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Abstract 

This research is devoted to studying statistical inference implemented using the Gibbs 

Sampler for a hierarchical Bayesian linear model with first order autoregressive structure. This 

model was applied to global-mean monthly temperatures from January 1880 to April 2008 and 

used to estimate a time trend coefficient and to test for the existence of global warming.  The 

global temperature increase estimated by Gibbs Sampler was found to be between 0.0203Ԩ and 

0.0284Ԩ per decade with 95% credibility. The difference between Gibbs Sampler estimate and 

ordinary least squares estimate for the time trend was insignificant. Further, a simulation study 

with data generated from this model was carried out. This study showed that the Gibbs Sampler 

estimators for the intercept and for the time trend were less biased than corresponding ordinary 

least squares  estimators, while the reverse was true for the autoregressive parameter and error 

standard  deviation. The difference in precision of the estimators found by the two approaches 

was insignificant except for the samples of small sizes. The Gibbs Sampler estimator of the time 

trend has significantly smaller mean square error than ordinary least squares estimator for the 

smaller sample sizes studied. 

This report also describes how the software package WinBUGS can be used to carry out 

the simulations required to implement a Gibbs Sampler. 
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Preface 

In a remarkably short period of time, the Gibbs Sampler, a type of Markov chain Monte 

Carlo simulation (hereinafter, MCMC) has emerged as an extremely popular and useful tool for 

the analysis of complex statistical models. This approach is often used in the field of Bayesian 

analysis, which requires evaluation of complex and often high-dimensional integrals to obtain 

posterior distributions for unobserved quantities of interest such as unknown parameters, missing 

data, and predicted observations. In many settings, alternative methodologies, like asymptotic 

approximation, numerical quadrature, or non-iterative Monte Carlo methods, are either infeasible 

or inaccurate.  

This project is a simulation study using the Gibbs Sampler to carry out a Bayesian 

analysis and to assess its behavior using frequentiest indicators. The original idea for my 

research was inspired by a hierarchical Bayesian modeling and analysis carried out by Scollnik 

(2001). 

 My project has three goals: 

(1) Modify Scollnick’s model to incorporate a time trend and to apply this model to testing 

for the existence of global warming. 

(2) Describe the software package WinBUGS and how it can be used to implement the 

Gibbs Sampler. 

(3) Use the developed model to analyze global monthly temperature data, obtain the Gibbs 

Sampler estimates by using WinBUGS software, and draw conclusion about existence of 

global warming. 

(4) Design a simulation study to generate data from the research model with fixed 

parameters and use WinBUGS to estimate these model parameters.  

In addition, I evaluate the behavior of the estimated posterior means obtained from the Gibbs 

Sampler in terms of bias and mean square error and compare them to the corresponding 

properties of the ordinary least squares estimators.  



Chapter 1. Theoretical Background and Studies in the Field  

1.1 Bayesian Paradigm 
Suppose, that an observable random variable Y has a density function ݂ሺ y | ሻ, 

conditional on the parameter vector, 

ψ

1 2 p( , ,..., )ψ ψ ψ=ψ  lying in a set E. Bayesian inference about  

parameter ψ begins with specifying what is called a prior density ( )π ψ  on the parameter space E 

which represents what is known or believed about ψ before any data are collected. Hereinafter, I 

use symbols such as (.)π  to denote a probability density function of the variables appearing 

inside the parentheses. Having observed Y = y , a Bayesian analysis uses Bayes’ rule to update 

what is now known about ψ through what is called the  posterior density )|( yψπ  on  E having 

the form: 

( ) )()(
)(

)()|(| ψψ
y

ψψyyψ πππ yL
f

f
∝=     (1.1.1) 

where is a data likelihood, and )(ψyL ∫= ψψψyy dff )()|()( π

)|(

  is called a marginal density of a 

variable Y. A Bayesian might then use descriptions of yψπ  such as means, variances, modes, 

marginal distributions and sets in E which have high posterior probability to summarize the 

posterior.  Applied Bayesian analysis has been limited by the difficulty of obtaining these values, 

especially when the dimension of ψ is large. The Gibbs Sampler and other simulation schemes, 

generally called Markov Chain Monte Carlo Sampling (MCMC), which have mostly been 

developed over the last twenty years, provide algorithms for generating random variables that 

approximate observations from the posterior. Then, according to the laws of large numbers, 

sample averages can be used to summarize interesting features of the posterior.     

 

1.2. Theoretical Background of a Gibbs Sampler 
Scollnik (2001) defined MCMC sampling as a simulation technique for generating a 

dependent sample from a distribution of interest.  Our goal here is to generate values { ( )iψ } 

which asymptotically behave like observations from the posterior. Suppose that for j = 1, 2,…, p, 
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it is relatively easy to generate observations from the conditional posterior distributions                                     

( | , ,j k k )jπ ψ ψ ≠ y . 

A Gibbs Sampler produces a sequence of observations { )( i
kψ } as follows:  

1. Select an arbitrary starting set of values of  (0) 0 (0) (0)
1 2( , ,..., )pψ ψ ψ ψ=  

2. Having obtained ( )iψ , simulate the sequence of random draws: 
( 1) ( ) ( )
1 1 2~ ( | ,..., , )i i

p
i

, ψ +

(

π ψ ψ ψ y

1) ( 1) ( ) ( )
2 2 1 3~ ( | , ,..., , )i i i

p
iπ ψ ψ ψ ψ+ + y  ψ

( 1) ( 1) ( 1) ( ) ( )
3 3 1 2 4~ ( | , , ..., , )i i i i

p
iπ ψ ψ ψ ψ ψ+ + + y  ψ

... 
( 1) ( 1) ( 1) ( 1)

1 2 1~ ( | , ,..., , )i i i
p p p

iπ ψ ψ ψ ψ+ + +
− y+  ψ

3. Assign a unit-augmented value to the counter, i← i+1 

4. Repeat steps 1-3 m times. 

Geman and Geman (1984) showed that under mild conditions the iterates { )(i
kψ } form a 

Markov chain whose stationary distribution is the desired posterior and that 

   )|(~ ykk
d ψπψ⎯→⎯       (1.2.1) )(i

kψ

 i ∞→

and for any intergrable function h 

)|)(()(1lim

→m

)(..
1

)( yi
k

sam

i
i

k hEh
m

ψψ ⎯→⎯∑ =
     (1.2.2)   

∞  

      

 

According to Scollnik (2001), equation (1.2.1) implies that as the index i becomes 

moderately large, the value )(i
kψ is nearly a random draw from the distribution of interest 

)|( ykψπ . He suggested that the value of i should be at least 10-15. In addition, for some “large” 

integer d only values ( )dlψ , l = 1,2,…, should be used to make the serial correlation for the values 

appearing in the subsequence negligible. This process of selecting only the d th element from a 

sequence is called thinning at the rate d.

 The marginal density for each parameter sψ can be estimated by integrating the 

conditional distribution with respect to the other parameters which sψ is conditional on: 
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 ∑
=

≠==
m

i

i
kkjj kj

m 1

)( );|(1)(ˆ ψψψπψπ      (1.2.3) 

Since, the first few observations )(i
jψ tend to have distribution quite different from the 

target one and the early part of the chain can significantly affect the average in (1.2.3), the first 

part of a chain, called a “burn-in”, is usually eliminated. The number of the observations to be 

discarded varies in practice and depends on a rate of chain’s convergence. 

 

1.3. Convergence Monitoring of the Gibbs Sampler Estimate 
Cowles and Carlin (1996) argued that sample convergence is a main issue in application 

of the MCMC Gibbs Sampler. The study of algorithm convergence is supposed to answer the 

question: At what point it is reasonable to believe that the samples are truly representative of the 

underlying stationary distribution of the Markov chain? The issue is complicated by the nature of 

the MCMC process which produces correlated observations. This correlation slows the algorithm 

in its attempt to sample from the entire stationary distribution and can adversely affect the 

determination of appropriate Monte Carlo estimates of model characteristics based on the 

estimation output. 

Efforts at solving a problem of determining MCMC convergence algorithm have 

concentrated on two areas: a theoretical approach and applied diagnostic tools. Theoretical 

methods attempt to analyze the Markov transition kernel of the chain to find a number of 

iterations that will ensure convergence within a specified tolerance of the true stationary 

distribution. In most cases, sophisticated mathematical calculations resulted in quite loose 

bounds suggesting numbers of iterations beyond what is reasonable or feasible in practice. 

Therefore, almost all of the applied work involving MCMC methods relies on diagnostic tools, 

the second approach to the convergence problem. Although applied diagnostic tools do not 

always result in clear-cut answers because the stationary distribution is always unknown in 

practice, many statisticians still heavily rely on such diagnostics, believing that "a weak 

diagnostic is better than no diagnostic at all." (Cowles et al. (1996)). In this review, I will focus 

on simulations design and methods that are proven to be effective in monitoring convergence and 

feasible in WinBUGS at the same time. 
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Applied Methods for Monitoring Convergence 

One of the most commonly used convergence diagnostics are methods for detecting 

mixing properties of Markov chain Samplers. These methods make use of the fact that most 

MCMC algorithms, including the Gibbs Sampler, have a random walk type behavior in which a 

simulated chain spreads out from the starting point to cover the space of the target distribution. 

Brooks and Gelman (2001) argued that convergence occurs when the chain has fully spread to 

the target distribution, which can be judged in three basic ways: 

a) Efficient implementation of the simulation algorithm to avoid potential difficulties 

such as a Gibbs Sampler getting stuck in a limited region of the parameter space, for example in 

the area near local modes.  

b) Monitoring trends to judge quality of mixing. Gelman and Rubin (1992) proposed 

monitoring mixing of simulated sequences by comparing the variance within each sequence to 

the total variance of the mixture of sequences. 

c) Monitoring autocorrelation to obtain approximately independent simulation draws. 

Brooks and Gelman (2001) noted that the methods stated above can fail in detecting lack 

of convergence of a slow-moving sequence. 

 

Simulations Design that Makes Monitoring Convergence more Reliable 

Brooks and Gelman (2001) argued that the most effective approaches to diagnosing 

convergence are based on design considerations. They recommended the following design rules 

that can improve convergence in average: 

a) Simulating multiple sequences allows using between and within components to 

monitor between and within variance components. 

b) Assigning overdispersed starting points allows a user to compare the increasing 

within-sequence variance to the decreasing between-sequence variance. 

c) The local property of most Markov chain simulation algorithms allows identifying 

convergence with good mixing of the iterated chains. 

In practice, these recommendations can be implemented in two ways. One of them is checking 

trace plots of the sample values versus iteration to look for evidence when the simulation appears 

to have stabilized. Another effective method of checking convergence is running multiple chains 

with different starting values. For example, Figures 1.3.1.a and 1.3.1.b below illustrate iteration 

 4



process for ߚ଴ and ߚଶ coefficients with three different sets of initial values that were obtained in 

this research. Each chain of the generated values is marked by different color. Figure 1.3.1.a 

exhibits estimates lacking convergence, since each chain goes in near parallel fashion and likely 

results in significantly different estimates for ߚଶ coefficient. In contrast, Figure 1.3.1.b shows an 

example of good convergence. Although the chains started at different initial points, they 

overlapped many times, and likely result in  ߚ଴ estimates with insignificant difference. 

