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Abstract 

Q-enhanced Filters have been researched extensively, but have not been often 

implemented into receiver architectures due to inherent challenges in the design and stability of 

these filters. However, recent works have successfully addressed Q-enhanced filter designs 

which are viable for receiver implementation with tuning algorithms to achieve temperature 

stability. This work continues these efforts with the redesign of a Two-Pole Q-Enhanced Band-

Pass filter tested at narrower fractional bandwidths than previous work of less than one percent 

and considers potential significant improvements in receiver performance using this filer. 

The Q-enhanced filter redesign ports the existing filter to a new integrated circuit 

technology which performs better at higher frequencies. The redesign in particular addresses 

problems in the previous design. The frequency divider design is modified, resistance tuning is 

added, and additional modifications to the overall filter functionality are implemented. General 

problems in obtaining an ideal passband shape by eliminating unwanted coupling are addressed. 

The supporting software for the tuning algorithm is modified to use analog controls and shown to 

achieve further narrowed bandwidths of 5 MHz and 2.5 MHz at center frequencies of 500 MHz, 

which are demonstrated to be temperature stable. Future software modifications are described to 

prepare the existing code base for the new filter design. 

Potential applications for a Q-enhanced filter include improving the performance of 

receiver designs.  One of the most important performance parameters of a receiver is its spurious 

response rejection.  To explore this behavior, an automated test system is developed to 

characterize receivers, and four receivers are tested. The test results are presented in a novel 

graphical display, which is used to evaluate receiver performance and compare receivers. These 

results motivated the development of a potential modified superheterodyne receiver architecture 

using the Q-enhanced filter as an image filter and an IF filter. The viability of this receiver 

design is tested and shown to provide significant improvements to receiver’s spurious rejection 

response.   
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Chapter 1 - Introduction 

 1.1 Objective 
This thesis is divided into two parts. First, this thesis documents the redesign of the Two-

Pole Q-Enhanced Band-Pass Filter into a new integrated circuit (IC) technology. Problems in the 

previous filter design are explained and solutions are explored. Additionally, the supporting 

software is refined with additions and improvements to the pre-existing tuning algorithm and 

changes to the supporting software and hardware needed for the redesigned IC portion of the 

filter are explained. Second, this thesis considers the currently used methods for, and historical 

emphasis placed on, characterizing a receivers spurious rejection responses. The development of 

an automated test system to explore this behavior is described and the test results are presented in 

a novel graphical format. Based on the demonstrated capability of the Q-enhanced filter and 

insight from the spurious rejection response data, this thesis proposes a new receiver 

architecture. Finally, this architecture is tested to determine if it could significantly improve a 

receiver’s spurious rejection capability.   

 1.2 Q-Enhanced Filter Development Primer 

 1.2.1 Integrated Filter Design 

 1.2.1.1 Previous Work 

The existing Q-enhanced filter used as a starting point for this thesis was designed by 

Renee Strouts based on circuit concepts developed in a class project. The original design is 

documented in [1].  This active filter uses Q-enhancement to create a tunable variable bandwidth 

bandpass filter. Q-Enhancement is explained thoroughly in both [1] and [2] and will only be 

defined here briefly to lend context to this thesis’s discussion of the filter.  

 1.2.1.2 Q-Enhancement 

‘Q-enhancement’ refers to the technique of increasing the quality factor of an inductor, 

capacitor, or tuned circuit [3].  The ‘quality factor’ is defined by the ratio of the energy stored to 
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the energy dissipated in these components. In general, Q is defined mathematically by equation 

(1.1).  

𝑄 = 2𝜋 ×  𝐸𝑛𝑒𝑟𝑔𝑦 𝑆𝑡𝑜𝑟𝑒𝑑
𝐸𝑛𝑒𝑟𝑔𝑦 𝐷𝑖𝑠𝑠𝑎𝑝𝑎𝑡𝑒𝑑 𝑃𝑒𝑟 𝐶𝑦𝑐𝑙𝑒

            (1.1) 

A more detailed explanation of Q and the associated RF models of inductors and capacitors can 

be found in [2]. The important idea to understand here is that every inductor and capacitor 

includes a non-ideal resistance which limits the components performance at sufficiently high 

frequencies. This behavior is crucial to filter design because the Q of a filter fundamentally limits 

its achievable bandwidth according to (1.2). 

𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ = 𝑓0
𝑄

     (1.2) 

where f0 is the center frequency of the filter passband and Q is the composite filter quality factor. 

Typically, the overall Q of a filter has been limited by the inductors used. In particular, high Q 

inductors are very difficult to manufacture in integrated circuits [4]. In this work off chip 

inductors are used, but the previous theses and associated research include efforts to achieve high 

Q on chip inductors [5]. Q-Enhancement is achieved in the filter in this thesis using cross 

coupled field effect transistors. 

 1.2.1.3 Revised Integrated Circuit Block Diagram 

The top level block diagram for the revised Two-Pole Q-Enhanced Band-Pass Filter is 

shown in Figure 1.1.  
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Figure 1.1 – Q-Enhanced Filter Block Diagram 
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Similar to previous designs, the filter’s input signal is driven into a differential cascoded 

amplifier core, labeled ‘Front-End’. The second core, the ‘Back-End’ is an identical copy of the 

Front-End with grounded inputs. The amplitude detection and frequency division circuits for the 

Front-End and Back-end are driven by the cores via identical buffers to protect the filter from too 

much loading. The filter is programmed via the serial to parallel register from a microcontroller 

which runs the supporting software introduced in section 1.2.2. This communication is a bit 

stream which controls the enabling of the buffers, amplitude detectors, and frequency dividers. 

The rest of these bits control binary weighted cells of Q-enhancement, frequency tuning, 

capacitive coupling and resistance tuning used to tune the filter center frequency, bandwidth and 

shape of the passband. The LC tank circuits are off-chip resonators driven by the Front-end and 

Back-end. The final output of the filter is driven differentially from the Back-End buffer.   

The entire IC was ported to a .18µm SOI process technology which is lower power and 

better performance at higher frequencies than the .5µm and .25µm SOI processes used 

previously. Portions of the circuit were redesigned to add functionality, improve performance or 

to fix problems in the existing filter. These modified circuit designs are shown shaded slightly 

darker with a dashed outline in Figure 1.1. The serial to parallel register was increased from 64 

bits to 96 bits to control additional circuitry. The intrinsic gain of the cascoded amplifier cores 

was lowered to 1 to improve the dynamic range. Resistance tuning circuitry was added to cancel 

unwanted coupling affects. The frequency dividers were redesigned entirely to eliminate internal 

oscillation problems in the current design. Also, a pre-existing design flaw was discovered in the 

amplitude detector circuit. The design changes to the frequency divider and the addition of the 

resistance tuning are explained in section Chapter 2. The design flaw in the amplitude detector is 

also explained in Chapter 2. The rest of the circuit design as ported to the new process is 

documented in appendix A.  

 1.2.2 Supporting Hardware and Software 

 1.2.2.1 Previous Work 

The filter is implemented on a circuit board using a microcontroller to program and tune 

the filter for testing and implementation. In the previous thesis work by Joel Schonberger, a test 

application was written in C# to create a graphical user interface (GUI) which allowed the user to 
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control the filter manually or provide settings to an automated tuning algorithm. The circuit 

board, the supporting software written for the microcontroller, and GUI are documented 

thoroughly in [2]. The review here is therefore brief and provided only as a basis for 

understanding the additions to this supporting software described in this thesis. 

 1.2.2.2 Software Additions  

It has been a long time goal of the work this thesis continues to achieve fractional 

bandwidths of one percent or less relative to the center frequency. Achieving this narrow 

bandwidth required the addition of fine tuning in the existing automated tuning algorithm. Those 

additions are implemented and tested and documented in Chapter 3 and Appendix B. The 

changes to the filter design also create a need to modify the supporting code for the 

microcontroller and the GUI. The changes to the code for the microcontroller are explained in 

Chapter 3. Changes to the GUI are also suggested, but not yet implemented.  

 1.3 Receiver Architectures and Filter Applications 

 1.3.1 Motivation 
A crucial issue in today’s wireless communication technologies is maximizing 

throughput in the allocated spectrum. As a result increasing demands are being placed on 

communication technology. According to Michael Marcus, retired associate chief for 

Technology with the FCC, “Transmitters don’t use spectrum, receivers do.” [6] Therefore, if 

receiver performance is improved, the spectrum can be used more efficiently. Given the rapidly 

increasing popularity of devices using wireless technologies, the demand on the RF spectra is 

growing. Improving receiver’s performance to meet this demand is an important goal.  

Receiver performance is a complex topic with a long history. To improve upon current 

designs it is necessary to quantify current receiver performance to accurately assess the current 

state of the technology and gain insight into how it could be improved. The task of a receiver is 

to detect and translate the signal it’s tuned to receive without being affected by any other signal. 

One way to measure how well a receiver does this is to measure the receiver’s spurious rejection 

response. This work attempts to address the need to measure receiver performance by developing 

a spurious response rejection test system and developing a novel graphical format to display the 

results. 
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The limiting factor in improving receiver performance is largely governed by the ability 

to filter and completely isolate only the desired signal. As a result, much research has been done 

to design optimal filters. Q-Enhancement has been considered as an option for use integrated 

receivers in previous work [7] and [8]. However, it’s been assumed that the limited dynamic 

range and high noise figure associated with Q-enhancement would compromise receiver 

performance [9]. This research in this thesis characterizing receiver’s spurious rejection response 

indicates this conclusion is not fully correct.  

 1.3.2 Prior Art 

There are many criteria used to evaluate various aspects of receiver performance 

including but not limited to, sensitivity, noise figure, dynamic range, third order intercept, IF 

rejection, and adjacent channel rejection. This criterion is used both by amateurs [10] and in 

industry and academia [11]. Another technique often used to look mixing schemes is the so-

called ‘spur chart’ in which a diagram is developed to illustrate potential combinations of 

incoming signal frequencies and their harmonics and fLO and its harmonics that a receiver may 

respond to [12]. Despite the useful information this diagram contains, it is difficult to understand 

quickly. Moreover, no information about the severity of the spurious response is identified. 

Literature generally emphasizes the important causes of spurious responses in receivers 

to be mixing, IF separation, harmonics and coupling with existing signals in the receiver [13]. 

Other work has explored automated testing spurious rejection responses to apprehend the full 

complexity of receiver’s performance [14], [15].  

Unfortunately, spur charts and the many various standards of receiver performances 

mentioned above fail to yield an intuitive assessment of the receiver’s spurious response 

rejection performance. Even the works on automated spurious response testing, while quite 

thorough, didn’t offer a simple way to view and intuitively evaluate the receiver performance. 

Chapter 4 in this work addresses a new automated spurious rejection response test system and 

develops and demonstrates a useful, intuitive graphical display of the test results.  
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 1.3.3 Research Accomplished 

1.3.3.1 Spurious Rejection Response Testing System 

To understand and characterize receiver spurious rejection response an automated test 

system was developed. This system allowed four receivers to be tested thoroughly over different 

amplitude ranges and different frequencies. The system uses a ‘MyDAQ’ and a LabVIEW based 

test GUI. This system is explained at length in section 4.3.    

1.3.3.2 Spurious Rejection Response Results 

The data obtained from the Spurious Rejection Test System proved extensive. A 

graphical display of the results was developed providing insights into the four receivers tested. 

Explanations for the spurious responses observed were analyzed and evaluated in section 4.5. 

1.3.3.3 Filter Application 

Finally, a modified superheterodyne receiver using the Q-enhanced filter is proposed in 

Chapter 5. The potential improvements in spurious rejection are partially tested using the 

Spurious Rejection Test System. The results strongly indicate this solution might provide an 

excellent alternative to current receiver architectures. 

 

Chapter 2 - Q-Enhanced Filter Redesign 

 2.1 Design Overview 
This Chapter documents the redesign of a two-pole Q-enhanced band-pass filter IC 

originally designed by Renee Strouts [1]. The first section will explain briefly the process of 

porting this design to a new technology. The next section will focus on the problems with an 

asymmetrical passband in the previous filter design. The origin of this asymmetry is explained 

theoretically and the solution in the hardware design is documented. Last, this section looks at 

the circuits which were changed significantly from the original design or had intrinsic issues in 

the original design. 
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 2.2 Porting Design to Different Integrated Circuit Technology 
This section describes porting the previous IC design in a silicon-on-sapphire (SOS) 

process to a bulk SOI process. The bulk SOI process runs on a lower power voltage and has a 

smaller minimum length of .18µm than the SOS process. The new process also includes body 

contacts and a different 𝑘𝑛′  value. As a result, porting the circuit design required re-biasing the 

circuits and choosing new W/L ratios which matched the circuits design specifications.  

In general, analog design using metal on oxide semiconductor field effect transistors 

(MOSFETs or ‘FET’s) at an IC level is ruled by well-known equation (2.1) 

𝐼𝐷 = 𝑘𝑛′

2
𝑊
𝐿

(𝑉𝐺𝑆 − 𝑣𝑡)2         (2.1) 

for FETs in the active region neglecting Early effect. Long channel FETs in the triode region are 

described by (2.2). 

𝐼𝐷 = 𝑘𝑛′
𝑊
𝐿
�(𝑉𝐺𝑆 − 𝑣𝑡)𝑣𝐷𝑆 −

𝑣𝐷𝑆
2

2
�    (2.2) 

Also, 

𝑘𝑛′ = µ𝐶𝑜𝑥            (2.3) 

and 

𝑉𝑂𝑉 = (𝑉𝐺𝑆 − 𝑣𝑡)                 (2.4) 

The above equations are well known, but the quadratic term is only correct for FETs that are 

‘long channel’ with a sufficiently small overvoltage. If the FET is ‘short channel’ or the 

overvoltage is large enough, the equation for ID versus VGS the active region reduces to (2.5). 

𝐼𝐷 = 𝑘𝑛′

2
𝑊
𝐿

(𝑉𝐺𝑆 − 𝑣𝑡′)        (2.5) 

Where the new threshold voltage, 𝑣𝑡′, is the interpolated VGS-axis intercept of the linear portion 

of the ID versus VGS relationship. A particular case of this behavior in a FET is shown in Figure 

2.1. This behavior is not typically explained in textbooks, but is consistently exhibited in 

experimental data [16]. 
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Figure 2.1 – ID versus VGS Curve Showing Quadratic and Linear Behavior 

It’s easy to see in the ID versus VGS above that the quadratic behavior only lasts from 

about VGS =.35 V to VGS = .8 V. After VGS increases past about .8 V, the current increases 

linearly. This behavior, as stated above, may start nearly as soon as the FET is in saturation if the 

length is small enough. The new process lengths used in the Q-enhanced filter redesign were so 

small that most design work assumes that the FETs are short channel.  

Two other equations are important during this design when a FET is used as a switch. 

First, when the FET is ‘on’ so that it’s conducting current and in the triode region, the resistance 

that signals see from drain to source, 𝑟𝑂𝑁, is given in (2.6). 

𝑟𝑂𝑁 = 1
𝑘𝑛
′

2
𝑊
𝐿 �𝑣𝑔𝑠−𝑣𝑡�

                 (2.6) 

Simultaneously, the capacitance of the FET can be calculated using (2.7).  

𝐶 = 𝑛𝑊𝐿𝐶𝑜𝑥             (2.7) 

which can then be used to find the impedance of a FET using (2.8) 

 𝑋𝑐 = 1
2𝜋𝑓𝐶

               (2.8) 

The ‘n’ in (2.7) is a fractional value between zero and one determined by the signal path through 

the FET and whether the FET is off, in triode or in saturation.  

Finally, since the overall design of the previous IC was robust and working well, most 

circuits could be redesigned by simply assuming the same biasing scheme and altering the W/L 

ratio to compensate for the change in 𝑘𝑛′ . However, this assumed the body effect would be 

negligible. While this would simplify porting the design, some circuits needed to be addressed in 

more detail. In general good design practice dictated that all circuits needed to be simulated and 
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evaluated individually to ensure a robust design that matched, or ideally exceeded, its 

predecessor’s performance.  

 2.3 Asymmetry in the Passband  
This section deals with pronounced asymmetry in the passband shape, a major problem in 

the previous design. This problem is documented extensively in [2] and illustrated in Figure 2.2. 

The theoretical origin of this asymmetry is investigated and determined to be a result of two 

issues in the previous design: the non-idealities of inductive coupling with finite Q inductors and 

an error in the original coupling capacitor circuit design.  

 
Figure 2.2 – Filter Response Showing Asymmetric Passband (Used with Permission [2]) 

 2.3.1 Sources of Asymmetry  
Both sources of asymmetry are explored and characterized mathematically using 

admittances in [2]. However, there is an algebraic error in the solution describing the inductive 

coupling, so the corrected solution is explained in section 2.3.1.2 followed by the circuit level 

solution. To prepare a basis for explaining the hardware design solution to these asymmetries, 

admittances are reviewed in section 2.3.1.1. Finally, the solution for the coupling capacitors 

derived in [2] is presented in section 2.3.1.3 along with the circuit level solution. 
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 2.3.1.1 Admittance Review 

The basic ideas of admittance are presented here to provide a context for the discussion 

of characterizing the asymmetries in the passband. The definitions of y-parameters are shown in 

Figure 2.3 and equations (2.9) – (2.13). Y parameters for inductors, capacitors and resistors are 

derived in (2.14) – (2.16). 

Admittance is defined as the inverse of impedance and can described with the two port 

network shown in Figure 2.3. 

 
Figure 2.3 – Two Port Network (Used with Permission [2]) 

This network allows the following definitions to be developed.

�𝑖1𝑖2
� = �

𝑦11 𝑦12
𝑦21 𝑦22� �

𝑉1
𝑉2
�        (2.9) 

 

Input port admittance 

𝑦11 = � 𝑖1
𝑉1
�
𝑉2=0

  (2.10) 

Reverse Transfer Admittance 

𝑦12 = � 𝑖1
𝑉2
�
𝑉1=0

  (2.12) 

Forward Transfer Admittance 

 𝑦21 = � 𝑖2
𝑉1
�
𝑉2=0

  (2.11) 

Output Port Admittance 

 𝑦22 = � 𝑖2
𝑉2
�
𝑉1=0

  (2.13)

 

Using the definitions in (2.10) – (2.13) a resistor, capacitor and inductor, connected between 

ports one and two, are characterized in the next three equations. 

Resistor: 𝑦21 = �𝑖2
𝑉1
�
𝑉2=0

= 𝑖2
𝑅𝑖1

= −𝑖1
𝑅𝑖1

= − 1
𝑅
           (2.14) 

Capacitor: 𝑦21 = � 𝑖2
𝑉1
�
𝑉2=0

= 𝑖2
(−𝑗𝑋𝑐)𝑖1

= −𝑖1
(−𝑗𝑋𝑐)𝑖1

= −𝑗
𝑋𝑐

    (2.15) 

Inductor: 𝑦21 = � 𝑖2
𝑉1
�
𝑉2=0

= 𝑖2
(𝑗𝑋𝐿)𝑖1

= −𝑖1
(𝑗𝑋𝐿)𝑖1

= 𝑗
𝑋𝐿

             (2.16) 
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By symmetry for these elements, 𝑦12will equal 𝑦21. A similar process could be used to find 

𝑦11and 𝑦22, which should also be equal to each other by symmetry. 

 2.3.1.2 The First Source of Asymmetry 

As explained above, all inductors are limited by their Q value and have a small amount of 

resistance. The previous work determined that the coupling between the inductors in the LC tank 

circuits was not purely inductive due to the limited Q of the inductors [2]. As a result the 

inductors introduced an unwanted coupling term 90º out of phase with the desired LC coupling 

used in realizing the basic 2-pole response. To quantify and understand this unwanted coupling, 

the impedance of the LC tank circuits are modeled mathematically in section 2.3.1.2.1.  

  2.3.1.2.1 Origin of Asymmetry: Inductive Coupling 

The LC tank circuits for the Q-enhanced filter are off chip and laid out using two discrete 

inductors and a capacitor as shown in Figure 2.4.  

Port1a

L1a L1b

C

Port1b

Vdd

Port2a

L2a L2b

C

Port2a

Vdd Port1a

L1a

L1b2C

Port1b

2CAC 
Ground L1 L2

Port1a

Port1b

Port2a

Port2b

V1

+

-

V2

+

-

k

Rs1 Rs2

I1 I2

 

Figure 2.4 – Topological Transformation of LC Tank Circuit  

This topology shown on the left of Figure 2.4 was used to allow the desired biasing. It is 

not immediately obvious how to translate these two circuits into two port network. The 

topological transformation required is shown in Figure 2.4, beginning with the topology of the 

tank circuits and ending with the circuit rearranged into a two port network topology for 

admittance analysis of the inductor coupling issue. 

