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ABSTRACT  
 

Analytical solutions have been derived for the onset of strain localization in a broad class of  

unsaturated elastic-plastic porous materials. To this end, the definition of effective stress  

proposed by Khalili and Khabbaz (1998), which is based on a substantial amount of  

experimental evidence, has been adopted. Critical hardening moduli for constant water content  

and drained loadings were found to be further gradual simplifications of the critical hardening  

modulus for an undrained loading. In addition, the solutions were found to reduce to the  

previously found solutions for fully saturated and monophasic porous materials by adequately  

adjusting the bulk moduli of the pore fluids. This finding demonstrates that the mechanics of  

fully saturated and monophasic soils is the special simpler case of the mechanics of unsaturated  

soils. A diagnostic tool for detection of the inception of strain localization was developed by  

implementing the above solutions into a constitutive driver for a bounding surface plasticity  

model. The tool was used to further illustrate the strain localization behavior of unsaturated  

Bourke silt from Bourke region of New South Wales, Australia subjected to undrained, constant  

water content and drained loadings.  

 

Subject headings: Bifurcations, Elastoplasticity, Silts, Unsaturated soils  
 
 
 
 
 
 
 
 
 
 
 
 
 



 3 

INTRODUCTION  
  

The onset of strain localization has been mathematically described as a bifurcation of the  

incremental solution for elastic-plastic solids such as metals and geological materials. Physically,  

it signifies the inception of narrow zones, typically orders of magnitude smaller than the  

underlying macro-scale problem, within which large strains evolve with continuing loading.  

These zones are commonly known as deformation bands and include shear, compaction and  

dilation bands, as well as combined shear and compaction or shear and dilation bands (Bésuelle  

2001). The inception of deformation bands is a failure precursor because it signifies the initiation  

of an emerging localized failure mechanism. A majority of the vast amount of research that has  

been devoted to strain localization, particularly in the last three decades, has focused on  

monophasic materials. Significantly smaller amount of research has addressed two-phase  

materials while an extremely scarce amount has covered three-phase or unsaturated porous  

materials.   

In various macro-scale boundary value problems such as laboratory soils samples and  

relevant in situ geomechanics situations the inception of strain localization is affected by  

boundary conditions, material inhomogeneities and stress states. For example in laboratory soil  

samples the  onset of strain localization depends on the interplay of the sample inhomogeneity,  

the amount of friction imposed by the end platens, a height to diameter ratio, and the stress state  

or loading mode of the sample (Bigoni & Hueckel 1991a,b; Perić et al. 1992,1993). A faithful  

computational characterization of material inhomogeneities remains elusive primarily due to our  

current inability to detect them reliably. Meanwhile, a diagnostic strain localization analysis is  

powerful tool that can provide an insight into the effects of stress state and drainage conditions  

on the onset of strain localization in unsaturated soils.   
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The existing analytical solutions for the onset of strain localization range from those  

addressing one phase materials (Rudnicki and Rice 1975; Ottosen and Runesson 1991; Runesson  

et al. 1991) to two phase saturated materials (Runesson et al. 1996; Benallal and Comi 2002).   

Vardoulakis (1996a) and Vardoulakis (1996b) analyzed actual undrained plane strain  

experiments by using the framework of continuum mixtures theory for elastic-plastic materials  

with internal friction and dilatancy. He found that the initial homogenous deformation of  

saturated sand samples was followed by a spontaneous deformation of a persistent shear band.  

Bigoni et al. (2000) found analytical solutions for elastic-plastic solids with anisotropic elasticity.   

Rudnicki (1983) discussed conditions for the onset of strain localization in the case of partly  

drained behavior. Perić and Rasheed (2007) found analytical solutions for the inception of strain  

localization in fiber reinforced single phase elastic-plastic materials. Mathematical forms of  

solutions found by Perić and Rasheed (2007) and by Runesson et al. (1996) are similar in that  

both, the incompressibility constraint in undrained loading and presence of fibers in one phase  

materials were found to delay the onset of strain localization. The authors have not been able to  

identify any existing analytical solutions for inception of strain localization in unsaturated soils.   

Borja (2004) developed a mathematical framework for numerical analysis of three-phase  

deformation and strain localization of partially saturated porous media. The framework was used  

to detect the onset of strain localization for plane strain compression at the constitutive level.  

Borja (2004) used the degree of saturation as the effective stress parameter.   

Schiava and Etse (2006) conducted a numerical assessment of strain localization in  

unsaturated soils at constant suction. They used Terzaghi’s principle of effective stress for soils  

subjected to suctions ranging from 0 to 400 kPa, thus effectively modeling a drained response of  

a saturated soil. It is because they did not provide either the soil description or the material  
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parameters that it cannot be concluded whether the actual soil they modeled could realistically  

still be fully saturated in the corresponding suction range. Callari et al. (2010) simulated the  

response of a perfectly homogeneous initially fully saturated uniformly deforming soil sample  

subjected to plane strain compression during which the atmospheric pressure was maintained at  

the top and bottom boundaries only. They detected the inception of strain localization by using  

the criterion based on the singularity of the underlying drained acoustic tensor. Callari et al.  

(2010) stated that strain localization was triggered by a heterogeneous effective stress state  

induced by fluid flow coupling and no material imperfections were introduced. They used an  

approximation of a rate of average pore pressure, which appears in Lewis-Schefler effective  

stress. Ehlers et al. (2004) and Ehlers (2011) developed a computational model for capturing  

strain localization in variably saturated soils. It is because they regularized this otherwise ill- 

posed problem by the use of elastic-viscoplastic soil in the presence of two viscous pore fluids  

that they did not perform a formal diagnostic analysis for the inception of strain localization.  