 

Figure 1.3.1.a. History of WinBUGS iterations 

for ઺૛ coefficient 
beta2 chains 1:3

iteration
359 400 500 600 700

   -0.1

  -0.05

    0.0

   0.05

Figure 1.3.1.b. History of WinBUGS iterations 

for ઺૙ coefficient 
beta0 chains 1:3

iteration
1 5000 10000

    2.5
    5.0
    7.5
   10.0
   12.5
   15.0

 
 

To improve convergence, Gelman et al. (2004) recommended applying standardization of the 

covariates to have mean zero and standard deviation one, and considering better parameterization 

of the model to improve orthogonality of the joint posterior distribution. Since large 

autocorrelation between the subsequent elements of the Markov chain can be a reason of 

estimates’ divergence, Neal (1995) offered using ordered over-relaxation of the parameters’ 

distributions to suppress the autocorrelation in the chain. This method replaces an old value, iψ , 

by a new value, 'iψ , in three steps: 

1) independently generates K random values from the conditional distribution ( )ijji ≠}{| ψψπ ; 

2) arranges these K values and the old value, ߰௜, in non-decreasing order: 
)()()1()0( ...... K

ii
r

iii ψψψψψ ≤≤=≤≤≤  

where r is an index corresponding to the order of the old value; 

3) selects a new value for a component i, , where K is a parameter of this method. )( rK
ii'

−=ψψ

Taking into account that each step of the method requires additional computational time 

proportional to K, Neal (1995) tried to find a minimum value of parameter K for different levels 
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of autocorrelation in the chain. He showed that even quite high autocorrelation can be effectively 

suppressed by setting a value of K to around 20.  

1.4. Frequentist Evaluation of the Bayesian Inferences 
I use objective frequentist criteria to evaluate the performance of estimators obtained by 

using a Bayesian approach. These frequentist properties are considered as being embedded in a 

sequence of repeated samples. According to Gelman et al. (2003), the Bayesian notion of stable 

estimation implies that for a fixed model, the posterior distribution approaches a point as more 

data arrive and leads in the limit to inferential certainty. Thus, if the hypothesized family of 

probability models contains a true distribution and assigns it a nonzero prior density, then as 

more information about parameter vector ψarrives, the posterior distribution converges to the 

true value of . Specifically, I will judge an estimator in terms of its finite sample size bias 

and mean square error, defined by  

0ψ ψ̂

00ψ ]|)(ˆ[)](ˆ[ ψψyy −= ψEψBias
     

(1.4.1) 

where )(ˆ yψ  is an estimate of  and a function of available data y . 0ψ

]|))(ˆ[()](ˆ[ 0
2

0ψ ψψyy −= ψEψMSE
     

(1.4.2) 

Evaluation of a Posterior Credible Set 

A set  in the parameter space E is called a 1-α credible set for S ψ , if having observed  

Y = y ,   

                                   P(ψ א S |y) = 1-α. 

I will evaluate how well such credible sets behave as 1-α confidence sets. Specifically, I will use 

simulation to estimate how close the attained coverage rate of a 1-α credible set is to 1-α. 

Comparing the Properties of the Estimators 

I will assess and compare the frequentist properties of the Gibbs Sampler estimator to the 

properties of the corresponding ordinary least squares (OLS) estimator. For an estimator θ̂  of a 

parameter θ , I will use simulation to obtain N values ˆ{ }iθ from independently generated data sets 

under the distribution determined by θ  and let u 2ˆ(i i )θ θ= − , i = 1, 2,…, N. Then, I will compute 

the following terms: 
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෣ܧܵܯ ൌ ෍
ሺߠ෠௜ െ ሻଶߠ

ܰ

ே

ൌ
1

෍ ௜ݑ

ே

ୀଵ

ൌ  തݑ
௜ୀଵ

ܰ
௜

෣ܧܵܯ൫ܧܵ ൌ ඨ
∑ ሺݑ௜ െ തሻଶேݑ

௜ୀଵ
ܰሺܰ െ 1ሻ൯  

Approx )% confidence interval for the MSE is then given by imate (1-ߙ

෣ܧܵܯ േ ෣ܧܵܯ൫ܧܵ ఈ/ଶݖ ൯ 

It is also reasonable to test hypothesis of equality of two competing MSE estimators based on 

independent random , the OLS MSE estimator and the Gibbs Sampler MSE estimator:    samples

:଴ܪ  ை௅ௌܧܵܯ ൌ ௜௕௕௦ீܧܵܯ

:஺ܪ ை௅ௌܧܵܯ ്  ௜௕௕௦ீܧܵܯ

with a test statistic 

ܶ ൌ ெௌா෣ ಸ೔್್ೞିெௌா෣ ೀಽೄ

ඥௌாሺெௌா෣ ಸ೔್್ೞሻమାௌாሺெௌா෣ ೀಽೄሻమ   ሺ௡ಸ೔್್ೞା௡ೀಽೄି௞ሻ,ሺଵିఈ/ଶሻݐ~

w

݊ீ௜௕௕௦ is a size of the samples that were used in simulations to get Gibbs Sampler MSE estimate, 

 ;௜௕௕௦ீܧܵ

here 

෣ܯ

݊ை௅ௌ is a size of the samples that were used in simulations to get OLS MSE estimate, ܧܵܯ෣ை௅ௌ. 

k is a number of estimates to be estimated by Bayesian and OLS approaches to estimate the test 

statistic, T. In this case, there are 4 parameters to be estimated: MSE mean and variance for both 

Bayesian and OLS methods. 

 

1.5. Hierarchical Bayesian Modeling 
Broadly speaking, Bayesian hierarchical modeling arises in the context of (1.1.1) when 

the prior density ( )π ψ  = ( | )π ψ η  is specified conditional on unobserved parameters η  that are 

themselves viewed as random variables having a known density, denoted ݌ሺߟሻ. The joint 

posterior distribution of parameters ( ,ψ η  ) in (1.1.1) can then be expressed as 

              ( ) ( | ) ( | ) ( ), | ( ) ( | ) ( )
( ) y

f p L p
f
π η ηπ η = ∝

y ψ ψψ y ψ ψ
y

π η η    (1.5.1) 

where now ( ) ( | ) ( | ) ( )f f p d dπ η η=∫∫y y ψ ψ ψ η .  
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This approach allows greater flexibility in expressing what is known about the parameter ψ  

before any data are collected. This two level hierarchical model can be extended to a third level 

by specifying a prior density on η . This process of adding levels can be continued. Typically, a 

diffuse prior is used for the final level. 

For example, Scollnik (2001) applied hierarchical approach to modeling the workers’ 

insurance relative claim frequency denoted by for a class of workers i in a year j. He assumed 

that the claim frequencies are conditional on latent variables {

ijX

}iθ  and ߬ଵ
ଶ, independent and 

distributed according to the following model: 

Level 1: 

)/1,(~,| 2
1

2
1 τθτθ iiij NX , i = 1, 2,…, 133, j = 1, 2,…, 7   (1.5.2) 

Reasonably arguing that different workers’ insurance classes should relate to each other, Scollnik 

assumed that the estimates of the latent class means ߠ௜ represent a sample from the population of 

all workers’ classes means, and there is no prior information to distinguish one class mean from 

another. Therefore, Scollnik assigned a distribution of higher level on the parameters of the claim 

frequency distribution: 

Level 2: 

)/1,(~,| 2
2

2
2 τμτμθ Ni  

߬ଵ
ଶ~ܽ݉݉ܽܩሺ0.001, 0.001ሻ 

 

To model vague knowledge of the parameters of the class means’ distribution, Scollnik applied 

non-informative diffuse prior distributions on the precision hyperparameter, ߬ଵ
ଶ ൌ 1

σଶൗ , and on 

the mean of the class means distribution: 

Level 3: 

)001.0,001.0(~
)1000,0(~

2
2 Gamma

N
τ

μ

 
Further, applying Gibbs Sampler method, Scollnik estimated the parameters of the hierarchical 

model (1.5.2) for the first six years { }**
6

*
2

*
1

** ),,...,,( iiiii τθθθθ ==ψ , i=1,…,133, and made 

predictions about year seven. 
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1.6. Studies on Global Warming 
According to the free, on-line encyclopedia Wikipedia, global warming refers to the 

increase in the average temperature of the Earth’s near-surface air and oceans in recent decades 

and its projected continuation. The term global warming is an example of the broader term 

“climate change,” which can also refer to another term “global cooling.” Although the United 

Nations Framework Convention on Climates Change (2007) uses the term “climate change” for 

human-caused change, and “climate variability” for other changes, in my research I will focus 

just on change in temperature at the Earth’s surface over time, ignoring further investigation of 

potential reasons of these changes. Researchers investigating climate changes mostly focused on 

collecting reliable data, applying appropriate data transformation, and modeling time trend by 

using simple linear regression model.  Thus, Angel (1988) applied normal linear least squares 

regression with a time trend to year-average temperature deviations. He estimated that over the 

30-year interval, from 1958 to 1987, a global temperature increase at the Earth’s surface was 

0.08Ԩ per decade and significant only at the 5% level. Over the 15-year interval, from 1973 to 

1987, a global temperature increase was significant and equal 0.28Ԩ per decade. 

Before using simple linear regression with a time trend, Oort and Liu (1992) smoothed 

the data first by applying a filter with weights 1/4, 1/2, and 1/4 to successive seasonal values, 

except for the beginning and the end points of the period from May 1963 to December 1989. 

Their estimated 95% confidence intervals for the temperature increase were between 0.07Ԩ and 

0.15Ԩ per decade in the Northern Hemisphere, and between 0.22Ԩ and 0.36Ԩ per decade in the 

Southern Hemisphere. Jones (1994) applied simple linear regression to the surface data and 

found significant increase in temperature by about 0.1Ԩ per decade from 1958 to 1993.
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CHAPTER 2. Application of WinBUGS Software to Hierarchical 

Model Estimation  

WinBUGS1.4 (hereinafter, WinBUGS) is a free and publicly available software 

developed by a self-organized group of researchers concerned with flexible software for 

Bayesian analysis of complex statistical models using MCMC methods. This project, named the 

Bayesian inference Using Gibbs Sampling (BUGS) project, was launched in 1989 in the Medical 

Research Committee and Advisory Council (MRC) Biostatistics Unit in Cambridge, UK. A new 

development included also the supplementary OpenBUGS project in the University of Helsinki, 

Finland. Further details on the project and the software itself are available at http://www.mrc-

bsu.cam.ac.uk/bugs/.  

WinBUGS is a useful tool for estimating Bayesian models because of two reasons. First, 

WinBUGS has the ability to estimate the posterior distributions of the parameters based only on 

their marginal prior distributions and data model specified by a researcher. Thus, WinBUGS is 

an invaluable tool in many cases when the joint and marginal posterior distributions of the 

hierarchical Bayesian model are complex and hard to derive by hand. Second, WinBUGS 

accommodates numerous iterations for all parameters simultaneously within a short period of 

time and allows keeping track of simulations with different initial values of the parameters. This 

iterations monitoring accommodates checking convergence of the parameters and simplifies 

proving validity of the Bayesian estimates. However, WinBUGS does not attempt to verify if the 

posterior distribution is a proper distribution. Therefore, the posterior should be additionally 

checked to see if it is proper after iteration process is over. 

To estimate Gibbs Sampler parameters, WinBUGS needs the following information to be 

supplied by a user: 

a) a data model; 

b) a data sample; 

c) parameters that should be estimated; 

d) initial values of the input variables having prior distributions assigned to, which are also 

called stochastic nodes; 

e) a number of iterations to simulate; 

f) a number of samples to be generated simultaneously; 
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g) a thinning rate with which an observation is selected into a final sample, or Markov chain,  

from a sequence of the generated values. 

