as seen after stepping into the

‘top_qenhanced’ symbol in the design. There are three portions to this top level: the serial to

parallel portion which takes in all the tuning bits and enable bits as information to set the features

of the circuit, the differential cores with the amplitude and frequency detection circuits at their

outputs, and the capacitive coupling tuning and resistance tuning portions of the circuit used to

refine the passband shape.

93

 A.2 Serial to Parallel Block
This figure shows a close up of the serial to parallel blocks and their wiring. The output

of each DFF in the second level is tied to its enable or tuning bit so that when the latch is

triggered all the bits which have been shifted into the first level of DFF are passed to the desired

circuits. The full chain of DFF in each serial to parallel block is shown next.

Figure A.2 – Top Level View of Serial to Parallel Register Schematic

94

Figure A.3 – Single Cell View of Serial to Parallel Register Schematic

 A close up of the first few DFF are shown next to clarify the operation and wiring of these

circuits.

Figure A.4 – Narrowed View of Serial to Parallel Register Single Cell

This circuit was tested using the following test bench set up.

95

Figure A.5 – Test Bench for Serial to Parallel Register

The simulation output for this circuit is shown in the next two figures.

Figure A.6 – Simulation Output for Serial to Parallel Register

96

Figure A.7 – Simulation Output for Serial to Parallel Register

 A.3 Differential Cores, Amplitude Detector & Frequency Divider Top View
The next figure shows a slightly closer of the differential cores and the amplitude and

frequency detection circuits tied at the output. The port outputs tied into the LC tank circuits

explained in other sections of this work.

97

Figure A.8 – Top View of Differential Cores, Frequency Detectors, and Amplitude

Detectors

A.3.1 Differential Core, Buffer, & Tuning Block

 A.3.1.1 Differential Core

This figure shows the internal portion of a differential core master block which is divided

into three portions: the amplifier core, the frequency tuning and Q-enhancement block and the

buffer at the output. This block also includes the enable PFET which operates a switch to

activate or deactivate the core.

Figure A.9 –Differential Core, Tuning Block, and Buffer

The schematic of the differential core is shown above. The bias points in the circuit are

set up with the stack of PFETS shown on the left. The current through the core is set to about

200mV overvoltage and is setting the total current through the core to be about 2mA. The inputs

are AC coupled and biased with resistors which set the input impedance. The differential core is

built of two legs of intrinsic FETs which are cascoded to drive the LC tank circuits. This circuit

98

is designed to have an unenhanced gain of 1. This circuit is crucial to the overall performance at

a system level because it is one of two circuits which limit the output voltage swing, or dynamic

range, and the primary circuit which determines the noise floor. The noise floor is lowered with

more current, but power consumption is increased. Additionally the gain of this core is dictated

by gm which is impacted by the current through the circuit. The voltage gain of this circuit is

known to be

𝐺𝑉 = 2𝑔𝑚𝑅𝑝

where Rp is the load seen from the LC tank circuit at resonance in combination with the total

load resulting from all resistances added in parallel with the load of the inductors at resonance

when tuning and Q enhancements are active.

Figure A.9 –Differential Core Schematic

The test bench and simulation output for this circuit are shown below.

99

Figure A.10 –Differential Core Test Bench

Figure A.11 – Simulation Output of Differential Core

100

 A.3.1.2 Buffer

The next circuit is the buffer. The buffer is designed to provide a stable output to the

frequency and amplitude detection circuitry without loading the core amplifier down.

Figure A.12 – Buffer Circuit

The buffer is a differential chain of two common drain, or current follower, circuits. The

overall gain is about .6 when driving a 1 kΩ load and the total current draw is about 2-3 mA. The

current in each leg of the amplifier is set up by the resistor and FET using the power supplied to

the circuit. The output test bench and simulation are shown next.

101

Figure A.13 – Buffer Circuit Testbench

Figure A.14 – Simulation Output of Buffer Circuit

 A.3.1.3 Tuning Block

102

The tuning circuitry used to achieve frequency tuning and Q-enhancement is shown

below.

Figure A.15 – Top View of Frequency and Q-Enhancement Tuning Blocks

This is the top view of the tuning circuitry. Close ups of the sections and cells follow with

relevant explanation.

Figure A.16 – Narrowed View of Frequency and Q-Enhancement Tuning Block

This figure shows a close-up of the top left section of the full tuning block. The biasing

used for these blocks and sections are shown at the very top left. The analog frequency tuning

103

capacitor is shown next to the right, followed by the digital frequency tuning block. Finally, at

the top right the analog Q tuning cell is shown. Each Q cell is run by two inverters. The Q cell is

implemented in binary weighted banks.

Figure A.17 – Top View of Frequency Tuning Block

The frequency tuning circuit is shown above. To simplify layout the widths and lengths

of the FETs were modified to create binary weighted capacitors driven by inverters. A close-up

of the first two caps is shown next.

Figure A.18 – Narrowed View of Frequency Tuning Block

104

As shown these capacitors are implemented as FET capacitors with the drain and source

tied together driven by inverters. The source and drain of the FETs are AC grounds in this case

so no resistor is needed.

Figure A.19 – Cell View of Q-Enhancement Tuning Block

The basic Q-enhancement cell is shown above. This circuit provides the Q enhancement

and is the second circuit which limits the output voltage swing, or dynamic range of the circuit.

To improve the system’s ability to output large signals high threshold FETs are used for the two

legs of the circuit allowing the voltage at the ports to drop as much as possible before pushing

these FETs out of the active region. The current source is biased with about 200mV overvoltage.

A.3.2 Resistance Tuning & Capacitive Coupling Top View

105

Figure A.20 – Top View of Capacitive Coupling and Resistance Tuning Blocks

This schematic is the capacitive coupling and resistive blocks shown at the top level of

the schematic. The resistor coupling is explained at length in the body of the text and isn’t

addressed here. The capacitive coupling is also referenced in the body of the text, but for sake of

thorough documentation the circuits are included here.

106

Appendix B - C Code

 B.1 Fine Tune Code Modifications
/**
 * Filename: qefilter.c
 * Date: June 2010
 * Compiler: C30
 * Author: Joel Schonberger
 * Company: Kansas State University
 * Department: Electrical & Computer Engineering
 * Research: 500 MHz Two-Pole Q-Enhanced Filter Tuning Algorithm
 * Description: This file houses the functions needed to implement the QE Filter
 * tuning algorithm.
 * --
 * Updated: April 2012
 * Author: Chelsi Kovala
 * Changes: Modified to include fine tuning in the tuning algorithm and now
 includes the functions:
 void fineFrontEndFTune(void)
 void fineBackEndFTune(void)
 void fineFrontEndQTune(void)
 void fineBackEndQTune(void)
 printFrontEndAnalogQTune()
 printFrontEndAnalogFTune()
 printBackEndAnalogQTune()
 printBackEndAnalogFTune()
 **/
#include "main.h"