From Figure 2.4 it’s defined that 2L1a=2 L1b= L1. The capacitors are omitted since we 

only need to consider the inductive coupling, shown as k in the last box to the right. Using these 

definitions the forward transfer admittance can be derived as follows 

𝐿1 = 𝐿2,  𝑅𝑠1 = 𝑅𝑠2 = 𝑅𝑠 ,𝑀 = 𝑘�𝐿1𝐿2              (2.17, 2.18, 2.19) 
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𝑉1 = 𝑗𝜔𝐿𝐼1 + 𝑗𝜔𝐿𝐼2𝑘 + 𝐼1𝑅𝑠        (2.20) 

0 = 𝑗𝜔𝐿𝐼2 + 𝑗𝜔𝐿𝐼1𝑘 + 𝐼2𝑅𝑠       (2.21) 

Solving (2.21) for 𝐼1 and letting 𝑋𝐿 = 𝜔𝐿 

𝐼1 = − 𝐼2(𝑗𝑋𝐿+𝑅𝑠)
𝑗𝑋𝐿𝑘

            (2.22) 

Substitute (2.22) into (2.20) where 𝑋𝐿 = 𝜔𝐿 

𝑉1 = − 𝐼2(𝑗𝑋𝐿+𝑅𝑠)
𝑘

+ 𝑗𝑋𝐿𝐼2𝑘 −
𝐼2(𝑗𝑋𝐿+𝑅𝑠)𝑅𝑠

𝑗𝑋𝐿𝑘
            (2.23) 

𝑦21 = � 𝐼2
𝑉1
�
𝑉2=0

= 1

−�𝑗𝑋𝐿+𝑅𝑠�𝑘 +𝑗𝑋𝐿𝑘−
�𝑗𝑋𝐿+𝑅𝑠�𝑅𝑠

𝑗𝑋𝐿𝑘

           (2.24) 

Combining fractions, inverting and multiplying out yields 

𝑦21 = 𝑗𝑋𝐿𝑘
−(𝑗𝑋𝐿+𝑅𝑠)𝑗𝑋𝐿−(𝑗𝑋𝐿+𝑅𝑠)𝑅𝑠

               (2.25) 

𝑦21 = 𝑗𝑋𝐿𝑘
−(−1)𝑋𝐿2−𝑗𝑅𝑠𝑋𝐿−𝑗𝑋𝐿𝑅𝑠+𝑅𝑠2

              (2.26) 

𝑦21 = 𝑗𝑋𝐿𝑘
𝑅2+𝑋𝐿2−𝑗2𝑋𝐿𝑅𝑠

         (2.27) 

𝑦21 = 𝑗𝑋𝐿𝑘
�𝑅𝑠2+𝑋𝐿2�−𝑗2𝑋𝐿𝑅𝑠

��𝑅𝑠
2+𝑋𝐿2�+𝑗2𝑋𝐿𝑅𝑠

�𝑅𝑠2+𝑋𝐿2�+𝑗2𝑋𝐿𝑅𝑠
�                (2.28) 

𝑦21 = −2𝑋𝐿2𝑅𝑠𝑘

�𝑅𝑠2+𝑋𝐿2�
2+4𝑋𝐿2𝑅𝑠2

+ 𝑗𝑋𝐿𝑘�𝑅𝑠2+𝑋𝐿2�

�𝑅𝑠2+𝑋𝐿2�
2+4𝑋𝐿2𝑅𝑠2

          (2.29) 

Now letting 𝑄 ≫ 1, so 𝑅𝑠 ≪ 𝑋𝐿 due to 𝑅𝑠 = 𝑋𝐿
𝑄� , all 𝑅𝑠2 go to zero. 

𝑦21 = −2𝑅𝑠𝑘
𝑋𝐿2

+ 𝑗𝑘
𝑋𝐿

= 𝑘
𝑋𝐿
�− 2

𝑄
+ 𝑗�               (2.30) 

Last, we cancel the unwanted real component of y21 using the admittance of a resistor derived in 

(2.10). The necessary resistance to eliminate the unwanted y21 admittance can be found by 

summing that admittance with the admittance of a resistor and solving for the resistor. The 

resulting resistance value is shown calculated in (2.27). 

 �𝑅𝑠
2+𝑋𝐿2�

2+4𝑋𝐿2𝑅𝑠2

2𝑋𝐿2𝑅𝑠𝑘
≈ 𝑋𝐿2

2𝑅𝑠𝑘
≈ 𝑄𝑋𝐿

2𝑘
= 𝑅           (2.31) 

where the real parts in (2.29) and (2.30) are shown having solved for the wanted resistance value. 

From (2.31) we observe that in the ideal case y21 is equal to  𝑗𝑘
𝑋𝐿

 due to the quadrature relationship 

between V and I in an inductor. This is the term needed in a coupled resonator filter to from the 

desired passband response [17]. However, (2.31) shows an additional undesired “in-phase” term 
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as well. This term gives rise to the asymmetric shape seen in Figure 2.2 previously. This result in 

(2.29) was confirmed using ADS. That simulation and its output are shown in Figure (2.5) – 

(2.6).  

 
Figure 2.5 – ADS Circuit Simulating Admittance Parameters 

 
Figure 2.6 – ADS Simulation Output of Admittance Parameters 
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The simulation results in Figure 2.6 show agreement with the full form of the solution. 

The next section describes the circuit level solution to the unwanted portion of the inductive 

coupling in the next Q-enhanced filter design. 

 2.3.1.2.2 Circuit Design Solution: Resistance Tuning 

The work above shows that resistors interconnecting the LC tank circuits can be used to 

cancel the asymmetry in the passband. According to the result in the previous section the 

resistance value required will depend on frequency of operation, the strength of the coupling 

between the inductors and the Q of the inductors. The k value, or the amount of coupling 

between inductors, is documented in [2]. The range of frequencies considered is 400 MHz - 500 

MHz. A typical range of Q values for on board inductors range from 5-20. Using this equation 

and these ranges, a potential range of resistance values was calculated using the full form of the 

solution and varying these parameters from the expected minimum to the expected maximum. A 

table summarizing these results is shown in Figure 2.7. 
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Figure 2.7 – Range of Resistance Values  

 

The range of resistance values predicted in Figure 2.7 range from .75 kΩ to 400 kΩ. However, 

the 400 kΩ case uses a coupling of k=.0003. In [2] this coupling value was shown to be so small 

that no significant asymmetry was produced in the passband. Therefore here, when choosing the 

range of values to be implemented, values on the order of 400 kΩ were treated as open circuits . 

Conversely, the lower range of resistance values result from much higher coupling values which 

were also shown in [2] to cause significant asymmetry in the passband and were given more 

emphasis when choosing resistance values for the circuit design.  

A bank of binary weighted resistors were designed to interconnect the LC tank circuits in 

the topology shown in Figure 2.8. Values were chosen to meet the range indicated in Figure 2.7, 

but more importance was given to resistance values resulting from higher coupling coefficients 
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based on the results in [2], the available range of resistance values chosen is 750 Ω to 40 kΩ . The 

circuit is shown at the top level in Figure 2.8 and with a closer in view in Figure 2.9. 

LC Tank LC Tank

Rt

Port1a Port2a Port1b Port2b

Rb

Rlu

Rul

 
Figure 2.8 – Resistance Tuning Circuitry Topology 
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Figure 2.9 – Top View Resistance Tuning Circuitry  
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Figure 2.10 – Narrowed View Resistance Tuning Circuitry  

  

The circuits in Figures 2.9 and 2.10 were implemented for each of the resistors shown in Figure 

2.8 so these tuning circuits could cancel all possible geometries of inductive coupling.  

These resistor banks were designed to be controlled by digital signals from the S/P 

register driven through inverters to the gate of a FET. When the FET’s are on, they are driven in 

the triode region. When the FETs are off they are seen in the circuit as small capacitors. The first 

design consideration here was keeping the FET large enough that it’s on resistance was 

negligible relative to the resistors it activated when on. The W/L ratio was calculated by 

targeting a low on resistance relative to the resistors being driven using equation (2.32). 
𝑊
𝐿

= 1

𝑟𝑂𝑁
𝑘𝑛
′

2 �𝑣𝑔𝑠−𝑣𝑡�
     (2.32) 

Calculation shows a W/L ratio of 350 was adequate to produce RON value on the order of 2.5% 

of the total resistance from port1 to port2 for the 750 Ω resistor when the FET was on.  

The second design consideration was to ensure the impedance effects of capacitance due 

to the FET when it’s off are sufficiently small. This restriction dictates that the W/L of the FET 

be small enough that its impedance was large relative to the resistors it was driving, using 

equations (2.7) and (2.8). The FETs used to produce the small RON were shown to produce a 
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complex impedance 14 times larger than the resistors, which should be sufficient to avoid 

loading ports one and two when the FET is off. Figure 2.11shows the capacitances modeled for 

the design in the on and off states.  

Port1 Port2
R/2 R/2RON

Circuit

Circuit: On State

Circuit: Off State

Port1 Port2
R/2 R/2

Port1 Port2
R/2 R/2

1/6CFET

ROUTInverter

1/6CFET

1/6CFET

 
Figure 2.11 – Resistance Tuning Circuitry Models  

 2.3.1.3 The Second Source of Asymmetry  

 2.3.1.3.1 Origin of Asymmetry: Incorrectly Driven Coupling Capacitors 

The second source of asymmetry in the passband shape was a result of errors in the 

driving circuitry of the coupling capacitors used to offset the inductive coupling. The assumption 

originally was that the capacitors, which were driven through a resistor via an inverter saw an 

AC ground as shown in Figure 2.12. 
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Control Bit

Port1 Port2

Assumed 
AC Ground

RX

 
Figure 2.12 – Resistance Tuning Circuitry Models  

 However, these capacitors were connected between the front-end and band-end LC tank 

circuits in the same topology used for the resistors in Figure 2.8. Unfortunately the two LC tank 

circuits contain different signals, so the signals at port1 and port2 didn’t cancel each other. As a 

result the gates of the FETs were not an AC ground.  

Similar to section 2.3.1.2 the incorrect loading was modeled using Y-parameters and the 

admittance needed to cancel the unwanted loading was found to be described by (2.33). 

𝑦21 = 𝑅𝑋
𝑋𝐶2+4𝑅𝑋2

− 𝑗2𝑅𝑋
2

𝑋𝐶�𝑋𝐶2+4𝑅𝑋2�
    (2.33) 

(2.33) shows for the unwanted real part of y21 to be negligible, XC must be much greater than RX. 

This derivation and confirmation in simulation and tests with the Q-enhanced circuit is 

documented in [2]. Section 2.3.1.3.2 describes the hardware solution to resolve this loading 

problem.  

  2.3.1.3.2 Circuit Design Solution: Corrected Loading 

As (2.33) shows, the solution to mitigate the loading is to make the RX small relative to 

the impedance of the capacitive impedance of the FET when it’s on. The XC of the FET is 

calculated by equations (2.7) and (2.8) and can be used to estimate the necessary RX. The range 

of coupling capacitor values were achieved as by implementing binary weighted banks of 

capacitors, similar to the resistor scaling. The RX values for each bank of capacitors were scaled 

down as the coupling capacitor values are increased. The schematic for this circuitry is shown 

below in three views to explain the overall layout of the whole circuitry and provide views of the 

lower level topology and smaller elements. 
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Figure 2.13 – Top View Capacitive Coupling Circuit   

 

 
Figure 2.14 – Narrowed View Ctuneblock from Fig. 2.13   
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Figure 2.15 – Cell View Ctuneblock   

 2.4 Additional Circuit Redesigns 

 2.4.1 Frequency Divider 

In the previous design the frequency divider circuitry lacked the desired sensitivity due to 

an internal oscillation frequency documented in [2]. Many designs were considered as potential 

solutions because the SOI process the filter was designed in didn’t have the digital circuitry that 

could function reliably at the frequency ranges needed to divide down 500 MHz. However, the 

new process D-Flip-Flop and inverter circuits performed well according to simulation and the 

new frequency divider was designed as shown below in Figure 2.16. 

 
Figure 2.16 – Top View Frequency Divider   

This circuit works by using the inverters, self-biased using the resistors shown, and AC coupled 

to amplify and shift DC offset of the signal to clock the first DFF. The series of 6 DFF provides 

the desired division of 64 and an inverter is used as a buffer at the output to avoid loading issues. 
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According to simulation, this circuit takes a 10 mVPP differential sinewave at 500 MHz and 

outputs a single ended digital square wave from 0 V to Vdd at 7.8125 MHz, 1/64 the original 

frequency. The testbench and simulation output are shown in Figures (2.17) and (2.18). 

 
Figure 2.17 –Frequency Divider Testbench   
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Figure 2.18 –Frequency Divider Simulation Output 

The digital circuitry used in the new frequency divider design has the potential couple 

into the low-level circuits within the die and needed a bypass capacitor, shown in the above 

design, to smooth out any spikes in the power line. To ensure the cap was large enough to protect 

the circuitry and keep the power input constant the circuit test bench was set up with a 1H 

inductor in the power line to so that the circuit couldn’t draw current from the supply 

immediately. Then the simulation was run to see if the circuit functioned correctly. The size of 

the bypass cap was increased until the circuit maintained normal operation even with the 

inductor in the power line. The testbench and the first part of the circuit in Figure 2.16 are shown 

in Figures 2.19 and 2.20 followed by two output simulations. The first simulation output in 

Figure 2.21 shows the circuitry performance with the bypass capacitor too small and the second 

simulation output in Figure 2.22 shows the circuit performance with the bypass capacitor 

sufficiently large. 
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Figure 2.19 –Frequency Divider Testbench to Test Bypass Capacitor 

 
Figure 2.20 –Frequency Divider Circuit Narrowed View 
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Figure 2.21 –Frequency Divider Circuit to Test Bypass Capacitor Simulation Output with 

Insufficiently Large Bypass Capacitor 
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Figure 2.22 –Frequency Divider Circuit to Test Bypass Capacitor Simulation Output with 

Correctly Sized Bypass Capacitor 

 

As shown by the simulation outputs the final bypass cap of about .7nF was large enough to 

assure smooth and stable operation. 

 2.4.2 Amplitude Detector 

The last circuit discussed in detail is the amplitude detection circuitry. During simulation 

a problem with the basic design was discovered. In the previous filter small signals were never 

input to the amplitude detector due to problems with the frequency detector. As a result the 

problem in the circuit design was never noticed. At this time a full solution to this problem is not 

known, but the design flaw is detailed briefly here to document the problem to provide future 

designers a basis to begin designing upon. The amplitude detection circuit as currently designed 

is shown in Figure 2.23. 
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Figure 2.23 –Amplitude Detector Circuit 

 

This circuit sets up a bias current using the current mirror with the PFETs at the top of the 

circuit. The input signal is driven differentially through  AC coupling capacitors to the input. 

These capacitors have a small impedance relative to the FETs and biasing resistors connected to 

the signal at the input. When there is a sufficiently large AC signal applied at the input, the core 

FETs turn on shorting the drain voltage to ground and the voltage at the drain of both FETs 

drops. Good sensistivity is ensured by biasing the core FETs close to their thresholds so that only 

a small voltage is needed to turn them on. The output stage is a resistor and two capacitors in a 

low pass configuration to filter the output signal. Ideally, a stable DC voltage is output which 

drops quickly and significantly with the application of an input signal. During the design and 

simulaiton of this circuit a problem was discovered with the design as illustrated in Figures 2.24 

and 2.25.  
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Figure 2.24 –Amplitude Detector Circuit Testbench 

 

 

 
Figure 2.25 –Amplitude Detector Simulation Output 
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As desired, this circuit produces a sharp decrease in the output voltage level in direct 

proportion to the amplitude of the input signal. However the output simulation shows that after 

the voltage drops sharply it slowly increases. This behavior was determined to be caused by the 

time constant created by the resistors biasing the core FETs and the input capacitors. The 

problem occurs because when one of the FETs is turned on, the voltage drops as the input signal 

is still being applied, but the currents charging the input capacitor are not symmetrical. With the 

FET on, a larger CGS is created, and then when it is off during the subsequent half of the cycle of 

the input, the CGS is no longer the same value. As a result the input coupling capacitor stores up a 

charge and slowly pushes the output voltage up again. This issue will need to be resolved before 

the design is fabricated. 

The rest of the circuits in the Q-enhanced filter were very similar to the original design 

and are omitted in the body of this text. However for clarity and documentation, these circuits are 

included in the appendix A where they are explained briefly and shown with their simulations.  

 

Chapter 3 - Supporting Hardware and Software 

 3.1 Previous Work  
In the thesis preceding this work, C based support code was written to for a 

dsPIC64FJ802 microcontroller to program and control the Q-enhanced filter. The 

microcontroller sent a control word, 64 bits in length, to the filter’s serial to parallel register. 

Additionally, C# code was used to create a GUI that allowed the user to interface with the filter. 

Two versions of the C code on the microcontroller were developed: an automated, temperature 

stable algorithm that took user settings and could achieve bandwidths of 20MHz-5MHz, and a 

manual algorithm that allowed the user to manually set all the bits of the control word. As a basis 

to understand the code modifications implemented and recommended in the future, the next 

section briefly reviews the automated algorithm with the inclusion of resistance tuning.  

  3.2 Top-level Code Implementation 
The automated algorithm worked as shown in Figure 3.1. The first step in the algorithm 

is setting all controls based on user inputs and initializing all additional settings. Next, the 
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algorithm tunes the front-end frequency, then the back-end frequency, sets the coupling controls, 

sets the resistance tuning, waits the designated time interval and iterates. The only change at this 

top level of the algorithm is the addition of the resistance tuning. The information for modifying 

the code to implement this new hardware is detailed in section 3.3.2. The other additions to the 

algorithm occur within the front-end tuning and back-end tuning blocks. These changes are 

explained in section 3.3.1.  

 
Figure 3.1 – Top Level Flowchart of Tuning Algorithm 

 3.3 Software Additions  
The first set of changes to the C code are additions implemented to improve the tuning 

algorithm by using the fine resolution frequency and q-enhancement controls in the current filter 

design. The second set of additions are needed to prepare the current code for the addition of the 
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resistance tuning capability.  The next section on fine tuning explains the changes to the code 

and documents the resulting improvements in the automated algorithm. The following section on 

resistance tuning will describe the suggested implementation and hardware specifics needed to 

implement passband symmetry control. Additionally, each of these sections enumerates the 

additions to the C code and C# code that are needed. 

 3.3.1 Fine Tuning  

  3.3.1.1 Implementation 

It was a long time goal of this work to achieve finer frequency tuning accuracy and 

smaller bandwidth capability. In preparation for this goal external DACs were already 

implemented on the circuit board with the microcontroller. These DACs were intended to 

generate the necessary analog voltages to the pins on the filter which controlled the analog 

frequency tuning and Q-enhancement controls, but were not tested and exercised in previous 

work [2]. The analog circuits the fine-tuning explained in this section uses are essentially 

identical to those in Figures A.17 and A.19.  Figures 3.2 through 3.5 show the flowcharts for the 

modified automated algorithm and are explained below. 

The modified frequency tuning algorithm is shown in Figure 3.2 is identical to the 

flowchart in [2], except for the addition of fine tuning which uses the analog controls, 

implemented immediately after the course tuning which uses the digital controls. The ‘get-

frequency’ flowchart in Figure 3.3 for the front and back ends is unchanged.  However the ‘find-

critical-oscillation’ flowchart in Figure 3.4 now includes the fine Q-enhancement tuning. The last 

flowchart in Figure 3.5 is entirely new and documents the logical flow of the fine tuning 

algorithm.  

The fine tuning portion of the algorithm functions very similarly to the course tuning. 

First, the fine tuning determines whether the current frequency is higher or lower than desired. 

Second, the algorithm iterates to find the first analog setting to set the current frequency equal to 

the desired frequency. Those analog settings are stored and then further incremented until the 

frequency no longer equals the desired frequency. Those analog settings are compared to the 

stored settings and the analog controls are set centered between them to achieve the closest 

frequency to the desired frequency as possible. 

 



34 

 

 
Figure 3.2 – Frequency Tuning Algorithm Flowchart: Revision 2 



35 

 

 
Figure 3.3 – Get Frequency Algorithm Flowchart (Used with Permission [2]) 
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Figure 3.4 – Find Critical Oscillation Flowchart 
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      Figure 3.5 – Fine Tune Flowchart  
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 3.3.1.2 Results 

The fine-tuning code addition improved the algorithm’s performance. Without fine 

tuning some settings at bandwidths on the order of 5MHz exhibited variation in gain and 

bandwidth in the passband from one tuning iteration to the next. When the filter was 

programmed and the automatic tuning algorithm run, the settings that were chosen by the tuning 

algorithm were output to the GUI. These outputs showed a change ±1 in the digital q-

enhancement settings when the gain in the passband varied. This indicated that the tuning 

algorithm needed additional precision to avoid fluctuation between two values in the algorithm. 

Bandwidths below 5MHz were not achievable without producing unstable outputs from the 

filter.  

Figure 3.6 shows the passband variation caused by this quantization error in the tuning 

algorithm. This behavior was captured by 

setting the first trace of the spectrum analyzer 

to capture the maximum value of the passband 

and the second trace to capture the minimum 

value of the passband. This variation between 

tuning iterations was eliminated when the fine 

tuning code was implemented. 

After the fine tuning was 

implemented, a temperature stable bandwidth 

of 2.5MHz with a center frequency of 450 

MHz, a fractional bandwidth of about .6%, 

was achieved. Figure 3.7 shows a screen 

capture of the filter tuned to this narrow bandwidth and the settings which achieved this 

passband shape are shown in Table 3.2. This bandwidth and passband shape was maintained by 

the algorithm which included the fine tuning when heated from 20ºC to 75ºC. 

Figure 3.6 - Passband Variation without 

 Fine Tuning 
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Figure 3.7 – 2.5 MHz Bandwidth Passband with Fine Tuning 

  

Algorithm Settings 
Bandwidth 5 MHz 2.5 MHz 
Center Frequency 450 MHz 
Frequency Tolerance .3 MHz 
AD Threshold 1 3 2 
AD Threshold 2 3 3 
Q-Offset 2 2 
Q-Back-Off 2 1 
F-Offset 2 2 
Capacitive Upper Tuning 8 5 
Capacitive Lower Tuning 6 6 
Capacitive UFLB Tuning 0 0 
Capacitive LFUB Tuning 0 0 

Table 3.1 – Fine Tune Settings for 2.5 MHz Bandwidth 

These settings are dependent on the resistors used to cancel passband asymmetries and the Q of 

the on chip inductors. These settings may need to be varied ±1 if one of these variables has been 

changed. The addition of the more precise controls suggested in the future work should help to 

mitigate uncertainty in these settings. 

 3.3.2 Resistance Tuning 

 3.3.2.1 Implementation 

The resistance tuning code needs to be developed to utilize resistance tuning controls 

described in section 2.3.1.2.2. This code can’t be fully tested without the new filter design, but 
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many of the necessary additions to the code-base are clear. Some of the modifications needed are 

detailed below.  

 3.3.2.2 Control Word and Passband Controls 

The filter is programmed by the microcontroller via SPI communication. The current 

code sends a 64 bit word to the filter. The new filter will have an additional 28 bits of data to set 

the resistance tuning circuitry documented in section 2.3.1.2.2. The full 96 bit control word that 

the serial to parallel register will need from the microcontroller is shown in table 3.3.  

