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3UKMART

This paper is concerned with the "Minimum Total Time Assignment Problem",

which may be stated as follows. !«fe have a network which represents the main

traffic arterials in an urban .a. The number of interzonal movements in

the area is assumed known. In this formulation of the problem, travel time

is assumed to be the signifies at factor in determining the merits of a par-

ticular route. Therefore, in bS e optimal assignment, the total travel time

will be the distribution criterion. A generalized discrete version of the

maximum principle is employe : inia Lze the total travel time. Link travel

times per vehicle are assume- . be constant.

.Through the use of the : Lty Model interzonal movements have been

predicted for Manhattan, Kansas (18). The maximum principle is used to

assign those movements to the sting arterial network on the basis of

minimum total travel time, assuming link tx-avel time per vehicle to be

independent of volume.



INTRODUCTION

In recent years several attempts have been made to formulate and solve

the Urban Traffic Assignment Problem. During the development of transporta-

tion planning techniques, the use of an assignment procedure has become in-

creasingly important. In the early use of assignment techniques the volume

of vehicles assigned to any particular link in the network often did not

correspond with the flows that occurred in the real network. However, the

technique did provide the engineer with a general indication of the volumes

to be expected and the level of service being provided by the network under

evaluation. In 1952, the technique was summed up as follows:

"Traffic assignment is fundamental to the justification of a proposed

highway facility and to its structural and geometric design, to spotting

points for access and for advance planning of traffic regulation and control

measures. As yet, traffic assignment is considered to be more of an art than

a science.. •" (l)

Since 1952, the large urban area transportation studies and other planning

agencies have developed assignment procedures to the point where less and less

emphasis is placed on personal judgment. The net result of this intensive

development activity has been the creation of several different traffic assign-

ment techniques.



REVIEW OF LITERATURE

Distribution criteria can be stated in different ways. In the trans-

portation literature the first attempt to reach an explicit statement of such

criteria was made by J. C. Wardrop in 1952 (2). He suggested two different

possibilities. The principle of equal travel times says that^in the optimal

assignment, the travel time between two points will be the same on all routes

used and less than the travel time of even a single vehicle on any other route

between the same two points. The principle of overall minimization says that

in the optimal assignment the average travel for all travellers in the system

has its minimum value.

In his paper in 1956, E. Wilson Campbell (3) presented the coding tech-

niques and machine procedures worked out by the Detroit Staff to facilitate

rapid machine assignment. The allocation of trips to expressways was based on

combinations of distance and speed ratios. There are several features that

contribute to the speed and workability of this system. First, the alternate

distances can be rapidly and accurately estimated by a machine technique.

Second, the concept of treating an expressway trip in parts and matching parts

together to form trips eliminates the necessity of reviewing each zone to zone

transfer and makes coding vastly simpler. Finally, the adaptability of this

procedure to high speed computing and summarizing makes possible a tremendous

conservation of time.

J. Douglas Carroll, Jr. (4) developed in 1959 a method which would

rapidly assign travelers to the surface arterial streets as well as to ex-

press routes and also to rapid transit and surface transit routes.

In 1961, N. A. Irwin, N. Dodd, and H. G. Von Cube (5) presented a paper

describing a systematic model for predicting vehicular traffic flow using



high-speed electronic computing techniques. This model contains a direct

feedback mechanism by which capacity restraints and the resultant congestion

are allowed to affect route generation, trip distribution and vehicle assign-

ment in successive programs to give promising results. The use of capacity

restraints and the resultant feedback of congestion effects by means of

travel time is felt to be essential in traffic simulation programs.

The diversion curve technique is one in which the total number of trips

between an origin and destination are divided between two routes, one of

expressway characteristics and the other an arterial or equivalent highway

(6), (7), (8). The technique originated as a solution to the problem of

locating a single expressway relative to some existing highway. The diversion

curves are based on data obtained from observations at other locations where

two "similar" facilities exist. Diversion curves have been developed for a

variety of parameters such as time saved by using the expressway and ratio

of time by expressway to time by alternative. Similar expressions relating

to distance have also been used, and in some cases curves have been developed

relating the cost differences between using the expressway and some other

facility. In each case a curve indicates for a given value of the parameters

used, such as time saved, the percentage of drivers that will use the express-

way.

B. V. Martin (9) discussed in I963 the results of a comparison of

several minimum path algorithms that may be used in transportation planning.

The algorithms considered include those of Moore, the Road Research Laboratory,

Shimbel and a modification made by the author of the Road Research Laboratory

algorithm. An attempt was made to relate the most suitable algorithm to

three characteristics of network: the number of links; the number of nodes;



and, the link-node ratio.

Morton M. Schneider (10) suggested resolving the traffic into trips,

each with an origin and a destination, then finding the best path through

the network for each trip and noting the aggregate appearances on every

network member of trips following these paths.

W. W. Mosher, Jr. (11) presented a "capacity restraint" algorithm

which permits the evaluation of network performance based on arbitrarily

selected network figures of merit. The values of these figures of merit

depend on network loading, and are governed by individually determined link

performance functions. Each link performance function may be any linear or

nonlinear function relating link flow to cost (e.g., distance) for that

flow. Once a performance function is established for each network link, the

network can be loaded in an optimum manner either by minimizing the figure

of merit for the entire system or by equalizing the path figures of merit

over appropriate sets of paths.

Joseph A. Wattleworth and Paul W. Shuldiner (12) introduced some of the

basic concepts and computational techniques of linear programming as applied

to traffic assignment. The linear programming technique is used to obtain

partial solutions to the Charnes-Cooper multi-copy (multi-origin) problem

which permits the placing of capacities on individual links and guarantees

an optimal (minimum travel time) solution. A method of enlarging the network

to place restrictions on turning movements is also presented. Such restric-

tions as time penalties and prohibiting individual turns were evaluated.

These could be incorporated into either the linear programming or minimum

time-path models.

Charles Pinnell and Gilbert T. Satterly, Jr. (13) presented an application



of a linear programming model (the multi-copy missing model developed by

A. Charnes and W. W. Cooper) as a solution to the problem of arterial street

system analysis. The example presents a specific use of the technique, that

of holding a freeway volume at or below a fixed amount and developing the

resulting optimum flow pattern in the system. It is shown that the results

of simulation can be used as a guide to determine those control measures

necessary for optimum use of the street system. It is also illustrated that

the non-linear travel time vs. volume curve (delay curve) can be piecewise

linearly approximated and included in the traffic assignment procedure in

order to simulate closely the actual traffic behavior in a street network.

