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Abstract

Q-enhanced Filters have been researched extensively, but have not been often
implemented into receiver architectures due to inherent challenges in the design and stability of
these filters. However, recent works have successfully addressed Q-enhanced filter designs
which are viable for receiver implementation with tuning algorithms to achieve temperature
stability. This work continues these efforts with the redesign of a Two-Pole Q-Enhanced Band-
Pass filter tested at narrower fractional bandwidths than previous work of less than one percent
and considers potential significant improvements in receiver performance using this filer.

The Q-enhanced filter redesign ports the existing filter to a new integrated circuit
technology which performs better at higher frequencies. The redesign in particular addresses
problems in the previous design. The frequency divider design is modified, resistance tuning is
added, and additional modifications to the overall filter functionality are implemented. General
problems in obtaining an ideal passband shape by eliminating unwanted coupling are addressed.
The supporting software for the tuning algorithm is modified to use analog controls and shown to
achieve further narrowed bandwidths of 5 MHz and 2.5 MHz at center frequencies of 500 MHz,
which are demonstrated to be temperature stable. Future software modifications are described to
prepare the existing code base for the new filter design.

Potential applications for a Q-enhanced filter include improving the performance of
receiver designs. One of the most important performance parameters of a receiver is its spurious
response rejection. To explore this behavior, an automated test system is developed to
characterize receivers, and four receivers are tested. The test results are presented in a novel
graphical display, which is used to evaluate receiver performance and compare receivers. These
results motivated the development of a potential modified superheterodyne receiver architecture
using the Q-enhanced filter as an image filter and an IF filter. The viability of this receiver
design is tested and shown to provide significant improvements to receiver’s spurious rejection

response.
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Chapter 1 - Introduction

1.1 Objective

This thesis is divided into two parts. First, this thesis documents the redesign of the Two-
Pole Q-Enhanced Band-Pass Filter into a new integrated circuit (1C) technology. Problems in the
previous filter design are explained and solutions are explored. Additionally, the supporting
software is refined with additions and improvements to the pre-existing tuning algorithm and
changes to the supporting software and hardware needed for the redesigned IC portion of the
filter are explained. Second, this thesis considers the currently used methods for, and historical
emphasis placed on, characterizing a receivers spurious rejection responses. The development of
an automated test system to explore this behavior is described and the test results are presented in
a novel graphical format. Based on the demonstrated capability of the Q-enhanced filter and
insight from the spurious rejection response data, this thesis proposes a new receiver
architecture. Finally, this architecture is tested to determine if it could significantly improve a

receiver’s spurious rejection capability.
1.2 Q-Enhanced Filter Development Primer
1.2.1 Integrated Filter Design

1.2.1.1 Previous Work

The existing Q-enhanced filter used as a starting point for this thesis was designed by
Renee Strouts based on circuit concepts developed in a class project. The original design is
documented in [1]. This active filter uses Q-enhancement to create a tunable variable bandwidth
bandpass filter. Q-Enhancement is explained thoroughly in both [1] and [2] and will only be

defined here briefly to lend context to this thesis’s discussion of the filter.

1.2.1.2 Q-Enhancement
‘Q-enhancement’ refers to the technique of increasing the quality factor of an inductor,

capacitor, or tuned circuit [3]. The ‘quality factor’ is defined by the ratio of the energy stored to



the energy dissipated in these components. In general, Q is defined mathematically by equation
(1.2).

Energy Stored
Q =2m X g

(1.1)

Energy Dissapated Per Cycle
A more detailed explanation of Q and the associated RF models of inductors and capacitors can
be found in [2]. The important idea to understand here is that every inductor and capacitor
includes a non-ideal resistance which limits the components performance at sufficiently high
frequencies. This behavior is crucial to filter design because the Q of a filter fundamentally limits

its achievable bandwidth according to (1.2).
Bandwidth = % (1.2)

where fy is the center frequency of the filter passband and Q is the composite filter quality factor.
Typically, the overall Q of a filter has been limited by the inductors used. In particular, high Q
inductors are very difficult to manufacture in integrated circuits [4]. In this work off chip
inductors are used, but the previous theses and associated research include efforts to achieve high
Q on chip inductors [5]. Q-Enhancement is achieved in the filter in this thesis using cross

coupled field effect transistors.

1.2.1.3 Revised Integrated Circuit Block Diagram
The top level block diagram for the revised Two-Pole Q-Enhanced Band-Pass Filter is
shown in Figure 1.1.
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Figure 1.1 — Q-Enhanced Filter Block Diagram



Similar to previous designs, the filter’s input signal is driven into a differential cascoded
amplifier core, labeled *Front-End’. The second core, the ‘Back-End’ is an identical copy of the
Front-End with grounded inputs. The amplitude detection and frequency division circuits for the
Front-End and Back-end are driven by the cores via identical buffers to protect the filter from too
much loading. The filter is programmed via the serial to parallel register from a microcontroller
which runs the supporting software introduced in section 1.2.2. This communication is a bit
stream which controls the enabling of the buffers, amplitude detectors, and frequency dividers.
The rest of these bits control binary weighted cells of Q-enhancement, frequency tuning,
capacitive coupling and resistance tuning used to tune the filter center frequency, bandwidth and
shape of the passband. The LC tank circuits are off-chip resonators driven by the Front-end and
Back-end. The final output of the filter is driven differentially from the Back-End buffer.

The entire I1C was ported to a .18um SOI process technology which is lower power and
better performance at higher frequencies than the .5um and .25um SOI processes used
previously. Portions of the circuit were redesigned to add functionality, improve performance or
to fix problems in the existing filter. These modified circuit designs are shown shaded slightly
darker with a dashed outline in Figure 1.1. The serial to parallel register was increased from 64
bits to 96 bits to control additional circuitry. The intrinsic gain of the cascoded amplifier cores
was lowered to 1 to improve the dynamic range. Resistance tuning circuitry was added to cancel
unwanted coupling affects. The frequency dividers were redesigned entirely to eliminate internal
oscillation problems in the current design. Also, a pre-existing design flaw was discovered in the
amplitude detector circuit. The design changes to the frequency divider and the addition of the
resistance tuning are explained in section Chapter 2. The design flaw in the amplitude detector is
also explained in Chapter 2. The rest of the circuit design as ported to the new process is

documented in appendix A.
1.2.2 Supporting Hardware and Software

1.2.2.1 Previous Work
The filter is implemented on a circuit board using a microcontroller to program and tune
the filter for testing and implementation. In the previous thesis work by Joel Schonberger, a test

application was written in C# to create a graphical user interface (GUI) which allowed the user to
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control the filter manually or provide settings to an automated tuning algorithm. The circuit
board, the supporting software written for the microcontroller, and GUI are documented
thoroughly in [2]. The review here is therefore brief and provided only as a basis for

understanding the additions to this supporting software described in this thesis.

1.2.2.2 Software Additions

It has been a long time goal of the work this thesis continues to achieve fractional
bandwidths of one percent or less relative to the center frequency. Achieving this narrow
bandwidth required the addition of fine tuning in the existing automated tuning algorithm. Those
additions are implemented and tested and documented in Chapter 3 and Appendix B. The
changes to the filter design also create a need to modify the supporting code for the
microcontroller and the GUI. The changes to the code for the microcontroller are explained in

Chapter 3. Changes to the GUI are also suggested, but not yet implemented.
1.3 Receiver Architectures and Filter Applications

1.3.1 Motivation

A crucial issue in today’s wireless communication technologies is maximizing
throughput in the allocated spectrum. As a result increasing demands are being placed on
communication technology. According to Michael Marcus, retired associate chief for
Technology with the FCC, “Transmitters don’t use spectrum, receivers do.” [6] Therefore, if
receiver performance is improved, the spectrum can be used more efficiently. Given the rapidly
increasing popularity of devices using wireless technologies, the demand on the RF spectra is
growing. Improving receiver’s performance to meet this demand is an important goal.

Receiver performance is a complex topic with a long history. To improve upon current
designs it is necessary to quantify current receiver performance to accurately assess the current
state of the technology and gain insight into how it could be improved. The task of a receiver is
to detect and translate the signal it’s tuned to receive without being affected by any other signal.
One way to measure how well a receiver does this is to measure the receiver’s spurious rejection
response. This work attempts to address the need to measure receiver performance by developing
a spurious response rejection test system and developing a novel graphical format to display the

results.



The limiting factor in improving receiver performance is largely governed by the ability
to filter and completely isolate only the desired signal. As a result, much research has been done
to design optimal filters. Q-Enhancement has been considered as an option for use integrated
receivers in previous work [7] and [8]. However, it’s been assumed that the limited dynamic
range and high noise figure associated with Q-enhancement would compromise receiver
performance [9]. This research in this thesis characterizing receiver’s spurious rejection response

indicates this conclusion is not fully correct.

1.3.2 Prior Art

There are many criteria used to evaluate various aspects of receiver performance
including but not limited to, sensitivity, noise figure, dynamic range, third order intercept, IF
rejection, and adjacent channel rejection. This criterion is used both by amateurs [10] and in
industry and academia [11]. Another technique often used to look mixing schemes is the so-
called “spur chart” in which a diagram is developed to illustrate potential combinations of
incoming signal frequencies and their harmonics and f_ o and its harmonics that a receiver may
respond to [12]. Despite the useful information this diagram contains, it is difficult to understand
quickly. Moreover, no information about the severity of the spurious response is identified.

Literature generally emphasizes the important causes of spurious responses in receivers
to be mixing, IF separation, harmonics and coupling with existing signals in the receiver [13].
Other work has explored automated testing spurious rejection responses to apprehend the full
complexity of receiver’s performance [14], [15].

Unfortunately, spur charts and the many various standards of receiver performances
mentioned above fail to yield an intuitive assessment of the receiver’s spurious response
rejection performance. Even the works on automated spurious response testing, while quite
thorough, didn’t offer a simple way to view and intuitively evaluate the receiver performance.
Chapter 4 in this work addresses a new automated spurious rejection response test system and

develops and demonstrates a useful, intuitive graphical display of the test results.



1.3.3 Research Accomplished

1.3.3.1 Spurious Rejection Response Testing System

To understand and characterize receiver spurious rejection response an automated test
system was developed. This system allowed four receivers to be tested thoroughly over different
amplitude ranges and different frequencies. The system usesa ‘MyDAQ’ and a LabVIEW based

test GUI. This system is explained at length in section 4.3.

1.3.3.2 Spurious Rejection Response Results
The data obtained from the Spurious Rejection Test System proved extensive. A
graphical display of the results was developed providing insights into the four receivers tested.

Explanations for the spurious responses observed were analyzed and evaluated in section 4.5.

1.3.3.3 Filter Application

Finally, a modified superheterodyne receiver using the Q-enhanced filter is proposed in
Chapter 5. The potential improvements in spurious rejection are partially tested using the
Spurious Rejection Test System. The results strongly indicate this solution might provide an

excellent alternative to current receiver architectures.

Chapter 2 - Q-Enhanced Filter Redesign

2.1 Design Overview
This Chapter documents the redesign of a two-pole Q-enhanced band-pass filter IC
originally designed by Renee Strouts [1]. The first section will explain briefly the process of
porting this design to a new technology. The next section will focus on the problems with an
asymmetrical passband in the previous filter design. The origin of this asymmetry is explained
theoretically and the solution in the hardware design is documented. Last, this section looks at
the circuits which were changed significantly from the original design or had intrinsic issues in

the original design.



2.2 Porting Design to Different Integrated Circuit Technology

This section describes porting the previous IC design in a silicon-on-sapphire (SOS)
process to a bulk SOI process. The bulk SOI process runs on a lower power voltage and has a
smaller minimum length of .18um than the SOS process. The new process also includes body
contacts and a different k,, value. As a result, porting the circuit design required re-biasing the
circuits and choosing new W/L ratios which matched the circuits design specifications.

In general, analog design using metal on oxide semiconductor field effect transistors
(MOSFETs or ‘FET’s) atan IC level is ruled by well-known equation (2.1)

khw
Ip = 7T(Vas - Vt)z (2.1)

for FETs in the active region neglecting Early effect. Long channel FETSs in the triode region are
described by (2.2).

2
Ip = kﬁ%((vas - Ut)UDs - vzﬂ) (2.2)
Also,
kn = nCox (2.3)
and
Vov = (Vs — v¢) (2.4)

The above equations are well known, but the quadratic term is only correct for FETSs that are
‘long channel” with a sufficiently small overvoltage. If the FET is “short channel” or the

overvoltage is large enough, the equation for Ip versus Vgs the active region reduces to (2.5).
koW ,
Ip = 7T(Vas — i) (2.5)
Where the new threshold voltage, v, is the interpolated Vgs-axis intercept of the linear portion
of the Ip versus Vgs relationship. A particular case of this behavior in a FET is shown in Figure

2.1. This behavior is not typically explained in textbooks, but is consistently exhibited in

experimental data [16].
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Figure 2.1 — Ip versus Vgs Curve Showing Quadratic and Linear Behavior

It’s easy to see in the Ip versus Vgs above that the quadratic behavior only lasts from
about Vs =.35 V to VGS = .8 V. After Vs increases past about .8 V, the current increases
linearly. This behavior, as stated above, may start nearly as soon as the FET is in saturation if the
length is small enough. The new process lengths used in the Q-enhanced filter redesign were so
small that most design work assumes that the FETs are short channel.

Two other equations are important during this design when a FET is used as a switch.
First, when the FET is ‘on’ so that it’s conducting current and in the triode region, the resistance

that signals see from drain to source, 1y, IS given in (2.6).
1

kz;l—VLV(Ugs—Ut)
Simultaneously, the capacitance of the FET can be calculated using (2.7).

C = nWLC,, (2.7)
which can then be used to find the impedance of a FET using (2.8)

ToN = (2.6)

1
¢ 2mfC

(2.8)
The ‘n’ in (2.7) is a fractional value between zero and one determined by the signal path through
the FET and whether the FET is off, in triode or in saturation.

Finally, since the overall design of the previous IC was robust and working well, most
circuits could be redesigned by simply assuming the same biasing scheme and altering the W/L
ratio to compensate for the change in k,,. However, this assumed the body effect would be
negligible. While this would simplify porting the design, some circuits needed to be addressed in

more detail. In general good design practice dictated that all circuits needed to be simulated and



evaluated individually to ensure a robust design that matched, or ideally exceeded, its

predecessor’s performance.

2.3 Asymmetry in the Passband
This section deals with pronounced asymmetry in the passband shape, a major problem in
the previous design. This problem is documented extensively in [2] and illustrated in Figure 2.2.
The theoretical origin of this asymmetry is investigated and determined to be a result of two
issues in the previous design: the non-idealities of inductive coupling with finite Q inductors and
an error in the original coupling capacitor circuit design.

136114 MAY 26, 2010
o 1136 Wi 501,0 Wiz

Atten 10 dB ~37.81 dbm

Figure 2.2 — Filter Response Showing Asymmetric Passband (Used with Permission [2])

2.3.1 Sources of Asymmetry
Both sources of asymmetry are explored and characterized mathematically using
admittances in [2]. However, there is an algebraic error in the solution describing the inductive
coupling, so the corrected solution is explained in section 2.3.1.2 followed by the circuit level
solution. To prepare a basis for explaining the hardware design solution to these asymmetries,
admittances are reviewed in section 2.3.1.1. Finally, the solution for the coupling capacitors

derived in [2] is presented in section 2.3.1.3 along with the circuit level solution.
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2.3.1.1 Admittance Review

The basic ideas of admittance are presented here to provide a context for the discussion
of characterizing the asymmetries in the passband. The definitions of y-parameters are shown in
Figure 2.3 and equations (2.9) — (2.13). Y parameters for inductors, capacitors and resistors are
derived in (2.14) — (2.16).

Admittance is defined as the inverse of impedance and can described with the two port

network shown in Figure 2.3.

h I;
—_—— -—

+ +
tma Ve
. W1 Ytz Yaa
Ir:l l[":r:
_ y12Wy .

Figure 2.3 — Two Port Network (Used with Permission [2])

| |

This network allows the following definitions to be developed.

}’11 Y12 Vl]
[ ] Y21 )’22 (2.9)
Input port admittance Forward Transfer Admittance
Yii = (2.10) Va1 = (2.11)
1 V2=0 1 V2=0
Reverse Transfer Admittance Output Port Admittance
Viz = (212) Vo2 = (213)
2 1:0 2 V1=O
Using the definitions in (2.10) — (2.13) a resistor, capacitor and inductor, connected between
ports one and two, are characterized in the next three equations.
etare v, — 2 _f _Th_ 1
Resistor: y,; = vl o =R "R, - R (2.14)
Capacitor: y,; = 2 . (2.15)
P T vy o T X T (X X '
Inductor: y,, = 2 = b _J 2.1
ductor: 21 vily oo UXin  UXDi Xy (2.16)
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By symmetry for these elements, y,,will equal y,,. A similar process could be used to find

yy1and y,,, which should also be equal to each other by symmetry.

2.3.1.2 The First Source of Asymmetry

As explained above, all inductors are limited by their Q value and have a small amount of
resistance. The previous work determined that the coupling between the inductors in the LC tank
circuits was not purely inductive due to the limited Q of the inductors [2]. As a result the
inductors introduced an unwanted coupling term 90° out of phase with the desired LC coupling
used in realizing the basic 2-pole response. To quantify and understand this unwanted coupling,

the impedance of the LC tank circuits are modeled mathematically in section 2.3.1.2.1.

2.3.1.2.1 Origin of Asymmetry: Inductive Coupling
The LC tank circuits for the Q-enhanced filter are off chip and laid out using two discrete

inductors and a capacitor as shown in Figure 2.4.

_ Vag _ Vaa Portla iﬂl a kT F:ort2a
+

Lia é Lib | Laa Lab AC 2C 5L, h ?
— GroundT a v L L Vv
v, 1 L :

C C 2C <Ly

Rsl RSZ _
Portla Portlb Port2a Port2a Portlb Portlb Port2b

Figure 2.4 — Topological Transformation of LC Tank Circuit

This topology shown on the left of Figure 2.4 was used to allow the desired biasing. It is
not immediately obvious how to translate these two circuits into two port network. The
topological transformation required is shown in Figure 2.4, beginning with the topology of the
tank circuits and ending with the circuit rearranged into a two port network topology for
admittance analysis of the inductor coupling issue.

From Figure 2.4 it’s defined that 2L1,=2 L1,= L3. The capacitors are omitted since we
only need to consider the inductive coupling, shown as k in the last box to the right. Using these

definitions the forward transfer admittance can be derived as follows

Ll = Lz, RSl = RSZ = RS,M = k L1L2 (217, 218, 219)
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Solving (2.21) for I, and letting X; = wL

__ LUXL4RY)
L=-k (2.22)

Substitute (2.22) into (2.20) where X; = wL

_ Iz(jXL+Rs) _ Iz(jXL+Rs)Rs

V]_ = k +jXL12k jXLk (2.23)
I 1
“Wlyme U - 2.24
Y21 Vi V,=0 (JXLk+Rs)+jXLk (JX;‘;S;)RS ( )
Combining fractions, inverting and multiplying out yields
_ JjXLk
Y21 = (i, 4Re) jX,~ (X1 4Ro)Rs (2.25)
_ JXLk
Ya = —(-1)X,?—jRsX—jX Rs+R2 (2.26)
_ JjXLk
Y21 = Rayx,?—j2x.R,s (2.27)
_ jXLk (R§+XL2)+]'2XLRS>
Ya1 = (R2+X,%)—j2X_Rs ((R§+XL2)+]'2XLRS (2.28)
_ __ T2X’Rék jXLk(RZ4X,?)
Yo = (R2+X.2)"+4x,%RE  (R2+X,%)"+4X,2R? (2.29)
Now letting @ > 1,50 Ry « X, dueto R = XL/Q, all R? go to zero.
_ —2Rsk E _ L _E .
Yo =g Tx T XL( Q +f) (2.30)

Last, we cancel the unwanted real component of y»; using the admittance of a resistor derived in
(2.10). The necessary resistance to eliminate the unwanted y,; admittance can be found by
summing that admittance with the admittance of a resistor and solving for the resistor. The
resulting resistance value is shown calculated in (2.27).

R2+x,2)’ +4X,2RZ X2 X
(RE+X,.%) +4X,°RE X, ~ ¥ _p (2.31)

2X.2Rsk ~ 2Rk 2k

where the real parts in (2.29) and (2.30) are shown having solved for the wanted resistance value.

From (2.31) we observe that in the ideal case y»; is equal to i—k due to the quadrature relationship
L

between V and I in an inductor. This is the term needed in a coupled resonator filter to from the

desired passband response [17]. However, (2.31) shows an additional undesired “in-phase” term
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as well. This term gives rise to the asymmetric shape seen in Figure 2.2 previously. This result in
(2.29) was confirmed using ADS. That simulation and its output are shown in Figure (2.5) —
(2.6).