Borja et al. (2013) investigated the effect of spatially varying degree on saturation and density on  

triggering shear band in clay and sand samples subjected to plane strain compression. They used  

the degree of saturation as the effective stress parameter.   

Buscarnera and di Prisco (2011) found that instability of shallow unsaturated slopes was  

triggered by a mechanism that embodied characteristics of both, shear localization and static  

liquefaction. They used the degree of saturation as the effective stress parameter.   

In this study analytical solutions for the onset of strain localization in a broad class of  

unsaturated elastic-plastic porous materials are derived. It is shown that the singularity of the so- 

called total acoustic tensor is a correct indicator for the inception of strain localization.  

Furthermore, the analytical solutions for three different drainage conditions including undrained,  
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constant water content and drained loadings are also derived. In deriving these solutions the  

definition of the effective stress proposed by Khalili and Khabbaz (1998) and Khalili et al.  

(2004), which is based on the substantial amount of experimental evidence, was used. The  

analytical solutions are implemented into the bounding surface plasticity model for unsaturated  

soils (Khalili et al. 2008). This constitutive model takes into account the simultaneous flow of  

water and air as well as their complex interaction with the solid skeleton within a consistent  

elastic-plastic framework. It is used to simulate the strain localization responses of Bourke silt  

from Bourke region in New South Wales, Australia subjected to conventional triaxial  

compression (CTC) and plane strain compression (PSC) under different drainage conditions.   

  

  

PRELIMINARIES  

The porous medium is assumed to be an unsaturated elastic-plastic material experiencing  

an infinitesimal strain, and obeying a general non-associative flow rule. A nominal time rate is  

used rather than any objective rate measure due to the assumption of small strains. The indicial  

notation is used, thus implying summation convention unless stated otherwise.   

  
Mixture Theory  
  

Unsaturated soils are mixtures of three independent overlapping continua including a  

solid phase, which is often referred to as a solid skeleton, and two fluids. One of the fluids is  

wetting (usually water) and the other is non-wetting (usually air). An unsaturated soil can also be  

viewed as a porous medium, within which each phase is endowed with its own kinematics, mass  

and momentum (Eringen and Ingram 1965; Bowen 1976).  
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Each constituent has a mass Mα and volume Vα, where the subscript α takes values s, w, a  

denoting solid, water and air phases respectively. Intrinsic quantities are labeled by subscripts,  

while partial quantities are labeled by superscripts. The quantities denoting the mixture as a  

whole are devoid of any indices. For example, the mass density of a mixture ρ is given by:  

s w a      (1)  

where  

s s
sn   and w w

wn   and a a
an    (2)  

Individual volume fractions nξ are related as follows  

1s w an n n    (3)  

In accordance to Loret and Khalili (2000) the volume content of a phase per unit reference  

volume of a porous medium (vξ) and of fluid mass content of each phase per unit reference 

volume of porous medium (mξ) are defined as:  

0 0

V Vv n
V V
   and    

0

M
m v

V
 

    (4)  

 

Definition of Effective Stress  

The definition of effective stress given by Bishop (1959) is adopted herein. It is given by:  

'ij ij a ij ijp s            and    a ws p p  (5) 

whereby the equal effective stress rates applied to an unsaturated porous material and the  

equivalent single phase porous material produce equal elastic strain rates. Symbols δij, σ’ij, σij, s,  

pw, and  pa  denote Kronecker delta, an effective stress tensor, a total stress tensor, suction, pore  

water pressure and pore air pressure respectively. Compressive components of stress and strain  

tensors are negative while fluid pressures are positive in compression. The expression for the  
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effective stress parameter χ, which was proposed by Khalili and Khabbaz (1998), and is based on  

a substantial amount of experimental observations, is adopted. It is given by:  

0.55

1, 1

,

ae

ae

s
s

s else
s

 

 
 

 
  

  
  
  

                 (6)  

where sae is the suction value at the air entry. A hydraulic hysteresis in the soil-water  

characteristic curve is neglected herein for the sake of simplicity. It is noted that Eq. (5) reduces  

to Terzaghi’s effective stress principle for s = sae.   

The effective stress rate is obtained as a temporal derivative of Eq. (5) and it is expressed  

as:  

'ij ij a ij ijp s                (7)   

where function ψ is given by:  

1, 1

0.45 ,
ae

s
s

else




 
 

  
 
 

          (8)  

It is also noted that the effective mean effective stress can be expressed as:  

' netp p s         where  net ap p u         (9)  

  

Stress-Strain Relationship  

An unsaturated porous material is assumed to undergo a rate independent elastic-plastic  

deformation.  The relationship between the effective stress and strain equivalent to the one given  

by Loret and Khalili (2000) is adopted herein. It is given by:  

'
e
ijkl kls

ij ijkl kl

D g FD k s
A s

 
 

   
 

   and   e
ij ijkl klA H f D g       (10)  
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where De
ijkl is an elastic stiffness moduli tensor of the underlying drained solid. F and G are yield  

and plastic potential functions respectively. Their gradients are denoted by fij and gij respectively,  

while H is the actual hardening modulus. Constant k takes values 1 and 0 for plastic and elastic  

loadings respectively. It is noted that Eq. (10) describes a broad class of incrementally linear  

three-invariant non-associated elastic-plastic models with isotropic and/or kinematic hardening.  

Plastic loading occurs if the following conditions are satisfied  

0F       and       0e s
ij ijkl kl

Ff D s
s




 


       (11)  

It is noted that the second term in Eq. (10) represents the effect of suction induced hardening.  