/* Global Variables */
char strCenterFreq[] = "Center Frequency: ###.# MHz\r\n";
char strFreqTol[] = "Frequency Tolerance: ##.# MHz\r\n";
char strFrontEndADThresh1[] = "Front-End AD Threshold 1: ###\r\n";
char strFrontEndADThresh2[] = "Front-End AD Threshold 2: ###\r\n";
char strFrontEndQOffset[] = "Front-End Q-Offset: ##\r\n";
char strFrontEndQBackOff[] = "Front-End Q-BackOff: ##\r\n";
char strFrontEndFOffset[] = "Front-End F-Offset: ##\r\n";
char strBackEndADThresh1[] = "Back-End AD Threshold 1: ###\r\n";
char strBackEndADThresh2[] = "Back-End AD Threshold 2: ###\r\n";
char strBackEndQOffset[] = "Back-End Q-Offset: ##\r\n";
char strBackEndQBackOff[] = "Back-End Q-BackOff: ##\r\n";
char strBackEndFOffset[] = "Back-End F-Offset: ##\r\n";
char strCouplingUpper[] = "Coupling Upper: ##\r\n";
char strCouplingLower[] = "Coupling Lower: ##\r\n";
char strCouplingUFLB[] = "Coupling UFLB: ##\r\n";
char strCouplingLFUB[] = "Coupling LFUB: ##\r\n";
char strFrontEndAD[] = "Front-End Amp Detector: ####\r\n";
char strFrontEndNonOsc[] = "Front-End Non-Osc: ####\r\n";
char strFrontEndFCnt[] = "Front-End Freq Count: ###.# MHz\r\n";
char strFrontEndDigitalQTune[] = "Front-End Digital Q-Tune: ##\r\n";
char strFrontEndAnalogQTune[] = "Front-End Analog Q-Tune: ####\r\n";
char strFrontEndDigitalFTune[] = "Front-End Digital F-Tune: ###\r\n";
char strFrontEndAnalogFTune[] = "Front-End Analog F-Tune: ####\r\n";
char strBackEndAD[] = "Back-End Amp Detector: ####\r\n";
char strBackEndNonOsc[] = "Back-End Non-Osc: ####\r\n";
char strBackEndFCnt[] = "Back-End Freq Count: ###.# MHz\r\n";
char strBackEndDigitalQTune[] = "Back-End Digital Q-Tune: ##\r\n";
char strBackEndAnalogQTune[] = "Back-End Analog Q-Tune: ####\r\n";
char strBackEndDigitalFTune[] = "Back-End Digital F-Tune: ###\r\n";
char strBackEndAnalogFTune[] = "Back-End Analog F-Tune: ####\r\n";

int FrontEndAD, BackEndAD, FrontEndFCnt, BackEndFCnt, FrontEndNonOsc, BackEndNonOsc;
int PrevFrontEndDigitalQTune, PrevBackEndDigitalQTune;
int filterData[4];
int CenterFreq, FreqTol;
int FrontEndADThresh1, FrontEndADThresh2, FrontEndQOffset, FrontEndQBackOff, FrontEndFOffset;

107

int BackEndADThresh1, BackEndADThresh2, BackEndQOffset, BackEndQBackOff, BackEndFOffset;
int CouplingUpper, CouplingLower, CouplingUFLB, CouplingLFUB;

struct {
 unsigned int en:1;
 unsigned int fTune:8;
 unsigned int qTune:6;
 unsigned int ADen:1;
} FENDCON;

struct {
 unsigned int en:1;
 unsigned int fTune:8;
 unsigned int qTune:6;
 unsigned int ADen:1;
} BENDCON;

struct {
 unsigned int upper:5;
 unsigned int lower:5;
 unsigned int FDFen:1;
} CAPCON1;

struct {
 unsigned int UFLB:5;
 unsigned int LFUB:5;
 unsigned int FDBen:1;
} CAPCON2;

struct {
 unsigned int FANAF:10;
 unsigned int FANAQ:10;
 unsigned int BANAF:10;
 unsigned int BANAQ:10;
} ANALOG;

struct {
 unsigned int ADFen:1;
 unsigned int FDFen:1;
 unsigned int ADBen:1;
 unsigned int FDBen:1;
 unsigned int RFOn:1;
} DEBUG;

extern const char *console_str_sep;
extern int _PrintFilterSettings;

/**
 * Function: initFilter
 * Parameters: void
 * Return: void
 * Description: Initializes the Filter Controls to their minima and disables all
 * of the enable variables.
 **/
void initFilter(void)
{
 disableFrontEnd();
 setFrontEndDigitalFTune(FTUNE_DIG_MIN);
 setFrontEndDigitalQTune(QTUNE_DIG_MIN);
 disableFrontEndAD();
 disableFrontEndFD();

 disableBackEnd();
 setBackEndDigitalFTune(FTUNE_DIG_MIN);
 setBackEndDigitalQTune(QTUNE_DIG_MIN);
 disableBackEndAD();
 disableBackEndFD();

 setCouplingUpper(COUPLING_MIN);
 setCouplingLower(COUPLING_MIN);

108

 setCouplingUFLB(COUPLING_MIN);
 setCouplingLFUB(COUPLING_MIN);

 setFrontEndAnalogFTune(ANALOG_MIN);
 setFrontEndAnalogQTune(ANALOG_MIN);
 setBackEndAnalogFTune(ANALOG_MIN);
 setBackEndAnalogQTune(ANALOG_MIN);

 DEBUG.ADFen = 0;
 DEBUG.FDFen = 0;
 DEBUG.ADBen = 0;
 DEBUG.FDBen = 0;
 DEBUG.RFOn = 1;
}

/**
 * Function: printFilterOptions
 * Parameters: void
 * Return: void
 * Description: Prints each of the the filter options to the Console.
 **/
void printFilterOptions(void)
{
 printSeperator();
 printFrontEndStatus();
 printFrontEndADStatus();
 printFrontEndFDStatus();
 printFrontEndDigitalQTune();
 printFrontEndAnalogQTune();
 printFrontEndDigitalFTune();
 printFrontEndAnalogFTune();
 printBackEndStatus();
 printBackEndADStatus();
 printBackEndFDStatus();
 printBackEndDigitalQTune();
 printBackEndAnalogQTune();
 printBackEndDigitalFTune();
 printBackEndAnalogFTune();
 printCouplingUpper();
 printCouplingLower();
 printCouplingUFLB();
 printCouplingLFUB();
 printRFSwitchStatus();
 printSeperator();
}

/**
 * Function: printAlgorithmOptions
 * Parameters: void
 * Return: void
 * Description: Prints each of the the algorithm options to the console.
 **/
void printAlgorithmOptions(void)
{
 printSeperator();
 printCenterFreq();
 printFreqTol();
 printFrontEndADThresh1();
 printFrontEndADThresh2();
 printFrontEndQOffset();
 printFrontEndQBackOff();
 printFrontEndFOffset();
 printBackEndADThresh1();
 printBackEndADThresh2();
 printBackEndQOffset();
 printBackEndQBackOff();
 printBackEndFOffset();
 printCouplingUpper();
 printCouplingLower();
 printCouplingUFLB();

109

 printCouplingLFUB();
 printSeperator();
}

/**
 * Function: updateFilterData
 * Parameters: void
 * Return: void
 * Description: Formats and stores the filter options to be programmed.
 **/
void updateFilterData(void)
{
 filterData[0] = ((CAPCON2.FDBen & 1) << 10) |
 ((CAPCON2.UFLB & COUPLING_MAX) << 5) |
 (CAPCON2.LFUB & COUPLING_MAX);
 filterData[1] = ((CAPCON1.FDFen & 1) << 10) |
 ((CAPCON1.lower & COUPLING_MAX) << 5) |
 (CAPCON1.upper & COUPLING_MAX);
 filterData[2] = ((BENDCON.ADen & 1) << 15) |
 ((BENDCON.qTune & QTUNE_DIG_MAX) << 9) |
 ((BENDCON.fTune & FTUNE_DIG_MAX) << 1) |
 (BENDCON.en & 1);
 filterData[3] = ((FENDCON.ADen & 1) << 15) |
 ((FENDCON.qTune & QTUNE_DIG_MAX) << 9) |
 ((FENDCON.fTune & FTUNE_DIG_MAX) << 1) |
 (FENDCON.en & 1);
}