MUTIND
V'.-‘H
;’.33 S-PARAMETERS —
Mutuall
M= 05
=P b=

Start=250 MHz
Stop=750 MHz
Step= 50 MHz

Inductor1="L1*
Inductord="1"
I

L=10 riH

R=

GE]
B3 én_ 1 Ohem

R=-10hm

Tam2
hum=2
I=1 Ok

Figure 2.5 — ADS Circuit Simulating Admittance Parameters

0000000 0.000000
0.000005— e _0.00000s
-0.000010 0.000010—
m1.
-0L000014 v -0,000015
& _o.o00020-] v m = _p.oooo2o pd
-;_-:. freq=400.0MHz ;-;- 7
— = -
%5 -0.000025— real(y(1.2))=-1.591E-5 S _0.000025—] /
= &=
-0.000030 -0.000030—
-0 0000ES —| -0,000035
0.0000<40— { -0.000040
0.000045 L e e -0.000045 T T T
00035 0,005 -
B m2 =
freq=400.5MHz .
0.0030— \ imag(Y(1,2))=0.002 0.0030—]
= 00025 \ = 00028 \
= ] \\ ol .
> N = ] *,
= g2 5 |
= 0.0020— v = 0.0020— o
0.0015 00015
0,001 D~ T T T T T T T 0.0010 L s e e e
200 je]ulu} 00 S00 600 Joo ooo 200 aoo 400 S00 &00 Foo ooo
freq. MH=z freq, MHz

Figure 2.6 — ADS Simulation Output of Admittance Parameters
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The simulation results in Figure 2.6 show agreement with the full form of the solution.
The next section describes the circuit level solution to the unwanted portion of the inductive

coupling in the next Q-enhanced filter design.

2.3.1.2.2 Circuit Design Solution: Resistance Tuning

The work above shows that resistors interconnecting the LC tank circuits can be used to
cancel the asymmetry in the passband. According to the result in the previous section the
resistance value required will depend on frequency of operation, the strength of the coupling
between the inductors and the Q of the inductors. The k value, or the amount of coupling
between inductors, is documented in [2]. The range of frequencies considered is 400 MHz - 500
MHz. A typical range of Q values for on board inductors range from 5-20. Using this equation
and these ranges, a potential range of resistance values was calculated using the full form of the
solution and varying these parameters from the expected minimum to the expected maximum. A

table summarizing these results is shown in Figure 2.7.
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Constants Constants
Centered at 500MHz  .04-.0003 3.90E-09 fromaQ.. 5-20 | Centered at 500MHz .04-.0003 3.90E-09 from Q... 5-20
f k L Rs Q f k L Rs Q
5.00E+08 0.04 3.90E-09 0.612610567 20 5.00E+08 0.04 3.90E-09 2.45044227 5
Basic Calcs Basic Calcs
XL XL
12.25221135 12.25221135
Finally... Finally...
Real(y21) Imag(y21)  Yields a needed R Real(y21) Imag(y21) Yields a needed R
-0.000321645 0.003172412 3109.017774 -0.001051777 0.003062939 950.7716007
Constants Constants
Centered at 500MHz  .04-.0003 3.90E-09 from Q.. 5-20 | Centered at 500MHz .04-.0003 3.90E-09 from Q... 5-20
f k L Rs Q f k L Rs Q
5.00E+08 0.0003 3.90E-09 0.612610567 20 5.00E+08 0.0003 3.90E-09 2.45044227 5
Basic Calcs Basic Calcs
XL XL
12.25221135 12.25221135
Finally... Finally...
Real(y21) Imag(y21) Yields a needed R Real(y21) Imag(y21)  Yields a needed R
-2.41234E-06  2.37931E-05 414535.7032 -7.88833E-06 2.2972E-05 126769.5468
Constants Constants
Centered at 500MHz  .04-.0003 3.90E-09 from Q... 5-20 | Centered at 500MHz .04-.0003 3.90E-09 from Q... 5-20
i7 k L Rs Q f k L Rs Q
4.00E+08 0.04 3.90E-09 0.450088454 20 4.00E+08 0.04 3.90E-09 1.960353816 5
Basic Calcs Basic Calcs
XL XL
9.8017659079 9.801769079
Finally... Finally...
Real(y21) Imag(y21) Yields a needed R Real(y21) Imag(y21) Yields a needed R
-0.000402056 0.003908693 2487.214219 -0.001314722 0.003777092 760.6172805
Constants Constants
Centered at 500MHz  .04-.0003 3.90E-09 from Q... 5-20 | Centered at S00MHz .04-.0003 3.90E-09 from Q... 5-20
f k L Rs Q f k L Rs Q
4.00E+08 0.0003 3.90E-09 0.450088454 20 4.00E+08 0.0003 3.90E-09 1.960353816 5
Basic Calcs Basic Calcs
XL XL
9.8017659079 9.801769079
Finally... Finally...
Real(y21) Imag(y21) Yields a needed R Real(y21) Imag(y21) Yields a needed R
-3.01542E-06 2.93152E-05 331628.5625 -9.86041E-06 2.83282E-05 101415.6374

Figure 2.7 — Range of Resistance Values

The range of resistance values predicted in Figure 2.7 range from .75 kQ to 400 kQ. However,

the 400 kQ case uses a coupling of k=.0003. In [2] this coupling value was shown to be so small

that no significant asymmetry was produced in the passband. Therefore here, when choosing the

range of values to be implemented, values on the order of 400k were treated as open circuits

Conversely, the lower range of resistance values result from much higher coupling values which

were also shown in [2] to cause significant asymmetry in the passband and were given more

emphasis when choosing resistance values for the circuit design.

A bank of binary weighted resistors were designed to interconnect the LC tank circuits in

the topology shown in Figure 2.8. Values were chosen to meet the range indicated in Figure 2.7,

but more importance was given to resistance values resulting from higher coupling coefficients
16




based on the results in [2], the available range of resistance values chosen is 750 Q to 40 kQ. The

circuit is shown at the top level in Figure 2.8 and with a closer in view in Figure 2.9.

LC Tank LC Tank
Rt
Ry
R
Rul
Portla Port2a Portlb Port2b

Figure 2.8 — Resistance Tuning Circuitry Topology
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Figure 2.9 — Top View Resistance Tuning Circuitry
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Figure 2.10 — Narrowed View Resistance Tuning Circuitry

The circuits in Figures 2.9 and 2.10 were implemented for each of the resistors shown in Figure
2.8 so these tuning circuits could cancel all possible geometries of inductive coupling.

These resistor banks were designed to be controlled by digital signals from the S/P
register driven through inverters to the gate of a FET. When the FET’s are on, they are driven in
the triode region. When the FETSs are off they are seen in the circuit as small capacitors. The first
design consideration here was keeping the FET large enough that it’s on resistance was
negligible relative to the resistors it activated when on. The W/L ratio was calculated by

targeting a low on resistance relative to the resistors being driven using equation (2.32).
w 1

= (2.32)

rONkZ_;l(Ugs_vt)
Calculation shows a W/L ratio of 350 was adequate to produce Ron value on the order of 2.5%
of the total resistance from portl to port2 for the 750 Q resistor when the FET was on.

The second design consideration was to ensure the impedance effects of capacitance due
to the FET when it’s off are sufficiently small. This restriction dictates that the W/L of the FET
be small enough that its impedance was large relative to the resistors it was driving, using

equations (2.7) and (2.8). The FETs used to produce the small Ron Were shown to produce a
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complex impedance 14 times larger than the resistors, which should be sufficient to avoid
loading ports one and two when the FET is off. Figure 2.11shows the capacitances modeled for

the design in the on and off states.

Circuit

R/2 R/2
Portl i Port2
V VIV [

&bj

Circuit: On State

R/2 R/2
Portl / Row / Port2

AN — AN PrE2

Circuit: Off State

R/2 R/2
Portl / l/ﬁ‘CFET / Port2

i
1/6Ceer 1/6Cker

I:{OUTInverter

Figure 2.11 — Resistance Tuning Circuitry Models
2.3.1.3 The Second Source of Asymmetry

2.3.1.3.1 Origin of Asymmetry: Incorrectly Driven Coupling Capacitors

The second source of asymmetry in the passband shape was a result of errors in the
driving circuitry of the coupling capacitors used to offset the inductive coupling. The assumption
originally was that the capacitors, which were driven through a resistor via an inverter saw an

AC ground as shown in Figure 2.12.
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Figure 2.12 — Resistance Tuning Circuitry Models
However, these capacitors were connected between the front-end and band-end LC tank
circuits in the same topology used for the resistors in Figure 2.8. Unfortunately the two LC tank
circuits contain different signals, so the signals at portl and port2 didn’t cancel each other. As a
result the gates of the FETs were not an AC ground.
Similar to section 2.3.1.2 the incorrect loading was modeled using Y -parameters and the

admittance needed to cancel the unwanted loading was found to be described by (2.33).

_ __Rx  j2Ry?
Xc2+4Rx*  Xc(Xc*+4Rx?)

Y21 (2.33)

(2.33) shows for the unwanted real part of y,; to be negligible, Xc must be much greater than Rx.
This derivation and confirmation in simulation and tests with the Q-enhanced circuit is
documented in [2]. Section 2.3.1.3.2 describes the hardware solution to resolve this loading

problem.

2.3.1.3.2 Circuit Design Solution: Corrected Loading
As (2.33) shows, the solution to mitigate the loading is to make the Rx small relative to

the impedance of the capacitive impedance of the FET when it’s on. The X¢ of the FET is
calculated by equations (2.7) and (2.8) and can be used to estimate the necessary Rx. The range
of coupling capacitor values were achieved as by implementing binary weighted banks of
capacitors, similar to the resistor scaling. The Rx values for each bank of capacitors were scaled
down as the coupling capacitor values are increased. The schematic for this circuitry is shown
below in three views to explain the overall layout of the whole circuitry and provide views of the

lower level topology and smaller elements.
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Figure 2.13 — Top View Capacitive Coupling Circuit
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Figure 2.14 — Narrowed View Ctuneblock from Fig. 2.13




_> .

Figure 2.15 — Cell View Ctuneblock
2.4 Additional Circuit Redesigns

2.4.1 Frequency Divider
In the previous design the frequency divider circuitry lacked the desired sensitivity due to
an internal oscillation frequency documented in [2]. Many designs were considered as potential
solutions because the SOI process the filter was designed in didn’t have the digital circuitry that
could function reliably at the frequency ranges needed to divide down 500 MHz. However, the
new process D-Flip-Flop and inverter circuits performed well according to simulation and the

new frequency divider was designed as shown below in Figure 2.16.

~ ~— Enable

—

S . [ |

]
]

——"

1.0 e e e R e et

[ L E j‘ - D flip-flops /
\ Inverters

Output Buffer/Inverter

Bypass Capacitor

Figure 2.16 — Top View Frequency Divider
This circuit works by using the inverters, self-biased using the resistors shown, and AC coupled
to amplify and shift DC offset of the signal to clock the first DFF. The series of 6 DFF provides

the desired division of 64 and an inverter is used as a buffer at the output to avoid loading issues.
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According to simulation, this circuit takes a 10 mVpp differential sinewave at 500 MHz and

outputs a single ended digital square wave from 0 V to Vyq at 7.8125 MHz, 1/64 the original

frequency. The testbench and simulation output are shown in Figures (2.17) and (2.18).
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Figure 2.17 —Frequency Divider Testbench
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Figure 2.18 —Frequency Divider Simulation Output

The digital circuitry used in the new frequency divider design has the potential couple
into the low-level circuits within the die and needed a bypass capacitor, shown in the above
design, to smooth out any spikes in the power line. To ensure the cap was large enough to protect
the circuitry and keep the power input constant the circuit test bench was set up with a 1H
inductor in the power line to so that the circuit couldn’t draw current from the supply
immediately. Then the simulation was run to see if the circuit functioned correctly. The size of
the bypass cap was increased until the circuit maintained normal operation even with the
inductor in the power line. The testbench and the first part of the circuit in Figure 2.16 are shown
in Figures 2.19 and 2.20 followed by two output simulations. The first simulation output in
Figure 2.21 shows the circuitry performance with the bypass capacitor too small and the second
simulation output in Figure 2.22 shows the circuit performance with the bypass capacitor

sufficiently large.
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Figure 2.21 —Frequency Divider Circuit to Test Bypass Capacitor Simulation Output with
Insufficiently Large Bypass Capacitor
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Figure 2.22 —Frequency Divider Circuit to Test Bypass Capacitor Simulation Output with
Correctly Sized Bypass Capacitor

As shown by the simulation outputs the final bypass cap of about .7nF was large enough to

assure smooth and stable operation.

2.4.2 Amplitude Detector

The last circuit discussed in detail is the amplitude detection circuitry. During simulation
a problem with the basic design was discovered. In the previous filter small signals were never
input to the amplitude detector due to problems with the frequency detector. As a result the
problem in the circuit design was never noticed. At this time a full solution to this problem is not
known, but the design flaw is detailed briefly here to document the problem to provide future
designers a basis to begin designing upon. The amplitude detection circuit as currently designed
is shown in Figure 2.23.
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R e

Figure 2.23 —Amplitude Detector Circuit

This circuit sets up a bias current using the current mirror with the PFETS at the top of the
circuit. The input signal is driven differentially through AC coupling capacitors to the input.
These capacitors have a small impedance relative to the FETs and biasing resistors connected to
the signal at the input. When there is a sufficiently large AC signal applied at the input, the core
FETs turn on shorting the drain voltage to ground and the voltage at the drain of both FETs
drops. Good sensistivity is ensured by biasing the core FETSs close to their thresholds so that only
a small voltage is needed to turn them on. The output stage is a resistor and two capacitors in a
low pass configuration to filter the output signal. Ideally, a stable DC voltage is output which
drops quickly and significantly with the application of an input signal. During the design and
simulaiton of this circuit a problem was discovered with the design as illustrated in Figures 2.24
and 2.25.
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As desired, this circuit produces a sharp decrease in the output voltage level in direct
proportion to the amplitude of the input signal. However the output simulation shows that after
the voltage drops sharply it slowly increases. This behavior was determined to be caused by the
time constant created by the resistors biasing the core FETs and the input capacitors. The
problem occurs because when one of the FETSs is turned on, the voltage drops as the input signal
is still being applied, but the currents charging the input capacitor are not symmetrical. With the
FET on, a larger Cgs is created, and then when it is off during the subsequent half of the cycle of
the input, the Cgs is no longer the same value. As a result the input coupling capacitor stores up a
charge and slowly pushes the output voltage up again. This issue will need to be resolved before
the design is fabricated.

The rest of the circuits in the Q-enhanced filter were very similar to the original design
and are omitted in the body of this text. However for clarity and documentation, these circuits are

included in the appendix A where they are explained briefly and shown with their simulations.

Chapter 3 - Supporting Hardware and Software

3.1 Previous Work

In the thesis preceding this work, C based support code was written to for a
dsP1C64FJ802 microcontroller to program and control the Q-enhanced filter. The
microcontroller sent a control word, 64 bits in length, to the filter’s serial to parallel register.
Additionally, C# code was used to create a GUI that allowed the user to interface with the filter.
Two versions of the C code on the microcontroller were developed: an automated, temperature
stable algorithm that took user settings and could achieve bandwidths of 20MHz-5MHz, and a
manual algorithm that allowed the user to manually set all the bits of the control word. As a basis
to understand the code modifications implemented and recommended in the future, the next

section briefly reviews the automated algorithm with the inclusion of resistance tuning.

3.2 Top-level Code Implementation
The automated algorithm worked as shown in Figure 3.1. The first step in the algorithm

is setting all controls based on user inputs and initializing all additional settings. Next, the
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algorithm tunes the front-end frequency, then the back-end frequency, sets the coupling controls,
sets the resistance tuning, waits the designated time interval and iterates. The only change at this
top level of the algorithm is the addition of the resistance tuning. The information for modifying
the code to implement this new hardware is detailed in section 3.3.2. The other additions to the
algorithm occur within the front-end tuning and back-end tuning blocks. These changes are

explained in section 3.3.1.

Initialize Controls
and Variables

v

Front-End
Frequency
Tune

v

Back-End
Frequency
Tune

v

Set Capacitive
Coupling Controls

v

Set Resistance
Coupling Controls

2

Wait Designated
Time Interval

A 4

Figure 3.1 — Top Level Flowchart of Tuning Algorithm

3.3 Software Additions
The first set of changes to the C code are additions implemented to improve the tuning
algorithm by using the fine resolution frequency and g-enhancement controls in the current filter

design. The second set of additions are needed to prepare the current code for the addition of the
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resistance tuning capability. The next section on fine tuning explains the changes to the code
and documents the resulting improvements in the automated algorithm. The following section on
resistance tuning will describe the suggested implementation and hardware specifics needed to
implement passband symmetry control. Additionally, each of these sections enumerates the

additions to the C code and C# code that are needed.
3.3.1 Fine Tuning

3.3.1.1 Implementation

It was a long time goal of this work to achieve finer frequency tuning accuracy and
smaller bandwidth capability. In preparation for this goal external DACs were already
implemented on the circuit board with the microcontroller. These DACs were intended to
generate the necessary analog voltages to the pins on the filter which controlled the analog
frequency tuning and Q-enhancement controls, but were not tested and exercised in previous
work [2]. The analog circuits the fine-tuning explained in this section uses are essentially
identical to those in Figures A.17 and A.19. Figures 3.2 through 3.5 show the flowcharts for the
modified automated algorithm and are explained below.

The modified frequency tuning algorithm is shown in Figure 3.2 is identical to the
flowchart in [2], except for the addition of fine tuning which uses the analog controls,
implemented immediately after the course tuning which uses the digital controls. The “get-
frequency’ flowchart in Figure 3.3 for the front and back ends is unchanged. However the ‘find-
critical-oscillation” flowchart in Figure 3.4 now includes the fine Q-enhancement tuning. The last
flowchart in Figure 3.5 is entirely new and documents the logical flow of the fine tuning
algorithm.

The fine tuning portion of the algorithm functions very similarly to the course tuning.
First, the fine tuning determines whether the current frequency is higher or lower than desired.
Second, the algorithm iterates to find the first analog setting to set the current frequency equal to
the desired frequency. Those analog settings are stored and then further incremented until the
frequency no longer equals the desired frequency. Those analog settings are compared to the
stored settings and the analog controls are set centered between them to achieve the closest

frequency to the desired frequency as possible.
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3.3.1.2 Results

The fine-tuning code addition improved the algorithm’s performance. Without fine
tuning some settings at bandwidths on the order of 5SMHz exhibited variation in gain and
bandwidth in the passband from one tuning iteration to the next. When the filter was
programmed and the automatic tuning algorithm run, the settings that were chosen by the tuning
algorithm were output to the GUI. These outputs showed a change +1 in the digital g-
enhancement settings when the gain in the passband varied. This indicated that the tuning
algorithm needed additional precision to avoid fluctuation between two values in the algorithm.
Bandwidths below 5MHz were not achievable without producing unstable outputs from the
filter.

Figure 3.6 shows the passband variation caused by this quantization error in the tuning

algorithm. This behavior was captured by

NOV 99, 2010 ' 3 . .
o 1St g b o setting the first trace of the spectrum analyzer

to capture the maximum value of the passband
and the second trace to capture the minimum
value of the passband. This variation between
tuning iterations was eliminated when the fine
tuning code was implemented.

After the fine tuning was

implemented, a temperature stable bandwidth

Figure 3.6 - Passband Variation without ~ ©Of 2-5MHz with a center frequency of 450
Fine Tuning MHz, a fractional bandwidth of about .6%,
was achieved. Figure 3.7 shows a screen
capture of the filter tuned to this narrow bandwidth and the settings which achieved this
passband shape are shown in Table 3.2. This bandwidth and passband shape was maintained by

the algorithm which included the fine tuning when heated from 20°C to 75°C.
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Figure 3.7 — 2.5 MHz Bandwidth Passband with Fine Tuning

Algorithm Settings
Bandwidth 5 MHz 2.5 MHz
Center Frequency 450 MHz
Frequency Tolerance .3 MHz
AD Threshold 1 3 2
AD Threshold 2 3 3
Q-Offset 2 2
Q-Back-Off 2 1
F-Offset 2 2
Capacitive Upper Tuning 8 5
Capacitive Lower Tuning 6 6
Capacitive UFLB Tuning 0 0
Capacitive LFUB Tuning 0 0

Table 3.1 — Fine Tune Settings for 2.5 MHz Bandwidth
These settings are dependent on the resistors used to cancel passband asymmetries and the Q of
the on chip inductors. These settings may need to be varied £1 if one of these variables has been
changed. The addition of the more precise controls suggested in the future work should help to

mitigate uncertainty in these settings.
3.3.2 Resistance Tuning

3.3.2.1 Implementation
The resistance tuning code needs to be developed to utilize resistance tuning controls
described in section 2.3.1.2.2. This code can’t be fully tested without the new filter design, but
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many of the necessary additions to the code-base are clear. Some of the modifications needed are

detailed below.

3.3.2.2 Control Word and Passband Controls

The filter is programmed by the microcontroller via SPI communication. The current
code sends a 64 bit word to the filter. The new filter will have an additional 28 bits of data to set
the resistance tuning circuitry documented in section 2.3.1.2.2. The full 96 bit control word that
the serial to parallel register will need from the microcontroller is shown in table 3.3.
‘FENDCON’ and ‘BENDCON?’ are the control bits for the front-end and back-end frequency
tuning, the amplitude detector and frequency divider. ‘CAPCONL1’ and ‘CAPCONZ2’ are the
control bits for the capacitive coupling circuits. “‘RESCON1’ and ‘RESCONZ2’ are the control
bits for the passband asymmetry neutralization. RESCON1 and RESCONZ2 are unimplemented at

the time of this thesis’s publication.

