A COMPUTER PROGRAM FOR STUDENT ASSIGNMENT

by

JAYANT P. SHAH
B. S. (Engineering) Mechanical, Tri-State College, Angola, Indiana, 1962

A MASTER'S REPORT
submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

Department of Industrial Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1964
Approved by:

LD
8TABLE OF CONTENTS
5524
IN TRODUCTION 1
USE OF DIGITAL COMPUTER 3
DISCUSSION OF PROBLEM 6
DISCUSSION OF PROGRAM 9
FLOW CHARTS 11
INPUT-OUTPUT DATA 13
SAMPLE PROBLEM 14
CONCLUSION 20
ACKNOWLEDGMENT. 21
BIBLIOGRAPHY 22
APPENDICES
APPENDIX A 23
APPENDIX B 26
APPENDIX C 32
APPENDIX D 35
APPENDIX E. 36
APPENDIX F. 37

INTRODUCTION

The aim of this project was to develop a suitable program to be used on the IBM 1620 Computer in order to help the faculty, the students, and the University in scheduling class assignments. The primary purpose in suggesting the use of the digital computer is the elimination of the necessity for the present lengthy manual calculations. The student assignment problem deals with assigning the courses to a student that he should take in the next semester.

In the last few years quite a number of universities have done considerable work in this field and in closely related areas.

In the area of Pre-registration Scheduling some work has been done at the University of Pittsburgh. ${ }^{1}$ There the system analysis of the Pre-registration Scheduling, by the use of the digital computer was carried out. Pre-registration was con= sidered as a listing of the courses a student should take in the next semester after an analysis of his past academic record had been made.

Work has been done at other universities on certain aspects of the scheduling problem; for example, at Purdue University ${ }^{2}$ the computer is used at registration time to determine the time schedule for the student. The student goes to his Counselor at

[^0]registration time and together they list the courses to be taken. The courses are punched on tabulating cards and fed into the electronic computer. The output card lists the student's courses together with the time schedule for these courses. Consideration is given to a student's outside work schedules.

At Oklahoma State University ${ }^{3}$ a program has been developed for the computer to match course scheciules and staff availability, because of the fect that staff members may have other conflicting obligations; however, this computer program starts with the time schedule prepared previously, and is not involved with determination of required student courses.

[^1]
USE OF DIGITAL COMPUTER

High-speed digital computers are today helping many small businesses cut operating expenses and are handling an increased volume of work. These computers are still so costly that only very large organizations can afford to buy or lease them; but the small organization can turn to computer service organizations that sell the time of large computers on an hourly basis. The small organization pays only for the time it takes to solve its particular problem. Because a high-speed computer can perform millions of calculations in an hour, a wide range of problems can be economically solved in a relatively short time and more efficiently than by hand calculation.

Some typical engineering problems that can best be solved by computers include stress analysis, heat and pressure calculations, vibration analysis, and engine design. Digital computers make possible the rapid processing of great amounts of clerical data. They cut down the time and costs spent on functions such as payroll processing, billing, shop-order writing, sales analysis, and a large variety of scheduling problems.

Since the proposed class scheduling system involves the use of a computer, it should be emphasized that this new system is not to imply that the faculty advisor-student relationship now becomes impersonal. On the contrary, more time can be devoted to the professional guidance required because of the assignment of the clerical task to the computer.

The utilization of the digital computer as a help in the
determination of student registration scheduling will now be considered.

The problem is divided into two major phases:
Phase One takes into consideration the following factors:
a. Student's academic performance.
b. Completed courses
c. Prerequisites and concurrency
d. Avallability of the course in the forthcoming semester.

Phase One was developed in the Department of Industrial Engineering, Kansas State University, and is shown in Appendix A.

Phase Two follows Phase One and uses Phase One's output as the input and takes into consideration the following factors:
a. Priority
b. Capacity
c. Scheduled times.

Discussion of each of the above-mentioned factors
will be found under the heading "Discussion of Problem."
Essentially, the program on the electronic computer determines a student's schedule as is presently done by a faculty member; however, regardless of whether the faculty member or the computer develops the registration schedule, there is still the possibility of conflicts in the student's schedule.

As a by-product of computer scheduling, tabulations can be made to indicate the total number of students assigned to each class. If there is a limit to the number of students for a given course, then the computer can close-out the course and
not permit additional assignments to that class. The tabulation may indicate, too, that some more sections are needed in a particular course. This situation being made known several weeks prior to actual registration will facilitate the cancellation of courses and make possible the offering of additional sections of other courses.

