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Abstract

Gifts-in-kind (GIK) donations negatively affect the humanitarian supply chain at the
point of receipt near the disaster site. In any disaster, as much as 50 percent of GIK donations
are irrelevant to the relief efforts. This proves to be a significant issue to humanitarian
organizations because the quantity and type of future GIK are uncertain, making it difficult to
account for GIK donations at the strategic planning level. The result is GIK consuming critical
warehouse space and manpower. Additionally, improper treatment of GIK can result in ill-favor
of donors and loss of donations (both cash and GIK) and support for the humanitarian
organization.

This thesis proposes a robust facility location approach that mitigates the impact of GIK
by providing storage space for GIK and pre-positions supplies to meet initial demand. The
setting of the problem is strategic planning for hurricane relief along the Gulf and Atlantic
Coasts of the United States. The approach uses a robust scenario-based method to account for
uncertainty in both demand and GIK donations. The model determines the location and number
of warehouses in the network, the amount of pre-positioned supplies to meet demand, and the
amount of space in each warehouse to alleviate the impact of GIK. The basis of the model is a
variant of the covering facility location model that must satisfy all demand and GIK space
requirements. A computational study with multiple cost minimizing objective functions
illustrates how the model performs with realistic data. The results show that strategic planning in
the preparedness phases of the disaster management cycle will significantly mitigate the impact
of GIK.
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Chapter 1 - Introduction

Many governmental, non-governmental, and private humanitarian organizations provide
immense support during humanitarian disasters, especially in regards to immediate disaster
response. Uncertainty associated with humanitarian disasters plays a substantial role in planning
and executing disaster response. Timing (when disasters strike), location, and demand (amount
of people affected) are typical areas of uncertainty. However, a new uncertainty, gifts-in-kind
(GIK), has become increasingly prevalent in recent disasters as people around the world are
inspired to donate to help relief efforts. All donations are well-intentioned, but GIK donations
can disrupt the humanitarian supply chain. A major concern with GIK is items are ineffective for
the specific relief effort. Another significant concern for humanitarian organizations is improper
treatment of GIK that may result in ill-favor with donors and a decrease in future donations. An
example of this comes from Alanna Shaikh’s blog (in reaction to an incident in 2008 involving
World Vision distributing Super Bowl t-shirts to developing countries) in which she explains that
non-governmental organizations (NGO) feel pressure to accept GIK from partnered companies
in order to maintain a respectable relationship in hopes of receiving a generous cash donation or
specific items required for disaster relief (Shaikh 2011). Therefore, humanitarian organizations
must store, handle properly, and account for GIK (no matter how counterproductive) in relief
assets (warehouse or staging areas). Despite all uncertainty, these organizations still need to
respond quickly and effectively to humanitarian disasters. The focus of this thesis is pre-
positioning strategies, under uncertainty, to mitigate the impact of GIK with respect to a
hurricane disaster along the Gulf and Atlantic Coasts of the United States.

Humanitarian organizations focus on providing support after a disaster event. The
prevalence of major global disasters, both natural and man-made, from 2004-2012 has forced
humanitarian organizations to rethink their focus and invest in strategic pre-positioning of
supplies in order to reduce response effort burdens and hedge against uncertainty in humanitarian
disasters. Decisions must be made as to the location of facilities to house pre-positioned supplies,
what supplies to store, and how much of each type of supply to store. Previous pre-positioning
approaches focus on improving the response to demand uncertainty; the approach in this paper
adds the uncertainty of GIK to the strategic planning process.



The goal of this thesis is to introduce a strategic pre-positioning approach that
simultaneously accounts for uncertainty in both demand and GIK to improve humanitarian
response operations and mitigate the impact of GIK. GIK requires significant attention because it
adds complexity to disaster response. The approach uses a robust optimization method to account
for the general uncertainty that is typical with humanitarian crises, specifically amount of
demand and GIK. This paper focuses on hurricane strikes along the Atlantic and Gulf Coasts of
the United States. The model introduces GIK as an uncertain parameter along with demand. The
approach creates a robust model that bounds the uncertainty in the parameters to a certain level.
A robust facility location model establishes a method of strategically locating warehouses with
pre-positioned aid supplies while maintaining adequate space for GIK when a disaster strikes. A
computational study of hurricanes demonstrates the usefulness of this approach.

The five chapters of this thesis explain the effect of GIK in the strategic planning of
humanitarian response. The background, research question, and contribution complete Chapter 1.
Chapter 2 is the literature review of robust optimization, facility location models, and GIK.
Chapter 3 presents three discrete pre-positioning robust facility location models with uncertain
demand and GIK. Chapter 4 provides the results of the computational study. Chapter 5 concludes

the thesis by summarizing the findings and presenting areas of future research.

1.1 Background and Motivation

The motivation behind this research is the lack of robust optimization models pre-
positioning aid for humanitarian disasters that also include the uncertainty of GIK. Additionally,
there are no quantitative studies mitigating the impact of GIK on humanitarian logistics, both in
pre-positioning and disaster response. This section describes the classification of humanitarian
disasters, humanitarian logistics, and GIK donations.

1.1.1 Disaster Classification and Phases

Van Wassenhove (2006) classifies disasters as sudden-onset or slow-onset and man-made
or natural, as depicted in Figure 1.1, thus establishing basic design and frame of reference for
humanitarian disasters. Sudden-onset disasters, like hurricanes, offer little or no warning before
striking. Even with warning systems that track storm development and movement, the size,

volatility, and path uncertainty of hurricanes place them in the category of sudden-onset.
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Figure 1.1: Disaster Chart (Van Wassenhove 2006)

Apte (2009) expands on Van Wassenhove’s (2006) research idea to include location of disasters
and difficulty of logistical support, as shown in Figure 1.2. Two types of locations exist for both
sudden-onset and slow-onset disasters: dispersed and localized. Localized locations are defined
as a single region or country, and dispersed locations are defined as multiple regions or
countries. This creates four quadrants for disaster classification with difficulty level increasing
by the quadrant number. Quadrant | represents localized and slow-onset disasters, such as a
political crisis or drought, where the disaster is isolated in a specific region. Logistically, this
type of disaster is the least difficult of the four quadrants. The second quadrant is a dispersed
slow-onset disaster, like a refugee crisis affecting multiple neighboring regions. The third
quadrant is a localized sudden-onset disaster, such as hurricanes, tornadoes, earthquakes, and
flash flooding. An example of the fourth quadrant, dispersed sudden-onset disaster, is the 2004
tsunami that not only affected the eastern coast of India, but also severely affected Indonesia,

Malaysia, and Thailand.
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Figure 1.2: Disaster Chart (Apte 2009)

As previously described, the emphasis of this research is the Atlantic and Gulf Coasts of the
United States. The disaster classification utilizes the Apte (2009) model with localized and
sudden-onset hurricanes.

Many humanitarian organizations and researchers follow various designs of disaster life
cycle or disaster management cycle. The most common design utilizes four phases: mitigation,
preparedness, response, and recovery (Altay and Green 2006). Figure 1.3 shows an example of
typical activities during each phase of the disaster management cycle. Mitigation prevents or
reduces the impact of disasters through governmental policies and risk assessments. The
preparedness phase arranges for a region or community to respond to disasters and includes the
training of emergency personnel and pre-positioning of supplies. The response phase begins
immediately after the disaster and can encompass search and rescue, providing emergency
supplies and medical care, and opening emergency shelters. The recovery phase is the long-term
stabilization of the affected area after the initial effects of the disaster (Altay and Green 2006).
Most disaster management cycles demonstrate some form of the characteristics mentioned,
whether in three phases or five. The research of this paper focuses on the preparedness phase and

the response phase when there is realization of uncertain data.



Mitigation Response

* Zoning and land use controls to prevent * Activating the emergency operations plan
occupation of high hazard areas * Activating the emergency operations center

e Barrier construction to deflect disaster forces e Evacuation of threatened populations

e Active preventive measures to control developing situations e Opening of shelters and provision of mass care

e Building codes to improve disaster resistance of structures e Emergency rescue and medical care

e Tax incentives or disincentives * Fire fighting

e Controls on rebuilding after events e Urban search and rescue

e Risk analysis to measure the potential for extreme hazards ¢ Emergency infrastructure protection and

e Insurance to reduce the financial impact of disasters recovery of lifeline services

o Fatality management

Preparedness Recovery
e Recruiting personnel for the emergency services and ¢ Disaster debris cleanup
for community volunteer groups * Financial assistance to individuals and governments
s Emergency planning e Rebuilding of roads and bridges and key facilities
¢ Development of mutual aid agreements and ¢ Sustained mass care for displaced human and
memorandums of understanding animal populations
e Training for both response personnel and concerned citizens « Reburial of displaced human remains
e Threat based public education e Full restoration of lifeline services
e Budgeting for and acquiring vehicles and equipment e Mental health and pastoral care

* Maintaining emergency supplies

e Construction of an emergency operations center

e Development of communications systems

* Conducting disaster exercises to train personnel and test capabilities

Figure 1.3: Four Phase Disaster Cycle Activities (Altay and Green 2006)

1.1.2 Humanitarian Logistics

“There is a need during humanitarian crisis to reduce [reducing] the human suffering by proactively
preparing by establishing pre-positioned stocks in the best possible locations before a disaster; this is very strategic
in nature,” (Apte 2009).

The definition of humanitarian logistics is “the process of planning, implementing, and
controlling the efficient, cost-effective, flow and storage of goods and materials, as well as
related information, from point of origin to point of consumption for the purpose of meeting the
end beneficiary’s requirements” (Apte 2009). As with military and commercial logistics,
humanitarian logistics shares the goal of ensuring supplies move from one location to another as
efficiently as possible. Furthermore, all three forms of logistics have the strategic, tactical, and
operational levels of decision making. Apte (2009) provides excellent definitions of the strategic,
operational, and tactical levels of decision making for humanitarian logistics. Strategic level
focuses on building infrastructure and pre-positioning supplies. Success in this level requires
substantial funds in order to build and maintain infrastructure and purchase pre-positioning
supplies. Operational level is the last-mile distribution of supplies, or the transportation of

essential items from a warehouse or transfer point to the place of need. Tactical level bridges the



gap between the strategic and operational levels with real-time resource management in regards

to inventory, routing, distribution, and scheduling of deliveries (Apte 2009).

1.1.3 Donation of Gifts-in-Kind

GIK, donations of physical supplies or any donated items, are classified into three basic
categories: governmental GIK, corporate (business) GIK, and individual GIK. The challenges
surrounding GIK are not isolated to any one category, but typically shared among all three.

Governmental GIK usually occurs between governments of various countries, but it can
also involve GIK from a government to a NGO. Typically, one country experiences a disaster of
some kind and another country offers an in-kind gift, ranging from foodstuffs to military support
(use of personnel and heavy transport equipment) which are negotiated between the governments
and executed. A majority of the time no issues arise with governmental GIK.

When corporations donate GIK to humanitarian organizations, it is an example of
corporate GIK. Large humanitarian organizations normally partner with corporations for a steady
stream of donations, thus gaining access to vast quantities of supplies and allowing corporations
to enjoy tax incentives on surplus inventory. The GIK are not limited to only supplies, as
equipment is also sometimes offered by corporations or businesses.

Individual GIK results from individuals or groups of people donating gifts to
humanitarian organizations. Items are second-hand or purchased goods shipped to disaster areas.
They can also encompass service and individual volunteering (i.e. supply truck drivers), though
this research does not focus on this specific type of GIK.

Examples of challenges with GIK illustrate its disruptive effect. Tomasini and Van
Wassenhove (2004) cites a specific challenge during the 2002 South African food crisis when the
United States provides an in-kind gift of food aid to the World Food Program (WFP) to distribute
in Southern Africa. Parts of the GIK were genetically modified (GM) food and the African
countries refused the aid because their economies are based mainly on conventional food
products. Moreover, country leaders did not trust GM foods in general. At the time of rejection, a
majority of the food aid was already either in African ports or in transit, so the GIK had to be
warehoused and stored to prevent spoilage. In this case, cultural differences played a significant

role in the rejection of the donation and caused storage issues at the African ports which delayed



future inbound supplies for approximately a month and increased costs for all organizations
involved.

Another challenge occurred during the response to the 2010 Haitian earthquake. In
response to the significant truck shortage, business owners in the Dominican Republic donated
500 trucks to the Dominican Red Cross. Though various companies paid for all costs associated
with the truck (driver and fuel), others did not and the Dominican Red Cross was responsible for
paying drivers and purchasing fuel (Holguin-Veras et al. 2012c). This case highlights hidden
costs that occasionally appear when receiving GIK. In the final example, Apte (2009) explains an
instance during the 2005 Pakistani earthquake when donated tents arrived with missing pieces
and either no assembly instructions or instructions in a foreign language. The tents were
improperly used and caught fire, resulting in deaths. These examples show various challenges
and impacts of GIK that humanitarian organizations face.

At the time of this publication, little research has been conducted on GIK specifically
related to humanitarian relief and there has been no quantitative research on mitigating the

impact of GIK to relief efforts. There is clearly a need for such work in this area.

1.2 Research Goal

The purpose of this thesis is to present a model that strategically pre-positions supplies
and alleviates the impact of GIK by reserving warehouse storage space under uncertainty to
reduce the burden of tactical level decisions during transition to the disaster response phase. The
first research goal is to model GIK under uncertainty with a robust facility location model. The

second research goal is to mitigate the impact of GIK on strategic level decisions.

1.3 Research Contributions
This study relates to current research in facility location, robust optimization, and
humanitarian logistics. The study makes the following contributions:

1. Introduce models accounting for GIK in humanitarian disaster preparation and relief.
There are many facility location models with demand uncertainty, but, to the author’s
knowledge, none involve GIK.

2. Demonstrate usefulness of the approach with a computational study. Although the

computational study is on hurricanes, the approach is generalizable.



3. Examine impact of different objective functions on resulting pre-positioning decisions.
This paper aims to show the contrasts between models and the effect of the objective
functions.