The elastic-plastic stiffness moduli tensor Dijkl is given by  

e e
ijst st mn mnkle

ijkl ijkl

D g f D
D D k

A
          (12)  

A solid phase is endowed with its own macroscopic infinitesimal strain rate tensor ( s
ij ),  

which is expressed in terms of a macroscopic velocity ( s
iu ) by using the following standard  

kinematic relationship  

1
2

ss
js i

ij
j i

uu
x x


 

     

                    (13)  

  

ONSET OF STRAIN LOCALIZATION  

At this point the following additional assumptions are adopted: 1) effective stress is  

defined by Eq. (5), 2) pore fluids are immiscible, 3) the water phase is incompressible, and 4)  

solid particles are incompressible. The analysis is presently conducted at the constitutive level,  

thus implying that drainage conditions apply at the constitutive level as well. Pursuing the  

standard approach it is assumed that discontinuities or jumps in displacement and pore fluid  
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pressure rates can occur across a singular surface C having unit normal N*i at the onset of strain  

localization. It is assumed that a jump in displacement rate is continuous along a singular surface  

C having unit normal N*i and no assumptions are made regarding the homogeneity and variation  

of displacement rate gradient in the vicinity of C. These assumptions describe a weak  

discontinuity and lead to the following jump in the solid strain rate across C  

   ** * * * * * * *1 1
2 2

s
ij i j j i i j j ic N c N M N M N              

 (14)  

and  

* * *
i ic M  and  * * * 1i i iM M M   and   * 0       (15)   

where γ* is arbitrary constant and c*
i is the eigenvector corresponding to the relevant eigen- 

problem, which is discussed in the following sections. Square brackets are used to indicate a  

discontinuity or jump exclusively. The asterisk superscript will subsequently be changed into  

“u”, “cw”, and “d” to denote undrained, constant water content, and drained conditions  

respectively. The continuity of the total traction rate across the singular surface C arises from the  

equilibrium requirement, thus resulting in  

* 0ij jN                        (16)  

For the analysis of plane strain and axisymmetric conditions it is assumed that fij and gij  

possess equal principal directions. In addition, it is assumed that two principal directions are  

located in the plane of interest and denoted by indices 1 and 2. The in-plane components are  

ordered so that for example f1   f2, while f3 simply denotes the out-of plane component. It  

follows from the arguments presented by Perić et al. (1992) that the plane strain solutions are  

also valid for axisymmetry under the condition that the indices 1 and 2 denote major and minor  
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directions in the radial plane, and the index 3 denotes the circumferential direction. Under very  

mild constraints the above assumptions also imply that g1   g2.  

  

Case (i): Undrained Loading   

Rates of change of pore water and pore air volumes per unit reference volume under the  

assumptions adopted herein, were given by Loret and Khalili (2000) as:  

w s
v wwv a s      where  r

ww
Sa n
s





   and      a wn n n      (17)  

and  

 1a s
v awv a s      where    aw wwa a       (18) 

The rate of solid volumetric strain is denoted by s
v  while Sr is a degree of water saturation, and n  

is porosity.  

For an undrained loading, rates of change of mass contents of water and air per unit reference  

volume are equal to zero, thus leading to   

 
0

0w s wr
w w w v

w

pS Vm v n s
t s K V
  

  
           

      where   w
w w

KK
n

    (19)  

and  

   
0

1 0a s ar
a a a v

a

pS Vm v n s
t s K V
   

  
            

   where      a
a a

KK
n

   (20)   

Kw and Ka are intrinsic bulk moduli of the water and air phases respectively. The rates of change  

of mass densities of pore fluids are given by:  

p
K


 



   where ,w a          (21)  

Assuming that water phase is incompressible Eq. (19) gives:  
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s
s vs K    where   s

r
K Sn

s


 





     (22)  

Adding Eqs. (19) and (20) gives:  

0s s
a a v a v

Vp K K
V

 
 

    
 

         (23)  

The total stress rate is obtained by combining Eqs. (7), (10), (22) and (23) as:  

u s
ij ijkl klD             (24)  

where Du
ijkl is a so called undrained tangent stiffness moduli tensor given by:  

u e
ijkl ijkl s ijst st kl f ij kl

F sD D K D g K
A

  
 

          (25)  

where  

f a sK K K            (26)   

It is noted that undrained tangent stiffness tensor given in Eq. (25) does not exist in case of fully  

saturated materials containing incompressible water ( fK   ). However, as shown in  

subsequent sections the critical hardening modulus and corresponding orientation of the singular  

surface C can be obtained even for the incompressible pore water by taking the limit of the  

solution presented herein.   

Runesson and Ottosen (1991) showed that elastic/plastic bifurcation, in which one of the  

bifurcated fields is experiencing elastic loading while the other is experiencing plastic loading,  

cannot occur before plastic/plastic bifurcation. The extension of their proof, which is presented  

in the Appendix, shows that elastic/plastic bifurcation can never occur before plastic/plastic  

bifurcation for unsaturated porous materials as well. Consequently, plastic/plastic bifurcation is  
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considered here, thus leading to the condition for the onset of strain localization given in Eq. (27)  

below.  

0u u
ik kQ c             (27)  

Eq. (27) was obtained by combining Eqs. (14), (16), and (24).  