‘FENDCON’ and ‘BENDCON’ are the control bits for the front-end and back-end frequency 

tuning, the amplitude detector and frequency divider. ‘CAPCON1’ and ‘CAPCON2’ are the 

control bits for the capacitive coupling circuits. ‘RESCON1’ and ‘RESCON2’ are the control 

bits for the passband asymmetry neutralization. RESCON1 and RESCON2 are unimplemented at 

the time of this thesis’s publication. 

FENDCON BENDCON CAPCON1 CAPCON2 RESCON1 RESCON2 

  MSB              LSB 

Table 3.2 – Word Sent from Microcontroller to Filter 

The resistance value needed to cancel asymmetries due to unwanted inductive coupling in 

the LC tanks, calculated in section 2.3.1.2.1, is shown again in (3.1) and then expressed in terms 

of coupling, k, and the Q of the filter. 
−1
𝑅

= −2𝑋𝐿2𝑅𝑠𝑘

�𝑅𝑠2+𝑋𝐿2�
2+4𝑋𝐿2𝑅𝑠2

=  −2𝑄𝑘
𝑅𝑠((1+𝑄2)2+4𝑄2) = −2𝑄2𝑘

2𝜋𝑓((1+𝑄2)2+4𝑄2)             (3.1) 

since 𝑅𝑠 = 𝑋𝐿
𝑄� . Letting 𝑄 ≫ 1, then 𝑅 ≪ 𝑋𝐿 and all 𝑅2 go to zero and this equation can be 

expressed as (3.2) where we assume the Q of the filter is dominated by the Q of the inductors. 
1
𝑅

= 𝑘
𝑋𝐿

2
𝑄

   
𝑦𝑖𝑒𝑙𝑑𝑠
�⎯⎯⎯�   𝑅 = 𝑄𝑋𝐿

2𝑘
                 (3.2) 

Note this resistance value assumes that the non-symmetry in the capacitive coupling discussed in 

section 2.3.2 has been successfully mitigated by raising the resistor values between the inverter 

and the FET’s they drive and the only resistance being canceled out by this tuning is due to the 

inductive coupling. However, these resistors can also compensate for a capacitor coupling non-

idealities if needed; only the value will need to be modified. 
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The capacitive coupling is currently implemented as a manual input by the user. It’s 

recommended that the resistance tuning be implemented the same way for testing. Eventually, 

when the filter is fully tested a bandwidth and center frequency could be chosen and the 

capacitive coupling and resistance tuning could be chosen based off of a lookup table. This 

would require knowing the coupling value between the inductors either by user input or hard 

coding.   

 

Chapter 4 - Spurious Responses in Receivers 

This chapter addresses the impact of filtering on receiver performance at an architectural 

level. As a basis for cogent discussion, receiver architectures are briefly enumerated and a 

superheterodyne architecture is explained in some detail as a foundation of further analysis. 

Next, receiver performance is discussed focusing on the intrinsic limitations imposed by a 

receiver’s ability to avoid spurious responses. An overview of spurious responses is presented 

with a brief explanation of their origins in superheterodyne receivers. To observe these behaviors 

in receivers a novel method of measurement and receiver characterization is described. Using 

this evaluation method some commercial handheld radios, a software defined radio (SDR) and an 

integrated radio are characterized. Finally in Chapter 5, a modified receiver architecture using a 

tunable variable bandwidth Q-enhanced bandpass filter is presented and our testing procedure is 

used to verify the validity of this solution.    

 4.1 Introduction to Receiver Architectures 
The two primary types of receiver architectures generally used in modern communication 

systems are direct conversion and superheterodyne. Direct conversion receivers offer some 

excellent performance advantages for wideband signals and have been almost universally 

adopted by the cell phone industry. However, superheterodyne architectures still dominate 

narrowband receiver technologies due to innate limitations in current technology and remain the 

architecture of choice for wide coverage designs such as spectrum analyzers and software 

defined radio front-ends. Superheterodyne receivers therefore may be favored in applications 

such as sensor networks and cognitive radio. As explained in the introduction receiver 

performance is a crucial issue in modern communication technology which limits spectra usage 
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and defines the demands put on the communication infrastructure. Four architectures are 

addressed below and explained briefly. The various types of spurs and behaviors mentioned are 

explained in 4.2. 

 4.1.1 Direct Conversion 

Direct conversion receivers use a 0 Hz IF frequency, converting the received signal 

directly to baseband. These architectures typically include a preselect filter and a LNA before the 

mixer. After the conversion to baseband lowpass filters are applied and amplification and 

demodulation is accomplished. A basic block diagram of this receiver architecture is shown in 

Figure 4.1.  

VCO

Low Noise 
Amp Mixer1 Low Pass 

Filter1
Preselect 

Filter Output

Demod

Amplifier1

Mixer2 Low Pass 
Filter2 Amplifier2

0° 

90° 

 
Figure 4.1 – Direct Conversion Receiver Block Diagram 

This architecture offers some nice potential performance capabilities. The most obvious 

advantage of a 0Hz IF frequency is that there is no image frequency. Additionally the filter 

design complexity is reduced somewhat because only a good lowpass filter is required. However, 

this also means that the VCO is equal to the received frequency posing potential problems of fLO 

feedthrough and crosstalk between nearby receivers. Another major problem is the DC offsets 

innate in any 0Hz IF design. Resolving this using an AC coupled system is made more difficult 

by the potential for very low frequency variations in the DC offset from variation in path or 

coupling. Finally, when implementing in a CMOS process especially, 1/f noise becomes a 

problem. For a narrowband radio, high 1/f noise requires excessive gain ahead of mixer in order 

meet receiver noise figure goals. Such broad-band high gain creates strong spurious responses 
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when operating in a dense signal environment. So, while this architecture works very well for 

wideband reception which doesn’t have demanding filter needs, narrow band applications are a 

different matter because they put highly demanding restrictions on the lowpass filter roll off. 

 4.1.2 Superheterodyne 

Superheterodyne architectures are built around the central idea of converting the received 

RF frequency to a lower intermediate frequency (IF) for filtering, amplification and 

demodulation. These receivers typically include a preselect filter, a LNA, an image filter and a 

mixer. Sometimes the image filter is omitted and an image rejection mixer is used instead. After 

the signal is mixed to the IF, it is further filtered, amplifier and demodulated. A basic 

superheterodyne receiver is shown in Figure 4.2. 

VCO

Demod

Low Noise 
Amp Mixer Bandpass 

Filter
Preselect 

Filter OutputImage 
Filter IF Amplifier

 
Figure 4.2 – Superheterodyne Receiver Block Diagram 

There are many advantages to heterodyning the received signal. The narrowband filtering 

can be done at a lower fixed frequency reducing the design demands on the filters quality factor. 

The amplification can be split between two different frequencies reducing the potential for 

positive feedback. Additionally, the bulk of the gain can be provided at the lower IF frequency 

where amplification is easier to achieve. A significant drawback to this architecture is the image 

frequency inherent in the downconverting operation, even though image rejection has been well 

studied and is often successfully mitigated by image reject filters and/or image reject mixers. 

Another drawback is that the LO frequency used to downconvert the received signal will have 

some phase noise which adds into the mixed spectrum, but this is inherent in any frequency 

generation and conversion, including direct conversion applications. Also, if a phase locked loop 

is used to control the VCO, fLO will have harmonics produced by the pulse train generated to 

vary the control voltage. However, despite these design challenges this architecture still provides 
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the best performance for narrowband receivers since no other architecture sufficiently addresses 

the filtering, coupling and noise challenges innate in narrowband reception. 

 4.1.3 Multiple Conversion Superheterodyne 

The superheterodyne receiver is often extended to double or triple conversion 

architectures to help minimize the image response and increase the receiver’s spurious response 

avoidance. A basic dual conversion receiver is shown in Figure 4.3. 
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Demod
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Filter
Preselect 

Filter OutputImage 
Filter IF Amplifier

VCO2

Mixer2 Bandpass 
Filter

 
Figure 4.3 – Multiple Conversion Superheterodyne Receiver Block Diagram 

This architecture might upconvert a signal to a first IF and then downconvert to the final 

IF, or down convert through two or more conversions to the final IF where the signal is 

demodulated. In any case, the use of additional IF through multiple conversions significantly 

reduces the problematic image frequency and theoretically helps reduce IF feedthrough as well.  

 4.1.4 Software Defined Radio 
Software defined radios (SDR) are a completely different architecture. The potential 

flexibility available in a digital implementation is very attractive and many SDRs have been 

developed. However, the need for an analog front end is inescapable due to the demands of high 

frequency narrowband reception. A typical block diagram for a SDR is shown in Figure 4.4.  
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Figure 4.4 – Superheterodyne Receiver Block Diagram 
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 As shown some type of preselect filter is typically included with an LNA and 

downconversion. Then the signal is sampled by the ADC, filtered and demodulated digitally. 

These receivers are very complex and a full analysis of their inner workings is beyond the scope 

of this work. They are introduced here as context for later discussions.  

 4.2 Spurious Responses in Receivers 
Spurious responses, or ‘spurs’, are defined as frequencies the receiver responds to which 

are different than the frequency the receiver is tuned to receive. In general, the receiver will 

respond to any signal which mixes to or distorts the IF or its modulation. These spurs can occur 

through several mechanisms resulting from different aspects of the receiver architecture. These 

spurious responses often occur when 2nd or 3rd harmonics of a received signal (produced in the 

mixer or amplifiers preceding it when an input is sufficiently strong) mix to the IF with 

harmonics of the VCO or other pre-existing frequencies in the receiver. Spurious responses also 

occur when signals “feedthrough” due to inadequate filtering. Additionally, intermodulation may 

occur when two strong off-channel signals mix directly to the RF channel or the IF. It’s also 

noteworthy that some receivers may have a spurious response when tuned to receive specific 

frequencies when no external signal is applied, due to an internally generated signal at that 

frequency. These responses are referred to here as “birdies”.  

To discuss spurs graphically Figure 4.5 is provided detailing the expected spectrums at 

each major node of a typical superheterodyne architecture. The architecture includes a frequency 

synthesizer with a TCXO and ADC and demodulation (DMOD) circuitry as these are quite 

common in these designs. This figure is meant to show how real world spectrums should behave 

in this architecture and assumes no spurious responses are occurring. The only non-idealities 

shown are noise, other frequencies in the received signal’s environment, LO feedthrough, close 

in synthesizer spurs around fLO and the fLO and fRF products from the mixer.  
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Figure 4.5 – Superheterodyne Receiver with Spectra 

The first step in a superheterodyne receiver is the preselect filter. This filter ideally 

eliminates all frequencies outside of the bandwidth the receiver is designed to receive. The next 

step is low noise amplification to improve the noise figure of the receiver. The image reject filter 

shown here isn’t always implemented in superheterodyne architectures, but it is shown here to 

emphasize the need to address the potential spurious response caused by the image frequency. 

Most superheterodyne receivers will implement an image reject filter or image reject mixer to 

mitigate the image frequency. Also, the noise itself becomes amplified so that the signals of 

interest are on a ‘noise pedestal’ following the image filtering. Next, the mixer uses fLO from the 

VCO to downconvert the received signal. The VCO is driven by a frequency synthesizer using a 

PLL which causes some phase noise and close in spurs with fLO.  The spectrum after the mixer 

will contain the upconverted spectrum, some amount of ‘LO feedthrough’ and the desired 

downconverted spectrum. As long as these signals are not too strong and the IF is high enough, 

the IF filtering will ideally eliminate all but the signal at the IF, as shown in the spectrum after 

the IF filter. Last, the IF signal is amplified to ensure the demodulation circuitry has a strong 

signal to interpret.    
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 4.2.1 Nonlinear Behaviors 

  4.2.1.1 Amplification 

One of the most important problems in receivers is the nonlinear nature of active devices. 

Any active device which has a perfect sine wave as an input, such as an amplifier or mixer, will 

output a signal which has harmonics besides the fundamental with magnitudes depending on the 

design of the device and the power of the input signal. The linear region of the device is defined 

as the range of operation over which the output signal contains harmonics which are so small 

they are negligible. In the case that the device isn’t operating in the linear region the nonlinear 

output will contain harmonics with significant amplitudes. The harmonics can be modeled 

mathematically by expressing the output signal as a summation of the input signal using a 

Maclaurin expansion as follows: 

𝑣𝑂 = 𝐴1𝑣𝑖 + 𝐴2𝑣𝑖2 + 𝐴3𝑣𝑖3 +  …     (4.1) 

Using trigonometric identities it’s easy to see the frequency harmonics coming from the 

sinusoidal input evolving from this equation as follows: 

𝑣𝑂 = 𝐴1𝑉𝑐𝑜𝑠(𝑤𝑂𝑡) + 𝐴2
2
𝑉2[1 + 𝑐𝑜𝑠(2𝑤𝑂𝑡)] + 𝐴3

3
𝑉3[3𝑐𝑜𝑠(𝑤𝑂𝑡) + 𝑐𝑜𝑠(3𝑤𝑂𝑡)] +  …  (4.2) 

when 

𝑣𝑖 = 𝑉𝑐𝑜𝑠(𝑤𝑂𝑡)       (4.3) 

Any simple sinusoidal signal passing through a non-linear device such as mixers or 

amplifiers can be described this way. Looking at the above expression it’s clear that an input 

signal of significant power will produce significant harmonics. So any strong signal which is in 

the bandwidth of operation, or a signal outside this bandwidth which the preselect filter fails to 

mitigate, can produce these harmonics. Additionally, the synthesizer fLO signal will contain 

harmonics, or even if the LO is reasonably pure, the switching mixer used in nearly all designs 

implicitly introduces LO harmonics in the mixing process itself.  

  4.2.1.2 Mixer Spurs 

All of these amplified signals and their harmonics have the potential to mix to the IF. In 

particular, the potential combinations of RF and LO signals which can mix to the IF band are 

predicted by the well-known equation: 

𝑓𝐼𝐹 = 𝑀𝑓𝑅𝐹 + 𝑁𝑓𝐿𝑂         (4.4) 
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Obviously, good filtering is crucial because any unwanted received or internally generated signal 

in the receiver is subject to this nonlinear behavior and could produce spurious responses if the 

signal is strong enough. Given this nonlinear behavior, good gain control is also important to 

minimize unnecessary creation of harmonics due to over amplifying a received signal. Figure 4.6 

graphically depicts a potential development of this nonlinear behavior in a section of the 

superheterodyne architecture.   
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Figure 4.6 – Nonlinear Spurs  

As shown in Figure 4.6 strong signals produce harmonics at regular intervals with 

decreasing amplitudes. The desired signal at fRF mixes with fLO as expected. However it is also 

possible that a signal near fRF will have a second harmonic that differs from the second harmonic 

of fLO by fIF producing a signal at fIF which will distort the desired signal. Also, any time a signal 

is a fractional value of fRF and is strong enough to produce harmonics, the harmonic may reach 

the demodulation circuitry by mixing to the IF. We will refer to this as a sub-harmonic spurious 

response. 
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 4.2.1.3 Intermodulation Distortion 

Intermodulation distortion is another type of spurious response. However, this behavior 

differs from other spurious responses described above because this is a result of two or more 

signals at the input of the receiver interfering rather than one signal from the input mixing with a 

signal internally generated in the receiver. This is a particularly difficult problem because the 

spectrums in most environments on earth are full of strong signals at many frequencies. Signals 

which are strong enough to produce harmonics could self-mix or mix to the IF through the 

mixer. Intermodulation is an important issue in receiver performance, however due to time 

constraints this issue is not addressed in this work.  

 4.2.2 Spurs from Digital Synthesizers 

Another major source of spurious responses in many receiver architectures today is 

digital synthesizers. Digital synthesizers are used because they provide precise fine resolution 

tuning of the VCO. A typical synthesizer includes a VCO, a temperature compensated crystal 

oscillator (TCXO), division and filtering circuitry and a phase-frequency detector (PFD). There 

are two major causes of spurious responses resulting from this circuitry: the TCXO and the 

pulsed output from the PFD. The TCXO causes spurs because it provides a strong signal as a 

reference which is often divided down to be used in the N synthesizer. The fundamental 

frequency of the TCXO, and any frequency it is divided down to, could be a strong signal within 

the receiver. These signals have the potential to mix with each other or unwanted incoming 

signals to the IF.  

The other major source of spurs, the PFD, compares the divided TCXO and VCO 

outputs. Based on this comparison the PFD generates a varying voltage which is input to the 

VCO to keep the VCO locked on the desired frequency. This modulation of the VCO frequency 

creates spurs close in around the fundamental frequency that the VCO is producing. This 

combined spectrum is the fLO input to the mixer. When a signal besides the desired RF enters the 

mixer and is strong enough it will combine with a TCXO spur or a close in spur of the fLO and 

may mix to IF band as shown in Figure 4.7.  
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Figure 4.7 – Digital Spurs  

In these two cases the root problem is the additional frequency components inherent in 

the frequency synthesizer design. The potential for either the TCXO or its subharmonics or the 

close in spurs of fLO to mix with incoming signals is compounded by the nonlinear behavior or 

amplifiers and mixers. Each of these undesired signals could produce additional harmonics when 

amplified which also have the potential to mix to the IF.  

 4.2.3 Image Frequency 
A well known major spur problem specific to superheterodyne architectures, results from 

a signal at the “image frequency”. For high side injection, the image frequency is above the fLO 

signal by a frequency difference equal to the IF frequency placing it 2fIF above the frequency like 

the receiver is tuned to. Conversely, if the receiver uses low side injection, the fLO frequency is 

less than the desired RF frequency by the IF frequency and the image frequency is below the fLO 

frequency by the IF frequency. In either case the difference between fLO and fRF and the image 
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frequency is the IF and results in an unwanted signal at the IF if there is a signal present at this 

image frequency, fimage. Using symmetry the image frequency can be calculated using (4.5). 

𝑓𝐼𝑚𝑎𝑔𝑒 = 𝑓𝑅𝐹 ± 2𝑓𝐼𝐹         (4.5) 

where the sign of the addition is determined by the use of high or low-side injection respectively. 

Figure 4.8 shows the image frequency mixed to the IF when the receiver uses high side injection. 
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Figure 4.8 – Image Frequency 

As shown the image frequency is located symmetrically about fLO with respect to fRF. 

Without the image filter the image frequency will mix to the IF if neither the preselect filter or 

the LNA have a narrow enough bandpass shape that the image frequency is suppressed.   

 4.2.4 1/2IF & 1/3IF Spur Frequencies 

The ½ IF spur problem is a less known but also significant issue in superheterodyne receivers. In 

this case the 2nd harmonic of the LO frequency and the 2nd harmonic of the ‘half IF frequency’, a 

frequency differing from fLO by one half the IF frequency, will have a difference equal to the IF. 

As a result these frequencies will mix to fIF distorting the desired information at the 

demodulation input. The ½ IF frequency can be calculated as follows: 

𝑓1
2𝐼𝐹

= 𝑓𝐿𝑂 ± 1
2
𝑓𝐼𝐹      (4.5) 
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Figure 4.9 shows the 1/2IF problem graphically.  
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Figure 4.9 – 1/2IF & 1/3IF Spur Frequencies  

 It’s noteworthy to consider the same concept works for the third harmonics of the fLO 

frequency and the ‘one third IF frequency’, a signal located 1/3 of the IF frequency away from 

the fLO. The third harmonics of these two signals will also differ by the IF as well. Beyond this 

however, higher order spurs are typically not an issue as they are reduced enough in amplitude to 

be negligible if they are mixed to the IF frequency.  Figure 4.9 shows the ½ IF spur problem 

graphically. 

 4.3 Spurious Response Test System 

 4.3.1 Manual Measurement Process  
To investigate and characterize the spurious response of a “real world” radio receiver, it 

is necessary to observe how a receiver tuned to a desired frequency responds to a wide range of 

frequencies. To test receiver’s behavior, a signal was transmitted to the receiver using a signal 

generator, and the output of the receiver was observed to see if the signal was detected. If a 

signal was detected, the amplitude of the transmitted signal was decreased. This was repeated 
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until the receiver no longer received the transmitted signal. Then the frequency and the minimum 

amplitude that the transmitted frequency was received at were recorded.  

When performed manually, this process proved very time consuming as the following 

calculation is shows 

𝑇𝑀𝑒𝑎𝑠𝑢𝑟𝑒 = 𝑇∆𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 + 𝑇𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 = .5𝑠 + 1𝑠 = 1.5𝑠𝑒𝑐𝑜𝑛𝑑𝑠 

where 𝑇∆𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦= the time needed to change the frequency of the signal generator and 

𝑇𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒= the time needed to evaluate whether a signal is received. Taking the frequency range 

divided by a step size of 10 kHz, chosen based on the bandwidth of the last IF filter, the number 

of measurements becomes  

𝑓𝑓𝑖𝑛𝑎𝑙 − 𝑓𝑖𝑛𝑖𝑡𝑖𝑎𝑙
∆𝑓

=
1𝐺𝐻𝑧

10𝑘𝐻𝑧
= 100000 

and the time to evaluate multiplied by the number of measurements yields 

100000 ∗ 1.5𝑠 ≈ 41ℎ𝑜𝑢𝑟𝑠 

This omits the time it takes to decrement the amplitude when a quieting event occurs and is quite 

optimistic about the time to manually tune and measure each frequency. Additionally, due to the 

sheer number of measurements needed to scan an adequate frequency range human error is 

increasingly likely. As a result it was determined an automated test setup was needed to obtain 

this amount of data.  

 4.3.2 Automated Measurement Development 

 4.3.2.1 – Quieting Detection Method 

The first step in automating this test was determining a reliable method of event 

detection. When this test was done by hand the audio output of the receiver indicated when a 

signal was reaching the IF by “quieting” which is a natural result when a CW signal is received 

by a receiver in an FM mode. If no signal is reaching the IF the audible output of the receiver is 

just static. If an FM signal reaches the IF, it will be demodulated and output through the audio 

circuitry. In the case an unmodulated signal is received a fixed frequency is demodulated and the 

audio output of a receiver will be quiet.   