FENDCON BENDCON CAPCON1 CAPCON2 RESCON1 RESCON2

MSB LSB

Table 3.2 — Word Sent from Microcontroller to Filter
The resistance value needed to cancel asymmetries due to unwanted inductive coupling in
the LC tanks, calculated in section 2.3.1.2.1, is shown again in (3.1) and then expressed in terms

of coupling, k, and the Q of the filter.

-1 —2X;%Rsk _ —20k _ —20%k (3.1)

R (R2+X,2)"+4x,2R?  Rs((1+Q))?+4Q?) — 2mf((1+Q?)2+4Q?)

since R, = XL/Q. Letting @ > 1,then R «< X, and all R? go to zero and this equation can be

expressed as (3.2) where we assume the Q of the filter is dominated by the Q of the inductors.

1 k 2 yields X
1_kz 7 p=t (3.2)
R X.0Q 2k

Note this resistance value assumes that the non-symmetry in the capacitive coupling discussed in
section 2.3.2 has been successfully mitigated by raising the resistor values between the inverter
and the FET’s they drive and the only resistance being canceled out by this tuning is due to the
inductive coupling. However, these resistors can also compensate for a capacitor coupling non-

idealities if needed; only the value will need to be modified.
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The capacitive coupling is currently implemented as a manual input by the user. It’s
recommended that the resistance tuning be implemented the same way for testing. Eventually,
when the filter is fully tested a bandwidth and center frequency could be chosen and the
capacitive coupling and resistance tuning could be chosen based off of a lookup table. This
would require knowing the coupling value between the inductors either by user input or hard

coding.

Chapter 4 - Spurious Responses in Receivers

This chapter addresses the impact of filtering on receiver performance at an architectural
level. As a basis for cogent discussion, receiver architectures are briefly enumerated and a
superheterodyne architecture is explained in some detail as a foundation of further analysis.
Next, receiver performance is discussed focusing on the intrinsic limitations imposed by a
receiver’s ability to avoid spurious responses. An overview of spurious responses is presented
with a brief explanation of their origins in superheterodyne receivers. To observe these behaviors
in receivers a novel method of measurement and receiver characterization is described. Using
this evaluation method some commercial handheld radios, a software defined radio (SDR) and an
integrated radio are characterized. Finally in Chapter 5, a modified receiver architecture using a
tunable variable bandwidth Q-enhanced bandpass filter is presented and our testing procedure is

used to verify the validity of this solution.

4.1 Introduction to Receiver Architectures

The two primary types of receiver architectures generally used in modern communication
systems are direct conversion and superheterodyne. Direct conversion receivers offer some
excellent performance advantages for wideband signals and have been almost universally
adopted by the cell phone industry. However, superheterodyne architectures still dominate
narrowband receiver technologies due to innate limitations in current technology and remain the
architecture of choice for wide coverage designs such as spectrum analyzers and software
defined radio front-ends. Superheterodyne receivers therefore may be favored in applications
such as sensor networks and cognitive radio. As explained in the introduction receiver

performance is a crucial issue in modern communication technology which limits spectra usage
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and defines the demands put on the communication infrastructure. Four architectures are
addressed below and explained briefly. The various types of spurs and behaviors mentioned are

explained in 4.2.

4.1.1 Direct Conversion
Direct conversion receivers use a 0 Hz IF frequency, converting the received signal
directly to baseband. These architectures typically include a preselect filter and a LNA before the
mixer. After the conversion to baseband lowpass filters are applied and amplification and

demodulation is accomplished. A basic block diagram of this receiver architecture is shown in

Figure 4.1.
Preselect Low Noise . Low Pass g
Filter Amp Mixerl Filterl Amplifier1 Output
%4»>$®—> RN —»D—» Demod —»
A
) Low Pass e
Mixer2 Filter2 Amplifier2
o° JA
90°
VCO

Figure 4.1 — Direct Conversion Receiver Block Diagram

This architecture offers some nice potential performance capabilities. The most obvious
advantage of a OHz IF frequency is that there is no image frequency. Additionally the filter
design complexity is reduced somewhat because only a good lowpass filter is required. However,
this also means that the VCO is equal to the received frequency posing potential problems of f o
feedthrough and crosstalk between nearby receivers. Another major problem is the DC offsets
innate in any OHz IF design. Resolving this using an AC coupled system is made more difficult
by the potential for very low frequency variations in the DC offset from variation in path or
coupling. Finally, when implementing in a CMOS process especially, 1/f noise becomes a
problem. For a narrowband radio, high 1/f noise requires excessive gain ahead of mixer in order

meet receiver noise figure goals. Such broad-band high gain creates strong spurious responses
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when operating in a dense signal environment. So, while this architecture works very well for
wideband reception which doesn’t have demanding filter needs, narrow band applications are a

different matter because they put highly demanding restrictions on the lowpass filter roll off.

4.1.2 Superheterodyne
Superheterodyne architectures are built around the central idea of converting the received
RF frequency to a lower intermediate frequency (IF) for filtering, amplification and
demodulation. These receivers typically include a preselect filter, a LNA, an image filter and a
mixer. Sometimes the image filter is omitted and an image rejection mixer is used instead. After
the signal is mixed to the IF, it is further filtered, amplifier and demodulated. A basic

superheterodyne receiver is shown in Figure 4.2.

Preselect Low Noise Image . Bandpass -
Filter Amp Filter Mixer Filter IF Amplifier Output
%%b» yanse yamN —»D—P Demod | —»
VCO

Figure 4.2 — Superheterodyne Receiver Block Diagram

There are many advantages to heterodyning the received signal. The narrowband filtering
can be done at a lower fixed frequency reducing the design demands on the filters quality factor.
The amplification can be split between two different frequencies reducing the potential for
positive feedback. Additionally, the bulk of the gain can be provided at the lower IF frequency
where amplification is easier to achieve. A significant drawback to this architecture is the image
frequency inherent in the downconverting operation, even though image rejection has been well
studied and is often successfully mitigated by image reject filters and/or image reject mixers.
Another drawback is that the LO frequency used to downconvert the received signal will have
some phase noise which adds into the mixed spectrum, but this is inherent in any frequency
generation and conversion, including direct conversion applications. Also, if a phase locked loop
is used to control the VCO, f o will have harmonics produced by the pulse train generated to

vary the control voltage. However, despite these design challenges this architecture still provides
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the best performance for narrowband receivers since no other architecture sufficiently addresses

the filtering, coupling and noise challenges innate in narrowband reception.

4.1.3 Multiple Conversion Superheterodyne
The superheterodyne receiver is often extended to double or triple conversion
architectures to help minimize the image response and increase the receiver’s spurious response

avoidance. A basic dual conversion receiver is shown in Figure 4.3.

Preselect Low Noise Image . Bandpass . Bandpass .
Filter Amp Filter Mixerl Filter Mixer2 Filter IF Amplifier Output
mf\/v - | Demod —
X 7N 7N VAN

&)

VCOo1 VCO2

Figure 4.3 — Multiple Conversion Superheterodyne Receiver Block Diagram
This architecture might upconvert a signal to a first IF and then downconvert to the final
IF, or down convert through two or more conversions to the final IF where the signal is
demodulated. In any case, the use of additional IF through multiple conversions significantly

reduces the problematic image frequency and theoretically helps reduce IF feedthrough as well.

4.1.4 Software Defined Radio
Software defined radios (SDR) are a completely different architecture. The potential
flexibility available in a digital implementation is very attractive and many SDRs have been
developed. However, the need for an analog front end is inescapable due to the demands of high

frequency narrowband reception. A typical block diagram for a SDR is shown in Figure 4.4.
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Figure 4.4 — Superheterodyne Receiver Block Diagram
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As shown some type of preselect filter is typically included with an LNA and
downconversion. Then the signal is sampled by the ADC, filtered and demodulated digitally.
These receivers are very complex and a full analysis of their inner workings is beyond the scope

of this work. They are introduced here as context for later discussions.

4.2 Spurious Responses in Receivers

Spurious responses, or “spurs’, are defined as frequencies the receiver responds to which
are different than the frequency the receiver is tuned to receive. In general, the receiver will
respond to any signal which mixes to or distorts the IF or its modulation. These spurs can occur
through several mechanisms resulting from different aspects of the receiver architecture. These
spurious responses often occur when 2™ or 3™ harmonics of a received signal (produced in the
mixer or amplifiers preceding it when an input is sufficiently strong) mix to the IF with
harmonics of the VCO or other pre-existing frequencies in the receiver. Spurious responses also
occur when signals “feedthrough” due to inadequate filtering. Additionally, intermodulation may
occur when two strong off-channel signals mix directly to the RF channel or the IF. It’s also
noteworthy that some receivers may have a spurious response when tuned to receive specific
frequencies when no external signal is applied, due to an internally generated signal at that
frequency. These responses are referred to here as “birdies”.

To discuss spurs graphically Figure 4.5 is provided detailing the expected spectrums at
each major node of a typical superheterodyne architecture. The architecture includes a frequency
synthesizer with a TCXO and ADC and demodulation (DMOD) circuitry as these are quite
common in these designs. This figure is meant to show how real world spectrums should behave
in this architecture and assumes no spurious responses are occurring. The only non-idealities
shown are noise, other frequencies in the received signal’s environment, LO feedthrough, close

in synthesizer spurs around f_ o and the f_ o and fgre products from the mixer.
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Figure 4.5 — Superheterodyne Receiver with Spectra

The first step in a superheterodyne receiver is the preselect filter. This filter ideally
eliminates all frequencies outside of the bandwidth the receiver is designed to receive. The next
step is low noise amplification to improve the noise figure of the receiver. The image reject filter
shown here isn’t always implemented in superheterodyne architectures, but it is shown here to
emphasize the need to address the potential spurious response caused by the image frequency.
Most superheterodyne receivers will implement an image reject filter or image reject mixer to
mitigate the image frequency. Also, the noise itself becomes amplified so that the signals of
interest are on a ‘noise pedestal’ following the image filtering. Next, the mixer uses f o from the
VCO to downconvert the received signal. The VCO is driven by a frequency synthesizer using a
PLL which causes some phase noise and close in spurs with f_o. The spectrum after the mixer
will contain the upconverted spectrum, some amount of ‘LO feedthrough’ and the desired
downconverted spectrum. As long as these signals are not too strong and the IF is high enough,
the IF filtering will ideally eliminate all but the signal at the IF, as shown in the spectrum after
the IF filter. Last, the IF signal is amplified to ensure the demodulation circuitry has a strong

signal to interpret.
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4.2.1 Nonlinear Behaviors

4.2.1.1 Amplification
One of the most important problems in receivers is the nonlinear nature of active devices.
Any active device which has a perfect sine wave as an input, such as an amplifier or mixer, will
output a signal which has harmonics besides the fundamental with magnitudes depending on the
design of the device and the power of the input signal. The linear region of the device is defined
as the range of operation over which the output signal contains harmonics which are so small
they are negligible. In the case that the device isn’t operating in the linear region the nonlinear
output will contain harmonics with significant amplitudes. The harmonics can be modeled
mathematically by expressing the output signal as a summation of the input signal using a
Maclaurin expansion as follows:
vo = Ayv; + Av2 + Agvd + 4.1)
Using trigonometric identities it’s easy to see the frequency harmonics coming from the
sinusoidal input evolving from this equation as follows:
vy = A;Vcos(wpt) + %Vz[l + cos(Rwyt)] + %V3[3005(w0t) + cosBwpt)] + ... (4.2)
when
v; = Vcos(wyt) (4.3)
Any simple sinusoidal signal passing through a non-linear device such as mixers or
amplifiers can be described this way. Looking at the above expression it’s clear that an input
signal of significant power will produce significant harmonics. So any strong signal which is in
the bandwidth of operation, or a signal outside this bandwidth which the preselect filter fails to
mitigate, can produce these harmonics. Additionally, the synthesizer f o signal will contain
harmonics, or even if the LO is reasonably pure, the switching mixer used in nearly all designs

implicitly introduces LO harmonics in the mixing process itself.

4.2.1.2 Mixer Spurs
All of these amplified signals and their harmonics have the potential to mix to the IF. In
particular, the potential combinations of RF and LO signals which can mix to the IF band are

predicted by the well-known equation:
fir = Mfrr + Nfio (4.4)
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Obviously, good filtering is crucial because any unwanted received or internally generated signal
in the receiver is subject to this nonlinear behavior and could produce spurious responses if the
signal is strong enough. Given this nonlinear behavior, good gain control is also important to
minimize unnecessary creation of harmonics due to over amplifying a received signal. Figure 4.6
graphically depicts a potential development of this nonlinear behavior in a section of the

superheterodyne architecture.
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Figure 4.6 — Nonlinear Spurs
As shown in Figure 4.6 strong signals produce harmonics at regular intervals with
decreasing amplitudes. The desired signal at frr mixes with f o as expected. However it is also
possible that a signal near fre will have a second harmonic that differs from the second harmonic
of fLo by fir producing a signal at f; which will distort the desired signal. Also, any time a signal
is a fractional value of frr and is strong enough to produce harmonics, the harmonic may reach
the demodulation circuitry by mixing to the IF. We will refer to this as a sub-harmonic spurious

response.
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4.2.1.3 Intermodulation Distortion

Intermodulation distortion is another type of spurious response. However, this behavior
differs from other spurious responses described above because this is a result of two or more
signals at the input of the receiver interfering rather than one signal from the input mixing with a
signal internally generated in the receiver. This is a particularly difficult problem because the
spectrums in most environments on earth are full of strong signals at many frequencies. Signals
which are strong enough to produce harmonics could self-mix or mix to the IF through the
mixer. Intermodulation is an important issue in receiver performance, however due to time

constraints this issue is not addressed in this work.

4.2.2 Spurs from Digital Synthesizers

Another major source of spurious responses in many receiver architectures today is
digital synthesizers. Digital synthesizers are used because they provide precise fine resolution
tuning of the VCO. A typical synthesizer includes a VCO, a temperature compensated crystal
oscillator (TCXO), division and filtering circuitry and a phase-frequency detector (PFD). There
are two major causes of spurious responses resulting from this circuitry: the TCXO and the
pulsed output from the PFD. The TCXO causes spurs because it provides a strong signal as a
reference which is often divided down to be used in the N synthesizer. The fundamental
frequency of the TCXO, and any frequency it is divided down to, could be a strong signal within
the receiver. These signals have the potential to mix with each other or unwanted incoming
signals to the IF.

The other major source of spurs, the PFD, compares the divided TCXO and VCO
outputs. Based on this comparison the PFD generates a varying voltage which is input to the
VCO to keep the VCO locked on the desired frequency. This modulation of the VCO frequency
creates spurs close in around the fundamental frequency that the VCO is producing. This
combined spectrum is the f o input to the mixer. When a signal besides the desired RF enters the
mixer and is strong enough it will combine with a TCXO spur or a close in spur of the f o and

may mix to IF band as shown in Figure 4.7.
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Figure 4.7 — Digital Spurs
In these two cases the root problem is the additional frequency components inherent in
the frequency synthesizer design. The potential for either the TCXO or its subharmonics or the
close in spurs of f_ o to mix with incoming signals is compounded by the nonlinear behavior or
amplifiers and mixers. Each of these undesired signals could produce additional harmonics when

amplified which also have the potential to mix to the IF.

4.2.3 Image Frequency
A well known major spur problem specific to superheterodyne architectures, results from
a signal at the “image frequency”. For high side injection, the image frequency is above the f.o
signal by a frequency difference equal to the IF frequency placing it 2f,- above the frequency like
the receiver is tuned to. Conversely, if the receiver uses low side injection, the f o frequency is
less than the desired RF frequency by the IF frequency and the image frequency is below the f o

frequency by the IF frequency. In either case the difference between f o and frrand the image
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frequency is the IF and results in an unwanted signal at the IF if there is a signal present at this

image frequency, fimage. Using symmetry the image frequency can be calculated using (4.5).
fImage = frr = 2fiF (4.5)

where the sign of the addition is determined by the use of high or low-side injection respectively.

Figure 4.8 shows the image frequency mixed to the IF when the receiver uses high side injection.
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Figure 4.8 — Image Frequency
As shown the image frequency is located symmetrically about f_ o with respect to fge.
Without the image filter the image frequency will mix to the IF if neither the preselect filter or

the LNA have a narrow enough bandpass shape that the image frequency is suppressed.

4.2.4 1/21F & 1/31F Spur Frequencies
The %2 IF spur problem is a less known but also significant issue in superheterodyne receivers. In
this case the 2™ harmonic of the LO frequency and the 2" harmonic of the half IF frequency’, a
frequency differing from f_ o by one half the IF frequency, will have a difference equal to the IF.
As a result these frequencies will mix to fie distorting the desired information at the

demodulation input. The %2 IF frequency can be calculated as follows:
1
f%lF = fLO i EfIF (45)
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Figure 4.9 shows the 1/2IF problem graphically.
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Figure 4.9 — 1/2IF & 1/31F Spur Frequencies
It’s noteworthy to consider the same concept works for the third harmonics of the fLO
frequency and the “one third IF frequency’, a signal located 1/3 of the IF frequency away from
the fLO. The third harmonics of these two signals will also differ by the IF as well. Beyond this
however, higher order spurs are typically not an issue as they are reduced enough in amplitude to
be negligible if they are mixed to the IF frequency. Figure 4.9 shows the %2 IF spur problem
graphically.

4.3 Spurious Response Test System

4.3.1 Manual Measurement Process
To investigate and characterize the spurious response of a “real world” radio receiver, it
IS necessary to observe how a receiver tuned to a desired frequency responds to a wide range of
frequencies. To test receiver’s behavior, a signal was transmitted to the receiver using a signal
generator, and the output of the receiver was observed to see if the signal was detected. If a

signal was detected, the amplitude of the transmitted signal was decreased. This was repeated

52




until the receiver no longer received the transmitted signal. Then the frequency and the minimum
amplitude that the transmitted frequency was received at were recorded.

When performed manually, this process proved very time consuming as the following
calculation is shows

Tmeasure = Tarrequency + Tevaluate = .55 + 1s = 1.5seconds

where Typrequency= the time needed to change the frequency of the signal generator and
Trvaware= the time needed to evaluate whether a signal is received. Taking the frequency range
divided by a step size of 10 kHz, chosen based on the bandwidth of the last IF filter, the number
of measurements becomes

frinat = fimitiar _ 1GHz
Af 10kHz
and the time to evaluate multiplied by the number of measurements yields

100000 * 1.5s = 41hours

= 100000

This omits the time it takes to decrement the amplitude when a quieting event occurs and is quite
optimistic about the time to manually tune and measure each frequency. Additionally, due to the
sheer number of measurements needed to scan an adequate frequency range human error is
increasingly likely. As a result it was determined an automated test setup was needed to obtain

this amount of data.
4.3.2 Automated Measurement Development

4.3.2.1 — Quieting Detection Method

The first step in automating this test was determining a reliable method of event
detection. When this test was done by hand the audio output of the receiver indicated when a
signal was reaching the IF by “quieting” which is a natural result when a CW signal is received
by a receiver in an FM mode. If no signal is reaching the IF the audible output of the receiver is
just static. If an FM signal reaches the IF, it will be demodulated and output through the audio
circuitry. In the case an unmodulated signal is received a fixed frequency is demodulated and the
audio output of a receiver will be quiet.

The static output of the receiver is just white noise at audible frequencies, so an FFT of
the digitized audio output from the receiver can be used to detect this ‘quieting’ event. First we

establish an average noise magnitude when no signal is received. When signal is receiver it can
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be detected by noticing a decrease in the average noise magnitude as shown in Figure 4.10.
Using a MyDAQ the audio output from the receiver was digitized and stored in the computer
where LabVIEW code performed an FFT to analyze whether a signal was being received. The
threshold to determine whether an event had occurred was set as a relative change in dB,
typically 2dB. This made the system sensitive enough that it detected events with slightly greater
sensitivity than by listening to the static by ear. However, comparisons in the lab showed the

system agreed with manual event detection + 2dB.

| F(w)| - white noise | F(w) |- Quiet
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> >
w w

Figure 4.10 Fourier Spectrum Response to Quieting

Next LabVIEW code was written to manage the testing process by controlling the signal
generator and detecting when the audio quieted indicating a spurious event. When a quieting
even is detected, the code recorded the frequency the signal generator was transmitting when the
event occurred and what amplitude the signal was reduced to that caused the event to stop
occurring. The LabVIEW code controlled an Agilent signal generator via a GPIO interface using
prewritten driver blocks provided with LabVIEW. This test system was used to test four radios:

1. VR-120

2. VX-3

3. SDR-14

4. K-State Microtransceiver

The test setup for these receivers is shown in the following section.

4.3.2.2 Physical Test Setup
Figure 4.11 shows the Spurious Rejection Test System running a test on the VX-3. The
lower corner shows the VR-120, which was tested using an identical setup. As shown the Agilent
signal generator was connected to the receiver to transmit signals and the audio output of the
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receiver was connected to the input of the MyDAQ, where the signal was put through an ADC

and processed in LabVIEW.

R

Figure 4.11 — Test Setup for VR-120 & VX-3

Figure 4.12 shows the test setup running a test on the software defined radio. A small
screen capture of the SDR software running is shown to the lower right. The audio output from
the SDR originated from the software and was output through the computer’s audio and fed into

the MyDAQ. Again, the Agilent signal generator transmitted the signal to the receiver.
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Figure 4.12 — Test Setup for SDR
Figure 4.13 shows the test setup for the K-State Microtransceiver. In this case the signal
from the Agilent signal generator was fed into the K-State Microtransceiver. However, the K-
State Microtransceiver doesn’t have an audio output, so its IF output was sent into the VX-3

receiver tuned to receive the IF frequency. Then the audio output of the VX-3 was fed into the
MyDAQ.

