/i STODY OF DAT%/

by
HSAO-YING JENNIFER TI20

B. A., Tamkang University, 1980
Taivan, Republic of China

A MASTER'S REPORT

subnitted in partial fulfillment of the

requirements for the degree

HASTER OF SCIEECE

Department of Computer Science

KANSAS STATE UNIVERSITY

Manhattan, EKansas

1983

i “;_:g;a,.mgﬂe 592478
T | ii
Ly
A ACKNOWLEDGEMENTS
R4
/983
T5%
e. 2

I wonld like to thank Dr. Elizabeth A. Unger, Dr. Rodney M.

Bates, Dr. FRoger T. Hartley, and Dr. Virgil E. Wallentine for
serving as members of my committee. A special thanks goes to Dr.
gnger for all the help and guidances she has given me throughout
this reseachf

THIS BOOK
CONTAINS
NUMEROUS PAGES
WITH DIAGRAMS
THAT ARE CROOKED
COMPARED TO THE
REST OF THE
INFORMATION ON
THE PAGE.

THIS IS AS
RECEIVED FROM
CUSTOMER.

CONTENTS

ACKNOWLEDGEMENTS « « o« o o © » o @« o ¢ .5 o o= s o = o @
COHTEHTS - - - - - - - - - - - - - - - - - = @ - - - -

FIGURES - « @ .8 9 - - - - L - - - - - - » » .= - L] - -

Chapter 1 INTRODUCTION . o o« o « o« = @ = = « o o« = =

Chapter 2 DATA MODELS
2.1 File Data Hodel . . ¢ ¢ « ¢ « « = o « & o o = =
2.2 Liskov's Data Model = - <« « o o « «a ¢ o o o o =
2.3 The Onger Model . 4 o o 2 2 a o« = = =« = a a = @«

2.4 Algebraic Specification . « ¢« « ¢ « «. o « o @«

Chapter 3 THE UONGER MODEL = o « = 4 s « o s ¢ a s s &«
3.1 Definition of Objects « o« o« v o o o o o o & = =
3.2 Definition of Structures ¢ ¢ ¢« ¢ « o o
3.3 Examples of Simple Objects . . ¢ o ¢ & &« o & &
3.4 Examples Oof StruCture « « « o o « a = o o« o =« =

3.5 Control of Computation: Definition and Example.

Chapter 4 PROBLEMS AND EVALUATION OF THE UNGER MODEL
.1 Strengths of the Unger Hodel

4.1.1 Data Abstraction .« . « o« = o ¢« =« o « o =

4.1.2 Control and Structured Programming . . .

.1.3 CODCUITENCY =« =« = = = = = = = o « » = =

4-1.1‘ Others - - - - - - e = - - - - - - - - -

4.2 Problems of the Unger Model T A

iii

10
21
22

32
34
40
42
49

52

63
(1
70
12
73

Page
Chapter 5 INSIGHTS INTO SOME SOLUTIONS TO THE PROBLEMS
5.1 Problem 1 4« ¢ o o o« o o o o = o s s s o o s o« o o & 77
5.2 Problel 2 « « o« o o @ o s o s o o = 8 o s = s o s » 83
53 Problem 3 = « ¢« 2 o ¢ o & o 2 & & = @« o @ «a o s = 89
5.0 Problem 8 . « o« o .o o« ¢« « .o o « a s ¢ o o s o o o 102
5.5 Problem 5 o ¢ ¢ ¢ « ¢ o e« ¢ o @ ¢ e« » 8 s .0 s o 10€
Chapter 6 SUMMARY
€.1 Evaluation of the Models Based on Five Criteria . . 109

6.1.1 Evaluation on the Mealy®s Model . . « « s« = 111
6.1.2 Evaluation on the Liskov's Model 112
€.1.3 Evaluation on the Unger Model . « . « « . . 114
6.1.4 Evaluation on the Algebraic Specification .. 115

6.2 The Role of Data Abstraction Played
in Data Hodelling - - - - - - L] - - - L] L] e = . - - 1 17

6.3 Future Hork - - - - - - - - - - - - = = _® L] - - L] - ‘ 18

BIBLIOGRAPHI - - - - - - - - - - - - - - - L] - - - - - - - 1 20

Figure

Fiqure

Figure
Figure
Figure

Figure

Figqure

Figure

Figure
Figure

Figqure

Figure

Figure

Figure

2.2

3.51

352

Be5=3

5.5

FIGURES

An Example of Procedure Taken from
the Liskov'!S PAPEL « o o« o = o o o o o o o

An Example of Cluster Taken from
the Liskov's PAPET « « o« « = = = @« « 2 =« = =

Stack Type in Algebraic Specification . . .
Queue Type in Algebraic Specification . . .
Binary Tree Type in Albegraic Specification

Binary Search Tree Type
in Algebraic Specification . « « « « « « « =

Ordering of An Action, Diffvar . « « « « «

A Construction of Diffvar from Requests
for Other ACtioBS . o« « « « = = a a a = a

Examples of Stimulation . . « ¢« ¢« « o o .
NEW FORM for Structure's Aggregationm

An Example by Using NEW FORM
for Aggregating A Structure . « . « « « <« «

Sets of lLongevity of A Structure
Example Based on RULE 1 . ¢ o = o « « = =« =

An Example of A Nested Structure
on Case 2 by ROLE ¥ . . o « o« 2 o o o o o »

An Example of A Structure
on Case 3 by Using NEW RULE . &« 4« &« « o o &

16
23
25
26

29

56

59
61
87

88

94

95

100

CHAPTER 1

INTRODUCTION

"fe do not, it seems, have a very clear
and commonly agreed upon set of notioms
about data -— either what they are, how they
should be fed and cared for, or their
relation to the design of programming
languages and operating systems."

Mealy

E-

Information in its real essence is probably too ambiguous and
too subjective to be captured precisely by the deterministic and
objective processes in a computer, The report is concerned with
the question of how to model as much of reality as possible with
computer representations of information. There are gquite a number
of structures available to represent information in computers such
as file organization, indexed, hierarchical structures, network
structures, and relational models. These structures give us a
useful wvay to deal with information, but they do not always fit
coapletely. Each has its strengths and weaknesses, O serves
different purposes, or appeals to different users in different
environments. No matter how we structure the "territory", the
description is just another "map". Thus, is there such a natural
model to articulate a slice of reality by constructs suchk as
"entitiss {or objects) v, “"names"W, “relationships", and
"attribates" to organize our cognition and discussion of

information?

2

An information system, such as a data base, is a model of
small, finite subset of the real world. Certain correspondences
between constructs inside the information system and in the real
world are expected. Ideally, the correspondence between these two
environments would be ome-to-one. However, it is not so easy to
establish what construct in a computing system will be the
appropriate representation. This construct might be a record, a
part of it, or a group of them as a representative of the thing in
reality. Take an employee who works in a certain department of a
company as an example. We expect to have one record in the systenm

of data processing for each employee's informationm.

In any situation of data processing, we are usually confronted
with three systems [12]. The first is some part of the real
world, the second is ideas about it existing in the mind, and the
t%&fd is symbols on some storage medium, i.c€a, a machine
representation of the idea. Each system is composed of entities,
values, relations, procedures, and etc. The ideas would be models
of the real wvorld, and it is same that symbols or constructs in
the information system are models of the ideas in the minds of
usersa. Thus, we might draw the relationship among the reality,

the ideas, and its representations.

Fe might say that data are fragments of the real world, and the
information system accepts these fragments through a recognized
representation. For example, the date of a certain day,
arbitrarily chosen, fJanuary 1, 1979" cannot be visualized or
shaped out by human beings, but being expressed as an abstract or

theoretical concept. There are various representations of it,

such as:

1 JAN 1979 010179 JAN. 1, 1979 2,443,874,
When we say "twoV%, we never point at the exact and touchable
integer in reality. However, ve can sSee a number of
representations, such as:

IT 2 (010) {(2) 0.2E01,
2 8

and all denote the same thing in reality with different formats or
representatives. Thus, we can say, the construct or
representative does not correspond to any physical object, but to

the abstract idea of one thing in reality.

If a data construct is an abstraction of information in the
real world, we need to formulate a description of this information
so that it may be processed by computers. The abstraction is just
able to model computation as it provides models of the real wvorld.
Fundamentally, characteristics of computers are deterministic,
simplistic, structured, repetitious, unambiguous, unimaginative,
and uncreative. Even some artificial intelligence experiments

have simulated more elegant computer behaviour.

Unlike the real world, data in an information systen
represented perhaps by a data base has to be described both in
physical aspect and in logical aspect. Physical description
specifies the location, format, and organization of the data on
disks, tapes, or other storage media. Logical descriptions
declare the kinds of entities, the attribates, and the
relationships among them. The user should know the meaning of the

data in the system and the meaning of +the relationships among

4
then. For example, a record in a data system contains "John Law"
and "99" as two fields, without any clue from the system to show
whether the "99" stands for his age, weight, weekly working hours,
or something else. It is expected that the user knows what the
fields mean; the semantics of data are important to data

description.

¥We have not explained what is regarded as data in the systesn.
Dne often tends to think of data in the system as the contents of
various attributes of ar emntity or an object. In database, a fact
is sometimes defined as an association between two fields: one
giving the value of an attribute (weight --> 200 1lbs.) and one
identifying the entity having that attribute. The user's concern
is what data in the system can be extracted, rather than how it is
physically stored. The system is modelled as a set of named
functions or maps, Wwhich return certain values when invoked with
certain arguments. Once a user calls the function to be
implemented, the function might involve simple access to stored
data or complex traversal of data structure. Thus, the data
content of the system is defired by this set of functions or maps,

rather than physically stored data.

Before taking a view at several data models available in our
fields, I will sketch a theoretical data model which is based on a
nunber of old and obvious ideas in this field to be a prologue for

this research work.

A theoretical model for data and data processing has been
proposed in Mealy's work "Another Look at Data" [12]. The model

is a system of sets of entities, values, data maps, and procedure

5
maps. The 2ntities correspond to the objects in the real world to
be recorded or computed. Attributes of +these entities are
correspondences between the things and the values. Alterpatively
speakingy, attributes play as "relations", Wmaps", or "functions".
Thus, the data maps, which assign valunes to attributes of the
entities, are regarded as sets of ordered pairs of entities and

values (i.e., data items).

Data Maps: Eptities and-Values-

Data are supposed to record a set of facts about some set of
entities, either real or abstract. Previously mentiored, a fact
is sometimes defined as an association between the one giving the
valoe of an attribute and the one identifying the entity having
ttat attribute. Let E be a set of entities, V be a set of values,~
and D be a set whose members are maps of the fora:

/] E -=-> T

where the Greek letter, #, represents a map. And, we call D a set
of "data maps". For exapple, a person John Law is 25 years old
now, then the age—-of data map, # . would assign ar age value %o
him. The form would be

John law J{> 25
or

8§ (John Law) = 25

While dealing with complex structural data, a structural zap is
expected, and it is defined with the form:
¢ : E-—->E
which is *o0 have a single value for each arqument to make the map

be a function. The structural maps are maps of E into E. The

name for data items, such as (e,v), in such a map is a "pointer'.

2 notion of separation of structural form from data is seen in
the modesl. For imstance, a floating-scale entity is composed of
the wpantissa and the characteristic. Both must be available
during calculation, treated as one entity during arithmetic but as
two entities during radix conversion. For comnsistency, it is
often convenient to introduce two more auxiliary entities; each of
these is a fixed scale number. We can create data types, such as
arrays, lists, tables, etc., for any kind of structure required.
The concept of abstraction is revealed here again that most of the
detail involving the auxiliary entities is suppressed. The user
only knows the description like:

type struct_data = array [3, 3] of integer
to describe a three-by-three array of integers. Things are set up
in a way that a data map for a thing can be decomposed into a

structural data map followed by a simple data map.

Data: _Data Maps_With Eptities and Values

The information in the system is defined by a set of functions
or data maps, rather than by physically stored data. Data objects
exist through operatiomns occurring in the systen. We know# that
data maps assign values to corresponding entities. The guestion
is whether entities, values, data maps, or all as a whole are
data. What happens when data are processed? The first notion
into our mind is that the procedure accepts values as argquments to
produce a result which is that the values get defined, redefined,
or undefined. Thus, the value set V is regarded as the data.

But, the value cannot be redefined if it is the integer set. Same

7
reason to the entities. Thus, the data maps would be the data in
the systen, and would be a set of ordered pairs of entity and
value, denoting as u{e) = v or (e,v). To redefine the value of
the data item (e,v) is to redefine the map u by removing that pair
{e,v) and add a nevw pair (e,v'). The definition of data item is
an elem2nt of a data map. A data element is a set of all data
items associated with a given entity. In the conventional notion,
a logical record is an example of data element, and field within

that record is an example of a data item.

Procedures-

The effect of a procedure is to redefine one or more data maps,
or to change the value part of certain data items. As to
structural data, a list processing with procedures which process

structural data is suggested.

Data type is a fragment of data description, describing a
portion of a system and an entity with its applicable maps. Data
description describes machine data systems, representations, and
organizations, and it is a specification of the maps in terms of
procedures which implement the mapping and process the data items.
A data type tells us what kind of data we are dealing. Usually,
there are four generic data types seen in a system: string,

boolean, numeric, and pointer.

Data processing takes place in the abstract realm, and its
results should be representation {(or machine) independent. in
recent years, language design has tended to suppress the notion of
representation so +that the user frequently ignores the details

jrrelevant to him.

8

Oover the past decade, a topic of research activity in
programming lanquage has been to explore the issues related to
abstract data types (i.e., data abstraction) [141. What
abstraction (or modelling) means is to suppress irrelevart details
of an object and to emphasize details significant to the user
under the "current" context. Data abstraction is the application
of abstraction to data objects. By the nature of abstraction, a
small and finite subset of the real world is modelled (or
abstracted). Correspondences between things in the real world and
constructs 1inside of the information system must produce the

expected data characteristics and behaviour.

In Chapter 2, a number of data models will be defined and
introduced. The reader will find examples of the use of one of
the models in Chapter 3. Chapter 4 defines the problems with this
particular model and evaluates its strengths and deficiencies.
Chapter 5 provides insights into some solutions to the problems
uncovered in Chapter i. And, a summary of the current state of
the work and suggestive direction for future work will be stated

in Chapter 6.

CHAPTER 2

DATA MODELS

In recent years, mnany data mrodels have been proposed. Each
data model differs 1in the style in which data objects and
relationships between data objects are described. By a data
model, the types of data structures visible to the wuser and the
operations allowed on these structures are determined. Among
different models of data, some are depicted to the readers here,
and they are a) the file data model used in common programming
languages [7], b) Liskov's model of "Abstract Data Types"™ [9], c)
Unger's "A Natural Model for Concurrent Computation® [18], and 4d)
algebraic specification [3]. The Liskov's model and algebraic
specification will be discussed in detail in this chapter. The

Unger model will be discussed in detail in Chapter 3.

2.1-File Data_ Model

——

The file data model, one of the forerumners of modern data
mnodels, is used by COBOL, FORTRAN, and other programming languages
[71. In the model, data are described by a declaration which
lists the names of the fields of data in each record of a file,
and describes the type and length of each field. First, in
FORTRAN, variables are used to denote a quantity that is refered
to by name rather than by its appearance as a value. For example,
I : INTEGER states that "I" is the name of a variable which holds
an object of abstract type INTEGER. Here, objects are created in

conjunction with variable declaration. Secondly, people are quite

10
accustomed to working with large arrays of data in which the
individual element of the arrays is indicated by subscripts. The
use of such subscripted variables with all elements having the
same type can handle very large amounts of data with a very
minimum of programming effort, and one of advantages is that it is
possible to manage an entire array without listing all of its
elements explicitly. Thirdly, in conventional programmiag
languages, by using a function (or procedure), a programmer is
concernad only with what the function provides to hinm, but not
concerned with the algorithm executed by the function. This has
achieved a level of abstraction. The last type mentioned here is
record seen in COBOL and PASCAL. A record, like an array, is a
structured variable with several components which may have

different typese.

e e e e e e e st .

In Liskov's data model, an abstract data type defines a class
of abstract objects which is completely characterized by available
operations on those objects. When a programmer uses an abstract
data object, he is concerned only with the behavior which the
object has but not with the details how the behavior is
implemented. Also, this model allows the set of built-in
abstractions to augment with a new abstraction whenever
discovered. Hence, in Liskov's Abstract Data Type, the set of
useful abstractions 1is defined in advance, and a mechanism —--
structured programming -- is provided, so that the abstractioans,

which the user requires, are constructed further.

11

Abstraction provides a mechanism, if as expected, to express
relevant details but to suppress irrelevant details. By another
programning mechanism, an abstract data type is used at one level,
and realized at a lower level. Its lower level does not exist
automatically by being part of the language. The realization of
an abstract data type is dome by writing ar operation cluster,
which defines the data type in terms of representation by already

existing objects operations which can be performed on it.

There 1is a programming language given to facilitate the
activity of cluster by allovwing the use of an abstract data type
without requiring its defimnition. The lanqguage supports two foras
of abstraction, functional abstractions and abstract data types,
by two corresponding forms of modules: procedures and operation
clusters., Here, the functional abstraction denotes abstract
operations which do not belong to any set of operatioans
characterizing any abstract data type, but would be as a
composition of the characterizing operations of one or more data

types.