In 196^, Brian V. Martin and Marvin L. Manheim (1*0 described an

incremental traffic assignment technique which had been incorporated into

a more general traffic assignment computer program, which can be used for

the comparison of several of the traffic assignment procedures in use today.

Thus, in its brief history, traffic assignment has been developed from

a completely manual task to a highly automated, versatile, and powerful

tool for transportation systems planning.
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DI MAXIMUM PRINCIPLE

In recent years, engineers have become more and more concerned with

optimization. A simple optimization problem corresponds to the finding of

,

the extreme value of a function in calculus. This can be accomplished by '

differentiation. As the problem becomes more involved, partial differen-

tiation and the calculus of variations may have to be used. Hore often

than not, optimal problems in engineering and industry cannot be solved by

direct applications of these conventional mathematical methods. A variety

of approaches more sophistic a the conventional methods has been

proposed to solve complex pro m.:: . . laong them are Dynamic Programming

and the Maximum Principle.

The maximum principle is >ptii iaation technique which was first

discovered by a Russian mat:., ian, Pontryagin in 195° 0-6). The first

attempt to extend the maximum principle to the optimization of stagexri.se

processes which are linear in the state variables was made by Rozonoer

in 1959 (17).

Dr. L. T. Fan, Professor of Chemical Engineering at Kansas State

University and C. S. Wang have recently accomplished a major break through

in the development of a discrete version of the maximum principle (15).

The transformation- of the process at the n-th stage is described by

a set of performance equations

Ai ~ xi ^1 » *2 » •••» A
s ' 1» e2» •••» et<)

i = 1, 2, ... , s

or in vector form

n n n-1 n
X = T (X ,G ), n = 1, 2, ...N



where T
11

is called the transformation operator. X
11

is an s-diraensional

state variable, and 8
n

is a t-dimensional decision variable.

A stage may represent any real or abstract entity, e. g., a space unit, i

a time period, or an economic activity, in which a certain transformation

takes place. Those variables which are transformed in each stage are called

state variables. The desired transformation for the state variable is

achieved through manipulation of decision variables which remain or may be

considered to remain constant within each stage of the process.

A typical optimization problem associated with such a process is to

find a sequence of 8
n

, n = 1, 2, ... N to maximize, .2 C=Xy. Here &.,
i—1 — -! X

i = 1, 2, ... S are some specified constants. The function, .£ CX-, which
1

I

is to be maximized, is the objective function of the process.
I

The procedure for solving such an optimization problem by the discrete
1

maximum principle, is to introduce an s-dimensional covariant vector, Z
n

, and

a Hamiltonian function, H
n

, satisfying

s ,
l

Kn = S z? T? (X*
1-1

, en), n = 1, 2, ... N (1) I

i=l
x ~

Zj_ = —-j£7£ , i = 1, 2, ..., s; n = 1, 2, ..., N

^i
or in vector form

Z
n-1 = - T̂ , a = 1, 2, .... N (2)

dr1-1

and

Z[ = C± ( for fixe ob ms), i = 1, 2, .... s and to

determine the optimal sequence; ::.
-

the decisions, 8
n

, from the conditions



Hn = maximum, n = 1, 2, ..., N, at the boundary and —•
se
n

at interior points.

Both X and 2 are considered as fixed in maximizing the Hamiltonian.

If the minimizing sequence instead of the maximizing sequence of the

decision vector is to be determined, the procedure remains unchanged except

that the condition, H
11
= maximum, is replaced by K 1

= minimum.

In a word, for a process with all the performance equations and the

initial and/or final values of some of the state variables given, find the

values of the decision variables at each stage, subject to certain constraints,

in such a way that the objective function is maximized or minimized.
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GENERAL FORMULATION OF THE PROBLEM

This section defines the step-by-step procedures that occur during a

complete traffic assignment. Traffic assignment may be defined as the

process of allocating a given set of trip interchanges to a specific trans-

portation system. The traffic assignment procedure in this paper is based

essentially on the selection by the maximum principle of a minimum-time path

between zones.

Definitions :

1. Objective function - a linear combination of the variables to be

optimized by the selected solution. In this model the total travel

time accumulated by all vehicles is to be minimized.

2. Zone centroid - a point of trip origin or destination.

3. Node - a point where segments of the arterial street system connect.

4. Link - a connection between two nodes representative of a segment of

the arterial street system.

5. Path - a series of connected links representative of a trip route.

6. Network - the combination of all links and nodes.

Notation:

X^'
m

- state variable for flow from node (n, m).

8*' - decision variable at node (n,m).
J

t^
,m

- basic travel time per vehicle via the node (n,m) on link j.

Kj' - travel time coefficient at node (n,m).
J
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where j = 1, for horizontal link

j = 2, for vertical link

n,m . .

H - Hamiltonian function at node (n,m).

\'
n,m

_ total desire (Vehicles) via node (n,m)

In Figure 1, the numbers on the links which connect nodes denote the

time function between the nodes. Suppose that the problem is to find the

least-time path from node (1,1) (origin) to node (3,3) (destination) with

an additional restriction that the passages will be allowed along any path

only in the directions preassigned. Common sense tells us that we can

enumerate all possible paths between node (1,1) and node (3,3) » and then

pick the one whose travel time is smallest.

(1) path (1,1) - (1,2) - (1,3) - (2,3) - (3,3) = 23

(2) path (1,1) - (1,2) - (2,2)-- (2,3) - (3,3) = 18

(3) path (1,1) - (1,2) - (2,2) - (3,2) - (3,3) = 14

(4) path (1,1) - (2,1) - (2,2) - (2,3) - (3.3) = 14

(5) path (1,1) - (2,1) - (2,2) - (3,2) - (3,3) = 10

(6) path (1,1) - (2,1) - (3,1) - (3,2) - (3,3) = 15

The least-time path is the 5th one listed, i. e., (1,1) - (2,1) - (2,2)

- (3,2) - (3,3). whose total time is 10.

But enumeration of all the possibilities would be prohibitive in a

problem of practical size.

We vail now show that this particular traffic assignment problem can

be readily solved by means of the discrete maximum principle. This method

works so well in solving such a problem that numerical solutions can often

be reached by hand calculations.

Suppose that there is an n x m network as shown in Figure 2. The
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directions of flows in the links and total vehicles leaving the network

at each node, Vn,m , are prescribed. Let 6^'
m = that fraction of the volume

entering node (n,m) which is assigned to the jth link as it leaves node (n,m).

Kj.' = travel time coefficient of left turn penalties at node (n,m).

• n in

K^ = travel time coefficient of right turn penalties at node (n,m).