The results of this study indicate that the computer can make a profound impact on facilitating the registration of students.

DISCUSSION OF PROBLEM

One of the most frustrating as well as time-consuming duties imposed on a faculty member is the assignment of class schedules to the students.

The adopted plan for the assignment of a class schedule is as follows:

First the faculty member goes through the courses which the student has had and determines how many of them he has completed.

The same thing could be done by the computer. The computer can go through the past record and transcript of the student, and it can list the courses which the student has had and his grade point average.

From this list of courses and grade point average the computer develops a criterion for the maximum number of hours a student should carry in the next semester.

After setting up the criterion, the computer would go on and check the following items for each course:

1. Whether the course was completed.
2. Whether the course has any prerequisites or concurrences, and if yes, have they been satisfied?
3. Whether the course is available.

At this point a listing will also be made by the computer showing what courses could be taken by the student.

The next step is to find out from the above listing which courses the student should actually take. The procedure is to give priority to certain courses. A faculty member gives priority
to certain courses while assigning the student, because some of the courses are supposed to be taken immediately, and some of the courses have only one class or section; and it is obvious that those courses should be assigned first.

After assigning the single section classes, multiple section classes are considered, and this procedure is the most cumbersome part of the problem. The advisor has to take into consideration the timing and capacities of the classes already assigned. In fact, this part is just a trial and error procedure. This work can be very well done with the help of a computer. The computer goes back and forth and selects classes which do not involve or produce any conflicts.

The following factors were considered while developing the program:

1. Priority. The priority is given to the single section classes. The single section classes are designated by the minus sign in front of the line number. So, they are assigned first by the computer and then multiple section classes are assigned.
2. Capacity. This factor is only considered for the multiple section classes. The course which has more than one section is considered as a multiple section. In this case the section which has the highest capacity is given the first preference if it does not involve a conflict.
3. Timing. This factor is considered to avoid time conflicts among the classes assigned. This factor requires quite a bit of transformation of data. A numbering
system is developed for every hour of each day in a week; that is, if a class is scheduled at 8:00 o'clock on Monday, it is given a number 1 , and a similar pattern is followed for other hours of the week. A list for other times is given in Appendix E.

DISCUSSION OF PROGRAM

The program of Phase One is shown in Appendix A. The discussion of that program will be found elsewhere. ${ }^{4}$

Program of Phase Two is shown in Appendix B. The symbols used with this problem are defined as follows:

SYMBOLS AND THEIR DEFINITIONS

Symbol	Meaning	Definition
LINE	Line No.	A Line No. is given to a course or a section of a course. All the courses and their sections are given different Line Nos. This is the line number found in the university schedule of classes.
DESC	Description	This is a number whose first three digits designate the Department and next three digits represent the catalog No. All courses as well as Departments are given different numbers. The last digit is used to distinguish laboratory, lecture and recitation sections of the same course, Codes will be found in Appendix F. 5
MAN	$\begin{aligned} & M A, M B, M C, \\ & M D, \text { to } \end{aligned}$	This two digit number is a code to designate day and hour. See Appendix E.
MO	MO	Same as above.
KAP	Capacity	This represents the class capacity.
TAKE		This number has the same format as DESC and indicates the courses to which a student should be assigned.
ISKD		A table of numbers 1 through 72 to be used to prevent course conflicts.

[^2]| Symbol | Meaning | Definition |
| :---: | :---: | :---: |
| NLINE | | Storage space to list multiple section courses. |
| KSKD | | Storage area corresponding to final proof ticket showing which line numbers occur when. |
| ITHIS | | Storage area corresponding to the final proof ticket but used to print final assignment by eliminating duplicates. |
| NKAP | | Temporary storage for class capacities corresponding to N Line. May be reduced to zero to select next largest section. |
| MLINE | | Lists multiple sections that do not conflict with single section classes. |
| KLINE | | Storage area to store M Line sections of same subjects in ascending order of capacity. |
| LIINE | | Storage area to store M Line sections of different subjects in descending order of number of sections. |

Flow chart for Phase One

Flow Chart For Phase Two

Input data are shown in Appendix C.
The output of this program for Phase II is shown in Appendix D.