Thus, the inception of strain localization coincides with the singularity of the undrained acoustic  

tensor Qu
ik and cu

r  is the corresponding eigenvector. The former is given by:   

u u
ik j ijkl l ik s i k f i k

F sQ N D N Q K b N K N N
A

 
          (28)  

where vector bi is defined as:  

e
i j ijst stb N D g           (29)  

It is noted that the final direction of unit normal Ni is not known at this point resulting in the  

superscript being omitted. The undrained acoustic tensor does not exist in case of fully saturated  

materials containing incompressible water ( fK   ).  The acoustic tensor of the underlying  

drained solid is given by:  

e i k
ik j ijkl l ik

b aQ N D N Q
A

       and   e e
ik j ijkl lQ N D N      (30)  

where  

e
k mn mnjk ja f D N           (31)  

Combining Eqs. (14) and (22) gives:   

  0u
r r

s

s
c N

K
            (32)  

The solution for the eigenvector cu
r is obtained by multiplying Eq. (27) by the inverse of the  

acoustic tensor Pri (= Qri
-1) and combining the result with Eq. (32) thus yielding  
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 fu
r ri i ri i

s

KF sc P b P N s
A K

  
   
 

        (33)  

where Pri is given by:  

e e
e rk k l li

ri ri e
p pq q

P b a PP P
A a P b

 


 and   
1e e

ri riP Q


       (34)  

To obtain the solution for the critical hardening modulus Eq. (33) is substituted into Eq. (32)  

resulting in  

1 0f
r ri i ri i

s s

KF sN P b P N
A K K

  
    

 
        (35)  

and the hardening modulus can be explicitly expressed from Eq. (35) as:  

e
u e e u ek kl l s

ij ijkl kl i ij j i ij je
p pq q f

b P N K FH f D g a P b a P N
N P N K s


   

      
   

   (36)  

where  

1

e
f i ij ju

e
f p pq q

K N P N
K N P N

 


          (37)  

Combining Eqs. (33), (34) and (36) gives the alternative expression for the eigenvector cu
r  as:  

 u e u
i ir rc P w s           (38)  

where  

1 e
f f i ij ju

r r re
s f p pq q

K K N P N
w N b

K K b P N
 

   
 

   and   e s
i ij j

f

K Fa P N
K s

 
  

 
    (39)  

The alternative equivalent expression for the eigenvector cu
r is given in Appendix in Eq. (A14).  

It is noted that the eigenvector cu
i reduces to the one given by Runesson et al. (1996) for an  

undrained loading of fully saturated soil, which in the limit  corresponds to 1f sK K  .   
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At this point it is assumed that the elastic behavior is isotropic. The expressions for  

several pertinent tensors of the underlying drained solid are given in the Appendix. They include  

elastic stiffness moduli tensor (De
ijkl), elastic acoustic tensor (Qe

ij) and its inverse (Pe
ij). In  

addition, for the isotropic elasticity the expression for ψu can be obtained by substituting Eq.  

(A6) into Eq. (37).    

Next, expressions in Eq. (36) are evaluated for isotropic elasticity and the following is obtained  

after the subsequent rearranging:  

     2
2

2 2
2 2 2 21 1 2

1 1 2 2 1 1 21 1 2 1
2 1

u
u u us

f

Kg N g NH Fa N a N f N f N k
G K s

   


   
         

   

  

(40)  

where a1 and a2 are given by:  

 
 

1
2

1

u

v va f g f g f g    

 




  


  and  1,2   (no summation)   (41)  

and fv and gv are given in Eq. (A5) while ku is given by:  

 

  

2

1 1 2 2 3 3

1 2
1 1 2 1 2

u
u u s v

v v
f

K gFk f g f g f g f g
K s

    


  

    
             

   (42) 

Differentiating Hu/2G given in Eq. (40) with respect to N1
2 gives:  

 
  2

1 1 2 12
1

1 0
2 1

u u ud H d d d N
Gd N 

 
    

 
      (43)  

where scalars du
1 and du

2  are given by:  

    1 1 2 1 3 1 2 1 3 1( )u u ud f f g g g g f f r               

 (44)  
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    2 1 2 2 3 1 2 2 3 2( )u u ud f f g g g g f f r         

(45)  

and scalars ru
1 and ru

2 are given by:  

          1 1 2 2 1 2 2 1 2
11 2 1 2u

v v
Fr f f g g g g f f g g
s


   



   
           

  
  

(46)  

          2 1 2 1 1 2 1 1 2
11 2 1 2u

v v
Fr f f g g g g f f g g
s


   



   
           

  
47 

(47) 348 

And subtracting Eq. (45) from Eq. (44) gives:  

    1 2 1 2 1 22 1 1 2 0u u ud d f f g g         (48)  

By again differentiating Eq. (43) gives:  

 
 

2

1 222
1

1 0
2 1

u ud H d d
Gd n 

 
    

 
  

(49)  

thus confirming that possible solutions of Eq. (40) indeed represent the maximum value of H.  

Next, only the cases corresponding to f1 > f2 and g1 > g2 are considered.  Eq. (43) then  

gives the following solution:  

 
2 1

1
1 2

u
u

u u

dN
d d




and  
2 2

2
1 2

u
u

u u

dN
d d

 


(50)
 

Eq. (50) is valid whenever 0  (Nu
1)2  1 (or 1   (Nu

2)2   0), which corresponds to  

1 0ud  and 2 0ud   (51)  
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The orientation of a singular surface C representing a boundary of a deformation band is defined  

by the angle θu between its unit normal and x2-axis, which is equal to the angle between the  

singular surface and x1-axis. The angle is defined by:  

 

 

2

12 1
2

22

tan
u u

u
uu

N d
dN

             (52)  

Two extreme cases occur when conditions in Eq. (51) are not satisfied. First, if du
1   0 the  

solution Nu
1 = 0 and Nu

2 = 1 corresponding to θu = 0° is obtained.  Similarly, when du
2  0  Nu

1 =  

1 and Nu
2 = 0 corresponding to θu =90° is obtained. In all cases discussed above the  

corresponding critical hardening modulus is obtained by substituting the relevant values of Nu
1  

and Nu
2 into Eq. (40).    