4. Mitigate the impact of GIK at the strategic humanitarian relief planning level and provide
insight to practitioners. To the author’s knowledge there is no publication quantifying the
mitigation of the impact of GIK in the planning stages of creating a humanitarian

network.



Chapter 2 - Literature Review

This chapter provides information on relevant literature pertaining to the research topic,
definitions, and how the current research differs from previously released publications. Chapter 2
begins with literature involving robust optimization, then discusses literature pertaining to

facility location, and finally cites works that identify GIK issues.

2.1 Robust Optimization

Robust optimization (RO) is a different approach for solving optimization problems with
uncertain parameters. In contrast to stochastic optimization, this method does not rely on
probability distributions for the uncertain parameters. Instead, it seeks solutions that are feasible
and perform well for any realization of the uncertain data in an uncertainty set. The uncertainty
set and objective function are important modeling choices in any RO approach. This section
discusses types of uncertainty sets, objective functions, general modeling structure,

characteristics, and scenario-based robust optimization.

2.1.1 Types of Uncertainty Sets

RO utilizes many types of uncertainty sets. For the purposes of this research, emphasis
is on the box, ellipsoidal, and scenario-based uncertainty sets. The uncertainty set is a set of
deterministic values the uncertain parameter(s) can manifest when the uncertainty is realized.
This realization is for all values or a single value during a specific scenario. The box uncertainty
set was derived from the work of Soyster (1973). Framework surrounds a linear program with

uncertain parameters a;, center (mean or nominal) parameter value a, and a deflection value of

p;j, With the uncertain set U being defined by the following:

U={aj:|a—aj|£ijj} 1)

Equation (1) states that the realized value of the uncertain parameter a; has to be within p; of the
value a generating the “box” for the uncertainty set. This uncertainty set creates a linear bound
on the value a;. The deflection value is derived from the percentage of uncertainty multiplied by

the mean/nominal values (also a standard deviation). The uncertain value can either be increased



or decreased to this deflection amount from the individual mean/nominal values. Ben-Tal and
Nemirovski (1998) found that the box method produces a very conservative solution to models
with uncertain parameters and, as a result, introduce the ellipsoidal uncertainty set. This method
uses a safety parameter that is defined as the amount of uncertainty with respect to the deflection
of the uncertain parameters; it is a value between zero and one representing the radius of the
ellipse and the amount of accountable uncertainty. This method is non-linear and more
computationally demanding than the box method (Bertsimas and Sim 2004). A special type of
uncertainty set is a scenario-based approach for RO (similar to robust discrete optimization).
Additional information on scenario-based uncertainty sets is included in Section 2.1.5.

In general, within the uncertainty set, RO utilizes the worst-case scenario for uncertain
but bounded parameter(s) and optimizes the problem. A worst-case scenario is an uncertain
parameter taking on its worst possible value within a defined bound. The outcome is a robust
solution that is immunized to uncertainty. The distinct drawback to this approach is the
possibility that solving for the worst-case scenario incurs an enormous cost and other
impracticality leading to the rejection of the solution. This can be the case when utilizing the box
uncertainty set. The ellipsoidal uncertainty set defines and bounds the uncertainty set away from
the very conservative worst-case scenario. A model utilizing RO solves for each realized value
of uncertainty producing a solution guaranteeing feasibility in the entire uncertainty set (robust
feasible solution). For further details on uncertainty sets, the reader should reference Ben-Tal el
al. (2009) and Bertsimas et al. (2011).

2.1.2 Types of Objective Functions

Typical objective functions in RO models are minimize maximum (minmax) cost and
minmax regret functions or any similar minmax function. Ben-Tal and Nemirovski (1998) and
Ben-Tal et al. (2004) apply minmax cost objective functions in showing different applications of
RO and the utilization of the ellipsoidal uncertainty set. Assavapokee et al. (2008) presents a
three stage minmax regret model using a scenario-based RO approach. An optimal solution to a
robust problem with a minmax objective may not be the optimal solution for any individual
realization of the uncertain parameters. Rather, the robust solution is not too far from optimal for

all possible realizations.

10



2.1.3 Model Structure
The following illustration shows how to convert an uncertain linear program into its

robust counterpart, adapted from Ben-Tal et al.’s (2009) linear programming model.

General linear programming model:

min{cTx: Ax < b} where x,c € R*, A is a m X n constraint matrix and b € R™ (2)

The robust counterpart to the linear program essentially introduces the uncertainty set to the
problem and changes the objective function to a minmax to ensure feasibility.

General robust counterpart to the linear program:

min{t:cTx <t,Ax < bV (c,A,b) € U} where U represent the uncertainty set (3)

All parameters (c, A, and b) can be uncertain and must belong to the uncertainty set U.
All robust models require that solutions be feasible for all values in U. As stated in Section

2.1.2, any objective function can be used in robust models.

2.1.4 Characteristics of Robust Optimization

The increased usage of RO reveals some distinct issues in managing uncertainty.
Bertsimas et al. (2011) explains three central issues surrounding RO: tractability,
conservativeness, and flexibility. Tractability is highly dependent on how the uncertainty set is
defined. Also, the nominal problem’s tractability may not guarantee the tractability of the robust
counterpart. Conservativeness is RO’s ability to be immunized from the uncertain parameters in
creating solutions. The level of conservativeness within the problem depends on the definition of
the uncertainty set and allows the analyst to tweak the problem by choosing between robustness
and performance. The flexibility of RO is shown not only by its multiple uses, but also by the
multiple applications of building a model with the wide array of describing the uncertainty sets.

2.1.5 Scenario-Based Robust Optimization
This thesis uses a scenario-based approach which is very similar to robust discrete
optimization. Scenario-based approach to RO utilizes a finite set of uncertain scenarios and

provides a feasible solution over all scenarios. Kouvelis and Yu (1997) provide a basic overview
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of robust discrete optimization (scenario-based) approaches and definitions of different
robustness criteria, including absolute robustness (minmax cost), robust deviation (minmax
regret), and relative robustness (minmax relative regret). Assavapokee et al. (2008) creates an
algorithm that solves a relaxation problem for both feasibility and optimality conditions of the
main problem. The algorithm adds all scenarios that violate feasibility or optimality conditions of
the relaxation problem and examines only a small subset of scenarios. The scenarios within the
subset are in two categories: scenarios that maintain feasibility and scenarios that prove
optimality. The authors prove the algorithm will terminate in a finite number of iterations and
solve to optimality the minmax regret robust problem. The algorithm can also solve for the
minmax relative regret. Bertsimas and Sim (2004) introduce a parameter I to the model’s
constraints adjusting the robustness based on the desired level of conservatism in the solution.
This parameter controls the amount of robustness to an uncertain parameter in each scenario and
the associated cost to the objective function; this is also known as the D-norm approach.
Moreover, Goerigk and Schobel (2011) implement an algorithm that calculates less conservative
robust solutions over a set of scenarios with the aim being to find “a solution which can be
recovered to an optimal solution of a scenario (when it becomes known) with minimal recovery
costs in the worst case.” This approach can be used when there is an efficient method for solving
the deterministic version of the problem and shows that the selection of the scenarios within the

uncertainty set helps avoid solutions that are too conservative.

2.2 Facility Location

The set covering facility location class provides the basis for the models used in this
paper. Covering models, in general, assign a facility to a location and satisfy demand up to a
certain threshold or maximum distance/time traveled; all demand within this threshold is covered
(Owen and Daskin 1998). There are two types of covering models: set covering and maximal
covering (Daskin 1995, Owen and Daskin 1998). Set covering facility location models minimize
the total cost of the system while maintaining a threshold of coverage, and maximal covering
models maximize coverage given a set threshold of coverage and a fixed number of facilities.
There are also two main categories of facility location problems: uncapacitated and capacitated.
The models in this thesis fall in to the capacitated category. These problems typically have a

large fixed cost for locating facilities. The capacity of a facility is defined in terms of physical
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space within the facility or the inbound and outbound flow through the facility. The capacitated
facility location problem is the finite capacity version of the uncapacitated facility location
problem (Verter 2011).

2.2.1. Facility Location Under Uncertainty

Facility location under uncertainty is a very important field of research to the logistics
and humanitarian aid communities. Facility location is a strategic level decision for humanitarian
organizations. Costs associated with location decisions are large and, most of the time, these
decisions are extremely costly to change once implemented. Therefore, when demand or another
parameter is uncertain, importance increases to model these long-term decisions with respect to
that uncertainty. Snyder (2006) provides a great review of facility location under uncertainty and
describes the two-stage nature of facility location models. Stage one determines the location of
the facilities “here and now,” and stage two reacts to the realized uncertainty, in most cases some
type of demand. The treatment of uncertainty in facility location problems is contained within
two schools of thought, stochastic and robust location problems. Robust facility location
problems are commonly solved with a scenario approach, either minimax cost or minimax regret
modeling methods. With the consequential magnitude of cost in facility location, worst-case
scenario for the uncertain parameter(s) is very impractical, so a “fractal target” approach is
utilized (Snyder 2006). Essentially a threshold of 80, 85, or 90 percent of demand is satisfied

within the coverage area.

2.2.2 Location-Inventory

Location-inventory models are used to simultaneously determine the location of facilities
and the amount of inventory maintained at each facility. Daskin et al. (2002) explain that facility
location and inventory problems are typically solved separately and often result in sub-
optimality. A non-linear integer program is used to integrate both facility location and amount of
inventory within each facility. In this model, Daskin et al. (2002) adopt the idea of risk pooling,
which leads to an inventory cost savings for groups of facilities by combining both facility
location and inventory management in a single model.

The concept of risk pooling allows retailers (in a system of distribution centers and
retailers) to maintain a level of safety stock and act as distribution centers to other retailers in

order to mitigate demand uncertainty (Shen et al. 2003). Shen et al. (2003) also combines both
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facility location and inventory management with risk pooling into one mixed integer non-linear
model. Both these models utilize deterministic parameters for demand and supply, whereas
Snyder et al. (2007) provides a stochastic location risk pooling model. Demand for this model is
scenario-based with the scenarios following a normal distribution and supply remaining

deterministic.

2.2.3 Pre-Positioning Aid in Humanitarian Relief

Balick and Beamon (2008) utilize a location-inventory model specifically for
humanitarian relief. The model is a maximal covering location problem that has a mixed integer
programming formulation with probabilistic disaster scenarios. The model seeks to maximize
total expected demand covered subject to a total budget for pre- and post-disaster and upper and
lower response time limits. Ultimately, the model provides decision makers with the locations of
facilities and the amount to pre-position given a set of disaster scenarios. Another scenario
formulation of a location-inventory problem is found in Gérmez et al. (2010). This model utilizes
the worst-case scenario of an Istanbul earthquake and, based on the model, determines the
number of facilities and pre-positioned stock level. The problem utilizes a two-stage approach:
the first stage locates the facilities and determines their capacities, and the second stage treats the
facilities as demand points and assigns them to distribution centers. The author accounts for
service disruptions by analyzing vulnerability levels at each demand site. Vulnerability level is
the ratio of the population of the demand site to the total population. A higher vulnerability level
means the demand point is high-risk and the program will bound the distance to a distribution
center, ensuring the demand point is closer.

Rawls and Turnquist (2010) formulate a two-stage stochastic mixed integer program that
pre-positions supplies and locates facilities within a discrete set of scenarios with probabilities of
occurrence. The case study focuses on the hurricane threat in the Gulf Coast area of the United
States. The first stage is under uncertainty and the decisions are the size, location, and number of
facilities. The second stage is the realized demand and the distribution of available supplies
based on the scenario. Because of the complexity of the problem the authors develop a heuristic
called a Lagrangian L-shaped method. Salmeron and Apte (2009) create a strategic and resource
allocation plan for humanitarian aid utilizing a two-stage stochastic optimization model. Along

with the scenario-based problem with pre-positioning and warehouse location decisions, the two-
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stage model also takes into account means of transportation, relief personnel, medical facility,
shelter, and rescue population decisions. This incorporation creates a very detailed strategic
disaster planning model. Campbell and Jones (2010) introduce a pre-positioning location-
inventory model that accounts for location risk as inventory is positioned closer to disaster
locations. The unique aspect of this study is that risk and inventory levels are independent of
scenarios. Galindo and Batta (2012) present a pre-positioning model that accounts for the
destruction of the supplies during the disaster and increased logistics costs immediately after a
hurricane. The authors include an amplified amount to the expected demand in order to mitigate
demand uncertainty.

While most studies in pre-positioning humanitarian aid supplies utilize stochastic
optimization to account for uncertainty, few have utilized robust optimization. This report
introduces a strategic pre-positioning approach that uses a robust optimization technique that
provides linear tractability with the protection against over conservatism akin to ellipsoidal

uncertainty set.

2.3 Gifts-in-Kind
“Disaster response planning must consider the expected material convergence by designing operational

procedures and analytical formulations that account for it” Holguin-Veras et al. (2012b).

Holguin-Veras et al. (2012b) conducted an analysis of material convergence (the flow of
all supplies and equipment, including GIK, to disaster areas), specifically unsolicited in-kind
donations. The authors explain that this type of GIK has been problematic in all major disasters
because unusable GIK arrive at a disaster site. The study reveals the overwhelming negative
qualitative impact of GIK and that over 50 percent of received GIK are inapplicable to the
disaster response. Destro and Holguin-Veras (2011) conduct a quantitative analysis of the impact
of GIK using Hurricane Katrina as a backdrop. The authors study the flow of GIK from donor to
disaster location and provide analysis of the flow of GIK after a disaster. Because GIK are an
outlet from which to show genuine care and emotion in the face of a tragedy, many donors give
in-kind donations but, regrettably, these gifts are often irrelevant, expired, or low quality and are
burdensome to relief workers (Hechmann and Bunde-Birouste 2007). For instance, weeks after
the 2004 tsunami, Sri Lanka’s Colombo airport was inundated with humanitarian cargo;

unfortunately, a majority of this cargo was GIK, which stymied operations at the airport and
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filled warehouses. These gifts were unsolicited and required significant manpower to categorize,
S0 a majority of the items remained unclaimed for months after the disaster (Thomas and Fritz
2006). Holguin-Veras et al. (2012c) describe how news reports of scarce potable water in Haiti
during the 2010 earthquake caused massive GIK water donations to the Dominican Red Cross,
resulting in significant depreciation of local goods. The authors further explain that one donated
bottle of water essentially is cost-equivalent to three or four bottles of local water. Moreover, the
authors explain that Port-au-Prince was inundated with both cargo and GIK and that all
shipments from the Dominican Republic ceased for five days.