The static output of the receiver is just white noise at audible frequencies, so an FFT of 

the digitized audio output from the receiver can be used to detect this ‘quieting’ event. First we 

establish an average noise magnitude when no signal is received. When signal is receiver it can 
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be detected by noticing a decrease in the average noise magnitude as shown in Figure 4.10. 

Using a MyDAQ the audio output from the receiver was digitized and stored in the computer 

where LabVIEW code performed an FFT to analyze whether a signal was being received. The 

threshold to determine whether an event had occurred was set as a relative change in dB, 

typically 2dB. This made the system sensitive enough that it detected events with slightly greater 

sensitivity than by listening to the static by ear. However, comparisons in the lab showed the 

system agreed with manual event detection ± 2dB. 

 

|F(w)| - white noise |F(w)|- Quiet 

w w  
Figure 4.10 Fourier Spectrum Response to Quieting 

Next LabVIEW code was written to manage the testing process by controlling the signal 

generator and detecting when the audio quieted indicating a spurious event. When a quieting 

even is detected, the code recorded the frequency the signal generator was transmitting when the 

event occurred and what amplitude the signal was reduced to that caused the event to stop 

occurring. The LabVIEW code controlled an Agilent signal generator via a GPIO interface using 

prewritten driver blocks provided with LabVIEW. This test system was used to test four radios: 

1. VR-120 

2. VX-3 

3. SDR-14  

4. K-State Microtransceiver 

The test setup for these receivers is shown in the following section. 

 4.3.2.2 Physical Test Setup 

Figure 4.11 shows the Spurious Rejection Test System running a test on the VX-3. The 

lower corner shows the VR-120, which was tested using an identical setup. As shown the Agilent 

signal generator was connected to the receiver to transmit signals and the audio output of the 
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receiver was connected to the input of the MyDAQ, where the signal was put through an ADC 

and processed in LabVIEW.  

 
Figure 4.11 – Test Setup for VR-120 & VX-3 

 

Figure 4.12 shows the test setup running a test on the software defined radio. A small 

screen capture of the SDR software running is shown to the lower right. The audio output from 

the SDR originated from the software and was output through the computer’s audio and fed into 

the MyDAQ. Again, the Agilent signal generator transmitted the signal to the receiver.  
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Figure 4.12 – Test Setup for SDR 

Figure 4.13 shows the test setup for the K-State Microtransceiver. In this case the signal 

from the Agilent signal generator was fed into the K-State Microtransceiver. However, the K-

State Microtransceiver doesn’t have an audio output, so its IF output was sent into the VX-3 

receiver tuned to receive the IF frequency. Then the audio output of the VX-3 was fed into the 

MyDAQ. 

 
Figure 4.13 – Test Setup for K-State Microtransceiver 
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 4.3.2.2 LabVIEW Code Algorithm 

The LabVIEW code developed to automate this Spurious Response Test System included 

several screens of graphical code. To summarize its functionality Figure 4.14 shows the 

programmatic flow for the LabVIEW code. 
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Figure 4.14 – Spurious Rejection Response Test System LabVIEW Code Flowchart 

The LabVIEW GUI takes user settings for the start frequency, frequency range, 

frequency increment step size, the power of the base test signal and some operational settings. 

Once started the program asks the user to input a frequency to establish a baseline for a noisy 

output from the receiver. Once the user selects the frequency, the program commands that 

frequency and the user has the opportunity to decide if that frequency produces a noisy output 
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typical of no signal being received. This test is important to determine whether or not a spur is 

being received at the frequency used to establish the noise baseline. Once the user confirms that 

this frequency will establish a correct baseline, the code takes over and controls the test 

iterations.  

The program sets the frequency at the starting frequency and increments through the 

range in a specified step size equal to or less than the FM receiver’s signal bandwidth. If the 

output at the receiver quiets, indicating a spurious response was generated for this transmitted 

frequency, the LabVIEW code decrements the transmitted signals power and measures the 

output again. The code repeats this process until the spur disappears and then records the 

frequency the spur occurred at and the amplitude the input signal was reduced to when the spur 

disappeared. Then the program resets the amplitude, increments the frequency and iterates the 

process of testing for a spur at each frequency. The LabVIEW code is documented in appendix C 

along with a screen capture of the VI running and instructions for running a test. 

 4.4 Receiver Block Diagrams  
This section introduces each of the four receivers mentioned in section 4.3.2. These 

receivers spurious rejection responses are explored and compared using the previously described 

method of measurement in the next section. The architectures used these receivers are two 

multiple conversion superheterodyne architectures, a single conversion superheterodyne 

architecture, and a software defined radio. Because the architectures used in these receivers is an 

important basis for a cogent discussion of their spurious rejection responses, this section begins 

with a brief overview of each architecture.  

 4.4.1 VR-120 

The VR-120 is a commercially available general coverage, .1 MHz to 1300 MHz,  AM 

and FM receiver that uses a triple conversion superheterodyne architecture. A simplified diagram 

of the VR-120’s architecture, based on a more detailed block diagram in its service manual, is 

shown in Figure 4.15. This diagram focuses on the FM modulated receive path since all tests 

used this option on the receiver. 
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Figure 4.15 – VR-120 Block Diagram - after [18] 

As shown, the first stage of the receiver is a bank of preselect filters for each of the bands 

the receiver can be tuned to detect. The received signal is then fed into a low noise amplification 

stage and into the first mixer. The signal is mixed to the first IF at 248.45MHz and filtered. Next 

the signal is mixed to the second IF at 15MHz and filtered again, followed by another 

amplification stage. Last the signal is mixed down to a final IF of 450kHz, filtered and 

demodulated. 

 4.4.2 VX-3 

The VX-3 is an amateur radio transceiver which includes a general coverage .5 MHz to 

999 MHz receiver that uses a double conversion superheterodyne architecture receiver. The VX-

3 is capable of receiving a large number of different bands, similar to the VR-120. The full VX-3 

block diagram from the service manual includes a separate receive path for each received band 

which includes a preselect filter, amplification, the first mixer and various filters. To simplify the 

diagram only the two receive chains used in collecting the data in this thesis are included along 

with relevant RF circuitry and the demodulation stage.  
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Figure 4.16 – VX-3 Block Diagram - after [19] 

 

As shown in Figure 4.16 the receive chains are each proceeded by a preselect filter and 

followed by a diode switch used to control the bands processed. The receive chain for the 76-

300MHz band shown proceeds into a limiter to limit the maximum power of incoming signals, a 

filter, an adjustable gain amplifier and a tunable filter. Last, another diode switch is used to direct 

signal flow before this receive chain enters the path used for all narrowband frequency 

modulated signals, the start of which is indicated in the figure above by ‘PORT1’. The 1.6-

76MHz receive chain follows its first diode switch with an adjustable gain amplifier and a mixer 

before ending with another diode switch as it terminates in the final IF receive chain. The final IF 

receive chain of this circuit takes the received signal, now mixed to 47.25MHz, through another 

diode switch and into the final IF filter. Last, the IF is fed through another adjustable gain 

amplifier, a limiter and a final diode switch. The demodulator than follows further downconverts 

the signal to 450 kHz and delivers the information to the audio output. 
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 4.4.3 Software Defined Radio 
The next receover is the software defined radio. This SDR was developed for radio 

enthusiasts and can receive 0 Hz to 30 MHz.  
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Figure 4.17 – SDR Block Diagram - after [20] 

 

As shown there are two inputs on the SDR, both of which feed into the ADC. The path 

tested in this work was the ‘HF Input Port’. The ADC is driven with a 66.66MHz oscillator. 

After the ADC the signal is passed into a digital downconverter. The data is processed and 

buffered, and then sent via a USB interface to the software which completes the signal 

processing using decimators, filtering and demodulation. The software uses a numerically 

controlled oscillator allowing the user to choose how much of the spectrum to view and which 

frequency to receive. 
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 4.4.4 K-State Microtransceiver  
The K-State microtransceiver is a single conversion superheterodyne architecture 

receiver designed on an integrated circuit and developed and tested at Kansas State University. 

This transceiver works in the UHF band from approximately 350 MHz to 500 MHz and uses a 

single IF filter at 10.7 MHz, coupled with an image-reject mixer to mitigate the need for narrow 

image filtering after the LNA. The block diagram below shows the receive chain of the 

transceiver. 

 
Figure 4.18 – K-State Microtranciever - after [21] 

The received signal enters first through the transmit-receive (TR) switch and then goes 

into the tuned RF LNA. Next the signal is downconverted with an image reject mixer, amplified 

through an adjustable gain amplifier and sent to an off chip IF filter. Last, additional 

amplification is available in another chain of adjustable gain amplifiers and then the signal is fed 

to the ADC and finally the analog IF output ports.  

 4.5 Receiver Test Results 
In this section the test results for the four receivers described section 4.4 are given and 

analyzed to identify causes of spurious responses. The data is presented in a novel graphical 

format which allows the various spurious responses to be observed. The data is then summarized 

in a table followed by a brief discussion of the test results. The first tests run were on the VR-

120, VX-3 and the SDR where each receiver was tuned to receiver 3.6MHz. These tests 

demonstrate the validity of this testing methodology by showing some of the known spurious 

rejection issues addressed in section 4.3 in the data from the tests. The next set of tests compares 
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these receivers performance tuned to a different frequency using the same preselect filter to their 

original behavior when tuned to 3.6MHz. The third set of tests evaluates the performance of the 

VR-120 and the VX-3 tuned to two different frequencies which use different preselect filters and 

their spurious rejection performance is compared. The last set of tests in this section explores the 

K-State microtransceiver’s spurious rejection. Two revisions of the microtransceiver are tested, 

one tuned to 392.6MHz using an integer N synthesizer and the other tuned to 435MHz using a 

fractional N synthesizer. The naming convention adopted in the next sections was as follows: 

1. fLO = the local oscillator frequency 

2. fRX = the signal being transmitted to the receiver 

3. fRF = the signal the receiver is tuned to receive  

 4.5.1 Checking for Mixer Spurs 

Since such emphasis is placed on mixer spurs as problems in receiver’s spurious response 

rejection ability, the data obtained from the following test results was analyzed exhaustively to 

determine if the spurious responses found were due to mixer spurs. To accomplish this, a simple 

Octave function was written to analyze the data. The function took in all the data obtained from a 

test, the first IF frequency, and a few additional parameters. Using this information the function 

checked all the n and m coefficients up to a pre-designated maximum order to see if mixer spurs 

could explain the spurious response. The code for this analysis is shown in appendix D.    

 4.5.2 Three Receivers Tuned to an HF Frequency 

The VR-120, the VX-3 and the SDR were tuned to 3.6 MHz and their spurious response 

rejection was tested. The VR-120 was scanned from 100 kHz to 1 GHz, the VX-3 was scanned 

over 100 kHz to 100 MHz, and the SDR was scanned from 100 kHz to 30 MHz. The full scan on 

VR-120 provided interesting data, but the scan took more than 48 hours so the VX-3 was 

scanned over a reduced range which included the full passband of the preselect filter. The SDR is 

only able to receive 0 MHz - 30 MHz so this entire range was scanned. The data from these tests 

are shown in graphical from in Figures 4.19 -4.27. The data is organized in Tables 4.1 – 4.10. In 

each table the fRX is specified, the LO and IF frequencies and their subharmonics are listed, and 

the image frequency and the 1/2IF and 1/3IF spurs are listed. Last, each table contains the 

potential n and m values calculated as described in section 4.2 that may have produced the spurs 

in the data shown.   
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 Figure 4.19 – VR-120 3.6 MHz Tune Test Results 

 

VR-120 

fRX (MHz)  3.600 

Intermediate Frequencies, IF (MHz)  248.45, 15, .45 

Local Oscillator Frequencies, fLO (MHz)  252.05, 263.45, 15.45 

Name/Source Spur Observed (MHz) 

Subharmonics of fRX  1.8, 1.2, .9, .72, .6 … 

IF1 feedthrough, and subharmonics  248.45, 124.23, 82.82, 62.11, 49.69, 41.41… 

IF2 feedthrough, and subharmonics  15, 7.5, … 

IF3 feedthrough  0.45 

fIMAGE=fLO+fIF1  500.5 

f1/2IF=fLO±1/2fIF1  127.82, 376.275 

f1/3IF=fLO±1/3fIF1  169.23, 334.87 
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Mixing operations = fIF=mfLO±nfRF fRF (MHz) m  n 

  36.52 2 -7 

  42.61 2 -6 

  51.13 2 -5 

  63.91 2 -4 

  71.5 -1 7 

  72.53 3 -7 

  85.22 2 -3 

  100.1 -1 5 

  101.54 3 -5 

  255.65 2 -1 

  507.7 3 -1 

  752.55 -2 1 

  759.75 4 -1 

Table 4.1 – VR-120 3.6 MHz Tune Test Results 

Figure 4.19 shows four views of the data from the spurious response rejection scan of 

VR-120 receiver tuned to 3.6 MHz. The first graph at the top right of Figure 4.19 shows the data 

from 100 kHz to 1 GHz. The spurs beyond about 130 MHz were mostly suppressed except for 

the image frequency at 500.5 MHz, feedthrough at 248.45 MHz, the first IF, and a few higher 

frequency spurs, the strongest of which were can be explained as mixer responses with m and n 

coefficients listed in Table 4.1. The next graph at the bottom left of Figure 4.19 shows a 

narrowed data range of 100 kHz to 130 MHz. This range of data shows a multitude of spurs. This 

data demonstrates the receiver’s response to subharmonics of the IF by showing spurs at 124.45 

MHz, 82.82 MHz, 62.11 MHz, and 49.69MHz. This graph also shows a spur at 15 MHz, 

implying that the receiver may experience some IF feedthrough from the second IF. Spurious 

responses at frequencies predicted by the m and n coefficients in Table 4.1 are also shown. It’s 

noteworthy that one of the stronger responses at 33.6 MHz isn’t predicted in the tabulated data. 

The graph to the lower right shows a further narrowed view of the data from 50 MHz to 130 

MHz which shows additional spurious responses predicted in table 4.1. The last graph in the 

upper right shows a close in view of the spurious rejection response near the fRX frequency, 3.6 

MHz. This graph in particular highlights the effects of nonlinear amplification. Spurious 
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responses down to the 1/6  subharmonic frequency of fRX are shown. Another notable feature of 

this close in view is the spurious responses to signals out to roughly 295 kHz on either side of 

fRX. This response could be due to the phase noise of the LO, or the combined IF bandpass filter 

responses, or some combination of both. Last, there are two spurious responses immediately 

adjacent on either side of fRX, significantly less strong, which indicate they are at the edges of the 

final IF filter’s roll off. These signals are ±10 kHz which is consistent with the known ≈7.5 kHz 

bandwidth of the final IF. 

 
 Figure 4.20 – VX-3 3.6 MHz Tune Test Results 

 

VX-3 

fRX (MHz) 3.605 

Intermediate Frequencies, IF (MHz)  47.25, .45 

Local Oscillator Frequencies, fLO (MHz)  50.85, 46.8 
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Name/Source Spur Observed (MHz) 

Subharmonics of fRX  1.8, 1.20, .9, .72, .6… 

IF1 feedthrough, and subharmonics  47.25, 23.625, 15.75, 11.81, 9.45, 7.87, 6.75… 

IF2 feedthrough  0.45, .225… 

fIMAGE=fLO+fIF1  98.100 

f1/2IF=fLO±1/2fIF1  27.225, 74.475 

f1/3IF=fLO±1/3fIF1  35.105, 66.605 

Mixing operations = fIF=mfLO±nfRF fRF m  n 

  9.075 2 -6 

  13.615 2 -4 

  14.015 -1 7 

  15.045 3 -7 

  18.155 2 -3 

  24.525 -1 4 

  24.825 -2 6 

  28.545 -3 7 

  29.575 5 -7 

  31.235 4 -5 

  32.705 -1 3 

  33.305 3 -6 

  34.505 5 -6 

  39.045 4 -4 

  41.405 5 -5 

  43.075 -5 7 

  44.105 7 -7 

  49.045 -1 2 

  49.655 -2 3 

  49.955 -3 4 

  50.135 -4 5 

  50.255 -5 6 
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  51.455 7 -6 

  51.575 6 -5 

  51.755 5 -4 

  52.055 4 -3 

  52.655 3 -2 

  54.465 2 -1 

  57.605 -7 7 

  60.305 -5 5 

  61.745 7 -5 

  66.605 -3 3 

  67.205 -7 6 

  70.475 -6 5 

  74.475 -2 2 

  77.185 7 -4 

  78.085 4 -2 

  83.555 -4 3 

Table 4.2 – VX-3 3.6 MHz Tune Test Results 

 

Figure 4.20 shows four graphs of the VX-3’s spurious response rejection when the 

receiver is tuned to 3.605 MHz. The graph at the top left shows the spurious response of the 

receiver over 100 kHz to 90 MHz. The spurs from 90 MHz to 100 MHz were completely 

suppressed. The data in this graphs shows strong spurs at the subharmonics of the first IF 

frequency, 23.625 MHz and 15.745 MHz. A very strong spur from IF feedthrough is shown at 

47.25 MHz. Many additional spurs are also shown in this range, a number of which are predicted 

by mixing operations in Table 4.2. The 1/2IF and 1/3IF spurs are also shown in this data at 

27.225 MHz, 74.475 MHz, 35.105 MHz and 66.605 MHz. The graph in the lower left shows a 

narrowed view of the data from 0 kHz to 4 MHz. The data in this graph shows spurious 

responses down to the 1/4 subharmonic frequency of fRX, at 1.805 MHz, 1.185 MHz and 

.895MHz. Additionally, spurious responses at .445 MHz and .225 MHz indicate the receiver fails 

to block signals at the second IF and its 1/2 subharmonic frequency. The graph at the bottom 

right shows a close in view from 3.45 MHz to 3.75 MHz which shows a spurious response to 
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signals around fRX that looks very similar to a typical phase noise plot of a LO with a spread of 

spurious responses ±175 kHz around fRX. The last graph in Figure 4.20 at the top right shows the 

first IF feedthrough and three responses which are close to values predicted in Table 4.2 at 

49.245 MHz, 52.655 MHz and 54.455 MHz. Both the IF feedthrough and the spur at 54.455 

MHz show a similar range of nearby spurious responses to the spread observed around fRX 

indicating that the phase noise of the LO, or a filter bandpass response, or some other 

unidentified phenomenon is affecting this spur.  

 
Figure 4.21 – SDR 3.6 MHz Tune Test Results 

SDR 

fRX (MHz) 3.60 

Intermediate Frequencies, IF (MHz)  Unknown 

Local Oscillator Frequencies, fLO (MHz)  Unknown 

Name/Source Spur Observed (MHz) 

Subharmonics of fRX  1.8, 1.20, .9, .72, .6… 

IF1 feedthrough, and subharmonics  Unknown 

Table 4.3 – SDR 3.6 MHz Tune Test Results 

Figure 4.21 shows two views of the data obtained from the spurious rejection scan from 

100kHz to 30 MHz of the SDR tuned to 3.6 MHz. The first graph to the left shows full view of 

the data. The table for these spurs is brief and incomplete because this receiver architecture 

departs significantly from the superheterodyne receivers making the calculations of spurious 

response which were done for the VR-120 and the VX-3 impossible for the SDR. It is possible 
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an image frequency response exists for this receiver, but the LO frequencies are variables 

defined in the software which are not immediately visible to the user, making it difficult to 

predict the image frequency by calculation. The same argument is applicable to calculations for 

other typical spurious responses. Also, this receiver employs many digital elements at software 

and hardware levels, including an ADC, which has the potential to produce any number of 

spurious responses. A detailed analysis of these specifics and this architecture is outside the 

scope of this thesis. However, it’s noteworthy that there are a number of spurious responses 

shown for this receiver. The graph to the right in Figure 4.21 shows a narrowed view of the data 

from 0 kHz to 5 MHz and it’s particularly interesting to note that strong spurious responses occur 

for frequencies down to the 1/5 subharmonic frequency of the tuned RF frequency. Clearly this 

receiver architecture is subject to nonlinear amplification behaviors.  

The data collected from spurious response rejection scans of the VR-120 and the VX-3 

were very similar to one another. Both receivers showed very strong IF feedthrough and mixing 

behaviors, however a surprisingly consistent and strong spurious response to subharmonics was 

observed emphasizing the problems due to nonlinear amplification and the need for improved 

filter solutions in the front end. The data from the SDR was different in many ways, but 

exhibited an important similarity to the VR-120 and VX-3 in that it shared sensitivity to the 

subharmonics of the fRX. All three receivers performed poorly for portions of these scans. Even 

the SDR, which is relatively expensive and draws significant power, suffered from many 

spurious responses.  

It’s worth noting here as well, that in the data below there are a number of spurious 

responses included which are unexplained. However, due to sheer amount of data represented in 

even a single graph, it is beyond the scope of this thesis to analyze all of the data exhaustively. 