Figure 4.13 — Test Setup for K-State Microtransceiver
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4.3.2.2 LabVIEW Code Algorithm
The LabVIEW code developed to automate this Spurious Response Test System included

several screens of graphical code. To summarize its functionality Figure 4.14 shows the
programmatic flow for the LabVIEW code.
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Figure 4.14 — Spurious Rejection Response Test System LabVIEW Code Flowchart
The LabVIEW GUI takes user settings for the start frequency, frequency range,
frequency increment step size, the power of the base test signal and some operational settings.
Once started the program asks the user to input a frequency to establish a baseline for a noisy
output from the receiver. Once the user selects the frequency, the program commands that

frequency and the user has the opportunity to decide if that frequency produces a noisy output
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typical of no signal being received. This test is important to determine whether or not a spur is
being received at the frequency used to establish the noise baseline. Once the user confirms that
this frequency will establish a correct baseline, the code takes over and controls the test
iterations.

The program sets the frequency at the starting frequency and increments through the
range in a specified step size equal to or less than the FM receiver’s signal bandwidth. If the
output at the receiver quiets, indicating a spurious response was generated for this transmitted
frequency, the LabVIEW code decrements the transmitted signals power and measures the
output again. The code repeats this process until the spur disappears and then records the
frequency the spur occurred at and the amplitude the input signal was reduced to when the spur
disappeared. Then the program resets the amplitude, increments the frequency and iterates the
process of testing for a spur at each frequency. The LabVIEW code is documented in appendix C

along with a screen capture of the VI running and instructions for running a test.

4.4 Receiver Block Diagrams
This section introduces each of the four receivers mentioned in section 4.3.2. These
receivers spurious rejection responses are explored and compared using the previously described
method of measurement in the next section. The architectures used these receivers are two
multiple conversion superheterodyne architectures, a single conversion superheterodyne
architecture, and a software defined radio. Because the architectures used in these receivers is an
important basis for a cogent discussion of their spurious rejection responses, this section begins

with a brief overview of each architecture.

4.4.1 VR-120
The VR-120 is a commercially available general coverage, .1 MHz to 1300 MHz, AM
and FM receiver that uses a triple conversion superheterodyne architecture. A simplified diagram
of the VR-120’s architecture, based on a more detailed block diagram in its service manual, is
shown in Figure 4.15. This diagram focuses on the FM modulated receive path since all tests

used this option on the receiver.
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Figure 4.15 - VR-120 Block Diagram - after [18]

As shown, the first stage of the receiver is a bank of preselect filters for each of the bands
the receiver can be tuned to detect. The received signal is then fed into a low noise amplification
stage and into the first mixer. The signal is mixed to the first IF at 248.45MHz and filtered. Next
the signal is mixed to the second IF at 15MHz and filtered again, followed by another
amplification stage. Last the signal is mixed down to a final IF of 450kHz, filtered and

demodulated.

4,42 VX-3
The VX-3 is an amateur radio transceiver which includes a general coverage .5 MHz to
999 MHz receiver that uses a double conversion superheterodyne architecture receiver. The VX-
3 is capable of receiving a large number of different bands, similar to the VR-120. The full VX-3
block diagram from the service manual includes a separate receive path for each received band
which includes a preselect filter, amplification, the first mixer and various filters. To simplify the
diagram only the two receive chains used in collecting the data in this thesis are included along

with relevant RF circuitry and the demodulation stage.
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Figure 4.16 — VX-3 Block Diagram - after [19]

As shown in Figure 4.16 the receive chains are each proceeded by a preselect filter and
followed by a diode switch used to control the bands processed. The receive chain for the 76-
300MHz band shown proceeds into a limiter to limit the maximum power of incoming signals, a
filter, an adjustable gain amplifier and a tunable filter. Last, another diode switch is used to direct
signal flow before this receive chain enters the path used for all narrowband frequency
modulated signals, the start of which is indicated in the figure above by ‘PORT1’. The 1.6-
76MHz receive chain follows its first diode switch with an adjustable gain amplifier and a mixer
before ending with another diode switch as it terminates in the final IF receive chain. The final IF
receive chain of this circuit takes the received signal, now mixed to 47.25MHz, through another
diode switch and into the final IF filter. Last, the IF is fed through another adjustable gain
amplifier, a limiter and a final diode switch. The demodulator than follows further downconverts

the signal to 450 kHz and delivers the information to the audio output.
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4.4.3 Software Defined Radio
The next receover is the software defined radio. This SDR was developed for radio

enthusiasts and can receive 0 Hz to 30 MHz.
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Figure 4.17 — SDR Block Diagram - after [20]

As shown there are two inputs on the SDR, both of which feed into the ADC. The path
tested in this work was the “‘HF Input Port’. The ADC is driven with a 66.66MHz oscillator.
After the ADC the signal is passed into a digital downconverter. The data is processed and
buffered, and then sent via a USB interface to the software which completes the signal
processing using decimators, filtering and demodulation. The software uses a numerically
controlled oscillator allowing the user to choose how much of the spectrum to view and which

frequency to receive.
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4.4.4 K-State Microtransceiver
The K-State microtransceiver is a single conversion superheterodyne architecture
receiver designed on an integrated circuit and developed and tested at Kansas State University.
This transceiver works in the UHF band from approximately 350 MHz to 500 MHz and uses a
single IF filter at 10.7 MHz, coupled with an image-reject mixer to mitigate the need for narrow
image filtering after the LNA. The block diagram below shows the receive chain of the

transceiver.
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Figure 4.18 — K-State Microtranciever - after [21]

The received signal enters first through the transmit-receive (TR) switch and then goes
into the tuned RF LNA. Next the signal is downconverted with an image reject mixer, amplified
through an adjustable gain amplifier and sent to an off chip IF filter. Last, additional
amplification is available in another chain of adjustable gain amplifiers and then the signal is fed

to the ADC and finally the analog IF output ports.

4.5 Receiver Test Results
In this section the test results for the four receivers described section 4.4 are given and
analyzed to identify causes of spurious responses. The data is presented in a novel graphical
format which allows the various spurious responses to be observed. The data is then summarized
in a table followed by a brief discussion of the test results. The first tests run were on the VR-
120, VX-3 and the SDR where each receiver was tuned to receiver 3.6MHz. These tests
demonstrate the validity of this testing methodology by showing some of the known spurious

rejection issues addressed in section 4.3 in the data from the tests. The next set of tests compares
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these receivers performance tuned to a different frequency using the same preselect filter to their
original behavior when tuned to 3.6MHz. The third set of tests evaluates the performance of the
VR-120 and the VX-3 tuned to two different frequencies which use different preselect filters and
their spurious rejection performance is compared. The last set of tests in this section explores the
K-State microtransceiver’s spurious rejection. Two revisions of the microtransceiver are tested,
one tuned to 392.6MHz using an integer N synthesizer and the other tuned to 435MHz using a
fractional N synthesizer. The naming convention adopted in the next sections was as follows:

1. f o =thelocal oscillator frequency

2. frx = the signal being transmitted to the receiver

3. frp =the signal the receiver is tuned to receive

4.5.1 Checking for Mixer Spurs
Since such emphasis is placed on mixer spurs as problems in receiver’s spurious response
rejection ability, the data obtained from the following test results was analyzed exhaustively to
determine if the spurious responses found were due to mixer spurs. To accomplish this, a simple
Octave function was written to analyze the data. The function took in all the data obtained from a
test, the first IF frequency, and a few additional parameters. Using this information the function
checked all the n and m coefficients up to a pre-designated maximum order to see if mixer spurs

could explain the spurious response. The code for this analysis is shown in appendix D.

4.5.2 Three Receivers Tuned to an HF Frequency

The VR-120, the VX-3 and the SDR were tuned to 3.6 MHz and their spurious response
rejection was tested. The VR-120 was scanned from 100 kHz to 1 GHz, the VX-3 was scanned
over 100 kHz to 100 MHz, and the SDR was scanned from 100 kHz to 30 MHz. The full scan on
VR-120 provided interesting data, but the scan took more than 48 hours so the VX-3 was
scanned over a reduced range which included the full passband of the preselect filter. The SDR is
only able to receive 0 MHz - 30 MHz so this entire range was scanned. The data from these tests
are shown in graphical from in Figures 4.19 -4.27. The data is organized in Tables 4.1 — 4.10. In
each table the frx is specified, the LO and IF frequencies and their subharmonics are listed, and
the image frequency and the 1/21F and 1/31F spurs are listed. Last, each table contains the
potential n and m values calculated as described in section 4.2 that may have produced the spurs

in the data shown.
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Figure 4.19 — VR-120 3.6 MHz Tune Test Results

VR-1

20

fo (M HZ)

3.600

Intermediate Frequencies, IF (MHz) 248.45, 15, .45

Name/Source

Local Oscillator Frequencies, fLo (MHz) 252.05, 263.45, 15.45
Spur Observed (MHZz)

Subharmonics of frx 1.8,1.2,.9, .72, .6 ...

IF3 feedthrough 0.45
fimace=fLO+f;¢; 500.5
fioir=fLox1/2f | 127.82, 376.275
fiair=fLox1/3f1F1 169.23, 334.87

IF1 feedthrough, and subharmonics 248.45, 124.23, 82.82, 62.11, 49.69, 41.41...
IF2 feedthrough, and subharmonics 15, 7.5, ...
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Mixing operations = fijr=mf_oxnfrr fre (MH2Z) m n
36.52 2 -7
42.61 2 -6
51.13 2 -5
63.91 2 -4
715 -1 7
72.53 3 -7
85.22 2 -3
100.1 -1 5

101.54 3 5
255.65 2 -1
507.7 3 -1
752.55 -2 1
759.75 4 -1

Table 4.1 - VR-120 3.6 MHz Tune Test Results

Figure 4.19 shows four views of the data from the spurious response rejection scan of
VR-120 receiver tuned to 3.6 MHz. The first graph at the top right of Figure 4.19 shows the data
from 100 kHz to 1 GHz. The spurs beyond about 130 MHz were mostly suppressed except for
the image frequency at 500.5 MHz, feedthrough at 248.45 MHz, the first IF, and a few higher
frequency spurs, the strongest of which were can be explained as mixer responses with m and n
coefficients listed in Table 4.1. The next graph at the bottom left of Figure 4.19 shows a
narrowed data range of 100 kHz to 130 MHz. This range of data shows a multitude of spurs. This
data demonstrates the receiver’s response to subharmonics of the IF by showing spurs at 124.45
MHz, 82.82 MHz, 62.11 MHz, and 49.69MHz. This graph also shows a spur at 15 MHz,
implying that the receiver may experience some IF feedthrough from the second IF. Spurious
responses at frequencies predicted by the m and n coefficients in Table 4.1 are also shown. It’s
noteworthy that one of the stronger responses at 33.6 MHz isn’t predicted in the tabulated data.
The graph to the lower right shows a further narrowed view of the data from 50 MHz to 130
MHz which shows additional spurious responses predicted in table 4.1. The last graph in the
upper right shows a close in view of the spurious rejection response near the frx frequency, 3.6
MHz. This graph in particular highlights the effects of nonlinear amplification. Spurious
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responses down to the 1/6 subharmonic frequency of frx are shown. Another notable feature of
this close in view is the spurious responses to signals out to roughly 295 kHz on either side of
frx. This response could be due to the phase noise of the LO, or the combined IF bandpass filter
responses, or some combination of both. Last, there are two spurious responses immediately
adjacent on either side of frx, significantly less strong, which indicate they are at the edges of the
final IF filter’s roll off. These signals are £10 kHz which is consistent with the know7.5 kHz
bandwidth of the final IF.
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Figure 4.20 — VX-3 3.6 MHz Tune Test Results

VX-3

frx (MHZ2) 3.605
Intermediate Frequencies, IF (MHz) 47.25, .45
Local Oscillator Frequencies, f o (MHz) 50.85, 46.8
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Name/Source Spur Observed (MHz)
Subharmonics of frx 1.8, 1.20, .9, .72, .6...
IF1 feedthrough, and subharmonics 47.25, 23.625, 15.75, 11.81, 9.45, 7.87, 6.75...
IF2 feedthrough 0.45, .225...
fimace=fLotfiF1 98.100
fuaie=fLoxl/2f|ry 27.225, 74.475
f131r=fLot1/3fiF; 35.105, 66.605

Mixing operations = fijr=mf_oxnfrr fre m n
9.075 2 -6
13.615 2 -4
14.015 -1 7
15.045 3 -7
18.155 2 -3
24.525 -1 4
24.825 -2 6
28.545 -3 7
29.575 5 -7
31.235 4 -5
32.705 -1 3
33.305 3 -6
34.505 5 -6
39.045 4 -4
41.405 5 -5
43.075 -5 7
44.105 7 -7
49.045 -1 2
49.655 -2 3
49.955 -3 4
50.135 -4 5
50.255 -5 6
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51.455 7 -6
51.575 6 -5
51.755 5 -4
52.055 4 -3
52.655 3 -2
54.465 2 -1
57.605 -7 7
60.305 -5 5
61.745 7 -5
66.605 -3 3
67.205 -7 6
70.475 -6 5
74.475 -2 2
77.185 7 -4
78.085 4 -2
83.555 -4 3

Table 4.2 — VX-3 3.6 MHz Tune Test Results

Figure 4.20 shows four graphs of the VVX-3’s spurious response rejection when the
receiver is tuned to 3.605 MHz. The graph at the top left shows the spurious response of the
receiver over 100 kHz to 90 MHz. The spurs from 90 MHz to 100 MHz were completely
suppressed. The data in this graphs shows strong spurs at the subharmonics of the first IF
frequency, 23.625 MHz and 15.745 MHz. A very strong spur from IF feedthrough is shown at
47.25 MHz. Many additional spurs are also shown in this range, a number of which are predicted
by mixing operations in Table 4.2. The 1/2IF and 1/31F spurs are also shown in this data at
27.225 MHz, 74.475 MHz, 35.105 MHz and 66.605 MHz. The graph in the lower left shows a
narrowed view of the data from 0 kHz to 4 MHz. The data in this graph shows spurious
responses down to the 1/4 subharmonic frequency of frx, at 1.805 MHz, 1.185 MHz and
.895MHz. Additionally, spurious responses at .445 MHz and .225 MHz indicate the receiver fails
to block signals at the second IF and its 1/2 subharmonic frequency. The graph at the bottom
right shows a close in view from 3.45 MHz to 3.75 MHz which shows a spurious response to
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signals around frx that looks very similar to a typical phase noise plot of a LO with a spread of
spurious responses £175 kHz around frx. The last graph in Figure 4.20 at the top right shows the
first IF feedthrough and three responses which are close to values predicted in Table 4.2 at
49.245 MHz, 52.655 MHz and 54.455 MHz. Both the IF feedthrough and the spur at 54.455
MHz show a similar range of nearby spurious responses to the spread observed around frx
indicating that the phase noise of the LO, or a filter bandpass response, or some other

unidentified phenomenon is affecting this spur.

Spur Scan, SDR-14Tuned to 3.6MHz
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Figure 4.21 — SDR 3.6 MHz Tune Test Results
SDR
frx (MH2) 3.60
Intermediate Frequencies, IF (MHz) Unknown
Local Oscillator Frequencies, fLo (MHz) Unknown
Name/Source Spur Observed (MHz)
Subharmonics of frx 1.8, 1.20, .9, .72, 6...
IF1 feedthrough, and subharmonics Unknown

Table 4.3 - SDR 3.6 MHz Tune Test Results
Figure 4.21 shows two views of the data obtained from the spurious rejection scan from
100kHz to 30 MHz of the SDR tuned to 3.6 MHz. The first graph to the left shows full view of
the data. The table for these spurs is brief and incomplete because this receiver architecture
departs significantly from the superheterodyne receivers making the calculations of spurious
response which were done for the VR-120 and the VVX-3 impossible for the SDR. It is possible
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an image frequency response exists for this receiver, but the LO frequencies are variables
defined in the software which are not immediately visible to the user, making it difficult to
predict the image frequency by calculation. The same argument is applicable to calculations for
other typical spurious responses. Also, this receiver employs many digital elements at software
and hardware levels, including an ADC, which has the potential to produce any number of
spurious responses. A detailed analysis of these specifics and this architecture is outside the
scope of this thesis. However, it’s noteworthy that there are a number of spurious responses
shown for this receiver. The graph to the right in Figure 4.21 shows a narrowed view of the data
from 0 kHz to 5 MHz and it’s particularly interesting to note that strong spurious responses occur
for frequencies down to the 1/5 subharmonic frequency of the tuned RF frequency. Clearly this
receiver architecture is subject to nonlinear amplification behaviors.

The data collected from spurious response rejection scans of the VR-120 and the VX-3
were very similar to one another. Both receivers showed very strong IF feedthrough and mixing
behaviors, however a surprisingly consistent and strong spurious response to subharmonics was
observed emphasizing the problems due to nonlinear amplification and the need for improved
filter solutions in the front end. The data from the SDR was different in many ways, but
exhibited an important similarity to the VR-120 and VX-3 in that it shared sensitivity to the
subharmonics of the frx. All three receivers performed poorly for portions of these scans. Even
the SDR, which is relatively expensive and draws significant power, suffered from many
spurious responses.

It’s worth noting here as well, that in the data below there are a number of spurious
responses included which are unexplained. However, due to sheer amount of data represented in
even a single graph, it is beyond the scope of this thesis to analyze all of the data exhaustively.
However, the data demonstrates well known behaviors in receivers supporting the validity of this
testing methodology. These tests also show additional insight into receiver’s spurious response
rejection not emphasized adequately in current research. The graphical display of results lends an
easy intuitive understanding of a receiver’s ability to block unwanted signals and characterize a

receiver’s performance.
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4.5.3 Three Receivers Tuned to Two Different Frequencies in HF Band

Spur Scan, VR-120 tuned to 3.6MHz Spur Scan, VR-120 tuned to 1MHz
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Figure 4.22 - VR-120 3.6 MHz to 1 MHz Tune Comparison Test Results
VR-120
frx (MHZ2) 1.000

Intermediate Frequencies, IF

(MHz) 248.45, 15, .45

Local Oscillator Frequencies, fLo (MHZz) 249.45, 263.45, 15.45
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Name/Source Spur Observed (MHz)
Subharmonics of frx .5, .33, .25, .2, 16...
IF1 feedthrough, and subharmonics 248.45, 124.23, 82.82, 62.11, 49.69, 41.41...
IF2 feedthrough 15, 7.5...
IF3 feedthrough 0.45...
fimace=fLo+fiF1 497.9
fioir=fLox1/2f\r; 125.225, 373.675
fimir=FfLox1/3f\F; 166.63, 332.26

Mixing operations = fij,=mf_oxnfre fre (MHZ2) m n
35.78 2 -7
41.74 2 -6
50.09 2 -5
250.45 2 -1

Table 4.5 - VR-120 3.6 MHz to 1 MHz Tune Comparison Test Results

Figure 4.22 shows a comparison of the VR-120’s spurious rejection response tuned to
receive 1 MHz to the VR-120’s spurious rejection response tuned receive to 3.6 MHz presented
in section 4.5.2. The two graphs to the right provide a graphical display of the data from the new
test from 100 kHz to 60 MHz. The image frequency, 1/2IF and 1/31F spurs, shown in Table 4.5,
are outside the range of this scan. The graph at the top right shows several responses including a
spur at the second IF, 15 MHz, and another spur very close to its 1/2 subharmonic frequency at
7.66 MHz. This behavior is nearly the same as the first scan with frx tuned to 3.6 MHz. The 1/5
subharmonic frequency of the first IF is shown clearly at 49.69 MHz showing IF feedthrough is
still a major problem for frequencies at the IF and its subharmonics. The spurs at 35.78 MHz and
50.09 MHz are predicted as mixer spurs in Table 4.5 and differ from the first scan as expected,
since fio changes with frx. The narrowed frequency range from 100 kHz to 1 MHz in the graph
to the lower right of Figure 4.22 shows strong spurs down to the 1/6 subharmonic frequency,
exactly like the first scan reemphasizing that subharmonics of frequencies that produce spurious
responses are a serious issue. Similar to the first scan the spread of spurs right around frx is
about £290 kHz on either side and two there are two spurious responses are immediately
adjacent to frx, but much reduced in strength. Whether the source of this spread of spurs is LO
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phase noise or IF bandwidths, the behavior appears invariant when the receiver is tuned to

different frequencies.