The output is in the form of Line Nos. These Line Nos. or the courses which are represented by these Line Nos. should be assigned to the student. In the output some lines are preceded by a negative sign which is the same as the positive Line No. with the exception that the course with a negative Line No. was considered first and assigned first; in short, this line was given priority because it is of single section.

From this output the student slip can be made out with the use of a class schedule. The timing corresponding to the above Ine Nos. in the schedule will be the class schedule for the student. If any course is not assigned or any class is closed, or if any conflict between lines occurs, then that information is also printed out by the computer. A more detailed discussion will be found in the sample problem.

All the symbols used in this problem are defined in the Symbol Table under the heading of "Discussion of Program."

The following are TAKE, the Input Data II, which are shown in Appendix C:

333320001
$3335100 \quad 02$
408419003
409743104
409647005
000000000006
Consider the above Nos. as the output of the Phase I program and as the input for the Phase II program which is shown in Appendix A and Appendix B, respectively.

After Input Data I are read, the computer will read the first Input Data II card. Then the computer will go through the Input Data I as shown in Appendix C. Now this Input Data I will be referred to as Line Numbers. So, the computer will go through the line numbers and when this TAKE card matches the DESC of Line No., the computer will check whether the Line No. is negative or positive; if it is negative, the computer will go ahead and write the Line Nos. in the KSKD if there is no conflict. If it is positive, the computer will write all the sections in NLINE and KAP in NKAP.

Illustrative Example--Step I

Card No.	Desc.	Checked through the Line Nos.
1	3333200	Positive Line Nos.
2	3335100	Negative Line No.
3	4084190	Positive Line Nos.
4	4097431	Negative Line No.
5	4096470	Negative Line No.

Step II

Negative Line Nos. are assigned in KSKD and positive Line Nos, in NLINE, as explained.

	ISKD	NLINE	NKAP	KSKD	
	28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61			$\begin{aligned} & -3005 \\ & -3005 \\ & -3005 \\ & -3016 \\ & -3016 \\ & -3016 \end{aligned}$	

Step III

The class time of each line written in NLINE will now be checked with the column KSKD, and the section which has no conflict will be written in MLINE as follows:

Example: NLINE 2232 has class times 14, 16, 18, as shown in the line schedule. This conflicts with the line -2238 which is already assigned in KSKD. Therefore, line 2232 is not written in MLINE. Only the sections which do not conflict are written in MLINE.

Step IV
The above sections written in MLINE are next transferred to KLINE in such a manner that the class which has the smallest capacity is listed first.

KLINE 1	KLINE 2	
2855	\vdots	2231
2853	\vdots	2233
	\vdots	2234
	\vdots	2236

Step V
In this step the KLINES are transferred to LLINE so that the line with the larger number of section is listed first.

LLINE 1	LLINE 2	
2231	\vdots	2855
2233	\vdots	2853
2234	\vdots	
2236	\vdots	

Step VI

In Step VI from the LLINE, the LLINE which has the fewest sections is the first one checked. The class which has largest capacity which is indicated by the last line No. of the LLINE selected will be assigned to KSKD if checking shows there is no conflict. If that line No. is assigned, then the computer will go to another LLINE; but if it is not assigned, then the computer takes the next line which follows in descending order.

So, the line No. 2853 which has classes $20,21,22,23$, and the line No. 2236 which has classes $43,45,47$, will be assigned in KSKD.

Step VII

Now from the KSKD column after assigning the above LLINE, classes, each line number will be selected without repeating the same line No.

Example: Line No. -2238 appears three times in KSKD line in column 14,16 , and 18 , but it will be written only once in ITHIS column, which is shown below:

ITHIS

-2238
2853
-3005
2236
-3016

These are the final line numbers to which a student should be assigned and which are the same as the computer results as shown in Appendix D.

CONCLUSION

From the preliminary work on this problem it is concluded that it would be feasible to apply this technique to the University assignment procedure. Thus, a very big saving in time as well as a smooth pattern of registration could be mede. The present program of Phase I is restricted to students enrojled in Industrial Engineering. To make this program workable for all other departments it would be necessary to transform curriculum data; but once established in the specified format, data can be fed directly into the computer and results can be obtained.

ACKNOWLEDCMMTT

The author wishes to express his sincere gratitude and appreciation to his Major Advisor and Major Professor J. J. Smaltz, for his assistance and encouragement and for his helpful suggestions, counsel, and guidance in the formulation of this report.