However, the data demonstrates well known behaviors in receivers supporting the validity of this 

testing methodology. These tests also show additional insight into receiver’s spurious response 

rejection not emphasized adequately in current research. The graphical display of results lends an 

easy intuitive understanding of a receiver’s ability to block unwanted signals and characterize a 

receiver’s performance.  
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  4.5.3 Three Receivers Tuned to Two Different Frequencies in HF Band 

 
Figure 4.22 – VR-120 3.6 MHz to 1 MHz Tune Comparison Test Results 

 

 

 

 

 

 

 

VR-120 

fRX (MHz)  1.000 

Intermediate Frequencies, IF (MHz)  248.45, 15, .45 

Local Oscillator Frequencies, fLO (MHz)  249.45, 263.45, 15.45 
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Name/Source Spur Observed (MHz) 

Subharmonics of fRX  .5, .33, .25, .2, 16… 

IF1 feedthrough, and subharmonics  248.45, 124.23, 82.82, 62.11, 49.69, 41.41… 

IF2 feedthrough  15, 7.5… 

IF3 feedthrough  0.45… 

fIMAGE=fLO+fIF1  497.9 

f1/2IF=fLO±1/2fIF1  125.225, 373.675 

f1/3IF=fLO±1/3fIF1  166.63, 332.26   

Mixing operations = fIF=mfLO±nfRF fRF (MHz) m n 

  35.78 2 -7 

  41.74 2 -6 

  50.09 2 -5 

  250.45 2 -1 

Table 4.5 – VR-120 3.6 MHz to 1 MHz Tune Comparison Test Results 

 

Figure 4.22 shows a comparison of the VR-120’s spurious rejection response tuned to 

receive 1 MHz to the VR-120’s spurious rejection response tuned receive to 3.6 MHz presented 

in section 4.5.2. The two graphs to the right provide a graphical display of the data from the new 

test from 100 kHz to 60 MHz. The image frequency, 1/2IF and 1/3IF spurs, shown in Table 4.5, 

are outside the range of this scan. The graph at the top right shows several responses including a 

spur at the second IF, 15 MHz, and another spur very close to its 1/2 subharmonic frequency at 

7.66 MHz. This behavior is nearly the same as the first scan with fRX tuned to 3.6 MHz. The 1/5  

subharmonic frequency of the first IF is shown clearly at 49.69 MHz showing IF feedthrough is 

still a major problem for frequencies at the IF and its subharmonics. The spurs at 35.78 MHz and 

50.09 MHz are predicted as mixer spurs in Table 4.5 and differ from the first scan as expected, 

since fLO changes with fRX. The narrowed frequency range from 100 kHz to 1 MHz in the graph 

to the lower right of Figure 4.22 shows strong spurs down to the 1/6 subharmonic frequency, 

exactly like the first scan reemphasizing that subharmonics of frequencies that produce spurious 

responses are a serious issue. Similar to the first scan the spread of spurs right around fRX is 

about ±290 kHz on either side and two there are two spurious responses are immediately 

adjacent to fRX, but much reduced in strength. Whether the source of this spread of spurs is LO 
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phase noise or IF bandwidths, the behavior appears invariant when the receiver is tuned to 

different frequencies.  

 
Figure 4.23 – VX-3 3.6 MHz to 70 MHz Tune Comparison Test Results 

 

 

 

 

 

 

VX-3 

fRX (MHz)  70.000 

Intermediate Frequencies, IF (MHz)  47.25, .45 

Local Oscillator Frequencies, fLO (MHz)  22.75, 46.8 
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Name/Source Spur Observed (MHz) 

Subharmonics of fRX  35, 23.3, 17.5, … 

IF1 feedthrough, and subharmonics  47.25, 23.625, 15.75, 11.81, 9.45, 7.87, 6.75… 

IF2 feedthrough  0.45, .225… 

fIMAGE=fLO+fIF1  117.250 

f1/2IF=fLO±1/2fIF1  93.625, 140.875 

f1/3IF=fLO±1/3fIF1  101.5, 133 

Mixing operations = fIF=mfLO±nfRF fRF (MHz) m  n 

  11.665 1 -6 

  23.335 1 -3 

  35.005 1 -2 

  41.125 -1 4 

  54.835 -1 3 

  62.415 2 -3 

  76.125 3 -4 

  82.255 -1 2 

Table 4.6 – VX-3 3.6 MHz to 70 MHz Tune Comparison Test Results 

 

Figure 4.23 shows a comparison of the VX-3’s spurious rejection response tuned to 

receive 70 MHz to the VX-3’s spurious rejection response tuned receive to 3.606 MHz presented 

in section 4.5.2. The two graphs to the right provide a graphical display of the data from the new 

test from 100 kHz to 90 MHz. The image frequency, 1/2IF and 1/3IF spurs, shown in Table 4.6, 

are outside the range of this scan. The graph at the top right shows a number of responses 

including a strong IF feedthrough and its second harmonic, in this case stronger than the actual 

fRX, similar to the first VX-3 scan. Several additional mixer spurs are shown as well, predicted in 

Table 4.6, which differ as expected from the first VX-3 scan since fLO is varied to receive a 

different fRX. The narrowed frequency range from 68 MHz to 72 MHz shown in the lower right 

of Figure 4.6 shows a close in view of fRX. This view shows some close-in spurious responses 

that are not predicted in tabulated data. This view also shows the same spread of spurs roughly 

±175 kHz around fRX as observed when the VX-3 was tuned to 3.605MHz, again indicating this 

behavior is invariant when the fRF is changed.  
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Figure 4.24 – SDR-3 3.6 MHz to 22 MHz Tune Comparison Test Results 

 

SDR 

fRX (MHz)  22 

Intermediate Frequencies, IF (MHz)  Unknown 

Local Oscillator Frequencies, fLO (MHz)  Unknown 

Name/Source Spur Observed (MHz) 

Subharmonics of fRX  11, 5.5, 2.75, 1.375, … 

IF1 feedthrough, and subharmonics  Unknown 

Table 4.7 – SDR 3.6 MHz to 22 MHz Tune Comparison Test Results 

Figure 4.24 shows a comparison of the SDR’s spurious responses when tuned to receive 

22 MHz to the SDR’s spurious responses when tuned receive to 3.6 MHz. The graph on the right 

in Figure 4.24 shows the new data from 100 kHz to 30 MHz. As in the first scan there are a 

number of spurs in the data not predicted in the tabulated data due to the additional complexity 

of the software driven variable components and digital circuitry. The new data dramatically 

emphasizes the issue of subharmonics by showing strong second and third order responses at 11 

MHz and 5.5 MHz.  

This section shows that each of these receiver’s spurious response behaviors contain 

consistent trends even when fRF is changed. A major problem that causes strong spurious 

responses in receivers is IF feedthrough and its subharmonics. Signals too close to the fRF create 

spurs as do harmonics of fLO and fRF, but there are a number of spurs which aren’t explained even 

by these predictions.  
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   4.5.4 Two Receivers Compared at VHF Bands 
This section shows the VR-120’s and the VX-3’s spurious rejection responses when 

tuned to different bands that make use of different preselect filters than the last two sections. 

These responses are compared and their data analyzed. Differences and similarities between 

these responses and those in the last two sections are addressed 

  

Figure 4.25 – VR-120 120 MHz Tune Comparison Test Results 

 

 

 

VR-120 

fRX (MHz) 200.000 

Intermediate Frequencies, IF (MHz) 248.45, 15, .45 

Local Oscillator Frequencies, fLO (MHz) 448.45, 263.45, 15.45 

Name/Source Spur Observed (MHz) 

Subharmonics of fRX 100, 66.67, … 

IF1 feedthrough, and subharmonics 248.45, 124.23, … 

IF2 feedthrough 15, 7.5, … 

IF3 feedthrough 0.45, … 

fIMAGE=fLO+fIF1 696.9 

f1/2IF=fLO±1/2fIF1 324.225, 572.675 

f1/3IF=fLO±1/3fIF1 365.63, 531.26 
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Mixing operations = fIF=mfLO±nfRF fRF m  n 

  156.7 3 -7 

  162.11 2 -4 

  216.15 2 -3 

  219.38 3 -5 

  229.07 -2 5 

  232.3 -1 3 

  257.56 4 -6 

  284.83 5 -7 

  286.34 -2 4 

  291.75 -4 7 

  309.07 4 -5 

  318.76 -3 5 

  324.22 2 -2 

  348.45 -1 2 

Table 4.8 – VR-120 120 MHz Tune Comparison Test Results 

Figure 4.25 shows a comparison of the VR-120’s spurious rejection response from 140 

MHz to 380 MHz, tuned to receive 200 MHz. The overall behavior of the spurious rejection 

response is quite similar to this receiver’s response when tuned to receive 3.6 MHz or 1 MHz. 

Subharmonics of the fRF and the IF frequencies are outside the range of this scan, however the 

graph on the left of Figure 4.25 shows strong feedthrough for the first IF at 248.25 MHz. The 

1/2IF spur at 324.22 MHz is also plainly observed along with a number of mixer spurs predicted 

in Table 4.8. A narrowed view of the data from 199.5 MHz to 200.5 MHz is shown on the right 

of the figure with a range ±295 kHz on either side of fRF of nearby spurious responses. Also there 

are two slightly strong spurs immediately adjacent to fRF at ±10 kHz indicating the roll off of 

the final IF filter.   
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Figure 4.26 – VX-3 150 MHz Tune Comparison Test Results 

 

VX-3 

fRX (MHz)  150.000 

Intermediate Frequencies, IF (MHz)  47.25, .45 

Local Oscillator Frequencies, fLO (MHz)  197.25, 46.8 

Name/Source Spur Observed (MHz) 

Subharmonics of fRX  75, 50, … 

IF1 feedthrough, and subharmonics  47.25, 23.625, … 

IF2 feedthrough  0.45, .225 

fIMAGE=fLO+fIF1  244.500 

f1/2IF=fLO±1/2fIF1  173.625, 220.875 

f1/3IF=fLO±1/3fIF1  181.5, 213 

Mixing operations = fIF=mfLO±nfRF fRF m  n 

  75 1 -2 

  122.25 -1 2 

  147.26 -2 3 

  148.35 4 -5 

  159.75 -3 4 

Table 4.9 – VX-3 150 MHz Tune Comparison Test Results 
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Figure 4.26 shows a comparison of the VX-3’s spurious rejection response from 50 MHz 

to 250 MHz, tuned to receive 150 MHz. The overall behavior of this spurious rejection response 

is significantly better than when the VX-3 was tuned to receive 3.6 MHz or 70 MHz. The 

response is amazingly spur free. The graph on the left shows a strong 1/2 subharmonic frequency 

response at 75 MHz. The image frequency is shown at 244.5 MHz and a few mixer spurs 

predicted in Table 4.9 are shown, including 122.25 MHz and 159.75 MHz. The graph on the 

right shows the same spur spreading around fRF of about ±175 kHz as seen in the test results 

from the previous two sections. Additionally, a repeated pattern of spurs is shown to the left of 

the tuned frequency perhaps due to some digital circuitry. Last, a mixer spur is shown at 147.25 

MHz. 

In this section as well as the previous two, subharmonics are the most common problem. 

This source of spurs is demonstrated in every test indicating that this issue a universal problem 

even across varying radio architectures. While other responses were observed, such as IF 

feedthrough, 1/2IF and 1/3IF spurs, and mixer spurs, there is a large number of unexplained 

behaviors in these spurious responses. The graphical representation provides insight into the 

receiver performance and guides the designer when looking at the receiver about which 

frequencies to consider when assessing spur blocking capabilities.  

  4.5.5 The K-State Microtransceiver Spurious Rejection Response at UHF 

This section looks at the K-State microtransceiver spurious rejection response for two 

cases: first, the receiver is tuned to receive 392.6 MHz using only the integer N synthesizer and 

second, the receiver is tuned to receive 435 MHz and is using the fractional N synthesizer. These 

plots show the spurious responses in both cases demonstrate some expected behaviors and allow 

an easy comparison to be made about how the fractional N synthesizer impacts the spurious 

response. 
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Figure 4.27 – K-State Microtransceiver Without & With the Fractional N-Synthesizer Test 

Results 

 

K-State Microtransceiver 

fRX (MHz)  435.0  392.6 

Intermediate Frequency, IF (MHz)  10.7  10.7 

Local Oscillator Frequency, fLO (MHz)  445.7  403.3 

Name/Source Spur Observed (MHz) Spur Observed (MHz) 

Subharmonics of fRX  217.5, 145, 108.75, 87, 72.5, …  196.3, 130.8, 98.15, 78.52, … 

IF1 feedthrough, and subharmonics  10.7, 5.35, …  10.7, 5.35, … 

fIMAGE=fLO+fIF1  456.4  414 

f1/2IF=fLO±1/2fIF1  440.35, 451.05  397.95, 408.65 

f1/3IF=fLO±1/3fIF1  442.13, 449.26  399.73, 406.86 

Table 4.10 – K-State Microtransceiver Without & With the Fractional N-Synthesizer Test 

Results 

 

Figure 4.27 shows the graphical display of two spurious rejection response tests results 

from the K-State microtransceiver. The first test shown in the graph on the left was run with 100 

kHz steps and the second test shown in the graph to the right is a test run with 50 kHz steps. It 

was determined that the step size should be 10 kHz for future tests, however these tests still show 

important behaviors such as IF feedthrough, subharmonic responses, and strong image responses. 

More importantly it’s also clear that, as expected, the use of the fractional N synthesizer 
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increases the number of spurious responses significantly. However, the overall performance of 

this receiver exceeds the other receivers showing an overall robust spurious rejection response. 

 

Chapter 5 - The Q-Enhanced Filter as a Solution to SDR 

Architectures 

The results in Chapter 4 showed many responses were a result of subharmonic 

frequencies of the IF frequencies or fRF, or the result of other nonlinearities due to amplification 

which then mixed with the LO. There were also a number of spurious responses which were 

unexplained. If a frequency synthesizer is used with significant spurs and/or phase noise the 

increase in the number of spurious responses rose significantly. These results provoked the 

question about what would happen to a spurious response if the IF were changed. The Q-

enhanced filter provides that type of ability, so if varying the IF were to improve the spurious 

response significantly, the Q-enhanced filter could be a valuable IF filter in a receiver.   

 5.1 – Spur Reduction Achieved by Changing the IF 
To test how spurious responses changed when the IF was shifted, the spurious response 

rejection test with the K-State Microtransceiver was rerun where the receiver was tuned to 435 

MHz with two different IF filters. This was accomplished by changing the external IF filter and 

varying the LO accordingly. Figure 5.1 shows these results and Tables 5.1 and 5.2 show some 

expected responses to these tests respectively. 

Figure 5.1 – K-State Microtransceiver 435MHz Tune Different IF Comparison Test Results 
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K-State Microtranciever 

fRX (MHz)  435.000 

Intermediate Frequency, IF (MHz)  10.700 

Local Oscillator Frequency, fLO (MHz)  445.700 

Name/Source Spur Observed (MHz) 

Subharmonics of fRX  217.5, 145, 108.75, 87, 72.5, … 

IF1 feedthrough, and subharmonics  10.7, 5.35, … 

fIMAGE=fLO+fIF1  456.4 

f1/2IF=fLO±1/2fIF1  440.35, 451.05 

f1/3IF=fLO±1/3fIF1  442.13, 449.26 

Mixing operations = fIF=mfLO±nfRF fRF m  n 

  228.2 -1 2 

  300.7 -2 3 

  331.6 3 -4 

  336.95 -3 4 

  354.42 4 -5 

  358.7 -4 5 

  443.56 5 -5 

  444.17 7 -7 

  447.23 -7 7 

  447.84 -5 5 

  880.69 2 -1 

  902.11 -2 1 

Table 5.1 – K-State Microtransceiver Spurious Response, IF= 10.7 MHz 
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K-State Microtransceiver 

fRX (MHz)  435.000 

Intermediate Frequency, IF (MHz)  6.500 

Local Oscillator Frequency, fLO (MHz)  441.500 

Name/Source Spur Observed (MHz) 

Subharmonics of fRX  217.5, 145, 108.75, 87, 72.5, … 

IF1 feedthrough, and subharmonics  6.5, 3.25, … 

fIMAGE=fLO+fIF1  448.0 

f1/2IF=fLO±1/2fIF1  438.25, 444.75 

f1/3IF=fLO±1/3fIF1  439.33, 443.67 

Mixing operations = fIF=mfLO±nfRF fRF m  n 

  224 -1 2 

  296.5 -2 3 

  329.5 3 -4 

  332.75 -3 4 

  351.9 4 -5 

  354.5 -4 5 

  438.25 2 -2 

  439.33 3 -3 

  440.2 5 -5 

  440.57 7 -7 

  442.8 -5 5 

  443.67 -3 3 

  444.75 -2 2 

  889.5 -2 1 

Table 5.2 – K-State Microtransceiver Spurious Response, IF= 6.5 MHz 

Figure 5.1 shows a number of spurious responses for both IF frequencies, including all 

the expected known problems at subharmonics or from mixing spurs or image frequencies. Upon 

review, it is also clear that many of those responses occur at different frequencies. Furthermore, 

many of the unexplained responses also seem to differ between the two tests. To emphasize this 

point Figure 5.2 shows the results from this test in two forms: first, the graph on the left shows 
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both spurious responses on the same plot, and second, the graph on the right shows the two 

responses with all spurious responses in common between the two tests removed. 

 
Figure 5.2– K-State Microtransceiver Varied IF Comparison Spur Residual  

 It’s obvious looking at these two plots that the number of spurious responses has been 

decreased dramatically. All the mixer spurs and the image frequency are gone as expected, but 

the majority of the unexplained responses are also removed. This is a strong indication that a 

variable IF frequency could significantly improve a receiver’s spurious response if implemented 

intelligently. Table 5.3 shows an exhaustive list of the spurs which remain after eliminating the 

responses which are in common within ±100 kHz. 

K-State Microtransceiver 

IF = 10.7 MHz IF = 6.5 MHz 

Frequency (MHz) Spur (dBm) Frequency (MHz) Spur (dBm) 

108.75 -23 108.75 -23 

145 -48 145 -48 

198.61 -27 198.61 -21 

214.35 -23 214.4 -27 

217.5 -72 217.5 -71 

223.92 -23 223.9 -41 

223.95 -23 224 -62 

238.35 -23 238.35 -21 

242.99 -33 242.99 -33 

243 -31 243 -31 

266.35 -26 266.24 -30 
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276.6 -27 276.59 -21 

281.39 -38 281.39 -39 

281.4 -36 281.4 -36 

290.99 -33 290.99 -31 

291 -31 292.1 -22 

292.2 0 292.23 -38 

295.35 -27 295.45 -30 

319.79 -41 319.79 -28 

338.99 -35 338.99 -50 

339 -33 339 -47 

354.42 -44 354.46 -39 

377.4 -52 377.4 -54 

396.59 -65 396.59 -69 

396.6 -63 396.6 -67 

415.79 -67 415.79 -70 

415.8 -65 415.8 -68 

434.99 -121 434.99 -120 

435 -120 435 -118 

440.16 0 440.2 -54 

440.35 -67 440.24 -52 

442.13 -67 442.2 -47 

443.56 -58 443.6 -62 

444.51 -51 444.65 -62 

447.84 -57 447.88 -73 

454.2 -63 454.39 -49 

473.39 -61 473.39 -56 

473.4 -60 473.4 -51 

492.59 -44 492.59 -58 

492.6 -45 492.6 -57 

500.79 -41 500.81 -48 

511.8 -45 511.8 -48 

526.19 -28 526.19 -22 

530.99 -46 530.99 -34 

531 -44 531 -30 
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550.19 -39 550.19 -37 

550.2 -38 550.25 -29 

739.99 -30 739.99 -28 

759.99 -31 759.99 -31 

760 -28 760 -29 

764.99 -22 764.99 -21 

769.99 -22 769.99 -23 

Table 5.3 – K-State Microtransceiver 435MHz Tune Different IF Spur Residual  

 

A more thorough analysis of this data could likely yield insight into the K-State 

Microtransceiver’s spurious response. However, given the significant improvement from just 

varying the IF, it’s possible that more than one tunable filter could be used in a receiver further 

improving a receiver’s spurious response. The Q-enhanced filter is too noisy to be used as a 

preselect filter, but it could work as a narrow bandpass filter immediately preceding the mixer 

providing a narrowband tuned – RF capability.  The next section explores this receiver 

architecture concept.  

 5.2 – A New Architecture Using the Q-Enhanced Filter 
Figure 5.3 shows a modified single conversion superheterodyne receiver architecture 

which uses two tunable variable bandwidth filters. These filters are assumed to be the Q-

enhanced filters addressed earlier in this thesis.   

ADC, 
DMOD

TCXO
Frequency 
Synthesizer

Preselect 
Filter

Image 
Filter

IF 
FilterLNA

IF 
AmplifiersMixer

VCO

Tunable, Variable 
Bandwidth

Tunable, Variable 
Bandwidth

 
Figure 5.3 – Modified Superheterodyne Architecture Using Q-Enhanced Filters  
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This architecture would use Q-enhanced as both as an image reject filter and as an IF 

filter. Tunable filters at these nodes in the receiver would allow significant tunability enabling 

the same spurious response avoidance capability as shown in section 5.1. Additionally, these 

filters could provide very narrow fractional bandwidths further reducing the production of spurs. 

It’s important to recognize that these filters would need to be tuned by an intelligent algorithm 

which avoided spurious responses as it tuned to receive the desired signal. The full nature of this 

algorithm isn’t addressed here, but is mentioned to explain that the potential of this receiver 

architecture could only be realized with adaptive control of the tunable filters.  

 

Chapter 6 - Conclusion  

 6.1 System Status Summary 

 6.1.1 Integrated Circuit Redesign 

The Q-enhanced variable bandwidth tunable filter integrated circuit was fully redesigned 

in a new integrated circuit technology. Problems in the existing design with the frequency 

divider and amplitude detector circuitry were addressed and solutions implemented. The 

incorrect loading of the capacitive coupling circuitry in the current design was fixed in the new 

design. Resistance tuning was implemented in the new design to cancel asymmetry in the 

passband due to inductive coupling. The biasing of the Q-tuning cells was altered and the gain of 

the differential cores was dropped to improve the dynamic range at higher Q enhancements. The 

new designs were simulated to test for functionality. 

 6.1.2 Software Development 
The automated tuning algorithm was improved first to include fine tuning and then to 

include an optimized binary search routine for determining the fine and course tuning values. 

The improved algorithm was able to achieve a 2.5MHz bandwidth and maintain that bandwidth 

when heated from room temperature to 75ºC. The microcontroller code was prepared for the 

resistance tuning by modifying the portion of the algorithm which programs the filter and 

receives commands from the test application. Changes needed in the test application code were 

enumerated, but not implemented. 
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  6.2 Receiver Spurious Response Conclusions 
A novel graphical description of receiver’s spurious responses was obtained through a 

test system developed to characterize receivers. Four receivers were tested using this system and 

their responses were compared and analyzed. The graphical description provides an intuitive 

understanding of a receiver’s abilities to reject frequencies it is not tuned to receive. These test 

results emphasize that a dominant issue in receiver spur block capability is subharmonics 

rejection and IF feedthrough. These test results also indicate that the Q-enhanced filter could 

provide a viable improvement in receiver architectures. A potential receiver architecture was 

proposed and its viability as a way to improve spurious response rejection in receivers was tested 

using the K-State microtransceiver.  