There are two ways of supplying the input information into WinBUGS:  

a) entering the inputs by pointing at the necessary parts of a code and clicking at the buttons with 

commands in a menu/dialog interface of WinBUGS; 

b) scripting all commands for WinBUGS in a separate file and running the script in another 

software in a batch mode.  

Both modes require a data model, a data sample, and initial values coded in a specific BUGS 

programming language and supplied into WinBUGS interface. The output information can be 

stored either in the interface log window or saved in a separate log file.  A striking advantage of 

the dialog mode is an opportunity to monitor iteration process and convergence of the estimates. 

However, the scope of using this method in simulation study is quite limited, since each run of 

WinBUGS should be made manually by a researcher. In contrast, the batch mode allows running 

decent number of simulations by invoking WinBUGS automatically from R or other software. In 

this case, a number of the simulations is naturally limited by the computational capacity of a 

computer running the simulation code. However, controlling convergence in all simulations 

using the batch mode is a complex technical issue that can be resolved by an advanced 

programmer. One of the proxy solutions to checking convergence in simulations is to use 

WinBUGS in the batch mode for all simulations in combination with running the same model 

once in a dialog mode. This test run in the dialog mode can provide useful information about 

flow of the data generation process in general and can help identify some problems that can be 

common to all iterations run in the batch model.  

 

2.1. Running WinBUGS in a Menu/dialog Mode 
There are two options for running scripts in WinBUGS models in the menu/dialog mode. 

The most conventional one is saving a model and a script with the other necessary inputs in two 

separate files. Another option is highlighting parts of a single script file containing all necessary 

information and running them in the WinBUGS interface step by step. These methods have the 

same sequence of steps but differ slightly in coding. I describe below running WinBUGS in a 

menu/dialog mode from a single file on the example of my research model. In this example, I use 

 11



the first five observations of the applied data set. The exact code with full data set that I used in 

the research is provided in Appendix B.  

An algorithm for estimation my research model in WinBUGS is as follows: 

1. Open a file containing a model script by pointing to “File” option on the tool bar of 

WinBUGS interface and clicking the “Open” option once with left mouse button (hereinafter, 

LMB); 

2. Make WinBUGS check that the model description fully defines a probability model in 

the next steps: 

a) Highlight a part of the code containing description of the model, constants and 

variables used. The corresponding part of the code below starts with a word “model”, then 

describes constants and variables, and specifies the model with prior distributions on all model 

parameters, and ends with the final squiggle bracket in the attached code. To note, a sign # make 

WinBUGS skip a part of the row following this sign that can be used to provide brief 

explanatory information. 
 
# 1. Research model with conjugate priors, a linear trend and AR(1) term 
model   
const 
T=5; 
 
var 
Y[T], t; 
 
{ 
for(t in 2:T) 
 { 
 Y[t] ~ dnorm(theta.Y[t], tau.y) 
 theta.Y[t] <- beta0+ beta1*t + beta2*Y[t-1] 
 } 
# Prior  
beta0 ~ dnorm(beta0.c, beta0.tau) #non-informative diffuse normal distn 
beta1 ~ dnorm(beta1.c, beta1.tau) #non-informative diffuse normal distn 
beta2 ~ dnorm(beta2.c, beta2.tau) #non-informative diffuse normal distn 
tau.y ~ dgamma(0.001,0.001) 
sigma.y <-pow((1/tau.y), 0.5) 
 
beta0.c ~ dnorm(0, 1.0E-6) #non-informative diffuse normal distn 
beta0.tau ~ dgamma(0.001, 0.001) 
sigma.beta0 <- pow((1/beta0.tau), 0.5) 
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beta1.c ~  dnorm(0, 1.0E-6) #non-informative diffuse normal distn 
beta1.tau ~ dgamma(0.001, 0.001) 
sigma.beta1<-pow((1/beta1.tau), 0.5) 
 
beta2.c ~  dnorm(0, 1.0E-6) #non-informative diffuse normal distn 
beta2.tau ~ dgamma(0.001, 0.001) 
sigma.beta2<-pow((1/beta2.tau), 0.5) 
} 

 

b) Point to “Model” option on the tool bar and highlight the “Specification…” option. 

c) Check syntax of the model by clicking once with LMB on the “check model” button in 

the Specification Tool window. A message saying "model is syntactically correct" should appear 

in WinBUGS Log window. 

3.  Load the data by doing the next steps:  

a) Highlight a part the file containing data and starting with a command word list and 

ending with the last bracket in the row: 
 
# 2. Data 
 
list(T = 5, Y = c(14.24, 14.1,13.89,13.83,13.87)) 
 

b) Click once with the LMB on the “load data” button in the Specification Tool window. 

A message saying "data loaded" should appear in the WinBUGS Log window.  

4. Select a number of chains to be simulated by typing a corresponding number in a white 

box following a “num of chains” note in the Specification Tool window. It is sensible to run 

several chains with different initial values to check convergence of the MCMC simulations. In 

my case, I initiated running three chains. 

5.  Compile the model by clicking once with the LMB on the “Compile” button in the 

Specification Tool window. A message saying "model compiled" should appear in the 

WinBUGS Log window. This step specifies internal data structure and specific MCMC updating 

algorithms to be used by WinBUGS for the particular model. 

6. Provide WinBUGS with initial values for each stochastic node that are declared in the 

model statement. To load the initial values, you will need to 

a)  Highlight the code starting with the word list and ending with the last bracket of the 

first set of initial values: 
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list(beta0=0, beta1=0, beta2=0, beta0.c=0, beta1.c=0, beta2.c=0, beta0.tau=1, 
beta1.tau=1, beta0.tau=1, beta2.tau=1, tau.y=1) 
 

b) Click once with the LMB on the “load inits” button in the Specification Tool window. 

A message saying "chain initialized but other chain(s) contain uninitialized variables" should 

appear in the WinBUGS Log window. 

c) Repeat the steps a) and b) for the second portion of initial values: 

 
list(beta0=0, beta1=0, beta2=0, beta0.c=0, beta1.c=0, beta2.c=0, beta0.tau=0.01, 
beta1.tau=0.01, beta2.tau=0.01, tau.y=0.01) 
 

A message saying "chain initialized but other chain(s) contain uninitialized variables" 

should appear again in the WinBUGS Log window. 

d) Repeat the steps a) and b) for the third portion of initial values: 

 
list(beta0=0, beta1=0, beta2=0, beta0.c=0, beta1.c=0, beta2.c=0, beta0.tau=0.0001, 
beta1.tau=0.0001, beta2.tau=0.0001, tau.y=0.0001) 
 

A message saying "model is initialized" should now appear in the WinBUGS Log 

window. 

To note, that there is no need in providing a list of initial values for every parameter in a 

model. You can have WinBUGS to generate initial values for any stochastic parameter by 

clicking with the LMB on the “gen inits” button in the Specification Tool window. In this case, 

WinBUGS will generate initial values by forward sampling from the prior distribution for each 

parameter. However, it is recommended to provide your own initial values for parameters having 

vague prior distributions assigned to avoid wildly inappropriate values generated by WinBUGS. 

7.  Set monitors to store the sampled values for the selected parameters by the sequence 

of the following steps: 

a) Click on Inference option in the WinBUGS menu first, and then point to Sample 

option. 

b) In the opened Sample Monitor window, type the name of each parameter in the white 

box following a word “node”. In my model, I gave the following names to the nodes: beta0, 

beta1, beta2, sigma.beta0, sigma.beta1, sigma.beta2, sigma.y. 
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c) Set a number of the iterations to burn-in in the white box following a “beg” note and 

the total number of iterations in the white box following an “end” note. Since the parameter 

estimates of my research model were lacking convergence in near 2000 first iterations, I 

specified 2000 iterations to be burn-in out of 30000 in total.  

d) Click “set” button you enter information at steps a) and b)  

8.Now WinBUGS is set to start a simulation that can be run in the following steps: 

a) Select the “Update...” option from the Model menu. 

b) In the opened window Update tool, type the number of updates or iterations in the 

white box following “updates” note, then enter a number of iteration after which you want to 

make a refreshment of the distribution in white box following “refresh” note, and finally type a 

thinning rate in the white box “thin”. In my case, I used the 30000 updates with refreshment of 

the iteration process after each 100 iterations, and a thinning rate of 3 iterations.  

c) Click once on the “update” button. The program will start simulating values for each 

parameter in the model that may take a few seconds. At the same time, the box “iteration” will 

show how many updates have currently been completed.  

d) When the number of updates in the box following “iteration” note reach the target 

number of iterations stated in the box near the “end” note, the iteration process will be over. At 

that moment, graphical and numerical summaries on iteration process for all parameters will be 

set for monitoring.   

9. In order to check convergence and obtain posterior summaries of the model 

parameters, you should click Inference option in WinBUGS interface first, and then point to 

“Samples...” option. To see the summary of iteration process of a parameter, you will need to 

enter the name of this parameter in the white box following a note “node” in the Sample Monitor 

menu. There are the following summary options available in the menu:  

a) An option “stats” describes posterior distribution by the mean, standard deviation, MC 

error, median, 2.5th and 97.5th percentiles.  

b) An option “history” produces a plot of all parameter values in a sequence they were 

generated. If more than one chain run simultaneously, a history plot will show each chain in a 

different color. In this case, a researcher can be reasonably confident in convergence of the 

parameter estimator if all chains mix well. 
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c) An option “density” develops a graph of the density function for the estimated 

parameter. 

d) An option “coda” provides a list of all generated values in the chain. 

If all steps of the algorithm were made correctly, WinBUGS should produce an output 

that is similar to the iteration summary provided in Appendix C. 

 

2.2. Working with WinBUGS in a Batch Mode 
Scripting instructions in a special language and calling the WinBUGS interface from the 

other software allow running WinBUGS programs without pointing at the specific parts of a 

code and clicking your way through the commands. This feature significantly simplifies using 

WinBUGS by automating routine analysis and helps using WinBUGS in simulations. An 

opportunity of working with WinBUGS in a batch mode is now available in R, Stata, SAS, 

Matlab, and Excel software.  

To make use of the scripting language for a specific problem, a minimum of four pieces 

of information are required: 

1)  representation of a model in WinBUGS coding language; 

2)  a data set of observed or simulated values;  

3)  initial values for each chain;  

4)  a script with the commands combining the model, the data, and the initial values in an 

iteration algorithm. 

In practice, these four pieces can be provided either in one file or in several files, 

depending on complexity of the model, size of the data set, and convenience to a user. Each file 

may be either in a native WinBUGS format (.odc) or in the text format (.txt).  I show below an 

application of WinBUGS in a batch mode in R in a way I used it in my simulation study.  

To make the WinBUGS session open in R, a special package called R2WinBUGS should 

be uploaded in the R version that is installed at the computer. This package provides opportunity 

of calling a model, summarize inferences and monitor convergence in a table and graphs, and 

save the simulations in arrays for easy access in R. The WinBUGS batch mode consists of the 

next basic steps: 
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1. Write an R code describing a model and prior distributions assigned to each stochastic 

model parameter in a separate file. A file AR1GammaModel.txt with detailed description of my 

research model in R is provided in Appendix E. 

2. Go to R interface and prepare a script containing R commands entering the data and 

initial values, uploading a model file, and making WinBUGS run iterations and summary reports. 

In my simulation code, a piece of code with these commands is provided below, while the 

complete simulation script is attached in Appendix D.  