As described in Chapter 1, Tomasini and Van Wassenhove (2004) explain the storage
issues with in-kind donations during humanitarian crisis. Flandez (2012) is another example of a
problematic storage issue concerning unsolicited in-kind donations and how they can complicate
a crisis. The author proposes aid organizations should create more exclusive criteria with GIK, as
well as inform donors of what constitutes responsible donating. Wachtendorf et al. (2010)
provide a case study of Hurricane Katrina with respect to the qualitative impact of material
convergence (GIK) in accordance with the social conditions surrounding disasters and
catastrophes. Holguin-Veras et al. (2012a) identify the lack of research in material convergence
(specifically GIK) and the urgent need to quantify the impact of this convergence.

There exist many studies qualifying the impact of GIK and few quantifying that impact.
To the author’s knowledge, this study is the first to mitigate the impact of GIK under uncertainty.
The approach is to allocate space for GIK in warehouses during the preparation phase of the
strategic planning process of a humanitarian organization. This method provides feasible

solutions, under uncertainty, that satisfies demand and allocates space GIK.
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Chapter 3 - Robust Facility Location Models

This chapter presents the problem statement of this paper and introduces the four robust
facility location models that satisfy both uncertain demand and GIK donations for a prospective
disaster location during the strategic level of decision making. In addition to the robust models,
Chapter 3 presents four base models that satisfy only demand under uncertainty with a penalty
for unsatisfied GIK and utilize the same robust facility location formulation as the robust models.
Unsatisfied GIK is defined as not having space for GIK in a given warehouse. This chapter
encompasses the problem statement, the formulation and description of the four robust facility
location models, the description of the four base models, and the case study and data.

3.1 Problem Statement

A humanitarian organization wants to plan for the next hurricane disaster in the
southeastern part of the United States, specifically the area encompassing the Atlantic and Gulf
Coasts of the United States. The organization seeks to establish a strategic plan that involves
placing warehouses with pre-positioned stocks in various candidate warehouse locations across
the Southeast that will satisfy demand in any prescribed hurricane scenarios. These hurricane
scenarios are derived from a sample of 15 hurricanes adapted from Rawls and Turnquist (2010),
further explained in Section 3.3.3. This organization wants to include uncertainty in demand and
GIK donations. Demand is split into three types of supply: potable water, meals-ready-to-eat
(MRE), and medical kits. In every scenario, a demand region requires various amounts of the
three types of supplies. Also, the region incites GIK donations from the rest of the United States.
Exact origination of the donations is irrelevant, but these donations enter into the supply system
for a demand region and the open warehouses must allocate space for the GIK in order to ensure
adequate treatment and storage. Requirements dictate that the humanitarian organization knows
where to place their warehouses in order to satisfy demand and GIK. The organization must also
know how many pre-positioned supplies to purchase, the amount of supplies stored in each
warehouse, how much space to allocate for GIK in each warehouse, and the total cost of
establishing the strategic plan.

This problem requires a facility location model that guarantees satisfaction of both

uncertain demand and GIK. The model must capture all costs associated with establishing a

17



strategic facility location plan. These costs are divided into fixed costs and scenario-based costs.

The following are fixed costs: warehouse infrastructure, pre-positioned supplies, and unused

space for GIK storage. The scenario-based costs include: transportation cost of shipping supplies

from warehouses to satisfy demand, transportation cost of shipping GIK from one warehouse to

another (in the case where a warehouse is filled to capacity), and the handling cost of GIK. The

creation of uncertainty sets for both demand and GIK resolves the uncertainty in the problem

(Section 3.3.3). The next sub-section provides assumptions surrounding the problem before

explanation of the model formulation in the next section.

3.1.1 Assumptions

1.

10.

Only one hurricane will strike the southeastern portion of the United States. There are no
multiple or consecutive hurricane strikes.

No GIK donation can satisfy demand.

GIK are important and must be stored at all times.

GIK shipping information will be provided to public soon after the disaster strike. The
humanitarian organization will identify all warehouses that have space for GIK and
during the response phase, the organization will provide these locations for GIK
shipments.

Demand for the three types of supplies is isolated to a demand node based on the
scenario. Demand nodes represent the center mass of a region and all demand
requirements are satisfied at this node.

The links between nodes are unaffected by the storms. Transportation routes remain clear
after the storm and are only ground links (roads).

Warehouses are unaffected by the storms. Warehouses cannot be destroyed in a storm.
Candidate warehouse locations and demand regions can coexist on the same node if there
is demand from that node.

If there is an open warehouse in a region that incites GIK donations, then GIK donations
will arrive at that warehouse. Otherwise, GIK donations will arrive at warehouses that
have allocated space for GIK.

Units of measurement for demand supplies and GIK are pallets. Pallets are stored in

pallet racks at each warehouse.
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3.2 Model Formulation

The four robust models described in this section are: minimize cost (MC), minimize
mean scenario-based cost (MMSC), minimize maximum cost (MMC), and minimize maximum
regret (MMR). All models seek to minimize a type of cost objective function while satisfying all
demand and establishing space for GIK. All four models utilize the same indices, parameters,

and decision variables.

Sets and Indices:

I = Set of node locations for both candidate warehouse locations and demand regions; i, j,r € I
S = Set of supplies; s € S

K = Set of warehouse size categories; k € K

H = Set of scenarios; h € H

N = Set of hurricanes; n € N

Parameters:

). = Nominal demand at region r for supply s in number of pallets during hurricane n

dh, = Uncertain demand at region r for supply s in number of pallets from scenario h

gy = Nominal incited GIK from region r in number of pallets during hurricane n

gt = Uncertain incited GIK from region r in number of pallets from scenario h

I3 = Cost per pallet of supply s to ship between warehouse location i and demand region r
B = Cost per pallet of retaining warehouse space (pre-positioning) for GIK

B = Cost per pallet of handling GIK

Tij = Cost per pallet of GIK to ship between warehouse location i and warehouse j

fr = Fixed cost of establishing a warehouse the size of category k

Cs = Cost per pallet of supply s

ay = Capacity of a category k warehouse

M = Big M. Sufficiently large number

Decision variables:

Wik =1 if warehouse location i in category k is open, 0 otherwise.

o} = 1 if the allocated GIK storage space is greater than incited GIK from region r, 0 otherwise

6?7 = 1 if the allocated GIK storage space is less than incited GIK from region r, 0 otherwise

Qis = Total number of pallets warehouse i will store of supply s.

xsh = Number of pallets warehouse i will store to demand region r of supply s in scenario h.

Vi = Total number of pallet spaces warehouse i will reserve for GIK.

i = Number of GIK pallets warehouse i will store for demand region r in scenario h.

zihj = Number of GIK pallets warehouse i will store for warehouse j in scenario h. This implies that warehouse

j is collocated in region r (r = j) and warehouse j is unable to store the incited GIK from region r.
Therefore, warehouse j will ship pallets of GIK to warehouse i for storage.

The variables w;, g;5, and y; are decisions made absent any scenario while variables x3",
yl, and zi"j are decisions dependent on a given scenario when demand and GIK amounts are

realized. The model tries to minimize the total cost while maintaining feasibility in all scenarios

in h. Feasibility in this case is the satisfaction of both demand and GIK where the warehouse
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location, quantity of supplies, and space allocated for GIK are sufficient for all scenarios. The

uncertainty is modeled based on the scenario and discussed in Section 3.2.

The scenario-based decisions are the transportation decisions (x3",z j) and the GIK

storage decision (y/X). The transportation decisions assign a cost per pallet for both supplies and
GIK. The GIK transportation and storage decisions also assign a handling cost per pallet. The
model minimizes all costs associated with transportation and handling for all scenarios. When
j =i (warehouse location and incited GIK demand region are the same) or region r does not
have a warehouse, there is no transportation cost for GIK but a handling cost in the form of Sy.
The parameter values of infrastructure cost, procurement cost, transportation cost (.

demand for all three types of supply, and warehouse capacities are derived directly from Rawls
and Turnquist (2010). The space cost B represents the opportunity cost for not using the space
for more pre-positioned goods or any other purpose for the humanitarian organization other than
reserving space for GIK. The handling cost £ is the specific cost of handling pallets of GIK. This
cost incorporates worker cost and uncertainty attributed to the type of gift and weight of GIK
pallets. The GIK transportation cost 7;; includes the uncertainty in the type and weight of the
gifts and the requirement to have a transportation asset dedicated to GIK shipment. The value of

" is derived from the nominal demand. The nominal value of GIK can be no greater than the

largest demand and no less than the smallest demand.

3.2.1 Minimize Cost Model

Objective Function:
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The MC model’s objective function seeks to minimize the total cost of six terms over all
scenarios, the infrastructure cost of establishing warehouse w;, with fixed cost f;, the
procurement cost ¢, for quantity g;; in all warehouses, the per pallet space cost B for GIK
quantity y;, the per pallet transportation cost I£. of shipping supply quantity x:", the per pallet

transportation cost ;; plus the per pallet handling cost g for moving z pallets of GIK between

warehouses, and the per pallet handling cost 8 for holding v pallets of GIK in warehouse i (4).
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Constraint (5) is the facility capacity constraint ensuring that all supplies gq;; and GIK y;
held in warehouse i are equal to the total capacity a,. This constraint allows all unused space in
any open warehouse to be dedicated to GIK. The second constraint (6) ensures that only one
category k of a facility can be open at any location i. Constraint (7) states that the sum of all
warehouses with supply s must be greater than or equal to demand for the same supply at a given
region r in scenario h. This ensures that the system wide stocks of supply s are sufficient to meet
the demand in any scenario. The fourth constraint (8) states that the sum of the allocation
decisions of the warehouses in i must satisfy demand for all supply s at region r in scenario h. In
constraint (9) for a given warehouse location i, supply s, and scenario h, the sum of the
allocation decisions over the regions must be less than the total amount of supply s in
warehouse i. Constraint (10) for GIK is the same as constraint (7) but applicable for demand.
Constraint (11) state that all storage and transportation decisions for GIK from region r or
warehouse j (j = r), must be equal to the incited demand from region r. Constraint (12) for any
given warehouse i the sum of all GIK storage decisions and transportation decisions to
warehouse i must be less than its space allocated for GIK. The ninth constraint (13) identifies a
breakpoint if the space allocated for GIK in warehouse j is greater than incited GIK from region
r. Constraint (14) requires that if a warehouse j has enough space for the incited GIK in region j
then it must support region r. Constraint (15) is the second breakpoint if incited GIK is greater
than warehouse j’s capacity. Constraint (16) is the GIK transportation decision for the amount of
GIK above warehouse j’s capacity. Constraint (17) is the upper bound for GIK transportation
decisions and constraint (18) states that there can be no transportation decision if there is not an
open origin warehouse. Constraint (19) states that a warehouse can only receive GIK from
another warehouse if it is open. Constraint (20) states that no warehouse will transport GIK (zihj)
to itself. Constraint (21) states that the sum of all storage and transportation decisions are less
than the incited GIK based on the breakpoint. If there is a warehouse in region r where there is
incited GIK, then GIK will only arrive at that warehouse. From the warehouse, GIK is either
stored or shipped to another warehouse. If no warehouse exists in the region with incited GIK,
then all other warehouses with space will receive GIK based on the model. Constraints (22)-(27)
are the non-negativity constraints for the decision variables.

A humanitarian organization will use this objective function if the organization is

concerned about scenario-based costs. This objective function incorporates all the scenario-based
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costs in the objective value immunizing the model against all scenarios. A planner will use this
fact to establish a pre-positioning network that is immunized to both parameter uncertainty and
scenario realization. This is an extreme case of risk aversion for a humanitarian organization that

wants to plan for all contingencies.

3.2.2 Minimize Mean Scenario-Based Cost Model

Objective Function:
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The MMSC model shares all the same constraints (5)-(27) as the MC model and shares
the same goal of minimizing total cost, but a slight change to transportation cost is included in
the objective function. This model minimizes the mean of the scenario-based costs. This model
does not penalize for the cumulative total costs of transportation and GIK handling of all
scenarios.

If an organization does not want to absorb the scenario-based costs of all scenarios, the
organization may use the MMSC objective function. The cost added to the objective value is the

mean of all the scenario-based costs, effectively assigning an equal probability to each scenario.

3.2.3 Minimize Maximum Cost Model

Objective Function:

min p (29)
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The MMC model also shares the same constraints as the previous two models with the
exception of constraint (30). Constraint (30) states that the decision variable p is the maximum
total cost of all the scenarios in H; the cost expression is similar to the objective function (4) of

the MC model with the exception of the summation over h. This constraint isolates the costliest
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scenario while the objective function minimizes p, resulting in for all realized scenarios in H,
that p is the maximum cost for the entire system.

A humanitarian organization will use this objective function to determine the minimum
most costly scenario possible. This will establish the most an organization will pay for a solution
that is feasible in all other scenarios. The MMC objective function is also a risk averse approach,
but less costly than the MC model.

3.2.4 Minimize Maximum Regret Model

Objective Function:

min R (31)
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The MMR model introduces an additional constraint. Constraint (32) is the maximum
regret for each scenario where R;, represents the scenario optimal solution cost. Regret is defined
as the amount of increased total cost the results from the difference between the total cost of a
scenario and the optimal solution cost of the same scenario Rj,. All other constraints are the same
as the MC and MMSC modes. The objective function seeks the minimize the maximum regret
over all scenarios in H.