/**
 * Function: programFilter
 * Parameters: void
 * Return: void
 * Description: The filter is programmed by transmitting the 64 programming bits to
 * the serial-to-parallel register of the filter via SPI. Once all 64
 * bits are transmitted, the latch line is raised, a clock pulse is
 * generated and the latch line is lowered storing the bits.
 **/
void programFilter(void)
{
 updateFilterData();

 setPinLow(FILTER_CLK);
 setPinLow(FILTER_DATA);
 setPinLow(FILTER_LATCH);
 enableSPI2();
 writeSPI2(filterData[0]);
 writeSPI2(filterData[1]);
 writeSPI2(filterData[2]);
 writeSPI2(filterData[3]);
 disableSPI2();

 setFilterLatchAsOutput();
 setFilterDataAsOutput();
 setFilterClkAsOutput();
 setPinLow(FILTER_LATCH);
 setPinLow(FILTER_CLK);
 prgmDelay();
 setPinHigh(FILTER_LATCH);
 prgmDelay();
 setPinHigh(FILTER_CLK);
 prgmDelay();
 setPinLow(FILTER_DATA);
 setPinLow(FILTER_LATCH);
 prgmDelay();
 setPinLow(FILTER_CLK);
 prgmDelay();
}

/**
 * Function: prgmDelay

110

 * Parameters: void
 * Return: void
 * Description: A simplistic delay used to ensure timing requirements are met during
 * the filter programming process.
 **/
void prgmDelay(void)
{
 Nop(); Nop(); Nop(); Nop(); Nop(); Nop(); Nop(); Nop(); Nop(); Nop(); Nop(); Nop();
 Nop(); Nop(); Nop(); Nop(); Nop(); Nop(); Nop(); Nop(); Nop(); Nop(); Nop(); Nop();
}

/**
 * Function: updateAnalogTuning
 * Parameters: void
 * Return: void
 * Description: Programs the DACS with the appropriate current Analog F-Tune
 * and Q-Tune values.
 **/
void updateAnalogTuning(void)
{
 programFrontEndDAC(loadInputRegB(getFrontEndAnalogFTune()));
 programFrontEndDAC(loadInputRegA(getFrontEndAnalogQTune()));
 programFrontEndDAC(loadDACRegsABUpdateOutputsAB());
 programBackEndDAC(loadInputRegB(getBackEndAnalogQTune()));
 programBackEndDAC(loadInputRegA(getBackEndAnalogFTune()));
 programBackEndDAC(loadDACRegsABUpdateOutputsAB());
}

/**
 * Function: algorithm
 * Parameters: void
 * Return: void
 * Description: Implementation of the Two-Pole Tuning Algorithm
 * using only Digital Controls.
 **/
void algorithm(void)
{
 turnRFSwitchOff();
 enableFrontEnd(); // Enable Front-End
 disableFrontEndAD(); // Disble Front-End Amplitude Detector
 disableFrontEndFD(); // Disable Front-End Frequency Divider
 enableBackEnd(); // Enable Back-End
 disableBackEndAD(); // Disable Back-End Amplitude Detector
 disableBackEndFD(); // Disable Back-End Frequency Divider

 coarseFrontEndFTune();
 coarseBackEndFTune();

 setCouplingUpper(CouplingUpper);
 setCouplingLower(CouplingLower);
 setCouplingUFLB(CouplingUFLB);
 setCouplingLFUB(CouplingLFUB);
 programFilter();

 turnRFSwitchOn(); // Algorithm is Complete, so Turn on RF Switch

 if (_PrintFilterSettings)
 {
 printFilterOptions();
 _PrintFilterSettings = FALSE;
 }
}

/**
 * Function: coarseFrontEndFTune
 * Parameters: void
 * Return: void
 * Description: Tunes the Front-End to the desired center frequency within a frequency
 * tolerance. Once within the frequency tolerance the frequency controls
 * are adjusted and a comparison is done on which setting brought the pole

111

 * closer to the desired center frequency.
 * Modified: This course tune function now calls the fine tune function and sets and
 * initializes additional variables for fine tuning.
 **/
void coarseFrontEndFTune(void)
{
 int itt = 0;
 int prevFrontEndFCnt = 0;
 int prevFrontEndFCntDiff = 0, curFrontEndFCntDiff = 0;

 // Set frequency setting to controls mid-point
 setFrontEndDigitalFTune((FTUNE_DIG_MIN + FTUNE_DIG_MAX) >> 1);
 setFrontEndAnalogFTune((ANALOG_MIN + ANALOG_MAX) >> 1);
 updateAnalogTuning();
 FrontEndFCnt = getFrontEndFrequency();

 while ((FrontEndFCnt < (CenterFreq - FreqTol)) || (FrontEndFCnt > (CenterFreq + FreqTol)))
 {
 if (FrontEndFCnt < (CenterFreq - FreqTol))
 decFrontEndDigitalFTune();
 else if (FrontEndFCnt > (CenterFreq + FreqTol))
 incFrontEndDigitalFTune();

 FrontEndFCnt = getFrontEndFrequency();
 if (++itt > MAX_FREQTUNE_ITTS)
 {
 txStrUART1("Max Front-End Frequency Tune Itterations Exceeded...\r\n");
 return;
 }
 }
 // Frequency within Tolerance now find Closest Setting
 prevFrontEndFCnt = FrontEndFCnt;
 prevFrontEndFCntDiff = absDiff(CenterFreq,prevFrontEndFCnt);
 if (FrontEndFCnt < CenterFreq)
 {
 decFrontEndDigitalFTune();
 FrontEndFCnt = getFrontEndFrequency();
 curFrontEndFCntDiff = absDiff(CenterFreq,FrontEndFCnt);
 if (curFrontEndFCntDiff > prevFrontEndFCntDiff)
 {
 incFrontEndDigitalFTune();
 programFilter();
 }
 }
 else if (FrontEndFCnt > CenterFreq)
 {
 incFrontEndDigitalFTune();
 FrontEndFCnt = getFrontEndFrequency();
 curFrontEndFCntDiff = absDiff(CenterFreq,FrontEndFCnt);
 if (curFrontEndFCntDiff > prevFrontEndFCntDiff)
 {
 decFrontEndDigitalFTune();
 programFilter();
 }
 }

 FrontEndFCnt = getFrontEndFrequency();
 fineFrontEndFTune();
 FrontEndFCnt = getFrontEndFrequency();

 #if _DEBUG_ALGORITHM_ == 1
 txStrUART1("----Freq Tune Essentially Done---\r\n");
 printFrontEndDigitalFTune();
 printFrontEndDigitalQTune();
 #endif

 // Back-Off Q-Enhancement by Set Amount
 setFrontEndDigitalQTune(getFrontEndDigitalQTune() - FrontEndQBackOff);
 #if _DEBUG_ALGORITHM_ == 1
 txStrUART1("----Do Q Back-Off for BW---\r\n");

112

 printFrontEndDigitalQTune();
 #endif

 // Ensure Filter is Not Oscillating After Q-Enhancement Back-Off (Insufficient Back-Off)
 enableFrontEndAD();
 programFilter();
 FrontEndAD = readFrontEndAD();
 while (FrontEndAD < (FrontEndNonOsc - FrontEndADThresh1))
 {
 #if _DEBUG_ALGORITHM_ == 1
 txStrUART1("Still Oscillating after Back-Off...\r\n");
 printFrontEndDigitalQTune();
 printFrontEndAD();
 #endif

 decFrontEndDigitalQTune();
 programFilter();
 FrontEndAD = readFrontEndAD();

 #if _DEBUG_ALGORITHM_ == 1
 printFrontEndDigitalQTune();
 printFrontEndAD();
 #endif
 }
 disableFrontEndAD();

 // Counter the Frequency Shift Caused by Q-Enhancement Back-Off by Increasing Digital F-Tuning
 setFrontEndDigitalFTune(getFrontEndDigitalFTune() + FrontEndFOffset);
 programFilter();
}