BIBLIOGRAPHY

Books

McCraken, Danile D. A Guide to Fortran Programing. New York: John Wiley \& Sons, 1961.

Publications of Learned Organizations

Holtman, A. G. A System Analysis of Pre-registration Scheduling, Industrial Engineering Department, University of Pittsburgh, Pittsburgh 13, Pennsylvania, 1962.

Sherman, Gordon R. A Class Scheduling Problem, University of Tennessee, 1961.

Van Tassel, John E, and Wright, Vincent P., Ed. Boston College Decision-making Exercise, Boston College, 1620 IBM Program Library, Chestnut Hill 67, Mass., 1962.

Unpublished Material

Smaltz, J. J., Verma, Ram, and Mehta, A. C., "STUDENT ASSIGNMENT PROBLEM." Unpublished Graduate Research Problem, Industrial Engineering Department, Kansas State University, Manhattan, Kansas, 1962.

Issued by Comptroller's Office, CHART OF ACCOUNTS, Kansas State University, Manhattan, Kansas, 1960.
APFENDIX, A

PROGRA：FOR PHIASE 1

```
*1405
C SMALVARMEHTA 4 FOR I. E. FSEIGNMENTS APRIL }6
C DONT FORGET *14C5 SOURCE PFOCRAN CONTROL CARD
    IIISERT COURSF 099 IN IHAD DECK IF NOHR = 61 OR MORE
C DATA DECK-IHAD CARDS, ZERO CARDS, NINUS CARD, NEXT CARDS, TOTAL }8
    1 READ2,STUNO,SUR,GIVN,OTHR,MAX,KSEM,NCHR,SEM,NYR, IGP
    2 FSRMAT(F6.0,A7,A6,A6,I2,I15,I11,A6,I2,I10)
    5 IF(ICP-15OU)1U0,100,10
    1C IF(IGP-2UC() 120,120,2C
    20 IF(IGP-25UC) 140,140,30
    30;F(IGP-3000) 160,160,40
    40 IF(IGP-3500)180,180,200
    100 MAX=14
        GO TO 3
    120 MAX=16
        GO Tこ 3
    140 NAX=18
        GO TO 3
    160 }\becauseAX=1
        GO TO 3
    18U MAX=20
        GO TO 3
    200 MAX=21
        3 NOHR=NOHR+MAX
            PRINT4,STUNO,SUR,GIVN,OTHR,MAX,NCHR,IGP,SEM,NYR
            4 FORMAT(F8.C,A7,A6,A6,I7,I6,I7,2X,A6,2X,I2)
            J=COO
            N=001
            NUF=OOU
            DIMENSION IHAD(80),ISHD(25),ICAN(70),LATR(80)
            \capO 62 K=1,7C
    62.,CAN(K)=0
            K=UいO
            DC 63 L = 1,80
    63 LATR(L) = 0
    21 FORMAT(I3)
        L=COO
    24 I =N
        READ21,IHAD(I)
        N=N+1
        IF (IHAD(I)) 272,23,23
    23 Gこ Tこ 24
    272 PRINT 271
    2 7 1 \text { FORMAT(37H THESE COURSES SHOULD BE ASSIGNED NOW)}
    7 FORMAT(I 3,I7,I2,I2,I2,I2,I2,I2,I2,A5,A6,A6)
            LE = 85-N
```

```
        DC 134 M=1,LE
    6 READ7,NEXT,KAT,KR,ISEM,NIDI,NID2,N1D3,KCN1,KON2,DEPT,SUBJ,TITL
    26 GC TC(1C1,1U2,103),KSE%
I01 Gこ Tこ(106,105,105,106,106,1:6,105),ISEM
102 GC TO(105,106,105,106,106,1)5,1C6),ISEM
103 GC TO(105,1U5,106,105,106,106,106),ISEM
105 L=L+1
    LA=L
    LATR(L) =NEXT
    Gこ Tこ 134
    14 STこP
106 DO 112 I=1,N
    IF(NIDI-IHAD(I)) 112,1C7,112
112 CONTINUE
135 IF(NIDI-KCN1)136,107,135
136 IF(NIDI-KON2)105,107,105
107 DC 116 I=1,N
        IF(NID2-IHAD(I))116,113,116
116 CCNTINUE
127 IF(NID2-KON1)138,113,138
133 IF(NID2-KON2)105,113,105
113 DC 121 I=1,N
    IF(NID3-IHAD(I))121,125,121
121 CONTINUE
141 'F(NID3-KON1)142,117,142
142 : F(NID3-KON2)105,117,1(5
117 IF(KON1)14,122,123
122 IF(KON2)14,125,127
123 Dこ 124 J=1,JA
    IF(KON1-ISHD(J))124,122,124
124 CSNTINUE
    Gこ TO 105
127 Dこ 128 J=1,JA
    IF(KON2-ISHD(J))128,125,128
128 C气NTINUE
    GO TO 105
125 NUF =NUF +KR
131 IF(MAX-NUF;236,133,133
133 J=J+1
    JA=J
    I SHD (J)=NEXT
    4 2 ~ F O R M A T ( I ~ 4 , 2 X , A 5 , I 4 , 2 X , A 6 , A 6 , I 5 )
    PRINT42,NEXT,DEPT,KAT,SUBJ,TITL,KR
    4 1 ~ F O R N A T ( I 4 , A 5 , I 4 , A 6 , A 6 , I 5 , F 1 U . 0 , I S , A 6 , I 3 )
    PUNCH41,NEXT,DEPT,KAT,SUBJ,TITL,KR,STUNO,IGP,SEN,NYR
    Gこ TO 134
236 N:UF=NUF-KR
    K=K+1
    KA=K
    ICAN(K)=NEXT
134 C.ONTINUE
50C PRINT 204
204 FORMAT(33H THESE COURSES COULD DE TAKEN NOW)
```