The way in which the lanquage supports abstract data types is
illustrated below. Objects can be c¢reated in combination with
variable declaration. For example,

t : token
states that t is the name of a variable which holds an object of
abstract type, TOKEN, but no creation of an object is made. Take
an example of creation,
s : stack (token)

stating that s is the name of a variable which holds an object of

12
type, STACK, and a stack object is to be created and stored in s.

There is more about the creation of an object later.

The langunage is strongly typed, and a defining operation omn an
abstract object is indicated by an operation call with a compound

name. For example, two operations are

stack$push (s,t)
and
token$is_op (t)
each of which contains three parts. The first part of +the

conpound name identifies the abstract type to which the operation
belongs, STACK and TOKEHN. The second part identifies the
operation, PUSH and IS_OP. The last component identifies a
parameter list of the operation calls, and it has at least one
object of the abstract +type to which the operation belongs, t
or/and s. The presence of a type—-name would enhance the
understandability of programs. Another advantage from it is that

operation calls are clearly distinguished fromr procedure calls.

Objects could also be created to be independent of variable
declaration by the appearance of the type-name followed by
parentheses. For eXample,

token (g, newsymb)
states that a token object, representing certain result out of g
and newsymb, is to be created, and the information required to

create the object is passed in a parameter list.

An example of a procedure, Polish_gen, (see Figure 2.1), which

uses abstract data types illustrates the power of this concepts.

13

Polish_gen: PROCEDURE (input: infile,
output: outfile,

g: grampar) ;

t: token;
mustscan: BOOLEAN;

s: stack(token) ;

mustscan == TRUE;
stack$push (s, token(g, grammar$eof(q))):
WHILE stack$empty(s) DO
IF mustscan
THEN t := scan(input,.qg)
ELSE mustscan :z= TRUE;
IF token$is_op(t)
THEN
CASE token$prec_rel(stack$top(s), t) OF
n¢n :: stack$push(s,t);
n=tl :: gstack$erasetop(s);
#>% :: BEGIN
outfile$out_str(output,token$symbol
(stack$pop(s)));
mustscan := FALSE;
END
OTHERWISE error;
ELSE outfile$out_str (output, token$symbol(t));
END

outfile$close(output) ;

14
RETURN ;

END Polish_gen

Figure 2.1 An Example of Procedure Taken
from Liskov's Paper. [9]

Polish gen uses the functioral abstraction, scan, %o obtain a
syerbol of the grammar from the input string. The symbol is
returned from the called procedure, scan, inr the form of a type,
TOKEN, as t := scan(input,g), without revealing information about
how the grammar represents symbols. In the procedure Polish_gen,
there are five data abstractions: infile, outfile, grammar,
token, and stack, and one functional abstraction, scamn, is used.
By the power of data abstraction, the procedure Polish_gen only
needs to know what it needs, without knowing what I/0 devices are
being used, when the I/0 actually occurs, nor how characters are

represented on the devices.

For parameter input, an object of abstract type infile holds
the sentence of the input 1language, it consists of three
operations,

<i> infile$get, to obtain the next character;
<ii> infile$peek, to look at the next
character without removing; and

<iii> infile$eof, to recognize the emd of input.

For parameter output, an object of abstract type outfile will
accept a sentence of the output language; it contains two

operations:

15
<i> outfile$out_str, to add a string of characters; and

<1ii> outfile$close, to signify that the output is complete.

For parameter g, an object of abstract type grammar, which can
be used to recognize symbols of the input language and determine
their precedence relatiomns, has a operation grammar$eof to

recognize the end of file symbol.

Other than these parameters, Polish_gen makes use of 1local
variables, s and t, of abstract types STACK and TOKEN. The
operations of type STACK and TOKEN shown in the procedure are

- t: token, to declare a variable t which holds an object of

TOKEN type without object creation;

— token (g, grammarfeof(g)), to create an object to be

independent of variable declaration;

- token$is op(t), to check if the object t of TOKEN type is

an operand;

- token$prec_rel(t1, t2), to determine the precedence relation

between two object of TOKEN type, t1 and t2;

- s : stack{token), to create a stack object and store it in

s which is its variable name;

- stack$empty(s}, to chech if a stack has no more elements in:

- stack$push(s, t3), to push t3 aobject onto the stack;

~ stack$top(s), to return the top element of the stack;

- stack$pop(s), to obtain the top-of-stack token and expose

a new top-of-stack token;

- stack$erasetop(s), to erase the top-of-stack token.

Several abstract data types are used in Polish_gen. And the

definition of abstract data types 1is accomplished through the

16
operation cluster. The cluster of a +type contains a set of
characterizing operations through which a data type 1is defined.
The abstract data type STACK used in Polish_gen will be used as an

example to describe a programming object (see Figure 2.2).

stack: CLUSTER (element_type: TYPE)

IS push, pop, top, erasetop, empty;

REP (type_param: TYPE) =
(tp: INTEGER;
e_type: TYPE;
stk: ARRAY[1..] OF type_paranm;
CREATE
s: REP(element_type);
s.tp = 03
s.e_type := element_type;
RETUORN s;

END

push: OPERATION (s: REP, v: s.e_type);
S.tp 2= s.tp + 1;
S.Stk[s.tp] 1= v;
RETURN;

END

pops OPERATION (s: BREP) RETURN s.e_type;
IF s.tp = 0 THEN error;
S.tp := s.tp - 1;

RETURN s.stk[s.tp .]

17
END

top:z OPERATION ({s: REP) RETURN s.e_type;
IF s.tp = 0 THER error;
RETURN s.stkl s.tp]1:

END

erasetop: OPERATION (s: REP) ;
If s.tp = 0 THER error;
S.tp 2= s.tp -1;
RETURN;

END

empty: OPERATION (s: REP} RETURN BOOLFEAN;
RETOURN s.tp = 0;

END

END stack

Figure 2.2 An Example of Cluster from Liskov's Paper [92].

In the cluster, a set of operations characterizes the abstract
data type. A very general kind of stack object is defined here
{or a prototype); the element type of the object is not defired
when the cluster is defined. The type of the element would be
indicated by the cluster parameter element_type for a particular
stack object (or an imstance of stack type) declared in detail
later in the part of object creation. The whole cluster

definition consists of four parts: cluster interface, object

t8

representation, object creation, and a group of operations.

Cluster Interiace

The cluster interface is the level which its user can see. The
interface defines the name of the cluster, the parameters regqguired
to create an instance of the cluster, and a list of operatiomns
defininy the abstract type which the cluster implements. In it,
the actunal TYPE of the elements of +the abstract type is still not
defined, e.g.,

stack : CLUSTER (element_type: TYPE)
IS push, pop, top, erasetop, empty
The next three parts describe how the abstract type 1is actually

supported.

Object Representation
In the view of users of the abstract data type, objects of that
type are indivisible. However, objects are viewed to be
decomposable into elements of more primitive types, such as
integer, boolean, array, or record inside of the cluster. For
example,
REP (type_param: TYPE) =
{tp : INTEGER;
e_type: TYPE;
stk: ARRAY{ 1..]JOF type_paran) ;
corresponds to the form of REP description,
REP { (<rep_parameters>) } = (<type_definition>)
which defines a new type of a stack object. The optional, “{iv,
<rep_parameters> makes it ©possible to delay specifying sone

aspects of the <type_definition> until an instance of the REP is

19
created. In the example, the <type_definition> specifies that a
stack object is represented by a record with three component names
tp, e_type, and stk. The parameter, type_param, specifies the
type of element stored in the array stk. At the same time, this
same type will be stored in the e_type component. The +tp
component represents the stack pointer to index the top element of

the stack.

Obiject Creatiosn-

The create-code with the reserved word CREATE gets executed
when an object of the abstract type is created, for example,

s : stack (token)
or
s: REP (element_type)

The prarmeters of the cluster are actually parameters of the
create-code. They are accessible neither to the operations nor to
the <type_definition> in the REP. Thus, information about the
parameters must be saved explicitly through the imsertion to each
instance of the REP, e.g., the information about the parameter
t+oken' would be described through the record with components tp,
e_type, and stk. In the create_code, an object of type REP is
created, i.e., space is allocated to hold the object. Next, the
initialization would be done. While the object is returned, its
type is changed from type REP to the abstract type defined by the
cluster. A type specification for the components of the
structure, such as stacks and arrays, must be supplied before an
instance can be created. Because constructs, such as stacks and
arrays, define a class of types, they are called type generators.

Bach type in the class is supplied by its own type definition for

20
each of the type parameters of the type generator. Thuas, a type
generator defines an extensible class of types to provide the

future needs.

Operations

A group of operations indicate +the permissible accesses on the
data types. There 1is always at least one parameter of type REP
attached to each operation. By this parameter, an operation knows
on which particular object to operate. As the parameter is passed
from thes caller to the operation, +the type of this parameter will
change from the abstract type to type REP. The type consistency,
between object pushed onto a given stack and elements acceptable
in the stack, is <checked to achieve such a strongly typed
language. On the operation push, the type of the second argument,
v, is to be the same as the e_type component of the REP of the

stack object which is the first arqument of push.

During the implementation of cluster, a cluster or a procedure
will be accepted by the compiler as a module. The module-nanmes,
then, are used to refer to data types and procedures. While the
compiler processes a module, all information about the module is
built into a description-unit, which includes:

- the location of the object code generated by the compiler;

- a description of the module (i.e., object) interface;

- a list of aunthorized modules to access the module.

The concept of abstract data type brings up a form most useful
to the auser to support data abstraction. By introducing a new
linguistic construct — the operation cluster, abstract data types

are supported. The implementation details irrelevant to a user

21
are hidden from him, and it is easier to lead him to an
improvement in program dquality, that is, programs will be more
modular, and be easier to urderstand, to modify, and to maintain.
It is believed that the abstraction-building-mechanism would be a

useful feature of a very-high-level language.

2.3 The_Unger_ Nodel

In the OUnger model, through the use of structures, information
involved in the solution of the problem is represented irn terms of
objects. A structure, which is an abstract notion of data, is
formed from one or more objects, e.g., a record is a structure.
By defining an object, a structure is described. An object is
defined as a five-tuple with components: designator, attribute,
representation, corporality, and value. The designator is a
sequence of names, that identifies the object unigquely, including
the context of creation, user-defined name, instance information,
and alias sets. The attribute is a set of descriptors defiming
the object's logical organizationm: the underlying atomic
representation, the intermal structure, and the external
relationships. The representation defines the physical
organization: coding, compression, and overlay characteristic of
the obiject. The corporality describes longevity, environment,
replications, availability, amd authorized uses. The final
component, value, is either an atomic value or a structure of
atomic values compatible with the attribute. Also see more in

Chapter 3.

2s4-Algebraic Specification-

22

With what criteria would we measure a good data type
specification? A data type specification 1is amn abstraction to
define a type with rigorous definition of operations but
representation-independent. Among many criteria of measuring,
such as formality, extensibility, constructibility,
comprehensibility, and wide range of applicability, two major
criteria can be used to measure the value of a specification
notation: (i) the ease of constructibility by the specification,
and (ii) the ease of comprehensibility of the resulting
specification. The four models will be evaluated based on a

number of criteria in Chapter 6.

The particular specification technique, algebraic
specifications by Guttag, Zilles, and Goguen (1975), appropriately
meets the two criteria stated previously. After examining a
number of examples later, +the virtue of this specification would
be clearly seen that a fairly complex object has been completely

defined by a few lines only.

The algebraic specification technique is a method to describe a

data type and to define the object using natural language and

mathematical notation without concerning its eventual
implementation. . Since software designers usually have had
programming experience, the use of a programming-like

specification is suitable.

In this formalisnm, not many features assumed to appear in
conventional programming lanquages are peraitted. The permitted
features include (a) free variable, (b} if-then-else expressioas,

{(c) boolean expressions, and ({d) recursion. In additionm,

23
procedures are restricted to be single-valued and to have no side-
effects. This approach is strongly reconmended for several
reasons. First, the resulting specification can clearly express
the desired concept. Second, the separation of values and side
effects makes a specification clearer and simpler. Third, these

features allowed in it can be easily axiomized.

Here begins some examples of data type with this approach, and
they include Stack, Queue, Binarytree, and Bstree (binary search

tree) [11].

Type 1: Stack

In the beginning, 1let us look at the very simple example of a

Stack data type given in Figure 2.3.

TYPE Stack (item)

1. DECLARE NEWSTACK{() --> Stack

2u PUSH (Stack,item) --> Stack

3. POP (Stack) --> Stack

4. TOP(Stack) --> item U { UNDEFINED }
L ISNEWSTACK ({Stack) ——> Boolean;

€. FOR ALL s € stack, 1 € item LET

Ts ISNEWSTACK (NEWSTACK) = true
8. ISNEWSTACK (PUSH(s,1)) = false
9. POP (NEWSTACK) = NEWSTACK

10. POP (PUSH (s,i)) = s

1. TOP (NEWSTACK) = UNDEFINED

12. TOP (PUSH (s,i)) = i

13. END

24

END Stack

Figure 2.3 Stack Type in Algebraic Specification.

The operations available tc¢ manipulate a stack are NEWSTACK, PUSH,
POP, TOP, and ISNEWSTACK. In the DECLARE statement, the type of
input and output of an operation is listed. These operations now
we have are functions which returm a single value and allow no

side effects.

The notation used in this technique is stated here. All
reserved words (e.g., TYPE, LET) and operation names (e.g., POP)
are denoted in upper case. Type names begin with a capital letter
{e.g., Stack). Free variables are writtemn in lower case (e.g., S
and i). A list of parameters following the type name or operation
name is within parentheses, and these parameters might be type
names or free variables whose range is the set of all types. In
the example of Stack, "item"™ is such a variable which could be any
other data type. Rithin the block FOR ALL and END, the egquations
are the axioms describing the semantics of the operations. With
the structure of recursion, these axioms may be easier to be
interprated than they look. The only other stacks appearing are
in the operation PUSH (s,i), where s is any stack and i is the most

currently inserted item.

Type 2: Queue-
The entire specification technique used in writing algebraic
axioms has been seen in the first example of Stack, and the next

one is to introduce conditionals (i.e., IF-THEN-ELSE) into the

right-hand sides.

25

In Figure 2.4 of type Queue, there are six

operations: NEWQ, ADDQ, DELETEQ, FRONTQ, ISNEWQ, and APPENDOQ.

TYPE Queue (item)

1.
2.
3.
4.
5.
6.
7.
8.

9-‘

DECLARE

FOR ALL

10.

11.

12. .

13,
14.
15.
16.
17.

18. .

19.

END

END

Queue

NE#Q () --> Queune
ADDQ {Queue,item) -=-> Queue
DELETEQ(Queune) --> Queue
FRONTQ (Queue) —--> item U { OUNDEFINED }
ISNERQ (Queue) =--> Boolean
APPENDQ(Queue, Queue) --> Queue ;
g, I € Queue, i € item LET
ISNEWQ (NEWQ) = true
ISNEWQ (ADDQ({q,i)} = false
DELETEQ(NEWQ) = NEWQ
DELETEQ{ADDQ(g,1i)) =

IF ISNEWQ(q) THEN NERQ

ELSE ADDQ (DELETEQ (q) ,1)
FRONTQ(NEWQ) = UNDEFINED
FRONTQ (ADDQ(q,i)) =

IF ISNEW(q) THEN i ELSE FRONTQ(q)
APPENDQ (q,NEWQ)} = g

APPENDO(r,ADDQ(q,i)) = ADDQ (APPENDQ(r,q),i)

Figure 2.4 Queue Type in Algebraic Specification.

2¢

The recursion on g of the type Queue is seen in FRONTQ and
DELETEQ.. Taking the FRONTQ of the empty queue is UNDEFINED. or,
the returning value would be the most receatly inserted item i,
and the remainder of the queue is gq. If q is not empty, then
FRONTQ 1is recursively applied to q. It is the same for the

operation DELETEQ.

Iype 3: Bipary Tree
The +type binary +tree is the onext to be introduced. Some
additional points in this type are as follows:
Point! - The omitted operations are excluded
from a type because they make use of
the operations of another data type;
Point2 - A new approach 1is +that a user can
create a nonprimitive operation in ternms

of some primitive operations of a certain

type.

The specification of the type Binarytree is given in Figure

2.5.

TYPE Binarytree (item)

1. DECLARE EMPTYTREE() —-> Binarytree

2. MAKE (Binarytree,item,Binarytree) ——> Binarytree
3. ISEMPTYTREE(Binarytree) --> Boolean

4. LEPT (Binarytree) --> Binarytree

5. DATA {(Binarytree) --> item U { UNDEFINED }

€. . RIGHT(Binarytree) —> Binarytree

7. ISIN(Binarytree,item) --> Boolean ;

8. FOR ALL
9
10.
11.
12.
13.
4.
15.
1€.
17.
18.
19.
20,
2t

22. END

l, r € Binarytree, d,e € item LET
ISEMPTYTREE (EMPTYTREE) = true
ISEMPTYTREE (MAKE(1l,d,1r)) = false
LEFT (EMPTYTREE) = EMPTIYTREE
LEFT (MAKE(1,d,T)) = 1
DATA (EMPTYTREE) = UNDEFINED
DATA (MAKE(l,d4,r)) = d
RIGHT (EHPTYTREE) = EEPTYTREE
RIGHT(MAKE(1l,d,r})) = ¢
ISIN(EMPTITREE,e) = false
ISIN(MAKE(l,d,r),e) =

IF d = e

THEN true

ELSE ISIN{(l,e) OR ISIN(r,e)

END Binarytree

Figure 2.5 Binary Tree Type in Algebraic Specification.