It is noted that the expression for the critical hardening modulus of fully saturated porous  

material given by Runesson at el. (1996) in their Eq. (31) is fully recovered from Eq. (40) herein  

by setting ψu = 1 ( fK   and 1f
sK K  ) and 0F s   in Eqs. (40) and (42). In addition, the  

bifurcation directions given by Runesson et al. (1996) in their Eqs. (41) and (43) are also fully  

recovered from Eqs. (50) and (52) herein by setting  0F s    in Eqs. (46) and (47) and ψu = 1  

in Eqs. (44) and (45). Furthermore, the expression for the critical hardening modulus of  

monophasic material given by Runesson et al. (1991) in their Eq. (53) is fully recovered from  

Eq. (40) herein by setting ψu=0 in Eqs. (40), (41) and (42).  Finally, bifurcation directions given  

by Runesson et al. (1991) in their Eqs. (58) and (59) are also fully recovered from Eqs. (50) and  

(52) herein by setting ψu=0 in Eqs. (44) and (45) and 0F s   in Eqs. (46) and (47).   

  

Case (ii): Constant Water Content  
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For the constant water content loading Eq. (20) is not valid any more, thus rendering Eq.  

(23) invalid as well. This leads to further simplification of Eq. (26) into  

f sK K            (53)   

Eq. (53) is substituted into Eqs. (24), (25), (27), (28) and Eqs. (32) through (52) while  

simultaneously changing the superscript “u” into “cw” thereby signifying the constant water  

content loading. Bifurcation directions are given by the unit normal Ncw
i, the expressions for  

which are provided by Eq. (50) whenever the conditions in Eq. (51) are satisfied. Otherwise, if  

dcw
1   0 we obtain the solution Ncw

1 = 0 and Ncw
2 = 1 corresponding to θcw = 0°.  Similarly, when  

dcw
2  0 we obtain Ncw

1 = 1 and Ncw
2 = 0 corresponding to  θcw =90°. In all cases discussed above  

the corresponding critical hardening modulus is obtained by substituting the relevant values of  

Ncw
1 and Ncw

2 into Eq. (40).    

   

Case (iii): Drained loading   

A drained test is a constant suction test, thus simplifying Eq. (10) into   

' s
ij ijkl klD                   (54)  

Consequently, the tangent stiffness tensor of the underlying drained solid is the relevant stiffness  

tensor for drained loading (Dijkl= Dd
ijkl) whereby the rate of the effective stress tensor is equal to  

the rate of the total stress tensor. It is noted that the effective stress tensor is defined by Eq. (5),  

thus accounting for the presence of constant suction.  Eqs. (19) and (20) are not valid for drained   

loading, thus rendering Eqs. (22), (23), (26), (32), (33), (35), (38) and (39) invalid as well.  

Consequently, the terms containing sK , fK  and F s   are now omitted from Eqs. (25), (27),  

(28), (36) and (40) through (52) whereby ψu is set to zero.  A solution for the eigenvector is  

provided by Eq. (A15) whereby ψu is again set to zero in Eq. (A16).  While these rearrangements  
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are carried  the superscript “u” is changed to “d”,  thus indicating  the applicability to drained  

loading.  Bifurcation directions are given by the unit normal Nd
i, the expressions for which are  

provided by Eq. (50) whenever the conditions in Eq. (51) are satisfied. Otherwise, if dd
1   0 the  

solution Nd
1 = 0 and Nd

2 = 1 is obtained corresponding to θd = 0°.  Similarly, when dd
2  0  Nd

1 =  

1 and Nd
2 = 0 is obtained corresponding to θd =90°. In all cases discussed above the  

corresponding critical hardening modulus is obtained by substituting the relevant values of Nd
1  

and Nd
2 into Eq. (40). 

 

 

APPLICATIONS TO BOURKE SILT  

The above solutions are applied to the bounding surface plasticity model for unsaturated  

soils developed by Khalili et al. (2008). The essential ingredients of this non-associated plasticity  

model are: 1) isotropic elasticity, 2) bounding surface separating admissible from inadmissible  

stress states, 3) loading surface at which the current stress state is located, 4) a plastic potential,  

which provides the direction of plastic strain, and 5) a hardening rule, which controls the  

movement of the current stress state towards the image point on the bounding surface as well as  

locations and sizes of loading and bounding surfaces. The model was calibrated against the  

experimental results of drying test and a series of suction controlled CTC tests on Bourke silt  

(Uchaipichat 2005) from Bourke region of New South Wales, Australia. These tests were carried  

out in a modified Bishop-Wesley triaxial cell capable of independent measurement and control of  

sample temperature, pore-water pressure, pore-air pressure, sample volume change and water  

volume change. The samples were prepared by static compaction at a water content dry of  
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optimum. An isotropic preconsolidation effective stress of 200 kPa was applied to all samples,  

followed by unloading to desired initial net stresses and application of target suctions.   

An excellent performance of the bounding surface plasticity model is illustrated in Figure  

1, which depicts comparisons between the experimental results and model predictions. The later  

were obtained for the sets of model parameters shown in Tables 1 and 2. M is the slope of critical  

state line, and ν is Poisson ratio. The parameter A is associated with the shape of a plastic  

potential, while parameters N and R are associated with the shapes of loading and bounding  

surfaces. The parameter km appears in the expression for hardening modulus, while the parameter  

λp is the exponent, which describes the relationship between the effective saturation and suction  

(Brooks and Corey 1964). The value of suction at the air entry (sae) was found to be equal to 18  

kPa. A dependence of the intercept (N) and slope (λ) of the isotropic consolidation line on  

suction is shown in Table 2.   