If there are n x m nodes, the : oblem is to determine the quantities Q
1?'" 1

,

3=1, 2, to minimize the total travel time

N,M
Xo (horizontal links; plus

N K
Xh' (vertical links).

Ws assume that link travel time is constant and does not vary xvith the number

of vehicles on the link. We further assume that V^
,Itt

is split up in such
-

a

way that ^'m/2 is on the vertical link and V^^/z is on the horizontal

link as shown in Figure 2. That is we assume there is no input or output

right at the node except the destination node. This assumption enables us

to determine the number of left or right turns at each node. For each copy

there is only one destination multiple origins.

For the problem described above and considering each node as a stage,

we can write the following performance equations

x
n,H _ e

n, H
(x
n,n,:

_ ; ..^ + ft _
^.a^-l.*

_ y
n,^ ^

£° = (1 - e;«
H
)(. r'-

1
- V

n 'm
/Z) + #(£*•? - v

n -a
/2) (4,

# = %**+ $» l^X'®"
1

- v
n -m

/z) + (1 - #»>

(^-X ' n
- V
'

72) j + 4-m(l . $*)<£** - +*M (5)
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2* J

|v"
2
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2
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(x
n-l,m

_ ^../2)j + K
n,m

(i _^ ^n.m-1
_ ^.^

(6)

Here Xj
,m

, j « 1, 2, are the state variables representing the number of

vehicles from node (n,m) in the horizontal and vertical links respectively.

VJiere Xo
,m

and X?,B, the sum of which are to be minimized, represent the

total cummulative travel time up to node (n,m) in the horizontal and vertical

links respectively.

The Hamiltonian function can be written as

^.a
= z

n,m [gj*^** . f.*Jz) + (l . g^og** - V*»/2)]

+ %'m [<i - e^KxJ'
1*-1

- ^m
/z) + e^Cxf

1 ' 1
* - ^lz)\

+ z*'
m
ix^"

1
* kJ'*

1

[eJ'X*
21-1

- v^'/a) + d - e
n
2

'm
)

(x
n-l.m

_ y
n,m

/2)J + |£»& _ e
n.m

)(x
n-l.a _ y

n,m
/2) j.

+ ^.{^N #a
j> - gJ'VJ'*'

1
- v

n 'n
/2) + e^

m

(x
n-l,m

m v
n,m

/2)j +^ _ Q
n,m

)(x
n,m-1

_ v
n,m

/2)^ (?)

where Z = covariant vector. The values of 6^'
m

, j = 1, 2, are determined

in such a way that IT
1 ' 111

is a minimum.

Applying equation (2), Z
11" = -•£- -r , n = l, 2, ..., Nto this problem

SX
n_1

gives

z
n,m-l

mj^ =
n,m n,m £.* _ »,^ ^.m

e
n,m

_n,m-l a a • « x xx

+ 4'm(i - e£'
m

) + 4>m(i - ej'
m

) (8)

SX-l
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and

n,m, „n,m.
T,n»m „n,m ._»

+ icL (i - e2 ) + k2 e2 (9)

where Z^' = zj?
1 = 1* However, it should be noted that the recurrence

relation of the state variables is applicable only when the minima of the

Kamiltonian functions occur at stationary points and the optimal decisions

so obtained lie within the constraints.

For this problem, the minima do not occur at the stationary points

since the Hamiltonian function is linear in the decision variables. For

such a case, the optimal decisions are either the lower bounds or the upper

bounds of the decision variables. Therefore, a minima-seeking method

instead of the recurrence relation should be used.

There are several computational procedures which can be used to solve

problems to which the recurrence relations of the state variables are not

applicable. All such procedures employ one type or another of trial and

error technique.

Through the use of the equations for the covariant vectors obtained

in the last section (Equations (8) and (9)) it is possible to solve this

problem by back and forth calculation. The procedure for this method is

as follows:

1. Assume 8's for all stages.

2. Starting at node (1,1) work forward through the network calculating

all X's.

3. Start from the destination node and work backward to calculate the

covariant vectors at each stage in terms of the 9's at that stage.



tf

k-» Minimize the Hamiltonian function at each stage, in turn, thus deter-

mining the desired value of the decision variables at each stage.

5« Return to step 2 and repeat mtil two consecutive sets of decision

variables are identical.

The technique may be simply illustrated in the following example.

In Figure 3. suppose that the problem is to determine the optimal

path from the origins (1,1) and (2,1) to the destination (3i3)» assuming

that V
11 = -4, V

21 = -4 and V^ = 8. The direction of flow in each link

is preassigned. For convenience in calculation, let us assume K7 * =3
I

and X
'

'
= 1. The link X's are assigned as shown in the figure.

Since the HamiliIonian function is linear in the decision variables, i.e.,

the minimum occurs at the boundary, the values. of the Q's at each stage are!

one or zero. Kence, let us arbitrarily assume 6's throughout the network
1

as follows:

e^*
1
= 1, G^ 1 = 0: ^' 2 = 1, G^*

2 = 0;

, e^'
3 . 0,

1 ? " 2 1
Op = ±, z-, — 0, y.p — x;

.
•

. 2,2v =1,

«p-i. g
3 ' 1 = -

'

•

= i, e
3 ' 2 = 0.

We can now work forward i . rting ^om stage (1,1) for X's by application

of the equations (3), W, (5) and (6) is follows.

-t
1
= ». 4' 1

= 0, -r
1

= 35, xj'
1
= 0;

' £'*-». xl'
2
= 0, 4'

2
=286, xj'

2
= 0;

x^ 3
- 0, X^'

3
= *, X3'

3
=286, xj'

3
= 204;
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(1,0 !<£ 20 (1,2) KP= 50 (|,3)

K^ = 25
<

42 =50

(2,1)
K? = 20

(2£
K
2,2 =20

(2,3)

K%}»50 k|'
2
= 50

(3,1)
K3,I = 50 (3

?
2) Kf»2=20 (3,3)

43=50

K|
3
= 80

Fig. 3. Network
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X1
,:L

= °» X2
,:L

*• 4'
1 = °» X4

,:L = 202;

x
i'

2
= °i x2*

2
- °. 4'

2
°. 4' z

= °5

X
2 ' 3 = 0, X

2 ' 3 = 4, Xj'
3 = 0, X

2
/
3 = 524;

X
3,1

= 4, X
3,1 - 0, X

3,1
=212, X^'

1 = 202;

:J'

2
= 4, x

3 » 2 = o, xP=292, xP = o.X

The total travel time for this assumption is

x3 + Xi,,' -+. X^' -j. X-j' = 1304 units.