  6.3 Future Work 

 6.3.1 Filter Layout 

The new filter design is due to be fabricated in June. The final schematic design should 

be reviewed and the layout completed. Additionally, all simulations should be repeated with the 

extracted data from layout included to account for parasitics and ensure a robust design. 

  6.3.2 Filter Testing 

The new filter should be tested thoroughly to ensure basic functionality, observe if the 

design corrections were successful in mitigating flaws in the current design, and fully determine 

the viability of this filter as a potential solution in receiver architectures. A new embedded board 

should be fabricated to place inductors close together to allow the automatic coupling adjustment 

algorithms to be researched and developed.  

  6.3.3 Software 

The code changes in the microcontroller should be tested by programming the new chip. 

Further optimization is possible in the tuning algorithm and increases in tuning speed might be 

achievable and should be explored. The test application needs to have some additional 

functionality incorporated to fully test and explore the behavior of the filter. Additional error 

checking and event handling would be useful in both systems to ensure robust functionality.  
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 6.3.3.1 Fine Tuning Code Future Work 

The fine tuning C code on the microcontroller is fully implemented. However, both the 

course and fine tuning portions of the algorithm currently use linear searches to find the best 

value and the tuning speed might be significantly increased if this search was optimized. Also, 

three of the blocks in Figures 3.2-3.5 were highlighted by the use of bold dashed outlines. These 

blocks should be unnecessary with the successfully redesigned filter so that these values can be 

to zero when testing, assuming the sensitivity issues in the amplitude detector are corrected.  

The fine tuning code required modifying only two files in the original microcontroller 

code. The original code is documented entirely in [2], but the modified C code is contained in 

appendix B.  The fine tuning code currently makes use only of the settings from the filter test 

application documented in [2]. However, the frequency tolerance and amplitude detection 

thresholds for the front and back ends are used in the course tuning portions of the algorithm. It 

would be useful to extend the functionality of the GUI to control the fine tuning directly by 

implementing additional thresholds for the frequency amplitude thresholds in the commands sent 

to the microcontroller.  

The C code on the microcontroller needs to be modified to include additional bits in the 

control word used to program the filter. The GUI should be modified to include the ability to 

tune the resistance values. Eventually the automated algorithm should be automated to include a 

look up table which chooses the resistance based on the desired center frequency and bandwidth.  
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Appendix A - IC Redesign 

This section of the appendix details the circuits not discussed in the body of the work. It 

presents the full schematic and then steps down level by level to explain the various portions of 

the design, including simulations and test benches where needed.  

 A.1 Top Level View of Q-Enhanced Filter Schematic 

 
Figure A.1 – Top Level View of Q-Enhanced Filter Schematic 

This figure shows the top view of the design as seen after stepping into the 

‘top_qenhanced’ symbol in the design. There are three portions to this top level: the serial to 

parallel portion which takes in all the tuning bits and enable bits as information to set the features 

of the circuit, the differential cores with the amplitude and frequency detection circuits at their 

outputs, and the capacitive coupling tuning and resistance tuning portions of the circuit used to 

refine the passband shape. 
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 A.2 Serial to Parallel Block 
This figure shows a close up of the serial to parallel blocks and their wiring. The output 

of each DFF in the second level is tied to its enable or tuning bit so that when the latch is 

triggered all the bits which have been shifted into the first level of DFF are passed to the desired 

circuits. The full chain of DFF in each serial to parallel block is shown next. 

 
Figure A.2 – Top Level View of Serial to Parallel Register Schematic 

 



94 

 

 
Figure A.3 – Single Cell View of Serial to Parallel Register Schematic 

 A close up of the first few DFF are shown next to clarify the operation and wiring of these 

circuits. 

 
Figure A.4 – Narrowed View of Serial to Parallel Register Single Cell 

This circuit was tested using the following test bench set up. 
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Figure A.5 – Test Bench for Serial to Parallel Register 

The simulation output for this circuit is shown in the next two figures.  

 
Figure A.6 – Simulation Output for Serial to Parallel Register 
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Figure A.7 – Simulation Output for Serial to Parallel Register 

 A.3 Differential Cores, Amplitude Detector & Frequency Divider Top View 
The next figure shows a slightly closer of the differential cores and the amplitude and 

frequency detection circuits tied at the output. The port outputs tied into the LC tank circuits 

explained in other sections of this work. 
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Figure A.8 – Top View of Differential Cores, Frequency Detectors, and Amplitude 

Detectors 

A.3.1 Differential Core, Buffer, & Tuning Block 

 A.3.1.1 Differential Core 

This figure shows the internal portion of a differential core master block which is divided 

into three portions: the amplifier core, the frequency tuning and Q-enhancement block and the 

buffer at the output. This block also includes the enable PFET which operates a switch to 

activate or deactivate the core.  

 
Figure A.9 –Differential Core, Tuning Block, and Buffer 

The schematic of the differential core is shown above. The bias points in the circuit are 

set up with the stack of PFETS shown on the left. The current through the core is set to about 

200mV overvoltage and is setting the total current through the core to be about 2mA. The inputs 

are AC coupled and biased with resistors which set the input impedance. The differential core is 

built of two legs of intrinsic FETs which are cascoded to drive the LC tank circuits. This circuit 
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is designed to have an unenhanced gain of 1. This circuit is crucial to the overall performance at 

a system level because it is one of two circuits which limit the output voltage swing, or dynamic 

range, and the primary circuit which determines the noise floor. The noise floor is lowered with 

more current, but power consumption is increased. Additionally the gain of this core is dictated 

by gm which is impacted by the current through the circuit. The voltage gain of this circuit is 

known to be  

𝐺𝑉 = 2𝑔𝑚𝑅𝑝 

where Rp is the load seen from the LC tank circuit at resonance in combination with the total 

load resulting from all resistances added in parallel with the load of the inductors at resonance 

when tuning and Q enhancements are active.  

 
Figure A.9 –Differential Core Schematic 

The test bench and simulation output for this circuit are shown below. 
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Figure A.10 –Differential Core Test Bench 

 
Figure A.11 – Simulation Output of Differential Core  
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 A.3.1.2 Buffer 

The next circuit is the buffer. The buffer is designed to provide a stable output to the 

frequency and amplitude detection circuitry without loading the core amplifier down.  

 
Figure A.12 – Buffer Circuit  

The buffer is a differential chain of two common drain, or current follower, circuits. The 

overall gain is about .6 when driving a 1 kΩ load  and the total current draw is about 2-3 mA. The 

current in each leg of the amplifier is set up by the resistor and FET using the power supplied to 

the circuit. The output test bench and simulation are shown next. 
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Figure A.13 – Buffer Circuit Testbench 

 
Figure A.14 – Simulation Output of Buffer Circuit  

 

 A.3.1.3 Tuning Block 
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The tuning circuitry used to achieve frequency tuning and Q-enhancement is shown 

below.  

 
Figure A.15 – Top View of Frequency and Q-Enhancement Tuning Blocks  

This is the top view of the tuning circuitry. Close ups of the sections and cells follow with 

relevant explanation. 

 
Figure A.16 – Narrowed View of Frequency and Q-Enhancement Tuning Block 

This figure shows a close-up of the top left section of the full tuning block. The biasing 

used for these blocks and sections are shown at the very top left. The analog frequency tuning 
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capacitor is shown next to the right, followed by the digital frequency tuning block. Finally, at 

the top right the analog Q tuning cell is shown. Each Q cell is run by two inverters. The Q cell is 

implemented in binary weighted banks.  

 
Figure A.17 – Top View of Frequency Tuning Block 

The frequency tuning circuit is shown above. To simplify layout the widths and lengths 

of the FETs were modified to create binary weighted capacitors driven by inverters. A close-up 

of the first two caps is shown next.  

 
Figure A.18 – Narrowed View of Frequency Tuning Block 
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As shown these capacitors are implemented as FET capacitors with the drain and source 

tied together driven by inverters. The source and drain of the FETs are AC grounds in this case 

so no resistor is needed.  

 
Figure A.19 – Cell View of Q-Enhancement Tuning Block 

The basic Q-enhancement cell is shown above. This circuit provides the Q enhancement 

and is the second circuit which limits the output voltage swing, or dynamic range of the circuit. 

To improve the system’s ability to output large signals high threshold FETs are used for the two 

legs of the circuit allowing the voltage at the ports to drop as much as possible before pushing 

these FETs out of the active region. The current source is biased with about 200mV overvoltage. 

A.3.2 Resistance Tuning & Capacitive Coupling Top View 
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Figure A.20 – Top View of Capacitive Coupling and Resistance Tuning Blocks 

This schematic is the capacitive coupling and resistive blocks shown at the top level of 

the schematic. The resistor coupling is explained at length in the body of the text and isn’t 

addressed here. The capacitive coupling is also referenced in the body of the text, but for sake of 

thorough documentation the circuits are included here. 
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Appendix B - C Code  

 B.1 Fine Tune Code Modifications 
/************************************************************************************** 
 * Filename:     qefilter.c 
 * Date:          June 2010 
 * Compiler:      C30 
 * Author:        Joel Schonberger 
 * Company:       Kansas State University 
 * Department:    Electrical & Computer Engineering 
 * Research:      500 MHz Two-Pole Q-Enhanced Filter Tuning Algorithm 
 * Description:   This file houses the functions needed to implement the QE Filter 
 *                 tuning algorithm. 
 * ------------------------------------------------------------------------------------------------------------------------------ 
 * Updated:  April 2012 
 * Author:   Chelsi Kovala 
 * Changes:  Modified to include fine tuning in the tuning algorithm and now  
   includes the functions:  
   void fineFrontEndFTune(void) 
   void fineBackEndFTune(void) 
   void fineFrontEndQTune(void) 
   void fineBackEndQTune(void) 
   printFrontEndAnalogQTune() 
       printFrontEndAnalogFTune() 
       printBackEndAnalogQTune() 
   printBackEndAnalogFTune() 
 **************************************************************************************/ 
#include "main.h" 
 
/* Global Variables */ 
char strCenterFreq[]           = "Center Frequency: ###.# MHz\r\n"; 
char strFreqTol[]              = "Frequency Tolerance: ##.# MHz\r\n"; 
char strFrontEndADThresh1[]    = "Front-End AD Threshold 1: ###\r\n"; 
char strFrontEndADThresh2[]    = "Front-End AD Threshold 2: ###\r\n"; 
char strFrontEndQOffset[]      = "Front-End Q-Offset: ##\r\n"; 
char strFrontEndQBackOff[]     = "Front-End Q-BackOff: ##\r\n"; 
char strFrontEndFOffset[]      = "Front-End F-Offset: ##\r\n"; 
char strBackEndADThresh1[]     = "Back-End AD Threshold 1: ###\r\n"; 
char strBackEndADThresh2[]     = "Back-End AD Threshold 2: ###\r\n"; 
char strBackEndQOffset[]       = "Back-End Q-Offset: ##\r\n"; 
char strBackEndQBackOff[]      = "Back-End Q-BackOff: ##\r\n"; 
char strBackEndFOffset[]       = "Back-End F-Offset: ##\r\n"; 
char strCouplingUpper[]        = "Coupling Upper: ##\r\n"; 
char strCouplingLower[]        = "Coupling Lower: ##\r\n"; 
char strCouplingUFLB[]         = "Coupling UFLB: ##\r\n"; 
char strCouplingLFUB[]         = "Coupling LFUB: ##\r\n"; 
char strFrontEndAD[]           = "Front-End Amp Detector: ####\r\n"; 
char strFrontEndNonOsc[]       = "Front-End Non-Osc: ####\r\n"; 
char strFrontEndFCnt[]         = "Front-End Freq Count: ###.# MHz\r\n"; 
char strFrontEndDigitalQTune[] = "Front-End Digital Q-Tune: ##\r\n"; 
char strFrontEndAnalogQTune[]  = "Front-End Analog Q-Tune: ####\r\n"; 
char strFrontEndDigitalFTune[] = "Front-End Digital F-Tune: ###\r\n"; 
char strFrontEndAnalogFTune[]  = "Front-End Analog F-Tune: ####\r\n"; 
char strBackEndAD[]            = "Back-End Amp Detector: ####\r\n"; 
char strBackEndNonOsc[]        = "Back-End Non-Osc: ####\r\n"; 
char strBackEndFCnt[]          = "Back-End Freq Count: ###.# MHz\r\n"; 
char strBackEndDigitalQTune[]  = "Back-End Digital Q-Tune: ##\r\n"; 
char strBackEndAnalogQTune[]   = "Back-End Analog Q-Tune: ####\r\n"; 
char strBackEndDigitalFTune[]  = "Back-End Digital F-Tune: ###\r\n"; 
char strBackEndAnalogFTune[]   = "Back-End Analog F-Tune: ####\r\n"; 
 
int FrontEndAD, BackEndAD, FrontEndFCnt, BackEndFCnt, FrontEndNonOsc, BackEndNonOsc; 
int PrevFrontEndDigitalQTune, PrevBackEndDigitalQTune; 
int filterData[4]; 
int CenterFreq, FreqTol; 
int FrontEndADThresh1, FrontEndADThresh2, FrontEndQOffset, FrontEndQBackOff, FrontEndFOffset; 
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int BackEndADThresh1, BackEndADThresh2, BackEndQOffset, BackEndQBackOff, BackEndFOffset; 
int CouplingUpper, CouplingLower, CouplingUFLB, CouplingLFUB; 
 
struct { 
    unsigned int en:1; 
    unsigned int fTune:8; 
    unsigned int qTune:6; 
    unsigned int ADen:1; 
} FENDCON; 
 
struct { 
    unsigned int en:1; 
    unsigned int fTune:8; 
    unsigned int qTune:6; 
    unsigned int ADen:1; 
} BENDCON; 
 
struct { 
    unsigned int upper:5; 
    unsigned int lower:5; 
    unsigned int FDFen:1; 
} CAPCON1; 
 
struct { 
    unsigned int UFLB:5; 
    unsigned int LFUB:5; 
    unsigned int FDBen:1; 
} CAPCON2; 
 
struct { 
    unsigned int FANAF:10; 
    unsigned int FANAQ:10; 
    unsigned int BANAF:10; 
    unsigned int BANAQ:10; 
} ANALOG; 
 
struct { 
    unsigned int ADFen:1; 
    unsigned int FDFen:1; 
    unsigned int ADBen:1; 
    unsigned int FDBen:1; 
    unsigned int RFOn:1; 
} DEBUG; 
 
extern const char *console_str_sep; 
extern int _PrintFilterSettings; 
 
/************************************************************************************** 
 * Function:    initFilter 
 * Parameters:   void 
 * Return:       void 
 * Description: Initializes the Filter Controls to their minima and disables all  
 *                of the enable variables. 
 **************************************************************************************/ 
void initFilter(void) 
{    
    disableFrontEnd(); 
    setFrontEndDigitalFTune(FTUNE_DIG_MIN); 
    setFrontEndDigitalQTune(QTUNE_DIG_MIN); 
    disableFrontEndAD(); 
    disableFrontEndFD(); 
 
    disableBackEnd(); 
    setBackEndDigitalFTune(FTUNE_DIG_MIN); 
    setBackEndDigitalQTune(QTUNE_DIG_MIN); 
    disableBackEndAD(); 
    disableBackEndFD(); 
 
    setCouplingUpper(COUPLING_MIN); 
    setCouplingLower(COUPLING_MIN); 



108 

 

    setCouplingUFLB(COUPLING_MIN); 
    setCouplingLFUB(COUPLING_MIN); 
 
    setFrontEndAnalogFTune(ANALOG_MIN); 
    setFrontEndAnalogQTune(ANALOG_MIN); 
    setBackEndAnalogFTune(ANALOG_MIN); 
    setBackEndAnalogQTune(ANALOG_MIN); 
 
    DEBUG.ADFen = 0; 
    DEBUG.FDFen = 0; 
    DEBUG.ADBen = 0; 
    DEBUG.FDBen = 0; 
    DEBUG.RFOn = 1; 
} 
 
/************************************************************************************** 
 * Function:     printFilterOptions 
 * Parameters:   void 
 * Return:       void 
 * Description:  Prints each of the the filter options to the Console. 
 **************************************************************************************/ 
void printFilterOptions(void) 
{ 
    printSeperator(); 
    printFrontEndStatus(); 
    printFrontEndADStatus(); 
    printFrontEndFDStatus(); 
    printFrontEndDigitalQTune(); 
    printFrontEndAnalogQTune(); 
    printFrontEndDigitalFTune(); 
    printFrontEndAnalogFTune(); 
    printBackEndStatus(); 
    printBackEndADStatus(); 
    printBackEndFDStatus(); 
    printBackEndDigitalQTune(); 
    printBackEndAnalogQTune(); 
    printBackEndDigitalFTune(); 
    printBackEndAnalogFTune(); 
    printCouplingUpper(); 
    printCouplingLower(); 
    printCouplingUFLB(); 
    printCouplingLFUB(); 
    printRFSwitchStatus(); 
    printSeperator(); 
} 
 
/************************************************************************************** 
 * Function:     printAlgorithmOptions 
 * Parameters:   void 
 * Return:       void 
 * Description:  Prints each of the the algorithm options to the console. 
 **************************************************************************************/ 
void printAlgorithmOptions(void) 
{ 
    printSeperator(); 
    printCenterFreq(); 
    printFreqTol(); 
    printFrontEndADThresh1(); 
    printFrontEndADThresh2(); 
    printFrontEndQOffset(); 
    printFrontEndQBackOff(); 
    printFrontEndFOffset(); 
    printBackEndADThresh1(); 
    printBackEndADThresh2(); 
    printBackEndQOffset(); 
    printBackEndQBackOff(); 
    printBackEndFOffset(); 
    printCouplingUpper(); 
    printCouplingLower(); 
    printCouplingUFLB(); 
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    printCouplingLFUB(); 
    printSeperator(); 
} 
 
/************************************************************************************** 
 * Function:     updateFilterData 
 * Parameters:   void 
 * Return:       void 
 * Description:  Formats and stores the filter options to be programmed. 
 **************************************************************************************/ 
void updateFilterData(void) 
{ 
    filterData[0] = ((CAPCON2.FDBen & 1) << 10)              | 
                    ((CAPCON2.UFLB & COUPLING_MAX) << 5 )    | 
                    (CAPCON2.LFUB & COUPLING_MAX); 
    filterData[1] = ((CAPCON1.FDFen & 1) << 10)              | 
                    ((CAPCON1.lower & COUPLING_MAX) << 5)    | 
                    (CAPCON1.upper & COUPLING_MAX); 
    filterData[2] = ((BENDCON.ADen & 1) << 15)               | 
                    ((BENDCON.qTune & QTUNE_DIG_MAX) << 9)   | 
                    ((BENDCON.fTune & FTUNE_DIG_MAX) << 1)   | 
                    (BENDCON.en & 1); 
    filterData[3] = ((FENDCON.ADen & 1) << 15)               | 
                    ((FENDCON.qTune & QTUNE_DIG_MAX) << 9)   | 
                    ((FENDCON.fTune & FTUNE_DIG_MAX) << 1)   | 
                    (FENDCON.en & 1); 
} 
 
/************************************************************************************** 
 * Function:     programFilter 
 * Parameters:   void 
 * Return:       void 
 * Description:  The filter is programmed by transmitting the 64 programming bits to  
 *                the serial-to-parallel register of the filter via SPI.  Once all 64  
 *               bits are transmitted, the latch line is raised, a clock pulse is  
 *                generated and the latch line is lowered storing the bits. 
 **************************************************************************************/ 
void programFilter(void) 
{ 
    updateFilterData(); 
 
    setPinLow(FILTER_CLK); 
    setPinLow(FILTER_DATA); 
    setPinLow(FILTER_LATCH); 
    enableSPI2(); 
    writeSPI2(filterData[0]); 
    writeSPI2(filterData[1]); 
    writeSPI2(filterData[2]); 
    writeSPI2(filterData[3]); 
    disableSPI2(); 
 
    setFilterLatchAsOutput(); 
    setFilterDataAsOutput(); 
    setFilterClkAsOutput(); 
    setPinLow(FILTER_LATCH); 
    setPinLow(FILTER_CLK); 
    prgmDelay(); 
    setPinHigh(FILTER_LATCH); 
    prgmDelay(); 
    setPinHigh(FILTER_CLK); 
    prgmDelay(); 
    setPinLow(FILTER_DATA); 
    setPinLow(FILTER_LATCH); 
    prgmDelay(); 
    setPinLow(FILTER_CLK); 
    prgmDelay(); 
} 
 
/************************************************************************************** 
 * Function:     prgmDelay 
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 * Parameters:   void 
 * Return:       void 
 * Description:  A simplistic delay used to ensure timing requirements are met during 
 *                the filter programming process. 
 **************************************************************************************/ 
void prgmDelay(void) 
{ 
    Nop(); Nop(); Nop(); Nop(); Nop(); Nop(); Nop(); Nop(); Nop(); Nop(); Nop(); Nop(); 
    Nop(); Nop(); Nop(); Nop(); Nop(); Nop(); Nop(); Nop(); Nop(); Nop(); Nop(); Nop(); 
} 
 
/************************************************************************************** 
 * Function:     updateAnalogTuning 
 * Parameters:   void 
 * Return:       void 
 * Description:  Programs the DACS with the appropriate current Analog F-Tune 
 *                and Q-Tune values. 
 **************************************************************************************/ 
void updateAnalogTuning(void) 
{ 
    programFrontEndDAC(loadInputRegB(getFrontEndAnalogFTune())); 
    programFrontEndDAC(loadInputRegA(getFrontEndAnalogQTune())); 
    programFrontEndDAC(loadDACRegsABUpdateOutputsAB()); 
    programBackEndDAC(loadInputRegB(getBackEndAnalogQTune())); 
    programBackEndDAC(loadInputRegA(getBackEndAnalogFTune())); 
    programBackEndDAC(loadDACRegsABUpdateOutputsAB()); 
} 
 