A humanitarian organization will opt for the MMR objective function if the organization
IS not seeking to be risk averse in the case of the MMC objective function. This minimizes the
maximum regret for the current decision establishing the maximum possible feeling of regret for
all scenarios. Organizations establish a base level of satisfaction utilizing the MMR objective
function; any scenario realization other than the base level reduces regret, increasing satisfaction

in terms of reducing costs.

3.2.5 Base Models
The four base models represent the MC, MMSC, MMC, and MMR models satisfying
only demand and penalizing for unsatisfied GIK. Decision variables associated with GIK are
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discarded, retaining only decision variables affecting demand. The base models’ constraints
encompass constraints (6)-(9) and constraint (34) (replaced constraint (5)). The models do not
allow warehouses to store GIK, so all GIK in every scenario incur a penalty. After the models
generate a solution, a penalty cost P is added to the total cost for each pallet of unsatisfied GIK
(gh). P represents a per pallet cost that comprises the cost of ill-feelings from donors for
unsatisfied GIK, cost of workers to handle unexpected GIK, and the cost of hasty placement of
GIK. The purpose of these models is to provide models for comparison to the robust models
presented in Sections 3.2.1-3.2.4.

Objective Function: Minimize cost model (BMC)
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Objective Function: Minimize scenario-based cost (BMMSC)
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The penalty cost for the BMMSC solution is:
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Obijective Function: Minimize maximum cost (BMMC)
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The penalty cost for the BMMC solution is the range of the penalty costs for all scenarios:
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Objective Function: Minimize maximum regret (BMMR)
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The BMMR solution utilizes the same penalty costs as the BMMC solution.

3.3 Case Study

This thesis presents a computational study to demonstrate the applicability of the
previous models. The data for the study is adapted from Rawls and Turnquist (2010) and
includes demand, demand and facility nodes, hurricane data, and costs. Three types of supply
(water, MRE’s, and medical kits) represent demand. The 30 cities across the southeast United
States represent the demand and facility nodes. The data from 15 hurricanes represents the
affected node(s) and demand amount for each type of supply. The cost data represents facility
costs by size, supply cost, and supply transportation cost. This data is the foundation of the
parameters used in the eight models previously described.

3.3.1 Rawls and Turnquist (2010) Case Study

The case study from Rawls and Turnquist (2010) centers on hurricanes in the Atlantic
Basin of the United States and includes the following states: Alabama, Arkansas, Florida,
Georgia, Louisiana, Mississippi, North Carolina, South Carolina, Tennessee, and Texas. The data
includes samples of 15 hurricanes (10 major, categories 3-5; and 5 minor, categories 1 and 2)
that made landfall in the Atlantic Basin (between 2004 and 2007, data from the Atlantic
Oceanographic and Meteorological Laboratory) and 30 demand-and-candidate facility nodes
connected by 58 links. An open warehouse falls into a category of low, medium, or high, each
with a cubic footage of 36,400, 408,200, or 780,000, respectively. Demand is categorized into
three types of supply, potable water, MRE, and medical kits. For each hurricane event, the data
describes the total demand for each supply type and affected nodes. The authors developed a

total of 51 scenarios that included events of multiple hurricane strikes.
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3.3.2 Robust Model Case Study

The case study of this thesis is comprised of 30 scenarios, two scenarios for each of the
15 hurricanes. The first scenario of each hurricane is the robust adaptation from hurricane data in
Rawls and Turnquist (2010). The second scenario is a robust adaptation from the first scenario
with either more regions affected or an increase in demand to at least one supply type or GIK.
Table 3.1 shows Hurricane #1 from Rawls and Turnquist (2010) and the robust models’ data.
Both scenarios of the robust adaptation’s values of demand and GIK come from within an
uncertainty set that is based on the data from Rawls and Turnquist (2010). Scenario 1 of the
robust adaptation comprises the robust values of demand from Rawls and Turnquist (2010) and
Scenario 2, incorporating a second affected region while ensuring the total amount of demand for
each supply type falls within the bounded regions of the uncertainty set. As previously described,
nominal GIK values are derived from selecting a value that is between the highest and lowest
nominal demand value of a single commodity in a scenario. This method is used to create the
remainder of the 30 scenarios used in the robust models. All links exist between the 30 demand-
and-facility nodes, resulting in a complete graph for the model. Links represent the distances
between nodes, as shown in Figure 3.1 (links not shown in order to see all nodes). Rawls and
Turnquist (2010) used cubic feet as the standard unit of measurement; all corresponding values
are converted to pallets using a standard pallet measurement (L48”xW40”xH48""). Warehouse
capacities, demand, and GIK unit of measurement is number of pallets. Costs, likewise, are
converted to dollars per pallet for procurement and storage and dollars per pallet-mile for

transportation costs.

Table 3.1: Scenario Creation Example

Hurricane Data Scenario | Hurricane | Category [ Node Affected Water demand | Food demand | - Medicine Kits GIK
(pallets) (pallets) demand (pallets) | (Pallets)

Rawls and Turnquist (2010) 1 1 3 Houston, TX 948.94 820.28 10.88 N/A
Robust adaptation 1 1 3 Houston, TX 1016.72 734.35 11.42 310.00
Robust adaptation 2 1 3 Houston, TX 688.66 468.73 8.92 215.00
Beaumont, TX 303.66 390.61 3.26 100.00
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City
Charlotte, NC
Wilmington, NC
Columbia, SC
Charleston, SC
Savannah, GA
Atlanta, GA
Nashville, TN
Jacksonville, FL
Live Oak, FL
Tallahassee, FL
Orlando, FL
Tampa, FL
Miami, FL
14 Key West, FL
15 Birmingham, AL

16 Mobile, AL
17 Biloxi, MS
18 Jackson, MS
19 Memphis, TN
20 Hammond, LA
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Figure 3.1: Case Study Network

3.3.3 Data Uncertainty

In the robust models, both demand and GIK are uncertain and utilize a robust formulation
to account for uncertainty. The robust uncertainty set used is motivated by the ellipsoidal and
box uncertainty sets used by Ben-Tal and Nemirovski (1998), Ben-Tal et al. (2009) and Baron et
al. (2011).

Notation and parameters:

Q = Safety parameter between 0 and 1
&4 = the percentage of robustness from the nominal value of demand
&g = the percentage of robustness from the nominal value of GIK
gqd;. = the deflection value (standard deviation) of the nominal demand at region r for supply s during hurricane
n
sgg‘;’ = the deflection value (standard deviation) of the nominal GIK at region r during hurricane n
[ -1 \2
(ead,) | |
s = : ,nx1 vector for each supply s, demand variance vector for hurricane n
n 2
_(gddm)
[ _n\2
(e437)
%4 = : ,nx1 vector, the GIK variance vector for hurricane n
_n\2
| (597)
{on = the individual inverse demand variance value from the vector {;* of supply s
/A = the individual inverse GIK variance value from the vector V1
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The starting point for creating the uncertainty sets for d” and g" in each scenario is
establishing the nominal values, d;; and g;', and determining values of &, and &,. The nominal
values are derived from the 15 hurricanes in Rawls and Turnquist (2010) where n = {1,2, ...,15},
represent each of the hurricanes. In practice, the humanitarian organization would determine the
desired level of robustness through parameters ¢; and &,. €4 and ¢, are the percentages the
uncertain values can shift about the nominal value. The amount of the shift is the deflection
value e,4d, or egg‘;’ . The same organization must also determine the safety parameter (; this
parameter determines the radius of the ellipse and the level of conservatism. Q =1 is the
maximum level of conservatism; the full &, or &, percent robustness is in effect for the problem
(box uncertainty as described in Baron et al. (2011)). If Q < 1, then there is a reduction in
conservatism. The variance vector for each type of supply and GIK for each of the 15 hurricanes
(¢s, V) are created and the inverse of the values are assign to the parameters {z, and V),
respectively. The values assigned to {5, and ;' become singletons. Equations (40) and (41) are
the uncertainty set equations for demand and GIK. The equations are derived from the ellipsoidal
uncertainty set equation from Baron et al. (2011), shown in Equation (42). In Equation (42), a;
and a; represent the uncertain and nominal parameter respectively with ; as the safety
parameter, C; the covariance matrix, and x as decision variable. Equations (40) and (41) remove
all decision variables and replace C; under the radical with {;. This removes the non-linearity,
but retains the flexibility of the safety parameter.

To illustrate creating an uncertainty set assume &; = 0.1 (10 percent) and the nominal
value of demand is 100. The deflection value is 10 (0.1-100 = 10). The deflection value is

squared and placed in the ¢, vector (for this illustration, the vector is 1x1) resulting in [100]; the

i is |2 ith 7% = ——
inverse is [E] with {5, = -

o 1= 0.75, using Equation (40) results in the uncertain demand

range of [92.5,107.5]. Section 3.3.3.1 provides another example for the process of creating the
uncertainty set for potable water demand for Hurricane #1. The values between these bounds

then derive each scenario. In every scenario no value for d; or g% exists outside their bounds.

_ ./ - _ 0./
d?s_T?nSdgss Zs’l'%nsn (40)
Q. /v Q. /v
A L e L (41)
Yy Yy
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Cix (42)

This method is a combination of the box and ellipsoidal method. The ellipsoidal method
utilizes non-linear constraints in determining the uncertainty set. The uncertainty set derived in
this paper utilizes the ellipsoidal method’s concept of moving away from very conservative
solutions to reasonably robust solutions with the manipulation of the safety parameter Q. This
method relaxes the non-linear constraint of the ellipsoidal method while still retaining the
ellipsoidal quality of being subject to less than the full percentage deflection. Moreover, using
the scenario-based approach allows for the computation of the uncertainty sets to happen
separate from the optimization model, leading to a computationally tractable model. The
uncertainty set derived in this paper is a subset of the box method described in Baron et al.
(2011) if Q < 1. This method, because it is linear, follows closely to the box method, thus
creating an interval of values for the uncertain parameters. With equal deflection parameters, the
box method uncertainty set encompasses more values and contains the ellipsoidal uncertainty set
(Baron et al. 2011). Because this paper’s method is constructed similarly to the box method with
ellipsoidal intervals, it is a superset of ellipsoidal method of this same problem.

3.3.3.1 Uncertain Data Creation Example

As described above, Hurricane #1, from Rawls and Turnquist (2010), affects the node at

Houston, Texas, with the nominal water demand of 948.9375 pallets (d)). &4 = 0.15 and

Q = 0.8 and ¢; represent the variance vector for water demand of all 15 hurricanes.

r2.03E + 047
5.19E + 04

1.23E + 05
1.34E + 07
9.30E + 06
1.65E + 05
5.95E + 04
€t =[3.72E + 05
1.79E + 05
8.37E + 05
4.13E + 06

5.36E + 07
1.31E+ 06

8.29E + 05
13.20E + 06
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The inverse of ¢; results in the vector ;.

[4.94E-05]
1.93E-05
8.16E-06
7.46E-08
1.07E-07
6.05E-06
1.68E-05

Gt =12.69E-06
5.59E-06
1.19E-06
2.42E-07
1.87E-08
7.61E-07
1.21E-06

3.12E-07.

At this point, isolating the value 0.0000494 in the first row of the vaector results in the water
demand multiplier for Hurricane #1 and assigned to the parameter {;,, n = 1 for Hurricane #1
and s = 1 for supply type 1 (water). The second row corresponds to water demand for Hurricane
#2 and continues for the rest of the 15 hurricanes. The values of d., {5y, and Q are entered in to
the uncertainty set equation (Equation (40)) creating the bounds for the uncertain value d”. The
water demand bounds for Hurricane #1 are [835.065,1062.81] pallets.

This process continues creating the uncertainty sets for food, medical kits, and GIK. The
data is then used to derive the 30 scenarios that is the basis of the robust and base models. The

next chapter presents the results of the computational study.
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Chapter 4 - Computational Study Results

Chapter 4 consists of six sections: four sections presenting the results of each robust
facility location model, one section presenting the four base models’ results, one section
comparing the robust models with the base models, and the final section discussing the insights
from the robust models. All models are solved using ILOG OPL version 12.4 with a 1.50 GHz
AMD AB8-3500M APU computer (single core used) with 8.00 GB of RAM. All models are

solved to within 0.05 percent of optimality.

4.1 Minimize Cost Model Results

Table 4.1 depicts the solution for the MC model. This solution has ten total warehouses,
five large (14,625 pallet capacity), one medium (7,654 pallet capacity), and four small (683
pallet capacity). There is one specialized warehouse (storing only one of the three supply types
or GIK) storing only water and four warehouses store all three supply types and GIK. All other
warehouses store a combination of the supply types and GIK. The pre-positioned supply pallet
totals for the entire system are: 51,514 for water, 23,202 for MRE, and 2,306 for medical Kits.
The space allocated for GIK encompasses a pallet capacity of 6,487.

Table 4.1: MC Model Solution

Water Food Meds GIK |Warehouse
Warehouse .
(Pallets) [(Pallets) [ (Pallets) | (Pallets)| Capacity

Charlotte, NC 110 555 17 0 Small
Charleston, SC 10234 0 0 4391 Large
Atlanta, GA 0 494 189 0 Small
Jacksonville, FL 12052 2241 261 71 Large
Orlando, FL 14070 0 0 555 Large
Miami, FL 4880 8462 783 500 Large
Biloxi, MS 3335 3346 152 820 Medium
Hammond, LA 6150 7433 892 150 Large
Beaumont, TX 683 0 0 0 Small
San Antonio, TX 0 671 11 0 Small
Total # of pallets for
supply and GIK 51514 | 23202 2306 6487
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Table 4.2 summarizes the cost breakdown of the model. The objective function value is
$116.2 million with a majority ($107.6 million) of the total cost in the procurement cost. The

procurement cost making up a large majority of the total cost is consistent in all the robust and

base models. Figure 4.1 shows the map of the MC model solution.