/**
 * Function: fineFrontEndFTune
 * Parameters: void
 * Return: void
 * Description: Implements a fine tuning algorithm to linearly find the closest
 * achievable frequency using analog tuning on the front end
 **/
void fineFrontEndFTune(void)
{
 int itt = 0;
 int count = 0;
 FrontEndFCnt = getFrontEndFrequency();
 int prevFrontEndFCnt = FrontEndFCnt;
 if(FrontEndFCnt > CenterFreq)
 {
 // Need to set at mid point for this fine tuning approach to work
 // setFrontEndAnalogFTune(ANALOG_MIN);
 // updateAnalogTuning(); //change to update only back or front?
 while(FrontEndFCnt != CenterFreq)
 {
 setFrontEndAnalogFTune(getFrontEndAnalogFTune()+1);
 updateAnalogTuning();
 FrontEndFCnt = getFrontEndFrequency();
 if (++itt > MAX_FINEFREQTUNE_ITTS)
 {
 txStrUART1("Max Front-End Frequency Fine Tune Itterations Exceeded...\r\n");
 return;
 }
 }
 prevFrontEndFCnt = FrontEndFCnt;
 while(FrontEndFCnt == CenterFreq)
 {
 count++;
 setFrontEndAnalogFTune(getFrontEndAnalogFTune()+1);
 updateAnalogTuning();
 FrontEndFCnt = getFrontEndFrequency();
 }
 setFrontEndAnalogFTune(prevFrontEndFCnt+count/2);
 }

113

 else if(FrontEndFCnt < CenterFreq)
 {
 // Need to set at mid point for this fine tunning approach to work
 // setFrontEndAnalogFTune(ANALOG_MIN);
 // updateAnalogTuning(); //change to update only back or front?
 while(FrontEndFCnt != CenterFreq)
 {
 setFrontEndAnalogFTune(getFrontEndAnalogFTune()-1);
 updateAnalogTuning();
 FrontEndFCnt = getFrontEndFrequency();
 }
 prevFrontEndFCnt = FrontEndFCnt;
 while(FrontEndFCnt == CenterFreq)
 {
 count++;
 setFrontEndAnalogFTune(getFrontEndAnalogFTune()-1);
 updateAnalogTuning();
 FrontEndFCnt = getFrontEndFrequency();
 }
 setFrontEndAnalogFTune(prevFrontEndFCnt-count/2);
 FrontEndFCnt = getFrontEndFrequency();
 }
 else if(FrontEndFCnt == CenterFreq)
 {
 while(FrontEndFCnt == CenterFreq)
 {
 setFrontEndAnalogFTune(getFrontEndAnalogFTune()+2);
 updateAnalogTuning();
 FrontEndFCnt = getFrontEndFrequency();
 }
 setFrontEndAnalogFTune(getFrontEndAnalogFTune()-4);
 while(FrontEndFCnt == CenterFreq)
 {
 count++;
 setFrontEndAnalogFTune(getFrontEndAnalogFTune()-1);
 updateAnalogTuning();
 FrontEndFCnt = getFrontEndFrequency();
 }
 setFrontEndAnalogFTune(prevFrontEndFCnt-count/2);
 }
}

/**
 * Function: fineFrontEndQTune
 * Parameters: void
 * Return: void
 * Description: Uses analog tuning to raise Q tuning as high as possible without
 * oscillation
 **/
void fineFrontEndQTune(void)
{
 setFrontEndAnalogQTune(ANALOG_MIN);
 while (FrontEndAD >= (FrontEndNonOsc-FrontEndADThresh1))
 {
 setFrontEndAnalogQTune(getFrontEndAnalogQTune()+FrontEndADThresh2);
 updateAnalogTuning();
 FrontEndAD = readFrontEndAD();
 if (getFrontEndAnalogQTune()==ANALOG_MAX) break;
 }
}

/**
 * Function: coarseBackEndFTune
 * Parameters: void
 * Return: void
 * Description: Tunes the Back-End to the desired center frequency within a frequency
 * tolerance. Once within the frequency tolerance the frequency controls
 * are adjusted and a comparison is done on which setting brought the pole
 * closer to the desired center frequency.
 * Modified: This course tune function now calls the fine tune function and sets and

114

 * initializes the additional variables for fine tuning.
 **/
void coarseBackEndFTune(void)
{
 int itt = 0;
 int prevBackEndFCnt = 0;
 int prevBackEndFCntDiff = 0, curBackEndFCntDiff = 0;

 // Set frequency setting to controls mid-point
 setBackEndDigitalFTune((FTUNE_DIG_MIN + FTUNE_DIG_MAX) >> 1);
 setBackEndAnalogFTune((ANALOG_MIN + ANALOG_MAX) >> 1);
 updateAnalogTuning();
 BackEndFCnt = getBackEndFrequency();

 while ((BackEndFCnt < (CenterFreq - FreqTol)) || (BackEndFCnt > (CenterFreq + FreqTol)))
 {
 if (BackEndFCnt < (CenterFreq - FreqTol))
 decBackEndDigitalFTune();
 else if (BackEndFCnt > (CenterFreq + FreqTol))
 incBackEndDigitalFTune();

 BackEndFCnt = getBackEndFrequency();
 if (++itt > MAX_FREQTUNE_ITTS)
 {
 txStrUART1("Max Back-End Frequency Tune Itterations Exceeded...\r\n");
 return;
 }
 }
 // Frequency within Tolerance now find Closest Setting
 prevBackEndFCnt = BackEndFCnt;
 prevBackEndFCntDiff = absDiff(CenterFreq,prevBackEndFCnt);
 if (BackEndFCnt < CenterFreq)
 {
 decBackEndDigitalFTune();
 BackEndFCnt = getBackEndFrequency();
 curBackEndFCntDiff = absDiff(CenterFreq,BackEndFCnt);
 if (curBackEndFCntDiff > prevBackEndFCntDiff)
 {
 incBackEndDigitalFTune();
 programFilter();
 }
 }
 else if (BackEndFCnt > CenterFreq)
 {
 incBackEndDigitalFTune();
 BackEndFCnt = getBackEndFrequency();
 curBackEndFCntDiff = absDiff(CenterFreq,BackEndFCnt);
 if (curBackEndFCntDiff > prevBackEndFCntDiff)
 {
 decBackEndDigitalFTune();
 programFilter();
 }
 }

 BackEndFCnt = getBackEndFrequency();
 fineBackEndFTune();
 BackEndFCnt = getBackEndFrequency();

 #if _DEBUG_ALGORITHM_ == 1
 txStrUART1("----Freq Tune Essentially Done---\r\n");
 printBackEndDigitalFTune();
 printBackEndDigitalQTune();
 #endif

 // Back-Off Q-Enhancement by Set Amount
 setBackEndDigitalQTune(getBackEndDigitalQTune() - BackEndQBackOff);
 #if _DEBUG_ALGORITHM_ == 1
 txStrUART1("----Do Q Back-Off for BW---\r\n");
 printBackEndDigitalQTune();
 #endif

115

 // Ensure Filter is Not Oscillating After Q-Enhancement Back-Off (Insufficient Back-Off)
 enableBackEndAD();
 programFilter();
 BackEndAD = readBackEndAD();
 while (BackEndAD < (BackEndNonOsc - BackEndADThresh1))
 {
 #if _DEBUG_ALGORITHM_ == 1
 txStrUART1("Still Oscillating after Back-Off...\r\n");
 printBackEndDigitalQTune();
 printBackEndAD();
 #endif

 decBackEndDigitalQTune();
 programFilter();
 BackEndAD = readBackEndAD();

 #if _DEBUG_ALGORITHM_ == 1
 printBackEndDigitalQTune();
 printBackEndAD();
 #endif
 }

 disableBackEndAD();

 // Counter the Frequency Shift Caused by Q-Enhancement Back-Off by Increasing Digital F-Tuning
 setBackEndDigitalFTune(getBackEndDigitalFTune() + BackEndFOffset);
 programFilter();
}