# Data loading 
data<-list("T","Y")   
 
# Declaration of the model parameters to be iterated  
parameters<-c("beta0", "beta1", "beta2", "sigma.y", "sigma.beta0", "sigma.beta1",  
"sigma.beta2") 
 
# Loading initial values for 3 MCMC chains 
inits1<-list(beta0=0, beta1=0, beta2=0, tau.y=1, beta0.tau=1, beta1.tau=1, beta2.tau=1)  
inits2<-list(beta0=0, beta1=0, beta2=0, tau.y=0.01, beta0.tau=0.01, beta1.tau=0.01, 
beta2.tau=0.01)  
inits3<-list(beta0=0, beta1=0, beta2=0, tau.y=0.0001, beta0.tau=0.0001, beta1.tau=0.0001, 
beta2.tau=0.0001)  
inits<-list(inits1, inits2, inits3) 
 
# Invoking an auxiliary sub package “arm” of the R2WinBUGS package 
library("arm") 
 
# Applying bugs function entering inputs and running WinBUGS from R  
AR1bugs.sim<- bugs(data, inits, parameters, 
“D:/KSU_Research/Final/AR1GammaModel.txt", n.chains=3, n.iter=5000, 
bugs.directory="c:/Program Files/WinBUGS14/", 
working.directory="D:/KSU_Research/Final/Results/", clearWD=FALSE, debug=FALSE) 
 
# Storing BUGS simulation results in the R interface operation memory  
attach.bugs(AR1bugs.sim) 

 
In the code above, bugs function plays a key role in running WinBUGS from R interface. This 

function takes data, initial values and assigns parameters of iteration process as inputs, 

automatically writes a WinBUGS script, calls the model, and saves the simulations results. In 

order to make this function run, a set of the function parameters should be defined: 
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data is a named list of variables having data and used in the WinBUGS model. In the 

code above, the data inputs are the data lists named Y and T that were earlier assigned a data set 

and a number of observations in this data set respectively. 

inits is a R set of initial values for each iteration chain. Before, I assigned 3 sets called 

inits1, inits2, and inits3 that include initial values for all model stochastic parameters for each of 

three chains iterated further by WinBUGS. A number of the Markov chains should corresponds 

to the bugs function argument n.chain declaring a number of chains to be generated by 

WinBUGS. In this, case n.chain is assigned a value 3. Alternatively, if inits=NULL, initial 

values are generated by WinBUGS.  

parameters is a character vector of the names of the stochastic parameters which 

WinBUGS should take records on. In my code, these parameters are beta0, beta1, beta2, sigma.y, 

sigma.beta0, sigma.beta1, and sigma.beta2.  

The fourth argument of the bugs function must be a note containing a path and a file 

name that contains description of the model in WinBUGS code. The extension of the model file 

can be either “.bug” or “.txt”. In my code, a note specifying a file with the model description is 

D:/KSU_Research/Final/AR1GammaModel.txt 

n.iter is a number of total iterations per chain including a number of burn-in iterations 

that is 5000 iterations in my code.  

bugs.directory is a directory that contains the WinBUGS executable files that were stored 

at c:/Program Files/WinBUGS14/. 

working.directory sets a directory storing the WinBUGS' input and output files during 

execution of this function that in my case was D:/KSU_Research/Final/Results/.  

clearWD is a logical argument indicating whether the WinBUGS’ input and output files 

should be removed from the operation memory after WinBUGS has finished. A logical value 

FALSE assigned to argument clearWD in my code orders WinBUGS save all output in separate 

files in working directory assigned above.  

debug is a logical argument with a default FALSE value making WinBUGS close 

automatically when the script has finished running, otherwise WinBUGS remains open for 

further investigation.  

Further bugs arguments takes default values, if a user does not assign any specific values 

to them. In my simulation code, the following arguments are assigned default values:  
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n.burnin is a number of iterations in a sample of generated values to be burnt in at the 

beginning. The default for burn-in values is discarding the first half of the simulations, n.iter/2, 

that in my case is 2500 iterations. 

n.thin is a thinning rate and must be a positive integer. The default is maximum value 

selected between 1 and rounded down to a value calculated using a formula: (n.chains * (n.iter-

n.burnin) / 1000)). The default thin rate will be assigned if there are at least 2000 simulations. In 

my case, a thinning rate is 5. 

bin is a number of iterations between saving of results. Default value used in my code is 

to save only at the end of the iteration process. 

DIC is a logical argument with a default TRUE value computing deviance, pD, and DIC.  

digits is a number of significant digits used for WinBUGS input.  

codaPkg is a logical argument with a default FALSE value that arrange a bugs output 

object to be returned. If the TRUE value assigned, the file names of WinBUGS output are 

returned for easy access by the coda package through function read.bugs.  

bugs.seed is a random seed for WinBUGS with a default no seed value.  

summary.only with a  default TRUE value limits the WinBUGS output to a short 

parameter summary for a quick analyses. In my case, temporary created files are not removed.  

save.history with a default TRUE value generate trace plots for the declared parameters 

of interest. 

3. When a part of the code stated above runs, a WinBUGS window will appear and R 

interface will freeze up. At this time the model will now run in WinBUGS. Running a model 

might take awhile, depending on the number of iterations and complexity of the model. You will 

be able to see details of the iterations exhibited in the log window within WinBUGS. When 

WinBUGS finishes iterations, its window will close and R will work again.  

4. If an error message appears at the log window, it is recommended to re-run the model 

in R with debug option set in “TRUE” value. After this change in debug settings, the batch mode 

will provide all WinBUGS output summary and graphs to the screen. Examining the tables and 

graphs can help identifying potential problem in coding. 
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Chapter 3. Research Results  

 3.1. Autoregressive Research Model 
Although, in common usage, the term “global warming” is often referred to human 

influence on the global climate, my research is focused on change in temperature at the Earth’s 

surface over time without digression into further investigation of potential causes of these 

changes. Santer et al. (1996) argued that the thermal structure of the atmosphere is not the same 

in the Northern and Southern hemispheres primarily due to an asymmetry in observed ozone 

changes. Therefore, stratospheric cooling in the Northern Hemisphere could be different from 

cooling in the Southern Hemisphere. However, in order to simplify the exposition here, I ignored 

these potential differences and combined the data from both hemispheres. I used global-mean 

monthly, annually, and seasonally adjusted temperature at the Earth’s surface in 0.01 degrees 

Centigrade (˚C) from January 1880 to April 2008 that were provided by NASA’s Goddard 

Institute for Space Studies1. Since NASA’s data were in 0.01Ԩ and relative to the base period 

temperature of 14Ԩ, I transformed the original data by multiplying the official data by 100 and 

adding 14 to obtain an absolute monthly global-mean temperature in degrees Centigrade. These 

data are presented below in Figures 3.1.a – 3.1.d. In modeling monthly temperature data, I took 

into consideration autocorrelation function and partial autocorrelation function estimated for the 

available data. The autocorrelation function of order k, or ACF(k), gives the gross correlation, or  

௞, betwߩ e t erature at time t, ݕ௧, and the temperature at lag k, ݕ௧ି௞: e n he temp

௞ߩ ൌ ஼௢௩ሺ௒೟,௒೟షೖሻ
௏௔௥ሺ௒೟ሻ

        (3.1.1) 

A theoretical autocorrelation function is estimated in a sample by what is called a correlogram, 

given by: 

௞ ൌݎ  ∑ ሺ௬೟ି௬തሻሺ௬೟షೖି௬തሻ೅
೟సೖశభ

∑ ሺ௬೟ି௬തሻ೅
೟సభ

      (3.1.2) 

A partial autocorrelation function of order k, or PACF(k), is a correlation between ݕ௧ and ݕ௧ି௞ 

net of intervening effects of the lagged temperatures observed between these two observations: 

 

                                                 
1 The data used in this research are extracted from the official web-site of GISS NASA: 

http://data.giss.nasa.gov/gistemp/tabledata/GLB.Ts+dSST.txt 
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௞ߩ
כ ൌ ݋ܥ ሾݕ௧ െ ௧|ݕ

where  כܧሺ ௧ܻ|ݕ௧ିଵ, … ,  ௧ି௞ାଵሻ is the minimum mean-squared error predictor of ௧ܻ byݕ

,௧ିଵݕ … ,  ௧ି௞ାଵ. In practice, PACF(k) is estimated using a linear predictor ofݕ

ሺכܧ ௧ܻ|ݕ ଵ

ݎݎ ሺܻכܧ ௧ିଵ, … , ,௧ି௞ାଵሻݕ   ௧ି௞ሿ   (3.1.3)ݕ

௧ି , … ,   :௧ି௞ାଵሻݕ

መߚ  ି ݕ ො௞ߩ (4.
כ ൌ ௧ݕሾݎݎ݋ܥ െ ଵݕ௧ ଵ െ ௧ିଶݕመଶߚ െ ڮ െ መ௞ିଵߚ ௧ି௞ାଵ, ௧ି௞ሿ   (3.1ݕ

where ࢼ෡ ൌ ሾߚመଵ, ,መଶߚ … , ,௧ିଵݕሾݎመ௞ିଵሿ =ሼܸܽߚ ,௧ିଶݕ … , ,ݕሾݒ݋ܥ௧ି௞ାଵሿሽିଵݕ ሺݕ௧ିଵ, ,௧ିଶݕ … ,  .௧ି௞ାଵሻሿԢݕ

In the NASA’s monthly temperature data set, the estimated ACF on Figure 3.1.c is decaying 

slowly with the highest correlation observed between the current observation and its first lag, 

around 0.8. A graph of the estimated PACF at Figure 3.1.d exhibits the first nine PACF 

coefficients irregularly declining from near 0.8 to 0.1, marginally significant coefficient at lag 

12, and two significant PACF coefficients at lag 20 and lag 24. This oscillating pattern of PACF 

with near a dozen of significant partial correlation coefficients and slow decay in ACF are 

evidence of potential non-stationarity and significant time trend in the monthly temperature data. 

Although the true data generating process likely have an intricate autoregressive structure, I 

chose a linear model with a time trend and the first order autoregressive term denoted by AR(1) 

because in numerous empirical studies the first order autoregression is proved to be a reasonable 

model even for very complex underlying processes (Greene (2003)). Therefore, my research 

model is the first reliable pass to the next comparative analysis of OLS and hierarchical Bayesian 

estimates, while further refinement of the model by applying autoregressive terms of higher 

order is or  work in th left f  the future e field. Let  

൅ ߝ   (3.1.5) ௧ܻ|ݕ௧ିଵ, ,଴ߚ ,ଵߚ ଶߚ ൌ ݐଵߚ଴൅ߚ ൅ ௧ିଵݕଶߚ ௧  

௧ିଵ, ,଴ߚ ,ଵߚ ݐଵߚ଴൅ߚଶ ~ ଵܰሺߚ ൅ ,௧ିଵݕଶߚ ௒ߪ
ଶሻ ௧ܻ|ݕ

where ሼߝ௧ሽ is a white noise time-series process where each element of the sequence is jointly 

independent and normally distributed: ߝ௧~ܰሺ0, ௒ߪ
ଶሻ, െ∞ ൏ ݐ ൏ ൅∞; 

β1 represents a linear trend in the means as time, denoted by t, increases.  

Using model (3.1.5), I will build a Bayesian hierarchical model (3.1.6).  
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Figures 3.1.a. Plot of global-mean, monthly 

temperature from 01/1880 to 04/2008

 

Figure 3.1.b. Histogram of global-mean, 

monthly temperature from 01/1880 to 04/2008

 
Figure 3.1.c. Plot of autocorrelation 

function for the research temperature data 

 

Figure 3.1.d. Plot of partial autocorrelation 

function for the research temperature data
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Hierarchical Bayesian Model for Testing Existence of the Global Warming  

Level 1: 

௧ܻ|ݕ௧ିଵ, ,଴ߚ ,ଵߚ ,ଶߚ ௒ߪ
ଶ~ ଵܰሺߚ଴൅ߚଵݐ ൅ ,௧ିଵݕଶߚ ௒ߪ

ଶሻ                               (3.1.6.) 