A diagnostic tool for detection of strain localization was developed by implementing the  

analytical solutions presented herein into the constitutive driver for bounding surface plasticity  

model. In particular, the solutions for the critical hardening modulus, unit normal N*i, and the  

eigenvector angle α* between the unit normal N*i and the eigenvector c*i were found for every  

load step. To simulate CTC tests both total horizontal stresses were kept constant for the duration  

of loading, while the vertical compressive strain was increased at the constant rate. The PSC tests  

differed from the CTC tests in that the strain in one of the horizontal directions was equal to zero  

for the duration of loading. Neither air nor water phase were allowed to drain in undrained tests,  

only air was allowed to dry in constant water content tests, while air and water were both  

allowed to drain in drained tests. The onset of strain localization was signified by the equality  

between the actual and critical hardening moduli. Figure 2 depicts the minimum differences  
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between the critical and actual hardening moduli for a multiplicity of CTC tests including  

different drainage conditions up to an axial strain of 15%. It can be seen that the smallest  

minimum difference is slightly above 4000 kPa, thus indicating that no single onset of strain  

localization was detected in CTC tests regardless of drainage conditions. In addition, the  

experimental data depicted in Figure 1b that were used for calibration of the constitutive model  

show absence of any significant post-peak drop, thus also suggesting that no strain localization  

occurred in conventional triaxial tests on Bourke silt.   

On the contrary the diagnostic analysis detected an inception of strain localization below  

the axial strain of 15% in every single drained PSC test with the initial net mean stresses of 30  

kPa and 100 kPa with suctions ranging from 0 kPa to 250 kPa. Among all these tests, which are  

depicted in Figures 3 and 4, the earliest onset was detected at 0.7% of axial strain (Figure 3), and  

the latest at 13% axial strain (Figure 4). Figures 3 and 4  show that  increase in suction delays the  

onset of strain localization. This is most likely primarily due to the effect of suction on the  

overconsolidation ratio (OCR), which is defined as a ratio of the past maximum and current  

mean effective stress. The earliest onset corresponds to the initial OCR of 6.7 (Figure 3), thus  

indicating a heavily overconsolidated soil, while the latest onset corresponds to the OCR of 1.26  

(Figure 4), thus indicating a lightly overconsolidated soil.  

Figure 5 illustrates the effects of drainage conditions on the inception of strain  

localization in PSC tests with the initial net mean stress of 100 kPa and the initial suction of 50  

kPa. It can be observed that there is no significant difference between the predicted onsets of  

strain localization in drained test and constant water content test whereby the former occurs at an  

axial strain of 12.8 % while the later occurs at an axial strain of 12.5%. However, the inception  

of strain localization in undrained test occurs much earlier, at 6.3 % of axial strain. Thus, in  
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unsaturated soils the undrained condition can promote the strain localization by decreasing the  

initial suction.  On the contrary, it was found by Runesson et al. (1996) that undrained condition  

in saturated soils suppresses the onset of strain localization because it is synonymous with the  

zero volume change, which imposes a strict constraint on deformation.   

Figure 6 illustrates dependence of the critical strain, which is the value of axial strain at  

onset of strain localization, on the initial net mean stress, initial suction, and drainage conditions.  

Two types of behaviors are observed: 1) the range of the initial net mean stress in which the  

critical strain is approximately constant, and 2) the range of initial net mean stresses in which the  

critical strain increases in a non-linear fashion with the increasing initial net mean stress. For  

example, the former range corresponds to critical strains smaller than 2%, which are possible  

only for the initial suctions of 50 kPa and 150 kPa for drained and constant water content tests.  

For undrained tests the critical strain is smaller than 2% for the initial suctions of 50 kPa, 150  

kPa and 300 kPa. Furthermore, this early onset persists up to the initial mean net stress of about  

50 kPa in undrained tests, thus corresponding to the minimum initial OCR of 2.55. In drained  

and constant water tests the early onset persists up to the initial mean net stress of about 40 kPa,  

thus corresponding to the minimum initial OCR of 2.92. This again illustrates larger  

susceptibility of undrained tests to strain localization.   

Figure 7 presents orientations of deformation bands, whereby the critical angle  depicted  

on y-axis is the angle between a deformation band and horizontal (or major principal stress)  

direction. In drained and constant water content tests, the critical angle sharply decreases from  

the maximum of 46.7° and 46.6° respectively with an increase of the initial net mean stress. It  

remains constant at 44.7° at higher initial net mean stresses. In undrained tests the critical angle  

initially also decreases sharply from the maximum value of 46.6°. It subsequently starts to  
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asymptotically approach the value of 44.5° with an increase of the initial net mean stress. Finally,  

Figure 8 depicts the angle α* between the unit normal to the deformation band N*i and the  

eigenvector c*i , which indicates the mode or type of deformation band. The angle is obtained  

from the definition of a scalar product as follows:  

 * 1 * *cos i iM N            (55)  

According to Eq. (14) a jump in the volumetric strain rate across the singular surface C is given  

by  

* * * * cos *s
v i iM N                 (56)  

Thus, a positive jump in the volumetric strain rate indicates a dilatant deformation band, a  

negative jump signifies a contractant deformation band while a zero jump indicates a pure shear  

band. According to Figure 8 slightly dilatant shear bands occur only for the initial suction of 50  

kPa at the initial net mean stresses smaller than about 31.5 kPa, thus corresponding to the initial  

overconsolidation ratios larger than 3.33 and indicating heavily overconsolidated soils. The  

inception of strain localization occurs in the form of pure shear band for the initial suction of 50  

kPa and the initial net mean stresses of 28.6 kPa, 25.7 kPa and 31.5 kPa in drained, constant  

water content and undrained tests respectively. For all other initial conditions considered the  

onset of strain localization is characterized by slightly contractant shear bands.  