Spur Scan, VX-3 tuned to 3.605MHz Spur Scan, VX-3 Tuned to 70MHz
D ses sss o » = 4 R — - ses s o B WM S B S S BES SMEE S S SN S & S
- Spurs (dBm) + Spurs (dBm)
-20 -20 T T
E 15.745MHz 27. 235MHz 66.605MHz ., A45MHz 50.835MHz  62.845MHz
S et e | BT R e e
K ff SINEAE 2 SRR XA LRI
% -60 ] 2 Y - -:-_:. 4% " ot - o
% 50 ! I ‘. - 35, IOSM z i o. 74.475MHz g wo 12.145MI-(I92- ot 1 : 82.345MHz
pul ’ . : 63.005MH o _- :
S 23.625MHz ’ & o 23.625MHz /
0o 54-455MHz 34.895MHz °
& 0 120 47.245MHz  69-995MHz
@ 47. 25MHZ :
140 | 3:605MHz a0
o 10 20 0 0 - o 70 20 9% 0 10 20 30 40 50 60 70 80 90
, Frequency of Input Signal (MHz) Frequency of Input Signal (MHz)
0 . . . 0 . .
-20 -20
40 22PMHz  1.185MHz )|
L ]
.1 s 6/.. b . ¢ . -40 5 % -
6 2, 9' : T . * 69 OéM ’
® 1 185MH: : f 6 .405MHz + ¢
80 .445MHz ® :‘l ® s 70.645MHz
) s 68.725MHz )
1.805MH . 80 g
-100
-120 -100
N ©69.995MHz
140 3.605MHz 120 .
0 05 1 15 2 25 3 35 4 68 685 69 695 70 705 71 715 72
Figure 4.23 - VX-3 3.6 MHz to 70 MHz Tune Comparison Test Results
VX-3
frx (MHZ) 70.000

Intermediate Frequencies, IF (MHz) 47.25, .45
Local Oscillator Frequencies, fL o (MHz) 22.75, 46.8




Name/Source Spur Observed (MHz)
Subharmonics of frx 35, 23.3, 17.5, ...
IF1 feedthrough, and subharmonics 47.25, 23.625, 15.75, 11.81, 9.45, 7.87, 6.75...
IF2 feedthrough 0.45, .225...
fimace=fLotfiF1 117.250
fioir=fLox1/2f\r; 93.625, 140.875
fyzir=fLox1/3fig; 101.5, 133

Mixing operations = fijr=mf_oxnfrr fre (MH2Z) m n
11.665 1 -6
23.335 1 -3
35.005 1 -2
41.125 -1 4
54.835 -1 3
62.415 2 -3
76.125 3 -4
82.255 -1 2

Table 4.6 - VX-3 3.6 MHz to 70 MHz Tune Comparison Test Results

Figure 4.23 shows a comparison of the VX-3’s spurious rejection response tuned to
receive 70 MHz to the VVX-3’s spurious rejection response tuned receive to 3.606 MHz presented
in section 4.5.2. The two graphs to the right provide a graphical display of the data from the new
test from 100 kHz to 90 MHz. The image frequency, 1/21F and 1/3IF spurs, shown in Table 4.6,
are outside the range of this scan. The graph at the top right shows a number of responses
including a strong IF feedthrough and its second harmonic, in this case stronger than the actual
frx, similar to the first VX-3 scan. Several additional mixer spurs are shown as well, predicted in
Table 4.6, which differ as expected from the first VX-3 scan since f.o is varied to receive a
different frx. The narrowed frequency range from 68 MHz to 72 MHz shown in the lower right
of Figure 4.6 shows a close in view of frx. This view shows some close-in spurious responses
that are not predicted in tabulated data. This view also shows the same spread of spurs roughly
+175 kHz around frx as observed when the VX-3 was tuned to 3.605MHz, again indicating this
behavior is invariant when the fge is changed.
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Spur Scan, SDR-14Tuned to 3.6MHz Spur Scan, SDR-14Tuned to 22MHz
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Figure 4.24 — SDR-3 3.6 MHz to 22 MHz Tune Comparison Test Results
SDR
frx (MHZ2) 22

Intermediate Frequencies, IF (MHz) Unknown
Local Oscillator Frequencies, f.o (MHz) Unknown
Name/Source Spur Observed (MHz)
Subharmonics of frx 11, 5.5, 2.75, 1.375, ...
IF1 feedthrough, and subharmonics Unknown
Table 4.7 - SDR 3.6 MHz to 22 MHz Tune Comparison Test Results

Figure 4.24 shows a comparison of the SDR’s spurious responses when tuned to receive

22 MHz to the SDR’s spurious responses when tuned receive to 3.6 MHz. The graph on the right
in Figure 4.24 shows the new data from 100 kHz to 30 MHz. As in the first scan there are a
number of spurs in the data not predicted in the tabulated data due to the additional complexity
of the software driven variable components and digital circuitry. The new data dramatically
emphasizes the issue of subharmonics by showing strong second and third order responses at 11
MHz and 5.5 MHz.

This section shows that each of these receiver’s spurious response behaviors contain
consistent trends even when fgre is changed. A major problem that causes strong spurious
responses in receivers is IF feedthrough and its subharmonics. Signals too close to the fgre create

spurs as do harmonics of fi o and frg, but there are a number of spurs which aren’t explained even

by these predictions.

75



tuned to different bands that make use of different preselect filters than the last two sections.

These responses are compared and their data analyzed. Differences and similarities between

4.5.4 Two Receivers Compared at VHF Bands

This section shows the VR-120’s and the VVX-3’s spurious rejection responses when

these responses and those in the last two sections are addressed
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Figure 4.25 - VR-120 120 MHz Tune Comparison Test Results

VR-120

frx (MH2z) 200.000
Intermediate Frequencies, IF (MHz)248.45, 15, .45
Local Oscillator Frequencies, f o (MHZz)448.45, 263.45, 15.45
Name/Source Spur Observed (MHz)
Subharmonics of frx100, 66.67, ...

IF1 feedthrough, and subharmonics248.45, 124.23, ...
IF2 feedthrough15, 7.5, ...
IF3 feedthrough0.45, ...

fimace=fLo+f1F1696.9

fioir=FfLox1/2f\r1324.225, 572.675
figir=fLox1/3f1F1365.63, 531.26

76




Mixing operations = fijr=mf_oxnfre fre m n
156.7 3 -7
162.11 2 -4
216.15 2 -3
219.38 3 5
229.07 -2 5
232.3 -1 3
257.56 4 -6
284.83 5 -7
286.34 -2 4
291.75 -4
309.07 4 5
318.76 -3 5
324.22 2 -2
348.45 -1 2

Table 4.8 — VR-120 120 MHz Tune Comparison Test Results

Figure 4.25 shows a comparison of the VR-120’s spurious rejection response from 140
MHz to 380 MHz, tuned to receive 200 MHz. The overall behavior of the spurious rejection
response is quite similar to this receiver’s response when tuned to receive 3.6 MHz or 1 MHz.
Subharmonics of the frr and the IF frequencies are outside the range of this scan, however the
graph on the left of Figure 4.25 shows strong feedthrough for the first IF at 248.25 MHz. The
1/21F spur at 324.22 MHz is also plainly observed along with a number of mixer spurs predicted
in Table 4.8. A narrowed view of the data from 199.5 MHz to 200.5 MHz is shown on the right
of the figure with a range £295 kHz on either side of frr of nearby spurious responses. Also there
are two slightly strong spurs immediately adjacent to fRF at £10 kHz indicating the roll off of
the final IF filter.
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Figure 4.26 — VX-3 150 MHz Tune Comparison Test Results

VX-3

fo (M HZ)

Name/Source

Mixing operations = fijr=mf_otnfre

150.000

Intermediate Frequencies, IF (MHz) 47.25, .45

Local Oscillator Frequencies, fLo (MHz) 197.25, 46.8
Spur Observed (MHz)

Subharmonics of frx 75, 50, ...

IF1 feedthrough, and subharmonics 47.25, 23.625, ...

IF2 feedthrough 0.45, .225
fimace=fLot+fiF1 244.500

fuoir=fLox1/2f|F1 173.625, 220.875
fz1r=fLox1/3f|F1 181.5, 213

fre m
75 1
122.25 -1
147.26 -2
148.35 4
159.75 -3

Table 4.9 - VX-3 150 MHz Tune Comparison Test Results
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Figure 4.26 shows a comparison of the VX-3’s spurious rejection response from 50 MHz
to 250 MHz, tuned to receive 150 MHz. The overall behavior of this spurious rejection response
is significantly better than when the VVX-3 was tuned to receive 3.6 MHz or 70 MHz. The
response is amazingly spur free. The graph on the left shows a strong 1/2 subharmonic frequency
response at 75 MHz. The image frequency is shown at 244.5 MHz and a few mixer spurs
predicted in Table 4.9 are shown, including 122.25 MHz and 159.75 MHz. The graph on the
right shows the same spur spreading around frr 0f about £175 kHz as seen in the test results
from the previous two sections. Additionally, a repeated pattern of spurs is shown to the left of
the tuned frequency perhaps due to some digital circuitry. Last, a mixer spur is shown at 147.25
MHz.

In this section as well as the previous two, subharmonics are the most common problem.
This source of spurs is demonstrated in every test indicating that this issue a universal problem
even across varying radio architectures. While other responses were observed, such as IF
feedthrough, 1/21F and 1/3IF spurs, and mixer spurs, there is a large number of unexplained
behaviors in these spurious responses. The graphical representation provides insight into the
receiver performance and guides the designer when looking at the receiver about which

frequencies to consider when assessing spur blocking capabilities.

4.5.5 The K-State Microtransceiver Spurious Rejection Response at UHF
This section looks at the K-State microtransceiver spurious rejection response for two
cases: first, the receiver is tuned to receive 392.6 MHz using only the integer N synthesizer and
second, the receiver is tuned to receive 435 MHz and is using the fractional N synthesizer. These
plots show the spurious responses in both cases demonstrate some expected behaviors and allow
an easy comparison to be made about how the fractional N synthesizer impacts the spurious

response.
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Figure 4.27 — K-State Microtransceiver Without & With the Fractional N-Synthesizer Test

Results

K-State Microtransceiver

frx (MH2z) 435.0 392.6
Intermediate Frequency, IF (MHz) 10.7 10.7
Local Oscillator Frequency, fLo (MHz) 445.7 403.3
Name/Source Spur Observed (MHz) Spur Observed (MHz)
Subharmonics of fRX 217.5, 145, 108.75, 87, 72.5, ... 196.3,130.8, 98.15, 78.52, ...
IF1 feedthrough, and subharmonics 10.7, 5.35, ... 10.7,5.35, ...
fimace=fLo+fiF1 456.4 414
fioir=FfLox1/2f\r; 440.35, 451.05 397.95, 408.65
fisir=fLox1/3f\r 442.13, 449.26 399.73, 406.86

Table 4.10 — K-State Microtransceiver Without & With the Fractional N-Synthesizer Test

Results

Figure 4.27 shows the graphical display of two spurious rejection response tests results
from the K-State microtransceiver. The first test shown in the graph on the left was run with 100
kHz steps and the second test shown in the graph to the right is a test run with 50 kHz steps. It
was determined that the step size should be 10 kHz for future tests, however these tests still show
important behaviors such as IF feedthrough, subharmonic responses, and strong image responses.

More importantly it’s also clear that, as expected, the use of the fractional N synthesizer
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increases the number of spurious responses significantly. However, the overall performance of

this receiver exceeds the other receivers showing an overall robust spurious rejection response.

Chapter 5 - The Q-Enhanced Filter as a Solution to SDR

Architectures

The results in Chapter 4 showed many responses were a result of subharmonic
frequencies of the IF frequencies or frg, or the result of other nonlinearities due to amplification
which then mixed with the LO. There were also a number of spurious responses which were
unexplained. If a frequency synthesizer is used with significant spurs and/or phase noise the
increase in the number of spurious responses rose significantly. These results provoked the
question about what would happen to a spurious response if the IF were changed. The Q-
enhanced filter provides that type of ability, so if varying the IF were to improve the spurious

response significantly, the Q-enhanced filter could be a valuable IF filter in a receiver.

5.1 — Spur Reduction Achieved by Changing the IF
To test how spurious responses changed when the IF was shifted, the spurious response
rejection test with the K-State Microtransceiver was rerun where the receiver was tuned to 435
MHz with two different IF filters. This was accomplished by changing the external IF filter and
varying the LO accordingly. Figure 5.1 shows these results and Tables 5.1 and 5.2 show some

expected responses to these tests respectively.

Spur Scan, MarsXCVR(5) Tuned to Spur Scan, MarsXCVR(5) Tuned to
435MHz, IF 10.7 MHz 435MHz, IF 6.5MHz
0 R N 0 N
10.7MHz 300.7MHz 6.5MHz 296.5MHz
- ol e W B — -20 r ek, I L R B
. 0 / ..”&g' > 1:". © 7 -+t 880.69MHz r-é- 40 . '.J ¥ .';-I ‘ﬂ_. . * | '3 .
- 3';' it 36 - : - av, s ®
& e o ° f‘.&; 2 902.11MHz 8 © % -it{" 889.5MHz
T 60 1a5MHz . oy - 145MHz | %.$438.25MHz
g 80 217.5MHz s 440.35MHz $ %0 TTsMHz—
O .100 S -100 i
o ©456.4MHz »348MHz
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140 435MHz it endliid 140 z
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Figure 5.1 — K-State Microtransceiver 435MHz Tune Different IF Comparison Test Results
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K-State Microtranciever

frx (MHZ2) 435.000

Intermediate Frequency, IF (MHz) 10.700
Local Oscillator Frequency, fLo (MHz) 445.700

Name/Source Spur Observed (MHz)

Subharmonics of fRX 217.5, 145, 108.75, 87, 72.5, ...
IF1 feedthrough, and subharmonics 10.7, 5.35, ...
fimace=fLo+fiF1 456.4
fioir=fLox1/2f\r; 440.35, 451.05
fiair=fLox1/3f\Fy 442.13, 449.26

Mixing operations = fijg=mf_oxnfre fre m n
228.2 -1 2
300.7 -2 3
331.6 3 -4
336.95 -3 4
354.42 4 -5
358.7 -4 5
443.56 5 -5
444.17 7 -7
447.23 -7 7
447.84 -5 5
880.69 2 -1
902.11 -2 1

Table 5.1 — K-State Microtransceiver Spurious Response, IF=10.7 MHz

82




K-State Microtransceiver

frx (MH2z) 435.000
Intermediate Frequency, IF (MHz) 6.500

Local Oscillator Frequency, fLo (MHz) 441.500

Name/Source Spur Observed (MHz)
Subharmonics of frx 217.5, 145, 108.75, 87, 72.5, ...
IF1 feedthrough, and subharmonics 6.5, 3.25, ...
fimace=fLot+fiF1 448.0
far=fLoxl/2f\g 438.25, 444.75
fiair=FfLox1/3f\F; 439.33, 443.67

Mixing operations = fjr=mf_oxnfrr fre m n
224 -1 2
296.5 -2 3
3295 3 -4
332.75 -3 4
351.9 4 -5
3545 -4 5
438.25 2 -2
439.33 3 -3
440.2 5 -5
440.57 7 -7
442.8 5 5
443.67 -3 3
444.75 -2 2
889.5 -2 1

Table 5.2 — K-State Microtransceiver Spurious Response, IF= 6.5 MHz
Figure 5.1 shows a number of spurious responses for both IF frequencies, including all
the expected known problems at subharmonics or from mixing spurs or image frequencies. Upon
review, it is also clear that many of those responses occur at different frequencies. Furthermore,
many of the unexplained responses also seem to differ between the two tests. To emphasize this

point Figure 5.2 shows the results from this test in two forms: first, the graph on the left shows
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both spurious responses on the same plot, and second, the graph on the right shows the two

responses with all spurious responses in common between the two tests removed.
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Figure 5.2— K-State Microtransceiver Varied IF Comparison Spur Residual

It’s obvious looking at these two plots that the number of spurious responses has been

decreased dramatically. All the mixer spurs and the image frequency are gone as expected, but

the majority of the unexplained responses are also removed. This is a strong indication that a

variable IF frequency could significantly improve a receiver’s spurious response if implemented

intelligently. Table 5.3 shows an exhaustive list of the spurs which remain after eliminating the

responses which are in common within £100 kHz.

K-State Microtransceiver

IF =10.7 MHz IF=6.5MHz
Frequency (MH2) Spur (dBm) Frequency (MH2z) Spur (dBm)

108.75 -23 108.75 -23

145 -48 145 -48
198.61 -27 198.61 -21
214.35 -23 214.4 -27
217.5 -72 217.5 -71
223.92 -23 223.9 -41
223.95 -23 224 -62
238.35 -23 238.35 21
242.99 -33 242.99 -33

243 -31 243 -31
266.35 -26 266.24 -30
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276.6
281.39
281.4
290.99
291
292.2
295.35
319.79
338.99
339
354.42
377.4
396.59
396.6
415.79
415.8
434.99
435
440.16
440.35
442.13
443.56
44451
447.84
454.2
473.39
473.4
492.59
492.6
500.79
511.8
526.19
530.99
531
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276.59
281.39
281.4
290.99
292.1
292.23
295.45
319.79
338.99
339
354.46
377.4
396.59
396.6
415.79
415.8
434.99
435
440.2
440.24
442.2
443.6
444.65
447.88
454.39
473.39
473.4
492.59
492.6
500.81
511.8
526.19
530.99
531




550.19 -39 550.19 -37
550.2 -38 550.25 -29
739.99 -30 739.99 -28
759.99 = 759.99 =l

760 -28 760 -29
764.99 -22 764.99 -21
769.99 -22 769.99 -23

Table 5.3 — K-State Microtransceiver 435MHz Tune Different IF Spur Residual

A more thorough analysis of this data could likely yield insight into the K-State
Microtransceiver’s spurious response. However, given the significant improvement from just
varying the IF, it’s possible that more than one tunable filter could be used in a receiver further
improving a receiver’s spurious response. The Q-enhanced filter is too noisy to be used as a
preselect filter, but it could work as a narrow bandpass filter immediately preceding the mixer
providing a narrowband tuned — RF capability. The next section explores this receiver

architecture concept.

5.2 — A New Architecture Using the Q-Enhanced Filter
Figure 5.3 shows a modified single conversion superheterodyne receiver architecture
which uses two tunable variable bandwidth filters. These filters are assumed to be the Q-

enhanced filters addressed earlier in this thesis.

Preselect  \\ Image IF IF
Filter Filter Mixer Filter Amplifiers
~o| ] -~y -~y ADC,
~ ~Z ~ W DMOD
/Tunable, Variable /I'unable, Variable
Bandwidth Bandwidth
VCO
TCXO
Frequency
Synthesizer

Figure 5.3 — Modified Superheterodyne Architecture Using Q-Enhanced Filters
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This architecture would use Q-enhanced as both as an image reject filter and as an IF
filter. Tunable filters at these nodes in the receiver would allow significant tunability enabling
the same spurious response avoidance capability as shown in section 5.1. Additionally, these
filters could provide very narrow fractional bandwidths further reducing the production of spurs.
It’s important to recognize that these filters would need to be tuned by an intelligent algorithm
which avoided spurious responses as it tuned to receive the desired signal. The full nature of this
algorithm isn’t addressed here, but is mentioned to explain that the potential of this receiver

architecture could only be realized with adaptive control of the tunable filters.

Chapter 6 - Conclusion

6.1 System Status Summary

6.1.1 Integrated Circuit Redesign

The Q-enhanced variable bandwidth tunable filter integrated circuit was fully redesigned
in a new integrated circuit technology. Problems in the existing design with the frequency
divider and amplitude detector circuitry were addressed and solutions implemented. The
incorrect loading of the capacitive coupling circuitry in the current design was fixed in the new
design. Resistance tuning was implemented in the new design to cancel asymmetry in the
passband due to inductive coupling. The biasing of the Q-tuning cells was altered and the gain of
the differential cores was dropped to improve the dynamic range at higher Q enhancements. The

new designs were simulated to test for functionality.

6.1.2 Software Development
The automated tuning algorithm was improved first to include fine tuning and then to
include an optimized binary search routine for determining the fine and course tuning values.
The improved algorithm was able to achieve a 2.5MHz bandwidth and maintain that bandwidth
when heated from room temperature to 75°C. The microcontroller code was prepared for the
resistance tuning by modifying the portion of the algorithm which programs the filter and
receives commands from the test application. Changes needed in the test application code were

enumerated, but not implemented.
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6.2 Receiver Spurious Response Conclusions

A novel graphical description of receiver’s spurious responses was obtained through a
test system developed to characterize receivers. Four receivers were tested using this system and
their responses were compared and analyzed. The graphical description provides an intuitive
understanding of a receiver’s abilities to reject frequencies it is not tuned to receive. These test
results emphasize that a dominant issue in receiver spur block capability is subharmonics
rejection and IF feedthrough. These test results also indicate that the Q-enhanced filter could
provide a viable improvement in receiver architectures. A potential receiver architecture was
proposed and its viability as a way to improve spurious response rejection in receivers was tested

using the K-State microtransceiver.

6.3 Future Work

6.3.1 Filter Layout
The new filter design is due to be fabricated in June. The final schematic design should
be reviewed and the layout completed. Additionally, all simulations should be repeated with the

extracted data from layout included to account for parasitics and ensure a robust design.

6.3.2 Filter Testing
The new filter should be tested thoroughly to ensure basic functionality, observe if the
design corrections were successful in mitigating flaws in the current design, and fully determine
the viability of this filter as a potential solution in receiver architectures. A new embedded board
should be fabricated to place inductors close together to allow the automatic coupling adjustment

algorithms to be researched and developed.