Level 2: 
1

ߪ
߬௒ ൌ

௒
ଶ ~ ܽ݉݉ܽ

బ బ  

ܩ ሺ0.001, 0.001ሻ 

ఉߤ|଴ߚ , ఉబߪ
ଶ ~ ଵܰሺߤఉ , ఉబߪ

ଶ ሻ

ఉ ఉߚଵ|ߤ భ, ఉభߪ
ଶ ~ ଵܰሺߤ భ, ఉభߪ

ଶ ሻ 

,ఉమߤ|ଶߚ ఉమߪ
ଶ ~ ଵܰሺߤఉమ, ఉమߪ

ଶ ሻ 

Level 3: 

ߤ ~ܰ ሺ0, 10଺ሻ 

బ

1
ఉబ ଵ

߬ఉ ൌ
ఉబߪ

ଶ ܽܩ~

ఉభ ଵ

݉݉ܽሺ0.001, 0.001ሻ 

ߤ ~ܰ ሺ0, 10଺ሻ 

భ

1
߬ఉ ൌ

ఉభߪ
ଶ ܽܩ~

ఉమ ଵ

݉݉ܽሺ0.001, 0.001ሻ 

ߤ ~ܰ ሺ0, 10଺ሻ 

߬ఉమ ൌ
1

ఉమߪ
ଶ ሺܽ݉݉ܽܩ~

where ܽ݉݉ܽܩሺܽ, ܾሻ denotes a gamma distribution with a shape parameter ܽ and a scale 

parameter 1/ܾ. 

0.001, 0.001ሻ 

WinBUGS specification of a normal distribution requires two parameters: mean and 

precision parameter, ߬ ൌ 1
σଶൗ . A gamma distribution of the precision parameter, ߬, implies an 

inverse scaled χଶ distribution of the variance, ߪଶ. The precise form of the diffuse priors is 

believed to be not very important in this case. Since the collected data comprise rather large 

sample, 1539 observations, the data likelihood should overwhelmingly dominate in forming 

posterior distribution. In the model (3.1.2), parameters of interest are as follows:              

),,,,,,,,,( 2222
210 210210 Yσσσσμμμβββ ββββββ=Ψ  
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The joint posterior distribution for the par meters of interest follows equation (3.1.3):         

,଴ߚ൫ߨ ,ଵߚ ,ଶߚ ,ఉబߤ ,ఉభߤ ,ఉమߤ ఉబߪ
ଶ , ఉభߪ

ଶ , ఉమߪ
ଶ , ௒ߪ

ଶหܽݐܽܦ൯ ן ݂൫ߤఉబ൯݂൫ߤఉభ൯݂൫ߤఉమ൯݂൫ߪఉబ
ଶ ൯݂൫ߪఉభ

ଶ ൯݂ሺߪఉమ
ଶ ሻ ൈ

ൈ ݂൫ߚ଴หߤఉబ, ఉబߪ
ଶ ൯݂൫ߚଵหߤଵ, ఉభߪ

ଶ ൯݂൫ߚଶหߤఉమ, ఉమߪ
ଶ ൯݂ሺߪ௒

ଶሻ ∏ ݂ሺݕ௧|்
௧ୀଵ ,଴ߚ ,ଵߚ ,ଶߚ ௒ߪ

ଶሻ  (3.1.3) 

a       

A marginal posterior distribution for each parameter of interest can be found in theory by 

integrating joint posterior distribution over the other parameters. However, there are problems 

here in deriving an exact form for a joint posterior distribution in equation (3.1.3) and a marginal 

posterior distribution for each parameter because of the complex form of the model. In this case, 

WinBUGS will estimate these distributions by using approximations.   

 

 3.2. Estimation Results for the Research Models 
Initial trial runs of the model in WinBUGS showed that it took near 2000 iterations of the 

model parameters’ estimates to converge. Therefore, I assigned 2000 iterations out of 30000 in 

total to be burnt in. The final estimation results presented below are based on the WinBUGS 

output excluding burn-in iterations and having a thinning rate of 3 iterations. The iteration 

history for all Gibbs Sampler estimates suggests about quite good mixing of the iterations in the 

chains and convergence of the estimates. Estimation summary of the hierarchical Bayesian 

model and plots of the ߚଵ distribution formation are provided below, while detailed WinBUGS 

output summary on all model parameters is provided in Appendix C. 

Figure 3.2.a. History of WinBUGS iterations  

for the time trend coefficient, ࢼ૚ 

 
beta1 chains 1:3

iteration
2000 10000 20000 30000

1.00E-4

1.50E-4

2.00E-4

2.50E-4

3.00E-4

 

Figure 3.2.b. Posterior probability density 

function of the time trend coefficient, ࢼ૚ 
Frequency 

beta1 chains 1:3 sample: 84003

1.00E-4 1.50E-4 2.00E-4 2.50E-4

    0.0
1.00E+4
2.00E+4
3.00E+4

 
 ଵ valuesߚ

௧ܻ|ݕ௧ିଵ, ,଴ߚ ଵߚ , ௒ߪ
ଶ~ ଵܰሺ ଴ ൅ ݐଵߚ ଶߚ ௧ିଵ, ௒ߪ

ଶሻ 

ሺܧ ௧ܻሻ෣ ீ௜௕௕௦|ݕ௧ିଵ ൌ መ଴ߚ ൅ ݐመଵߚ ൅ ௧ିଵݕመଶߚ ൌ 5.383 ൅ ݐ0.000202 ൅   ௧ିଵݕ0.6047

, ଶߚ ߚ ൅ ݕ
 

MC error   (0.0167)   (0.00006)    (0.00123) 
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௒ߪ
ଶ෢ீ௜௕௕௦

ൌ ௒ߪሺܧ
ଶሻ෣ ீ௜௕௕௦ ൌ 0.184 

The estimated 95% credibility interval for the time trend coefficient is (0.000169, 0.000237). 

Since a plot of the posterior distribution of the time trend coefficient ߚଵ on Figure 3.2.b. shows 

that 100% of the distribution of ߚଵestimates is above 0 values, there is strong evidence of global 

warming. The 95% credibility interval for ߚଵ also suggest that there is 95% chance that the 

global temperature increase is between 0.000169Ԩ and 0.000237Ԩ per month, or between 

0.0203Ԩ and 0.0284Ԩ  per decade.  

OLS Estimation of Global-mean Monthly Temperature 

A brief summary of the estimation results for the OLS model is given below, while 

detailed WinBUGS output summary is attached in Appendix C. Now letting ሼߚመ௜, ݅ ൌ 0, 1, 2ሽ 

denote st sordinary lea quares estimators: 

ܻ ሻை௅ௌ|ݕ ݐመଵߚ ൅ ௧ିଵݕመଶߚ ൌ 5.283 ൅ ݐ0.0002 ൅ ሺܧ  ௧ିଵݕ0.612 ௧෣ ௧ିଵ ൌ መ଴ߚ ൅

.6805       SE      (0.274)   (0.000015) (0.020) ܴ௔ௗ௝௨௦௧௘ௗ
ଶ ൌ 0   

௒ߪ
ଶ෢ை௅ௌ

ൌ MSE ൌ  0.182 

The approximate 95% confidence interval for the time trend coefficient includes values from 

0.000103 to 0.000339. 

Testing hypothesis for existence of the global warming, we obtain: 

:଴ܪ ଵߚ ൌ 0 

:ଵܪ് ଵߚ 0 

ܶ ൌ
መଵߚ െ 0
መଵሻߚሺ݁ݏ

ൌ ௡ିଶ ൌݐ ~ 13.59  ଵହଷ଻ݐ

p-value = Prob(|ݐଵହଷ଻|൒13.59) <2 כ 10ିଵ଺ 

Since the p-value of the time trend coefficient, ߚଵ, is less than 1%, there is strong 

evidence of the global warming. At 95% confidence, the global temperature tends to grow from 

0.000103Ԩ to 0.000339Ԩ per month or 0.0124-0.0406Ԩ per decade. Since 95% credibility 

interval and 95% confidence interval overlap, there is no evidence of significant difference in the 

Gibbs Sampler estimate and OLS estimate. 
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Chapter 4. Simulation study comparing OLS estimators and 

Hierarchical Bayes estimators  

4.1. Parameter Specification 
In the simulation study, I generated samples of 10, 30, 100, and 1000 observations from 

the model (3.1.1) with the regression parameters fixed at the specific values:   

଴ߚ ൌ 0, ଵߚ ൌ 1, ଶߚ ൌ 0.5, ௒ߪ
ଶ ൌ 1.   

Given different sample sizes and data generated from the model (3.1.1), the Bayesian and OLS 

estimators were obtained, and their performance was evaluated in terms of bias and mean square 

error. The Bayesian simulations were run for three chains starting with the following initial 

values: 

1) e  1:  The first s t of the initial values, hereinafter initials

଴ߚ ൌ 0, ଵߚ ൌ 0, ଶߚ ൌ 0, ఉబߪ
ଶ ൌ 1, ఉభߪ

ଶ ൌ 1, ఉమߪ
ଶ ൌ 1. 

2) The second set of the initial values, hereinafter initials 2: 

଴ߚ ൌ 0, ଵߚ ൌ 0, ଶߚ ൌ 0, ఉబߪ
ଶ ൌ 100, ఉభߪ

ଶ ൌ 100, ఉమߪ
ଶ ൌ 100. 

3) T eh  third set of the initial values, initials 3: 

଴ߚ ൌ 0, ଵߚ ൌ 0, ଶߚ ൌ 0, ఉబߪ
ଶ ൌ 000, ఉభߪ

ଶ ൌ 1000, ఉమߪ
ଶ ൌ 1000. 1

Since starting values for  ߪ௒
ଶ were not assigned, they were randomly selected by 

WinBUGS from the model prior distribution such that the precision parameter, ߬௒, following the 

Gamma distribution: 

߬௒ ൌ
1

௒ߪ
ଶ ,ሺ0.001ܽ݉݉ܽܩ~ 0.001ሻ 

Tables 4.1, 4.2, 4.3 and 4.4 below summarize estimation results from 100 simulations of 

the samples with 10, 30, 100, and 1000 data points. The history of iteration process for  ߚଵ and 

 ଶ coefficients in the test run of the research model with a generated sample of 1000 data pointsߚ

is exhibited on Figure 4.1 and Figure 4.2 below, while more detailed WinBUGS output summary 

for the test run is provided in Appendix F. The graphs below suggest that the estimates obtained 

in the test run do not converge and depend on the initial values, since all three lines representing 

three different chains for  ߚଵ and ߚଶ coefficients are almost parallel.  
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Figure 4.1. History of WinBUGS iterations 
for ࢼ૚ 
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Figure 4.2. History of WinBUGS iterations 
for ࢼ૛ 
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Problems with the estimates’ convergence in the test run of the model suggest potential issues 

with the estimates’ divergence in all runs of the research model. Therefore, further research in 

the field can focus on improving convergence by considering the following options:  

a) Developing a better parameterization of the model to improve orthogonality of the joint 

posterior distribution. 

b) Standardization of the covariates to have mean zero and standard deviation one. 

c) Using ordered over-relaxation of the parameters distributions to suppress random walk 

autocorrelation between two subsequent elements in a Markov chain. According to Neal (1995), 

this method generates a K number of candidates for a subsequent element of the chain, ranks the 

previous element and the candidates for the next element in non-decreasing order, and selects the 

next element with a rank that equals the difference between the maximum rank in the overall list 

and the rank of the previous element of the chain.  