DO $210 \mathrm{~K}=1$, KA
IF(ICAN(K))14,210,211
211 PRINT 21, ICAN(K)
210 C゙CNTINUE
PRINT 202
202 FORMAT (25H TAKE THESE COURSES LATER)
DO $220 \mathrm{~L}=1$, LA
IF(LATR(L))14,220,221
221 PRINT 21, LATR(L)
220 CONTINUE
PRINT 499
499 FORMAT (9HGこCD LUCK)
PAUSE
GO TO 1
END

APPENDIX B

PROGRAM FこR PHASE 2

```
* 1OC5
C SHACIRISALTZ 1 AUGUST 27 1963
    20 FORMAT(I5,F9.0,15I3,I4)
            N=75
            DIMENSION LINE(75),DESC(75),MAN(75,14),MO(75),KAP(75),TAKE(25),
            1ISKD(72),NLINE(60),KSKD(72),ITHIS(75),NKAP(60),VMLINE(10,60),
            2'LINE(10,50),LLINE(1C,50)
    100 DO 1 I =1,75
            I READ 2U,LINE(I),DESC(I),(MAN(I,J),J=1,14),Mこ(I),KAP(I)
        6 1 M = 0
            KOLNT=0
            ITHIS(1)=-9999
        21 FORMAT(FIO.0)
            NLINE(I)=-!999
            NKAP(1)=-9999
            DO 220 NX=2,60
            NLINE (NX)=0
        220 CONTINUE
            DC 256 NJ=2,60
            NKAP(NJ)=0
        256 CCNTINUE
            DC 221 NY=1,25
            TAKE (NY)=0
        221 CONTINUE
            DC 222 NZ=1,72
            KSKD(NZ)=0
222 CONTINUE
    DC 237 NA=1,60
                ITHIS(NA)=0
                    237 CONTINUE
            DC 238 I=1,10
            DC 239 J=1,60
            MLINE (I,J)=0
    239 CONTINUE
    228 CONTINUE
    DC 279 IH=1,10
    DC 280 JU=1,60
    KLINE(IH,JU)=0
    280 CONTINUE
    279 S.SNTINUE
    U 275 IO=1,1U
    DC 276 JO=1,60
    LLINE(IO,Jこ)=0
    276 CONTINUE
    275 CONTINUE
```

```
c THE FOLLOWING PUT 1,72 IN ISKD
    NS=1
    DO 201 IS=1,72
    ISKD(IS)=NS
    NS=NS+1
201 CONTINUE
    I A=2
    60 N=N+1
        2 READ21,TAKE(M)
            IF(TAKE(M)) 41,320,101
    41 STCP
600 FORFAT(32HTHERE IS A CONFLICT BETWEEN LINE)
    10 IF(LINE(I))14,41,67
    14 PRINT 600
    11 PRINT 22,KSKD(K)
    22 FORMAT (15)
    23 FこRMAT (8HAND LINE)
    PRINT }2
    PRINT 22,LINE(I)
    2 4 ~ F O R M A T ~ ( 5 4 H T H E S E ~ A R E ~ S I N G L E ~ S E C T I O N ~ C O U R S E S \cdot B E T T E R ~ L U C K ~ N E X T ~ T I M E )
    GO TO 61
    1O1 DO 2C2 K=1,75
        IF(TAKE(M)-DESC(K)) 2C2,62,202
    6:. I=K
    300 IF(KAP(I)) 41,202,301
    301 IF(LINE(I)) 102,41,400
    400 NLINE(IA)=LINE(I)
        NKAP(IA)=KAP(I)
        I A=1A+1
    2C2 CONTINUE
        iNLINE(IA)=-9999
        IF(NLINE(IA)-NLINE(IA-1)) 65,602,41
    65 NKAP(IA )=-9999
        IA=IA+1
        KCUNT=KOUNT+1
        IM=KOUNT+1
        JE=KこUNT+1
        CO TO60
    6 0 2 ~ P R I N T ~ 2 7 ~
    27 FこRMAT (42HTHERE AINT NO CARD LIKE THIS HERE LINE NO.)
        PRINT 22,TAKE(M)
        PRINT 28
    2 8 \text { FOORMAT(7IHEITHER THIS CLASS HAS BEEN OROPPED, IT IS CLOSED, OR THE}
        IRE IS AN ERROR./24HTELL IT TO YOUR ADVISER.)
        PAUSE
        GO TO 61
    102 Dこ 1C4 J=1,14
        IF(MAN(I,J))41,415,143
    415 IF(LINE(I))104,41,541
    103 DC 203K=1,72
    302 IF(MAN(I,J)-ISKD(K))203,321,203
    203 CONTINUE
    321 IF(KSKD(K))10,500,700
```

```
    500 IF(LINE(I))526,41,541
    450 IF(MAN(I,J))41,104,520
    520 KSKD(K)=LINE(I)
    li/4 CONTINUE
    13: IF (MC(I))41,429,13]
    429 IF (LINE(I))20゙0,41,541
    131 Dこ 217 K=1,72
    316 IF(i\mp@code{(I)-ISKD(K))217,336,217}
21% CONTINJE
330}\operatorname{IF}(KSKD(K))10,514,70