Table 4.2: MC Model Cost Summary

Cost Type Amount
Infrastructure Cost $1,766,800.00
Procurement Cost $107,633,660.01
GIK Space Cost $486,547.73
Supply Transportation Cost $5,971,345.35
GIK Transportation Cost $24,000.00
GIK Handling Cost $316,740.00
Total Cost $116,199,093.09
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Figure 4.1: Map of MC Model Solution

4.2 Minimize Mean Scenario-Based Cost Model Results

The MMSC model has a total of seven warehouses, five large, one medium, and one

small. There are no specialized warehouses; five of the seven warehouses store all three supply
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types and GIK. Beaumont, Texas, and Orlando, Florida, store only water and GIK. Table 4.3
depicts the solution for the model, Table 4.4 shows the cost summary, and Figure 4.2 displays

the map of the solution.

Table 4.3: MMSC Model Solution

Water Food Meds GIK |Warehouse
Warehouse .
(Pallets) [(Pallets) [ (Pallets) | (Pallets)| Capacity

Savannah, GA 12852 264 9 1500 Large
Jacksonville, FL 9544 4008 470 603 Large
Orlando, FL 14070 0 0 555 Large
Miami, FL 4880 8462 783 500 Large
Biloxi, MS 3335 3135 152 1032 Medium
Hammond, LA 6250 7333 892 150 Large
Beaumont, TX 583 0 0 100 Small
Total # of pallets for
supply and GIK 51514| 23202 2306 4440

Table 4.4: MMSC Model Cost Summary

Cost Type Amount
Infrastructure Cost $1,708,000.00
Procurement Cost $107,633,660.01
GIK Space Cost $332,985.23
Supply Transportation Cost $215,958.19
GIK Transportation Cost $0.00
GIK Handling Cost $10,591.33
Total Cost $109,901,194.77
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Figure 4.2: Map of MMSC Model Solution

4.3 Minimize Maximum Cost Model Results

Table 4.5 summarizes the solution for the MMC model, with Figure 4.3 depicting the

solution map. There are seven warehouses in this solution, five large, one medium, and one

small. Two specialized warehouses store only water in Jacksonville and Tampa, Florida. Three

warehouses store all pre-positioned supplies and GIK. The final two warehouses store a

combination of pre-positioned supplies and GIK. Table 4.6 shows the cost summary for this

mode

Table 4.5: MMC Model Solution

Water Food Meds GIK [Warehouse
Warehouse .
(Pallets) | (Pallets) [ (Pallets) |(Pallets)| Capacity

Savannah, GA 1993 4704 957 0 Medium
Jacksonville, FL 14625 0 0 0 Large
Live Oak, FL 12144 2176 305 0 Large
Orlando, FL 14070 0 0 555 Large
Tampa,FL 683 0 0 0 Small
Miami, FL 7923 3588 430 2685 Large
Corpus Christi, TX 77 12734 614 1200 Large
Total # of pallets for
supply and GIK 51514 23202 2306 4440
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Table 4.6: MMC Model Cost Summary

Cost Type Amount
Infrastructure Cost $1,708,000.00
Procurement Cost $107,633,660.01
GIK Space Cost $332,985.23
Supply Transportation Cost $740,976.76
GIK Transportation Cost $0.00
GIK Handling Cost $14,800.00
Total Cost $110,430,422.01
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Figure 4.3: Map of MMC Model Solution

4.4 Minimize Maximum Regret Results

Like the MMC model, the MMR model has seven total warehouses with five large, one

medium, and one small. One warehouse stores all pre-positioned supplies and allocates space for

GIK. No other warehouse in this solution allocates space for GIK. Two specialized warehouses

store only food. All other warehouses store a combination of pre-positioned supplies. Table 4.7

presents the solution for the MMR model, Table 4.8 shows the cost summary, and Figure 4.4

displays the map of the solution.
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Table 4.7: MMR Model Solution

Water Food Meds GIK |Warehouse
Warehouse :
(Pallets) [ (Pallets) [ (Pallets) | (Pallets)| Capacity

Charlotte, NC 12201 1920 505 0 Large
Charleston, SC 2101 1072 40 4440 Medium
Key West, FL 13570 1055 0 0 Large
Hammond, LA 0 683 0 0 Small
New Orleans, LA 0 14625 0 0 Large
Corpus Christi, TX 12865 0 1760 0 Large
Brownsville, TX 10777 3848 0 0 Large
Total # of pallets for
supply and GIK 51514| 23202 2306 4440

Table 4.8: MMR Model Cost Summary

Cost Type Amount
Infrastructure Cost $1,708,000.00
Procurement Cost $107,633,660.01
GIK Space Cost $332,985.23
Supply Transportation Cost $4,195.94
GIK Transportation Cost $0.00
GIK Handling Cost $1,910.00
Total Cost $109,680,751.19

37




Ln a Bej '
[ I!B! o) 7.
P4 <.
(785 hr 14nd Qesadena
3 Galveston
. pactorig, ooy
ava
Bedr

smith o)

o shyi1K7D ‘,Y‘WJ“ tOn-shlenfreenbndrof; £
rensBN A 1,,, "ﬁ@‘ A
A s s e CDN N *g" kb ot
\Pi f MissisSipyfi D . g p 75‘,, w gacksonv

\ ) }\the P A 5F5i Imington
(8 *uonroe fXe ) i
= At T 2 Myrtle Beach
r Augusk 2 South Carolina
2 ﬁg Pth Charleston
5 iR SyeCliarleston

: : avannah
[ &%‘ R runswick
o) SSES MIacksonville
&)

ML fPOrt Pensatel

=g

—_w Orleans

Saint PetersBdrg™

Node City
1 Charlotte, NC
2 Wilmington, NC
3 Columbia, SC
4 Charleston, SC
5 Savannah, GA
6 Atlanta, GA
7 Nashville, TN
8 Jacksonville, FL
9 Live Oak, FL
10 Tallahassee, FL
11 Orlando, FL
12 Tampa, FL
13 Miami, FL
14 Key West, FL
15 Birmingham, AL
16 Mobile, AL
17 Biloxi, MS
18 Jackson, MS
19 Memphis, TN
20 Hammond, LA
21 New Orleans, LA
22 Baton Rouge, LA

rpus Christi Warehouse Capacities

red Sarasotfyor: 23 Little Rock, AR
D -Large v Nest Palm Beach 24 Ruston, LA
8 1ingen _Medium Coray} Sp 5 8Sca Raton 25 Beaumont, TX
vapleW" ~ Mgort Lauderdale 26 Dallas, TX
ownsville D -Small Hia iami 27 Houston, TX
Home s @RS 28 | SanAntonio, TX
e E 29 | Corpus Christi, TX
—— 30 Brownsville, TX

Figure 4.4: Map of MMR Model Solution

4.5 Base Models Results

Table 4.9 shows the solution of the BMC model. The solution has 11 total warehouses, 4
large, 2 medium, and 5 small. Four small specialized warehouses store water in Houston, Texas;
Mobile, Alabama; Savannah, Georgia; and Wilmington, North Carolina. Another small
warehouse in Columbia, South Carolina, stores MRE and medical kits. All other warehouses
store all three pre-positioned supplies. The objective value for this solution is $114.9 million, but
the added penalty for unsatisfied GIK brings the total cost of the solution to $146.7 million.
Table 4.10 presents the summary of the costs for the solution. Solution maps for the base models

are located in Appendix C.
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Table 4.9: BMC Model Solution

Water Food Meds Warehouse
Warehouse .
(Pallets) | (Pallets) | (Pallets) Capacity

Wilmington, NC 683 0 0 Small
Columbia, SC 0 641 42 Small
Charleston, SC 13269 1250 106 Large
Savannah, GA 683 0 0 Small
Jacksonville, FL 7569 78 7 Medium
Orlando, FL 13662 867 96 Large
Miami, FL 4880 8951 794 Large
Mobile, AL 683 0 0 Small
Biloxi, MS 3254 3984 218 Medium
Baton Rouge, LA 6150 7431 1044 Large
Houston, TX 683 0 0 Small
Total # of pallets
for supply 51514 23202 2306

Table 4.10: BMC Model Cost Summary

Cost Type Amount
Infrastructure Cost $1,674,800.00
Procurement Cost $107,633,660.01
Supply Transportation Cost S$5,636,744.95
Penalty Cost $31,774,000.00
Total Cost $146,719,204.96

The BMMSC model solution also has 11 total warehouses with the breakdown being five
large and six small. All six small warehouses are specialized warehouses storing only water. All
large warehouses are multi-commodity warehouses storing all three pre-positioned supplies.

Table 4.11 shows the model solution. The total cost of the solution with penalties is $110.5

million the cost summary is shown in Table 4.12.
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Table 4.11: BMMSC Model Solution

Water Food Meds Warehouse
Warehouse .
(Pallets) | (Pallets) | (Pallets) Capacity

Wilmington, NC 683 0 0 Small
Charleston, SC 13014 1548 63 Large
Jacksonville, FL 8768 5053 605 Large
Orlando, FL 14580 39 6 Large
Miami, FL 4880 9158 587 Large
Mobile, AL 683 0 0 Small
Biloxi, MS 683 0 0 Small
Hammond, LA 683 0 0 Small
New Orleans, LA 683 0 0 Small
Baton Rouge, LA 6177 7404 1044 Large
Houston, TX 683 0 0 Small
Total # of pallets
for supply 51514 23202 2306

Table 4.12: BMMSC Model Cost Summary

Cost Type Amount
Infrastructure Cost $1,617,600.00
Procurement Cost $107,633,660.01
Supply Transportation Cost $192,709.51
Penalty Cost $1,059,133.33
Total Cost $110,503,102.85

Like the previous two models, BMMC model’s solution has 11 warehouses. There are
five specialized warehouses, all small. The rest of the warehouses are multi-commodity
warehouses storing all or a combination of the pre-positioned supplies. Table 4.13 summarizes
the BMMC model solution. The penalty cost for this solution will range between $71,000
(Scenario 25) and $4.4 million (Scenario 29) depending on the realized scenario as displayed in
Table 4.14. The cost summary in Table 4.15 shows the range of the total cost of the BMMC
solution subject to the minimum and maximum penalty costs. Before the penalty, the scenario

that would result in the largest cost using the BMMC solution is Scenario eight.
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Table 4.13: BMMC Model Solution

Water Food Meds Warehouse
Warehouse .
(Pallets) | (Pallets) | (Pallets) Capacity

Wilmington, NC 8812 5798 15 Large

Charleston, SC 10574 3507 544 Large

Savannah, GA 11312 2734 579 Large

Atlanta, GA 0 683 0 Small

Nashville, TN 0 683 0 Small

Jacksonville, FL 0 484 0 Small

Orlando, FL 0 683 0 Small

Tampa,FL 14501 0 124 Large

Birmingham, AL 0 0 683 Small

Hammond, LA 0 321 362 Small

New Orleans, LA 6315 8310 Large

Total # of pallets

for supply 51514 23202 2306

Table 4.14: Scenario Penalty Costs
Scenario |Penalty Cost | |Scenario [Penalty Cost | |Scenario |Penalty Cost

1 $310,000.00, 11 $1,115,000.00 21 $1,900,000.00
2 $315,000.00, 12 $880,000.00 22 $1,600,000.00
3 $615,000.00 13 $347,000.00 23 $555,000.00
4 $625,000.00, 14 $298,000.00 24 $705,000.00
5 $150,000.00, 15 $175,000.00 25 $71,000.00
6 $191,000.00, 16 $150,000.00 26 $85,000.00
7 $1,480,000.00 17 $1,100,000.00 27 $1,400,000.00
8 $1,806,000.00, 18 $920,000.00 28 $1,650,000.00
9 $1,700,000.00 19 $1,000,000.00 29 $4,391,000.00
10 $1,540,000.00 20 $1,200,000.00 30 $3,500,000.00

Table 4.15: BMMC Model Cost Summary

Cost Type

Amount

Infrastructure Cost

$1,617,600.00

Procurement Cost

$107,633,660.01

Supply Transportation Cost

$742,285.64

Penalty Cost

$71,000.00-54,391,000.00

Total Cost

$110,064,545.65-5114,384,545.65
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The BMMR solution has 11 total warehouses with the same composition as the BMMSC
and BMMC models; Table 4.16 shows the model’s solution. Only two warehouses are
specialized; all other warehouses hold multiple commodities. Depending on the scenario, the
total cost of the solution can range from $109.3 million to $113.6 million as portrayed in Table
4.17. Like the BMMC solution, the scenario that would result in the largest regret using the

BMMR solution is Scenario five.

Table 4.16: BMMR Model Solution

Water Food Meds Warehouse
Warehouse i
(Pallets) | (Pallets) | (Pallets) Capacity

Charleston, SC 9891 4190 544 Large
Savannah, GA 9833 4771 21 Large
Live Oak, FL 292 0 218 Small
Tallahassee, FL 683 0 0 Small
Birmingham, AL 0 0 657 Small
New Orleans, LA 10655 3970 0 Large
Little Rock, AR 0 547 136 Small
Beaumont, TX 11633 2992 0 Large
Dallas, TX 393 0 289 Small
San Antonio, TX 8134 6437 54 Large
Brownsville, TX 0 295 387 Small
Total # of pallets
for supply 51514 23202 2306

Table 4.17: BMMR Model Cost Summary

Cost Type Amount
Infrastructure Cost $1,617,600.00
Procurement Cost $107,633,660.01
Supply Transportation Cost $0.00
Penalty Cost $71,000.00-54,391,000.00
Total Cost $109,322,260.01-$113,642,260.01

4.6 Analysis of Robust Models and Comparison to Base Models

The four robust models provide solutions that mitigate the impact of GIK by allocating
warehouse space during the strategic planning period. Demand satisfaction and space allocation
for GIK are equally important, resulting in the models creating feasible solutions satisfying both.
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Constraints (7) and (10) are the requirements to satisfy demand and space for GIK. The result of
these constraints is that the total amounts of pre-positioned supplies and space for GIK (Tables
4.1, 4.3, 45, and 4.7) in the solutions are either greater than or equal to the maximum amount
required in any given scenario.