 

4.2. Comparison of OLS Estimators and Hierarchical Bayes Estimators 
Results of the simulation study for the sample sizes of 10, 30, 100, and 1,000 

observations are summarized below in Tables 4.1, 4.2, 4.3, and 4.4 respectively. The estimated 

biases of the Gibbs Sampler estimator of ߚ଴ and ߚଵ tend to be lower in absolute values than the 

biases of the corresponding OLS estimators for all sample sizes. The estimated MSE of the 

Gibbs Sampler estimators of ߚ଴ and ߚଵ are lower in average than the MSE of the OLS estimators 

in all sample sizes. In contrast, the biases of Gibbs Sampler estimators  ߚଶ and ߪ௒
ଶ are higher in 

absolute values than the corresponding OLS estimators. The estimated MSE of the Gibbs 

Sampler for  ߚଵ and ߪ௒
ଶ estimators are in average higher than the MSE of the OLS estimators. 

However, the formal tests detected significant difference in MSE only for  ߚଵ estimators for the 
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small samples of size 10 and 30 observations. The other differences in MSE are statistically 

insignificant. All details on testing significance of difference in MSE are given in Appendix G. 

To recap, my simulation study showed that the Gibbs Sampler estimator for a time trend 

coefficient ߚଵ tends to be less biased than the OLS estimator in samples of all sizes, while the 

Gibbs Sampler estimator is more precise for a time trend only in small samples of 10 and 30 

observations. In the bigger samples, Gibbs Sampler and OLS estimators are similar in their 

precision.  
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Table 4.1. Estimation results from 100 simulations with a sample size 10 data points 

Initials 1 Initials 2 Initials 3 Average Initials 1 Initials 2 Initials 3 Average
True value 0 0 0 0 0 1 1 1 1 1
Estimate 0.435 0.424 0.560 0.473 -1.019 0.933 0.934 0.990 0.952 1.633
Bias 0.435 0.424 0.560 0.473 -1.019 -0.067 -0.066 -0.010 -0.048 0.633
MSE estimate 0.611 0.550 0.680 0.614 4.030 0.365 0.299 0.388 0.351 1.520
MSE SE 0.098 0.053 0.120 0.090 2.447 0.150 0.199 0.171 0.173 0.076
95% MSE lower limit 0.419 0.446 0.440 0.435 -0.766 0.072 -0.090 0.053 0.012 1.371
95% MSE upper limit 0.804 0.653 0.920 0.792 8.825 0.658 0.689 0.723 0.690 1.668

Indicator β0 estimate β1 estimate
Gibbs Sampler OLS Gibbs Sampler OLS

 
 

Initials 1 Initials 2 Initials 3 Average Initials 1 Initials 2 Initials 3 Average
True value 0.5 0.5 0.5 0.5 0.5 1 1 1 1 1
Estimate 0.020 0.011 -0.077 -0.015 0.168 1.071 1.130 1.097 1.099 0.906
Bias -0.480 -0.489 -0.577 -0.515 -0.332 0.071 0.130 0.097 0.099 -0.094
MSE estimate 0.605 0.664 0.732 0.667 0.494 0.474 0.475 0.433 0.461 0.337
MSE SE 0.092 0.168 0.175 0.145 1.107 0.040 0.022 0.126 0.063 1.265
95% MSE lower limit 0.425 0.335 0.389 0.383 -1.674 0.395 0.431 0.186 0.337 -2.141
95% MSE upper limit 0.784 0.993 1.074 0.950 2.663 0.553 0.519 0.680 0.584 2.816

Indicator β2 estimate σY estimate
Gibbs Sampler OLS Gibbs Sampler OLS

 
 

Table 4.2. Estimation results from 100 simulations with a sample size 30 data points 

Initials 1 Initials 2 Initials 3 Average Initials 1 Initials 2 Initials 3 Average
True value 0 0 0 0 0 1 1 1 1 1
Estimate 0.190 0.188 0.146 0.175 -0.630 0.987 0.990 1.010 0.996 1.352
Bias 0.190 0.188 0.146 0.175 -0.630 -0.013 -0.010 0.010 -0.004 0.352
MSE estimate 0.509 0.521 0.545 0.525 2.217 0.340 0.341 0.338 0.340 0.820
MSE SE 0.059 0.064 0.083 0.069 1.321 0.111 0.117 0.125 0.118 0.083
95% MSE lower limit 0.394 0.396 0.382 0.391 -0.371 0.122 0.111 0.093 0.109 0.657
95% MSE upper limit 0.625 0.646 0.707 0.659 4.805 0.558 0.570 0.583 0.570 0.983

Indicator β0 estimate β1 estimate
Gibbs Sampler OLS Gibbs Sampler OLS

 
 

Initials 1 Initials 2 Initials 3 Average Initials 1 Initials 2 Initials 3 Average
True value 0.5 0.5 0.5 0.5 0.5 1 1 1 1 1
Estimate 0.004 0.001 -0.017 -0.004 0.323 1.044 1.041 1.026 1.037 0.977
Bias -0.496 -0.499 -0.517 -0.504 -0.177 0.044 0.041 0.026 0.037 -0.023
MSE estimate 0.587 0.594 0.620 0.600 0.281 0.366 0.374 0.347 0.362 0.293
MSE SE 0.137 0.137 0.158 0.144 0.625 0.085 0.084 0.116 0.095 0.613
95% MSE lower limit 0.318 0.325 0.310 0.318 -0.943 0.200 0.210 0.119 0.176 -0.907
95% MSE upper limit 0.856 0.862 0.930 0.883 1.506 0.532 0.538 0.575 0.548 1.494

Indicator β2 estimate σY estimate
Gibbs Sampler OLS Gibbs Sampler OLS
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Table 4.3. Estimation results from 100 simulations with a sample size 100 data points 

Initials 1 Initials 2 Initials 3 Average Initials 1 Initials 2 Initials 3 Average
True value 0 0 0 0 0 1 1 1 1 1
Estimate -0.018 0.000 0.000 -0.006 -0.021 1.025 1.002 1.002 1.010 1.012
Bias -0.018 0.000 0.000 -0.006 -0.021 0.025 0.002 0.002 0.010 0.012
MSE estimate 0.581 0.567 0.567 0.571 0.601 0.332 0.314 0.314 0.320 0.322
MSE SE 0.126 0.128 0.128 0.127 0.246 0.124 0.126 0.126 0.126 0.034
95% MSE lower limit 0.333 0.316 0.316 0.322 0.119 0.090 0.066 0.066 0.074 0.255
95% MSE upper limit 0.828 0.817 0.817 0.821 1.083 0.574 0.561 0.561 0.566 0.389

Indicator β0 estimate β1 estimate
Gibbs Sampler OLS Gibbs Sampler OLS

 
 

Initials 1 Initials 2 Initials 3 Average Initials 1 Initials 2 Initials 3 Average
True value 0.5 0.5 0.5 0.5 0.5 1 1 1 1 1
Estimate -0.025 -0.002 -0.002 -0.010 0.494 0.999 0.999 0.999 0.999 0.998
Bias -0.525 -0.502 -0.502 -0.510 -0.006 -0.001 -0.001 -0.001 -0.001 -0.002
MSE estimate 0.595 0.565 0.565 0.575 0.190 0.313 0.313 0.313 0.313 0.311
MSE SE 0.140 0.126 0.126 0.131 0.167 0.143 0.128 0.128 0.133 0.045
95% MSE lower limit 0.320 0.318 0.318 0.319 -0.136 0.033 0.063 0.063 0.053 0.223
95% MSE upper limit 0.870 0.812 0.812 0.831 0.517 0.593 0.563 0.563 0.573 0.400

Indicator β2 estimate σY estimate
Gibbs Sampler OLS Gibbs Sampler OLS

 
 

Table 4.4. Estimation results from 100 simulations with a sample size 1000 data points 

Initials 1 Initials 2 Initials 3 Average Initials 1 Initials 2 Initials 3 Average
True value 0 0 0 0 0 1 1 1 1 1
Estimate -0.018 0.000 0.000 -0.006 -0.021 1.025 1.002 1.002 1.010 1.012
Bias -0.018 0.000 0.000 -0.006 -0.021 0.025 0.002 0.002 0.010 0.012
MSE estimate 0.581 0.567 0.567 0.571 0.601 0.332 0.314 0.314 0.320 0.322
MSE SE 0.126 0.128 0.128 0.127 0.246 0.124 0.126 0.126 0.126 0.034
95% MSE lower limit 0.333 0.316 0.316 0.322 0.119 0.090 0.066 0.066 0.074 0.255
95% MSE upper limit 0.828 0.817 0.817 0.821 1.083 0.574 0.561 0.561 0.566 0.389

Indicator β0 estimate β1 estimate
Gibbs Sampler OLS Gibbs Sampler OLS

 
 

Initials 1 Initials 2 Initials 3 Average Initials 1 Initials 2 Initials 3 Average
True value 0.5 0.5 0.5 0.5 0.5 1 1 1 1 1
Estimate -0.025 -0.002 -0.002 -0.010 0.494 0.999 0.999 0.999 0.999 0.998
Bias -0.525 -0.502 -0.502 -0.510 -0.006 -0.001 -0.001 -0.001 -0.001 -0.002
MSE estimate 0.595 0.565 0.565 0.575 0.190 0.313 0.313 0.313 0.313 0.311
MSE SE 0.140 0.126 0.126 0.131 0.167 0.143 0.128 0.128 0.133 0.045
95% MSE lower limit 0.320 0.318 0.318 0.319 -0.136 0.033 0.063 0.063 0.053 0.223
95% MSE upper limit 0.870 0.812 0.812 0.831 0.517 0.593 0.563 0.563 0.573 0.400

Indicator β2 estimate σY estimate
Gibbs Sampler OLS Gibbs Sampler OLS
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Chapter 5. Conclusions  

I created a model including a time trend and a first order autoregressive term, and applied 

it to testing for the existence of the global warming. My hierarchical Bayesian research model 

with diffuse conjugate prior distributions took into account natural high autocorrelation between 

a monthly temperature observation and its first lag by incorporating an AR(1) term and placing a 

prior distribution on it.  The parameters of the model were estimated by applying OLS and Gibbs 

Sampler with 30,000 iterations and three chains with the different starting values. The Gibbs 

Sampler estimate for the global temperature increase was between 0.0203Ԩ and 0.0284Ԩ per 

decade with 95% credibility. The OLS estimate for the temperature increase was between 

0.0124Ԩ and 0.0406Ԩ per decade at 95% confidence, while the difference between Gibbs 

Sampler estimate and OLS estimate was insignificant. Moreover, since all percentiles of the 

posterior distribution of the Gibbs Sampler estimate for a time trend were above 0, there is strong 

evidence of global warming. 

Second, in my simulation study I randomly generated 100 samples of 10, 30, 100, and 

1000 observations from a normal distribution with a mean having a linear time trend and an 

AR(1) term, and  the model parameters fixed at the following values: ߚ଴= 0, ߚଵ= 1, ߚଵ= 0.5,  

௒ߪ  = 1. Further, these parameters were estimated by OLS and by Gibbs Sampler.  The Gibbs 

Sampler estimators with three different initial values failed to converge and were considered 

separately. In 100 simulations, the Gibbs Sampler estimators for an intercept and for the time 

trend were less biased than corresponding OLS estimators, while the reverse was true for the 

autoregressive parameter and error standard deviation. The difference in precision of the 

estimators found by two approaches was insignificant except for the estimator of the time trend. 