By application of the recurrence equations for covariant vectors

(Equations (8) and (9)), we now work backward starting from the destination

node (3,3). We obtain Z^'
2
= Z

2 ' 3 = and zj*
1 = 20, Z^' 3 = 80, z|'

2 = 81,

Z2
' = 23. Then, by equation (7), we obtain H

2 ' 2 = 0. Therefore H
2 ' 2 is

independent of
2 ' 2

, so let us arbitrarily choose G?'
2 = 1 and 6

2 ' 2 = 0.

Then, at stage (2,1) Z^'
1
= 101 and zf'

1
73. Therefore, if Q

2 ' 1 =

and
2

* = 1, H
2,1

= 494. Now let us assume 6
2 ' 1 = 1 and G

2,1 = 0, then

2,1
H = 490. Let us then assume that all cars have no turns at node (2,1),

2 12 1 2 1
i.e., 8£' =

2
* = 1, then H * = 488. Now let us assume that all cars

have turns at node (2,1), i.e., 6
2
/
1
= G

2
/1 = 0, then H

2 '1 = 496. Obviously,

2 1
H for all cars having no turns at node (2,1) is less than that for the

other three cases. We, therefore, choose the least Hamiltonian function,

i.e., G
2 ' 1 = 8

2 ' 1 = 1.

At stage (1,3) the boundary conditions dictate the value of 9
1 ' 3

and 6
1,3

.

1 2

Then at stage (1,2) Z^'
2
= 131 and Z2

' 2 = 104. Therefore, H
1 ' 2 = 810

for
1

' = 1 and 6
2

' 2 - 0. Now let us assume G^'
2 = and G

2
' 2

1, we
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1 2
obtain H = 706. Let us then assume that all cars have no turns at node

(1,2), i.e., e?"'
2
= G*'

2 = 1, then H
1 ' 2 = 810. Now let us assume that all

1 2
cars have turns at node (1,2), i.e., 0-^' Gg'

2 = 0, then H ' = 706.

12 12
Hence, we determine either 6,

' = and Gp'
:

= 1 or G^»
2 = Gg'

2 = 0. We

will arbitrarily choose G*'
2 = and G*'

2
= 1.

Finally at stage (1,1), Zj* = 181 and Z^*
1 = 123. Therefore H

1,1
= 810

for G^*
1 - 1 and el*

1
= 0. Let us assume G^'

1 = and Q*' 1 = 1, we find

H
1 '1 = 594-. Let us then assume G^'

1
= G^'

1 = 1, then H
1 '1 = 698. Now let

us assume G^'
1
= Q^'

1
= 0, then H

1 '1 = 706. Hence we choose the least

Hamiltonian and determine 6^* = and G2
' = 1 at stage (1,1).

Hence, we obtain a new set of G's in the first iteration as follows;

G^'
1 = 0, G^1 = 1; G^»

2
= 0, e^-

2
= i:

e
i'

3 = °» Q
l*

3 = 1; e
i
#1 = lf e

2
/
1 = 1;

G
2,2 =l, 8

2 ' 2 = 0; 6
2 ' 3 = 0, eJP = 1;

G
3,1 = 1,

3,1 = 0; G
3 ' 2 = 1, e2'

2
" 0-

Likewise, for the second iteration, we obtain all X's by application

of equations (3) to (6) as follows.

ij'
1
-

* 4
,1 = 4

»
x
3

,1 =
» xj*

1
= 102;

xJ»
2 =o, 4'

2
= o, x^ 2

= o, Xj'
2
= 0;

xj'
3 = o, 4' 3 = 0, X*'

3 = 0, i'
3 - 0;

x
2 '1 = 2, y^'

1
= 6, x

2 '1 = 40, , x
2 '1 = 252;

X
2,2

= 2, xl'
2
= 0, X3'

2
= 80, , xj

,2 =0;
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ti'
3
= °. 4.'

3
- 2

»
x
l'

3
8o

»
^' 3

= i62;

J'

1 = 6, X^'
1 = 0, X^'

1
=318, XjJ'

1
= 252;

l'

Z
= 6, X^'

2
= 0, X^»

2
=438, X^

2
= 0.

2 3 2 3
Hence the total travel time for the second iteration is xy*'.* ty +

xl'\ X^'
2
= 932 units.

By application of equations (8) and (9)i we obtain zj' = 1^ =

and Z^'
1 = 20, Z

2
' 3 = 80, Z^'

2 = 81, Z§»
2 = 23. Then, by equation (7),

we obtain H
2 ' 2 = 262 for

2 » 2 = 1 and
2,2

= 0. Let us assume 9
2 ' 2 =

2 2 2. 2
and

2
' =1, then h' = 148. Let us then assume that all cars have no

turns at node (2,2), i.e., Q^ =
2

' = 1, then H
2 ' 2 = 242. Now let us

assume that all cars have turns at node (2,2), i.e., 6,* =
2

' = 0, then

IF* = 188. Therefore, the minimum Hamiltonian K ' = 148. Hence we choose

2 2 9 9
the least Hamiltonian and obtain 6,* = and So ^ a* stage (2,2).

At stage (2,1), we find that the minimum Hamiltonian is obtained when

6
2 ' 1 = 1 and ef'

1 = 0. Thus Z
2
/
1 = 74 and Z

2
,*
1 = 73.

At stage (1,2), minimization of IT' occurs when e£ ,<: = and QZ* = 1.

Thus z\
tZ = 131 and Z^'

2 = 73.

Finally, at stage (1,1), we obtain the minimum Hamiltonian when Q-, ' =

and Gg'
1
= 1. Thus Z^*

1
= 124 and Z^'

1 = 97.

Hence, we obtain another set of G's in the second iteration as follows:

&1'
1
= 0, e^'

1
= Is ej'

2
= 0, e

2
* 2 = l;

e
i'

3
°- e2*

3
" 1: e

i
,:L

= l
»

e2
,:L

°>
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e
2 ' 2 = o, o

2 ' 2 = l; e
2,3 = o, sip = l;

e
3,1 = l, e

3 '1 = o; e
3,2 = l, e

3 ' 2 = o.

Similarly, for the third iteration, we obtain all X's by equations

(3) to (6).