/**
 * Function: fineBackEndFTune
 * Parameters: void
 * Return: void
 * Description: Implements a fine tuning algorithm to linearly find the closest
 * achievable frequency using analog tuning on the front end
 **/
void fineBackEndFTune(void)
{
 int itt = 0;
 int count = 0;
 BackEndFCnt = getBackEndFrequency();
 int prevBackEndFCnt = BackEndFCnt;
 if(BackEndFCnt > CenterFreq)
 {
 // Need to set at mid point for this fine tuning approach to work
 // setBackEndAnalogFTune(ANALOG_MIN);
 // updateAnalogTuning(); //change to update only back or front?
 while(BackEndFCnt != CenterFreq)
 {
 setBackEndAnalogFTune(getBackEndAnalogFTune()+1);
 updateAnalogTuning();
 BackEndFCnt = getBackEndFrequency();
 if (++itt > MAX_FINEFREQTUNE_ITTS)
 {
 txStrUART1("Max Back-End Frequency Fine Tune Itterations Exceeded...\r\n");
 return;
 }
 }
 prevBackEndFCnt = BackEndFCnt;
 while(BackEndFCnt == CenterFreq)
 {
 count++;
 setBackEndAnalogFTune(getBackEndAnalogFTune()+1);
 updateAnalogTuning();
 BackEndFCnt = getBackEndFrequency();
 }
 setBackEndAnalogFTune(prevBackEndFCnt+count/2);
 }
 else if(BackEndFCnt < CenterFreq)

116

 {
 // Need to set at mid point for this fine tunning approach to work
 // setBackEndAnalogFTune(ANALOG_MIN);
 // updateAnalogTuning(); //change to update only back or Back?
 while(BackEndFCnt != CenterFreq)
 {
 setBackEndAnalogFTune(getBackEndAnalogFTune()-1);
 updateAnalogTuning();
 BackEndFCnt = getBackEndFrequency();
 }
 prevBackEndFCnt = BackEndFCnt;
 while(BackEndFCnt == CenterFreq)
 {
 count++;
 setBackEndAnalogFTune(getBackEndAnalogFTune()-1);
 updateAnalogTuning();
 BackEndFCnt = getBackEndFrequency();
 }
 setBackEndAnalogFTune(prevBackEndFCnt-count/2);
 BackEndFCnt = getBackEndFrequency();
 }
 else if(BackEndFCnt == CenterFreq)
 {
 while(BackEndFCnt == CenterFreq)
 {
 setBackEndAnalogFTune(getBackEndAnalogFTune()+2);
 updateAnalogTuning();
 BackEndFCnt = getBackEndFrequency();
 }
 setBackEndAnalogFTune(getBackEndAnalogFTune()-4);
 while(BackEndFCnt == CenterFreq)
 {
 count++;
 setBackEndAnalogFTune(getBackEndAnalogFTune()-1);
 updateAnalogTuning();
 BackEndFCnt = getBackEndFrequency();
 }
 setBackEndAnalogFTune(prevBackEndFCnt-count/2);
 }
}

/**
 * Function: fineBackEndQTune
 * Parameters: void
 * Return: void
 * Description: Uses analog tuning to raise Q tuning as high as possible without
 * oscillation
 **/

void fineBackEndQTune(void)
{
 setBackEndAnalogQTune(ANALOG_MIN);
 while (BackEndAD >= (BackEndNonOsc - BackEndADThresh1))
 {
 setBackEndAnalogQTune(getBackEndAnalogQTune()+BackEndADThresh2);
 updateAnalogTuning();

 BackEndAD = readBackEndAD();
 if (getBackEndAnalogQTune()==ANALOG_MAX) break;
 }
}

/**
 * Function: getFrontEndFrequency
 * Parameters: void
 * Return: int - Current Front-End Frequency Count
 * Description: Configures the filter so a reliable Front-End frequency count can
 * be returned.
 **/
int getFrontEndFrequency(void)

117

{
 int fCnt;
 PrevBackEndDigitalQTune = getBackEndDigitalQTune();

 disableBackEndAD(); // Disable Back-End Amplitude Detector
 disableBackEndFD(); // Disable Back-End Frequency Divider
 setBackEndDigitalQTune(QTUNE_DIG_MIN); // Degrade Back-End Q-Enhancement

 enableFrontEndFD(); // Enable Front-End Frequency Divider
 findFrontEndCriticalOsc();
 fCnt = readFrontEndFD();
 disableFrontEndFD(); // Disable Front-End Frequency Divider

 // Remove Excess Q-Enhancement Needed for Dependable Frequency Divider Reading
 setFrontEndDigitalQTune(getFrontEndDigitalQTune() - FrontEndQOffset);

 // Restore Previous Back-End Digital Q-Tune Value
 setBackEndDigitalQTune(PrevBackEndDigitalQTune);
 programFilter(); // Apply Filter Settings

 return fCnt;
}

/**
 * Function: getBackEndFrequency
 * Parameters: void
 * Return: int - Current Back-End Frequency Count
 * Description: Configures the filter so a reliable Back-End frequency count can
 * be returned.
 **/
int getBackEndFrequency(void)
{
 int fCnt;
 PrevFrontEndDigitalQTune = getFrontEndDigitalQTune();

 disableFrontEndAD(); // Disable Front-End Amplitude Detector
 disableFrontEndFD(); // Disable Front-End Frequency Divider
 setFrontEndDigitalQTune(QTUNE_DIG_MIN); // Degrade Front-End Q-Enhancement

 enableBackEndFD(); // Enable Back-End Frequency Divider

 findBackEndCriticalOsc();
 fCnt = readBackEndFD();
 disableBackEndFD(); // Disable Back-End Frequency Divider

 // Remove Excess Q-Enhancement Needed for Dependable Frequency Divider Reading
 setBackEndDigitalQTune(getBackEndDigitalQTune() - BackEndQOffset);
 // Restore Previous Front-End Digital Q-Tune Value
 setFrontEndDigitalQTune(PrevFrontEndDigitalQTune);
 programFilter(); // Apply Filter Settings

 return fCnt;
}

/**
 * Function: findFrontEndCriticalOsc
 * Parameters: void
 * Return: void
 * Description: Sets Front-End Q-Enhancement to 0 and reads the Amplitude Detector
 * to determine the Non-Oscillation reading. It then increases
 * Q-Enhancement until the Amplitude Detector reading drops below
 * the Non-Oscillation reading minus a set threshold value indicating that
 * the Front-End is oscillating. To ensure that a valid Frequency Divider
 * reading is obtainable, the Q-Enhancement is increased by a set offset.
 * Modified: This fuction now includes fine Q tuning
 **/
void findFrontEndCriticalOsc(void)
{
 int prevFrontEndDigitalQTune = -1;
 FrontEndNonOsc = ANALOG_MIN;

118

 FrontEndAD = ANALOG_MAX;

 setFrontEndAnalogQTune(ANALOG_MIN);
 updateAnalogTuning();

 setFrontEndDigitalQTune(QTUNE_DIG_MIN); // Set Front-End Q-Enhancment to Minimum
 enableFrontEndAD(); // Enable Front-End Amplitude Detector
 programFilter(); // Apply Filter Settings
 FrontEndNonOsc = readFrontEndAD(); // Store Front-End Amplitude Detector Reading

 #if _DEBUG_CRITICALOSC_ == 1
 printFrontEndNonOsc();
 printFrontEndDigitalQTune();
 #endif

 // Increase Q-Enhancement Until Front-End is Oscillating
 while (FrontEndAD >= (FrontEndNonOsc - FrontEndADThresh1))
 {
 if (prevFrontEndDigitalQTune == getFrontEndDigitalQTune())
 {
 txStrUART1("---> Could Not Obtain Front-End Critical Oscillation <---\r\n");
 return;
 }
 prevFrontEndDigitalQTune = getFrontEndDigitalQTune();

 incFrontEndDigitalQTune(); // Increment Front-End Digital Q-Tune
 programFilter(); // Apply Filter Settings
 FrontEndAD = readFrontEndAD(); // Store Front-End Amplitude Detector Reading

 #if _DEBUG_CRITICALOSC_ == 1
 printFrontEndAD();
 printFrontEndDigitalQTune();
 #endif