The Gibbs Sampler estimators for MSE of the time trend coefficient were significantly smaller 

than the OLS estimators of MSE only in the small samples of 10 and 30 observations. 

Third, although the test run in simulation study detected lack of convergence in the Gibbs 

Sampler estimates for the time trend and AR(1) term coefficients, my research based on the real 

temperature data did not show significant issues with convergence. The difference in estimates’ 

convergence can occur for several reasons. The distribution of the real data can differ 

significantly from the assumed distribution with the mean following AR(1) model with a time 

trend. Therefore, the same mix of the prior distributions and the research model can result in 
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different convergence outcomes in the simulation study and a study based on the real data. On 

the other hand, a problem with convergence can be related to the parameters of the iterations 

process, like number of iterations, thinning rate, and different initial values. Further research can 

focus on improving convergence by applying standardization of the covariates, developing a 

better parameterization of the model, or by using ordered over-relaxation of the parameter 

distributions. The over-relaxation method selecting the next element of a Markov chain from a 

fixed number of the generated candidates in a specific order should improve performance of the 

Gibbs Sampler by suppressing random walk autocorrelation among the elements of the chain. 

Fourth, the simulation study validated the results of the hierarchical Bayesian model that 

used the real data of 1539 global-mean monthly temperature observations. On average, the Gibbs 

Sampler estimators for the intercept and for the time trend tend to be less biased than the 

corresponding OLS estimators, while the Gibbs Sampler estimators for the AR(1) term and the 

error variance are to be more biased.  The difference in precision of all Gibbs Sampler estimators 

and OLS estimators tends to be insignificant. 
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Appendix A. R output summary on OLS estimation of the research 

model 

Coefficients: 
             Estimate  Std. Error  t value    Pr(>|t|)     
(Intercept)  5.283e+00   2.743e-01    19.26     <2e-16 *** 
  t     1.981e-04   1.457e-05    13.59     <2e-16 *** 
Y[t-1]   6.120e-01   2.013e-02    30.41     <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 0.182 on 1535 degrees of freedom 
Multiple R-squared: 0.6809,     Adjusted R-squared: 0.6805  
F-statistic:  1638 on 2 and 1535 DF,  p-value: < 2.2e-16 
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Appendix B. A code for estimation of the research model in 

WinBUGS 

# 1. Research model with conjugate priors, a linear trend and AR(1) term 
model   
const 
T=1539; 
 
var 
Y[T], t; 
 
{ 
for(t in 2:T) 
 { 
 Y[t] ~ dnorm(theta.Y[t], tau.y) 
 theta.Y[t] <- beta0+ beta1*t + beta2*Y[t-1] 
 } 
# Prior 
beta0 ~ dnorm(beta0.c, beta0.tau) #non-informative diffuse normal distn 
beta1 ~ dnorm(beta1.c, beta1.tau) #non-informative diffuse normal distn 
beta2 ~ dnorm(beta2.c, beta2.tau) #non-informative diffuse normal distn 
tau.y ~ dgamma(0.001,0.001) 
sigma.y <-pow((1/tau.y), 0.5) 
 
beta0.c ~ dnorm(0, 1.0E-6) #non-informative diffuse normal distn 
beta0.tau ~ dgamma(0.001, 0.001) 
sigma.beta0 <- pow((1/beta0.tau), 0.5) 
 
beta1.c ~  dnorm(0, 1.0E-6) #non-informative diffuse normal distn 
beta1.tau ~ dgamma(0.001, 0.001) 
sigma.beta1<-pow((1/beta1.tau), 0.5) 
 
beta2.c ~  dnorm(0, 1.0E-6) #non-informative diffuse normal distn 
beta2.tau ~ dgamma(0.001, 0.001) 
sigma.beta2<-pow((1/beta2.tau), 0.5) 
} 
 
# 3. Initial values for 3 chains with slightly different original values 
list(beta0=0, beta1=0, beta2=0, beta0.c=0, beta1.c=0, beta2.c=0, 
beta0.tau=1, beta1.tau=1, beta0.tau=1, beta2.tau=1, tau.y=1) 
list(beta0=0, beta1=0, beta2=0, beta0.c=0, beta1.c=0, beta2.c=0, 
beta0.tau=0.01, beta1.tau=0.01, beta2.tau=0.01, tau.y=0.01) 
list(beta0=0, beta1=0, beta2=0, beta0.c=0, beta1.c=0, beta2.c=0, 
beta0.tau=0.0001, beta1.tau=0.0001, beta2.tau=0.0001, tau.y=0.0001) 
 
# 2. Data 
 
list(T = 1539, 
Y = c(14.24, 14.1,13.89,13.83,13.87,13.43,13.81,14.05,14.1,13.63,13.71,13.98, 
13.48,13.95,13.86,14.09,14.21,13.14,13.95,13.93,13.86,13.83,13.84,14.27, 
14.78,14.42,14.26,13.67,13.88,13.35,13.44,13.83,14.26,13.88,14.09,13.99, 
13.84,13.45,13.96,14.15,13.97,14.53,14.18,13.98,13.7,13.85,13.59,14.11, 
13.81,14.09,13.74,13.25,13.25,13.53,13.43,13.87,13.77,13.58,13.38,13.13, 
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13.4,13.49,13.43,13.51,13.63,13.43,13.88,14.07,13.89,14.28,13.74,14.35, 
13.53,13.55,13.58,13.81,13.85,13.84,13.88,13.8,13.76,13.35,14.02,13.8, 
13.42,13.18,13.74,13.6,13.54,13.32,13.75,13.62,13.51,13.73,13.22,13.73, 
13.59,13.44,13.36,13.95,13.59,13.75,13.64,13.68,13.67,13.96,14.31,14.1, 
14.21,14.42,14.26,14.35,14.33,13.97,13.64,13.7,13.82,14.07,13.78,14.1, 
13.85,13.65,13.88,13.95,13.71,13.96,13.54,13.8,13.98,13.91,13.42,13.74, 
13.24,12.94,13.53,13.36,13.76,13.52,13.18,13.35,13.52,13.36,13.67,13.88, 
13.48,13.92,13.55,13.27,13.5,13.6,13.68,13.86,13.58,13.6,13.59,13.47, 
12.46,13.19,13.54,13.7,13.53,13.54,13.94,14,13.81,14.24,13.69,13.51, 
13.37,13.37,13.83,13.53,13.5,13.7,13.72,13.69,13.47,13.95,13.95,13.99, 
13.47,13.1,13.55,13.5,13.73,13.76,13.37,13.79,13.88,13.97,14,13.97, 
14.02,13.78,13.55,13.57,13.52,13.63,13.69,13.51,13.8,14.15,13.61,13.87, 
13.87,13.72,13.65,14.08,13.94,13.73,14.14,13.74,13.79,13.58,13.99,13.93, 
14.26,13.68,13.41,13.68,13.48,13.81,13.93,14.12,14.05,13.57,13.7,13.88, 
13.6,13.59,13.84,13.67,13.5,13.75,13.66,13.72,13.99,13.72,14.11,13.83, 
13.55,13.97,14.01,13.92,14.04,14.11,13.79,13.86,13.94,14.19,13.9,13.95, 
13.89,13.95,13.96,14.08,13.97,14.12,13.72,13.94,14.06,13.97,13.93,13.85, 
13.71,13.97,13.94,13.81,13.71,13.76,13.71,13.55,13.6,13.63,13.56,13.45, 
13.72,13.88,13.96,13.52,13.62,13.41,13.77,13.63,13.6,13.51,13.55,13.58, 
13.45,13.37,13.7,13.69,13.44,13.54,13.43,13.66,13.59,13.57,13.79,13.73, 
13.59,13.14,13.84,13.82,13.9,13.85,13.71,13.8,13.77,13.67,14.09,13.83, 
13.77,13.75,13.6,14.12,13.83,13.95,13.91,13.93,13.74,13.97,13.68,13.95, 
13.64,13.55,13.68,13.61,13.55,13.55,13.72,13.57,13.71,13.76,13.5,13.39, 
13.7,13.85,13.55,13.69,13.83,13.7,13.81,13.73,13.88,13.6,13.4,13.68, 
13.32,13.59,13.59,13.44,13.6,13.83,13.82,13.91,13.82,13.92,13.96,13.55, 
13.76,13.86,13.67,13.94,13.91,13.77,13.93,13.92,14.04,13.77,13.6,13.42, 
13.49,13.5,13.54,13.64,13.79,13.73,13.92,13.82,13.86,13.86,14.03,13.83, 
13.89,13.89,13.55,13.81,13.81,13.78,13.59,13.43,13.57,13.53,13.51,13.73, 
13.67,13.53,13.59,13.83,13.4,13.45,13.73,13.79,13.83,13.8,13.92,14.07, 
14.2,14.03,14.1,13.82,14.02,13.95,13.85,14, 13.97,14.15,13.81,13.87, 
13.94,14.15,14.07,14.09,13.99,14.02,14.18,13.85,14.19,14.03,14.17,13.94, 
14.04,13.98,13.68,13.82,13.8,13.81,13.83,13.99,13.92,13.85,13.62,13.26, 
13.49,13.27,13.33,13.54,13.33,13.6,14.16,13.68,13.7,13.55,13.66,13.13, 
13.47,13.46,13.54,13.59,13.4,13.73,13.56,13.59,13.89,14.05,13.82,13.77, 
13.78,13.85,13.97,13.98,14,13.99,14.09,13.99,13.89,14.09,13.67,13.76, 
14.01,13.8,13.84,13.95,13.73,13.78,14.02,13.94,13.89,13.64,13.76,13.6, 
14.15,13.89,13.98,14.02,13.94,14.1,14.13,13.69,13.94,13.96,13.79,13.89, 
13.74,13.7,13.82,14.14,13.78,13.86,14.12,13.88,13.99,13.87,13.99,13.96, 
13.84,13.82,13.87,13.65,13.87,13.81,13.63,13.73,13.75,14,14.04,14.03, 
13.77,13.66,13.98,13.67,13.86,13.96,13.98,13.97,14.07,13.92,13.99,13.76, 
13.67,13.7,13.82,13.95,13.78,13.73,13.73,13.98,13.72,13.76,14.05,14.25, 
14.29,14.34,14.2,13.99,13.81,13.9,13.93,14.1,14.09,13.93,14.11,13.79, 
13.91,13.89,13.75,13.77,13.86,13.87,14.08,13.82,14.02,14.26,14.24,13.87, 
14.16,14.12,14.02,14.01,13.68,13.56,14.01,14.05,14.1,14.02,14.11,14.06, 
13.78,13.65,13.74,13.68,13.72,13.72,13.75,13.74,13.85,14.1,14.07,13.5, 
13.84,14,14.08,13.84,14.02,13.89,13.98,13.96,13.89,13.8,14.23,14.04, 
13.98,13.8,14.06,13.88,13.93,14.08,14.2,14.19,13.92,14.11,13.93,14.21, 
14.52,13.9,13.97,14.23,14,13.71,13.95,13.91,14.15,14.2,14.01,13.95, 
13.8,13.93,13.93,13.93,13.95,13.88,14.04,13.87,14,14.02,13.73,13.59, 
13.99,14.07,13.82,13.77,14.18,13.98,14.17,14.2,14.02,14.06,14.15,14.19, 
13.8,14.34,14.21,13.67,13.86,13.94,13.92,13.84,13.69,14.03,13.81,13.92, 
13.86,13.71,13.92,14.1,13.8,13.96,14.34,14.11,14.07,14.09,14.09,14.18, 
14.02,14.15,13.93,13.97,14.12,14.11,14.05,14.13,14.3,14.28,14.35,14.05, 
14.1,14.11,14.3,14.37,14.18,13.98,14.11,13.98,14.14,14.41,14.18,13.97, 
14.08,13.97,13.75,13.93,14.11,14.03,13.98,13.81,13.92,13.94,13.88,14.4, 
13.87,14.11,14.15,14.1,14.14,14.23,14.32,14.13,14.21,14.08,14.09,14.29, 