4'1 *. X3'
1
= 0, xj*

1
= 102;

? - o.
1,2

x2 = o. X3'
2
= 0, xj*

2
= 0;

i'
3 = o. x^ 3

= o, X3'
3 = 0, xj'

3 = 0;

X
2,1

= 8, Xg'
1
= 0, X3'

1
= 178, X

2
/
1
= 102;

X
2 ' 2

= 0, X?/
2
= 8, if

2
= 178, X

2,2
= 408;

X
2,3 = 0, X?/

3 = 0, x|'
3 = 178, X

2
/
3 = 0;

X
3 '1

= 0, X^'
1
= 0, X^*

1
= 0, X^'

1
= 102;

xj'
2
= 8, x|'

2
= 0, X^*

2
- 184, X^'

2
= 408.

2 3 3 1 3 2
Hence the total travel time for the third iteration is X3 + X^' ^ Xo' 4.

XjJ»
2 = 872 units.

3 2 2 3
Likewise, by equations (8) and (9), we obtain K* = Zg = and

Z
3,1 = 20, Z^'

3 = 80, z
2,2 = 81, z|*

2 = 23. When we repeat the iterative

process, we find that the last two consecutive sets of decision variables

are identical. Therefore, we determine that for v ' = -4, V^' = -4 and

V3,3 = 8, the least-time path for V
1 *1 is (1,1) - (2,1) - (2,2) - (3,2) -

(3,3); and the least-time path for V
2 '1 is (2,1) - (2,2) - (3,2) - (3,3).

It took three iterations to solve the 2x2 network problem. The
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number of iterations may increase with increasing dimension of the network.

Figure k shows the number of iterations vs. the total travel time for the

example demonstrated above. However, the process may be further simplified

if we observe that there is only one possible value for each covariant vector

1-1 " if e
i* has Deen selected. Likewise there is only one value of 2%~^ ,m

if 6
2

' has been selected. Therefore if we start at the destination node

and work backward from it as we did in the previous example, we find Z? =

z|'3 = and Z^'
1 = 20.

At node (2,2) it is necessary now to determine the relevant value of

the covariant vectors Z^'
2 and z|'

2
. This can be accomplished for Z

2 ' 2 by

simply adding z|
,3

«# K§*3 -*- Kjp (see equation (8)). The value of Z
2
/
2

can

be found by adding Z^'
2

-*- K^ ,2
-f- K^'

2
(see equation (9)). If we add Z

2,2+
K£* and compare that value to 7

2 ' 2+ k| ,2 + K
2
/
2

we can determine by

inspection the desired values for e|»
2

. If Z
2 ' 2+ K

2 ' 2 is smaller than

z|'
2
+ K

2 ' 2 + K
2 ' 2 then 2

/
2 should equal 1. If the reverse is true, 6

2 ' 2

should equal in order to minimize the Hamiltonian. If we add Z
2 ' 2

-j- K2,2

and compare that value to z|'
2 + K

2
' 2 + K^'

2
we can determine the desired

2 2
value of 0g . Likewise, at node (2,1) it is necessary now to determine

the relevant values of the covariant vectors Z?' and Z
2
/
1

. This can be

accomplished by use of equations (8) and (9). If we add Z
2 * 1

-*- K
2,1

and

compare that value to Z
2,1 + K

2,1+ K
2 '1 we determine by inspection the

desired value for e
2 '1

. If we add z|
,:L+ K

2
/
1

and compare that value to

2 1 2 1 ? 1
\* + S£* + \' we determine by inspection the desired value for 6

2
/
1

.
Cm

Similarly, we proceed to node (1,3). Since the boundary conditions dictate

the value of
6
J' 3 and 8^' 3 , we determine Z^' 3 simply by adding zjH + K?» 3 .

At node (1,2), the value of Z^'
2

can be found by use of equation (8). The
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value of zi*
2

can be determined by use of equation (9). If we add Zj* +

id"*
2

and compare that value to Z
2

' 2+ K^'
2:

+ id'
2
we determine by inspection

the desired value for 07* . If we add Z
2

' 2+ K^'
2 and compare that value

to zh 2
-t K^ ,2 -f K^*

2 we determine the desired value for Q^*
2

. Finally,

we proceed to the final stage at node (1,1). The value of Z^' , Z
2

*

can be found by use of equations (8) and (9). If we add Zjt* + K^ and

compare that value to Z2 -J-
K2

* «+ K^» we determine by inspection the

desired value for 6:"» . If we add Z« + K^ and compare that value to

Z=l' -f X^' -t K* we can determine the desired value of Q » .

Therefore, by this technique, we can determine the minimum time path

by just one iteration. Now, let us apply this technique to the previous

example.

We start at the destination node (3,3) and work backward from it, we

find Z3 ' 2 = zip = and Z
3,1 = 20. At node (2,2), Z

2

/
2
= Z2

' 3 + K
2

' 3+

K
2 ' 3 = 81, and Z2

' 2 = zf*
3 + K

2,3+ K
2
/
3 = 23. If we add zf'

2+ K
2,2 = 101

and compare that value to z|'
2+ k|'

2
+ k|'

2 = 74, we determine that

e
2

' 2 = 0. If we add Z^
,2

+- K
2 ' 2+ K

2 ' 2 = 104 and compare that value to

Z
2

' + K|» = 73, we determine the value of 8
2 » 2 = 1. Likexri.se, proceeding

to node (2,1), we find Z
2
/
1 = z|'

2+ k|»
2

-|- K
2 ' 2 = 74, and Z

2,1 = Z
3
/
1 *

K
l'
1+ K

L
,:L = 73> If l/e add Z

2

,1
'f K2'

1
"
f" K

r'

1 = 1221 and conPare that

value to Z^-f K
2 ' 1 = 94, we see that 2 *1 = 1. If we add Z

2,1
+ X

2,1
+

K
2 '1 = 97 and compare that value to Z

2 ' 1 * K
2
/
1 = 123, we find that 9

2 ' 1 = 0,

Similarly, we proceed to node (1,3), we obtain Z*' 3 = z|' 3 + K
2
/ 3 = 80.

1 3
The boundary conditions dictate the value of G

2
= 1. Then, we proceed

to node (1,2), we find zj»
2 = z| ,3+ K^'3 -*- Kj^»3 = 131, and Z

2
» 2 = Z

2
' 2

K
2 ' 2 =73. If we add zj

,2
-f- K^»

2
= 181 and compare that value to Z^'

2
-»-



26

12 12 12
K ' + K_* = 124, we determine the value of 8£* to be zero. If we add

Z^
,2+ 4' 2

= 123 and compare that value to Z^
,2
+ &[

,2
-t- K^*

2
= 184, we

12 11
find that e

2
' = 1. Finally, we proceed to node (1,1), we find Z-

L
' =

addZ^
,2 + K^

,2 + K^'
2
= 124 and Z^ 1

= Z
2,1+ K

2 '1
-* K

2 ' 1 = 97. If we

£*\ K^'
1
a 144 and compare that value to Zg'

1
-*- 4'1+ 4' 1 H 123 » w

determine the value of 8^' to be zero. If we add 2L' + IC' + K£» «

147 and compare that value to Z^*
1 * K^ fl = 122, we find that e^'

1 = 1.