514 IF (LINE(I))534,41,540
464 IF(MO(I))41,465,534
465 IF(JLINE) 42,200,268
534: KSKD(K) = LINE(I)
200 GO TO 60
6 0 1 ~ I F ( L I N E ( I ) ) 1 2 , 6 0 2 , 1 3 2 ~
    12 PRINT 25
    25 FORMAT (8HLINE NO.)
        PRINT 22, LINE(I)
        PRINT }2
    2 6 ~ F O R M A T ( 8 i A I S ~ A ~ S I N G L E ~ S E C T I C N ~ C O U R S E . ~ T H E ~ C L A S S ~ H A S ~ B E E N ~ C L O S E D ~ O R ~
        IWE ARE JUST FRESH OUT OF CARDS./4UHSEE YOUR SECTION ADJUSTER OR ST
        2ART AGAIN)
        PAUSE
        GO TO 61
320 IF(KOUNT)41,132,330
330 1K=2
        IL = 1
        IN=1
340 IC=102
        NX=U
        Gこ Tこ 337
    69 KOUNT=KOUNT-1
        IF(KOUNT) 41,229,70
    70 I N=1
        Gこ Tこ 67
    67IK = IK + I
    SO TC 340
337 Dこ224 IM = 1,75
    IF (NLINE(IK)-LINE(IM))224,223,224
223 I = IM
    Gこ Tこ 102
    224 CONTINUE
    GO TO 69
    540 IF(MLINE(KOUNT,IN)-LINE(I)) 542,41,542
C LISTS COURSES THAT DO NOT CONFLICT WITH SINGLE SECTION COURS
542 MLINE(KOUNT,IN) = LINE(I)
54: IN = IN+1
        IK = IK +I
        GO TO 340
    541 IF (IO-130)225,540,234
    225 10 = 10+2
        NX=NX+1
        GO TO (102,102,102,102,102,102,102,102,102,102,102,102,102,130)NX
```

```
229 JB=JB-1
    IF (JB)41,262,240
240 JLINE=U
    JKAP=0
    JC=1
    J=1
250 DS 226 JA=J,IK
    IF(MLINE(JB,JC))41,271,230
230 IF(NLINE(JA))228,1000,228
228 IF(MLINE(JB,JC)-NLINE(JA)) 226,227,226
227 J=JA
    IF(NKAP(J)-JKAP)235,68,68
    68 JLINE=NLINE(J)
    JKAP=NKAP(J)
235 JC=JC+1
    JH=JC
226 CSNTINUE
271 IH=JB
    JH= JH-1
    IF(JH)41,229,212
212 JU=JH
    IF(KLINE(IH,JU))41,273,211
211 GO TO 271'
273 KLINE(IH,JU)=JLINE
213 DC 274 JE=1,60
    IF(JLINE-NLINE(JE))274,277,274
274 CこNTINUE
277 I=JE
    NKAP(i)=0
    JLINE=0
    JKAP=0
    JC=1
    J=1
    Gこ Tこ 250
262 I \WA=1
    JAS=60
264 DO <60 IAS=1,10
    IF(KLINE(IAS,JAS))41,\angle60,261
261 DO 263 Jこ=1,JAS
    LLINE(IOWA,Jこ)=KLINE(IAS,Jこ)
    KLINE(IAS,JC)=0
263 CONTINUE
    I OV:A=I OWA+1
2€0 CONTINUE
    JAS=JAS-1
    IF(JAS)41,299,264
299 IM=IOWA
268 IM=IM-1
    IF(IM)41,1000,265
    265 IP=449
    NXT=0
    JLINE=0
```

```
    298 DO 266 JZ=1,60
    IF(LLINE(IM,JZ))41,269,266
    269 JZ=JZ-1
    JLINE=LLINE(IN,JZ)
    GO Tこ 231
    266 CONTINUE
    231 Dこ 232 L = 1,75
    IF(JLINL-LINE(L))232,233,232
    233 1 = L
    10 = 150
    G0 TO 102
    232 CONTINUE
    234 IP = IP+1
        NXT=NXT+1
        GO TO (450,450,450,450,450,450,450,450,450,450,450,450,450,450,464
        1),NXT
    70N DC 702 JJ=1,72
    IF(JLINE-KSKD(JJ))702,703,702
    703 IT=JJ
    KSKD(IT)=0
    702 CONTINUE
    JLINE=U
    JZ=JZ-1
    IF(JZ)41,281,701.
    701 JLINE=LLINE(IM,JZ)
    IF(JLINE) 41,41,231
    281 IF(LLINE(IM+1,1))41,284,283
    284 DO 285 K=1,60
    LLINE(IM,K)=0
    285 CONTINUE
    GO TO 1001
1001 PRINT }3
    30 FORMAT(33HBE HAPPY YOU HIAVE ONE COURSE LESS)
        Gこ Tこ 268
    283 IP=449
    NXT=0
    I : = I M M 1
    JLINE=0
    DC 286 K=1,60
    DC 287 JD=1,72
    IF(LLINE(IM,K)-KSKD(JD))287,288,287
    288 IV=K
    ここ Tこ 290
    287 CONTINUE
    286 CONTINUE
    290 0こ 291 JD=1,72
    If (LLINE(IM,IV)-KSKD(JD))291,292,291
    292 I W=JD
    KSKD(IW)=0
    291 CONTINUE
    IV=IV-1
    IF(IV)41,281,289
    289 JZ=IV
        JLINE=LLINE(IM,JL)
```