Let us read the mearing of each operation.

EMPTYTREE creates the empty tree.

MAKE joins two trees together with a new root.

LEFT returns the left subtree or the right subtree

or RIGHT of a node.

DATA accesses data at a node,

nuyndefined™.

and returns an item or

27

28
- ISIN searches for a given itea to return a boolean

value.

The type of binary tree npaturally reminds us of the usual
traversal methods: preorder, inorder, and postorder. Should an
operation be part of +the specification or not? The choice of
vhich operations to be included im a specification is arbitrary.
See one example of three operations below,

INORD(Binarytree) ——> Queue;
and its axionms,
FOR ALL l,r € Binarytree, 4 € itenm,
INORD(EMPTYTREE) = NEWQ
INORD (MAKE(1,d,r))

= APPENDQ{ADDQ (INORD (1),d) ,INORD(T))

In most applications, the tree is usually ordered. 1In order to
extend the binary tree into an ordered one, called as binary
search tree given next in Figure 2.€, a new approach is that a
non-primitive INSERT operation is formed in terms of the primitive
operations of type Binarytree. in general, a data type
specification always defines only one type, but it may have the

operations of other data types to accomplish it.

Bstree (Binary Search Tree) type is defined to be a binary tree
with data items at each node that any item is alphabetically
greater than any item in its left subtree and less than any in its
right subtree. ¥ith some altered axioms and a new operation, the
Binarytree specification is tramsformed into type Bstree. See
Figure 2.€ for the specification of Bstree. The differences

between these two types include the altered second axiom for ISIN;

29
a new operation INSERT, which seazches for an item im a bimary
search tree and inserts it if it is not there. Since the only way
to create a binary search tree 1is the operation INSERT, not MRKZE
any more now, the operation MAKE becomes a hidden functiom with a
star ('#') attached in the new specification to indicate that it

is mot accessible any more.

TYPE Bstree (item)

1. DECLARE EMPTY() —--> Bstree

2. . ¥MAKE (Bstree,item,Bstree) —--> Bstree
3. ISEMPTYTREE({Bstree) --> Boolean

4, LEFT (Bstree) —-> Bstree

5. . DATA (Bstree) —--> item U { UNDEFINED }
6. RIGHT {Bstree) ——> Bstree

7. ISIN (Bstree,item) --> Boolean

8. INSERT(Bstree,item) --> Bstree ;

9. FOR ALL l,r € Bstree, d,e € item LET

10. ISEMPTYTREE(ENPTY) = true
11. ISENPTYTREE(MARKE(l,d,T)) = false
12. LEFT {EMPTYTREE) = EMPTYTREE
13 LEFT (MAKE(1l,d,r)) = 1

14. DATA (EMPTYTREE) = UNDEFINED
15. DATA (MAKE(1l,d,r)) = d

16. RIGHT (EMPTYTREE) = EMPTYTREE
17. RIGHT(MAKE(1,d,T)) =T

18. ISIN (EMPTYTREE,e) = false
19. ISIN{MAKE(1l,d,r) ,e}) =

20. IF d = e THEN true

21. ELSE IF d < € THEN ISIHN(r,€)

30

22. ELSE ISIN(1l,e)
23, INSERT (EMPTYTREE,e)

24, = MAKE(EEPTYTREE,e,EMPTYTREE)

25. INSERT (MAKE(1,4,1) ,e) =

2€. IF d = e

27. THEN MAKE(l,d,T)

28. ELSE IF d < e

29. THEN MAKE (1,d,INSERT(r,e))
30. ELSE MAKE (INSERT(1l,e).,d,r)
31. ERD

END Bstree

Figure 2.6 Binary Search Tree in Albegraic Specification.

So far, we have seen four examples of the use of algebraic
specification. At this point, 1let us view the virtues of the
specification. It is «criticized that the recursion forces into
inefficient coding, e€.9., the FRONTQ operation in Queue finds the
front element of the queue by starting at the last element.
However, the contents in the specification should not be viewed as
describing the actual implemented program but just as a means to

understand what the operation is to do.

What is the so-called constructor set? For each type, there is
a subset of the basic operation set to statisfy the property that
the data type can be represented using only constructor set

operations. The axioms of the type, then, show how each non-

31
constructor-set operation behaves on all possible instances of the
data type. Take the previously given exanmple, Queue, to
illustrate it. oOut of those four operations, NEWQ and ADDQ are
selected as the constructors. A set containing n >= 1 items is
given as

NEWO
or

ADDQ(. .. ,ADDQ{ADDQ(NEWQ,il) ,i2),...,iN),

where ¥ 2 1.

The item il is at the front and iN-is at the rear. Then the
axioms can be looked at as the rules which show how each operation
of non-constructor—-set (DELETEQ, FROHNTQ, ISNEWQ, and APPENQ} acts
on such an expression (called a "cannonical form" which is defined

next) .

Fach specified type can be represented by a single expression,
and it is called the "canonical form" which contains the minimal
set of operations —— constructor set. For example, the canonical
form for type the integer Set is:

INSERT (INSERT (. .. INSERT(EMPTYSET,il) ,...,i8-1) ,iN)

with EMPTYSET and INSERT as the constructors. Constructibility of
algebraic specification can be enhanced by a canonical form which

can be derived ®echanically.

In this chapter, the models have been introduced in reasonable
detail, except the Unger model. The detail of and the use of the
Unger model will be described in next chapter. The problems with
the model will be investigated; and, formally, some solutions will

be discussed.

32
CHAPTER 3

THE UNGER MODEL

This chapter illustrates some uses of the Unger model by means
of examples. These examples will illustrate how lasic properties
of the model allow representation of information involved in the
solution of problems through the use of objects and multi-object
structures. The model utilized to create all examples is based on
the pre-simplified model. The readers will see the simplification
introduced right after the full work of the model. The simplified
model is courageous for focus on logical properties without the
loss of generality. One of advantages of simplification is to
more clearly focus on the logical properties of the obiject.
Minimal attention will be given to issues concerning
implementation; for example, the representation, the third

component of an object, will be ignored.

A structure is defined as one or more objects, and, therefore,
a structure must be described by definimng an object which is the
basic component of a structure. An object 1is defined as a five-
tuple, where the five components are designator, attribute,

representation, corporality, and value.

Important definitions of the basic object of the information
structures are presented in Section 3.1. The multi-object
structure is defimned in Section 3.2. To illustrate the use of
applying definitions of objects and structures, exanples of

objects and those of structures are given in Section 3.3 and 3.4

33
respectively. Finally, the control structure of computation
execution is introduced in 3.5. In this last section, action,
request, ordering of the request's execution, detailing of an
action, and conditioms to control paths within a computation are
stated.

A combination of mathematical notation and +the Backus-Naur
Form (BNF} was selected to define the linguistic forms used for
illustrating examples. The mathematical notation of sets, tuples
and mappings is employed. First of all, a number of definitions

extracted from Unger's "A Natuoral Model for Concurrent

Computation” [187 will usher us into the mnodel.

Notation
Upper case English letters
e.g.' l‘ B' C' - e

Lower case English letters
e-qo‘ a, b, C, LR

{ enumeration }
e-gcln={a‘bl’c}

{ enumeration)
e»g-' (a' b’ C)

lLower case Greek letters
e-g.,“,ﬁ;a, LR 2

Post-operator
e.J., 8@ = b

a+

ax

Parentheses
ieea, ()

Meanirng

Set nanme

Set member

Set definition

Tuple

Map name

Mapping

One or mOore COCCUrrences

of a

Zero Or more occurrences
of a

Grouping

34

3.1-Definition of Obijects

All information involved in the solutions of problems is
represented by the use of dJata "objects" or "structures® of
objects. The objects in the model are drawn from a data universe

as follows:

Definition 1. The UNIVERSE of possible
objects, 0, is a five tuple:
O=DxXx AX RxC X V,vhere

is the designator space,

is the attribute space,

is the represertation space,
is the corporality space,

is the value space.

< () p O

Thas, anh indiviual object may be defined as follows:

Definition 2. An OBJECT, o, is a five tuple:
o = (d, a, T, C, V),

where the five components of the tuple are:

d € D is the designator,

a € A is the attribute,

r € R is the representation,
c € C is the corporality, and
v € V is the value.

The components of an object are expressed in terms of
mappings as follows:

3

d =-08 where 0 -=>0D
a

a =-oa where 0 -——> 12

re

T =-0p where 0 --> &
_ £

c =-0& where 0 -->C

v =-0oY where 0 -=>v

where each of these mappings 1is single-valued. Two
objects are equal, ol = 02, if and omnly if 41 = 42, al =
a2, rl1=r2, ¢l =c2, and vl = v2. Anr object is uniguely
referenced by its_desigator, so we can use d to represent
an object, e.g., 00 = and o0 = d. Therefore, if dl = 42
for two objects (41, al, rl, cl, vl1) and (42, a2, r2, c2,
v2), then ol = oZ2.

Designator-

Fach object within the mnodel has a wunigue Identifier
called the designator which is a ©pame or sequence of
names. The designator identifies an object, and some of
its names are user supplied or internally generated.

Definition 3. The designator of ar object is
a four tuple (c, u, i, a) where

c is the context of creation for
the object that is represented
by a finite oredered sequence
of zero or more names, i.e.,
{cl,c2, «.. , cl}.

u is the user name that is
represented by a finite ordered
list of one Oor ROTe simple
names, i.e., (ul, u2, ..., ul)
which are created by the user.

i is the instance of the object
that is represented by zero
or more rnames or notations
indicating the specific
instance of a class of objects
with identical c and u names.

a is the alias set of designators
that are used to reference the
object in other contexts.

An object exists if and only if its designator has been
specified. The designator must exist before the other
components. The rest would be in such amn order,
attribute, representation, corporality, ther value. The
existernce of each component car be ascertaired by tke
existence function (e.g., ¢). An existence function has
a truth value indicated by superscoring the component to
determine if a comporent has been bound. For an object o
= (3, a, ry ¢, v), the existence for each component would
be achieved by,

00 = d : the existence of the object is equivalent

35

to the existence of the designator:

the existence of the attribte;

the existence of the representation; and
the existence of the value.

48l
4&lal

A conmplete object 1is one <for which all components are
bound, i.e., the existence function has a value of true
for all components. This will be written as 00 = d .

The designator of an object will be specified 1in
exanples using the following form:

<designator> :: = <context> ee <{user name>
ee <instance>

The alias set is not considered, ard the designator of the
simplified object will be a three tuple (c, u, i).

Let us see more about the components in the tLree tuple
of the designator: context, user-name, and instance.

The context of an object is the environmert of
existence of an object. Once a request or call for the
object occurs, the local environment £for the object is
defined. An ordered 1list of zero or more nares forms a
context, and each name defines an environment. Within the
loccal environment of creation, a context is not needed.
Howsver, 1f an object is passed to other eavironments,
names of all enviromnments through which the object 1is
passed would be added +to the context. The context is
defined by the following:

<context> :: = (<name> .)* <nane> | ¢
where the rightmost name 1s +the name of the 1local
environment. A name is inserted into the left of the
list, when the object passes to a further environment.
For exanmple,
housing . coamplex . hall

is the context name of an object, +then an environment
diagram can be depicted as follows:

housing

complex

k““‘“““~—~_____,—ff

If the object is passed to an action higher in the
hierarchy of actions, a wider context is created for the
object. Thus, it has an environment inclusive of all
actions subordinate to the wider context.

The user-name is represented by
<user-name> :: = (<name>.)* <name>

vhich is an ordered sequence of names instead of a single
name for illustrative purposes.

The instance is composed of +three subcomponents:
spatial coordinates, chromnological identity, and segquence
position (order of the creation). Any combinpation among
three may be specified by the user. The existence of
either chronological identity or sequence position is
optional.

Attributes

The attribute contains information about (1) the type
of the object's value, (2) the internal structure within
the object, and (3) the external relationship of this
object to other objects. The type of the object's value
can be any type represented naturally in hardware (i.e.,
"atomic") or described by an aggregation (i.e.,
"structure®). The details of type will be covered in the
part of value later. The intermal structure of an object
describes the relationship between the components of the
object's value which may be a simple value for am atomic
object or a number of values for a structured object. The
external relationship specifies the logical position of
the object to other objects in the system. For example, a
record might be a part of certain file.

Representation
The representation information for a given type need

not be made available to all users of objects of that
type, thus, the abstraction is provided for the user. In

37

most of cases, we will put a null, ¢ , to indicate the
ignorance of representation. Otherwise, a Greek alphabet,
Q, to indicate that the representation would be the
systen-dependent primitive at the machine level.

Corporality

The corporality provides information about longevity,
environment, replications, availability, authorization,
and access of the object.

Definition 4. Corporality of an object is
a four tuple (1, p, r, e) where

1 is the longevity of the object and its
durability in a given environment,

p is the location where the object is
to be found,

r is an indication of the number of
identical copies of the object, and

e is a list of authorized uses .

Nevertheless, the currently simplified model restricted
the corporality to consist of two components: longevity
and the availability of authorized uses. The
simplification results in the conditions: (1) that the
object can be found, (2) that there are no replications.

Within the model, tke longevity is classified into four
categories: fixed, static, dynamic, and fluid. These four
categories are ordered in terms of «capability to allow
change. Thus, a fluid value is most accepting of change,
however, a fixed value is least. If an object is not
specified with a valoe of longevity, it will be considered
as dymnamic, by default. As an object passes from one
context to another, its longevity may be changed under
certain constraints. First, it may be changed to a more
restrictive category as passing from its context of
creation to other contexts. Yet, a restriction is noted
that the longevity mav never be made less restrictive than
when it was originally defined for the object.

This tells a fact about objects with a fixed longevity
that fired objects may not change, and they exist prior to
the existence of the context in which they are used. For
exaaple, the alpha-numeric characters are this sort of
objects as they were created prior to the model.

Dbjects with longevity static are defined by actions
within the model. (Note: A simple action is a three-tuple

38

(m, a, r) wvhere m is the material required, expressed as a
list of objects, a is the designator of the action, r is
the result produced by the action, expressed as a list of
objects. For example, an action QUADROOT(rt1, r2 ; a, b,
c) is composed of QUADROOT as its designator, r1 amnd r2 as
its objects of result, and a, b, and c as its objects of
materials required. More in Section 3.5.) The
environment of a static object is smaller than that of a
fixed object. Within the environment, each component of
the static object is bound to the object. Once a
component of this type of object comes into existemnce, it
is bound to the object in all environments. For example,
a static comstant would be created within the model rather
than prior to the systen. For this type of object, the
sequence number of its designator will not be greater
than one but exactly one.

Objects with longevity dymamic-are defined by actioas
within the model. Such an object may change its value
overtime, and simultaneously, a new incarnation would be
invoked. Therefore, the object must have a chronological
identity, t, and/or a sequence number, o, in the user—-name
component. Bach time when a new value associates with the
object, the u (user-name) part of the designator is
updated by setting the new reading of chronological
identity or/and by denerating a new sequence number in a
monotonically increasing sequence. Thus, a new object is
created. Previous incarnations of ar object could be
purjed by a specific action. Once the dynamic object with
a series of incarmnatiomns is referred to, relative
reference d. {#+-}n, n20, retrieves the incarnation created
n steps previously. To an unqualified reference, the most
recent incarnation is retrieved. If n =0, the current
incarnation is specified.

The last category for 1longevity is fluid which is
defined by actions within the model. Objects with fluid
longevity may change value at any time with a restriction
that change must occur between uses. Also, no previous
incarnations are available. That is to say the sequence
number, o, of the designator will not be greater than one
for this kind of object.

The second component of corporality, autherization,
indicates allowed uses to protect an object. It might be
desired to provide a journal of uses and/or unauthorized
attempted uses.

In terms of mappings, the two-tuple simplified
corporality (1, e) for an object is defined in the
following:

v
1 = cv where ¢ ——> { fixed, static, dynamic, fluid }

39

40

9 . . .
e = c$ where ¢ -——-> u, u is a set of authorizations.
Yalue

The value represents +the informationmal wunit for the
entire object which might be a simple object or a multi-
object structure. The information may be arn atomic value,
a complex of values obtained through the use of spatial
coordinates, a collection of objects (i.e., structure), or
the detail of an action, compatible with the attribute.
An atomic value for an object might be boolean, integer,

real, or character. As for a nonatomic type of a
structured object, the whole value 1is defined when a
structure is created via aggregation. Nonatomic values

defined in the model and available for users are set,
collection, ordered collection, and action.

The specification of an object is simplified without
significant loss of generality. Moreover, the
simplification moves the £focus more on the logical
properties of the object. One of simplified points is the
ignorance of representation, and it ignores the concern

during implementation of a specific language. The
definition of an object after simplification is stated
below.

Definition 5. The simplified object
is a five tuple
(d, a, 9 , c, v) where

d the designator is a three tuple
(c, u, 1) and i is a three tuple
(s, t, o) where either t and/or
o is null,

a is the attribute, as defined
previously,

¢ the corporality is the tuple (1, €)
where 1 is longevity defined
previously, and e 1is a bimnary
indicator of availability, anmd,

v is the value of the object expressed
as atomic value (inteqger, real, bit
string), a number of atomic values
specified via aggregation.