6.3.3 Software
The code changes in the microcontroller should be tested by programming the new chip.
Further optimization is possible in the tuning algorithm and increases in tuning speed might be
achievable and should be explored. The test application needs to have some additional
functionality incorporated to fully test and explore the behavior of the filter. Additional error

checking and event handling would be useful in both systems to ensure robust functionality.
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6.3.3.1 Fine Tuning Code Future Work

The fine tuning C code on the microcontroller is fully implemented. However, both the
course and fine tuning portions of the algorithm currently use linear searches to find the best
value and the tuning speed might be significantly increased if this search was optimized. Also,
three of the blocks in Figures 3.2-3.5 were highlighted by the use of bold dashed outlines. These
blocks should be unnecessary with the successfully redesigned filter so that these values can be
to zero when testing, assuming the sensitivity issues in the amplitude detector are corrected.

The fine tuning code required modifying only two files in the original microcontroller
code. The original code is documented entirely in [2], but the modified C code is contained in
appendix B. The fine tuning code currently makes use only of the settings from the filter test
application documented in [2]. However, the frequency tolerance and amplitude detection
thresholds for the front and back ends are used in the course tuning portions of the algorithm. It
would be useful to extend the functionality of the GUI to control the fine tuning directly by
implementing additional thresholds for the frequency amplitude thresholds in the commands sent
to the microcontroller.

The C code on the microcontroller needs to be modified to include additional bits in the
control word used to program the filter. The GUI should be modified to include the ability to
tune the resistance values. Eventually the automated algorithm should be automated to include a

look up table which chooses the resistance based on the desired center frequency and bandwidth.
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Appendix A - IC Redesign

This section of the appendix details the circuits not discussed in the body of the work. It
presents the full schematic and then steps down level by level to explain the various portions of

the design, including simulations and test benches where needed.

A.1 Top Level View of Q-Enhanced Filter Schematic

-
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I
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I
I
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—

= ‘Capacitive coupling & Resistance tuning block

-
== = \. - - . Differential Cores and Amplitude

%E Serial to parallelblock & Frequency Detection Block

Figure A.1 — Top Level View of Q-Enhanced Filter Schematic
This figure shows the top view of the design as seen after stepping into the
‘top_genhanced’ symbol in the design. There are three portions to this top level: the serial to
parallel portion which takes in all the tuning bits and enable bits as information to set the features
of the circuit, the differential cores with the amplitude and frequency detection circuits at their
outputs, and the capacitive coupling tuning and resistance tuning portions of the circuit used to

refine the passband shape.
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A.2 Serial to Parallel Block
This figure shows a close up of the serial to parallel blocks and their wiring. The output
of each DFF in the second level is tied to its enable or tuning bit so that when the latch is
triggered all the bits which have been shifted into the first level of DFF are passed to the desired

circuits. The full chain of DFF in each serial to parallel block is shown next.
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—=—ck . gl T1_front
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go_back
enbarad_back

Figure A.2 — Top Level View of Serial to Parallel Register Schematic
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Figure A.3 — Single Cell View of Serial to Parallel Register Schematic

A close up of the first few DFF are shown next to clarify the operation and wiring of these

circuits.

Figure A.4 — Narrowed View of Serial to Parallel Register Single Cell

This circuit was tested using the following test bench set up.
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Figure A.5 — Test Bench for Serial to Parallel Register

The simulation output for this circuit is shown in the next two figures.
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Figure A.6 — Simulation Output for Serial to Parallel Register
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Figure A.7 — Simulation Output for Serial to Parallel Register

A.3 Differential Cores, Amplitude Detector & Frequency Divider Top View
The next figure shows a slightly closer of the differential cores and the amplitude and
frequency detection circuits tied at the output. The port outputs tied into the LC tank circuits

explained in other sections of this work.
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Figure A.8 — Top View of Differential Cores, Frequency Detectors, and Amplitude

A.3.1 Differential Core, Buffer, & Tuning Block

A.3.1.1 Differential Core

Detectors

This figure shows the internal portion of a differential core master block which is divided

into three portions: the amplifier core, the frequency tuning and Q-enhancement block and the

buffer at the output. This block also includes the enable PFET which operates a switch to

activate or deactivate the core.

y il diffeore .

gnd

Figure A.9 —Differential Core, Tuning Block, and Buffer

The schematic of the differential core is shown above. The bias points in the circuit are

set up with the stack of PFETS shown on the left. The current through the core is set to about

200mV overvoltage and is setting the total current through the core to be about 2mA. The inputs

are AC coupled and biased with resistors which set the input impedance. The differential core is

built of two legs of intrinsic FETs which are cascoded to drive the LC tank circuits. This circuit
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is designed to have an unenhanced gain of 1. This circuit is crucial to the overall performance at
a system level because it is one of two circuits which limit the output voltage swing, or dynamic
range, and the primary circuit which determines the noise floor. The noise floor is lowered with
more current, but power consumption is increased. Additionally the gain of this core is dictated
by gm Which is impacted by the current through the circuit. The voltage gain of this circuit is
known to be
Gy = 2gmR,
where R;, is the load seen from the LC tank circuit at resonance in combination with the total

load resulting from all resistances added in parallel with the load of the inductors at resonance
when tuning and Q enhancements are active.
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Figure A.9 -Differential Core Schematic
The test bench and simulation output for this circuit are shown below.
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A.3.1.2 Buffer
The next circuit is the buffer. The buffer is designed to provide a stable output to the

frequency and amplitude detection circuitry without loading the core amplifier down.
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Figure A.12 — Buffer Circuit

The buffer is a differential chain of two common drain, or current follower, circuits. The
overall gain is about .6 when driving a 1 kQ load and the total current draw is about 2-3 mA. The
current in each leg of the amplifier is set up by the resistor and FET using the power supplied to

the circuit. The output test bench and simulation are shown next.
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Figure A.14 — Simulation Output of Buffer Circuit

A.3.1.3 Tuning Block
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The tuning circuitry used to achieve frequency tuning and Q-enhancement is shown

below
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Figure A.15 - Top View of Frequency and Q-Enhancement Tuning Blocks

This is the top view of the tuning circuitry. Close ups of the sections and cells follow with

relevant explanation.
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Figure A.16 — Narrowed View of Frequency and Q-Enhancement Tuning Block
This figure shows a close-up of the top left section of the full tuning block. The biasing

used for these blocks and sections are shown at the very top left. The analog frequency tuning
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capacitor is shown next to the right, followed by the digital frequency tuning block. Finally, at

the top right the analog Q tuning cell is shown. Each Q cell is run by two inverters. The Q cell is
implemented in binary weighted banks.
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Figure A.17 — Top View of Frequency Tuning Block
The frequency tuning circuit is shown above. To simplify layout the widths and lengths

of the FETs were modified to create binary weighted capacitors driven by inverters. A close-up
of the first two caps is shown next.
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Figure A.18 — Narrowed View of Frequency Tuning Block
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As shown these capacitors are implemented as FET capacitors with the drain and source
tied together driven by inverters. The source and drain of the FETs are AC grounds in this case

SO no resistor is needed.
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Figure A.19 — Cell View of Q-Enhancement Tuning Block

The basic Q-enhancement cell is shown above. This circuit provides the Q enhancement
and is the second circuit which limits the output voltage swing, or dynamic range of the circuit.
To improve the system’s ability to output large signals high threshold FETs are used for the two
legs of the circuit allowing the voltage at the ports to drop as much as possible before pushing

these FETSs out of the active region. The current source is biased with about 200mV overvoltage.

A.3.2 Resistance Tuning & Capacitive Coupling Top View
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Figure A.20 — Top View of Capacitive Coupling and Resistance Tuning Blocks
This schematic is the capacitive coupling and resistive blocks shown at the top level of
the schematic. The resistor coupling is explained at length in the body of the text and isn’t

addressed here. The capacitive coupling is also referenced in the body of the text, but for sake of
thorough documentation the circuits are included here.

105




Appendix B - C Code

B.1 Fine Tune Code Modifications

/

* Filename: gefilter.c

* Date: June 2010

* Compiler: C30

* Author: Joel Schonberger

* Company: Kansas State University

* Department: Electrical & Computer Engineering

* Research: 500 MHz Two-Pole Q-Enhanced Filter Tuning Algorithm

* Description: This file houses the functions needed to implement the QE Filter
* tuning algorithm.

*

* Updated: April 2012

* Author: Chelsi Kovala

* Changes: Modified to include fine tuning in the tuning algorithm and now

includes the functions:

void fineFrontEndFTune(void)
void fineBackEndFTune(void)
void fineFrontEndQTune(void)
void fineBackEndQTune(void)
printFrontEndAnalogQTune()
printFrontEndAnalogFTune()
printBackEndAnalogQTune()
printBackEndAnalogFTune()

#include "main.h"

* Global Variables */

char strCenterFreq[] = "Center Frequency: ###.# MHz\r\n";

char strFreqTol[] = "Frequency Tolerance: ##.# MHz\r\n";

char strFrontEndADThresh1[] = "Front-End AD Threshold 1: ##Ar\n";
char strFrontEndADThresh2[] = "Front-End AD Threshold 2: ##Ar\n";

char strFrontEndQOffset[] = "Front-End Q-Offset: ##\r\n";
char strFrontEndQBackOff[] = "Front-End Q-BackOff: #A\r\n";
char strFrontEndFOffset[] = "Front-End F-Offset: #Ar\n";

char strBackEndADThreshl[] ="Back-End AD Threshold 1: ##\r\n";
char strBackEndADThresh2[]  ="Back-End AD Threshold 2: ##\r\n";
char strBackEndQOffset[] = "Back-End Q-Offset: ##\r\n";

char strBackEndQBackOff[] = "Back-End Q-BackOff: #\r\n";

char strBackEndFOffset[] = "Back-End F-Offset: ##\r\n";

char strCouplingUpper[] ="Coupling Upper: #Ar\n";

char strCouplingLower[] = "Coupling Lower: #\nn";

char strCouplingUFLBJ[] "Coupling UFLB: #Ar\n";

char strCouplingLFUBJ] ="Coupling LFUB: ##\r\n";

char strFrontEndAD[] = "Front-End Amp Detector: ####\r\n";
char strFrontEndNonOscl[] = "Front-End Non-Osc: ####\r\n";

char strFrontEndFCnt[] ="Front-End Freq Count: ###.# MHz\r\n";

char strFrontEndDigitalQTune[] = "Front-End Digital Q-Tune: #\r\n";
char strFrontEndAnalogQTune[] = "Front-End Analog Q-Tune: ##H##\rn\n";
char strFrontEndDigitalFTune[] = "Front-End Digital F-Tune: ###\r\n";
char strFrontEndAnalogFTune[] ="Front-End Analog F-Tune: #H##\r\n";

char strBackEndADI] = "Back-End Amp Detector: ###\nn";
char strBackEndNonOsc[] = "Back-End Non-Osc: ###H\r\n";
char strBackEndFCnt[] ="Back-End Freq Count: ###.# MHz\r\n";

char strBackEndDigitalQTune[] ="Back-End Digital Q-Tune: ##\r\n";
char strBackEndAnalogQTune[] = "Back-End Analog Q-Tune: ###\r\n";
char strBackEndDigitalFTune[] ="Back-End Digital F-Tune: ###\r\n";
char strBackEndAnalogFTune[] = "Back-End Analog F-Tune: ####\r\n";

int FrontEndAD, BackEndAD, FrontEndFCnt, BackEndFCnt, FrontEndNonOsc, BackEndNonOsc;

int PrevFrontEndDigitalQTune, PrevBackEndDigitalQTune;

int filterData[4];

int CenterFreq, FreqTol;

int FrontEndADT hreshl, FrontEndADT hresh2, FrontEndQOffset, FrontEndQBackOff, FrontEndFOffset;
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int BackEndADThreshl, BackEndADT hresh2, BackEndQOffset, BackEndQBackOff, BackEndFOffset;
int CouplingUpper, CouplingLower, CouplingUFLB, CouplingLFUB;

struct {
unsigned int en:1;
unsigned int fTune:8;
unsigned int qTune:6;
unsigned int ADen:1;
} FENDCON;

struct {
unsigned int en:1;
unsigned int fTune:8;
unsigned int gTune:6;
unsigned int ADen:1;
} BENDCON,;

struct {
unsigned int upper:5;
unsigned int lower:5;
unsigned int FDFen:1;
} CAPCONZ,

struct {
unsigned int UFLB:5;
unsigned int LFUB:5;
unsigned int FDBen:1;
} CAPCONZ2;

struct {
unsigned int FANAF:10;
unsigned int FANAQ:10;
unsigned int BANAF:10;
unsigned int BANAQ:10;
} ANALOG;

struct {
unsigned int ADFen:1;
unsigned int FDFen:1;
unsigned int ADBen:1;
unsigned int FDBen:1;
unsigned int RFOn:1;
} DEBUG;

extern const char *console_str_sep;
extern int _PrintFilterSettings;

/

* Function: initFilter

* Parameters: void

* Return: void

* Description: Initializes the Filter Controls to their minima and disables all
* of the enable variables.

void initFilter(void)

disableFrontEnd();
setFrontEndDigitalFTune(FTUNE_DIG_MIN);
setFrontEndDigitalQTune(QTUNE_DIG_MIN);
disableFrontEndAD();

disableFrontEndFD();

disableBackEnd();
setBackEndDigitalFTune(FTUNE_DIG_MIN);
setBackEndDigital QTune(QTUNE_DIG_MIN);
disableBackEndAD();

disableBackEndFD();

setCouplingUpper(COUPLING_MIN);
setCouplingLower(COUPLING_MIN);
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setCouplingUFLB(COUPLING_MIN);
setCouplingLFUB(COUPLING_MIN);

setFrontEndAnalogFTune(ANALOG_MIN);
setFrontEndAnalogQTune(ANALOG_MIN);
setBackEndAnalogFTune(ANALOG_MIN);
setBackEndAnalogQTune(ANALOG_MIN);

DEBUG.ADFen = 0;
DEBUG.FDFen =0;
DEBUG.ADBen = 0;
DEBUG.FDBen =0;
DEBUG.RFOn=1;

}

/

* Function: printFilterOptions
* Parameters: void

* Return: void

* Description:

Prints each of the the filter options to the Console.

void printFilterOptions(void)

{
printSeperator();
printFrontEndStatus();
printFrontEndAD Status();
printFrontEndFDStatus();
printFrontEndDigitalQTune();
printFrontEndAnalogQTune();
printFrontEndDigitalFTune();
printFrontEndAnalogFTune();
printBackEndStatus();
printBackEndADStatus();
printBackEndFDStatus();
printBackEndDigitalQTune();
printBackEndAnalogQTune();
printBackEndDigitalFTune();
printBackEndAnalogFTune();
printCouplingUpper();
printCouplingLower();
printCouplingUFLB();
printCouplingLFUBY();

printRFSwitchStatus();
printSeperator();
}
/
* Function: printAlgorithmOptions
* Parameters: void
* Return: void
* Description: Prints each of the the algorithm options to the console.

void printAlgorithmOptions(void)

{
printSeperator();
printCenterFreq();
printFreqTol();
printFrontEndADT hresh1();
printFrontEndADT hresh2();
printFrontEndQOffset();
printFrontEndQBackOff();
printFrontEndFOffset();
printBackEndADThresh1();
printBackEndADThresh2();
printBackEndQOffset();
printBackEndQBackOff();
printBackEndFOffset();
printCouplingUpper();
printCouplingLower();
printCouplingUFLB();
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printCouplingLFUB();

printSeperator();
/
* Function: updateFilterData
* Parameters: void
* Return: void
* Description: Formats and stores the filter options to be programmed.

void updateFilterData(void)

filterData[0] = ((CAPCON2.FDBen & 1) << 10) |
((CAPCON2.UFLB & COUPLING_MAX) <<5) |
(CAPCON2.LFUB & COUPLING_MAX);

filterData[1] = ((CAPCON1.FDFen & 1) << 10) |
((CAPCON1.lower & COUPLING_MAX) <<5) |
(CAPCONZ1.upper & COUPLING_MAX);

filterData[2] = (BENDCON.ADen & 1) << 15) |
((BENDCON.gTune & QTUNE_DIG_MAX) << 9) |
((BENDCON.fTune & FTUNE_DIG_MAX) << 1) |
(BENDCON.en & 1);

filterData[3] = (FENDCON.ADen & 1) << 15) |
((FENDCON.qTune & QTUNE_DIG_MAX) << 9) |
((FENDCON.fTune & FTUNE_DIG_MAX) << 1) |
(FENDCON.en & 1);

}

/

* Function: programFilter

* Parameters: void

* Return: void

* Description: The filter is programmed by transmitting the 64 programming bits to
* the serial-to-parallel register of the filter via SPI. Once all 64

* bits are transmitted, the latch line is raised, a clock pulse is

* generated and the latch line is lowered storing the bits.

void programFilter(void)

{
updateFilterData();

setPinLow(FILTER_CLK);
setPinLow(FILTER_DATA);
setPinLow(FILTER_LATCH);
enableSPI2();
writeSP12(filterData[0]);
writeSPI2(filterData[1]);
writeSPI2(filterData[2]);
writeSPI2(filterData[3]);
disableSPI2();

setFilterLatchAsOutput();
setFilterDataAsOutput();
setFilterCIkAsOutput();
setPinLow(FILTER_LATCH);
setPinLow(FILTER_CLK);
prgmDelay();
setPinHigh(FILTER_LATCH);
prgmDelay();
setPinHigh(FILTER_CLK);
prgmDelay();
setPinLow(FILTER_DATA);
setPinLow(FILTER_LATCH);
prgmDelay();
setPinLow(FILTER_CLK);
prgmDelay();

}

/
* Function: prgmDelay
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* Parameters: void

* Return: void
* Description: A simplistic delay used to ensure timing requirements are met during
* the filter programming process.

void prgmDelay(void)
{

Nop(); Nop(); Nop(); Nop(); Nop(); Nop(); Nop(); Nop(); Nop(); Nop(); Nop(); Nop();
) Nop(); Nop(); Nop(); Nop(); Nop(); Nop(); Nop(); Nop(); Nop(); Nop(); Nop(); Nop();

/

* Function: updateAnalogTuning

* Parameters: void

* Return: void

* Description: Programs the DACS with the appropriate current Analog F-Tune
* and Q-Tune values.

void updateAnalogTuning(void)

{
programFrontEndD AC(load InputRegB(getFrontEndAnalogFTune()));
programFrontEndD AC(load InputRegA(getFrontEndAnalogQTune()));
programFrontEndD AC(loadDACRegsABUpdateOutputsAB());
programBackEndDAC(load InputRegB(getBackEndAnalogQTune()));
programBackEndDAC(load InputRegA (getBackEndAnalogFTune()));
programBackEndDAC(loadDACRegsABUpdateOutputsAB());

}

/

* Function: algorithm

* Parameters: void

* Return: void

* Description: Implementation of the Two-Pole Tuning Algorithm
*

using only Digital Controls.

void algorithm(void)

{
turnRFSwitchOff();
enableFrontEnd(); // Enable Front-End
disableFrontEndAD(); // Disble Front-End Amplitude Detector
disableFrontEndFD(); // Disable Front-End Frequency Divider
enableBackEnd(); // Enable Back-End
disableBackEndAD(); // Disable Back-End Amplitude Detector
disableBackEndFD(); // Disable Back-End Frequency Divider

coarseFrontEndFTune();
coarseBackEndFTune();

setCouplingUpper(CouplingUpper);
setCouplingLower(CouplingLower);
setCouplingUFLB(CouplingUFLB);
setCouplingLFUB(CouplingLFUB);
programFilter();

turnRFSwitchOn();  // Algorithm is Complete, so Turn on RF Switch
if (_PrintFilterSettings )

printFilterOptions();
_PrintFilterSettings = FALSE;

}
}
/
* Function: coarseFrontEndFTune
* Parameters: void
* Return: void
* Description: Tunes the Front-End to the desired center frequency within a frequency
* tolerance. Once within the frequency tolerance the frequency controls
* are adjusted and a comparison is done on which setting brought the pole
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* closer to the desired center frequency.
* Modified: This course tune function now calls the fine tune function and sets and
* initializes additional variables for fine tuning.

void coarseFrontEndFTune(void)
{
int itt = 0;
int prevFrontEndFCnt = 0;
int prevFrontEndFCntDiff = 0, curFrontEndFCntDiff = 0;

/I Set frequency setting to controls mid-point

setFrontEndDigitalFTune((FTUNE_DIG_MIN + FTUNE_DIG_MAX) >> 1);
setFrontEndAnalogFTune((ANALOG_MIN + ANALOG_MAX) >> 1);
updateAnalogTuning();

FrontEndFCnt = getFrontEndFrequency();

while ( (FrontEndFCnt < (CenterFreq - FreqTol)) || (FrontEndFCnt > (CenterFreq + FreqTol)) )

if ( FrontEndFCnt < (CenterFreq - FreqTol) )
decFrontEndDigital FTune();
else if ( FrontEndFCnt > (CenterFreq + FreqTol) )
incFrontEndDigitalFTune();

FrontEndFCnt = getFrontEndFrequency();
if (++itt > MAX_FREQTUNE_ITTS)

tXStrUART1("Max Front-End Frequency Tune ltterations Exceeded...\r\n");
return;
}
}

/I Frequency within Tolerance now find Closest Setting
prevFrontEndFCnt = FrontEndFCnt;
prevFrontEndFCntDiff = absDiff(CenterFreq,prevFrontEndFCnt);
if ( FrontEndFCnt < CenterFreq )
{
decFrontEndDigitalFTune();
FrontEndFCnt = getFrontEndFrequency();
curFrontEndFCntDiff = absDiff(CenterFreq,FrontEndFCnt);
if ( curFrontEndFCntDiff > prevFrontEndFCntDiff )

incFrontEndDigital FTune();
programFilter();