  

CONCLUSIONS    

Analytical solutions for the onset of strain localization in unsaturated soils subjected to  

different drainage conditions have been derived for a broad class of elastic-plastic material  

models. It is shown the solution for an undrained loading has the most complex form and that  

previously derived solutions for undrained loadings of fully saturated and for monophasic  
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materials can be fully recovered from the solutions derived herein simply by appropriately  

adjusting bulk moduli of pore fluids. A diagnostic tool for detection of strain localization was  

developed by implementing the above solutions into the constitutive driver for bounding surface  

plasticity model developed by Khalili et al. (2008). The tool was used to further illustrate the  

strain localization behavior of Bourke silt, thus leading to the following conclusions:  

1) No strain localization was detected in CTC tests regardless of drainage condition, thus 

deeming CTC loading resistant to strain localization.  

2) On the contrary, the inception of strain localization was detected in every single PSC test. 

Among drained, constant water content and undrained tests starting from equal initial conditions  

the earliest onset of strain localization was found in undrained tests. This is contrary to the strain  

localization behavior observed in fully saturated soils (Runesson et al., 1996) whereby undrained  

condition was found to delay the onset of strain localization.  

3) Two types of dependence of the critical strain on the initial net mean stress have been 

identified. First, there is a range of the initial net mean stress in which the critical strain is  

approximately constant and very low, thus indicating the early onset. This range coincides with  

the initially heavily overconsolidated samples. Second, there is a range of the initial net mean  

stresses in which the critical strain increases in a non-linear fashion with an increasing initial net  

mean stress. This range corresponds to the initially lightly to normally overconsolidated samples.  

4) At the onset of strain localization deformation bands were found to be slightly contractant 

shear bands for the most part. They formed angles larger than 43.5° with the major principal  

stress direction, whereby those detected in drained tests were only slightly steeper than those  

found in constant water content tests, which in turn were steeper than those detected in undrained  

tests. Dilatant shear bands were detected only for the smallest initial suction considered (50 kPa)  
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in the range of the initial net mean stresses smaller than 31.5 kPa, which essentially corresponds  

to the highly overconsolidated samples with a minimum OCR of 3. 7.  They made angles smaller  

than 46.7° with the major principal stress direction. Pure shear bands were detected only in tests  

with initial suction of 50 kPa for all drainage conditions considered herein.  
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Appendix  
 

Several tensors pertinent to isotropic elasticity are given here.  An elastic stiffness moduli  
 

tensor De
ijkl is given by: 

 

 
12
2 1 2

e
ijkl ik jl il jk ij klD G 

     


 
   

 
 (A1)  

 
An elastic acoustic tensor is obtained as:  

 
1

1 2
e e
ij k ijkl l i j ijQ N D N G N N 



 
   

 
(A2)  

 
and its inverse Pe

ij is then given as:  
 

 
1 1

2 1
e
ij i j ijP N N

G




 
     

(A3)  

 
By substituting Eq. (A1) into Eqs. (28) and (30) the following expressions are obtained  
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2
1 2i ij j v ia G f n f n



 
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 
and 2

1 2i ij j v ib G g n g n



 
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 
 (A4) 1 

 
where fv and gv are volumetric portions of the gradients fij and gij  respectively given by:  

 
v ij ijf f  and v ij ijg g  (A5)  

 
Finally, by using Eq. (A3) the following is obtained  

 
 

 
1 2

2 1
e

i ij jN P N
G









(A6) 

4 
 

Next, it is shown that elastic/plastic bifurcation cannot occur before plastic/plastic  
 

bifurcation for unsaturated porous materials. The undrained loading is addressed first by  
 

considering the following eigenvalue problem:  
 

     u i u i u iu eu
il l il lQ y Q y          where 1,2i   (A7)  

 
 

Qeu
ij the acoustic tensor associated with undrained elastic behavior, i.e.  

 
eu u eu u

il j ijkl kQ N D N where eu e u u
il il f i lQ Q K N N  (A8)  

 
The positive definiteness of elastic stiffness moduli tensor implies the positive definiteness of  

 
Qeu

ij as follows: 
 

     
2 0u eu u u u e u u e

i il l i j ijkl f ij kl k l ij ijkl kl f kkc Q c c N D K N c D K           (A9)  
 

where cu
i is a non-zero arbitrary vector.  Qeu

ij possesses the symmetric positive definite inverse  
 

Peu
ij, which is given by: 

 
u

eu e e u u e
il il ij j r rlu e u

p pq p

P P P N N P
N P N


  (A10) 

Next, Eq. (A7) is multiplied by Peu
ri, thus yielding the following:  

 
     u i u i u iu

rl l rB y y (A11)  



30 

 
where Bu

rl is given by:  
 

1u eu eu u
rl rl ri i l s ri i l

FB P b a K P N b
A s


 

   
 

 (A12)  

 
Eigenvalues can be expressed from Eq. (A11) as:  

 
     1 2 21u u uu

rrB       (A13)  
 

 Eq. (A7) implies that the first eigenvalue corresponding to elastic response is equal to one,  
 

which together with Eq. (A13) gives:  
 

 2 11u eu eu u
r ri i s r ri i

Fa P b K b P N
A s


 

   
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 (A14)  

 
Combining Eqs. (A11), (A12) and (A14) gives:  

 
 2u eu

j ji iy P b (A15)  
 

where is ζ arbitrary constant. It is noted that Eq. (A14) provides the alternative expression for  
 

eigenvector, which unlike Eq.  (33) does not depend on the jump in suction rate.  The alternative  
 

expression for the critical hardening modulus can be obtained by  setting λ u(2) from Eq. (A14) 
 

equal to zero, which gives the following:  
 

u e eu eu
ij ijkl kl i ij j s i ij jH f D g a P b K N P b    (A16)  