3.2 Defipition of Structures-

A multi-object structure 1is defined via a process called
aggregation. As in the liskov's abstraction of data, the
components of the object composing a structure are not available

to the user once the process of aggregation is done. In Liskov's

41

terminology, a structure is called "type". Three definitions

provided in the Unger model describe a structure are extracted as

follows:

Defipition 6.

A structure is the three tuple (o, P, C)
where
0 is a structure (d, a, r, C, V)
conposed of N objects
oi = (di, ai, ri, ci, vi),
1<3i<N.
p is a set of partitions which car be
referenced as a structure,
and,
c is a set of legal actions which can bhe

performed on the structure o.

Definition 7. A structure is created by defining a
prototype tuple (n, m, r, o, p) where

Definition 7-A.

n

n

is the designator of the structure
(i.e., type), e.g., set._

is the material to be supplied by the
user for composing the structure (in
terms of abstract representations of
object, i.e., the fields of a record,
£1, £2, £3, ..-, fB).

r is the representation of the structure

stated in terms of atomic types and
available structures, e.g., a record
(f1, £2, <«.., £¥) is an ordered
collection of a finite number

of objects.

o is the list and definition of the

set 0f pre-defined operators
and operations, and,

p is the set of names of the predefined

partitions and the definitions of
these partitioms.

An occurrence of a structure
(nd,md,rd,od,pd) is a tuple

{d,n,m,0,p)

d is the designator of the structure,

n is the desigmator, nd, of a prototype

structure tuple,

m is the material to be used im this

structure, d, of the structure ng,

o is the list of operators and operations

defined for the instance d of nd,
{if o is null then od-is valid, while
if o is not null then o C od and

42

o is valid).

p is a set of partition names defined for
this instance of nd (if p is null
then pd is valid, while if p is not
null, then p is valid if p C pd).

Denoted by the BNF definition, the occurrence of a
structure will be represented as follows:

<structure occurrence> :: =
<{designator> ; structure <name> (<material>).
uses (<operations>)
partitions (<partitiomns>)

<list> :: = (<designator> .)* <designator>
<material> :: = <list>
<name> :: = <designator>
<operations> :: = <list>
and,
<partitioms> :: = <list>.

Although a mechanism, wvhich is defined in the model, allovws
structures to be c¢reated, there are four embedded structures
included in the model. The detail of an action, or dered
collection, unordered collection, and set are used as fundamental

structures. other structures could be created by aggregating

atomic objects and/or existing structures.

3.3 _Examples of Simple Object:

Let us create several simple objects based on the pre-
simplified definition anrd two structures: record and array.
Supposedly, wve need to have this model create objects, or
structures if needed, to represent personal record of a student in
a college. The information about a student included in examples
are his official name, altermative name, social security number,

sex, pursuing degree, birthdate, and local address. So far, we

43
have not reached the portion of structure creation, so, some basic
structure would be assumed to exist and to be available for use in
our examples below, e.g., character-string{length : integer) and

set (see Definition 8 for set).

Definition 8. A set is an unordered collection
of objects, s = { sl1, s2, .-« }, which
are homogeneous in type of value and
such that for aany two elements, si, sj € S,
si # sj. A set will be denoted by
enclosing it in braces, e.g.,
{ William, Bill, Willy }.

The prototype for an object is of{d, a, I, ¢, v}, and the
instarce of such a prototype o, let us say, oi(di, ai, ri, ci, vi}
for any future occurrence, where i = 1 to N. There are seven
objects used in the following as examples, i.e., student's nane,
alternative name, social security number, sex, degree, birthdate,

and local address, and defined below.

Object <1>:; An object ol(dl, al, rl, cl, vl), called as HNAME,
represents the name of a student. Thus ol(NAME, char_string(23),
byte, static, atomic) is an example of an object, vwhere

d1 = ¢ ee NAME ®e (65) . 1980
an object without creation context, with user

name NAME, a spatial coordirate of €5, znd a
chronological name of 1980.

al : The attribute describes

<1> the type of the objectts value, char_string(25),
is an occurrence of a pre-defined structure object
char-string (length) with 25 characters long.

44

<2> since, here, the value of an object is a structure
object, a character string, the internal structure
is a sequence of character values.

<3> and, there is a logical relationship of equality

with another object, introduced next, ALT_NAME.
They both identify the same unigueness.

tl : coding of bytes,

cl= (11, pl, T11, el)
= (static, { BReg—-Dept-FLG8OF }, rll
{ create, delete } },
where rl1l (al, s1, gl) = (true, ', true),

By r11, we know this object is available, with 1 copy,
and with copiability.

vl = "Relly S. Folley LA

The type of the value is atomic, because the structure
char-string is available in the model. It is used as an
object, so the user does not have to create a structure

of it. If the type is not pre-defined prior to the use

in the model, then the type of the wvalue would be "structure"
rather than "atomic". The atomic object is any type
represented naturally in the hardware, such as integer or
string.

Object <2>: Similarly for an object called ALT_BAME, there is

62 = (42, a2, 2, c2, v2)

= (ALT_HAME, set, § , dynamic, structure),
where
d2 = APPLICANT . GRADSCHOOL . CSDEPT ee ALT NAME ee

(116) . 1980 . 3

It tells that an object was created in the environment
APPLICANT, and passed into the environment GRADSCHOOL.
Currently, CSDEPT is its local environment, with user-name
ALT_NAME, a chronological name of 1980, and a sequence
number of 3 indicating the third time of generating new
value on the object.

a2 : The attribute describes

<1> the type of the object's value, set, is an occurrence
of a pre-defined structure object, set, existed in the
modzl. Set is one of four embedded structures included
in the model, although a mechanism is defined which
allows other structures to be created. See Definition
8 for the set,

45

<2> since the value of the object, ALT_NAME, is a structure
object, set, the internal structure of it is an unordered
collection of names with char-string type. The value of
ALT_NAME could be an empty set,

<3> ard, there is a logical relationship of equality with the
object, NAME. Both identify the same uniqueness.

r2 : It is denoted here, as a Greek alphabet, ¢ Which
means a primitive at the machine level with the coding
and compacting in a specific computer systen.

(12, p2, r21, e2)

{dynamic, { CS—-Dept-FLG8O0F }, r2l1, { create,
delete, change }),

where r21 (a2, s2, g2) = (true, 2, false).

By r21, we know this object is available, with 1 copy, but
without copiability.

v2 = { "Kelly A. Schneider .
"Ann Schneider " }.
Dbject <3>: ¥ext one is the object 5_S_¥Wo,

o3 = (d3, a3, r3, c3, v3}
= (S_S_No, integer(9), @ , dyrnamic, atomic)

where
d3 = ¢ ee S_S No ee (4,4,8) . 1980 . 2
a3 = integer({9)

which takes 9 digit-long integer for the type of
its value. Since a social security number is
simply an integer which is an atomic value, there
is no internal structure for it.

v3 : Same as rZ.
c3= (13, p3, t3l, e3l)
= (static, [6€506-Soc~Sec-Office, CS-Dept-FLG8OF },
(true, 3, true), { create, delete } }, and

v3 = 876000321

Object <4>: The fourth object is to distinguish the sex of a

student, either male or female. Thus, for its prototype,

o4 = (d4, ai, r4, cl, vi)
= (SEX, boolean,) ,static, atomic).
ds = ¢ ee SEX es (40) . 1980

113

[
&=
I

type of boolean,

=]
=

Same as r2-

Q
&=
]

(static, { CS-Dept-FLGBOF }, (true, 1, true),
f create 1).

vy =0

Note: Assign 0 (FALSE) for female, and 1 (TRUE) for male..

Object <56>: We need know the pursuing deqree of a student at
the college. Assign the abbreviation BS, BA, MS, MA, and PD for
Bachelor of Science, Bachelor of Arts, Master of Science, Master

of Arts, and Ph.D. respectively. The object

o5 = (d5, a5, r3, c3, v3)
= (KSU.CAND.DEGREE, char_string(2), byte, dyranmic,
atomic),
where
d5 = adm.progm e= KSU.CAND.DEGREE ee (2,0,8) .1980 . 2

in which the user name is an ordered sequence
of names, K5U.CAND.DEGREE.

a5 = char_string(2),

which is the type of object's value to demnote
the classification of the target degree.

As to its internal structure and logical
relationship, since it is a simple object, these
are not available,

r5 = coding of byte,
c5 = (15, p3, r51, ed)
= ({(dynamic, { Reg-FLG898, CS-Dept-FI1GBOF 1},
{(true, 3, true), { create, delete, change }),
v§ = "HS“

Object <€>: The notation for a birthdate could be varying as
"october 22, 1957, ®10/22/57%, %10-22-57", or "1022571, Let us

take "102257" as six—-digit integer to be an example of birthdate.

47

An cobject

o6 = (dt, a€, ré, cg, vE)

= (BIRTHDATE, integer(t), @ , static, atomic)

where

dé = ¢ ee BIRTHDATE ee (122). 1980

a€ = integer(é)

r€ : Same as r2.

(1€, p€, &1, e€)

Q
o8
iwon

(static, ¢ , £6l, ¢)
where ré6l1 = (ag, s€, g€} = (true, 1, false)

By r€l, it indicates that this object is available, with
1 copy, but without copiability.

v6 = 102257

Object <7>: In a normal case, an address is divided into three
parts: street with number, city of state with =zip-code, and

country. Each of them could be denoted as a character string with

necessary length. Assume that now we have a list of addresses of
students all living in the UJ.S.A.. Thus, the value of the
nationality part wounld be static as "U.S.A.". Apparently, tkte

object LOCAL_ADDR, we need, must be a structure type to contain
three simple objects of char-string type. Assume a type record is
suitable to use for an address. The way to create a structure
record for use and its occurrence of LOCAL_ADDR will be explained

in Section 3.4. The structure-type object LOCAL_ADDR 1is

ol = (41, al, £1, ci1, vi)
= (LOCAL_ADDR, record, & , dynamic, structure)
where
d7 = ¢ ee LOCAL_ADDR ee (7, 8, 9) . 1980 . 5
a7 = record

ir which three elements of character string are needed ir an

instance of record, named LOCAL_ADDR,

<1> however, the type of the whole object LOCAL_ADDR is a

<2>

<3>

Tecord.

For a multi-object object as LOCAL_ADDR, its internal
structure is three elements for the occurrence, and
each of them is a simple object with a type character
string.

Its external relationship is that all occurrences of
LOCAL_ADDEs have one element, country, mutual with an
identical value, "U.S.A.".

Same as r2.

{dynamic, ¢ , (true, 3, true}, { create,
delete, change })}

pm—————— - - +
|*114 Bluemont Ave. "y
| "Manhattan, KS 66502 Al |
j"0.5.4.% |

- - -4

48

49

3.4 Examples of -Structure-

To make a structure available to be used, there are two steps
which sktould be done. The f£irst, a prototype for a structure type
must be created; and the next is to create an occurrence of the
structure. Take the record and the array as examples of structure

type.

Structure: Record

By definitions stated previously, a structure of record and its
occurrence are created successively. By Definition 6, a structure
is a three tuple (o, p, c), and

record : STRUOCTUORE (oR, pR, cR)

oR = {oi 1= 1¢t0o N}

PR = ¢
cR = { create, delete, change }

where oi = (di, ai, ri, ci, vi)

0
i=1+t0o N, as defined below,

and, the material needed to construct a record occurrence include

seven objects as follows:

ol = (NAME, char-string(25), byte, dynamic, atomic)

02 = (ALT_NAME, set, @ , dynamic, structure)

03 = (S_S_¥o, integer(9), Q , dynamic, atomic)

o4 = (SEX, boolean, { ,static, atomic)

o5 = (KSU.CAND.DEGREE, char-string(2)}, byte, dynamic, atomic)
06 = (BIRTHDATE, integer(6), § , static, atomic)

o7 = (LOCAL_ADDR, record, £ , dynamic, structare)

50
And, by Definition 7, a structure of record is created by defining
a prototype tuple (nBE, nR, rR, oR, pR), thus, a structure of

record represented by a five-tuple is

(record, £1-= o1, £1: al, { DELETE, ADD, CHANGE }, ¢)
£2 = o2, £2: a2,
. *
. .
@ »
fN = oN, f£X: aX,

According +to the material needed to invoke ar instance of a
rtecord, an occurrence of a record, called student record, is built
up by Definition 7-A. By the definition, an occurrence of a
structure record {(nR, mR, rR, oR, pR} is a tuple (d, n, m, o0, P).

and the student record would be

(STUDENT, record, £1 = ol , { DELETE, ADD } , ¢)
f2-= o2,
£f3-= o3,
f4 = ok-,
£5-= o5,
f6 = o06-,
£f7.= o7,
For illustrative purposes, the occurrence of record, student

record, denoted by the BNF notation is

STUDENT : STROUCTURE record (ol,02,03,04,05,0€,07)

ICI

SES (add, delete)

PAETITIO (¢)

—_— e

And, 1let any of occurrence the STUDENT record is denoted as oRi-

for the example to use.

For the earlier occurrence of a record of o7, LOCAL_ADDR, Ilet

us create its occurrence. An occurrence of record, LOCAL_ADDR, is

51

(LOCAL_ADDR, record, £1 oS, { change }, ¢)

£2 = oC,
£f3 = oX,
where
oS = (STREET, char-string(25), byte, dynamic, atomic)
oC = (CITY, char-string(25), byte, dynamric, atomic)
o = (COUNTRY, char-string(€é), byte, static, atomic)

In the BNP, it is denoted as

LOCAL_ADDR : STRUCTURE record (char-string(})
USES {(change)

PARTITIONS (¢)

Structure: Array

It is the same way as the creation of student record to create
a new structure array and its occurrence, array of students. In
common programming languages, the declaration of array with
element type student record, denoted as oRi, dis ARRAY [1l..
MAYSIZE] OF student. In this model, the structure array cam be
defined by Definition 7 as follows:
ol, structure, {DELETE, CREATE, CEANGE}, ¢}

02,
o3,

{array,array{ 1]
array{21
arrayi3]

[]
L 3
L

array[AVAIL] = oAVAIL

SN2

Assume that there are five student records to be put into an
array, and denote them as oRl, oR2, oR3, ORA4, and oRS. By
definition 7-A, an occurrence {(d, n, @, o, p} of array {(nia, BA,

rd, oA, pl), named as ST_LIST, is invoked as follows:

52

{ST_LIST, array, array{1] = oRl1, { ADD, CHANGE }, ¢)
array[2] = oR2,
array{3] = oR3,
array{4] = oRil,
array(5] = oR3,

An alternative denotion in the BNF is

ST_LIST : STROCTORE array (STUDERT)
USES { add, change)
PARTITIONS (¢)

3.5-Control of Computation: Defimition and Ezample

A data object is what drives the computation. The execution is
basicly "driven" by +the existence of "material® objects on which
actions are to be affected. The effect is to produce "resultant®
objects which may be used by further action. The action is
"detailed" by requests for actions, and such requests "“construct"
the action. Conditions of "stimulation™ and "termination" are to

control requests.

Requests-

A request is a statement indicating an action to be performed.
This statement specifies that certain material objects are to
apply the action to produce other resultant objects.

Definition 3.5-1 An action-is an object whose value
consists of requests for more detailed

actions—possibly kaving values in the
hardware of the computational environment.

Definition 3.5-2 A simple action is denoted by a three-tuple
(m, a, 1),
where

m is the material- - required, expressed

53
as a list of objects,
a is the designator of the action,

r is the result produced by the action,
expressed as a list of objects.

Definition 3.5-3 A simple request for an action to be
performed on material producing results
is denoted by a three-tuple (m, a, 1),
where

B is the material to be used in the
process, expressed as a list of
objects,

a is the designator of the action,

r is the result- of the process, expressed
as a list of objects.

In the BNF form, the simple request is

<simple reguest> :: = <a> (<r>; <m>)

<a> =2: = <npame>
<r> 33 = (Kpame> (, <name>)* }*
<m> z: = {<name> (, <name>)* }*,

To illustrate +the use of a request, let us take amn action,
designated with diffvar, to calculate the result vy with the
second-order linear differential equation

(d2ysdx2) - (a + {1/b)) (dysdx) + (a/b) y = -{ac/b)
A function y = £(x) = -c + cl * exp(ax) + c2 * exp(x/b) with given
arbitrary real numbers ct1 and c2 can give us the y value. 2
request for the action, diffvar, is
diffvar (y; x, a, b, ¢, 4, c1, c2) with the material list (x, a,

b, c, 4, c1, c2) and the resultant list (y).

ordering

54

Within the model, the ordering of execution among requests is
governed by the principle of data drive. A request is eligible
for execution once with the availability of +the material. A
request can be initiated even though not all materials are
available. When its material is available, a request can start

execution.

Definition 3.5-4 Data drive is the principle for the
ordering of execution among simple
request.
A request is eligible for execution if
(1) the action is available,
(2) each requisite data object in the
material is complete and available,
and
(3) the user is authorized to use each
object involved.
Take five requests as examples:
pultiply (suml; el, c)
exp (etl; ax)
divide (bx; b, Xx)
multiply (ax; a, X)
and assume the objects 1in requests are available and complete,
including a, b, ¢ , x, exp, multiply, and divide, and the user has
authorization to use then. By the principle of data drive, the
ordering of execution is that the multiply to produce ax and the
divide to produce bx are immediately eligible for execution.
Next, the exp gets executed after the multiply produces the

resultant object, ax. Oonce both el and c are available, the

multiply to produce sumi, then, can be executed.