}

else if ( FrontEndFCnt > CenterFreq )

{
incFrontEndDigital FTune();
FrontEndFCnt = getFrontEndFrequency();
curFrontEndFCntDiff = absDiff(CenterFreq,FrontEndFCnt);
if ( curFrontEndFCntDiff > prevFrontEnd FCntDiff )

decFrontEndDigitalFTune();
programFilter();

FrontEndFCnt = getFrontEndFrequency();
fineFrontEndFTune();
FrontEndFCnt = getFrontEndFrequency();

#if _DEBUG_ALGORITHM_==
txStrUART 1("----Freq Tune Essentially Done---\r\n");
printFrontEndDigitalFTune();
printFrontEndDigitalQTune();

#endif

/I Back-Off Q-Enhancement by Set Amount
setFrontEndDigitalQTune (getFrontEndDigitalQTune() - FrontEndQBackOff);
#if _DEBUG_ALGORITHM_ ==

txStrUART1("----Do Q Back-Off for BW---\r\n");

111



printFrontEndDigitalQTune();
#endif

I/l Ensure Filter is Not Oscillating After Q-Enhancement Back-Off (Insufficient Back-Off)
enableFrontEndAD();

programFilter();

FrontEndAD = readFrontEndAD();

while ( FrontEndAD < (FrontEndNonOsc - FrontEndADT hreshl) )

#if DEBUG_ALGORITHM_ ==
txStrUART1("Still Oscillating after Back-Off...\n\n");
printFrontEndDigitalQTune();
printFrontEndAD();

#endif

decFrontEndDigitalQTune();
programFilter();
FrontEndAD = readFrontEndAD();

#if _DEBUG_ALGORITHM_==
printFrontEndDigitalQTune();
printFrontEndAD();

#endif

}
disableFrontEndAD();
/I Counter the Frequency Shift Caused by Q-Enhancement Back-Off by Increasing Digital F-Tuning

setFrontEndDigitalFTune(getFrontEndDigitalFTune() + FrontEndFOffset);
programFilter();

}
/
* Function: fineFrontEndFTune
* Parameters: void
* Return: void
* Description: Implements a fine tuning algorithm to linearly find the closest
* achievable frequency using analog tuning on the front end
/
void fineFrontEndFTune(void)
{
int itt = 0;
int count = 0;

FrontEndFCnt = getFrontEndFrequency();
int prevFrontEndFCnt = FrontEndFCnt;
if(FrontEndFCnt > CenterFreq)
{
/I Need to set at mid point for this fine tuning approach to work
/I setFrontEndAnalogFTune(ANALOG_MIN);

I/ updateAnalogTuning(); /lchange to update only back or front?
while(FrontEndFCnt != CenterFreq)
{

setFrontEndAnalogFTune(getFrontEndAnalogFTune()+1);
updateAnalogTuning();
FrontEndFCnt = getFrontEndFrequency();
if (++itt > MAX_FINEFREQTUNE_ITTS)
{
txStrUART1("Max Front-End Frequency Fine Tune Itterations Exceeded...\r\n");
return;
}

}

prevFrontEndFCnt = FrontEndFCnt;

while(FrontEndFCnt == CenterFreq)

{
count++;
setFrontEndAnalogFTune(getFrontEndAnalogFTune()+1);
updateAnalogTuning();
FrontEndFCnt = getFrontEndFrequency();

setFrontEndAnalogFTune(prevFrontEndFCnt+count/2);
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else if(FrontEndFCnt < CenterFreq)
{

/I Need to set at mid point for this fine tunning approach to work
/I setFrontEndAnalogFTune(ANALOG_MIN);

/Il updateAnalogTuning(); /lchange to update only back or front?
while(FrontEndFCnt != CenterFreq)
{

setFrontEndAnalogFTune(getFrontEndAnalogFTune()-1);
updateAnalogTuning();
FrontEndFCnt = getFrontEndFrequency();

}

prevFrontEndFCnt = FrontEndFCnt;

while(FrontEndFCnt == CenterFreq)

{
count++;
setFrontEndAnalogFTune(getFrontEndAnalogFTune()-1);
updateAnalogTuning();
FrontEndFCnt = getFrontEndFrequency();

}
setFrontEndAnalogFTune(prevFrontEndFCnt-count/2);
FrontEndFCnt = getFrontEndFrequency();

}
else if(FrontEndFCnt == CenterFreq)

{
while(FrontEndFCnt == CenterFreq)
{
setFrontEndAnalogFTune(getFrontEndAnalogFTune()+2);
updateAnalogTuning();
FrontEndFCnt = getFrontEndFrequency();
}
setFrontEndAnalogFTune(getFrontEndAnalogFTune()-4);
while(FrontEndFCnt == CenterFreq)
{
count++;
setFrontEndAnalogFTune(getFrontEndAnalogFTune()-1);
updateAnalogTuning();
FrontEndFCnt = getFrontEndFrequency();
}
setFrontEndAnalogFTune(prevFrontEndFCnt-count/2);
}
}
/
* Function: fineFrontEndQTune
* Parameters: void
* Return: void
* Description: Uses analog tuning to raise Q tuning as high as possible without
* oscillation

void fineFrontEndQTune(void)

{
setFrontEndAnalogQTune(ANALOG_MIN);
while ( FrontEndAD >= (FrontEndNonOsc-FrontEndADT hreshl) )

{
setFrontEndAnalogQTune(getFrontEndAnalogQTune()+FrontEndADThresh2);
updateAnalogTuning();
FrontEndAD = readFrontEndAD();
if (getFrontEndAnalogQTune()==ANALOG_MAX) break;
}
}
/
* Function: coarseBackEndFTune
* Parameters: void
* Return: void
* Description: Tunes the Back-End to the desired center frequency within a frequency
* tolerance. Once within the frequency tolerance the frequency controls
* are adjusted and a comparison is done on which setting brought the pole
* closer to the desired center frequency.
* Modified: This course tune function now calls the fine tune function and sets and
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* initializes the additional variables for fine tuning.

void coarseBackEndFTune(void)
{
int itt = 0;
int prevBackEndFCnt = 0;
int prevBackEndFCntDiff = 0, curBackEndFCntDiff = 0;

/I Set frequency setting to controls mid-point
setBackEndDigitalFTune((FTUNE_DIG_MIN + FTUNE_DIG_MAX) >> 1);
setBackEndAnalogFTune((ANALOG_MIN + ANALOG_MAX) >> 1);
updateAnalogTuning();
BackEndFCnt = getBackEndFrequency();

while ( (BackEndFCnt < (CenterFreq - FreqTol)) || (BackEndFCnt > (CenterFreq + FreqTol)) )

if ( BackEndFCnt < (CenterFreq - FreqTol) )
decBackEndDigitalFTune();

else if ( BackEndFCnt > (CenterFreq + FreqTol) )
incBackEndDigitalFTune();

BackEndFCnt = getBackEndFrequency();
if (++itt > MAX_FREQTUNE_ITTS)

IXStrUART1("Max Back-End Frequency Tune ltterations Exceeded...\r\n");
return;
}
}

/I Frequency within Tolerance now find Closest Setting
prevBackEndFCnt = BackEndFCnt;
prevBackEndFCntDiff = absDiff(CenterFreq,prevBackEndFCnt);
if ( BackEndFCnt < CenterFreq )
{
decBackEndDigitalFTune();
BackEndFCnt = getBackEndFrequency();
curBackEndFCntDiff = absDiff(CenterFreq,BackEndFCnt);
if ( curBackEndFCntDiff > prevBackEndFCntDiff )
{
incBackEndDigitalFTune();
programFilter();

}

else if ( BackEndFCnt > CenterFreq )

{
incBackEndDigitalFTune();
BackEndFCnt = getBackEndFrequency();
curBackEndFCntDiff = absDiff(CenterFreq,BackEndFCnt);
if ( curBackEndFCntDiff > prevBackEndFCntDiff )

decBackEndDigitalFTune();
programFilter();

BackEndFCnt = getBackEndFrequency();
fineBackEndFTune();
BackEndFCnt = getBackEndFrequency();

#if _DEBUG_ALGORITHM_ ==
txStrUART1("----Freq Tune Essentially Done---\r\n");
printBackEndDigitalFTune();
printBackEndDigitalQTune();

#endif

/I Back-Off Q-Enhancement by Set Amount
setBackEndDigital QTune(getBackEndDigitalQTune() - BackEndQBackOff);
#if _DEBUG_ALGORITHM_==1
tXStrUART1("----Do Q Back-Off for BW---\r\n");
printBackEndDigitalQTune();
#endif
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Il Ensure Filter is Not Oscillating After Q-Enhancement Back-Off (Insufficient Back-Off)
enableBackEndAD();
programFilter();
BackEndAD = readBackEndAD();
while ( BackEndAD < (BackEndNonOsc - BackEndADT hreshl) )
{
#if _DEBUG_ALGORITHM_ ==
tXStrUART1("'Still Oscillating after Back-Off...\r\n");
printBackEndDigitalQTune();
printBackEndAD();
#endif

decBackEndDigitalQTune();
programFilter();
BackEndAD = readBackEndAD();

#if _DEBUG_ALGORITHM_ ==
printBackEndDigitalQTune();
printBackEndAD();

#endif

}
disableBackEndAD();

/I Counter the Frequency Shift Caused by Q-Enhancement Back-Off by Increasing Digital F-Tuning
setBackEndDigitalFTune(getBackEndDigitalFTune() + BackEndFOffset);
programFilter();

}

/

* Function: fineBackEndFTune

* Parameters: void

* Return: void

* Description: Implements a fine tuning algorithm to linearly find the closest

* achievable frequency using analog tuning on the front end

void fineBackEndFTune(void)
{
intitt=0;
int count = 0;
BackEndFCnt = getBackEndFrequency();
int prevBackEndFCnt = BackEndFCnt;
if(BackEndFCnt > CenterFreq)
{
/I Need to set at mid point for this fine tuning approach to work
/I setBackEndAnalogFTune(ANALOG_MIN);

I/ updateAnalogTuning(); /lchange to update only back or front?
while(BackEndFCnt != CenterFreq)
{

setBackEndAnalogFTune(getBackEndAnalogFTune()+1);
updateAnalogTuning();
BackEndFCnt = getBackEndFrequency();

if (++itt > MAX_FINEFREQTUNE_ITTS)

txStrUART1("Max Back-End Frequency Fine Tune ltterations Exceeded...\r\n");
return;

}

}
prevBackEndFCnt = BackEndFCnt;
while(BackEndFCnt == CenterFreq)

{

count++;
setBackEndAnalogFTune(getBackEndAnalogFTune()+1);
updateAnalogTuning();
BackEndFCnt = getBackEndFrequency();

}

setBackEndAnalogFTune(prevBackEndFCnt+count/2);

}
else if(BackEndFCnt < CenterFreq)
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/I Need to set at mid point for this fine tunning approach to work
I setBackEndAnalogFTune(ANALOG_MIN);

/I updateAnalogTuning(); /lchange to update only back or Back?
while(BackEndFCnt != CenterFreq)
{

setBackEndAnalogFTune(getBackEndAnalogFTune()-1);
updateAnalogTuning();
BackEndFCnt = getBackEndFrequency();

}

prevBackEndFCnt = BackEndFCnt;

while(BackEndFCnt == CenterFreq)

{
count++;
setBackEndAnalogFTune(getBackEndAnalogFTune()-1);
updateAnalogTuning();
BackEndFCnt = getBackEndFrequency();

}
setBackEndAnalogFTune(prevBackEndFCnt-count/2);
BackEndFCnt = getBackEndFrequency();

}
else if(BackEndFCnt == CenterFreq)
{
while(BackEndFCnt == CenterFreq)
{
setBackEndAnalogFTune(getBackEndAnalogFTune()+2);
updateAnalogTuning();
BackEndFCnt = getBackEndFrequency();
}
setBackEndAnalogFTune(getBackEndAnalogFTune()-4);
while(BackEndFCnt == CenterFreq)
{
count++;
setBackEndAnalogFTune(getBackEndAnalogFTune()-1);
updateAnalogTuning();
BackEndFCnt = getBackEndFrequency();

}
setBackEndAnalogFTune(prevBackEndFCnt-count/2);

* Function: fineBackEndQTune

* Parameters: void

* Return: void

* Description: Uses analog tuning to raise Q tuning as high as possible without
* oscillation

void fineBackEndQTune(void)

{
setBackEndAnalogQTune(ANALOG_MIN);
while ( BackEndAD >= (BackEndNonOsc - BackEndADT hreshl) )

{
setBackEndAnalogQTune(getBackEndAnalogQTune()+BackEndADT hresh2);
updateAnalogTuning();
BackEndAD = readBackEndAD();
if (getBackEndAnalogQTune()==ANALOG_MAX) break;
}

}

/

* Function: getFrontEndFrequency

* Parameters: void

* Return: int - Current Front-End Frequency Count

* Description: Configures the filter so a reliable Front-End frequency count can

* be returned.

int getFrontEndFrequency(void)
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int fCnt;
PrevBackEndDigitalQTune = getBackEndDigitalQTune();

disableBackEndAD(); // Disable Back-End Amplitude Detector
disableBackEndFD(); // Disable Back-End Frequency Divider
setBackEndDigitalQTune(QTUNE_DIG_MIN); // Degrade Back-End Q-Enhancement

enableFrontEndFD(); // Enable Front-End Frequency Divider
findFrontEndCriticalOsc();
fCnt = readFrontEndFD();
disableFrontEndFD(); // Disable Front-End Frequency Divider

/I Remove Excess Q-Enhancement Needed for Dependable Frequency Divider Reading
setFrontEndDigitalQTune (getFrontEndDigitalQTune() - FrontEndQOffset);

/I Restore Previous Back-End Digital Q-Tune Value
setBackEndDigital QTune(PrevBackEndDigitalQTune);
programFilter();  // Apply Filter Settings

return fCnt;

}

/

* Function: getBackEndFrequency

* Parameters: void

* Return: int - Current Back-End Frequency Count

* Description: Configures the filter so a reliable Back-End frequency count can
*

be returned.

nt getBackEndFrequency(void)

{

int fCnt;
PrevFrontEndDigitalQTune = getFrontEndDigitalQTune();

disableFrontEndAD(); // Disable Front-End Amplitude Detector
disableFrontEndFD(); // Disable Front-End Frequency Divider
setFrontEndDigitalQTune(QTUNE_DIG_MIN); // Degrade Front-End Q-Enhancement

enableBackEndFD(); // Enable Back-End Frequency Divider

findBackEndCriticalOsc();
fCnt = readBackEndFD();
disableBackEndFD(); // Disable Back-End Frequency Divider

/I Remove Excess Q-Enhancement Needed for Dependable Frequency Divider Reading
setBackEndDigitalQTune(getBackEndDigitalQTune() - BackEndQOffset);

/I Restore Previous Front-End Digital Q-Tune Value
setFrontEndDigitalQTune(PrevFrontEndDigitalQTune);

programFilter();  // Apply Filter Settings

return fCnt;

}

/

* Function: findFrontEndCriticalOsc

* Parameters: void

* Return: void

* Description: Sets Front-End Q-Enhancement to 0 and reads the Amplitude Detector
* to determine the Non-Oscillation reading. It then increases

* Q-Enhancement until the Amplitude Detector reading drops below

* the Non-Oscillation reading minus a set threshold value indicating that
* the Front-End is oscillating. To ensure that a valid Frequency Divider
* reading is obtainable, the Q-Enhancement is increased by a set offset.
* Modified: This fuction now includes fine Q tuning

void findFrontEndCriticalOsc(void)
{

int prevFrontEndDigitalQTune = -1;
FrontEndNonOsc = ANALOG_MIN;
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FrontEndAD = ANALOG_MAX;

setFrontEndAnalogQTune(ANALOG_MIN);
updateAnalogTuning();

setFrontEndDigitalQTune (QTUNE_DIG_MIN); // Set Front-End Q-Enhancment to Minimum
enableFrontEndAD(); // Enable Front-End Amplitude Detector

programFilter(); I/l Apply Filter Settings

FrontEndNonOsc = readFrontEndAD();  // Store Front-End Amplitude Detector Reading

#if _DEBUG_CRITICALOSC_ ==
printFrontEndNonOsc();
printFrontEndDigitalQTune();

#endif

/I Increase Q-Enhancement Until Front-End is Oscillating
while ( FrontEndAD >= (FrontEndNonOsc - FrontEndADT hreshl) )

if ( prevFrontEndDigitalQTune == getFrontEndDigitalQTune() )

IXStrUART1("---> Could Not Obtain Front-End Critical Oscillation <---\r\n");
return;

}
prevFrontEndDigitalQTune = getFrontEndDigitalQTune();

incFrontEndDigitalQTune(); Il Increment Front-End Digital Q-Tune
programFilter(); /I Apply Filter Settings
FrontEndAD = readFrontEndAD();  // Store Front-End Amplitude Detector Reading

#if _DEBUG_CRITICALOSC_ ==
printFrontEndAD();
printFrontEndDigitalQTune();

#endif

decFrontEndDigital QTune();

decFrontEndDigital QTune();

programFilter(); /I Apply Filter Settings

prevFrontEndDigitalQTune = getFrontEndDigitalQTune();

FrontEndAD = readFrontEndAD();  // Store Front-End Amplitude Detector Reading

fineFrontEndQTune();
disableFrontEndAD(); /I Disable Front-End Amplitude Detector

/1 Ensure Oscillation for Dependable Frequency Divider Readings
setFrontEndDigitalQTune (getFrontEndDigitalQTune() + FrontEndQOffset);

programFilter(); /I Apply Filter Settings
}
/
* Function: findBackEndCriticalOsc
* Parameters: void
* Return: void
* Description: Sets Back-End Q-Enhancement to 0 and reads the Amplitude Detector
* to determine the Non-Oscillation reading. It then increases
* Q-Enhancement until the Amplitude Detector reading drops below
* the Non-Oscillation reading minus a set threshold value indicating that
* the Back-End is oscillating. To ensure that a valid Frequency Divider
*

reading is obtainable, the Q-Enhancement is increased by a set offset.
* Modified: This function now includes fine Q tuning

void findBackEndCriticalOsc(void)
{

int prevBackEndDigitalQTune = -1;
BackEndNonOsc = ANALOG_MIN;
BackEndAD = ANALOG_MAX;

setBackEndAnalogQTune(ANALOG_MIN);
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updateAnalogTuning();

setBackEndDigital QTune(QTUNE_DIG_MIN);
enableBackEndAD();

programFilter();

BackEndNonOsc = readBackEndAD();

#if _DEBUG_CRITICALOSC_ ==
printBackEndNonOsc();
printBackEndDigitalQTune();

#endif

while ( BackEndAD >= (BackEndNonOsc - BackEndADT hreshl) )
if ( prevBackEndDigitalQTune == getBackEndDigitalQTune() )
{

XStrUART1("---> Could Not Obtain Back-End Critical Oscillation <---\r\n");
return;

}

prevBackEndDigitalQTune = getBackEndDigitalQTune();
incBackEndDigitalQTune();

programFilter();

BackEndAD = readBackEndAD();

#if _DEBUG_CRITICALOSC_ ==
printBackEndAD();
printBackEndDigitalQTune();

#endif

}

decBackEndDigitalQTune();

decBackEndDigitalQTune();

programFilter(); Il Apply Filter Settings

prevBackEndDigitalQTune = getBackEndDigitalQTune();

BackEndAD = readBackEndAD();  // Store Front-End Amplitude Detector Reading

fineBackEndQTune();
disableBackEndAD();

/I Ensure Oscillation for Dependable Frequency Divider Readings

setBackEndDigitalQTune(getBackEndDigitalQTune() + BackEndQOffset);
programFilter();

}
/* End of File */

* Filename: gefilter.h

* Date: June 2010

* Compiler: C30

* Author: Joel Schonberger

* Company: Kansas State University

* Department: Electrical & Computer Engineering

* Research: 500 MHz Two-Pole Q-Enhanced Filter Tuning Algorithm
* Discription: This file houses the preprocessor definitions and function prototypes
* needed by the QE Filter Tuning Algorithm.