Therefore, we determine the least-time path which is identical with the

previous example.

This indicates that for a given set of constant link travel times in

a network, we may build all the trees to seek a minimum time routing between

the points of origin and the point of destination for each individual trip

transfer.
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EXAMPLE

The use of the maximum principle as a tool for traffic assignment will

be demonstrated by the following example. The existing street network of

Manhattan, Kansas was chosen as the example (18).

The street system was simplified to that shown in Pig. 5« This simpli-

fication was made for the purpose of eliminating nodes that were not essential

to a workable description of the network, so that calculations could be kept

to a minimum.

The search procedure begins at a point which corresponds to the destina-

tion zone centroid for the copy in question. From this beginning point the

procedure carries out a search of the network proceeding systematically out-

ward from that zone to every other zone and identifies the route which requires

the least travel time. This procedure insures that the shortest travel route

in terms of the measure used — in this case travel time ~ is shown. Basically,

the procedure is to search outward from a zone (as destination) identifying

minimum path routes successively until the most distant zones have been reached.

This is known as building a "minimum path tree". The descriptive term "tree"

is used because, starting from one zone centroid (destination), there is one

and only one path from that beginning point to each next zone centroid reached.

As successively more distant zones are found, more branches are developed, so

that the entire trace of minimum paths identified would seem like a tree with

the trunk at the zone centroid (destination; and with ever increasing numbers

of branches leading to the outermost zones.

After the minimum path from all origins to a destination (that is, a

"copy") is completed, the trips from the origin zones to a destination zone

can be loaded onto the network routes that have been identified. Each zone
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(I2H- Centroid of the 12th zone

(d) University (b) Central Business District

Fig. 5. Simplified street network.
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thus is taken in sequence (i.e., as a destination) and the process is repeated

until all zones have been treated and all trips have been loaded onto the

netx-jork.

To be able to insert a turn penalty for right and left turns, it is

necessary to preassign the direction of movement on each link. Movements be-

tween links of the same direction involve no turning movements. In this

example, the right turn penalty is assumed to be zero. For left turn penalties,

those with signal light are assumed as 0.20 minutes, and those without signal

light are assumed as 0.30 minutes. These turn penalties were inadvertently

reversed but illustrate the procedure adequately.

The speed from zone centroids to the major street network is assumed as

12 MPH. The speeds for major streets are taken from the report "Manhattan

Guide Plan, 1964-1985" (18).

The external interview stations and internal zones are shown in Figure 6.

The centroid of each zone is determined by judging the present traffic con-

ditions. The internal zone to internal zone nondirectional average daily

vehicle trip data are shown in Appendix A in Table 1, and the external station

to internal zone average daily vehicle trip data are shown in Appendix A in

Table 2. The interchange of through traffic between interview stations is

shown in Appendix A in Table 3* The average travel times are shown in Figure

?. The average travel time from the central business district (C.B.D.) in

minutes is shown in Figure 8. The average travel time from the university in

minutes is shown in Figure 9«

In order to demonstrate that the least-time paths are very sensitive to

the location of the zone centroids, two sets of results were calculated. Case

I was calculated using the best available estimate of the actual zone centroids.
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Fig. 6. The external interview stations and internal zones.
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Case II was calculated after changing the average link travel times on two

artificial links within zone 13. The travel time on the west artificial link

in zone 13 was changed from .30 to ,95 minutes, while the travel time on the

east artificial link in zone 13 was changed from 1.79 to l.lfc minutes. This

change has the effect of moving the zone centroid of zone 13 to the east of

its actual location.
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DISCUSSION OF EXAMPLE

The street system was simplified so that only the major streets xrere

involved in the computation. The traffic volume of some zones, (zones 5, 6,

10, 11, 13, 14, 15, 25, 26, and 28), was not put into the network at a single

point but rather was given a choice of several points of entry into the network

in order to obtain a more reasonable distribution. This was made possible by

adding artificial links, running from the zone centroids to the main network.

These artificial links are shown as dashed lines in Figures 5, 7. and 13- In

order to make a comparative analysis, the distribution of traffic as it would

occur without capacity restraints was developed. For this type of distribution,

the traffic would flow over the minimum path trees as shown in Figure 10.

Let us compare the 1963 average daily traffic volumes assigned to the

major street network by the maximum principle method (Figure 10) with the

traffic volume assigned in the Manhattan Guide Plan, 1964-1985 (Figure 11).

It is not possible to check either method against actual traffic counts on the

various streets as they are not available. It is possible to look at the two

assignments and compare them in a rather general way. For the north-south

direction, there are more cars for the set by the maximum principle method on

Sunset, 14th, Manhattan, and 3rd streets but fewer cars on l?th, 11th and

Juliette. For the east-west direction, there are more cars for the set by the

maximum principle method on Claflin, Bluemont, Anderson, Fremont, part of

Pierre and Yuma and fewer cars on all one way streets, Moro, Poyntz, Houston,

and Colorado. In the Manhattan Guide Plan, 1964-1985 three screen lines

were chosen as a means of comparing actual traffic counts with the volumes

predicted in the above-mentioned report. The screen lines are shown in

Figure 13 and the screen line checks are shown in Figure 14. From Figure 13
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it can be seen that the screen lines in some cases cross some of the

artificial links which were added to the network in order to move vehicles

from the zone centroids to the major street network. In those cases the

number of vehicles on the artificial links which are crossed must be in-

cluded in the total for the screen line involved.

The results across screen line No. 1 and screen line No. 2 by the

maximum principle method are well checked by either the actual counts or

those in the Wilson report. The principal reason there is so much differ-

ence in the count on screen line No. 3 is that there are approximately 4500

more cars on N. Third street (not included in screen No. 3) for the set

by the maximum principle than for the Manhattan Guide Plan, 1964-1985.

Screen line No. 3 was terminated at Juliette in order to eliminate the

circulating traffic in the central business district.

As can be seen from Figures 10 and 11, there are considerably fewer

cars on Poyntz and on the one-way system in the C.B.D. for the set by the

maximum principle method. The primary reason for the very significant

difference in volume on Poyntz is believed to be in the fact that, for the

set calculated by the maximum principle method, the zone centroid for zone

1 was taken as the intersection of Third and Poyntz. This choice enables

cars to come to the C.B.D. centroid without ever being counted on Poyntz.