The ordering in the example, action diffvar, can be represented

in graphical form with lucidity. In Figure 3.5-1, the circular

55
nodes represent material objects ‘or resultant ones of the
requests. The rectangular nodes represent +the acticns to be
performed. There are tvwo kinds of arcs: one from an a;tion node
to a resultant object, the other from a material object %o an
action node. Therefore, through a request, axn action is linked

with its material and requests.

A probleam solver is allowed to specify the ordering of a set of
requests by the use of the data drive principle and a choice of
object designators. This process is called sequencing.

Definition 3.5-5 The sequencing of two requests
can be determined by the problem solver
through the appropriate selection of
material and result object names. Given

two requests (m1, a1, 1) and (m2, a2, £©2),
ifmtAr2=¢and m2 Ar1# ¢.

For example, two requests,
TEST (A, B, C; X, Y, Z)
CHANGE (P, Q ; S,T)
do not bhave an explicit execution order. If it is desired to
execute TEST first, an object can be created to produce
n AT £ ¢ .
TEST CHANGE
Chkoose an arbitrary object, called TEMP. T¥0 Tequests with the
purpose are shown below:
TEST (A, B, C; TEFP, X, Y, Z2)
CHANGE (P, Q, TEMP; S, T).
The Tegnest CHANGE cannot start execution until TEST produces

TEMP. The purpose of sequencing is accomplished.

negative

- b 4
bx ax
exp exp

negc

Pigure 3.5-1 Ordering of An Action, diffvar.

L

i

5€

57

The order of appearances of requests with a commomn local context

has no influence upon the order of execution.

Detailing

Thers is a way to define an action with material available to
produce results, called detailing. This process expresses an
action in detail as more computational particulars of a set of
requests. This set of reguests providing the computational

particulars of an action is called a request set.

If a simple action (mo, a0, 10 is detailed by a set of n
requests (mi, ai, ri}), i = 1,2,3,...,n,

then

=]
=]
0
Il &3
=]
Lo

n)
o]
10
e
nae
H
=

58

Thus, the detail of a simple action (mpo, a9, <ro) is denoted as

follows:

(an, an, rn)

e S e M B —
L]
L ppe—

The request set, (mi, ai, ri) for aa action (mo, ao, ro) is at one
level lower in the hierarchy of requests than the request (mg, ao,

ro) -

Construction-is the reverse of the detailing. It combines a

set of requests into an action to represent the set. Thas,

=
1o
]

nap
B
i
[

Il ap
H
s
)

In the hierarchy of requests, now, the constructed action is said

to be one level higher.

The construction of an action, diffvar, is pictured in Figure

3.5-2. 1Its execution order was givem in Figure 3.5-1.

59

diffvar (y:; x, a, b, ¢, 4, ci, c2)

-_— —_— ————— e e e e

multiply (ax; a, x) {ax<-—aex)

divide (bx; x, b) {bx<--x/b)

negative (negc; c) (negc<—- =-c)

b S — e Gma e S S T e M gy B G S M

|

l

i

|

i

i

{ ax
exp [(el; ax) { {e1<--e)

| x/b
exp (e2; bx) i (e2<--e)}

| ax
multiply (sumil; etl, cl) | (sumi<-——~clee)

{ X/b
multiply (sum2; e2, c2) | {(sum2<--c2ee)

i ax
add {y; sumil, sum2, neqc) | (y<—— =-ciclee

I x/b

+

+ Cc2ee)

Figure 3.5-2 A Construction of Diffvar from Requests
for Other Actionms.

Conditions

The execution of an action is dJdependent on four conditioms,
which may be null for some of then. Two of them govern the
eligibility for execution, called stimulations, appended to a
request and an action respectively. The other tvo are
terminations- appended to a request and an action to control their
termination of a request. A condition appended to a regquest is an
external copditien, and that to am action is an ipternal-

s o e s . .

condition.

Definition 3.5-6 A condition is a boolean expression which
may involve objects, literals, and logical
and/or relational operators.

€0

Definition 3.5-7 An action-is denoted by a five-tuple
{(si, m, a, r, ti) where m, a, and r are
as defined in Definition 3.5-2 and

si is an internal stimulation, if
null si = "true", and

ti is an intermnal termination, if
nall ti = vYfalse™.

Definition 3.5-8 A request is denoted by
a five-tuple (se, m, a, r, te) where
m, a, and r are previously defined in
Definition 3.5-3, and

se is an extermal stimulatiom, if
null se = "true%", and

te is an external termimation, if
null te = "false",

Definition 3.5-9 The effect of a request is a five-tuple
(s, m, a, r, t) where m, a, and r are
previously defined, and

e A si,

6]
]
0

The effect of a reguest (s, nm, a, r, t) is eligible for
execution when s is "true" and t is "false", based on the data
drive principle. A request is terminated vwhen (te v ti) is

Wtrue'.

A user in a Tequest may wish to override the 1internal

stimulation and termination of his external conditions. Thus, the

€1

conditions could be reduced from s to sg ard from t to te.

In the BNF form, the conditions are denoted by:

<stimulation> :: = <condition> :
<termipation> :: = : <conditiomn>

<condition> :: = [-<boolean expression>]
<boolean expression> :: = Many well-forned
boolean expression".

An example of the use of stinmulation is given. In Figure
3.5-3, an action, DIVIDE, has been desiqgnated with a denominator
An internal stimulation for DIVIDE is "x # 0 and x is a real
number®. If the user wishes the request to be eligible for
execution only with an inteqger denominator and after 7 pm, then

the external stimulation is "x € inteqer A time > 19%.

action [x#0 A x € real] : divide (z; x, ¥)

(]

request : [X € integer A time > 19] : divide (z; x, Y}

effect : [2 # 0 A x e real A x € integer A

time > 19 1 : divide (z; z, ¥)

Figure 3.5-3 Examples of Stimulation.

The next example is one of external +termination. The action
ADD ani SOUBTRACT have termination conditions, {sum)d and

(difference)d , to cause their requests to terminate when a value

of 'sum' acd that of tdifference' are available.

€2

ADD(sum; a, b) : [(sum)y]
SUBTRACT(difference; a, b) : [(difference)d 1]

In this chapter, simple objects and multi-object structures
have been used to represent information icvolved in examples of
students' data. Howvever, there is no methodology for creating
structure by a form within the abstract model for aggregating
objécts into a structure yet. In the next chapter, a form will be
developed by extracting the concept of cluster in Liskov's

Abstraction Data Type.

€3
CHAPTER 4

PROBLEMS AND EVALUATION OF THE UNGER MODEL

This chapter defines the problems with the Unger model and

evaluates its strengths and deficiencies.

.1 Strengths of the Onger model

The model puts its strengths in data abstraction, control
construct abstraction, concurrency, and the structured development
of problem solutions. The abstractions of data objects and of
control constructs are employed to present to the user. The model
attempts to permit use of abstractions without being concerned
with how they are implemented. Structured programming enhances
the reliability and understandability of progranms. To deal with
the complexity of problem solving, structured programming,

abstraction, and comcurrency can assist the user to accomplish it.

In this section, the strengths of the model are stated in four
categories: {1) data abstraction, (2} control and structured
programming, (3) concurrency and comparison witk conventional

prograaming languages, and (4) others.

4.1.1 Data Abstraction-

The abstraction of data provides the user with a capability of

defining data structures. Data are abstracted in a form whose

64
properties are known to the wuser but whose implementation details
are unknown. To encounter more complex cases of problem solving,
a more expressive structure to abstract data is provided in the

model.

1. The quality of a specification model is largely based on
the specification unit being specified [11]. If a specification
unit is too small, e.9., a person's name, then it cannot respond
as a useful concept. What is desired is a specification which is
big enough to correspond a thing in the reality to an abstraction

useful in problem solving.

All information involved in the solution of probleas is
represented in the model through the use of gbjects. An ohiect im
the model could be an algorithm, input data, or intermediate and
final results. Specifically, it can be a constant, a variable, a
collection, am action (i.e., a process), or a comprehensive
structure. While a specification can work higher +to an entity,

such as a file, much of the extraneocus detail can be eliminated.

2. Structures, formed from one or more objects, are used in
the model to represent information. It represents information in
one encompassing structure, and encourages structured programming
development. Through "objects® and “"structure® of objects,
properties of data useful in a concurrent programming environment

are provided. See also Section 4.1.3.

By the process of aggregation, a structure is created by
combining one or more objects. As in lLiskov's data abstraction,

the components of the objects composing the new structure are not

€5
available to the user, once the aggregation is defined. This
property not only supports structured programming in which
relevant detail is emphasized and irrelevant detail suppressed, it
also increases the portability of implementation of the model.
With development of structures, the modelling of information is

clearer.

3. Through the designator of an object, the naming convention,
the unique sequence and environmental identification is provided.
The chronological identites and sequence position specified by the
user indicate the time and order of object creation. The model
provides an instance for sequencing incarnations, and offers a

context for structured system identification.

4. Through the use of the 1longevity feature, the model
protects certain kinds of data from change ard access, such as
fixed and static objects. For an object with dynamic longevity,
the model also provides an instance to permit the system to record
its history by keeping incarnations. Once a need for retrieving a
specified incarnation of a dymamic object occurs, a mechanism is

available to trace it.

5. The model provides a mechanism to record the number of
identical copies of an object in the corporality component. Local
storage of data objects is encourageous in the model, but, if not
copiable, the objects can offer a very restricted form of global

storage.

66

4. 1.2 Control and_ Structured Programming

S ———

The purpose of structured programming is to enhance reliability
and understandability. A discipline that a problem is solved by
means of a process of successive decomposition is imposed in
structured programming. The problem-solver is concerned with
proving that his solution correctly solved the problenm. What
concerns him/her is the way his/her solution makes use of the
abstractions, but not any details of how those abstractions may be
realized (i.e., implemented in +the mnext 1lower level of the
hierarchy) . When he is satisfied with the correctness of his
solution, he turns his attention to the abstractions it uses [9].
Thus, structured programming is called as a problem solving
technique based on abstraction. In the model, structured
programming developments have provided mechanisms for the
abstraction of data objects as well as of control constructs and
of action constructs. Structured programeirng technique and data
abstraction concept, thus, can assist the users to deal with the

complexity of problem solving.

1. The model's action, detailing and aggregation (see
Detailing in Section 3.5), supports a structured and systematic
development of problem solutions. Detailing is a process
involving the replacement of an action by a set of actions
expressing more detail. Construction is a reverse process of
detailing (i.e., combining a set of requests into ar action to
represent the request set). In the hierarchy of requests, the
actions detailed in a request set for an action are said to be at

one level lower than the request (of the action). Conversely, the

67
action constructed from its request set is one level higher within

the hierarchy.

2. Modularization of action as a control construct is
supported by the structured programming. At an arbitrary level,
an action is detailed into actions which are known. At each level
of the detailing process, the sequencing of the actioms 1is
basically data driven and further controlled by explicitly stated

conditions.

3. "stractures" in the model, which are formed from one or
more objects, are obviously more complex than conventional
representation models. It is used to represent information in one
encompassing structure, and also encourages structured programming
development. In addition, the model can represent much

computational information within the "structures".

Any statement consists of nouns and verbs. In the model, the
nouns are names of objects and of structures; the verbs are the
requests which describe an action. let actions be termed as
“dynamic?" data and structures as "static" data. The critical
advantage in the model is that static information is not described
in the dynamic (action) environment, but it is to be transfered
into the static (structure) environment. . Such transference
results in two advantages:

(1) the dynamic environment of actiomns, which the user
must understand, is simplified, and

(2) the static environment of structures is expanded so as to
assimilate more programming requirements, but still with

ease of understandability.

€8

4. Even though all material of an action is not available, the
action can still be initiated in a controlled and non-destructive
vaye. Thus, in the model, the regquirement that data exist bhefore
execution is relaxed. By utilizing the concept of partialing, any
specified computation is allowed to proceed until the lack of at
least one material object causes it to be suspended temporarily.
As the requisite material becomes available, the execution would
be resumed from the point of suspension. This indicates the
property of concurrent process in the model, and to be discussed

in the next cateqgory.

Partialing is a construct allowing for partial computation on
imcomplete material. It allows an action to become eligible for
activation before all of its material exists. For example, this
construct would be helpful in a production envirconment where
subcomponents of the zresult can be computed from some of the
material. The material not necessary for eligibility
consideration for the action must be indicated in the model with
an underscore. Take an action, TOTAL, specifying partialing as an
example,

total {check_no, amount; pay, idcard, timecard, hrrate)
allows its regquests to start execution with requisite material:
"pay", "idcard"®, and "hrrate®", before "timecard" is available
{indicated by the underlining). Give another example of a request
which prohibits partialing as follows:

total (check_no, amount; pay, idcard, timecard, hrrate)

5. The execution control of an action is dependent wupon

conditions of stimulations and terminations. An advantage of

€9
conditions defined im the model is the flexibility in the
expression of boolean conditiomns. As previously defined imn
Section 3.5, a condition could be Yany vell-formed boolean
expression® which may involve obijects, literals, and logical

and /or relational operators.

6. The model provides a communication mechanism in the form of
the action. Through the use of parameters, communication between
the invoked and invoking environment is accomplished to avoid the
undesirable side effects resulting from the scope of name rules in

conventional languages.

An example of a piece written imn PASCAL is given to illustrate
the problem occurring from the scope of the binding. Consider
invocation

square (t)

in the context of

var t : integer;
function sqr (x : integer) : integer;
begin sgr := see end;
L J
®
L
var t : integer;
begin
t
t
end

sqr (t);
t

which is unsatisfactory for two reasons:

{1} There is a conflict between the occurrence of “t' in
the actual parameter and local identifier 't' of the
procedure definition body into which the actual
parameter is being substituted.

{2) There is a conflict between the occurrence of 'sqr!
in the procedure definition body and local identifier
'sqr' of the context into which the body is being

70

substituted [17].

By the way of communication in the Unger model, let us see how
such a problem can be avoided. For the parameters, the material
and the results, used during communication, the material of
requests are normally copied into local incarmations of the
material, and the results are used to create local incarnations.
Most communication of values occurs during stimulationm and
termination [18 1. If the objects used as actual parameters are
not available, then two situations might occur. First, if such an
unavailable object is used as material, it cannot be changed until
the request is terminated. Second, an object is being used as a
resultant object, the request cannot be initiated until all

references to that incarpation are completed (117.

The input (material) amnd output (result) correspond to actual
parameter and local parameter during the invocation in the example
written in PASCAL. Since there is a unique name for each object
in the model, this problem will not occur. The example of
"sguare" could be expressed in the model as an action

square(newt ; t) with unique names for "square, 'newt', and 't'.

4.1.3 Concurrency-

2 lanquage which allows the expression of concurrent problenm
solutions enhances a user's ability in problem-solving [18].
Under the influence of conventional programaing languages, many

programmers do not distingqguish sequential computation from

71
concurrent computation. A model possessing intrimsic concurrency
can provide an environment for users' thoughts to enhance

efficiency of the production.

1. The model defined and developed is intrinsically
concurrent, and, thus, it can enhance the creation of progranms
which utilize available hardware concurrency. Also, it may allow

the production of programs with increased efficiency.

The feature of 1intrinsic concurrency 1is requlated by the
control structure with data-drive principle. In the model, (1)
the allowance of eXxecution suspension, caused by incomplete
material, and (2) the dinitiation of an action without the
requirement of complete material permits more than one action,
whether eligible or not, to be initiated concurrently guided by
the conditons with data-drive control. This is same idea to
process synchronization as the monitor. Based on a mechanism
known as condition, a process can suspend ("delayed%) itself and
wait until the condition is resumed ("signaled") with execution
eligibility by some other process. For a sleeping process, it
will continue execution from the point it suspended itself once
becomring eligible [17) Intrinsically, the feature of concurrency

exists in the Unger model.

2. Although a conditioned, data-drive, intrinsically
concurrent model replaces the underlying sequencing mode for
conventional languages, sequential computation can be specified in
the model. A problem-solver can use sequencing, previously
defined 3in Section 3.5, by 1linearizing objects +to control an

action sequentially.

72

3. In order to deal with complex system involving concurrency,

a model which supports a concurrent thought process is encouraged.
Since many problems encountered have solutiomns involving
COnCUrrency, to allow expression of these solutions in an
intrinsically concurrent model could be more efficient and

clearer.

4. Conventional languages that current programmers use do not
have +the recognition of concurrency inherent imn a problem
solution. Therefore, programmers do not always recognize such a
property. The model provides a syntactic and semantic basis for
concurrency to be expressed, therefore the recognition can be

greatly encouraged.

B.1.4-0Others

1. The major importance of the model lies in its simplicity.
The model is uniform accross a span of uses, so the user just need
learn one set of syntactic and semantic rules. The ease to

express common computations is what the user desirably expects.

2. The model 1is described by a helpful notation. To
effectively develop and carefully evaluate the properties of any
model of computation, a precise notational system is required. 1In
the model, a mathematical notation employing such basic concepts
as sets, +tuples, mappings, and an extension of Backus-Naur From

was found most useful to be adopted [18].