The objective function of the robust models presents four different goals of cost
management, specifically in the scenario-based costs. The MC model minimizes the total
scenario-based costs for the realized demand and GIK in all scenarios, generating a significant
increase in supply transportation, GIK transportation, and GIK handling costs. The scenario-
based costs in the MMSC model are the mean costs over all scenarios, substantially reducing
costs resulting in a lower objective value than the MC model. The MMC model isolates the
scenario that has the most expensive scenario-based cost, and the MMR model selects the
scenario-based cost with the maximum regret. Depending on the requirements of the
humanitarian organization, all four models are valid.

Coupled with the differing objective functions, the solutions of the robust models present
unique approaches to mitigating GIK. The MC, MMSC, and MMC solutions have multiple
warehouses allocating space for GIK, whereas the MMR solution only has one warehouse with
space to store GIK. Both the MC and MMSC solutions spread warehouses along the Atlantic and
Gulf Coast demand regions. These solutions focus on being close to, or in, demand regions,
reducing the overall transportation costs for all scenarios. The MMC solution concentrates a
majority of its warehouses in Florida and one each in both Georgia and Texas. This solution, like
the MC and MMSC solutions, focuses on reducing scenario-based costs, specifically
transportation costs. The MMR model presents a solution that centralizes the control of GIK to
one location with the other warehouses solely focused on satisfying demand. The
aforementioned model would rather pay to ship GIK than to allocate space in warehouses with
pre-positioned supplies.

The analysis of the MMC and MMR solutions show they are the complement of each
other in warehouse placement. The MMC solution has five warehouses in Florida and one each
in both Georgia and Texas, leaving the middle and northeastern part of the network vacant. The
MMR solution is the opposite with one warehouse each in Florida, North Carolina, and South
Carolina, and two warehouses each in both Louisiana and Texas. Both solutions are willing to

pay more in transportation costs than to place warehouses closer to demand nodes.
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Compared with other robust solutions, a highlight of the MMR solution is it has the
fewest warehouses in nodes subjected to hurricane strikes with only five warehouses exposed.
The MMC solution has six warehouses exposed with both the MC and MMSC solutions having
seven. With all robust solutions, at most two warehouses in any scenario have the potential of
being in a hurricane.

The base models show the impact of not accounting for GIK through the penalty cost
added to the total cost of the solutions. Establishing a plan for GIK as opposed to no GIK
mitigation results in cost savings as evident by comparing the cost summaries of the MC solution
to the BMC solution (Tables 4.2 and 4.10) and the MMSC solution to the BMMSC solution
(Tables 4.4 and 4.12). The MMC and MMR solutions also have net savings, but the savings are
scenario dependent. Table 4.18 depicts the total and penalty cost of the BMMC solution and
compares the total costs in each scenario with the MMC solution total cost. The table highlights
the scenarios that result in a net savings for the robust model. In all, 17 of the 30 scenarios result
in cost savings for the MMC solution. Moreover, penalty costs greater than $920,000 (920 GIK
pallets) result in the BMMC solution being more costly than the MMC solution (there are two
scenarios with penalty costs less than $920,000 where the BMMC solution is more costly than
the MMC solution). Table 4.19 portrays the same information as Table 4.18 for the BMMR and
MMR solutions. The outcomes of 20 scenarios are cost savings for the MMR solution and the
penalty cost threshold for cost savings is $555,000 (555 GIK pallets).

Without the penalty costs, the base models are less costly than the robust models. The
BMC model has a cost savings of $1.3 million over the MC model, the BMMSC model versus
the MMSC model, $0.5 million, BMMC versus MMC, $0.4 million, and BMMR versus MMR,
$0.4 million. Any costs incurred for GIK must be greater than the aforementioned cost savings in
the base models for the robust strategy to become attractive.
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Table 4.18: BMMC and MMC Solution Cost Comparison

Penalty Cost Total Cost  |Scenario
$71,000.00| $109,322,773.32 25
$85,000.00( $109,336,779.67| 26

$150,000.00| $109,460,704.06 5
$150,000.00{ $109,705,734.08| 16
$175,000.00| $109,763,249.16 15
$191,000.00( $109,533,257.76 6
$298,000.00| $109,624,499.04 14
$310,000.00( $109,660,889.10 1
$315,000.00( $109,678,282.20

$347,000.00( $109,687,272.60| 13
$555,000.00( $110,548,545.65| 23
$615,000.00( $109,962,700.01 3
$625,000.00( $109,978,218.22 4
$705,000.00( $110,621,507.57| 24
$880,000.00( $110,326,867.39| 12
$920,000.00( $110,601,689.13| 18

$1,000,000.00( $110,967,639.34| 19

$1,100,000.00( $110,741,925.64| 17

$1,115,000.00( $110,519,986.56| 11

$1,200,000.00( $111,193,545.65| 20

$1,400,000.00( $111,057,684.13| 27

$1,480,000.00( $111,473,545.65 7

$1,540,000.00( $111,495,133.58| 10

$1,600,000.00( $111,462,936.22| 22

$1,650,000.00( $111,233,635.08| 28

$1,700,000.00( $111,693,545.65 9

$1,806,000.00( $111,799,545.65 8

$1,900,000.00( $111,893,451.46] 21

$3,500,000.00( $113,082,710.86| 30

$4,391,000.00| $114,111,560.01 29
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Table 4.19: BMMR and MMR Solution Cost Comparison

Penalty Cost Total Cost  |Scenario
$71,000.00| $109,323,388.06 25
$85,000.00( $109,451,742.34| 26

$150,000.00| $109,401,260.01 5
$150,000.00{ $109,519,640.46| 16
$175,000.00| $109,432,061.67 15
$191,000.00( $109,446,627.41 6
$298,000.00| $109,594,362.58 14
$310,000.00( $109,675,686.56 1
$315,000.00( $109,598,416.90

$347,000.00| $109,651,424.35 13
$555,000.00( $113,543,493.06| 23
$615,000.00( $110,017,493.25 3
$625,000.00( $109,927,956.48 4
$705,000.00( $113,156,450.34| 24
$880,000.00( $110,369,595.84| 12
$920,000.00( $110,814,772.12 18

$1,000,000.00( $111,073,571.02| 19

$1,100,000.00( $110,962,791.84| 17

$1,115,000.00( $110,595,849.60 11

$1,200,000.00( $110,520,315.15| 20

$1,400,000.00( $111,023,174.93| 27

$1,480,000.00| $112,114,119.72 7

$1,540,000.00( $112,073,131.21| 10

$1,600,000.00( $111,980,080.21| 22

$1,650,000.00( $111,369,111.65| 28

$1,700,000.00( $112,059,712.83 9

$1,806,000.00( $111,729,085.65 8

$1,900,000.00| $112,712,270.15 21

$3,500,000.00( $114,412,848.38| 30

$4,391,000.00( $114,825,524.58| 29

The base models have larger networks, in the number of warehouses, than the robust
models, but the system-wide warehouse capacity is smaller. Table 4.20 shows the warehouse
compositions of each model solution. Approximately half of the base models’ networks
encompass small warehouses and most of the robust models’ networks are large warehouses
(half the network in the MC solution is large warehouses). The smaller warehouses in the base

models’ solutions are the result of satisfying only demand and the majority large warehouses in
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the robust models’ networks a result of allocating space for GIK. The robust models’ and the
base models’ solution maps share some warehouse locations. The BMC and MC solutions share
five warehouse locations; the BMMSC and MMSC solutions share five. The MMC solution
shares all seven of its warehouse locations with its base model counterpart, while the regret
models only share three. The solution maps of the base models place warehouses on, or

relatively closer to, demand nodes than the robust models.

Table 4.20: Warehouse Compositions

Warehouses
Model :
Small [ Medium [Large

MC 4 1 5
BMC 5 2 4
MMSC 1 1 5
BMMSC| 6 0 5
MMC 1 1 5
BMMC 6 0 5
MMR 1 1 5
BMMR 6 0 5

4.7 Insights

The comparison between the robust and base models illustrates that completely satisfying
demand and allocating space for GIK does not have to change the strategic approach of a
humanitarian organization. When accounting for GIK, there is a need for larger warehouses with
an associated transportation plan for GIK if a warehouse is at capacity, as evident in the results
of the robust models. The total costs of the MC and MMSC models show a cost savings
compared to their base model counterparts. Likewise, the total costs of the MMC and MMR
models show a net savings over their base model counterparts when the expected GIK donations
are moderate to high (moderate donations are 555 pallets of GIK). Even with low GIK donations
(low donations are less than 555 pallets of GIK) in the base model solutions (BMMC and
BMMR), the cost increase of the MMC and MMR solutions is less than one-third of a percent
over the base models, making the low GIK donation scenarios essentially cost neutral. In all
scenarios, the robust models show either a similar cost or net savings compared to the total costs
of the base models. The total cost comparison along with the similarities in solution maps makes

the robust models a favorable choice over the base models.
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The expected results for the robust models’ solutions were multiple warehouses
allocating space for GIK, as shown in the solutions of MC, MMSC, and MMC models. Contrary
to the expectations, the MMR solution presents a single warehouse that stores GIK for all
scenarios. Having a single warehouse allocate space for GIK allows the other warehouses to
focus only on demand satisfaction. An insight to this observation is in the strategic planning
period a humanitarian organization can shape where GIK show up after a disaster. The
organization can distribute information about this warehouse to the public and reemphasize the
information during a disaster with the help of media. Warehouses supporting the relief effort
with pre-positioned supplies can have plans established to ship any received GIK to the
earmarked warehouse for GIK. As simple and intuitive as it may be, this insight is a way to have
complete demand focus in relief efforts while ensuring GIK will not hinder the operation.

The MMR solution is the most risk averse of the four robust models. Though the models
do not include warehouse destruction or capacity degradation, the MMR solution exposes the
least amount of warehouses in potential disaster areas. In all scenarios, the solution will have less
regret in paying more in transportation costs than placing more warehouses in demand nodes.
Humanitarian organizations may find this risk averse characteristic in the regret model
appealing, because the solution minimizes the network’s vulnerability to disaster. Unlike the
MMR solution, the MMC solution is the most risk seeking of the four robust models with all
seven of its warehouses in potential disaster areas. The MMR solution has the lowest
transportation costs (both supply and GIK) in all scenarios. If a humanitarian organization is
aggressively seeking to minimize their maximum cost (risk averse with respect to cost) and

warehouse location is not a limiting criterion, then the MMC solution is a good fit.
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Chapter 5 - Conclusion

This chapter comprises of two sections. The first section is the conclusion and
recommendation and the second section provides limitations of the robust models and future

research opportunities.

5.1 Conclusion and Recommendations

In the wake of every humanitarian disaster there are two significant forces, the demand
for critical aid and the surge of GIK donations. Recent humanitarian disasters show the
substantial impact of GIK during the response phase. Fifty percent of in-kind donations are
irrelevant to the relief effort and a viable course of action for humanitarian organizations is
proper treatment and storage. This thesis introduces a method to mitigate the impact of GIK by
establishing a strategic policy of providing adequate space for unsolicited GIK donations.
Additionally, it reveals that proper planning in the preparedness phase is critically important in
any humanitarian operation.

This report finds that there are reasonable solutions for mitigating the impact of GIK
during the preparedness phase. Utilizing robust facility location models, the work in this thesis
shows that satisfying demand and mitigating GIK results in solutions with relatively smaller
networks and net cost savings compared to models not accounting for GIK. Converting any
demand centric humanitarian strategic model to include alleviating the impact of GIK will,
depending on the scenario, either be cost neutral or cost saving. Four robust facility location
models along with their base model counterparts were presented to illustrate mitigating the
impact of GIK is at worst cost neutral.

The research in this paper recommends humanitarian organizations adopt one of the four
robust models to mitigate the impact of GIK. The preferred model is the MMR model because it
is the most risk averse (with respect to warehouse location) and establishes a dedicated
warehouse for GIK, allowing the rest of the warehouses to focus on the relief effort. Another
recommendation is for humanitarian organizations to increase public awareness of the donation
locations in the network, especially in the MMR solution. By putting out information before
donations start arriving, organizations begin the process of mitigating the burden of GIK.
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5.2 Limitations and Future Work

The first limitation of this study is the lack of real-world scenarios. The destruction of
transportation links, degradation of warehouse capacity, and the destruction of warehouses
during storms are examples emphasizing the lack of real-world scenarios. Including
aforementioned realities can significantly change the solutions of both the base and robust
models in the transportation decisions, warehouse capacities, and location decisions. Moreover,
the models do not include air transportation links for helicopters and cargo planes. Ground
transportation will not be the only mode of transportation available during most crises.

A second limitation is capturing an accurate cost to reserve space for GIK in the robust
models. This study requires complete demand and GIK satisfaction, so it is not plausible to
associate the GIK space cost like an opportunity cost for pre-positioned supplies. The cost of
reserving GIK space is the humanitarian organization’s ability to display competency to donors
by the safekeeping of all GIK. An accurate definition of this cost requires more research.

The final limitation is the GIK data. With the lack of accurate GIK donation records for
Atlantic Basin hurricanes, the amount of GIK donations were selected arbitrarily between the
highest and lowest demand values within a scenario. People donate during times of crisis and the
donation amounts depend on the media coverage (Apte 2009). The deduction from this leads to a
conclusion that a severe hurricane will incite more GIK donations than a minor hurricane based
on the corresponding demand. Using this information, GIK were added to the scenarios. The
accuracy of the GIK data is an obvious limitation in the models presented in this report and
further research is require to alleviate this shortcoming.

This study leads to a few areas of future research. The first area of research is utilizing
different uncertainty sets defining demand and GIK. Different uncertainty sets can reduce the
conservatism the current models possess. A second area is more quantitative study on the level of
devastation in a disaster and how that affects the donation of GIK. There is some study on the
expected amount of in-kind donations to arrive after a disaster based on the devastation and the
number of people affected, but more research is required. Third, create a rolling horizon model
where the first year facility location decisions are permanent. This type of model will allow
humanitarian organizations to establish long-term strategic plans that extend multiple years.
Moreover, a rolling horizon model can expand to a dynamic model where at the end of every
year the location decisions can change. Fourth, identify a utility function associated with GIK on
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the importance of allocating space versus the possible consequences of lost future donations and
tie the utility function to the expected donation amounts. Finally, establish probabilities for the
destruction of warehouses and transportation links between nodes, revealing real-world

situations and requiring the entire system to account for disasters affecting the network.