/************************************************************************************** 
 * Function:     algorithm 
 * Parameters:   void 
 * Return:       void 
 * Description:  Implementation of the Two-Pole Tuning Algorithm  
 *                using only Digital Controls. 
 **************************************************************************************/ 
void algorithm(void) 
{ 
    turnRFSwitchOff(); 
    enableFrontEnd();    // Enable Front-End 
    disableFrontEndAD(); // Disble Front-End Amplitude Detector 
    disableFrontEndFD(); // Disable Front-End Frequency Divider 
    enableBackEnd();     // Enable Back-End 
    disableBackEndAD();  // Disable Back-End Amplitude Detector 
    disableBackEndFD();  // Disable Back-End Frequency Divider 
 
    coarseFrontEndFTune(); 
    coarseBackEndFTune(); 
 
    setCouplingUpper(CouplingUpper); 
    setCouplingLower(CouplingLower); 
    setCouplingUFLB(CouplingUFLB); 
    setCouplingLFUB(CouplingLFUB); 
    programFilter(); 
 
    turnRFSwitchOn();    // Algorithm is Complete, so Turn on RF Switch 
 
    if ( _PrintFilterSettings )   
    { 
        printFilterOptions(); 
        _PrintFilterSettings = FALSE; 
    }  
} 
 
/************************************************************************************** 
 * Function:     coarseFrontEndFTune 
 * Parameters:   void 
 * Return:       void 
 * Description:  Tunes the Front-End to the desired center frequency within a frequency 
 *                tolerance.  Once within the frequency tolerance the frequency controls 
 *                are adjusted and a comparison is done on which setting brought the pole 
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 *               closer to the desired center frequency. 
 * Modified: This course tune function now calls the fine tune function and sets and  
 *  initializes additional variables for fine tuning. 
 **************************************************************************************/ 
void coarseFrontEndFTune(void) 
{ 
    int itt = 0; 
    int prevFrontEndFCnt = 0; 
    int prevFrontEndFCntDiff = 0, curFrontEndFCntDiff = 0; 
 
    // Set frequency setting to controls mid-point 
    setFrontEndDigitalFTune((FTUNE_DIG_MIN + FTUNE_DIG_MAX) >> 1);  
 setFrontEndAnalogFTune((ANALOG_MIN + ANALOG_MAX) >> 1);  
 updateAnalogTuning();  
    FrontEndFCnt = getFrontEndFrequency(); 
 
    while ( (FrontEndFCnt < (CenterFreq - FreqTol)) || (FrontEndFCnt > (CenterFreq + FreqTol)) ) 
    { 
        if ( FrontEndFCnt < (CenterFreq - FreqTol) ) 
   decFrontEndDigitalFTune(); 
  else if ( FrontEndFCnt > (CenterFreq + FreqTol) ) 
   incFrontEndDigitalFTune(); 
          
  FrontEndFCnt = getFrontEndFrequency();     
  if ( ++itt > MAX_FREQTUNE_ITTS ) 
        { 
            txStrUART1("Max Front-End Frequency Tune Itterations Exceeded...\r\n"); 
            return; 
        } 
    } 
    // Frequency within Tolerance now find Closest Setting 
    prevFrontEndFCnt = FrontEndFCnt; 
    prevFrontEndFCntDiff = absDiff(CenterFreq,prevFrontEndFCnt); 
    if ( FrontEndFCnt < CenterFreq ) 
    { 
        decFrontEndDigitalFTune(); 
        FrontEndFCnt = getFrontEndFrequency(); 
        curFrontEndFCntDiff = absDiff(CenterFreq,FrontEndFCnt); 
        if ( curFrontEndFCntDiff > prevFrontEndFCntDiff ) 
        { 
            incFrontEndDigitalFTune(); 
            programFilter();          
        } 
    } 
    else if ( FrontEndFCnt > CenterFreq ) 
    { 
        incFrontEndDigitalFTune(); 
        FrontEndFCnt = getFrontEndFrequency(); 
        curFrontEndFCntDiff = absDiff(CenterFreq,FrontEndFCnt); 
        if ( curFrontEndFCntDiff > prevFrontEndFCntDiff ) 
        { 
            decFrontEndDigitalFTune(); 
            programFilter();           
        } 
    } 
 
 FrontEndFCnt = getFrontEndFrequency();  
 fineFrontEndFTune(); 
 FrontEndFCnt = getFrontEndFrequency(); 
 
    #if _DEBUG_ALGORITHM_ == 1 
        txStrUART1("----Freq Tune Essentially Done---\r\n");     
        printFrontEndDigitalFTune(); 
        printFrontEndDigitalQTune();     
    #endif 
 
    // Back-Off Q-Enhancement by Set Amount 
    setFrontEndDigitalQTune(getFrontEndDigitalQTune() - FrontEndQBackOff); 
    #if _DEBUG_ALGORITHM_ == 1 
        txStrUART1("----Do Q Back-Off for BW---\r\n"); 
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        printFrontEndDigitalQTune();     
    #endif 
     
    // Ensure Filter is Not Oscillating After Q-Enhancement Back-Off (Insufficient Back-Off) 
    enableFrontEndAD();   
    programFilter(); 
    FrontEndAD = readFrontEndAD(); 
    while ( FrontEndAD < (FrontEndNonOsc - FrontEndADThresh1) ) 
    { 
        #if _DEBUG_ALGORITHM_ == 1 
            txStrUART1("Still Oscillating after Back-Off...\r\n"); 
            printFrontEndDigitalQTune(); 
            printFrontEndAD(); 
        #endif 
 
        decFrontEndDigitalQTune(); 
        programFilter(); 
        FrontEndAD = readFrontEndAD(); 
 
        #if _DEBUG_ALGORITHM_ == 1 
            printFrontEndDigitalQTune(); 
            printFrontEndAD(); 
        #endif 
    } 
    disableFrontEndAD(); 
     
 // Counter the Frequency Shift Caused by Q-Enhancement Back-Off by Increasing Digital F-Tuning 
    setFrontEndDigitalFTune(getFrontEndDigitalFTune() + FrontEndFOffset); 
    programFilter(); 
}  
    
/************************************************************************************** 
 * Function:     fineFrontEndFTune 
 * Parameters:   void 
 * Return:       void 
 * Description:  Implements a fine tuning algorithm to linearly find the closest  
 *   achievable frequency using analog tuning on the front end   
 **************************************************************************************/ 
void fineFrontEndFTune(void) 
{ 
    int itt = 0; 
 int count = 0; 
 FrontEndFCnt = getFrontEndFrequency(); 
    int prevFrontEndFCnt = FrontEndFCnt; 
 if(FrontEndFCnt > CenterFreq) 
 { 
  // Need to set at mid point for this fine tuning approach to work  
  // setFrontEndAnalogFTune(ANALOG_MIN); 
  // updateAnalogTuning();  //change to update only back or front? 
  while(FrontEndFCnt != CenterFreq) 
  { 
   setFrontEndAnalogFTune(getFrontEndAnalogFTune()+1); 
   updateAnalogTuning(); 
   FrontEndFCnt = getFrontEndFrequency();  
         if (++itt > MAX_FINEFREQTUNE_ITTS) 
         { 
             txStrUART1("Max Front-End Frequency Fine Tune Itterations Exceeded...\r\n"); 
             return; 
         } 
  } 
  prevFrontEndFCnt = FrontEndFCnt;  
  while(FrontEndFCnt == CenterFreq) 
  { 
   count++; 
   setFrontEndAnalogFTune(getFrontEndAnalogFTune()+1); 
   updateAnalogTuning(); 
   FrontEndFCnt = getFrontEndFrequency(); 
  } 
  setFrontEndAnalogFTune(prevFrontEndFCnt+count/2); 
 } 
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 else if(FrontEndFCnt < CenterFreq) 
 { 
  // Need to set at mid point for this fine tunning approach to work  
  // setFrontEndAnalogFTune(ANALOG_MIN); 
  // updateAnalogTuning();  //change to update only back or front? 
  while(FrontEndFCnt != CenterFreq) 
  { 
   setFrontEndAnalogFTune(getFrontEndAnalogFTune()-1); 
   updateAnalogTuning(); 
   FrontEndFCnt = getFrontEndFrequency(); 
  } 
  prevFrontEndFCnt = FrontEndFCnt; 
  while(FrontEndFCnt == CenterFreq) 
  { 
   count++; 
   setFrontEndAnalogFTune(getFrontEndAnalogFTune()-1); 
   updateAnalogTuning(); 
   FrontEndFCnt = getFrontEndFrequency(); 
  } 
  setFrontEndAnalogFTune(prevFrontEndFCnt-count/2); 
  FrontEndFCnt = getFrontEndFrequency(); 
 } 
 else if(FrontEndFCnt == CenterFreq) 
 { 
  while(FrontEndFCnt == CenterFreq) 
  { 
   setFrontEndAnalogFTune(getFrontEndAnalogFTune()+2); 
   updateAnalogTuning(); 
   FrontEndFCnt = getFrontEndFrequency(); 
  } 
  setFrontEndAnalogFTune(getFrontEndAnalogFTune()-4); 
  while(FrontEndFCnt == CenterFreq) 
  { 
   count++; 
   setFrontEndAnalogFTune(getFrontEndAnalogFTune()-1); 
   updateAnalogTuning(); 
   FrontEndFCnt = getFrontEndFrequency(); 
  } 
  setFrontEndAnalogFTune(prevFrontEndFCnt-count/2); 
 } 
} 
 
/************************************************************************************** 
 * Function:     fineFrontEndQTune 
 * Parameters:   void 
 * Return:       void 
 * Description:  Uses analog tuning to raise Q tuning as high as possible without  
 *  oscillation 
 **************************************************************************************/ 
void fineFrontEndQTune(void) 
{ 
 setFrontEndAnalogQTune(ANALOG_MIN); 
    while ( FrontEndAD >= (FrontEndNonOsc-FrontEndADThresh1) ) 
    { 
  setFrontEndAnalogQTune(getFrontEndAnalogQTune()+FrontEndADThresh2); 
  updateAnalogTuning(); 
     FrontEndAD = readFrontEndAD(); 
  if (getFrontEndAnalogQTune()==ANALOG_MAX) break;  
 } 
} 
 
/************************************************************************************** 
 * Function:     coarseBackEndFTune 
 * Parameters:   void 
 * Return:       void 
 * Description:  Tunes the Back-End to the desired center frequency within a frequency 
 *                tolerance.  Once within the frequency tolerance the frequency controls 
 *                are adjusted and a comparison is done on which setting brought the pole 
 *                closer to the desired center frequency. 
 * Modified: This course tune function now calls the fine tune function and sets and  



114 

 

 *  initializes the additional variables for fine tuning. 
 **************************************************************************************/ 
void coarseBackEndFTune(void) 
{ 
    int itt = 0; 
    int prevBackEndFCnt = 0; 
    int prevBackEndFCntDiff = 0, curBackEndFCntDiff = 0; 
 
    // Set frequency setting to controls mid-point 
    setBackEndDigitalFTune((FTUNE_DIG_MIN + FTUNE_DIG_MAX) >> 1);    
 setBackEndAnalogFTune((ANALOG_MIN + ANALOG_MAX) >> 1);  
 updateAnalogTuning();  
 BackEndFCnt = getBackEndFrequency(); 
 
    while ( (BackEndFCnt < (CenterFreq - FreqTol)) || (BackEndFCnt > (CenterFreq + FreqTol)) ) 
    { 
        if ( BackEndFCnt < (CenterFreq - FreqTol) ) 
            decBackEndDigitalFTune(); 
        else if ( BackEndFCnt > (CenterFreq + FreqTol) ) 
            incBackEndDigitalFTune(); 
 
        BackEndFCnt = getBackEndFrequency(); 
        if ( ++itt > MAX_FREQTUNE_ITTS ) 
        { 
            txStrUART1("Max Back-End Frequency Tune Itterations Exceeded...\r\n"); 
            return; 
        } 
    } 
    // Frequency within Tolerance now find Closest Setting 
    prevBackEndFCnt = BackEndFCnt; 
    prevBackEndFCntDiff = absDiff(CenterFreq,prevBackEndFCnt); 
    if ( BackEndFCnt < CenterFreq ) 
    { 
        decBackEndDigitalFTune(); 
        BackEndFCnt = getBackEndFrequency(); 
        curBackEndFCntDiff = absDiff(CenterFreq,BackEndFCnt); 
        if ( curBackEndFCntDiff > prevBackEndFCntDiff ) 
        { 
            incBackEndDigitalFTune(); 
            programFilter();            
        } 
    } 
    else if ( BackEndFCnt > CenterFreq ) 
    { 
        incBackEndDigitalFTune(); 
        BackEndFCnt = getBackEndFrequency(); 
        curBackEndFCntDiff = absDiff(CenterFreq,BackEndFCnt); 
        if ( curBackEndFCntDiff > prevBackEndFCntDiff ) 
        { 
            decBackEndDigitalFTune(); 
            programFilter();            
        } 
    } 
 
 BackEndFCnt = getBackEndFrequency(); 
 fineBackEndFTune(); 
 BackEndFCnt = getBackEndFrequency(); 
 
    #if _DEBUG_ALGORITHM_ == 1 
        txStrUART1("----Freq Tune Essentially Done---\r\n");     
        printBackEndDigitalFTune(); 
        printBackEndDigitalQTune();     
    #endif 
         
    // Back-Off Q-Enhancement by Set Amount 
    setBackEndDigitalQTune(getBackEndDigitalQTune() - BackEndQBackOff); 
    #if _DEBUG_ALGORITHM_ == 1 
        txStrUART1("----Do Q Back-Off for BW---\r\n"); 
        printBackEndDigitalQTune();     
    #endif 
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    // Ensure Filter is Not Oscillating After Q-Enhancement Back-Off (Insufficient Back-Off) 
    enableBackEndAD();   
    programFilter(); 
    BackEndAD = readBackEndAD(); 
    while ( BackEndAD < (BackEndNonOsc - BackEndADThresh1) ) 
    { 
        #if _DEBUG_ALGORITHM_ == 1 
            txStrUART1("Still Oscillating after Back-Off...\r\n"); 
            printBackEndDigitalQTune(); 
            printBackEndAD(); 
        #endif 
 
        decBackEndDigitalQTune(); 
        programFilter(); 
        BackEndAD = readBackEndAD(); 
 
        #if _DEBUG_ALGORITHM_ == 1 
            printBackEndDigitalQTune(); 
            printBackEndAD(); 
        #endif 
    } 
 
    disableBackEndAD(); 
 
    // Counter the Frequency Shift Caused by Q-Enhancement Back-Off by Increasing Digital F-Tuning 
    setBackEndDigitalFTune(getBackEndDigitalFTune() + BackEndFOffset); 
    programFilter(); 
}     
 
/************************************************************************************** 
 * Function:     fineBackEndFTune 
 * Parameters:   void 
 * Return:       void 
 * Description: Implements a fine tuning algorithm to linearly find the closest  
 *   achievable frequency using analog tuning on the front end   
 **************************************************************************************/ 
void fineBackEndFTune(void) 
{ 
    int itt = 0; 
 int count = 0; 
 BackEndFCnt = getBackEndFrequency(); 
    int prevBackEndFCnt = BackEndFCnt; 
 if(BackEndFCnt > CenterFreq) 
 { 
  // Need to set at mid point for this fine tuning approach to work  
  // setBackEndAnalogFTune(ANALOG_MIN); 
  // updateAnalogTuning();  //change to update only back or front? 
  while(BackEndFCnt != CenterFreq) 
  { 
   setBackEndAnalogFTune(getBackEndAnalogFTune()+1); 
   updateAnalogTuning(); 
   BackEndFCnt = getBackEndFrequency();  
         if (++itt > MAX_FINEFREQTUNE_ITTS) 
         { 
             txStrUART1("Max Back-End Frequency Fine Tune Itterations Exceeded...\r\n"); 
             return; 
         } 
  } 
  prevBackEndFCnt = BackEndFCnt;  
  while(BackEndFCnt == CenterFreq) 
  { 
   count++; 
   setBackEndAnalogFTune(getBackEndAnalogFTune()+1); 
   updateAnalogTuning(); 
   BackEndFCnt = getBackEndFrequency(); 
  } 
  setBackEndAnalogFTune(prevBackEndFCnt+count/2);  
 } 
 else if(BackEndFCnt < CenterFreq) 
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 { 
  // Need to set at mid point for this fine tunning approach to work  
  // setBackEndAnalogFTune(ANALOG_MIN); 
  // updateAnalogTuning();  //change to update only back or Back? 
  while(BackEndFCnt != CenterFreq) 
  { 
   setBackEndAnalogFTune(getBackEndAnalogFTune()-1); 
   updateAnalogTuning(); 
   BackEndFCnt = getBackEndFrequency();  
  } 
  prevBackEndFCnt = BackEndFCnt; 
  while(BackEndFCnt == CenterFreq) 
  { 
   count++; 
   setBackEndAnalogFTune(getBackEndAnalogFTune()-1); 
   updateAnalogTuning(); 
   BackEndFCnt = getBackEndFrequency(); 
  } 
  setBackEndAnalogFTune(prevBackEndFCnt-count/2); 
  BackEndFCnt = getBackEndFrequency();  
 } 
 else if(BackEndFCnt == CenterFreq) 
 { 
  while(BackEndFCnt == CenterFreq) 
  { 
   setBackEndAnalogFTune(getBackEndAnalogFTune()+2); 
   updateAnalogTuning(); 
   BackEndFCnt = getBackEndFrequency(); 
  } 
  setBackEndAnalogFTune(getBackEndAnalogFTune()-4); 
  while(BackEndFCnt == CenterFreq) 
  { 
   count++; 
   setBackEndAnalogFTune(getBackEndAnalogFTune()-1); 
   updateAnalogTuning(); 
   BackEndFCnt = getBackEndFrequency(); 
  } 
  setBackEndAnalogFTune(prevBackEndFCnt-count/2); 
 } 
} 
 
/************************************************************************************** 
 * Function:     fineBackEndQTune 
 * Parameters:  void 
 * Return:       void 
 * Description: Uses analog tuning to raise Q tuning as high as possible without  
 *  oscillation 
 **************************************************************************************/ 
 
void fineBackEndQTune(void) 
{ 
 setBackEndAnalogQTune(ANALOG_MIN); 
    while ( BackEndAD >= (BackEndNonOsc - BackEndADThresh1) ) 
    { 
  setBackEndAnalogQTune(getBackEndAnalogQTune()+BackEndADThresh2); 
  updateAnalogTuning(); 
 
  BackEndAD = readBackEndAD(); 
  if (getBackEndAnalogQTune()==ANALOG_MAX) break;  
 } 
} 
 
/************************************************************************************** 
 * Function:     getFrontEndFrequency 
 * Parameters:   void 
 * Return:       int - Current Front-End Frequency Count 
 * Description:  Configures the filter so a reliable Front-End frequency count can  
 *                be returned. 
 **************************************************************************************/ 
int getFrontEndFrequency(void) 
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{ 
    int fCnt; 
    PrevBackEndDigitalQTune = getBackEndDigitalQTune(); 
 
    disableBackEndAD();  // Disable Back-End Amplitude Detector 
    disableBackEndFD();  // Disable Back-End Frequency Divider 
    setBackEndDigitalQTune(QTUNE_DIG_MIN); // Degrade Back-End Q-Enhancement 
 
    enableFrontEndFD();  // Enable Front-End Frequency Divider 
    findFrontEndCriticalOsc(); 
    fCnt = readFrontEndFD(); 
    disableFrontEndFD(); // Disable Front-End Frequency Divider 
 
    // Remove Excess Q-Enhancement Needed for Dependable Frequency Divider Reading 
    setFrontEndDigitalQTune(getFrontEndDigitalQTune() - FrontEndQOffset); 
 
    // Restore Previous Back-End Digital Q-Tune Value 
    setBackEndDigitalQTune(PrevBackEndDigitalQTune); 
    programFilter();     // Apply Filter Settings 
 
    return fCnt; 
} 
 
/************************************************************************************** 
 * Function:     getBackEndFrequency 
 * Parameters:   void 
 * Return:       int - Current Back-End Frequency Count 
 * Description:  Configures the filter so a reliable Back-End frequency count can  
 *                be returned. 
 **************************************************************************************/ 
int getBackEndFrequency(void) 
{ 
    int fCnt; 
    PrevFrontEndDigitalQTune = getFrontEndDigitalQTune(); 
 
    disableFrontEndAD(); // Disable Front-End Amplitude Detector 
    disableFrontEndFD(); // Disable Front-End Frequency Divider 
    setFrontEndDigitalQTune(QTUNE_DIG_MIN); // Degrade Front-End Q-Enhancement 
 
    enableBackEndFD();   // Enable Back-End Frequency Divider 
     
 findBackEndCriticalOsc(); 
    fCnt = readBackEndFD(); 
    disableBackEndFD();  // Disable Back-End Frequency Divider 
 
    // Remove Excess Q-Enhancement Needed for Dependable Frequency Divider Reading 
    setBackEndDigitalQTune(getBackEndDigitalQTune() - BackEndQOffset); 
    // Restore Previous Front-End Digital Q-Tune Value 
    setFrontEndDigitalQTune(PrevFrontEndDigitalQTune); 
    programFilter();     // Apply Filter Settings 
 
    return fCnt; 
} 
 
/************************************************************************************** 
 * Function:     findFrontEndCriticalOsc 
 * Parameters:   void 
 * Return:       void 
 * Description:  Sets Front-End Q-Enhancement to 0 and reads the Amplitude Detector 
 *                to determine the Non-Oscillation reading.   It then increases  
 *                Q-Enhancement until the Amplitude Detector reading drops below  
 *                the Non-Oscillation reading minus a set threshold value indicating that  
 *                the Front-End is oscillating.  To ensure that a valid Frequency Divider 
 *                reading is obtainable, the Q-Enhancement is increased by a set offset. 
 * Modified: This fuction now includes fine Q tuning     
 **************************************************************************************/ 
void findFrontEndCriticalOsc(void) 
{ 
    int prevFrontEndDigitalQTune = -1; 
    FrontEndNonOsc = ANALOG_MIN; 
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    FrontEndAD = ANALOG_MAX;     
 
 setFrontEndAnalogQTune(ANALOG_MIN); 
 updateAnalogTuning(); 
 
    setFrontEndDigitalQTune(QTUNE_DIG_MIN); // Set Front-End Q-Enhancment to Minimum 
    enableFrontEndAD();                     // Enable Front-End Amplitude Detector 
    programFilter();                        // Apply Filter Settings 
    FrontEndNonOsc = readFrontEndAD();      // Store Front-End Amplitude Detector Reading 
 