The model does provide strengths lacking in the common

constructs of conventional model. Let us list the strengths of

73
the model as follows:
e Concurrent computations are intrinsically represented.

e Dne encompassing data structure is used.

Corditional computation is supported.

e Common computation is expressed in a natural fora.

The structured programming development is encouraged.

4.2 -Problems-with-the Onger Model:

In this section, several questions invoked during the study of
the Unger model are defined. Oon each question, different
viewpoints and ideas relative to the problem are proposed, but the
discussion of these will be detailed in Chapter 5. Not all
questions stated in the following are directly carved by the
problems unsolved in the model. However, a couple of them are
subjects existing in the literature of data base still in dispute,

such as Problem 1 and §.

Problem 1: What is "data" in a data model?

The dominant importance of data in the information system world
is reflected in the attention it receives particularly in
database. over the past decade, a topic of research activity in
programming language has been to explore the issues related to
data abstraction (i.e., abstract data types). However, it is a
fact that the notions about or meaning of data are still not
clearly understood. In the database world, much of the work has

concentrated om it.

A number of viewpoints have been presented in the literature of

74
database. First, Mealy gives a new view at data in his paper,
"Another Look at Data"™ [12], and he views "data maps" as what we
mean data in a data model. Second, Unger does define what is the
"data" existing in the model. In her model, data are represented
by objects and structures, and an existence function is used to
determine the existence of data. Third, Kent states that "data in
a system is what can be extracted rather than what is physically
stored" in "Data and Reality"™ [€]. The last view about data is
from Sundgren's Theory of Data Base [1€]. He defines data as "the
arrangements intentionally made by a person through a medium".
The concept of "existence" is also mentioned by these authors.

Among these viewpoints, there is a similar point.

Problem 2: There is no methodology for creating structures

in the Unger model.

In the Unger model, the body of a structure and the concept of
aggreqation has been completed, but a #form® to aggregate
composing objects into a structure is not defined. In order to
sketch out a "form®™ to accomplish it, the ideas in a couple of

helpful papers would be referred.

Beside keeping a portion of a strucutre from the Unger model, I
will extract additional viewpoints from the Liskov's "Abstract
Data Type"™ {9] and the algebraic specification. In Liskov's
paper, & construct is actually provided to create a structure
type, and it is called "operatiom cluster". There are four parts
in a cluster. Not all four parts are encouraged to be adopted,
but some good poimnts from +the algebraic specification replace the

undesired points in the Liskov's cluster. How the actual "form"

75
is to be created and the reason to adopt a number of points from

these papers will be detailed in next chapter.

Problem 3: Should an object which is a structure be allowed

to have a corporality?

An object is complete only if its compoments (d,a,r,c,v) exist
in the model, and the longevity of the corporality is the focus on
which we are going to work. Questions are raised: (1) does a
structure have longevity, or (2) do only the atomic elements have
longevity? If a structure does, a primciple or a rule is needed
to make the whole body of a structure exist in harmony with its
elements. The advantages and disadvantages to have a structure

or/and its elements with longevity would be discussed too.

Problem 4: How to avoid the incomnsistency on the same piece

of data represented in different systeas?

As data exist in more than one system or model or data base for
sharing uses, it is expected that they are stored in a way with
sane value. The inconsistency of the data in two or many systems
is to be avoided. For any two systems, we wish an object in one
system to have a unique object in the other. In addition, we may
want to make sure that anything happening to the object in the
first system also does in the second. To proceed with this
guestion, some ideas from Mealy's work are used. How do we deal
with inconsistency once it occurs? A rule is qgiven for solving
the problem, but it may not be an idealistic solution. He eXpect
as the Chinese proverb that "To throw a brick today and to get a

gem in return tomorrow" from the readers to proceed in the fature

76

work.

Problem 5: There is no means to indicate as primitive object.
Ap object, based on a primitive, is demnoted by
a Greek omega, @ .

The Greek letter, § , stands for a primitive at the machine
level with coding and compacting in a specific computer systen.
The separation of consideration from the logical aspect from the
physical aspect has been emphasized in the data abstraction and in
data independence of data base literature. The representation of

data, including the format, coding, location, and access methods,

is not sncouraged to be what the user pays attention.

In this chapter, the strengths of +the Unger model are stated,
and five problems are defined. For these five questions, not all
of them are raised due to a deficiency of the model. The imsights

into the solutions to some problems will be given in Chapter 5.

77
CHAPTER 5

INSIGHTS INTO SOME SOLUTIONS TO THE PROBLEMS

Five problems were defired in Chapter 4. In this chkapter, for
each problem, one or more points of different views are presented.
Even if some of the problems cannot be solved in this paper, it is
expected that the contents covered in the chapter will help the
readers with future work. Several rules are proposed to attempt

to solve some of the probleas.

5.1 Problem 1:_¥hat is "data"_in a_data_ model?

A data model describes not only the organization of data, but
also the operations to be made upon the data. We expect such a
model to establish certain correspondences between constructs

inside the data model and things in the real world. Ideally, it

would be a one-to-one correspondence.

What, then, is data which is modelled? To begin with the
discussion on this question, let us refer the viewpoints presented
in the literature of data base area. One is from Mealy's "Another
Look at Data® [12] which was taken as a prologue in this paper.
The other three are from Unger's paper [18], from Kent's "Data and

Reality" [6], and from Sundgren's Theory of Data Bases [16].

Healy called data as "fragments of a theory of the real world".
According to the mature of the theory, data are supposed to record

a set of facts about some set of entities, either real or

78
abstract [12]. With choices of data maps, entities, and values,

data maps are regarded as data in Mealy's view.

Thke constructs-inside a data model are not necessarily an
atomic value mapped from an arqument of an entity. That is vwhy
the data map in Mealy's paper admits structural data maps, which
have thas entity set as a subset of the value set. There are a
set of entities, E, a set of values, ¥V, and a data-map set, D,
whose members are maps of the form:

 : E—>V
vhich are restricted to be functions (or single-valued maps). The
structural data map is defined as of the form:

6 : E1 --> EZ.
The value set, E2, night be considered to be constructed from
other sets. It is implicitly assumed that E2 is a subset of ¥V to
admit structural data maps. The set of elements of V exclusive of
element% of E2 is

W=7V - E2.
Thus, all data maps can be defined in terms of a non-structural
map t applied +o a structural map o. In the following diagranm,
let u be an arbitrary data map and ¢ be the identity map of W into
Vv (to point merely out that W is a subset of V). A fact shown in
the diagram is that, to start with an element of E, the same value
can be obtained by applying the map u as by applying ¢, T, and !¢

in order.

79
M

->

E v
6\{]L
E W

Wky are data maps instead of their elements regarded as data?

= >
T

in Mealy's viewpoints, neither values por entities can be
redefinad or changed during data processing. For example, the
value set cannot be redefined, if it is %the integers. ¥hat
actually happens, while data are processed, 1is actions on data
maps. Suppose that pu(e) = v. The ordered pair (e,v) is a member
of the set pu. To redefine the value of the data item (e,v) is to
redefine u by removing that pair from the data map set g, and then

adding a new pair (e,v').

Toward the question of what exists in a system, Mealy discards
dispute of "existence with perceiving®, In the literature of
database, some have claimed that the existence of things is
independent of whether anyone perceived them properly or not; some
claimed that there is no existence without being perceived. HMealy
thinks that a data base never records all of the facts about a
group of entities; a fact may be recorded with complete or less
accuracy. Data do not necessarily represent facts with utter
acCuracy. The subject of existence of data in a model is covered

in Unger's and Kent's too.

KEent said that data in a model 1is that which can be extracted,
rather than that which is physically stored. Some information is

actually described to the model, e.g., the names of the students

80
in a department. However, some have to be deduced through
computation or from the other actually existing data, e.g., the
total of students in the department. Some examples of deduced
data are given as follows:

(1) Manually, the number of all students car be counted
simply asking for the names.

(2) Declarations for the information system define a count
field as a part of the data needed by your application.
The field is never stored. When an application retrieves
a department record, the system counts the number of
students and inserts the count into the record deduced
for the application. .

(3) If there is an interface with a query processor, one can
ask it how many students are in the department. The query
processor extracts the list of names, and counts the total

number for the answer.

Definitely, the first example has a security problem. Security is

not considered at this point.

As stated by FKent, a model is said to be a set of named
functions. Each function is capable of returning a certain value
when invoked with a certain argument. After an update is done to
modify the function, it will subsequently return a different value
for the previous arqument. The implementation of the functions is
transparent to the user, and it might involve simple access to
stored data, complex traversals of data structures (e.q.,

pointers), or computations. Thus, the data content of the data

81
model is defined by this set of functiomns, rather than in terms of

physically stored data.

Unger- models information in "data object® or "structure" of
objects. The value of an object represents the informational unit
for which the entire object was created. It might be an atomic
value like a number, a complex of values obtained through the use
of spatial coordinates, a collection of objects (structure} like a

file, or the detail of an action, compatible with the attribute.

In terms of single-valued mappings, five components (d,a,r.c,v)
of an object are exXpressed. An eXxistence function having a
boolean value 1is used to determine whether a component has been
bound. An object is complete in the model after all components
are bound with the true value of the existence function for all
conponents. In most instances, the binding can be transparent to

the user since it can be automatically supplied by the systen.

sundgren defines "data™ as the "arrangement made intentionally
by a person®. The complete definition is extracted from his

work [1€] as follows:

Definition 4~1. If a person intentionally arranges
one piece of reality to represent
another, we shall call the former
arrangement data, we shall say that
the arranged piece of reality is
a medium, which 1is used for
storing the data.

In most cases, data represent primarily a person's knowledge

about reality rather than the medium for storing the data. On the

82
basis of the person's perceived knowledge, the data registration
is such as instant automatic cameras, max/min thermometers,
recorders, and etc. So, the property of being data need not
depend on the cooperation of a human mind in the regit istratiom
process, but it is decided by the arrangement intentionally made
for the registration. The stored data are called the data
contents of the accessible memory. If stored data exist without
accesses Or processes upon it, then, the data content would not be

of much use.

Although different authors have their own words to defire what
data are, they do try to convey a mutual point, explicitly or
implicitly. Data are what can be extracted from a system rather
than what are physically stored. Thus, thke dimension of data is
expanded to include the intermediate or final result through a
computation, a procedure, an operation, an algorithm, a data
traversal, a pointer, or a data value obtained from the spatial
coordinate address. As to Mealy's view, even he puts emphasis on
"data maps" instead of attributes and values, however, it still
conveys the same idea. The value mapped from the attribute might
not be actually stored but be able to be reached through a certain
kind of function {i.e., mapping). As to the Unger model, the idea
is not explicitly stated, but the encompassing data structure of
"objects®", "structures", and "actions" implicitly supports the
idea. A data object might be an atomic value, an algorithm, a
comprehensive value obtained through a spatial coordinate, a
structure, or action({s). As to Sundgren's definition of data, it
emphasizes the different categories of data encountered in the

real world, such as tape, photograph, slide, or temperature.

83
However, Sundgren does state that data is not of much use if there
are no processes Or accesses upon it. For a piece of data, if it
is just stored in a system as a piece of Jjunk in an old, old
grandma's basement without being extracted for use, then, it is
even not necessary to be stored as data. This viewpoimnt is a
little different from the Kent's idea. Fith the statement by
Kent, the conclusion on "what data is" is made as "data is with
what can be extracted rather than with what 1is physically stored

ir the system™.

5.2 Problem 2: There-is-no-methodology for creating structures.

In the Unger model, there is no overt methodology for creating
structures, so a form for aggregating data objects into a

structure is created.

In liskov's paper, the data abstraction comprises a group of
related functions or operations that act upon a particular class
of objects with the constraint that the behaviour of the objects
can be observed only by applications of these operatioms. A new
linquistic construct, the operation cluster, was introduced to
provide programming language support for abstract data types. The
cluster contains prograaming code which implements each of the
characterizing operations of a data type (i.e., structure in the

Unger model), called operation defimition.

The cluster contains four parts: cluster interface, object
representation, object creation, and operations. See Figure 2.2

in Chapter 2 for the example of a cluster. The cluster interface

84
defines the néne of the cluster, the parameters required to create
an instance of the cluster, and a list of the operations defining
the type, €.9.,

array: cluster (element_type : type)
is delete, add, change
Comparing with structure prototype in the Unger model, the
contents covered in both methodologies are mutual. Something
lacked in the Unger model is a "form" to fullfil the aggregating
activity. Reviewing the detail of the remaining three parts of

the cluster, it is helpful to render some of them into the model.

Whereas, the algebraic specification with more expressive power
on the operations' effects by axioms is desirable to be referred
rather than the code-oriented operation definitions. As stated in
detail in Chapter 2, this approach is strongly recommended for
several reasons. In the DECLARE portion, the operations allowed
to manipulate a data type are single-valued mappings without side
effects. It uses the axioms within the FOR-ALL-END block to
describe the semantics of the operations. With the recursion,
these axioms could be interpreted easier than as they look. See
several examples from Figure 2.3 to 2.6 1in Chapter 2 for

illustration of this technique.

To illustrate the preferrence toward the algebraic
specification over the coding-style operation definition in
Liskov's, two examples of the stack, in Figqure 2.2 and 2.3 by
different methodologies, are used again. Consider the operations
PUSH and POP which are single-valued mapping,

POSH(stack, item) —-—-> stack

85

POP (stack) ---> stack
define the output value, stack object, in terms of the input

values, an integer and/or a stack object. The object

representation in the cluster is

rep- (type_param : type) = (tp : integer;
stk : arrayl 1.. Jof

type_paranm;)

Written in PASCAL, a typical stack structure might be

type stack = record
top : integer;

data : array[1..100] of integer
end

and then the meaning of
t := POSH(s, 1)

could be stated in lLiskov's operation definition as follows:

push: OPERATION (s : REP, v: s.e_type);

S.tp 2= s.tp + 13
s.stk [s.tp] 2= v;
RETURN;

END

A critic is that the operation definition does not describe the
concept of stacklike behaviour, but specifies wmuch of the

extraneous detail. For example, the concept that POP returns the

86
value most recently pushed on the stack can only be inferred from
this detail. This detail of the operation definition is
undesirable for two reasons ({11]. First, the inventor of the
concept must get involved in the detail which 1is really
implementation information, rather than stating the concept
directly. Second, the definitions of PUSH and POP are not
independent. A change in the definition of one is almost certain
to lead to a change in that of the other. In addition to being
related through the structure for stack object, the definitions of
PUSH and POP are expected to be related in the interpretation of
the structure. Instead of pointing +to the first available slot,
the selector "topY points to the topmost piece of data 1in the

stack.

It is not necessary to describe the individual operation
separately. Instead, the effects of the operations can be
described in terms of one another, as axioms describe the
semantics of operations in the algebraic specification. The
effect of POP might be defined in terms of PUSH by

POP(PUSH(s, 1)) = s

which states that POP returns the item most recently pushed.

The prospective form would adopt the Liskov's object interface,
and object representationm, and also the axioms of operations in
algebraic specification is preferred to replace the operation
definition and object creation to describe the semantics of the

operations.

By the BNF notation, a form to aggregate objects into a

structure is given as follows, called NEW FORM:

87
< struct_name > : structure (<name> : type) -
is- <op_des>*

rep ({ <name> : type) = (<type_definition>+) -
operation-

<operation>*
effect <title>?

<effect>*

end.

<op_des> :: = <pname> .-

<type definition> :: = <naRme> <type> ;

<type> :: = boolean ! integer ! real ! <struct_type>
<operation> :: = <op_name> (<imner_op>) --> <value_op>
<value_op> :: = <boolean> ! <struct_name> ! <name> ! {undefined}
<inner_eop> :: = <struct_pame> ! <anull> ! <name>

<effect> :: = <op_name> (<param>) = <value>

<effect> ! <name> <names>

<param> ::
<names> :: = L -<phames>+

<boolean> ! <struct_name> ! <name> ! undefined

<value> :z:

<boolean> :: = true ! false

{ for all <assign>+)

<title> ::
<assign> :: = <name> <-- <name> ,

<symbol _string>? :: = “<symbol_string> can occur 0 or 1 times."

Figure 5.1 NEW FORM for Structure's Aggregation.

Let us create an instance of a structure based on the "fora"

88
above. Previously, an example of a stack had been taken in many
approaches, and it is taken as an example for illustration in

Figqure 5.2.

Stack :_stucture (material_type : type)

is CREATE, ISNEWSTACK, TOP, PUSH, POP

rep (material : type) = (max : integer;
field : arravli 1..max]

of material:)

operation-
CREATE() ——-> stack
ISNEWSTACK (stack) —-> boolean
TOP (stack) —--——> material U fundefined}
PUSH (stack) —-> stack
POP(stack) ——> stack

effect (for all s <-- stack; m <-- material)
ISNEWSTACK (CREATE) = true
ISNEWSTACK (PUSH(s,m)) = false
POP (CREATE) = CREATE
POP(PUSH(s,mn)) = s
TOP (CREATE) = undefined

TOP(PUSH(s,mn)) = n

Figure 5.2. An Example by Using NEW FORHM
for Aggregating A Structure.

The operation definition in a cluster is not used in NEW FORM.