 }

 decFrontEndDigitalQTune();
 decFrontEndDigitalQTune();
 programFilter(); // Apply Filter Settings
 prevFrontEndDigitalQTune = getFrontEndDigitalQTune();
 FrontEndAD = readFrontEndAD(); // Store Front-End Amplitude Detector Reading

 fineFrontEndQTune();
 disableFrontEndAD(); // Disable Front-End Amplitude Detector

 // Ensure Oscillation for Dependable Frequency Divider Readings
 setFrontEndDigitalQTune(getFrontEndDigitalQTune() + FrontEndQOffset);
 programFilter(); // Apply Filter Settings
}

/**
 * Function: findBackEndCriticalOsc
 * Parameters: void
 * Return: void
 * Description: Sets Back-End Q-Enhancement to 0 and reads the Amplitude Detector
 * to determine the Non-Oscillation reading. It then increases
 * Q-Enhancement until the Amplitude Detector reading drops below
 * the Non-Oscillation reading minus a set threshold value indicating that
 * the Back-End is oscillating. To ensure that a valid Frequency Divider
 * reading is obtainable, the Q-Enhancement is increased by a set offset.
 * Modified: This function now includes fine Q tuning
 **/
void findBackEndCriticalOsc(void)
{
 int prevBackEndDigitalQTune = -1;
 BackEndNonOsc = ANALOG_MIN;
 BackEndAD = ANALOG_MAX;

 setBackEndAnalogQTune(ANALOG_MIN);

119

 updateAnalogTuning();

 setBackEndDigitalQTune(QTUNE_DIG_MIN);
 enableBackEndAD();
 programFilter();
 BackEndNonOsc = readBackEndAD();

 #if _DEBUG_CRITICALOSC_ == 1
 printBackEndNonOsc();
 printBackEndDigitalQTune();
 #endif

 while (BackEndAD >= (BackEndNonOsc - BackEndADThresh1))
 {
 if (prevBackEndDigitalQTune == getBackEndDigitalQTune())
 {
 txStrUART1("---> Could Not Obtain Back-End Critical Oscillation <---\r\n");
 return;
 }
 prevBackEndDigitalQTune = getBackEndDigitalQTune();
 incBackEndDigitalQTune();
 programFilter();
 BackEndAD = readBackEndAD();

 #if _DEBUG_CRITICALOSC_ == 1
 printBackEndAD();
 printBackEndDigitalQTune();
 #endif
 }

 decBackEndDigitalQTune();
 decBackEndDigitalQTune();
 programFilter(); // Apply Filter Settings
 prevBackEndDigitalQTune = getBackEndDigitalQTune();
 BackEndAD = readBackEndAD(); // Store Front-End Amplitude Detector Reading

 fineBackEndQTune();
 disableBackEndAD();

 // Ensure Oscillation for Dependable Frequency Divider Readings
 setBackEndDigitalQTune(getBackEndDigitalQTune() + BackEndQOffset);
 programFilter();

}
/* End of File */

/**
 * Filename: qefilter.h
 * Date: June 2010
 * Compiler: C30
 * Author: Joel Schonberger
 * Company: Kansas State University
 * Department: Electrical & Computer Engineering
 * Research: 500 MHz Two-Pole Q-Enhanced Filter Tuning Algorithm
 * Discription: This file houses the preprocessor definitions and function prototypes
 * needed by the QE Filter Tuning Algorithm.
 * --
 * Updated: April 2012
 * Author: Chelsi Kovala
 * Changes: Modified to include function defintions:
 void fineFrontEndFTune(void)
 void fineBackEndFTune(void)
 void fineFrontEndQTune(void)
 void fineBackEndQTune(void)
 printFrontEndAnalogQTune()
 printFrontEndAnalogFTune()
 printBackEndAnalogQTune()
 printBackEndAnalogFTune()
 Modified to include variables:

120

 MAX_FINEFREQTUNE_ITTS
 **/
#ifndef _QEFILTER_H
#define _QEFILTER_H

/* Preprocessor Definitions & Macros */
#define FTUNE_DIG_MIN 165 // Limit the Frequency Range for Reliable Frequency Divider Ouputs
#define FTUNE_DIG_MAX 255
#define QTUNE_DIG_MIN 0
#define QTUNE_DIG_MAX 63
#define COUPLING_MIN 0
#define COUPLING_MAX 31
#define ANALOG_MIN 0
#define ANALOG_MAX 1023 // Joel chose this value
#define MAX_FREQTUNE_ITTS 100
#define MAX_CRITOSC_ITTS 64
#define MAX_FINEFREQTUNE_ITTS 1023/2 // = (1023/2)/inc or dec amount fine tuning is using - inc or dec

#define isFrontEndEnabled() (!FENDCON.en ? 1 : 0)
#define enableFrontEnd() FENDCON.en = 0 // Active-Low Enable
#define disableFrontEnd() FENDCON.en = 1
#define isFrontEndADEnabled() (!FENDCON.ADen ? 1 : 0)
#define enableFrontEndAD() FENDCON.ADen = 0 // Active-Low Enable
#define disableFrontEndAD() FENDCON.ADen = 1
#define isFrontEndFDEnabled() (!CAPCON1.FDFen ? 1 : 0)
#define enableFrontEndFD() CAPCON1.FDFen = 0 // Active-Low Enable
#define disableFrontEndFD() CAPCON1.FDFen = 1
#define getFrontEndDigitalFTune() FENDCON.fTune
#define setFrontEndDigitalFTune(val) FENDCON.fTune = ((val) > FTUNE_DIG_MAX ? FTUNE_DIG_MAX : ((val) <

FTUNE_DIG_MIN ? FTUNE_DIG_MIN : (val)))
#define incFrontEndDigitalFTune() setFrontEndDigitalFTune(FENDCON.fTune + 1)
#define decFrontEndDigitalFTune() setFrontEndDigitalFTune(FENDCON.fTune - 1)
#define getFrontEndDigitalQTune() FENDCON.qTune
#define setFrontEndDigitalQTune(val) FENDCON.qTune = ((val) > QTUNE_DIG_MAX ? QTUNE_DIG_MAX : ((val) <

QTUNE_DIG_MIN ? QTUNE_DIG_MIN : (val)))
#define incFrontEndDigitalQTune() setFrontEndDigitalQTune(FENDCON.qTune + 1)
#define decFrontEndDigitalQTune() setFrontEndDigitalQTune(FENDCON.qTune - 1)
#define isBackEndEnabled() (!BENDCON.en ? 1 : 0)
#define enableBackEnd() BENDCON.en = 0 // Active-Low Enable
#define disableBackEnd() BENDCON.en = 1
#define isBackEndADEnabled() (!BENDCON.ADen ? 1 : 0)
#define enableBackEndAD() BENDCON.ADen = 0 // Active-Low Enable
#define disableBackEndAD() BENDCON.ADen = 1
#define isBackEndFDEnabled() (!CAPCON2.FDBen ? 1 : 0)
#define enableBackEndFD() CAPCON2.FDBen = 0 // Active-Low Enable
#define disableBackEndFD() CAPCON2.FDBen = 1
#define getBackEndDigitalFTune() BENDCON.fTune
#define setBackEndDigitalFTune(val) BENDCON.fTune = ((val) > FTUNE_DIG_MAX ? FTUNE_DIG_MAX : ((val) <

FTUNE_DIG_MIN ? FTUNE_DIG_MIN : (val)))
#define incBackEndDigitalFTune() setBackEndDigitalFTune(BENDCON.fTune + 1)
#define decBackEndDigitalFTune() setBackEndDigitalFTune(BENDCON.fTune - 1)
#define getBackEndDigitalQTune() BENDCON.qTune
#define setBackEndDigitalQTune(val) BENDCON.qTune = ((val) > QTUNE_DIG_MAX ? QTUNE_DIG_MAX : ((val) <