1000 PRINT 29

29 FORMAT（54HHOW LUCKY CAN YOU GET．．THE FOLLOWING LINE NUMEERS WORK） C THE FOLLOWING PUTS KSKD IN THIS

132 II＝2
DC $218 \mathrm{I}=1,75$
DC $219 \mathrm{~K}=1,72$
IF（LINE（I）－KSKD（K））219，63，219
63 ITHIS（II）＝LINE（I）
$\mathrm{II}=\mathrm{II}+\mathrm{I}$
219 CONTINUE
218 CONTINUE
255 DO 251 $1=2,75$
DC $252 \mathrm{~J}=1,75$
$\mathrm{K}=\mathrm{I}$
IF（ITHIS（K）－ITHIS（K＋1））254，251，254
254 IF（LINE（J）－ITHIS（K））252，253，252
$253 \operatorname{KAP}(J)=\operatorname{KAP}(J)-1$
Gこ TC 251
252 CONTINUE
251 CONTINUE
c THE FこLLOWING PRINTS こしT ITHIS ELIMINATING DUPLICATES I J＝2
317 IF（ITHIS（IJ）） $318,42,=18$
42 PAUSE GC Tに 61
318 IF（ITHIS（IJ）－ITHIS（IJ＋1））13，64，13
13 PRINT 22，ITHIS（IJ）
$64 \mathrm{IJ}=1 \mathrm{~J}+1$
Gに Tへ 317
END