51



References

Altay, Nezih and Walter G. Green. "OR/MS Research in Disaster Operations Management."
European Journal of Operational Research 175, no. 1 (2006): 475-493.

Apte, Aruna. "Humanitarian Logistics: A New Field of Research and Action." Foundations and
Trends® in Technology, Information and Operations Management 3, no. 1 (2009): 1-
100.

Assavapokee, T., MJ Realff, and JC Ammons. "Min-Max Regret Robust Optimization Approach
on Interval Data Uncertainty.” Journal of Optimization Theory and Applications 137, no.
2 (2008): 297-316.

Assavapokee, Tiravat, Matthew J. Realff, Jane C. Ammons, and I. Hong. "Scenario Relaxation
Algorithm for Finite Scenario-Based min—-max Regret and min-max Relative Regret
Robust Optimization.” Computers & Operations Research 35, no. 6 (2008): 2093-2102.

Balcik, Burcu and Benita M. Beamon. "Facility Location in Humanitarian Relief." International
Journal of Logistics 11, no. 2 (2008): 101-121.

Baron, Opher, Joseph Milner, and Hussein Naseraldin. "Facility Location: A Robust
Optimization Approach.” Production and Operations Management 20, no. 5 (2011): 772-
785.

Ben-Tal, Aharon, Laurent ElI Ghaoui, and Arkadi Nemirovski. Robust Optimization Princeton
University Press, 20009.

Ben-Tal, Aharon, Alexander Goryashko, Elana Guslitzer, and Arkadi Nemirovski. "Adjustable
Robust Solutions of Uncertain Linear Programs.” Mathematical Programming 99, no. 2
(2004): 351-376.

Ben-Tal, Aharon and Arkadi Nemirovski. "Robust Convex Optimization." Mathematics of
Operations Research 23, no. 4 (1998): 769-805.

Bertsimas, Dimitris, David B. Brown, and Constantine Caramanis. "Theory and Applications of
Robust Optimization.” SIAM Review 53, no. 3 (2011): 464-501.

Bertsimas, Dimitris and Melvyn Sim. "The Price of Robustness." Operations Research 52, no. 1
(2004): 35-53.

——— "Robust Discrete Optimization and Network Flows." Mathematical Programming 98,
no. 1 (2003): 49-71.

Campbell, Ann Melissa and Philip C. Jones. "Prepositioning Supplies in Preparation for
Disasters." European Journal of Operational Research 209, no. 2 (3/1, 2011): 156-165.

Daskin, Mark S. Network and Discrete Location: Models, Algorithms, and Applications. 1995.

52



Daskin, Mark S., Collette R. Coullard, and Zuo-Jun Max Shen. "An Inventory-Location Model:
Formulation, Solution Algorithm and Computational Results.” Annals of Operations
Research 110, no. 1 (2002): 83-106.

Destro, Lisa and José Holguin-Veras. "Material Convergence and its Determinants.”
Transportation Research Record: Journal of the Transportation Research Board 2234,
no. 1 (2011): 14-21.

Duran, Serhan, Ozlem Ergun, Pmar Keskinocak, and Julie L. Swann. "Humanitarian Logistics:
Advanced Purchasing and Pre-Positioning of Relief Items.” In Handbook of Global
Logistics, 447-462: Springer, 2013.

Duran, Serhan, Marco A. Gutierrez, and Pinar Keskinocak. "Pre-Positioning of Emergency ltems
for CARE International.” Interfaces 41, no. 3 (2011): 223-237.

Ergun, Ozlem, Gonca Karakus, Pinar Keskinocak, Julie Swann, and Monica Villarreal.
"Humanitarian Supply Chain management—an Overview." Models and Algorithms for
Optimization in Logistics} (2009).

Flandez, Raymund. "After a Crisis, Charities Get Blunt with Donors about what Gifts Don't do
any Good." Chronicle of Philanthropy 24, no. 16 (2012).

Galindo, Gina and Rajan Batta. "Prepositioning of Supplies in Preparation for a Hurricane Under
Potential Destruction of Prepositioned Supplies.” Socio-Economic Planning Sciences
(2012).

Goerigk, Marc and Anita Schobel. "A Scenario-Based Approach for Robust Linear
Optimization." Theory and Practice of Algorithms in (Computer) Systems (2011): 139-
150.

Gormez, N., M. Koksalan, and FS Salman. "Locating Disaster Response Facilities in Istanbul.”
Journal of the Operational Research Society 62, no. 7 (2010): 1239-1252.

Giilpinar, Nalan, Dessislava Pachamanova, and Ethem Canakoglu. "Robust Strategies for
Facility Location Under Uncertainty." European Journal of Operational Research
(2012).

Hechmann, Rafal and Anne Bunde-Birouste. "Drug Donations in Emergencies, the Sri Lankan
Post-Tsunami Experience.” Journal of Humanitarian Assistance (2007).

Holguin-Veras, José, William H. Hart, Miguel Jaller, Luk N. Van Wassenhove, Noel Pérez, and
Tricia Wachtendorf. "ON the Unique Features of Post-Disaster Humanitarian Logistics."
Journal of Operations Management (2012a).

Holguin-Veras, José, Miguel Jaller, Luk N. Van Wassenhove, Noel Peérez, and Tricia
Wachtendorf. "Material Convergence: An Important and Understudied Disaster
Phenomenon." Natural Hazards Review (2012b).

53



Holguin-Veras, José, Miguel Jaller, and Tricia Wachtendorf. "Comparative Performance of
Alternative Humanitarian Logistic Structures After the Port-Au-Prince Earthquake:
ACEs, PIEs, and CANs." Transportation Research Part A: Policy and Practice 46, no.
10 (2012c): 1623-1640.

Kouvelis, P. and G. Yu. "Robust Discrete Optimization and its Applications. 1997." Kluwer
Academic Publishers, Boston (.

Messer, Norman M. "The Role of Local Institutions and their Interaction in Disaster Risk
Mitigation: A Literature Review.” United Nations Food and Agriculture
Organization(FAO).September (2003).

Owen, Susan Hesse and Mark S. Daskin. "Strategic Facility Location: A Review." European
Journal of Operational Research 111, no. 3 (1998): 423-447.

Rawls, Carmen G. and Mark A. Turnquist. "Pre-Positioning of Emergency Supplies for Disaster
Response." Transportation Research Part B: Methodological 44, no. 4 (2010): 521-534.

Salmerdn, Javier and Aruna Apte. "Stochastic Optimization for Natural Disaster Asset
Prepositioning.” Production and Operations Management 19, no. 5 (2010): 561-574.

Shaikh, Alanna. Tainted Gifts in Kind?. UN Dispatch. 2011.

Shen, Zuo-Jun Max, Collette Coullard, and Mark S. Daskin. "A Joint Location-Inventory
Model." Transportation Science 37, no. 1 (2003): 40-55.

Snyder, Lawrence V. "Facility Location Under Uncertainty: A Review." IIE Transactions 38, no.
7 (2006): 547-564.

Snyder, Lawrence V., Mark S. Daskin, and Chung-Piaw Teo. "The Stochastic Location Model
with Risk Pooling." European Journal of Operational Research 179, no. 3 (2007): 1221-
1238.

Soyster, Allen L. "Technical Note—Convex Programming with Set-Inclusive Constraints and
Applications to Inexact Linear Programming.” Operations Research 21, no. 5 (1973):
1154-1157.

Thomas, Anisya and Lynn Fritz. "Disaster Relief, Inc." Harvard Business Review 84, no. 11
(2006): 114.

Tomasini, Rolando M. and Luk N. Van Wassenhove. Genetically Modified Food Donations and
the Cost of Neutrality: Logistics Response to the 2002 Food Crisis in Southern Africa
(2004).

. Humanitarian Logistics Palgrave Macmillan, 2009.

Van Wassenhove, Luk N. "Blackett Memorial Lecture Humanitarian Aid Logistics: Supply
Chain Management in High Gear." J.Oper.Res.Soc. 57, no. 5 (2006): 475-489.

54



Van Wassenhove, Luk N. and Alfonso J. Pedraza Martinez. "Using OR to Adapt Supply Chain
Management Best Practices to Humanitarian Logistics.” International Transactions in
Operational Research 19, no. 1-2 (2012): 307-322.

Verter, Vedat. "Uncapacitated and Capacitated Facility Location Problems.” Foundations of
Location Analysis 155, (2011): 25.

Wachtendorf, Tricia, Bethany Brown, Jose Holguin-Veras, and Satish Ukkusuri. "Catastrophe
Characteristics and their Impact on Critical Supply Chains: Problematizing Material
Convergence and Management Following Hurricane Katrina." (2010).

Yellowmaps. "Color Maps of the United States." , accessed March 6, 2013,
http://www.yellowmaps.com/map/united-states-political-map-417.htm.

55


http://www.yellowmaps.com/map/united-states-political-map-417.htm

Appendix A - Parameter Information

Appendix A shows the parameter values utilized in the models of this paper. Cost per
pallet-mile of water is $0.11, food $0.03, and medical packs $0.03. Each are multiplied by the
distance matrix in Tables A.4 and A.5 to determine the cost per pallet parameter [;.. The cost
per pallet-mile for GIK is $1.00 and multiplying by the distance matrix results in the cost per
pallet parameter z;;. The parameter B is $75 per pallet and parameter g is $10 per pallet. The
penalty cost P is $1000 per pallet. Table A.1 depicts fixed cost (f,) and warehouse capacity (ay)

and Table A.2 depicts the procurement costs (cs).

Table A.1: Fixed Costs and Warehouse Capacity

Warghouse Fixed Cost Capacity
size (pallets)
Small $19,600.00 683
Medium $188,400.00 | 7654
Large $300,000.00 | 14625

Table A.2: Supply Procurement Costs

Cost per
Supply Type
pallet
Water $238.89

Food (MRE) [$3,468.94
Medical Kits [$6,436.78

Table A.3 presents all 30 scenarios in the models presented. The scenarios encompass

the specific hurricane, regions affected (r), and the realized values of d; and .
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Table A.3: Scenarios

Scenario| Hurricane | Category Regions affected Water demand Food demand Medical Kits GIK
(node) (Pallets) (Pallets) demand (Pallets)| (Pallets)
1 1 3 Houston, TX (27) 1016.72 734.35 11.42] 310
5 1 3 Houston, TX (27) 688.66 468.73 8.92 215
Beaumont, TX (25) 303.66 390.61 3.26 100
3 2 5 Biloxi, MS (17) 1626.75 1539.00] 19.58 615
4 5 5 Biloxi, MS (17) 780.84] 671.85 6.85 200
Mobile, AL (16) 881.16 835.90 13.05] 425
5 3 2 Charleston, SC (4) 2209.67 265.61 7.83 150
6 3 5 Charleston, SC (4) 1762.31] 214.05 5.89 91
Savannah, GA (5) 338.91 50.00 2.68 100
7 4 2 Charleston, SC (4) 25756.88 2367.09 87.00] 1480
Columbia, SC (3) 704.93 640.60 13.05 406
8 4 2 Charleston, SC (4) 18978.75| 1249.95 50.03 900,
Savannah, GA (5) 2711.25 874.97 16.01] 500,
9 5 4 Baton Rouge, LA (22) 12200.63 1562.44 21.40 1200
Miami, FL (13) 8676.00 1181.20 15.55] 500
Baton Rouge, LA (22) 6778.13 781.22 10.88| 500
Hammond, LA (20) 2033.44 367.17| 8.16) 150
10 5 4 New Orleans, LA (21) 1355.63 245.30 4.68| 250
Tampa, FL (12) 3389.06 546.85 6.53 325
Miami, FL (13) 4880.25 624.98 9.03 315
11 6 3 Mobile, AL (16) 2494.35 2992.07 40.46 1115
o A 5 Biloxi, MS (17) 1138.73 1124.96 15.70, 430
Mobile, AL (16) 1713.51 1874.93 21.05 450
13 7 2 Wilmington, NC (2) 1762.31 546.85 17.40) 347
14 7 2 Wilmington, NC (2) 1491.19 453.11 14.14 298
15 8 1 Baton Rouge, LA (22) 4338.00 265.61 8.63 175
Baton Rouge, LA (22) 2169.00 148.43 4.35 90,
16 8 1 Hammond, LA (20) 677.81 25.00 1.41 35
New Orleans, LA (21) 1287.84 93.75 2.72 25
17 9 5 New Orleans, LA (21) 1694.53 10468.33 1044.00] 650
Miami, FL (13) 1287.84 10155.84 783.00| 450
18 9 5 New Orleans, LA (21) 1897.88| 12499.50 1261.50 450
Miami, FL (13) 1247.18 10702.70 1044.00 470
19 10 2 Corpus Christi, TX (29) 5422.50 1796.80, 387.15 1000
20 10 2 Corpus Christi, TX (29) 6832.35 1968.67| 456.75 1200
21 11 3 Wilmington, NC (2) 15183.00, 2499.90 304.50 1900
22 11 3 Wilmington, NC (2) 12200.63 3062.38 250.13 1600
23 12 3 Orlando, FL(11) 51513.75 1102.46 95.70 555
Tallahassee, FL (10) 16267.50 156.24 16.31] 350,
24 12 3 Orlando, FL (11) 26434.69 546.85 47.85 250
Tampa, FL(12) 6778.13 335.92 32.63 105
25 13 3 Jacksonville, FL (8) 8133.75 132.81 10.98 71
o & . Jacksonville, FL (8) 4338.00 78.12 6.53 40
Orlando, FL (11) 2711.25 39.06| 6.09 45
27 14 4 Biloxi, MS (17) 3253.50 1562.44 130.50 700
Key West, FL (14) 2982.38 664.04 87.00 700
Biloxi, MS (17) 2169.00 859.34 87.00, 800
28 14 4 Mobile, AL (16) 1539.99 546.85 65.25 350,
Key West, FL (14) 1830.09, 624.98 54.38, 500,
29 15 4 Charleston, SC (4) 10573.88| 5468.53 543.75 4391
30 15 4 Charleston, SC (4) 8133.75 3906.09 348.00 2000
Savannah, GA (5) 4880.25 2734.27 326.25 1500
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Tables A.4 and A.5 show the mileage distance between each of the 30 cities.