QTUNE_DIG_MIN ? QTUNE_DIG_MIN : (val)))
#define incBackEndDigitalQTune() setBackEndDigitalQTune(BENDCON.qTune + 1)
#define decBackEndDigitalQTune() setBackEndDigitalQTune(BENDCON.qTune - 1)
#define getCouplingUpper() CAPCON1.upper
#define setCouplingUpper(val) CAPCON1.upper = ((val) > COUPLING_MAX ? COUPLING_MAX : ((val) <

COUPLING_MIN ? COUPLING_MIN : (val)))
#define getCouplingLower() CAPCON1.lower
#define setCouplingLower(val) CAPCON1.lower = ((val) > COUPLING_MAX ? COUPLING_MAX : ((val) <

COUPLING_MIN ? COUPLING_MIN : (val)))
#define getCouplingUFLB() CAPCON2.UFLB
#define setCouplingUFLB(val) CAPCON2.UFLB = ((val) > COUPLING_MAX ? COUPLING_MAX : ((val) <

COUPLING_MIN ? COUPLING_MIN : (val)))
#define getCouplingLFUB() CAPCON2.LFUB
#define setCouplingLFUB(val) CAPCON2.LFUB = ((val) > COUPLING_MAX ? COUPLING_MAX : ((val) <

COUPLING_MIN ? COUPLING_MIN : (val)))
#define getFrontEndAnalogFTune() ANALOG.FANAF

121

#define setFrontEndAnalogFTune(val) ANALOG.FANAF = ((val) > ANALOG_MAX ? ANALOG_MAX : ((val) <
ANALOG_MIN ? ANALOG_MIN : (val)))

#define getFrontEndAnalogQTune() ANALOG.FANAQ
#define setFrontEndAnalogQTune(val) ANALOG.FANAQ = ((val) > ANALOG_MAX ? ANALOG_MAX : ((val) <

ANALOG_MIN ? ANALOG_MIN : (val)))
#define getBackEndAnalogFTune() ANALOG.BANAF
#define setBackEndAnalogFTune(val) ANALOG.BANAF = ((val) > ANALOG_MAX ? ANALOG_MAX : ((val) <

ANALOG_MIN ? ANALOG_MIN : (val)))
#define getBackEndAnalogQTune() ANALOG.BANAQ
#define setBackEndAnalogQTune(val) ANALOG.BANAQ = ((val) > ANALOG_MAX ? ANALOG_MAX : ((val) <

ANALOG_MIN ? ANALOG_MIN : (val)))
#define turnRFSwitchOn() setPinLow(RFSW); DEBUG.RFOn = 0
#define turnRFSwitchOff() setPinHigh(RFSW); DEBUG.RFOn = 1
#define isRFSwitchOn() !DEBUG.RFOn
#define printFrontEndStatus() (isFrontEndEnabled() ? txStrUART1("Front-End Enabled\r\n") : txStrUART1("Front-

End Disabled\r\n"))
#define printFrontEndADStatus() (isFrontEndADEnabled() ? txStrUART1("Front-End AD Enabled\r\n") :

txStrUART1("Front-End AD Disabled\r\n"))
#define printFrontEndFDStatus() (isFrontEndFDEnabled() ? txStrUART1("Front-End FD Enabled\r\n") :

txStrUART1("Front-End FD Disabled\r\n"))
#define printFrontEndAD() strPopulate16Bit(strFrontEndAD,FrontEndAD,'#',4)
#define printFrontEndNonOsc() strPopulate16Bit(strFrontEndNonOsc,FrontEndNonOsc,'#',4)
#define printFrontEndFCnt() strPopulate16Bit(strFrontEndFCnt,FrontEndFCnt,'#',4)
#define printFrontEndDigitalQTune() strPopulate16Bit(strFrontEndDigitalQTune,getFrontEndDigitalQTune(),'#',2)
#define printFrontEndAnalogQTune() strPopulate16Bit(strFrontEndAnalogQTune,getFrontEndAnalogQTune(),'#',4)
#define printFrontEndDigitalFTune() strPopulate16Bit(strFrontEndDigitalFTune,getFrontEndDigitalFTune(),'#',3)
#define printFrontEndAnalogFTune() strPopulate16Bit(strFrontEndAnalogFTune,getFrontEndAnalogFTune(),'#',4)
#define printBackEndStatus() (isBackEndEnabled() ? txStrUART1("Back-End Enabled\r\n") : txStrUART1("Back-End

Disabled\r\n"))
#define printBackEndADStatus() (isBackEndADEnabled() ? txStrUART1("Back-End AD Enabled\r\n") :

txStrUART1("Back-End AD Disabled\r\n"))
#define printBackEndFDStatus() (isBackEndFDEnabled() ? txStrUART1("Back-End FD Enabled\r\n") :

txStrUART1("Back-End FD Disabled\r\n"))
#define printBackEndAD() strPopulate16Bit(strBackEndAD,BackEndAD,'#',4)
#define printBackEndNonOsc() strPopulate16Bit(strBackEndNonOsc,BackEndNonOsc,'#',4)
#define printBackEndFCnt() strPopulate16Bit(strBackEndFCnt,BackEndFCnt,'#',4)
#define printBackEndDigitalQTune() strPopulate16Bit(strBackEndDigitalQTune,getBackEndDigitalQTune(),'#',2)
#define printBackEndAnalogQTune() strPopulate16Bit(strBackEndAnalogQTune,getBackEndAnalogQTune(),'#',4)
#define printBackEndDigitalFTune() strPopulate16Bit(strBackEndDigitalFTune,getBackEndDigitalFTune(),'#',3)
#define printBackEndAnalogFTune() strPopulate16Bit(strBackEndAnalogFTune,getBackEndAnalogFTune(),'#',4)
#define printCouplingUpper() strPopulate16Bit(strCouplingUpper,CouplingUpper,'#',2)
#define printCouplingLower() strPopulate16Bit(strCouplingLower,CouplingLower,'#',2)
#define printCouplingUFLB() strPopulate16Bit(strCouplingUFLB,CouplingUFLB,'#',2)
#define printCouplingLFUB() strPopulate16Bit(strCouplingLFUB,CouplingLFUB,'#',2)
#define printRFSwitchStatus() (isRFSwitchOn() ? txStrUART1("RF Switch On\r\n") : txStrUART1("RF Switch

Off\r\n"))
#define printCenterFreq() strPopulate16Bit(strCenterFreq,CenterFreq,'#',4)
#define printFreqTol() strPopulate16Bit(strFreqTol,FreqTol,'#',3)
#define printFrontEndADThresh1() strPopulate16Bit(strFrontEndADThresh1,FrontEndADThresh1,'#',3)
#define printFrontEndADThresh2() strPopulate16Bit(strFrontEndADThresh2,FrontEndADThresh2,'#',3)
#define printFrontEndQOffset() strPopulate16Bit(strFrontEndQOffset,FrontEndQOffset,'#',2)
#define printFrontEndQBackOff() strPopulate16Bit(strFrontEndQBackOff,FrontEndQBackOff,'#',2)
#define printFrontEndFOffset() strPopulate16Bit(strFrontEndFOffset,FrontEndFOffset,'#',2)
#define printBackEndADThresh1() strPopulate16Bit(strBackEndADThresh1,BackEndADThresh1,'#',3)
#define printBackEndADThresh2() strPopulate16Bit(strBackEndADThresh2,BackEndADThresh2,'#',3)
#define printBackEndQOffset() strPopulate16Bit(strBackEndQOffset,BackEndQOffset,'#',2)
#define printBackEndQBackOff() strPopulate16Bit(strBackEndQBackOff,BackEndQBackOff,'#',2)
#define printBackEndFOffset() strPopulate16Bit(strBackEndFOffset,BackEndFOffset,'#',2)

/* Function Prototypes */
void initFilter();
void printFilterOptions(void);
void printAlgorithmOptions(void);
void updateFilterData(void);
void programFilter(void);
void prgmDelay(void);
void updateAnalogTuning(void);
void algorithm(void);
void coarseFrontEndFTune(void);
void coarseBackEndFTune(void);