89
Whereas, if it is persued for any specific reasons, it is possible
to append it to the effect part as implementation portion for the
structure type. If there is any hidden operation in the operatiom-
part, an asterik ('#*!'} is appended prior to the operation name to

denote the difference from the regular operatioas.

5:3-Problem 3: sShould an object- which-is-a structure be allowed to-

As stated in Definitiom 5 in Chapter 3, a structure defined in
the Unger model is o = (d,a,r,c,v) composing of n objects oi-=
(di,ai,ri,ci,vi), 1 £ i £ n. A structure does have information of
corporality included in the model, but the relationship with its
object components oi has not been discussed. Before each object
component oi is imrvoked to join the others into a structure, it
itself must be complete with existence of five components
(di,ai,ri,ci,vi). once the agqregation is done, the five
components of each object which composes the new structure are not
available any more, based on the concept of abstraction. He
expect any characteristic of these component objects is not to be
violated or destroyed or conflicted after it is wused in a new
structuore. Thus, let us take a number of situations in which the

relation between a structure and its objects might have.

The longevity information of a structure has not beern discussed
overtly in the Unger model. As to the longevity of each object in
a structure, since an object must have existed before defining a
structure, the object's longevity could be considered as either

effective or ipn-effective under certain cornditionmns, vithin the

30
structure. If the longevity of an object within the structure
becomes in-effective under certain conditions, its longevity will
be resumed once it is released out of the structure as its own
individual. What "in-effective under certain conditions" means

will be defined in Case 3.

Three possible situations occurring between a structure and its
objects are set up in order to find out (1) whether a structure
has an overt longevity, and (2 if it does, with what
approximately workable principle or rule, the father-son

relationship can be imn harmony.

case | structure | object
1 | no | effective
2 | yes | effective

—————— ————— P —— ——

3 | yes | in-effective (under conditions)

91

Case _1: The Structure is intentionally designed to satisfy more
complex data, and it supports the development of structured
programming. The purpose of structured programming is to enhance
Teliability and understandability. If a structure in which more
than one object exists does not have longevity specified, then
there is no protection on the structure as a whole to allow

change. Thus, this case is not desirable.

Case 2: If a structure has a longevity information available
and its objects have their longevity information effective, then a
rule is needed to allow these two levels to coexist without any
loss or violation or conflict. Before a rule suitable for this
case is stated, let us review four categories of longevity which

will be used in the following.

Let the rank of longevity be ascending in parallel with the
order of ability to allow change. For a structure, the longevity
could be one of three categories except fizxed. An object with
fixed longevity exists prior to the existence of the context in
which it is used, such as alpha—-numeric alphabets. A structure
would not have a case of fixed kind for its creation within the
system, because a structure is created by a user while utilizing
the systen. So, the category of longevity for a structure would
be static, dynamic, or fluid. The rank order of the three
longevities is static, dynamic, and fluid in an ascending

sequence.

Consider a rule to be called RULE 1 for Case 2. Assume a
structure called FILE containing objects of type RECORD, Ri.

#hile observing RECORDs as a structure in the hierarchy, the

92
structure BRECORD has element(s), Ei, as its components with their

own type(s).

RULE 1. The longevity of a structure must not be less
(nore or equivalently) restrictive than any
composing objects. (i.e., a structure has

lover or equal rank to its components.)

Three examples with different longevities are depicted to view the
possible longevity set of its components under RULE 1 are stated

in Figure 5.3.

If Case 2 is chosen to solve the problem, then it is expected
that the longevity of a structure would not violate the longevity
of any component obiject. The longevity of a structure level must
be more restrictive than its immediate lower level, and so on down
to the innermost level. Take an example for clearer illustration.
Suppose there is a structure composing objects o1, o2, and o3. If
ol is dynamic, then the structure cannot be fluid, but with the
choice of static or dynamic. As we know about the dynamic object,
an object which is dynamic has incarnation record generated as any
change of its value occurs. If the structure is allowed to have
less restrictive longevity than ol, the characteristic of ol will
certainly be violated. Just as the same philosophy as the
construct of pyramid or hierarchy, the toppest level is the most

restrictive with the smallest range.

In Figure 5.3, a nested structure with FILE structure, RECORD

structure, and ELEMENTs 1is given. And three categories of

93

longevity on ELEMENT assigned one at a time lead to different

possible sets of longevity for each RECORD (as a component of

FILE) and for the FILE.

{n

(2

(3)

If an ELEMENT, Ei, is static, then its structure Ri-
has only one choice of longevity based on RULE 1,
that is static. Take any single RECORD, Ri, as

a composing object next. Since it must be static,
ELEMENT Ei is static too, without alternative choice.
If ELEMENT is dynamic, then Ri could be (a) dynamic
or (b) static. In the case of (a) dynamic, FILE may
be dynamic or static. 1In case (b) static, FILE

must be static.

If ELEMENT is fluid, then Ri could be (a) fluid, (b)
dynamic, or (c) static according to ROLE 1. W®hen Ri-
is (a) fluid, FILE can be fluid, dynamic, or static.
When Ri is (b) dynamic, FILE can only be either
dynamic or static by Rule 1. If Ri-is static,

then FILE has to be static.

(V=)
&=

—-— —— e —— —— — —— ———— —— —— -

—— -

Obiject- Longevity
{ ELEMENT
]l Ei = static = dynamic = fluid
i f——==—= - -
| RECORD (€ {static} € f{dynamic V static})j e {fluid
| Bi Vv dynamicV static}
l—_—— p— —— — - - — T ————— —— — ——
i € { fluid,
| FILE € {static} | &€ {dynamic,static} dynamic,static}
| Vv {static} Vv{dyramic,static}
| Vi{static}
|
+--- — - ———. — ——— s S e S — o s S ———— i i

o e B v G S e G ——

Figure 5.3. Sets of Longevity of A Structure Example
Based on RULE 1.

After viewing the possible longevitry for a hierarchy of a
structure based on RULE 1 in Pigure 5.3, let us take an example to
see how the rule works on a nested structure FILE-RECORD-ELEMENT
in Fiqure 5.4.. Since the simplest level was created earliest,
assume that there are El, 22, E3, E4, and E5 to be invoked to
aggregate two occurrences of a structure, R1 and R2. Suppose E1
is dynamic, and E2 is fluid. Thus, R! composing E1 and E2 must be
dynamic or static. suppose E3 is static, and E4 and ES are both
dynamic. Then, BR2 has to be static. Expanding to next higher
level, we have a structure FILE composing R1 and R2. Since R1 is
dynamic and R2 static, the FILE has exactly one choice, that is

static.

25

FILE e m————e—e———=3 Static
RECORD
R1 - - -—=> dynanic or static
ELEMENT
E1 < - dynanmic
E2 < fluid
R2 -- -——-—> static
E3 < static
Bl < - dynamic
ES < -— dynamic

Figure 5.4. An Example of A Nested Structure
on Case 2 by RULE 1.

Take an example in the real woxrld which follows ROLE 1. In
Section 3.7, the seventh object called LOCAL_ADDR is a structure
with three string-typed components. The £irst component is
istreet with number™ with dynamic longevity. The second is "city
of state with zip-code™ and has dyrnamic longevity. The third one
is "country"” with fixed longevity and value "U.S.2.". If by RULE
1, the structure LOCAL_ADDR has to be static, since the third
component is static. However, in normal cases, LOCAL_ADDR would
be expected to be dymamic while being used. ROLE 1 results in

linitation of occurring to some cases illustrated as the example.

The advantage to bhave the structure with a longevity value is
the future need of the structure to be used as a component of

another structure at upper level. Then, the current structure

96
would be wused as a component. Since any object to compose a
structure must be complete prior to aggregatiom, it is not
eligible if the current structure object does not have longevity

available. S0, a corporality for a structure is necessary.

The disadvantage is that ROULE 1 would finally limit the outmost
level in the structure hierarchy to be nearly always the lowest
rank. The only instance +that the outmost level, CaGey a
structure, does not have longevity static is when none of the
components of a structure has a static longevity inm. Since the
inner-most components are defined the earliest, the longevity of a
structure cannot affect its components +to follow the rule any
more, as it is created for needs. Consider an example of a record
R2 composing three elements E3, E4, and E5. Suppose the longevity
for R2 is dynamic, and E3 is dynamic, EU4 is static, and ES is
fluid. According to RULE 1, this example is not allowable,
because E4 has lower rank tham R2's rank. If we do follow RULE 1
to organize the structure hierarchy, then it is expected that
almost all structures would be forced to be static {i.e., the
lowest rank). It would turm out that most occurrences of
structures are limited and forced to be static, composing of all
static components down to the inner-most level, for information

like historical event with eternally fixed binding.

Case 3: Consider this case that a structure has a determined
longevity and the longecity of its component(s) would become in-
effective under certain conditions. It is important not to
consider components simply be in-effective but "with certain

condition (s) ". If the restrictive control of change upon an

97
object becomes in-effective after the object is called into a
structure, the origimal properties of the object might be
destroysd by any change. If as a component object 1is released
from the calling structure, the object, which became in-effective
and converted within its calling structure, can resume with its
pre-calling identity of longevity to exist as what it was
originally. Therefore, the originality of the object could be

remained.

In Ccase 1 and Case 2, component objects are effective within a
structure, to consider possibly more flexible alternative on
longevity, the longevity of any one of these objects is allowed to
become in-effective only with certain conditioms. To prevent from
the violation om its originality, a mechanism for tracing the
originality will be imncluded in NEW RULE. Thus, the consideration
of losing the essence of an object can be released. What "in-
effective with certain conditions" means is that any component
object would temporarily release its longevity binding for the
purpose of cooperating with a calling structure, but it is very
important to allow the temporary binding-release under certain
conditions. What these conditions are will be presented in NEW
ROLE later. The importance of these conditions is (1) to avoid
the unconditional over-release of the longevity of a component
object, and only the objects which are needed to become in-
effective can have such a release, (2} %o 1lead the in-effctive
objects to be converted in a fashion by which the pre-calling
status of the objects can be traced back by a tracing mechanisn.
The details about how conditiomns, conversion, and tracing

mechanism work between a structure and its components will be

stated in ¥EW ROLE.

A new rule is

hierarchy. Let it

NEW RULE:

98

needed for Case 3 +to establish a strucutre

be named as REW ROLE.

When an object is summoned (or called)} to
be a component for a new structure, a new
incarnation of sequence number would be

initialized to be zero, and the previous

sequence number is stored.

#ithin the structure, each component

follows the rules that,

(1) if its longevity is less restrictive
restrictive than or eqgual to its
structure's, convert its lomnbevity

to the structuret's,

(2) if its longevity is more restrictive
than the structure's, convert it to

dynamic whatever it is, and

(3) a special case is to convert the object
to dynamic for storing incarnatioms, if
both the object and its structure are

fluid.

Once the object is returned out of its
structure to its own existence, its

pre-called originality would be traced

99
back without any change by the following

rules,

(a) if its structure is static, then
the object would be returned with the

current incarnation d.0,

(b) if its structure is dypamic, then
the object would be traced by the previous
incarnation as d.-n, wvhere n is its sequence
number, and the current incarnation within

the structure is thrown away, and

(c) if its structure is fluid, then the

object would be returned with the
incarnation d4.-n, where n is the sequence

number of the object.

Note: By the rule, a component object which
is static would be allowed to change
its value within a structure. Howvwever,
it will still trace its pre-calling
identity by the mechanism, incarnation
record, provided in the rule. Thus,
the static object will not lose its
identity even if there is any value
change on it after being called into

a structure.

100
An example following NEW RULE is given in Figure 5.5, as follows,

incarnation
Ei- dynaric ~ _ > Ei
Ei+1 static
Ei+2 fluid
A1 <-— dynamic
E1l dynamic {by NEW RULE(1))

E2 statte |=-—==p--=> dynamic (by NEW¥ RULE(2))

E3 £iuzd > dynanic

(by NEW RULE(1))

101
R2 <--- static

EY dynafte| —=-—f——=-=—> static (by NEW RULE(1))
ES static {by NEW RULE(1))
E6 £fiuid -==> static (by NER RULE(1))

R3 <-—— fluid

E7 statie | —+——=-=>dynamic (by HEW RULE(2))

E8 dynamic {by NEW RULE(2})

E9 £}g+d >dynamic (by NEW ROULE(3))

102
FILE <-~- fluid

R1 dynamic {by NEW RULE(2))

B2 statte | ~——4-———--> dynamic (by NEW RULE{2))

R3 £3uié > dynamic (by NEW RULE{3))

Figure 5.5. An Example of A Structure on Case
3 by Using NEW RUOLE.

With the three cases and rules proposed above, the problem to make
structure reliably coezist with its objects in harmony is supplied

with a possible solution in NEW RULE.

5.4 Problem 4: How to avoid the inconsistency on the same piece of -

data represented in different systems?

p——- — ——

To establish consistency of data in two systems, S1 and S2, vwe
wish for an object in S1 to have a unique object in 52, and vice
versa. It would be a one~to—-one onto mapping between two systems.

Besides, if we can insure that anything happening in one system

103
also does 1in the other, the consistency of the same object in

different systems would be accomplished.

Consider a general systemr composing of a four-tuple of objects,
values, data maps, and procedures [121].

Let

S1 (g1, vi, D1, P1)
and

s2 = (B2, V2, D2, P2).
Further, let 7 be any procedure in any procedure ir P11, mapping D!
into a new set of data maps D1, and let P be a system map from S1
into S2:

p
D1 ===—=====> D2

7l J, 72

B e 2
p

Representations are equivalent onrly when system maps are one-
+o-one onrto and commute with the procedures. A one-to-one onto
map pairs each element of D1 with a unique element of D2, and vice
VersSa. If (1) P is one-to-one onto and (2) Pw1 = P72, thea an
object could consistently exist in two systems. Suppose P is one-

to-one onto, and the inconsistency occurs if the second condition

104
fails (i.e., M # w2). Since, in practice, the condition that P
is not omne-to-omne onto could frequently be prevented [12], the

question left is how to find w2 to best present wi.

An example of real number is given in the following, vwhich
illustrates why p may fail to be one—to-ore onto. Usually, the
reason it occurs is that the sets V2 and V1 have different sizes.
In the case of machine representation of the real numbers, only
ratiocal numbers may be represented with complete accuracy on a
machine, and the common floating-scale representations can
represent only a finite number of rationals at that. Since in our
scope of problem—-solving the situation +that the one-to-one onto
mapping fails does not occur frequently, the nost important

condition is the second condition, 71 # w2.

Consider how to conquer the problem if the object was not
represented consistently in two systems. Assume the paycheck
information of Mr. So—-and-So had been recorded in two systems 351
and S2. A certain need is requested so as to have two values of
the sanme object imn two systenms, SALARY, be considered
simultaneously.. We found that the SALARY figures ic S1 and in S2
are inconsistent. St has $2,500 of type integer, but S2 contains
$2,500.00 of type real. The concern is to make them consistent.
It is supposed to have

M {SALARY } = u {SALARY }
So-and-So in 381 So—-and-So in S2.

105

However, the results in two systems are

————————

| u !
| SALARY = —————————- > wvalue i
I So—and-So |
| in S1 2,500 i
| T T S T T T T T T ST s T T T s e |
i in S2 2,500.00 |

———————— e

Taking the longevity and chronological identification into

consideration, let +the rule to solve this problem be <called as

RULE 4.

ROLE 4: In system Si and Sj, where i # j, an object
ol from Si and an object oj from S3j record
the same piece of information. If the value vi-
vj, then convert ome to be egqual to the other

according to the rules,

(1) if longevity 1li = static and 1j # static,
then vj is converted to be equal to vi, and

vice versa.

{2) if both oi and oj are static, then the
chronological identification ti and tj
are next alternation to consider. If ti
is farther than tj (e.g., 04-08-80 is farther

than 04-15-80), then convert vi to vij,

10¢

and vice versa, and

{3) if neither 1i nor 1j is static, then

follow the same rule in {2).

Considerations such as (1) whether the conversion would violate
the authorization of change, (2) whether the object after
conversion is a correct solution expected from the original users
and/or the current users, and (3) any other neglected guestions

are not considered.

5.5-Problem 5: Defimne in t

o
=
L.
0
‘_'.
0
It
lo

[=7)
[{}]

lo
]

based on-a primitive, demote

The Greek omega, £ , which appeared in a couple of examples of
objects in Section 3.3, stands for a primitive at the machire
level with the coding and compacting in a specific computer
system. Since the representation of coding, format, locatiom,and
access method might vary over time and/or from an environment to
another environment, it allows the users to ignore this level of
representation and to concentrate on other details more

immediately relevant.

Ir the conventional data environment, user {(both desigrer and
programmer] have to know answers to the following questions before
manipulating the data:

What is its format?

What is it located?

107

How is it accessed?
It turns out to be a problem that, as the needs of the enterprise
change, the format of the data might change. As a result, a user
must spend an increasing percentage of his time in maintenance and
updating. The users should be oriented toward +the information
content of the data, rather than being concerned with details of

representation and location [1].

The concept of abstract data types encourages the separation of
the abstraction of data object from its implementation. The user
of an abstract data type only concerns himself with the behavioral
semantics of the type: what meaningful operations can be applied
to objects of the type. Irrelevant detail of the internal

representation and structure of the type is suppressed.