Table A.4: Distance Matrix (1 of 2)

Distance Charlotte, NC |Wil NC SC |Charl, SC h [Atlanta |Nashville k ille, FL [Live Oak, FL|T IE]; |Orlando Tampa |Miami_[Key West|Birmingt |
Charlotte, NC 0 198 91 207 252 243 407 383 464| 481] 525 580 724 887| 391‘
ilmi NC 198 0| 206 171 303 416 643 434 515| 595 575 630 779 938 562|
C: ia, SC 91 206 0| 113 158 213 439| 289 370] 393 431 486 630 793| 361
Charl SC 207 171 113 0| 108 321 548 239 320 400 381 435 580 743 469
GA 252 303 158 108| 0| 248 497 139 220) 300 280 336 484 643 394

Atlanta, GA 243 416 213 321 248 0| 249 323 273 268 445 456 668 821 152]
hville, TN 407| 643 439 548 497, 249 0| 588 520 490| 682 703 903 1068, 189
ille, FL 383 434 289 239 139 323 588 0| 85 164 141 200 345 504 492

Live Oak, FL 464 515 370 320 220 273 520 85 0 82| 177 191 397 555 380)
llah FL 481 595 393 400 300 268 490| 164 82| 0| 260 274 480 639 302
Orlando, FL 525 575 431 381 280 445| 682 141 177 260 0| 84 229| 394 562
[Tampa,FL 580 630 486 435| 336 456 703 200 191 274 84| 0| 280 425| 602|
Miami, FL 724 779 630 580 484 668 903| 345 397 480| 229 280 0 162 783
Key West, FL 887 938 793 743 643 821 1068 504 555 639 394 425 162 0| 966
Birmingt AL 391 562 361 469| 394 152 189 492 380 302 562 602] 783 966 0
Mobile, AL 573 739 537| 642 540 328 447 405 322 244 497 515| 720| 879 259|
Biloxi, MS 633 799 598 702] 602 388 507| 466 384 305 558 576 782 941 319
Jackson, MS 626 797 596 704 629 388 417, 597 514 436 687 707 908 1072 238
his, TN 617| 799 606 580 631] 390 211 729 615 536 806 839 1027 1203 238

i d, LA 728 893 692 796 696 483 546 560 478 399 652 671 876 1035 357
New Orleans, LA 711 881 676 784 684 470 534 548 466/ 387 640 658 864/ 1023, 345
Baton Rouge, LA 769 935 733 837 737 524 587 602 519 441 694 712 918 1076 399
Little Rock, AR 754 935 744 852 766 525 348 864 750) 672 944 974 1165 1339 373
Ruston, LA 775 945 744 848 777 529 515 745 662| 584 837 855 1061 1220 386
X 954/ 1119| 918 1022 922 709 772 786 704 625 879 897| 1102 1261 583

Dallas, TX 1034 1197, 1004 1112 1029 786 663| 997| 914 836 1095 1107, 1316 1471 636
Houston, TX 1040} 1203 1005 1113 1006 800 782 871 788 710| 969 981 1190, 1345, 668
San Antonio, TX 1235 1399 1200 1308 1202 997 940 1070 984 905 1164 1176 1385 1541 865
Corpus Christi, TX 1245 1410| 1209 1313 1213 1000 986 1077| 995 916 1170 1188 1393] 1552 874‘
ille, TX 1391 1556 1355 1459 1359 1146 1132 1224 1141 1063 1316 1334 1540| 1698, 1021|

Table A.5: Distance Matrix (2 of 2)

Distance Mobile [Biloxi |Jackson, MS his |F i, LA |New Orleans |Baton Rouge |Litt|e Rock |Ruston, LA! Dallas |Houston [San Antonio |Corpus Christi ille
Charlotte, NC 573 633 626 617 728 711 769[ 754 775] 954 1034 1040 1235 1245 1391
ilmi NC 739 799 797| 799 893 881 935 935 945| 1119| 1197 1203} 1399 1410} 1556
Columbia, SC 537 598| 596 606 692, 676 733 744 744| 918 1004 1005 1200 1209 1355
Charl SC 642 702 704 580 796 784 837 852 848| 1022| 1112 1113 1308} 1313} 1459
S h, GA 540 602| 629 631 696 684 737, 766 777, 922 1029 1006 1202 1213 1359
Atlanta, GA 328 388 388 390| 483 470| 524 525| 529 709| 786 800| 997| 1000} 1146
Nashville, TN 447 507| 417 211 546 534 587 348 515 772 663 782 940| 986 1132
k ille, FL 405 466 597| 729 560 548| 602 864/ 745 786| 997 871 1070} 1077 1224
Live Oak, FL 322 384 514 615 478 466 519 750 662 704 914 788 984 995 1141
Tallat FL 244 305 436 536 399 387 441 672] 584 625| 836 710| 905 916 1063
Orlando, FL 497 558 687| 806 652 640| 694 944/ 837| 879| 1095 969| 1164| 1170} 1316
Tampa,FL 515 576 707| 839 671 658| 712 974 855 897| 1107 981 1176 1188 1334
Miami, FL 720 782| 908 1027 876 864/ 918 1165 1061 1102| 1316 1190| 1385 1393 1540
Key West, FL 879 941 1072} 1203 1035 1023} 1076 1339 1220 1261| 1471 1345 1541 1552} 1698
Birmingt AL 259 319 238 238 357 345 399 373 386 583 636 668| 865 874 1021
Mobile, AL 0| 64 191 398 158| 146| 199 463 339 384| 591 468 664 675, 821
Biloxi, MS 64 0 164 371 105 93, 146 436 312 331 573 415| 611 622 768
Jackson, MS 191 164 0| 212 133 186 172 291 150 357, 408| 442 637| 648| 794
his, TN 398 371 212 0| 341 395 381 139 303 566 454 573 731 775 921

k d, LA 158 105 133 341 0| 58 45 383 259 230| 4711 314 509 521 667
New Orleans, LA 146 93| 186 395 58, 0| 80, 441 296 294 526 351 546 555/ 701
Baton Rouge, LA 199 146 172 381 45 80, 0| 351 220 187 430 271 467 478, 625
Little Rock, AR 463 436 291 139 383 441 351 0| 170 408| 315 434 592 641 788
Ruston, LA 339 312 150 303 259 296 220 170 0| 232| 254 308| 470 515 661
X 384 331 357| 566 230 294 187 408 232| 0| 289| 84 280 291 438

Dallas, TX 591 573 408| 454 471 526 430 315 254 289 0| 247, 277 412 546
Houston, TX 468 415 442 573 314 351 271 434] 308 84 247, 0| 199 211 357,
San Antonio, TX 664 611 637| 731 509 546 467, 592| 470| 280| 277 199 0| 143 277
Corpus Christi, TX 675 622| 648 775 521 555 478 541] 515 291 412 211 143 0| 161
Brownsville, TX 821 768 794 921 667 701 625 788| 661 438 546 357| 277 161 0|
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Table A.6 shows the characteristics of the 15 hurricanes used as backdrop of the models;

it depicts the nominal values (d;; and g;') and the initial regions affected.

Table A.6: Hurricane Characteristics

. Regions affected Water |Food Medicine |GIK
Hurricane (node) Nominal [Nominal [Nominal |[Nominal
1 |Houston, TX(27) 948.94] 820.28]  10.88] 350.00
2 [Biloxi, MS (17) 1518.30| 1448.38] 19.21] 560.00
3 |Charleston, SC (4) 2334.39] 282.80 8.74| 181.00
4 |charleston, SC(4) 24401.25| 2643.64]  81.78 1692.00
5  |BatonRouge, LA(22) .33, 30l 2767.08|  36.69| 1687.00
Miami, FL (13)
6  |Mobile, AL(16) 2711.25| 2871.76]  38.08| 1000.00
7 |Wilmington, NC (2) 1626.75| 506.23]  15.66| 324.00
8  |Baton Rouge, LA (22) | 4066.88] 253.11 7.83]  162.00
o  [NewOrleans, LA(21) | ,q19 70| 20780.42| 2066.25| 1040.00
Miami, FL (13)
10 |Corpus Christi, TX (29) | 6100.31| 1757.74] 407.81| 1125.00
11 |Wilmington, NC(2)  |13556.25| 2734.27]  271.88| 1750.00
12 |Orlando, FL(11) 48802.50| 984.34]  97.88] 630.00
13 |Jacksonville, FL(8) 7640.30] 125.00] 12.42|  80.00
P e ST, 6070.49| 2307.72| 229.48| 1477.00
Key West, FL (14)
15  |Charleston, SC (4) 11929.50| 6126.32| 609.15| 3921.00
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Appendix B - Uncertainty Set

Appendix B presents the uncertainty sets for demand and GIK. Safety parameter (0 is set
at 0.8 with the defections for demand and GIK (g4 and &) at 0.15.

B.1 Water Uncertainty Set

The uncertainty set for water demand is in section 3.3.3.1, Table B.1 shows the water

demand bounds of all 15 hurricanes.

Table B.1: Water Demand Uncertainty Bounds

Robust Water |Robust Water

Hurricane
Upper bound | lower bound

1 1062.81 835.07|
2 1700.50 1336.10]
3 2614.51 2054.26)
4 27329.40 21473.10]
5 22774.50 17894.25
6 3036.60 2385.90]
7 1821.96) 1431.54]
8 4554.90 3578.85]
9 3158.06 2481.34
10 6832.35 5368.28]

[y
[y

15183.00 11929.50
54658.80 42946.20
8557.14 6723.47|
6798.95 5342.03]
13361.04 10497.96

-
N

=
w

=
=

=
wv

B.2 Food Demand Uncertainty Set

Food demand variance and inverse variance vectors.

16.20E+037
1.93E+04

7.37E+02
6.44E+04

7.06E+04

7.60E+04
2.36E+03

¢ =(5.90E4+02
3.98E4+06
2.85E+04
6.89E+04

8.93E+03
1.44E+02

4.91E+04
L3.46E+05-
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[1.61E-04]
5.17E-05
1.36E-03
1.55E-05
1.42E-05
1.32E-05
4.23E-04
it =]1.69E-03
2.51E-07
3.51E-05
1.45E-05
1.12E-04
6.94E-03
2.04E-05
[ 2.89E-06.

The values of d]’, {sn, and Q are entered in to the uncertainty set equation (Equation

(40)) creating the bounds for the uncertain value d”;, Table B.1 depicts the results.

Table B.2: Food Demand Uncertainty Bounds

. Robust Food |Robust food
Hurricane
upper bound| low bound
1 918.71 721.85
2 1622.19 1274.57
3 316.74 248.87
4 2960.88 2326.41
5 3099.13 2435.03
6 3216.37 2527.15
7 566.98 445.48]
8 283.49 222.74]
9 23274.07 18286.77
10 1968.67 1546.81]
11 3062.38 2406.15
12 1102.46 866.22|
13 139.99 110.00]
14 2584.65 2030.79
15 6861.48 5391.16
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B.3 Medical Kit Uncertainty Set

Medical Kit demand variance and inverse variance vectors.

15.63E + 037
1.75E + 04
3.64E + 03
3.18E + 05
6.40E + 04

6.90E + 04
1.17E + 04

@3 =|2.92E + 03
2.03E + 08
7.91E + 06
3.52E + 06
4.56E + 05
7.34E 4 03
2.50E + 06
11.76E + 07

[1.78E-04]
5.70E-05
2.75E-04
3.14E-06
1.56E-05
1.45E-05
8.57E-05

i3t =13.43E-04

4.92E-09
1.26E-07
2.84E-07
2.19E-06
1.36E-04
3.99E-07
| 5.67E-08.
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Using Equation (40) Table B.3 presents the bounds for medical kit demand.

Table B.3: Medical Kit Uncertainty Bounds

: Robust Med |Robust Med
Hurricane

upper bound| low bound
1 12.18 9.57|
2 21.51 16.90]
3 9.79 7.69
4 91.59 71.97
5 41.10 32.29
6 42.65 33.51]
7 17.54 13.78
8 8.77 6.89
9 2314.20 1818.30
10 456.75 358.88]
11 304.50 239.25]
12 109.62 86.13]
13 13.91 10.93
14 257.02 201.95]
15 31367.84 24646.16)

B.4 Gifts-in-Kind Uncertainty Set

GIK variance and inverse variance vectors.

[2.76E+037
7.06E+03

7.37E+02
6.44E+04
6.40E+04
2.25E+04
2.36E+03
|4 =]5.90E+02
2.43E+04

2.85E+04
6.89E+04

8.93E+03
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4.91E+04
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[3.63E-04]
1.42E-04
1.36E-03
1.55E-05
1.56E-05
4.44E-05
4.23E-04
=11.69E-03
4.11E-05
3.51E-05
1.45E-05
1.12E-04
6.94E-03
2.04E-05
[2.89E-06.

Using Equation (41) Table B.4 presents the bounds for GIK.

Table B.4: GIK Uncertainty Bounds

X Robust GIK | Robust GIK
Hurricane

upper bound |upper bound
1 392.00 308.00
2 627.20 492.80
3 202.72 159.28
4 1895.04 1488.96|
5 1889.44 1484.56)
6 1120.00 880.00,
7 362.88 285.12
8 181.44 142.56
9 1164.80 915.20
10 1260.00 990.00,
11 1960.00 1540.00]
12 705.60 554.40
13 89.60 70.40]
14 1654.24 1299.76)
15 4391.52 3450.48
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Appendix C - Base Models’ Solution Maps

Figures C.1-C.4 depicts the solution maps of the BMC, BMMSC, BMMC, and BMMR

models.
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Figure C.1: BMC Model Solution Map
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Figure C.3: BMMC Model Solution Map
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Figure C.4: BMMR Model Solution Map
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