That is, they can come from either North or South Third Streets and never

appear in the volume shown on Poyntz. This choice of zone centroid also

enables the vehicles from external stations 1, 2, 3» 4, 14, and 22 (approx.

6,000) to reach the centroid of zone 1 without being counted on Poyntz.

One of the very significant problems involved in traffic assignment is

the selection of the correct location for the zone centroids. It is not
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difficult to see that the high volues obtained, by the maximum principle

method, on Third Street as well as Yuma and Pierre would be decreased

materially by moving the centroid of zone 1 westward along Poyntz. This

movement would add travel time, for cars going to the C.B.D. , to most of

the paths which include Third Street, Yuma, Pierre or Bluemont and would

decrease the travel time for cars coming to C.B.D. on Poyntz. West of the

downtown area, for instance where screen line No. 1 cuts Poyntz, the volume

on Poyntz is only 5603 as compared to 11,500 in the Manhattan Guide Plan,

however, screen line No. 1 checks rather well indicating that this volume

difference is made up on other links in the system (primarily Yuma and

Pierre Streets).

The minimum-time-paths are quite sensitive to any changes in the

location of the zone centroids. This fact is demonstrated by the traffic

volumes shown in Figure 12. Only those volumes which were different from

the volumes shown in Figure 10 are shown in Figure 12. The times on two

of the artificial links in zone 13 were changed to obtain this distribution.

The time on the west link vsas changed from .30 minutes to .95 minutes, while

the time on the east link was changed from l.?9 minutes to 1.1^ minutes.

These changes had the effect of moving the zone centroid eastward within

the zone. It can be seen from Figure 12 that some of the predicted volumes

are different by as much as 100$. This gives some indication of the magni-

tude of the changes that could be anticipated if the centroid of zone 1

were moved westward along Poyntz.

The maximum principle method outlined in this thesis should obtain

exactly the same answers as linear programming or minimum-path tree building

assuming that all three start with the same points of reference (i.e. link
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Fig. 12. Average daily traffic volumes assigned to the major street network by

the maximum principle method (Case II ).
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travel times, zone centroid locations, etc.)* Since the above is true,

the only possible explanation of the differences in predicted volumes, is

that the two assignments were not carried out under identical sets of

assumptions concerning the above parameters.
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CONCLUSIONS

The results of this study have indicated that the discrete Maximum

principle technique is a useful tool in transportation systems analysis.

However, there is no particular advantage for the maximum principle in

dealing with linear time fur.- . in traffic assignment. On the other

hand, when dealing with nonlinear time functions, it shows great promise

and further research is indicated.

There is no reason to believe that the assignment by the maximum

principle method is any more ; - ate than the assignment in the Manhattan

Guide Plan, 1964-1985. The differences in them must be attributed to using

different basic assumptions as to the location of the zone centroids, link

travel times, turn penalties, etc.

It was demonstrated that a small change in the location of the zone

centroids, or in the average link travel time assigned to an individual

link, may change rather drastically the route for the least-time paths in

traffic assignment by the maximum principle method when linear link travel

time - link traffic volume relationships are used. This would also be true

if linear programming or minimum time path tree building were used. This

is one of the principle "disadvantages of dealing with linear time functions.

Moreover, there is no convenient way to predict traffic congestion when

linear time functions are used. Therefore it appears that the use of non-

linear link travel times, made possible with the development of the maximum

principle technique, is a necessity if adequate methods of traffic assignment

are to be developed.
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RECOMMENDATIONS FOR FURTHER RESEARCH

There is no particular time advantage in traffic assignment by the

maxajmim principle method, for linear time functions, since in that case

the method of solution is to build all minimum time trees. Also, there

is no convenient way to predict traffic congestion with linear time func-

tions. This is a serious drawback to any method which uses linear time

functions. However, it is possible to introduce non-linear time functions

with the maximum principle techniques thereby making it possible to intro-

duce traffic delay due to congestion and the resulting selection of alternate,

less congested, routes thus more realistically reflecting traffic movement.

Although it was demonstrated as being feasible to use non-linear time

functions during the course of this study, time did not permit the complete

development of the logic to be used. It is important to the efficient

application of the maximum principle for transportation planning use that

further research be undertaken with the objective being to develop the

procedures to be used with non-linear link travel time - traffic volume

relationships in assigning trips to an arterial street network.

Another area which needs further research is that of locating the zone

centroids. As was demonstrated in this thesis, a relatively small change

in the location of a centroid can cause a considerable change in the traffic

assignment. Because this is true it is important that better methods of

determining the locations of the zone centroids be developed. Tnis is

especially true for the zones which have comparatively high volumes. This

normally would include any zones in the C.B.D. and also other zones which

contain high volume traffic generators.
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APPENDIX A



TABLE 1. INTERNAL ZONE TO AND FROM INTERNAL ZONE AVERAGE
DAILY VEHICLE TRIP DATA

50

ZONE 1 2 3 k 5 6 7

1 914 638 372 250 61-4- 1,337 86

2 67 107 93 103 324 42

3 43 7^ 96 222 26

4 41 102 184 15

5 109 394 37

6 402 106

7 2

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28



Table 1 (cont.) 51

ZONE 8 9 10 11 12 13 14

1 553 143 511 1,152 398 2,147 517

2 vh 41 114 328 189 966 171

3 102 28 85 225 120 539 115

fy 85 23 67 186 86 232 91

5 136 33 170 393 218 896 199

6 330 69 335 772 494 2,033 401

7 46 14 27 55 29 97 42

8 99 59 121 298 201 1,084 216

9 6 31 78 55 294 57

10 76 368 180 1,041 146

11 461 463 . 2,226 362

12 91 505 234

13 1,526 1,042

14 140

*5

16

17

18

19

20

21

22

23

24

25

26

27

28

,



Table 1 (cont.

)

52

ZONE 15 16 17 18 19 20 21

1 616 49 89 676 6 362 238

2 270 9 27 65 3 88 56

3 162 8 21 *3 3 55 39

4 154 6 21 33 3 50 36

5 249 10 25 132 3 116 73

6 506 14 44 184 3 212 133

7 53 5 9 39 3 32 22

8 301 13 39 80 3 111 77

9 78 4 10 19 3 28 19

10 202 9 22 133 3 89 69

11 510 16 58 240 4 271 197

12 323 17 38 18? 3 180 123

13 957 132 175 1,719 13 1.339 879

afc 485 14 *3 110 3 182 130

15 348 19 61 131 3 286 204

16 3 8 3 8 5

17 4 11 3 22 14

18 124 4 72 57

19 3 3

20 101 143

21 50

22

23

2h

25

26

27

28
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Table 1 (cont.)