    #if _DEBUG_CRITICALOSC_ == 1 
        printFrontEndNonOsc(); 
        printFrontEndDigitalQTune(); 
    #endif 
 
    // Increase Q-Enhancement Until Front-End is Oscillating 
    while ( FrontEndAD >= (FrontEndNonOsc - FrontEndADThresh1) ) 
    {        
        if ( prevFrontEndDigitalQTune == getFrontEndDigitalQTune() ) 
        { 
            txStrUART1("---> Could Not Obtain Front-End Critical Oscillation <---\r\n"); 
            return; 
        } 
        prevFrontEndDigitalQTune = getFrontEndDigitalQTune(); 
 
        incFrontEndDigitalQTune();          // Increment Front-End Digital Q-Tune 
        programFilter();                    // Apply Filter Settings 
        FrontEndAD = readFrontEndAD();      // Store Front-End Amplitude Detector Reading 
 
        #if _DEBUG_CRITICALOSC_ == 1 
            printFrontEndAD(); 
            printFrontEndDigitalQTune(); 
        #endif 
 
 
    } 
 
 decFrontEndDigitalQTune(); 
 decFrontEndDigitalQTune(); 
 programFilter();                    // Apply Filter Settings 
 prevFrontEndDigitalQTune = getFrontEndDigitalQTune(); 
 FrontEndAD = readFrontEndAD();      // Store Front-End Amplitude Detector Reading 
 
 fineFrontEndQTune(); 
    disableFrontEndAD();                    // Disable Front-End Amplitude Detector 
 
    // Ensure Oscillation for Dependable Frequency Divider Readings 
    setFrontEndDigitalQTune(getFrontEndDigitalQTune() + FrontEndQOffset); 
    programFilter();                        // Apply Filter Settings 
}     
 
/************************************************************************************** 
 * Function:     findBackEndCriticalOsc 
 * Parameters:   void 
 * Return:       void 
 * Description:  Sets Back-End Q-Enhancement to 0 and reads the Amplitude Detector 
 *                to determine the Non-Oscillation reading.   It then increases  
 *                Q-Enhancement until the Amplitude Detector reading drops below  
 *                the Non-Oscillation reading minus a set threshold value indicating that  
 *                the Back-End is oscillating.  To ensure that a valid Frequency Divider 
 *                reading is obtainable, the Q-Enhancement is increased by a set offset. 
 * Modified: This function now includes fine Q tuning 
 **************************************************************************************/ 
void findBackEndCriticalOsc(void) 
{ 
    int prevBackEndDigitalQTune = -1; 
    BackEndNonOsc = ANALOG_MIN; 
    BackEndAD = ANALOG_MAX;     
 
 setBackEndAnalogQTune(ANALOG_MIN); 
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 updateAnalogTuning(); 
 
    setBackEndDigitalQTune(QTUNE_DIG_MIN); 
    enableBackEndAD(); 
    programFilter(); 
    BackEndNonOsc = readBackEndAD(); 
 
    #if _DEBUG_CRITICALOSC_ == 1 
        printBackEndNonOsc(); 
        printBackEndDigitalQTune(); 
    #endif 
 
    while ( BackEndAD >= (BackEndNonOsc - BackEndADThresh1) ) 
    {        
        if ( prevBackEndDigitalQTune == getBackEndDigitalQTune() ) 
        { 
            txStrUART1("---> Could Not Obtain Back-End Critical Oscillation <---\r\n"); 
            return; 
        } 
        prevBackEndDigitalQTune = getBackEndDigitalQTune(); 
        incBackEndDigitalQTune(); 
        programFilter(); 
        BackEndAD = readBackEndAD(); 
 
        #if _DEBUG_CRITICALOSC_ == 1 
            printBackEndAD(); 
            printBackEndDigitalQTune(); 
        #endif 
    } 
 
 decBackEndDigitalQTune(); 
 decBackEndDigitalQTune(); 
 programFilter();                    // Apply Filter Settings 
 prevBackEndDigitalQTune = getBackEndDigitalQTune(); 
 BackEndAD = readBackEndAD();      // Store Front-End Amplitude Detector Reading 
 
 fineBackEndQTune(); 
    disableBackEndAD(); 
 
    // Ensure Oscillation for Dependable Frequency Divider Readings 
    setBackEndDigitalQTune(getBackEndDigitalQTune() + BackEndQOffset); 
    programFilter(); 
 
} 
/* End of File */ 
 
/************************************************************************************** 
 * Filename:     qefilter.h 
 * Date:         June 2010 
 * Compiler:     C30 
 * Author:       Joel Schonberger 
 * Company:      Kansas State University 
 * Department:   Electrical & Computer Engineering 
 * Research:     500 MHz Two-Pole Q-Enhanced Filter Tuning Algorithm 
 * Discription:  This file houses the preprocessor definitions and function prototypes  
 *                needed by the QE Filter Tuning Algorithm. 
 * ---------------------------------------------------------------------------------------------------------------------------- 
 * Updated: April 2012 
 * Author:  Chelsi Kovala  
 * Changes: Modified to include function defintions: 
  void fineFrontEndFTune(void) 
  void fineBackEndFTune(void) 
  void fineFrontEndQTune(void) 
  void fineBackEndQTune(void)  
  printFrontEndAnalogQTune() 
      printFrontEndAnalogFTune() 
      printBackEndAnalogQTune() 
  printBackEndAnalogFTune() 
  Modified to include variables: 
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  MAX_FINEFREQTUNE_ITTS 
 **************************************************************************************/ 
#ifndef _QEFILTER_H 
#define _QEFILTER_H 
 
/* Preprocessor Definitions & Macros */ 
#define FTUNE_DIG_MIN                        165 // Limit the Frequency Range for Reliable Frequency Divider Ouputs 
#define FTUNE_DIG_MAX                       255 
#define QTUNE_DIG_MIN                        0 
#define QTUNE_DIG_MAX                      63 
#define COUPLING_MIN                         0 
#define COUPLING_MAX                         31 
#define ANALOG_MIN                           0 
#define ANALOG_MAX                           1023 // Joel chose this value 
#define MAX_FREQTUNE_ITTS               100 
#define MAX_CRITOSC_ITTS                   64 
#define MAX_FINEFREQTUNE_ITTS 1023/2 // = (1023/2)/inc or dec amount fine tuning is using - inc or dec 
 
 
#define isFrontEndEnabled()                  (!FENDCON.en ? 1 : 0) 
#define enableFrontEnd()                     FENDCON.en    = 0 // Active-Low Enable 
#define disableFrontEnd()                    FENDCON.en    = 1 
#define isFrontEndADEnabled()                (!FENDCON.ADen ? 1 : 0) 
#define enableFrontEndAD()                   FENDCON.ADen  = 0 // Active-Low Enable 
#define disableFrontEndAD()                  FENDCON.ADen  = 1  
#define isFrontEndFDEnabled()                (!CAPCON1.FDFen ? 1 : 0) 
#define enableFrontEndFD()                   CAPCON1.FDFen = 0 // Active-Low Enable 
#define disableFrontEndFD()                  CAPCON1.FDFen = 1 
#define getFrontEndDigitalFTune()            FENDCON.fTune 
#define setFrontEndDigitalFTune(val)         FENDCON.fTune = ((val) > FTUNE_DIG_MAX ? FTUNE_DIG_MAX : ((val) < 

FTUNE_DIG_MIN ? FTUNE_DIG_MIN : (val))) 
#define incFrontEndDigitalFTune()            setFrontEndDigitalFTune(FENDCON.fTune + 1) 
#define decFrontEndDigitalFTune()            setFrontEndDigitalFTune(FENDCON.fTune - 1) 
#define getFrontEndDigitalQTune()            FENDCON.qTune 
#define setFrontEndDigitalQTune(val)         FENDCON.qTune = ((val) > QTUNE_DIG_MAX ? QTUNE_DIG_MAX : ((val) < 

QTUNE_DIG_MIN ? QTUNE_DIG_MIN : (val))) 
#define incFrontEndDigitalQTune()            setFrontEndDigitalQTune(FENDCON.qTune + 1) 
#define decFrontEndDigitalQTune()            setFrontEndDigitalQTune(FENDCON.qTune - 1) 
#define isBackEndEnabled()                   (!BENDCON.en ? 1 : 0) 
#define enableBackEnd()                      BENDCON.en = 0 // Active-Low Enable 
#define disableBackEnd()                     BENDCON.en = 1 
#define isBackEndADEnabled()                 (!BENDCON.ADen ? 1 : 0) 
#define enableBackEndAD()                    BENDCON.ADen = 0 // Active-Low Enable 
#define disableBackEndAD()                   BENDCON.ADen = 1  
#define isBackEndFDEnabled()                 (!CAPCON2.FDBen ? 1 : 0) 
#define enableBackEndFD()                    CAPCON2.FDBen = 0 // Active-Low Enable 
#define disableBackEndFD()                   CAPCON2.FDBen = 1 
#define getBackEndDigitalFTune()             BENDCON.fTune 
#define setBackEndDigitalFTune(val)          BENDCON.fTune = ((val) > FTUNE_DIG_MAX ? FTUNE_DIG_MAX : ((val) < 

FTUNE_DIG_MIN ? FTUNE_DIG_MIN : (val))) 
#define incBackEndDigitalFTune()             setBackEndDigitalFTune(BENDCON.fTune + 1) 
#define decBackEndDigitalFTune()             setBackEndDigitalFTune(BENDCON.fTune - 1) 
#define getBackEndDigitalQTune()             BENDCON.qTune 
#define setBackEndDigitalQTune(val)          BENDCON.qTune = ((val) > QTUNE_DIG_MAX ? QTUNE_DIG_MAX : ((val) < 

QTUNE_DIG_MIN ? QTUNE_DIG_MIN : (val))) 
#define incBackEndDigitalQTune()             setBackEndDigitalQTune(BENDCON.qTune + 1) 
#define decBackEndDigitalQTune()             setBackEndDigitalQTune(BENDCON.qTune - 1) 
#define getCouplingUpper()                   CAPCON1.upper 
#define setCouplingUpper(val)                CAPCON1.upper = ((val) > COUPLING_MAX ? COUPLING_MAX : ((val) < 

COUPLING_MIN ? COUPLING_MIN : (val))) 
#define getCouplingLower()                   CAPCON1.lower 
#define setCouplingLower(val)                CAPCON1.lower = ((val) > COUPLING_MAX ? COUPLING_MAX : ((val) < 

COUPLING_MIN ? COUPLING_MIN : (val))) 
#define getCouplingUFLB()                    CAPCON2.UFLB 
#define setCouplingUFLB(val)                 CAPCON2.UFLB  = ((val) > COUPLING_MAX ? COUPLING_MAX : ((val) < 

COUPLING_MIN ? COUPLING_MIN : (val))) 
#define getCouplingLFUB()                    CAPCON2.LFUB 
#define setCouplingLFUB(val)                 CAPCON2.LFUB  = ((val) > COUPLING_MAX ? COUPLING_MAX : ((val) < 

COUPLING_MIN ? COUPLING_MIN : (val))) 
#define getFrontEndAnalogFTune()             ANALOG.FANAF 
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#define setFrontEndAnalogFTune(val)         ANALOG.FANAF = ((val) > ANALOG_MAX ? ANALOG_MAX : ((val) < 
ANALOG_MIN ? ANALOG_MIN : (val))) 

#define getFrontEndAnalogQTune()             ANALOG.FANAQ 
#define setFrontEndAnalogQTune(val)         ANALOG.FANAQ = ((val) > ANALOG_MAX ? ANALOG_MAX : ((val) < 

ANALOG_MIN ? ANALOG_MIN : (val))) 
#define getBackEndAnalogFTune()              ANALOG.BANAF 
#define setBackEndAnalogFTune(val)          ANALOG.BANAF = ((val) > ANALOG_MAX ? ANALOG_MAX : ((val) < 

ANALOG_MIN ? ANALOG_MIN : (val))) 
#define getBackEndAnalogQTune()              ANALOG.BANAQ 
#define setBackEndAnalogQTune(val)          ANALOG.BANAQ = ((val) > ANALOG_MAX ? ANALOG_MAX : ((val) < 

ANALOG_MIN ? ANALOG_MIN : (val))) 
#define turnRFSwitchOn()                     setPinLow(RFSW);  DEBUG.RFOn = 0 
#define turnRFSwitchOff()                    setPinHigh(RFSW); DEBUG.RFOn = 1 
#define isRFSwitchOn()                       !DEBUG.RFOn 
#define printFrontEndStatus()                (isFrontEndEnabled() ? txStrUART1("Front-End Enabled\r\n") : txStrUART1("Front-

End Disabled\r\n")) 
#define printFrontEndADStatus()              (isFrontEndADEnabled() ? txStrUART1("Front-End AD Enabled\r\n") : 

txStrUART1("Front-End AD Disabled\r\n")) 
#define printFrontEndFDStatus()              (isFrontEndFDEnabled() ? txStrUART1("Front-End FD Enabled\r\n") : 

txStrUART1("Front-End FD Disabled\r\n")) 
#define printFrontEndAD()                    strPopulate16Bit(strFrontEndAD,FrontEndAD,'#',4) 
#define printFrontEndNonOsc()                strPopulate16Bit(strFrontEndNonOsc,FrontEndNonOsc,'#',4) 
#define printFrontEndFCnt()                  strPopulate16Bit(strFrontEndFCnt,FrontEndFCnt,'#',4) 
#define printFrontEndDigitalQTune()          strPopulate16Bit(strFrontEndDigitalQTune,getFrontEndDigitalQTune(),'#',2) 
#define printFrontEndAnalogQTune()          strPopulate16Bit(strFrontEndAnalogQTune,getFrontEndAnalogQTune(),'#',4) 
#define printFrontEndDigitalFTune()          strPopulate16Bit(strFrontEndDigitalFTune,getFrontEndDigitalFTune(),'#',3) 
#define printFrontEndAnalogFTune()           strPopulate16Bit(strFrontEndAnalogFTune,getFrontEndAnalogFTune(),'#',4) 
#define printBackEndStatus()                (isBackEndEnabled() ? txStrUART1("Back-End Enabled\r\n") : txStrUART1("Back-End 

Disabled\r\n")) 
#define printBackEndADStatus()              (isBackEndADEnabled() ? txStrUART1("Back-End AD Enabled\r\n") : 

txStrUART1("Back-End AD Disabled\r\n")) 
#define printBackEndFDStatus()              (isBackEndFDEnabled() ? txStrUART1("Back-End FD Enabled\r\n") : 

txStrUART1("Back-End FD Disabled\r\n")) 
#define printBackEndAD()                     strPopulate16Bit(strBackEndAD,BackEndAD,'#',4) 
#define printBackEndNonOsc()                 strPopulate16Bit(strBackEndNonOsc,BackEndNonOsc,'#',4) 
#define printBackEndFCnt()                   strPopulate16Bit(strBackEndFCnt,BackEndFCnt,'#',4) 
#define printBackEndDigitalQTune()           strPopulate16Bit(strBackEndDigitalQTune,getBackEndDigitalQTune(),'#',2) 
#define printBackEndAnalogQTune()           strPopulate16Bit(strBackEndAnalogQTune,getBackEndAnalogQTune(),'#',4) 
#define printBackEndDigitalFTune()           strPopulate16Bit(strBackEndDigitalFTune,getBackEndDigitalFTune(),'#',3) 
#define printBackEndAnalogFTune()            strPopulate16Bit(strBackEndAnalogFTune,getBackEndAnalogFTune(),'#',4) 
#define printCouplingUpper()                 strPopulate16Bit(strCouplingUpper,CouplingUpper,'#',2) 
#define printCouplingLower()                 strPopulate16Bit(strCouplingLower,CouplingLower,'#',2) 
#define printCouplingUFLB()                  strPopulate16Bit(strCouplingUFLB,CouplingUFLB,'#',2) 
#define printCouplingLFUB()                  strPopulate16Bit(strCouplingLFUB,CouplingLFUB,'#',2) 
#define printRFSwitchStatus()               (isRFSwitchOn() ? txStrUART1("RF Switch On\r\n") : txStrUART1("RF Switch 

Off\r\n")) 
#define printCenterFreq()                    strPopulate16Bit(strCenterFreq,CenterFreq,'#',4) 
#define printFreqTol()                       strPopulate16Bit(strFreqTol,FreqTol,'#',3) 
#define printFrontEndADThresh1()             strPopulate16Bit(strFrontEndADThresh1,FrontEndADThresh1,'#',3) 
#define printFrontEndADThresh2()             strPopulate16Bit(strFrontEndADThresh2,FrontEndADThresh2,'#',3) 
#define printFrontEndQOffset()               strPopulate16Bit(strFrontEndQOffset,FrontEndQOffset,'#',2) 
#define printFrontEndQBackOff()              strPopulate16Bit(strFrontEndQBackOff,FrontEndQBackOff,'#',2) 
#define printFrontEndFOffset()               strPopulate16Bit(strFrontEndFOffset,FrontEndFOffset,'#',2) 
#define printBackEndADThresh1()              strPopulate16Bit(strBackEndADThresh1,BackEndADThresh1,'#',3) 
#define printBackEndADThresh2()              strPopulate16Bit(strBackEndADThresh2,BackEndADThresh2,'#',3) 
#define printBackEndQOffset()                strPopulate16Bit(strBackEndQOffset,BackEndQOffset,'#',2) 
#define printBackEndQBackOff()               strPopulate16Bit(strBackEndQBackOff,BackEndQBackOff,'#',2) 
#define printBackEndFOffset()                strPopulate16Bit(strBackEndFOffset,BackEndFOffset,'#',2) 
 
/* Function Prototypes */ 
void initFilter(); 
void printFilterOptions(void); 
void printAlgorithmOptions(void); 
void updateFilterData(void); 
void programFilter(void); 
void prgmDelay(void); 
void updateAnalogTuning(void); 
void algorithm(void); 
void coarseFrontEndFTune(void); 
void coarseBackEndFTune(void); 
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int getFrontEndFrequency(void); 
int getBackEndFrequency(void); 
void findFrontEndCriticalOsc(void); 
void findBackEndCriticalOsc(void); 
void fineFrontEndFTune(void); 
void fineBackEndFTune(void); 
void fineFrontEndQTune(void); 
void fineBackEndQTune(void); 
#endif 
/* End of File */ 
 
 

Appendix C - National Instruments LabVIEW Code 

 
Figure C.1 – Screen Shot of NI Code ‘XCVR_Spur_Scan’ Running  
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Appendix D - Octave Code for Spurious Response Analysis 

function spurs = findSpurs(s, minPower, var, maxm, maxn, IF, ftune, hilo) 
% Created:   March 2012 
% Author:   Chelsi Kovala 
% Description: This function was written to analyze data recorded by the  
%  XCVR_Spur_Scan.vi written in NI LabVIEW. This function takes 
%  a set of frequencies which produced spurious responses and the  
%  the first IF of the receiver, and checks to see if mixer spurs 
%  could explain the spur by choosing all combinations of n and m 
%  and checking to see if the equation fIF=nfRF+-mfLO is satisfied. 
%  This all assumes a superheterodyne receiver. 
% File Format: File must be a text file with two columns of numbers,  
%  [frequency amplitude] with no headings to be read in correctly. 
% Parameters: s  text file to be read in 
%  minPower  events with power greater than this won't be considered 
%  var  how far the calculated value may differ from the  
%    expected value in MHz, e.g. .1 = may differ by 100 kHz 
%  maxm  the maximum m coefficient to consider  
%  maxn  the maximum n coefficient to consider 
%   IF  the intermediate frequency to consider 
%  ftune  the frequency being received 
%  hilo  1 if highside injection is used, 0 if lowside injection  
%    is used 
 
file=fopen(s); 
C = textscan(file,'%f %f'); 
a1=cell2mat(C(:,1)); 
a2=cell2mat(C(:,2)); 
NewA=[a1 a2]; 
[l dontcare]=size(NewA); 
temp=1; 
A=0; 
for i=1:l 
    if(NewA(i,2)<minPower) 
        A(temp,1)=NewA(i,1); 
        temp=temp+1; 
    else 
    end 
end 
  
[l1 dontcare]=size(A); 
fIF1=IF(1); 
if(hilo==1) 
    flo1=fIF1+ftune; 
else 
    flo1=ftune-fIF1; 
end 
s1count=1; 
s2count=1; 
count=1; 
spurDiff1st=zeros(1,3); 
spurSum1st=zeros(1,3); 
temp3=-1; 
for i=1:l1  
    for m=0:maxm 
        for n=0:maxn 
            temp1=(m*flo1-n*A(i,1)); 
            temp2=(n*A(i,1)+m*flo1); 
            if ((abs(temp1)<fIF1+var) && (abs(temp1)>fIF1-var)) 
                if temp1<0 
                    spurDiff1st(s1count,:)=[A(i,1) -m n]; 
                else 
                    spurDiff1st(s1count,:)=[A(i,1) m -n];  
                end 
                s1count=s1count+1;  
            end 
            if ((temp2<fIF1+var) && (temp2>fIF1-var)) 
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                spurSum1st(s2count,:)=[A(i,1) m n]; 
                s2count=s2count+1; 
            else 
                firstOrd(count,1)=abs(temp1); 
                firstOrd(count,2)=temp2; 
                count=count+1; 
            end  
        end   
    end   
end  
spurDiff1st 

spurSum1st  
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