During the design phase, the consideration of physical aspect
is suggested to be neglected by the user. Osually, a data base
will be put into execution long after the design phase.
Therefore, it is not efficient to comnsider the machine level at
this phase. It should also be mentioned that the principle of
abstraction has several obvious similarities to the concept of
data independence in data bases [4]. Both provide the separation
of logical view from the implementation. If any change occurs to
the system, the specification will hopefully not be impacted by

the change.

As to the definition of an object, should the representation
component be neglected as a pull in the model or be denoted as a
systen-dependent primitive at machine level or simply be deleted

from the model? If this component is omitted, would tkhe model be

108

complete as before and simpler?

In this chapter, five problems are presented but not completely
solved. The purpose of this chapter was to browse through some
related viewpoints in the articles, and to encourage the future
efforts. Some ideas and possible solutions are raised by the
author. Within several cases and a number of runles designed for

the problems, some defects might be criticized.

109

CHAPTER 6

SUMMARY

It becomes clear that it is impossible to find an optimum model
of data capable of satisfying all the needs of all users of all
kinds of information systems [2]. In the paper, a number of
existing data models were introduced. It has been found that
there is 1no such thing as the "simplest" and "best" data model.
Osing several criteria, amn attempt to evaluate the four models
will be made in this chapter. After studying these models, we
will discover that the concept of data abstraction and the
structured-programming concepts are frequently being contents of
the models. It is apparent that these concepts have dominated the
research of data for a long time.. In the last of the chapter, the
current status and future work on data abstraction which

dominantly influences data modelling will be stated.

€.1-Evaluation of t

o
[
&
]
o
’m

A modellirg technique to abstract data must satisfy a number of
desired properties if it is to be useful. There are six criteria
presented below to permit us to evaluate briefly the models being
covered in the paper. Consider the 1list of requirements for a

data modelling as follows:

1. Easy to comprehend.

4.

110
A model (or a specification technique) needs to be easy to
read and to understand for all those people vwho work with the
notation being used with a minimal difficulty. Properties of
specifications which determine understandability are size of

2 unit and lucidity.
Easy to construct.

Ease of construction means, first, the distance of
understandability between concepts in the data model and
concepts in the mental model of the users is minimal [13].

The second facet means the difficulty of constructing a

specification.
Formal.

A model should be written in a notatior which is
mathematically sound. It must consist of a formally
definable set of allowable expressions. Thus, a thing (real
or abstract) in the real world can be assigned a "meaning"
by a semantic mapping" [15]. There are two important
aspects to formalization: first, a model must fully define
the syntax and semantics of the structure or contents written
in the model. Second, the notation must provide the
development of methodologies for proving the correctness of

use of data abstraction.
Minimality.

A model only describes the relevant details and nothing more.

The details which are of interest must be described precisely

111
and require as little extraneous information as possible.
For example, a model must include what operations a data unit
(an object or a structure) should perform, but 1little or

nothing about how the operation is performed.

5. Wide range of applicability.

Bach specification methodology can describe a class of
associated concepts in a straighitforward fashion. As to the
concepts outside of the class, they may be defined but
possibly with difficulty. Thus, a methodology is more useful

if the class of comncepts is larger [11].

€. Correctness.

If a model does not provide correctness, then its other
properties have no meaning since vwe cannot rely on it.
The proof can be carried out as the modules are developed,

rather than waiting for the entire model to be created.

By means of these criteria stated above, let us review and
evaluate four models introduced previously in the paper. The
evaluation on the models is made as the order they vwere
introduced: (1) HMealy's theoretical model, (2} Liskov's data

model, (3) the Unger model, and (4#) algebraic specification.

€.1.1 Evaluation on the Mealy's Model

The theoretical model proposed by Healy is a system of sets of
entities, values, data maps, and procedure maps. Since structaral

data map is introduced into the model, any data map which assigns

112
a value to an attribute of the entity can be defined as a
composition of a structural data map followed by a non-structural
map. The construction of any complex entity can be easily
accomplished through structural maps by using pointers. The model
adopts the notion of set and of mapping, and it is very
mathematically sound. The correctmness of proving, therefore, can
be easily achieved by such a mathematical formalization to assure
the mapping to be one-to-one onto. Implicitly, the operations of
an entity are defined through mapping. The model only includes
entities, values, data maps, and procedure maps. As to
minimality, it provides a minimal specification of data. on the
other Laad, such a | minimality hurts the criteria of
comprehensibility and the constructibility to the reality.
Categories of type of data, its organization, and representation
are described in data description, which is outside of the body of
the system (or model), and these categories are defined by
procedure maps. That is, data description is a specification of
the maps and the characteristics of the entity and value sets.
This model, which separates information about the entity and value
sets apart from the body of the system, does not offer readers
with ease of understanding. The structural data map can define
the data so complex as a result obtained through a computation, a
series of processes, or an algorithm, to make the range of

applicability be as wide as it covers.

€.1.2_Evaluation on_the Liskov's Model

In Liskov's model, the distinction between abstractions and

113
implementations permits a module to be decomposed, and, thus,
comprehension can be easier. A module might be a multi-procedure
module such as a single data base, i.e., a single procedure
conprising a number of invoking operations of data types.
Imposing upon the data abstractiorn concept and structured
programming technique, a reader can easily understand what a
module does rather than be concerned with how a module performs inm
detail. What a reader sees in a module is the module name with
any required operatioms or procedure name(s) at the outmost level
of the construction hierarchy. Therefore, one module at a time is
studied to determine that it implements its abstraction. The
study requires understanding the behaviour of the abstractions it
uses, but it is not necessary to understand the modules
implementing those abstractions. These modules can be studied
separately. One more advantage provided for the ease of reading
is the use of compound Dame of operation call, €eJe s
stack$push (s, t) . In the compound nane, the type-name prefix
ephances the understandability. The model allows the use of
different data types, and the prefix helps clear the possible
ambiguity. Besides, the operation call is clearly distinguished
from procedure call. The modularity makes a model be easier to
understand, to construct, and to prove correct. This model is
very programming-oriented, +thus the decomposition of the proof is
essential instead of mathematical proof. It permits the proof to
perforn on decomposing modules. Based upon the data abstraction
concept, the entire group of procedures as a module permits all
information about how these procedures are grouped and interact to

be hidden from other modules. The hiding leads to simpler

114
modelling. The minimality could be enhanced by this to a degdree.
Although the model is not in mathematical notation, it is still
not difficult to be formalized by the discipline of modularity. .
Without mathematical deduction or proof, the correctness can still
be assured through modularity. With the hierarchy and modularity
built higher and higher, the range of applicability could be wide.
There is a c¢ritic made on the operation definition code on the
operation cluster. Since a data specification should not be
viewed as describing the eventual implemented program but merely
as a means for understanding what the operation is to do [3], the
code part for defining operations of a data +type is not

reconmen ded.

6.1.3 Evaluation on_ the Unger Model-

Among the four models presented in the paper, the Unger model
provides the highest degree of comprehensibility for its
naturalness. Five components of an object cover most information
about a piece of data. Thus, the constructibility to the reality
is comparatively good. Some interesting properties uncovered in
many other techniques are collected into the wmodel, such as
spatial and time comnsideration, concurrency, corporality,
copiability, and etc. As to the constructibility to establish the
model, it is ranked high for the modularity feature. By using a
structure, detailing and construction of action, and control, a
module, if it is decomposable, can be decomposed into several
lower levels as a hierarchy. With the data abstraction concept,

the reader only has to know the closest 1level which is most

115
immediately relevant. For the same reason stated above, the
correctness can, therefore, be proved and assured much easier.
However, comparing with some techniques as algebraic specification
or Mealy's theoretical model, the minimality of the Unger model is
POOLET. It is a trade—off between minimality and
comprehensibility. The model is abundant with the descriptive
power on data, and the scope of data to be defined is broad, such
as simple value, algorithm, value obtained +through spatial
coordinate, action, or a collection of values. One major property
provided by the model is the concurrency, which increases its
range of applicability, since many problems encountered in the
real world have solutions involving concurrency. With respect to
formality, the model is mathematically sound. It is described by
a mathematical notation employing sets, tuples, mappings, and an
extension of the Backus-Naur form. Together with the properties
of modularity and control conditioms, the correctness of the model

can be proved with ease.

6.1.4-Evaluation-on the- Algebraic: Specification

Algebraic specification provides a group of applicable
operations and their fumctionality. The first part of operation
declaration with one—-to-one mapping provides the specification
techniqune with ease of comprehension and construction. Hhereas,
it somewhat limits the range of applicability by the algebraic
approach. For example, an uncountable domain, such as the real
numrbers, cannot be defined using the algebraic specification. It

might appear +that the comprehensibility may suffer £for the

11€
difficulty in determining equivalence of two arbitrary expressions
yielding equal results. However, an algorithm provided to deduce
a cannonical form can solve it. The cannonical form comprises a
minimal constructor set of operations to support an abstraction
implementation, and the form results from simplification of the
expressions obtained by formally appiying the operation symbol to
the expressions. Also, the recursion structure makes the
comprehension easier tham as it looks. Since a cannonical form
can be derived mechanically for the specification, the
constructibility to a model can be enhanced by such a development
of construction methodology. But as to the constructibility to
the reality, it does not include many other interesting properties
of data, such as corporality. Algebraic specification is
minimal, because it appears that hidden operations are not needed
in the model. Only using a few lines, a fairly complex object has
been completely defined. On the other bhand, a model, if it is
good with Trespect to the criterion of minimality, might be
difficult to construct and to comprehend, unless it is given in
terms of a natural representation for the defined objects.
Fortunately, this specification provides a cannonical form as its
natural representation for the defined objects to release fronm

such a trade-off.

As to the notatiom, the algebraic approach can be easily
formalized by borrowing from existing mathematics. The expressive
power of semantics by its notation bhad been explained in the
Problem 2 in Chapter 5. Not only the syntax of operations are
declared, but their semantics of effects and behaviour are

described in the axioms too. With respect to the criterion of

117
correctness, the specification proves the correctness by
implicitly showing (1) that the defining axioms hold amnd@ (2) that
the mapping in the declaration is ome-to-one. A promising way to
establish the correctmness is by means of mathematical proof [10].
Since algebraic specification is formalized by existing
mathepatics, it is the best model with respect +to formality for

the ease of correctness—-assurance by a mathematical proof.

€.2 The Bole of.pData Abstraction Played in Data Modelling-

Over the past decade, a dominant theme in the research activity
of methodologies and 1lanquages has been to explore the 1issues
related to data abstraction. By the concept of data abstraction,
a piece of thing, such as a program, can be organized into modules
in the way that implementation detail was localized as much as
possible. Muck of +the work in abstraction research activity is
identified with the concept of abstract data types. The strategy
of the work focuses on how to form modules consisting of a data
structure and its associated operations, and apparently the focus
of attention is set om data rather than on control. The abstract
data type effectively treats these modules in the same way as
available types such as integer to be treated. Such a module
includes the properties of a new group of data objects, and their
associated operations which will be performed on the objects of
the new type by giving the effects these operations have on the
values >f the objects. The concept of an abstract data type was
first implemented as a class in the language Simula 67 (by Dahl et

al) . Jther versions of this basic corcept have seen included in

118
many recently proposed languages; for example, there are clusters
i the language CLU (by Liskov and Zilles), foras ir the language
Alphard (by #ulf), classes in Concurrent Pascal (by Brinch
Hansen), and opaque types in PASQUAL {by Tennent). There are
important differences in generality between +these [8], but a

detailed discussion of these is beyond the scope of this paper.

The research work of abstraction has provided formal notatiomns
such as abstract models, input-output specification, and algebraic
axioms for describing the effects that operations perform on the
values. Other properties such as time and space requirements,
BeEOTry access patterns, reliability, and synchronization have not
been much addressed by the data type research. Besides formally
deriving the correctness of a model from the mathematical
function, certain properties of the computation that are important

must be preserved.

€.3_Future Work-

There is a trend toward coexistence of different data models
within one syster {5]. In the present research of data modelling
i data base management, there is no optimum model satisfying all
kinds of needs. Since the range of applicability is different for
the different models, it is expected that using a mechanism
combining different techniques when describing a large unit would

be a profitable approach [11].

The principle of data abstraction has a significant influence

in the area of data study, amd it will continue to do so. 1A model

119
with no problem is not obtained in the paper; however, it is
expected that the coexistence concept can be developed to produce
a generalized mechanism by which a desired data model can be
generated with the semantics preserved. This area involving data
abstraction appears to be a very promising one for future study,
and the efforts in extending and formalizing existing models and

in proposing a new methodology are of the most importance.

3.

4.

10.

12.

13.

120

BIBLIOGRAPHY

Atre, S., Data Base: Structured Techaiques for Design,

Performance, and HManagement, Wiley-Interscience Publication,
1980, Page 16.

Falkenberg, E. D., "Data Models: +the Next Five Years", in
INFOTECH State of the-Art Report Data Base Technology-Velume-
2: Invited Papers, Infotech International, 1978, Page 53-€8.

Guttag, Jde V., and others, "The Design of Data Type
Specification", in Current Trends in Programming Methodoloqy,
¥ol. IV, Data Structuring, Yeh, R. D. (edt.), Prentice-Hall,
Inc., 1978, Page 60-79.

Hammer, M., ™Data Abstractions for Data Bases", in Proceedings-
of Conference on Data: Abstraction, Definition and Structure,

Inmon, W. H. and PFriedman, L. J., Design Review Methodology-
for A Data Base Enviromment, Prentice—-Hall, Inc., 1982.

Kent, W., Data and Reality, WNorthk~Holland Publishing Company,
1978.

Larson, J. A., Database Management System Anatomy, Lexington
Books, 1982.

Linjen, T. &., "The Use of Abstract Data Types to Simplify
Program Modifications¥, in Proceedings of Conference on Data:
Abstraction, Defimnition and_ Structure, ACH SIGPLAN Hotices,

701. 89, HO- 2; '976. Page 12_23¢

Liskov, B. and Zilles, S., "Programming with Abstract Data
Type", SIGPLAN IX, No. 4, April 1974, Page 50-59.

Liskov, B., and others, "ibstraction Mechanismes in CLUO", in
Compunications of the- ACM, Vol. 20, No. 8, Ruqust, 1977, Page
564-576.

Liskov, B. apnd Zilles, S.., W"An Introduction to Formal
Specifications of Data Abstractions®, in current Treads in:
Programming- Methodology, ¥ol. 1., Software Specification-and-
Design, Prentice-Hall, Inc., 1977, Page 1-32.

Mealy, G. H., "Another Look at Data", in AFIPS Conference-

Proceeding, 19€7 Fall Joint Computer Comnference, 1967, Page

525-534.

Nijssen, G. M., "The Next Five Years in Data Base Technology",
in INFOTECH State of the Art Report Data Base Techrology-
¥Yolume 2: Invited Papers, Infotech Internatiormal, 1978, Page
213-256.

14,

15.

1€.

17.

18.

121

Shaw, M., "The Impact of Abstraction Concerns on Modern
Programming Languages®, Computer Science Department, Carneqgie
Mellon University, Pittsburg, Pa., April, 1980.

Steel, T. B., "The Current ANSI/SPARC Proposals", in INFOTECH-

State of +the Art Report Data Base Techrology VYolume 2
Invited Papers, Infotech International, 1978, Page 345-356..

_Sundgren, B., Theory of Data Bases, RETROCELLI Irformatiorn

Systems Series, 1975.

Tennent, R. D., Principles of Programming Lanquages, Prentice-
Hall Interpatiomal, Inc., 1981.

Unger, E. A., ™A Natural Model For Concurrent Computation®™,
Kansas State University Technical Report 78-35, Dissertation,
1978.

A STUDY OF DATA

by

HSAO-YING JEBNIFER TIAO

B. A., Tamkang Oniversity, 1980
Taiwan, Republic of Chima

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1983

ABSTRACT

The dominant importance of data in the information world
reflects in the attention it receives in programming language
and in database studies. It is a fact that the notions about
or meaning of data are still onot clearly urnderstood.
Languages investigations together with other research projects
have provided formal notationms, based on data abstraction,
such as abstract models, input—-output specifications, and
algebraic axioms. A oser is concerned not only with pure
functional correctness but also with properties such as time
and spatial requirements, complex aggregation behaviour, and

concurrency.

Formal notations being included in the report are (1) the
traditional File Hodel, (2) the Mealy's Theorectical Data
Model, (3) the Lispov's "Abstract Data Type", (i) the Unger's
WNatural Model for Concurrent Computation®, and (5) the

Algebraic Specification.

This report has (1) surveyed the five data modelling
notations that have been concerned with the abstract
description of information, (2) created a number of examples
of data model in the Unger's Natural Model, {3) raised and
partly solved five problems occurred in the Unger model and in
the database world, and (4) evaluated the last four data
Eodels based on five criteria. For some of the problenms

proposed, a number of designed rules have been presented to

attempt to solve the problems. To illustrate whether the
proposed rules would work, several ezxamples for the

corresponding cases have been given right after the rules.

The concept of coexisterce of different data models within
one system would be a profitable approach for the future work. .
It is a fact that there is no such an optimum model satisfying
all kinds of needs. While attempting to solve some problems,
the author combined a number of +techniques from different
methodologies to the problenms. The area involving data
abstraction appears to be a very promising one for future
stuly, and the efforts in extending and formalizing existing
models and in proposing a new coexistence mechanism is of the

most importance.