ZONE 22 23 24 25 26 27 28 TOTAL

1 166 118 247 374 612 229 145 13,559

2 40 30 63 131 228 67 33 4,447

3 28 18 41 84 146 45 23 2,870

fc 19 16 34 60 106 44 20 2,131

5 50 34 75 142 223 72 34 4,738

6 93 62 148 305 473 134 77 9,791

7 15 11 19 32 45 24 14 947

8 51 37 83 163 260 94 51 4,847

9 14 10 21 43 68 20 12 1,280

10 37 31 80 134 189 61 30 4,361

11 108 90 232 356 579 184 90 10,302

12 78 65 112 167 278 126 57 5,017

13 525 382 747 1,068 1.133 541 359 24,597

14 73 60 130 231 367 135 59 5,755

15 116 96 210 357 601 257 108 7,663

16 5 4 7 16 28 7 4 423

17 11 9 17 32 9> 20 15 901

18 46 27 72 169 199 32 21 4,633

19 3 3 3 3 3 3 3 96

20 66 50 125 253 316 81 38 4,679

21 55 35 94 202 215 63 30 3,261

22 15 24 50 96 137 38 17 1,976

23 8 41 86 128 29 15 1,519

24 85 248 239 91 31 3,345

25 234 487 169 64 5,706

26 372 253 100 7,843

27
•

49 32 2,900

28 10 1,492

TOTAL TRIP ENDS 141,079
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TABLE 2. EXTERNAL STATION TO INTERNAL ZONE AVERAGE DAILY
VEHICLE TRIP DATA

zone
station

1 2 3 4 5 6 7

1 2,617 113 39 195 518 103 22

2 1,590 91 36 139 146 70 23

3 702 42 22 82 120 27 3

4 803 39 21 78 68 58 6

6 1,366 174 91 185 229 303 20

7 502 26 14 42 27 34 15

11 124 6 9 5 12 54 5

14 221 14 5 38 19 16 5

15 223 43 19 19 28 8 2

18 538 57 26 33 43 68 3

22 63 5 2 47 8 2

28 165 15 4 7 8 15

TOTAL 8.91^ 625 286 825 1,265 764 106
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Table 2 (cont.)

zone
station 8 9 10 11 12 13 14

1 123 21 399 225 106 215 115

2 228 30 75 75 48 183 82

3 54 16 59 40 32 123 19

4 56 9 79 59 31 189 71

6 206 52 24-2 292 108 390 209

? 34 12 4-2 50 61 275 59

11 53 3 17 117 151 1,037 113

14 36 5 15 18 11 63 5

15 35 31 36 19 14 33 15

18 85 2A- 28 57 106 444 69

22 5 3 52 35 31 123 11

28 33 3 2 30 38 210 17

TOTAL 948 199 1,046 1,017 737 3,285 785
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Table 2 (cont.)

zone
station 15 16 17 20 21 22 23

1 187 20 23 23 31 14 33

2 95 13 32 34 51 19 46

3 73 17 2 5 11 11

4 86 8 14 21 29 14 26

6 188 35 64 39 94 29 67

7 64 5 5 27 23 12

11 141 10 10 49 61 57 66

14 28 2 8 5 8 2 14

15 43 2 19 9 2 2

18 156 6 13 71 105 50 28

22 5 3 10 5 4 8

28 50 3 5 15 68 3 20

TOTAL 1,116 99 213 274 493 228 333



Table 2 (cont.)

57

zone
station

25 26 27 28

1 25 18 29 98

2 40 14 58 55

3 8 5 13 31

k 32 14 24 24

6 83 32 41 94

7 151 5 63 41

11 46 26 40 38

14 11 4 2 3

15 7 4 2 15

18 77 26 78 15

22 6 5 3 4

28 279 23 30 13

TOTAL 765 176 383 431 •

From Kansas State Highway Commission 1962 Survey Data.
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LIST OF SYMBOLS

DISCRETE MAXIMUM PRINCIPLE

c constant in objective function

H the Hamiltonian

n the n-th stage

N the N-th stage or the total number of stages

s total number of state variables in each stage

t total number of decision variables in each stage

T transformation operator

X state variable

Z an s-dimensional covariant vector

e decision variable

GENERAL FORMULATION OF THE PROBLEM

state variable for flow at node (n,m)

n,m
9
J

decision variable at node (n,m)

n,m
basic travel time per vehicle via the node (n,m) on link j

n,m
travel time coefficient at node (n,m)

where j 1, for horizontal link

= 2, for vertical link

H
n.m

Hamiltonian function at node (n,m)

n,m
V total desire (vehicles) via node (n,m)

#" travel time coefficient of left turn penalties at node (n,m)
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KR
'

travel time coefficient of right turn penalties at node (n,m)

n.m
X3 total travel time for horizontal links

%' total travel time for vertical links

Z covariant vector
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This work consists of four parts. In the first part, the context and

scope of traffic assignment by different methods are outlined. The litera-

ture review has been presented from 1952 up to 1964. A brief historical

development of traffic assignment is sketched. The second part is concerned

with the discrete maximum principle. A brief description of the application

of the principle has been introduced.

Part three deals with the general formulation of the problem. That is,

how a traffic network problem solved by the discrete maximum principle is

formulated. The maximum principle is used to assign traffic movements to

an arterial network on the basis of minimum total travel time, assuming link

travel time per vehicle to be independent of volume.

The recurrence relation of the state variables is applicable only when

the minima of the Hamiltonian functions occur at stationary points and when

the optimal decisions so obtained lie within the constraints. For this

problem, the minima do not occur at the stationary points since the Hamiltonian

function is linear in the decision variables. For such a case, the optimal

decisions are either the lower bounds or the upper bounds of the decision

variables. Therefore, the minima seeking method instead of the recurrence

relation should be used.

The procedures of the minima seeking method used were described in this

work. A short cut has been found for determining the least-time path. The

short cut indicates that, for a given set of constant times in a network,

we may build all the trees to seek a minimum time routing between the points

of origin and the point of destination for each individual trip transfer.

In the final part, the existing street network of Manhattan, Kansas

was chosen as an example to demonstrate the use of the maximum principle



as a tool for traffic assignment. A turn penalty for right and left turns

was inserted into the problem. Also, in order to show the sensitivity of

average travel times in affecting the least-time paths chosen, two solutions

of the problem have been calculated. The problem was successfully attacked

by the method developed in this work.