INPUT DATA 1

$\left.\begin{array}{lllll}2991 & 4093390 \cdot 21 & 23 & 00 & 00 \\ 2992 & 409399 v . & 0 & 00 & 00\end{array}\right) \quad 22$
$29934094060 \cdot 081000000 \quad 92$
$2994409418 \mathrm{U} \cdot 38$ OU 00 D . 6
$29954094181 \cdot 445056 \quad 6$
$29964094360 \cdot 1921$ 23 0 00 00 00 23
$29974094380 \cdot 2529$ OC UO O- 17
$29 \leftrightarrows 34094381 \cdot 404652000000 \quad 17$
$30004095060 \cdot 25272300$ OC CO (1- 15
$30014095380.4500000000000-10$
$30024095381 \cdot 4753590000000-10$
$30034096370 \cdot 1315170000000015$
$3004409646 \mathrm{C} \cdot 1921230000000011$
$30054 \mathrm{C9647U} \cdot 37394100000000 \quad 17$
$30064096490.083941000000 \mathrm{C-} 5$
$30074096491 \cdot 14202600000000 \quad 5$
$30084096530 \cdot 384026000000 \mathrm{CO} \quad 7$
$30094096531 \cdot 44505600000000 \quad 7$
30104096550 . $08505600000000 \quad 3$
$30114096551 \cdot 14162022262800000000 \quad 3$
$30124096860 \cdot 07092022 \quad 262300000000 \quad 9$
$30134097130 \cdot 4245472226280000$ vú00 9
30144097160 . 000000 * 25
$30154097430 \cdot 495300000-10$
$30164097431.5157630000000-10$
$30174098860 \cdot 25272900000000 \quad 10$
30184098960 . $000000 * 10$
$30194092030 \cdot 4753590000000010$
30204092120 •07 13917111710

```
INPUT DATA 2
```

3333200 。
3335100 .
4084190 .
4097431 .
4096470 .
00000 Cu 0 C .

APPENDIX D

RESULTS

[^3]
APPENDIX E

Time Chart

APPENDIX \mathbf{F}

PARTIAL LIST OF DEPARTMENTAL CODE NUMBERS

401 Dean of Engineering and Architecture
402 Agricultural Engineering
403 Agricultural Engineering--SBVE
404 Applied Mechanics
405 Architecture and Allied Arts
406 Chemical Engineering
407 Civil Engineering
408 Hectrical Engineering
409 Industrial Engineering
410 Mechanical Engineering
411 Mechanical Engineering--Lab. Equipment
412 Nuclear Enginearing

JAYANT P. SHAH

B. S. (Engineering) Mechanical, Tri-State College, Angole, Indiana, 1962

AN ABSTRACT OF A MASTER'S REPORT
submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

Department of Industrial Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

The object of this report was to develop a computer algorithm to be used in scheduling student's class assignments.

There are two phases of the program. In phase I, the computer checks the courses which a student has had and goes through his academic record. As the result of phase I, courses are listed which should be taken by a student in the next semester.

In phase II, the computer determines the class schedule for the courses by giving priority to single section classes and taking into consideration the class capacity of multiple section classes. The computer prints the results in the form of line numbers. The line numbers are the same as line numbers of the class schedule of Kansas State University for a given sen ester.

The program was written in Fortran II for the IBM 1620 Digital Computer with 60 K Storage.

[^0]: $1_{\text {Holtzman, A. G., System Analysis of Pre-registration }}$ Scheduling.
 ${ }^{2}$ Loc. cit.

[^1]: 3^{3} Loc. cit.

[^2]: 4 SMALVARMEHTA, STUDENT ASSIGNMENT PROBLEM.
 SKansas State University, Chart of Accounts.

[^3]: HOW LUCKY CAN YOU GET..THE FこLLOWING LINE NUMBERS WORK 2238
 2853
 3005
 2236
 3016