*

* Updated: April 2012

* Author: Chelsi Kovala

* Changes: Modified to include function defintions:

void fineFrontEndFTune(void)
void fineBackEndFTune(void)
void fineFrontEndQTune(void)
void fineBackEndQTune(void)
printFrontEndAnalogQTune()
printFrontEndAnalogFTune()
printBackEndAnalogQTune()
printBackEndAnalogFTune()
Modified to include variables:
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MAX_FINEFREQTUNE_ITTS

#ifndef QEFILTER_H
#define QEFILTER_H

/* Preprocessor Definitions & Macros */
#define FTUNE_DIG_MIN

#define FTUNE_DIG_MAX

#define QTUNE_DIG_MIN

#define QTUNE_DIG_MAX

#define COUPLING_MIN

#define COUPLING_MAX

#define ANALOG_MIN

#define ANALOG_MAX

#define MAX_FREQTUNE_ITTS
#define MAX_CRITOSC_ITTS
#define MAX_FINEFREQTUNE_ITTS

#define isFrontEndEnabled()

#define enableFrontEnd()

#define disableFrontEnd()

#define isFrontEnd ADEnabled()

#define enableFrontEndAD()

#define disableFrontEndAD()

#define isFrontEndFDEnabled()

#define enableFrontEndFD()

#define disableFrontEndFD()

#define getFrontEndDigitalFTune()

#define setFrontEndDigitalFTune(val)
FTUNE_DIG_MIN ? FTUNE_DIG_MIN : (val)))

#define incFrontEndDigitalFTune()

#define decFrontEndDigitalFTune()

#define getFrontEndDigitalQTune()

#define setFrontEndDigitalQTune(val)
QTUNE_DIG_MIN ? QTUNE_DIG_MIN : (val)))

#define incFrontEndDigitalQTune()

#define decFrontEndDigitalQTune()

#define isBackEndEnabled()

#define enableBackEnd()

#define disableBackEnd()

#define isBackEndADEnabled()

#define enableBackEndAD()

#define disableBackEndAD()

#define isBackEndFDEnabled()

#define enableBackEndFD()

#define disableBackEndFD()

#define getBackEndDigitalFTune()

#define setBackEndDigitalFTune(val)
FTUNE_DIG_MIN ? FTUNE_DIG_MIN : (val)))

#define incBackEndDigitalFTune()

#define decBackEndDigitalFTune()

#define getBackEndDigital QTune()

#define setBackEndDigitalQTune(val)
QTUNE_DIG_MIN ? QTUNE_DIG_MIN : (val)))

#define incBackEndDigital QTune()

#define decBackEndDigitalQTune()

#define getCouplingUpper()

#define setCouplingUpper(val)
COUPLING_MIN ? COUPLING_MIN : (val)))

#define getCouplingLower()

#define setCouplingLower(val)
COUPLING_MIN ? COUPLING_MIN : (val)))

#define getCouplingUFLB()

#define setCouplingUFLB(val)
COUPLING_MIN ? COUPLING_MIN : (val)))

#define getCouplingLFUB()

#define setCouplingLFUB(val)
COUPLING_MIN ? COUPLING_MIN : (val)))

#define getFrontEndAnalogFTune()

165 // Limit the Frequency Range for Reliable Frequency Divider Ouputs
255

0

63

0

31

0
1023
100

64
1023/2

1 Joel chose this value

/I = (1023/2)/inc or dec amount fine tuning is using - inc or dec

('FENDCON.en? 1:0)

FENDCON.en =0 // Active-Low Enable
FENDCON.en =1

('FENDCON.ADen ? 1 : 0)
FENDCON.ADen =0 // Active-Low Enable
FENDCON.ADen =1
(\CAPCONL.FDFen?1:0)
CAPCONL1.FDFen =0 // Active-Low Enable
CAPCON1.FDFen=1

FENDCON.fTune

FENDCON.fTune = ((val) > FTUNE_DIG_MAX ? FTUNE_DIG_MAX : ((val) <

setFrontEndDigital FTune(FENDCON.fTune + 1)

setFrontEndDigital FTune(FENDCON.fTune - 1)

FENDCON.qTune

FENDCON.qTune = ((val) > QTUNE_DIG_MAX ? QTUNE_DIG_MAX : ((val) <

setFrontEndDigitalQTune(FENDCON.qTune + 1)
setFrontEndDigitalQTune(FENDCON.qTune - 1)
('BENDCON.en?1:0)

BENDCON.en = 0 // Active-Low Enable
BENDCON.en=1

('BENDCON.ADen?1:0)

BENDCON.ADen =0 // Active-Low Enable
BENDCON.ADen=1

('CAPCON2.FDBen ? 1: 0)

CAPCON2.FDBen = 0 // Active-Low Enable
CAPCON2.FDBen=1

BENDCON.fTune

BENDCON.fTune = ((val) > FTUNE_DIG_MAX ? FTUNE_DIG_MAX : ((val) <

setBackEndDigitalFTune(BENDCON.fTune + 1)
setBackEndDigitalFTune(BENDCON.fTune - 1)

BENDCON.qTune

BENDCON.qTune = ((val) > QTUNE_DIG_MAX ? QTUNE_DIG_MAX : ((val) <

setBackEndDigitalQTune(BENDCON.qTune + 1)
setBackEndDigitalQTune(BENDCON.qTune - 1)

CAPCONL1.upper

CAPCONT1.upper = ((val) > COUPLING_MAX ? COUPLING_MAX : ((val) <

CAPCONL1.lower
CAPCONL1.lower = ((val) > COUPLING_MAX ? COUPLING_MAX : ((val) <

CAPCON2.UFLB
CAPCON2.UFLB = ((val) > COUPLING_MAX ? COUPLING_MAX : ((val) <

CAPCON2.LFUB
CAPCON2.LFUB = ((val) > COUPLING_MAX ? COUPLING_MAX : ((val) <

ANALOG.FANAF
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#define setFrontEndAnalogFTune(val)
ANALOG_MIN ? ANALOG_MIN : (val)))
#define getFrontEndAnalogQTune()
#define setFrontEndAnalogQTune(val)
ANALOG_MIN ? ANALOG_MIN : (val)))
#define getBackEndAnalogFTune()
#define setBackEndAnalogFTune(val)
ANALOG_MIN ? ANALOG_MIN : (val)))
#define getBackEndAnalogQTune()
#define setBackEndAnalogQTune(val)
ANALOG_MIN ? ANALOG_MIN : (val)))
#define turnRFSwitchOn()
#define turnRFSwitchOff()
#define isSRFSwitchOn()
#define printFrontEndStatus()
End Disabled\r\n"))
#define printFrontEndAD Status()
txStrUART 1("Front-End AD Disabled\r\n™))
#define printFrontEndFD Status()
txStrUART 1("Front-End FD Disabled\r\n™))
#define printFrontEndAD ()
#define printFrontEndNonOsc()
#define printFrontEndFCnt()
#define printFrontEndDigitalQTune()
#define printFrontEndAnalogQTune()
#define printFrontEndDigitalFTune()
#define printFrontEndAnalogFTune()
#define printBackEndStatus()
Disabled\r\n"))
#define printBackEndADStatus()
txStrUART1("Back-End AD Disabled\r\n"))
#define printBackEndFDStatus()
txStrUART 1("Back-End FD Disabled\r\n"))
#define printBackEndAD()
#define printBackEndNonOsc()
#define printBackEndFCnt()
#define printBackEndDigitalQTune()
#define printBackEndAnalogQTune()
#define printBackEndDigital FTune()
#define printBackEndAnalogFTune()
#define printCouplingUpper()
#define printCouplingLower()
#define printCouplingUFLB()
#define printCouplingLFUB()
#define printRFSwitchStatus()
Off\r\n"))
#define printCenterFreq()
#define printFreqTol()
#define printFrontEndADT hresh1()
#define printFrontEndADT hresh2()
#define printFrontEndQOffset()
#define printFrontEndQBackOff()
#define printFrontEndFOffset()
#define printBackEndADThresh1()
#define printBackEndADThresh2()
#define printBackEndQOffset()
#define printBackEndQBackOff()
#define printBackEndFOffset()

/* Function Prototypes */

void initFilter();

void printFilterOptions(void);
void printAlgorithmOptions(void);
void updateFilterData(void);

void programFilter(void);

void prgmDelay(void);

void updateAnalogTuning(void);
void algorithm(void);

void coarseFrontEndFTune(void);
void coarseBackEndFTune(void);

ANALOG.FANAF = ((val) > ANALOG_MAX ? ANALOG_MAX : ((val) <

ANALOG.FANAQ
ANALOG.FANAQ = ((val) > ANALOG_MAX ? ANALOG_MAX : ((val) <

ANALOG.BANAF
ANALOG.BANAF = ((val) > ANALOG_MAX ? ANALOG_MAX : ((val) <

ANALOG.BANAQ
ANALOG.BANAQ = ((val) > ANALOG_MAX ? ANALOG_MAX : ((val) <

setPinLow(RFSW); DEBUG.RFOn =0

setPinHigh(RFSW); DEBUG.RFOn =1

IDEBUG.RFOn

(isFrontEndEnabled() ? txStrUART1("Front-End Enabled\r\n") : txStrUART1("Front-

(isFrontEndADEnabled() ? txStrUART1("Front-End AD Enabled\r\n") :
(isFrontEndFDEnabled() ? txStrUART1("Front-End FD Enabled\n\n") :

strPopulate16Bit(strFrontEndAD ,FrontEnd AD,'#',4)
strPopulate16Bit(strFrontEndNonOsc,FrontEndNonOsc,#',4)
strPopulate16Bit(strFrontEndFCnt,FrontEndFCnt,'#' ,4)
strPopulate16Bit(strFrontEndDigitalQTune,getFrontEndDigitalQTune(),'#',2)
strPopulate16Bit(strFrontEndAnalogQTune,getFrontEndAnalogQTune(),'# ,4)
strPopulate16Bit(strFrontEndDigitalFTune,getFrontEndDigitalFTune(),#',3)
strPopulate16Bit(strFrontEndAnalogFTune,getFrontEndAnalogFTune(),'#',4)
(isBackEndEnabled() ? txStrUART1("Back-End Enabled\r\n") : txStrUART 1("Back-End

(isBackEndADEnabled() ? txStrUART1("Back-End AD Enabled\n\n") :
(isBackEndFDEnabled() ? txStrUART1("Back-End FD Enabled\r\n") :

strPopulate16Bit(strBackEndAD,BackEndAD,#'4)
strPopulate16Bit(strBackEndNonOsc,BackEndNonOsc, #,4)
strPopulate16Bit(strBackEndFCnt,BackEndFCnt,'#' ,4)
strPopulate16Bit(strBackEndDigitalQTune,getBackEndDigitalQTune(),'#,2)
strPopulate16Bit(strBackEndAnalogQTune,getBackEndAnalogQTune(),#',4)
strPopulate16Bit(strBackEndDigitalFTune,getBackEndDigitalFTune(), #',3)
strPopulate16Bit(strBackEndAnalogFTune,getBackEndAnalogFTune(), #,4)
strPopulate16Bit(strCouplingUpper,CouplingUpper,'#',2)
strPopulate16Bit(strCouplingLower,CouplingLower,'#',2)
strPopulate16Bit(strCouplingUFLB,CouplingUFLB,'#',2)
strPopulate16Bit(strCouplingLFUB,CouplingLFUB,'#',2)

(isRFSwitchOn() ? txStrUART1("RF Switch On\r\n") : txStrUART1("RF Switch

strPopulate16Bit(strCenterFreq,CenterFreq,'#,4)
strPopulate16Bit(strFreqTol,FreqTol,#',3)
strPopulate16Bit(strFrontEndADThreshl,FrontEndADT hreshl,'#,3)
strPopulate16Bit(strFrontEndAD T hresh2, FrontEndADT hresh2,'#',3)
strPopulate16Bit(strFrontEndQOffset,FrontEndQOffset, #',2)
strPopulate16Bit(strFrontEndQBackOff,FrontEndQBackOff,'#',2)
strPopulate16Bit(strFrontEndFOffset, FrontEnd FOffset,'#,2)
strPopulate16Bit(strBackEndADThreshl,BackEndADT hreshl,'#,3)
strPopulate16Bit(strBackEndADThresh2,BackEndADT hresh2,'#',3)
strPopulate16Bit(strBackEndQOffset,BackEndQOffset, #',2)
strPopulate16Bit(strBackEndQ BackOff,BackEndQ BackOff,'#',2)
strPopulate16Bit(strBackEndFOffset,BackEndFOffset, #',2)
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int getFrontEndFrequency(void);
int getBackEndFrequency(void);

void findFrontEndCriticalOsc(void);
void findBackEndCriticalOsc(void);

void fineFrontEndFTune(void);
void fineBackEndFTune(void);
void fineFrontEndQTune(void);
void fineBackEndQTune(void);
#endif

/* End of File */

Appendix C - National Instruments LabVIEW Code

43 xcwr Spur Scan.vi

ug} @[n

File Edit View Project Operate Tools Window Help

Signal Generator Settings

Amplitude

v

] | I | I |

100 200 300 400 500 GO0
Index

Original Noise Average

-574528

-100-1
0

Loop Iteration
STOP 14

Enum

| Choose Moisy Frequency

Number of Data Range for Sample Rate  Threshhold for
FFT of Samples Averaae (Hz) Max: 200kHz  Noise Average
i1024 214000 ~1120000 - B
2 2 A & Threshold offset | &
VISA session 2 Amplitude (0.0) 2 Unit :dBm) 2 for Max Spur
% GPIB0:19:INSTR = J-2000 JdBm 0 L,
Frequency Frequency Stop Number of bins
Increment (MHz) _ Dffset (MHz) Frequency (MHz) for Max Threshold
001 i 0o “1l1000 10
Original FFT ~ Voltage 0 (FFT - (Peak)) [ER¥d | Current FFT Voltage 0 (FFT - (Peak)) NG

_65 -
70
75—
_80 -
-85
-a0 -
-05-
-100- 0 7 0 0 0 i
0 100 200 300 400 500 600
Index
Current Noise Average
-77.1693

i

Amplitude

Updated FFT  Voltage 0 (FFT - (Peak)) [N
-A5 -
-70-|
w 5]
3
2 -80-
a
£ 55
-90 - ’
-05-
B T S S S S B
0 100 200 300 400 500 600
Index
Updated Noise Average

-17.2347

status

errorin (no error) 2

code

4

source

Amplitude

Updated FFT

Difference

Amplitude

10+

0

-10-

_20-

-30-

40

0

error out

status code
& 0

source

] | I | | |
100 200 300 400 500 600
Index

Voltage 0 (FFT - (Peak)) [ENG

a

| I I ] ] |
100 200 300 400 500 600
Index

Figure C.1 — Screen Shot of NI Code ‘XCVR_Spur_Scan’ Running

122

m



Enum

[# Choose Moisy Frequency |

= FFT Sample
hd Sample
hd State
w|——— Current

Original

Mumber of bins for Max

Thresheld offset for MBE B

Birdie
Freauency —

Threshhol

Spur
Frequency —

# of FFT bins for Data 1

Info for Setting Sig =

v} Current —

[ "Choose Moisy Frequency”, Default 't

[This state instructs the user pick a frequency
[to set the noise average at...

[ Get NuiseAvsraEe

Latest —

Moise —

Prompt User for
Input

0K ¥

Frequency (MH:

error out ¥

g Enable

berrorin (no errol

VISA session|[EITmf—
error in (no error]E=:k

il
Amplitude (0.0 H

Prompt User for

Input2
Yo -
error out +
b Enable
Ferrorin ino error
Done ¥

[V M

Ih]

a

==

a

1y .

= TH

M

| [

DML,

Loap Iteration

Ih]

123



ﬁ\ "Choose Noisy Frequency”, Default 'H

[+ Get Noise Average |

This state instructs the user pick a frequency
to set the noise average at...

i

Prompt User for

Input
QK H
Frequency (MH:z
K error out ¥
- Enable

ErTOrin (no Errol

VISA session@ Prompt User for
error in (no error, E: Input2
Yes A,
errorout Y
Amplitude (0.0[25Lx d Enable
Unit(ﬂ:dEm@ b error in (no errol
Done 4
G TV ]

e

124



|1| "Get Noise Average” 'H

FFT Sample
Sample

This state sets the noise ge at the ct freq Y
for comparison in later states to determine if an event has
loccured.
Original FFT

. =

Spectral
Murnber of DAQ Assistant2 Measurements

FFT of Samples data "‘”‘”"E 2 Original Moise Average
taskout ¥ v Signals
Emumber of samg FFT - (Peak)
v

rate Phase H
Sample Rate, ’ stop (T) b errorin (no errol
Max: 200kHz b timeout (5) D crorout v Moise
b errorin

b Restart Averagin
averaging done *|-

error out L4

A

Insure consistent
settings of: Exponential
[Averaging, # of

= Frequency —i>—'—.

Offset (MHz)

| 2]
B

125



|<| "Increment Frequency” 'H

This state needs the frequency to program to the Sig Gen
land should increment each time the state is activated beginning
from when the user clicks "start”.

[+ Sample Audic Data ~|

Current

Frequency
Increment (MHz)

ez

[=

The stop condition should be true when the frequency
range has been run through completely.

1]

Current £

4=

126



|1| "Sample Audio Data" 'H

DAQ Assistant

data >=====E Measurements
> Signals

P number of samg

=

rate
’ stop (T)
b timeout (s)
’ Errorin
error out ¥
task out H

G

Current FFT

Insure consistent
settings of: Exponential
Averaging, # of
packets, dB amplitude
and produce spectrum
Spectral
FFT - (Peak) +=F | =)

error out

Phase H

b errorin (no errol
errorout ¥

-r Restart Averagin

+ Event Detection ~|

averaging done ¥

Current

unreserve |

il

il

This state should start taking data and store the FFT of that data for
an amount of time defined by a constant. It needs a conditional to trigger
the time to begin and then waits until the next itteration.

"1m|

B

127




|<| "Event Detection” ‘H

I0 Spur Strength Determination |
[+ Increment Frequency |

This state detects an event and chooses the next state
based on whether or not an event occured.

FFT Difference

Mumber of bins
for Max Threshold

Threshold offset
for Max Spur

ﬁ
[=]

Fo o
R

I: B2
Threshhold for

Moise Average

Current Moise Average

The stop frequency in MHz

B

128



|<| "Spur Strength Determination”

M|

[ Create Array v

+Decrement Amplitude |

|<‘ "Get New Spectra”

r stop(m)
P timeout (s)
- error in

error out 4

Spectral
Measurements
DAQ Assistant3 3
data " v Signals
task out [ FFT - (Peak) p
P number of samg o] Phase
B pmere >

i FEAK]

}errorin (no errol
error out K
i) Restart Averagin

Insure consistent
settings of: Exponential
(Averaging, # of
packets, dB amplitude
and produce spectrum

—
Updated FFT
Difference

Updated FFT

[ Decrement Amplitude |

- >

Updated Moise Average

[ R

129




T[.."Decrement Amplitude”, Default

4+ Get New Spectra ™

[REESGD]
R
O/ 0FF|

T./0

DEL

Ab

at

W

130



Y[ Get New Spectra” ]}
[  — |<P Decrement Amplitude ¥

1 FEAK]
Spectral
] Measurements
DAQ Assistant3 3
data H v Signals | '
task out L FFT - (Peak) =
E Ebnumber of samy Phaze K
4 rate i [rerrorin ino erroi
3 stop (T) ; error out 4
P timeout (s] |+ Restart Averagin Undated FFT
- ate
r errorin Insure consistent ] =
error out ¥ settings of: Exponential | | —
Averaging, # of Lel
packets, dB amplitude :
D and produce spectrum
1

Updated FFT

Difference m

E—

Unimodal =
—I:D—J}
Updated Moise Average

[~or] 123
:

131



132



|<| "Create Array” 'H

=

el
Bl

133



ﬁ\ "Store Data" 'H

#+Increment Frequency ™

| J&1]
.E

134



Appendix D - Octave Code for Spurious Response Analysis

function spurs = findSpurs(s, minPower, var, maxm, maxn, IF, ftune, hilo)

% Created: March 2012

% Author: Chelsi Kovala

% Description: This function was written to analyze data recorded by the

% XCVR_Spur_Scan.vi written in NI LabVIEW. This function takes

% a set of frequencies which produced spurious responses and the

% the first IF of the receiver, and checks to see if mixer spurs

% could explain the spur by choosing all combinations of nand m

% and checking to see if the equation fIF=nfRF+-mfLO is satisfied.

% This all assumes a superheterodyne receiver.

% File Format: File must be a text file with two columns of numbers,

% [frequency amplitude] with no headings to be read in correctly.

% Parameters: S text file to be read in

% minPower events with power greater than this won't be considered
% var how far the calculated value may differ from the

% expected value in MHz, e.g. .1 = may differ by 100 kHz
% maxm the maximum m coefficient to consider

% maxn the maximum n coefficient to consider

% IF the intermediate frequency to consider

% ftune the frequency being received

% hilo 1 if highside injection is used, 0 if lowside injection
% is used

file=fopen(s);
C = textscan(file,'%f %f');
al=cell2mat(C(:,1));
a2=cell2mat(C(:,2));
NewA=[al a2];
[I dontcare]=size(NewA);
temp=1,;
A=0;
for i=1:1
if(NewA (i,2)<minPower)
A(temp,1)=NewA(i,1);
temp=temp+1,
else
end
end

[11 dontcare]=size(A);

fIF1=IF(1);
if(hilo==1)
flol=fIF1+ftune;
else
flol=ftune-fIF1;
end
slcount=1;
s2count=1;
count=1;

spurDifflst=zeros(1,3);
spurSumilst=zeros(1,3);
temp3=-1;
for i=1:11
for m=0:maxm
for n=0:maxn
templ=(m*flol-n*A(i,1));
temp2=(n*A(i,1)+m*flol);
if ((abs(templ)<fIF1+var) && (abs(templ)>fIF1-var))
if temp1<0
spurDifflst(slcount,:)=[A(i,1) -mn];
else
spurDiffist(slcount,:)=[A(i,1) m -n];
end
slcount=slcount+1;
end
if (temp2<fIFl+var) && (temp2>flF1-var))
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spurSumlst(s2count,:)=[A(i,1) m n];
s2count=s2count+1;
else
firstOrd(count,1)=abs(templ);
firstOrd(count,2)=temp2;
count=count+1;
end
end
end
end
spurDifflst
spurSumilst
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