 
Next, it is shown that elastic/plastic (E/P) discontinuous bifurcation can never precede  

plastic/plastic (P/P) discontinuous bifurcation. Eq. (16) implies that for E/P discontinuous  
 

bifurcation in undrained loading the following holds:  

u s ue s
j ijkl kl j ijkl klN D N D     (A17) 

 
where s

kl  denotes solid strain tensor rate on one side of singular surface C, while s
kl   is the  

 
solid strain tensor rate on the other (elastic) side of C.  Substituting Eqs. (14), (22), (25) and (29),   
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and subsequent  rearranging Eq. (A17) the following is obtained:  
 
 

1
'u u

ik k iQ c b
A
 where  ' 0e s

pq pqrs rs
Ff D s
s

   
  


 (A18)  

 
The strain tensor rate on the plastic side of C can be expressed as:  

 

 
1

2

s s u u u u
rs rs r s s rc N c N     and  s s s   (A19)  

 
and substituting Eq. (A19) into Eq. (A18) and rearranging gives the following:  

 
1

'eu u
ik k iQ c b

A
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pq pqrs rs
Ff D s
s
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  


 (A20)  

 
with eigenvector cu

k given by:  
 

'u eu
k kl lc P b

A


 (A21)  

 
It is noted that cu

k is the same eigenvector as the one given in Eq. (A15) corresponding to P/P  
 

bifurcation. The only difference is the scaling factor. Now, vector bi is expressed from Eqs.  
 

(A18) and (A20). The two expressions are subsequently equalized to give:  
 
 

'

'

u u ue u
ik k ik kQ c Q c


 (A22)  

 
which represents the eigenvalue problem completely identical to that given in Eq. (A7).  Clearly,  

 
the elastic solution (λu(1) =1) is  not relevant for Eq. (21), which leaves 

 
 2 '

0
'

u 



   (A23) 

The result given in Eq. (22) implies that elastic/plastic bifurcation can never occur before  
 

plastic/plastic bifurcation.  
 
 
 
 



Table 1. Suction independent parameters of bounding surface plasticity model 

Parameter Value 
M 1.17 
ν 0.25 
A 2.0 
N 3.0 
R 2.0 
km 200. 
λp 0.41 
sae 18 

 

http://www.editorialmanager.com/jrnemeng/download.aspx?id=170935&guid=2b8e945c-4c25-4486-ae1e-1c33699bec2b&scheme=1


Table 2. Suction dependent parameters of bounding surface plasticity model 

suction, s (kPa) λ(s) N(s) 

aes s  0.090 2.049 
100 0.090 2.058 
300 0.090 2.068 

http://www.editorialmanager.com/jrnemeng/download.aspx?id=170936&guid=03c1d8cb-be82-42e4-a906-595062a95024&scheme=1
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Figure 1. Model  calibration for Bourke silt: a) Drying path tests
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Figure 1. Model calibration for Bourke silt: b) Drained CTC tests (stress-strain response)
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Figure 1. Model calibration for Bourke silt: c) Drained CTC tests (strain-strain response)
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Figure 2. Minimum difference between actual and critical hardening moduli for CTC tests: a) drained
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Figure 2. Minimum difference between actual and critical hardening moduli for CTC tests: b) constant water content
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Figure 2. Minimum difference between actual and critical hardening moduli for CTC tests: c) undrained
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Figure 3. Prediction of the onset of strain localization for drained PSC tests at pnet,0 = 30 kPa
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Figure 4. Prediction of the onset of strain localization for drained PSC tests at pnet,0=100 kPa
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Figure 5. Prediction of onset of strain localization for PSC tests under different drainage conditions (pnet,0=100 kPa, initial suction s0=50kPa): a) Stress-strain response
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Figure 5. Prediction of onset of strain localization for PSC tests under different drainage conditions (pnet,0=100 kPa, initial suction s0=50kPa): b) Strain-strain response
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Figure 5. Prediction of onset of strain localization for PSC tests under different drainage conditions (pnet,0=100 kPa, initial suction s0=50kPa): c) Suction-strain response



http://www.editorialmanager.com/jrnemeng/download.aspx?id=170948&guid=f88439cf-803a-4615-b42b-48c300369f01&scheme=1
aharlan
Text Box
Figure 6. Critical axial strain versus net mean stress at onset of strain localization for PSC tests: a) Drained tests



http://www.editorialmanager.com/jrnemeng/download.aspx?id=170949&guid=3c49b8d4-fb10-40a2-a760-c2cb2dc2418d&scheme=1
aharlan
Text Box
Figure 6. Critical axial strain versus net mean stress at onset of strain localization for PSC tests: b) Constant water content tests
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Figure 6. Critical axial strain versus net mean stress at onset of strain localization for PSC tests: c) Undrained tests
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Figure 7. Deformation band orientation at onset of strain localization for PSC tests: a ) Drained tests



http://www.editorialmanager.com/jrnemeng/download.aspx?id=170952&guid=4d4cb0bf-1a85-418d-9fa3-7fc0f446e9a1&scheme=1
aharlan
Text Box
Figure 7. Deformation band orientation at onset of strain localization for PSC tests: b) Constant water content tests
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Figure 7. Deformation band orientation at onset of strain localization for PSC tests: c) Undrained tests
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Figure 8. Eigenvector angle versus net stress for PSC tests: a) Drained tests
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Figure 8. Eigenvector angle versus net stress for PSC tests: b) Constant water content tests
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Figure 8. Eigenvector angle versus net stress for PSC tests: c) Undrained tests