122

int getFrontEndFrequency(void);
int getBackEndFrequency(void);
void findFrontEndCriticalOsc(void);
void findBackEndCriticalOsc(void);
void fineFrontEndFTune(void);
void fineBackEndFTune(void);
void fineFrontEndQTune(void);
void fineBackEndQTune(void);
#endif
/* End of File */

Appendix C - National Instruments LabVIEW Code

Figure C.1 – Screen Shot of NI Code ‘XCVR_Spur_Scan’ Running

123

124

125

126

127

128

129

130

131

132

133

134

135

Appendix D - Octave Code for Spurious Response Analysis

function spurs = findSpurs(s, minPower, var, maxm, maxn, IF, ftune, hilo)
% Created: March 2012
% Author: Chelsi Kovala
% Description: This function was written to analyze data recorded by the
% XCVR_Spur_Scan.vi written in NI LabVIEW. This function takes
% a set of frequencies which produced spurious responses and the
% the first IF of the receiver, and checks to see if mixer spurs
% could explain the spur by choosing all combinations of n and m
% and checking to see if the equation fIF=nfRF+-mfLO is satisfied.
% This all assumes a superheterodyne receiver.
% File Format: File must be a text file with two columns of numbers,
% [frequency amplitude] with no headings to be read in correctly.
% Parameters: s text file to be read in
% minPower events with power greater than this won't be considered
% var how far the calculated value may differ from the
% expected value in MHz, e.g. .1 = may differ by 100 kHz
% maxm the maximum m coefficient to consider
% maxn the maximum n coefficient to consider
% IF the intermediate frequency to consider
% ftune the frequency being received
% hilo 1 if highside injection is used, 0 if lowside injection
% is used

file=fopen(s);
C = textscan(file,'%f %f');
a1=cell2mat(C(:,1));
a2=cell2mat(C(:,2));
NewA=[a1 a2];
[l dontcare]=size(NewA);
temp=1;
A=0;
for i=1:l
 if(NewA(i,2)<minPower)
 A(temp,1)=NewA(i,1);
 temp=temp+1;
 else
 end
end

[l1 dontcare]=size(A);
fIF1=IF(1);
if(hilo==1)
 flo1=fIF1+ftune;
else
 flo1=ftune-fIF1;
end
s1count=1;
s2count=1;
count=1;
spurDiff1st=zeros(1,3);
spurSum1st=zeros(1,3);
temp3=-1;
for i=1:l1
 for m=0:maxm
 for n=0:maxn
 temp1=(m*flo1-n*A(i,1));
 temp2=(n*A(i,1)+m*flo1);
 if ((abs(temp1)<fIF1+var) && (abs(temp1)>fIF1-var))
 if temp1<0
 spurDiff1st(s1count,:)=[A(i,1) -m n];
 else
 spurDiff1st(s1count,:)=[A(i,1) m -n];
 end
 s1count=s1count+1;
 end
 if ((temp2<fIF1+var) && (temp2>fIF1-var))

136

 spurSum1st(s2count,:)=[A(i,1) m n];
 s2count=s2count+1;
 else
 firstOrd(count,1)=abs(temp1);
 firstOrd(count,2)=temp2;
 count=count+1;
 end
 end
 end
end
spurDiff1st

spurSum1st

	Chapter 1 - Introduction
	1.1 Objective
	1.2 Q-Enhanced Filter Development Primer
	1.2.1 Integrated Filter Design
	1.2.1.1 Previous Work
	1.2.1.2 Q-Enhancement
	1.2.1.3 Revised Integrated Circuit Block Diagram

	1.2.2 Supporting Hardware and Software
	1.2.2.1 Previous Work
	1.2.2.2 Software Additions

	1.3 Receiver Architectures and Filter Applications
	1.3.1 Motivation
	1.3.2 Prior Art
	1.3.3 Research Accomplished
	1.3.3.1 Spurious Rejection Response Testing System
	1.3.3.2 Spurious Rejection Response Results
	1.3.3.3 Filter Application

	Chapter 2 - Q-Enhanced Filter Redesign
	2.1 Design Overview
	2.2 Porting Design to Different Integrated Circuit Technology
	2.3 Asymmetry in the Passband
	2.3.1 Sources of Asymmetry
	2.3.1.1 Admittance Review
	2.3.1.2 The First Source of Asymmetry
	 2.3.1.2.1 Origin of Asymmetry: Inductive Coupling
	2.3.1.2.2 Circuit Design Solution: Resistance Tuning

	2.3.1.3 The Second Source of Asymmetry
	2.3.1.3.1 Origin of Asymmetry: Incorrectly Driven Coupling Capacitors
	 2.3.1.3.2 Circuit Design Solution: Corrected Loading

	2.4 Additional Circuit Redesigns
	2.4.1 Frequency Divider
	2.4.2 Amplitude Detector

	Chapter 3 - Supporting Hardware and Software
	3.1 Previous Work
	 3.2 Top-level Code Implementation
	3.3 Software Additions
	3.3.1 Fine Tuning
	 3.3.1.1 Implementation
	3.3.1.2 Results

	3.3.2 Resistance Tuning
	3.3.2.1 Implementation
	3.3.2.2 Control Word and Passband Controls

	Chapter 4 - Spurious Responses in Receivers
	4.1 Introduction to Receiver Architectures
	4.1.1 Direct Conversion
	4.1.2 Superheterodyne
	4.1.3 Multiple Conversion Superheterodyne
	4.1.4 Software Defined Radio

	4.2 Spurious Responses in Receivers
	4.2.1 Nonlinear Behaviors
	 4.2.1.1 Amplification
	 4.2.1.2 Mixer Spurs
	4.2.1.3 Intermodulation Distortion

	4.2.2 Spurs from Digital Synthesizers
	4.2.3 Image Frequency
	4.2.4 1/2IF & 1/3IF Spur Frequencies

	4.3 Spurious Response Test System
	4.3.1 Manual Measurement Process
	4.3.2 Automated Measurement Development
	4.3.2.1 – Quieting Detection Method
	4.3.2.2 Physical Test Setup
	4.3.2.2 LabVIEW Code Algorithm

	4.4 Receiver Block Diagrams
	4.4.1 VR-120
	4.4.2 VX-3
	4.4.3 Software Defined Radio
	4.4.4 K-State Microtransceiver

	4.5 Receiver Test Results
	4.5.1 Checking for Mixer Spurs
	4.5.2 Three Receivers Tuned to an HF Frequency
	 4.5.3 Three Receivers Tuned to Two Different Frequencies in HF Band
	 4.5.4 Two Receivers Compared at VHF Bands
	 4.5.5 The K-State Microtransceiver Spurious Rejection Response at UHF

	Chapter 5 - The Q-Enhanced Filter as a Solution to SDR Architectures
	5.1 – Spur Reduction Achieved by Changing the IF
	5.2 – A New Architecture Using the Q-Enhanced Filter

	Chapter 6 - Conclusion
	6.1 System Status Summary
	6.1.1 Integrated Circuit Redesign
	6.1.2 Software Development

	 6.2 Receiver Spurious Response Conclusions
	 6.3 Future Work
	6.3.1 Filter Layout
	 6.3.2 Filter Testing
	 6.3.3 Software
	6.3.3.1 Fine Tuning Code Future Work

	Chapter 7 - Bibliography
	Appendix A - IC Redesign
	A.1 Top Level View of Q-Enhanced Filter Schematic
	A.2 Serial to Parallel Block
	A.3 Differential Cores, Amplitude Detector & Frequency Divider Top View
	A.3.1 Differential Core, Buffer, & Tuning Block
	A.3.1.1 Differential Core
	A.3.1.2 Buffer
	A.3.1.3 Tuning Block
	A.3.2 Resistance Tuning & Capacitive Coupling Top View
	Appendix B - C Code
	B.1 Fine Tune Code Modifications

	Appendix C - National Instruments LabVIEW Code
	Appendix D - Octave Code for Spurious Response Analysis