 37



14.15,14.23,14,14.07,14.12,14.2,14.37,14.13,13.84,14.16,14.02,14.12, 
14.29,14.02,14.02,14.05,14.1,14.12,14.13,14.1,14.11,14.03,14.19,14.13, 
13.85,14.13,13.91,14.07,13.97,13.93,14.19,13.8,14.13,14.36,14.14,14.29, 
14.4,14.19,14.15,13.99,13.95,13.92,14.1,14.12,14.26,14.27,14.04,13.91, 
14.07,13.97,14.03,14.18,13.77,13.79,13.87,14.3,14.11,14.07,13.98,13.74, 
14.1,14.06,13.94,14.13,14.12,13.92,14.13,13.95,14.07,13.88,14,13.78, 
14,14.14,14.25,14.2,14.07,14.07,14.1,14.1,14.06,14.29,14.27,13.94, 
14.27,13.94,13.79,13.94,14.06,14.14,13.92,13.88,14,14.02,13.86,13.89, 
14.11,13.73,13.92,13.75,13.9,13.83,14,13.89,13.99,14.04,13.94,13.9, 
13.78,13.73,13.95,13.81,13.82,13.93,13.91,13.72,13.88,13.85,13.67,13.89, 
13.69,13.59,13.9,13.99,14.12,13.93,13.94,14.17,14.07,14.12,14.08,14.22, 
14.15,14.16,13.91,14,13.93,13.97,14.12,14.15,14.16,14.04,13.84,14, 
14.13,14.11,14.2,14.16,14.03,14.08,14.03,14.16,14.13,14.1,14.07,14.22, 
13.76,13.96,13.93,13.9,13.85,13.85,13.78,13.85,13.84,14.04,14.22,13.93, 
14.26,13.95,13.68,13.87,13.87,13.86,13.91,14.15,13.91,14.05,13.79,13.75, 
13.81,13.74,13.71,13.78,13.77,13.95,13.93,13.7,13.93,13.82,13.84,13.86, 
13.89,13.99,14,14.14,14.11,14.17,13.94,14.13,14.14,14.02,14.19,14.21, 
14.42,14.25,14.2,14.13,14.11,13.86,14.14,13.92,13.94,14.11,14.11,13.95, 
14.07,14.08,14.26,14.13,13.99,14.1,14.08,14,13.87,13.95,13.92,14.11, 
14.07,14.28,13.56,13.8,13.87,13.96,13.9,14.1,14.06,14.12,13.9,14.2, 
14.1,14.22,14.05,14.1,14.24,14.11,14.01,14.05,14.16,14.17,14.09,13.88, 
14.08,14.22,14.11,14.12,13.88,14.1,13.89,13.93,14.06,14.05,14.11,14.02, 
13.98,14.25,13.79,13.8,13.87,13.99,14.08,14.17,14.27,14.05,14.04,13.98, 
13.93,13.84,13.7,13.62,13.61,13.87,13.92,13.71,13.61,13.67,13.8,13.67, 
13.97,13.81,13.89,13.71,13.89,13.88,13.73,13.92,13.8,13.92,13.88,13.81, 
13.76,13.92,14.14,13.87,13.9,13.95,14.12,13.89,13.93,13.75,13.94,13.92, 
13.93,13.72,14.01,13.93,14.11,13.85,14.05,14,14.02,14.15,14.01,13.98, 
13.8,13.84,14.28,13.91,13.87,13.93,13.9,13.93,13.75,14.06,13.92,13.77, 
13.81,13.72,13.85,14.12,14.1,14.07,13.93,13.93,14.02,14.07,14.08,14.33, 
14.08,14.28,14.08,14.05,13.93,14.08,14.06,13.89,14.15,14.05,14.02,13.87, 
13.96,13.85,13.77,13.92,13.89,13.77,13.91,14.05,14,13.95,13.86,13.87, 
13.65,13.66,13.92,13.94,13.95,14.05,14.03,14.18,14.05,13.9,13.91,14.11, 
14.23,14.31,14.32,14.34,14.28,14.23,14.16,14.03,14.07,14.15,14.06,13.95, 
13.93,13.74,13.96,13.88,13.98,14.01,14,14.11,13.87,13.93,13.92,13.95, 
14.06,14.07,14.14,14.01,14.26,14.01,14,13.74,13.94,13.91,13.87,13.77, 
13.92,13.88,13.64,13.74,13.75,13.8,13.8,13.75,13.81,13.6,13.79,13.95, 
14.08,14.2,14.24,14.26,14.31,14.28,14.24,14.27,13.87,13.93,14.17,14.07, 
14.06,14.14,14.21,14.22,14.16,13.96,14.15,13.8,14.09,13.98,14.06,14.03, 
14.13,13.85,14.19,14.19,13.95,14.15,13.99,14.08,14.19,14.21,14.25,14.46, 
14.29,14.35,14.36,14.38,14.43,14.18,14.27,14.23,14.28,14.14,14.26,14.15, 
14.57,14.53,14.61,14.46,14.27,14.35,14.51,14.54,14.24,14.08,14.19,14.44, 
14.08,14.2,13.94,14.03,14.26,13.99,14.16,14,14,13.98,14.11,14.34, 
14.44,14.38,14.38,14.33,14.45,14.27,14.2,14.47,14.49,14.23,14.29,14.16, 
14.2,14.06,14.3,14.08,14.45,13.9,14.16,14.22,14.21,14.16,14.05,13.95, 
14.24,13.98,14.21,14.14,14.11,14.18,14,14.32,14.18,14.06,14,14.09, 
14.28,14.46,14.31,14.33,14.2,14.12,14.11,14.18,14.03,14.05,14.04,14.12, 
14.35,14.49,14.24,14.39,14.24,14.47,14.5,14.11,14.29,14.32,14.28,14.48, 
14.5,14.4,14.53,14.4,14.51,14.5,14.34,14.38,14.42,14.41,14.02,14.26, 
14.08,14.34,14.33,14.28,14.07,14.07,14.36,14.41,14.43,14.31,14.12,14.29, 
14.45,14.35,14.81,14.58,14.45,14.41,14.66,14.38,14.18,14.51,14.55,14.47, 
14.44,14.52,14.39,14.63,14.34,14.62,14.59,14.49,14.5,14.26,14.24,14.25, 
14.45,14.34,14.4,14.19,14.14,14.23,13.99,14.1,13.9,14,13.92,14.13, 
14.3,14.31,14.33,14.24,14.25,14.17,14.25,14.16,14.03,14.16,14.04,14.03, 
14.35,14.04,14.23,14.42,14.24,14.56,14.32,14.21,14.42,14.35,14.33,14.31, 
14.47,14.81,14.47,14.46,14.14,14.4,14.6,14.5,14.35,14.6,14.44,14.33, 
14.37,14.5,14.38,14.32,14.27,14.21,14.5,14.64,14.34,14.27,14.43,14.41, 
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14.39,14.38,14.5,14.33,14.32,14.54,14.19,14.38,14.33,14.43,14.57,14.53, 
14.58,15.02,14.7,14.71,14.79,14.84,14.9,14.76,14.48,14.58,14.54,14.7, 
14.55,14.75,14.35,14.32,14.35,14.54,14.51,14.44,14.43,14.43,14.48,14.36, 
14.14,14.61,14.47,14.63,14.4,14.54,14.45,14.49,14.39,14.22,14.36,14.31, 
14.51,14.54,14.6,14.4,14.6,14.57,14.56,14.58,14.59,14.5,14.75,14.63, 
14.84,14.82,14.99,14.77,14.73,14.51,14.73,14.57,14.62,14.57,14.62,14.45, 
14.79,14.67,14.59,14.59,14.74,14.52,14.57,14.76,14.71,14.76,14.59,14.76, 
14.61,14.84,14.77,14.67,14.43,14.52,14.21,14.55,14.51,14.71,14.75,14.64, 
14.87,14.79,14.85,14.78,14.65,14.72,14.67,14.65,14.85,14.86,14.76,14.72, 
14.56,14.76,14.65,14.6,14.4,14.64,14.57,14.71,14.65,14.74,14.74,14.82, 
15.08,14.81,14.73,14.78,14.74,14.54,14.65,14.78,14.72,14.75,14.67,14.61, 
14.34,14.33,14.68))  
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Appendix C. WinBUGS summary on Gibbs Sampler estimation for 

the research model 

The first run of the model in WinBUGS showed that it takes near 2000 iterations of the model 
parameters to converge. Therefore, 2000 iterations out of 30000 were specified to be burn in. 
The final summary is based on the WinBUGS output excluding burn-in iterations and having a 
thinning rate of 3 iterations. 
   

Node statistics 
                node        mean   sd           MC error   2.5%    median       97.5%       start         sample 

beta0  5.383    0.378    0.01671           4.712 5.361         6.216            2000 84003 
beta1  2.017E-4   1.734E-5  6.109E-7         1.69E-4 2.012E-4         2.374E-4      2000 84003 
beta2  0.6047    0.02773    0.001226        0.5435 0.6064         0.6539          2000 84003 
sigma.beta0 1194.0    99300.0    345.1           0.04328 8.339         3456.0          2000 84003 
sigma.beta1 3291.0   667600.0  2312.0           0.04483 9.163         3657.0          2000 84003 
sigma.beta2 853.4   30900.0   107.5           0.0437 8.994         3521.0          2000 84003 
sigma.y  0.1822   0.003299  1.424E-5         0.1758 0.1821         0.1888          2000 84003 
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Plot C.2. History of Winbugs iterations for ࢼ૚ 
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Plot C.3. History of Winbugs iterations for ࢼ૛ 

beta2 chains 1:3

iteration
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Plot C.4. History of Winbugs iterations for ࢼ࣌૙ 
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Appendix D. R code for simulation study on Gibbs Sampler and 

OLS estimation of the research model 

# Assumed true parameters 
 
beta0<-0 
beta1<-1 
beta2<-0.5 
sigma<-1 
N<-1010  #1700 
nburn<-10  #A number of the first simulated obs to be burnt=200 
 
truevalue<-c(beta0, beta1, beta2, sigma) 
library(boot) 
 
# Bayesian simulation using WinBugs with AR1 gamma specification 
 
B<-200 
BUGSest<-matrix(0,nrow=B,ncol=4)  #ncol=4 parameters of the distribution 
out<-matrix(0,nrow=B,ncol=3) 
time<-matrix(1,nrow=N,ncol=1) 
X<-matrix(0,nrow=(N-nburn),ncol=2) 
Y<-matrix(0,nrow=(N-nburn),ncol=1) 
Y1<-matrix(0,nrow=(N-nburn),ncol=1) 
 
# Data simulation 
for (j in 1:B){ 
 y<-matrix(0,nrow=N,ncol=1) 
 ylag<-matrix(0,nrow=N,ncol=1) 
 mu<-matrix(0,nrow=N,ncol=1) 
 t<-1 
 mu[t]<-beta0+beta1*t+beta2*0   
 y[t]<-rnorm(1,mu[t],sigma) 
 
  for (t in 2:N){ 
   mu[t]<-beta0+beta1*t+beta2*y[t-1] 
   y[t]<-rnorm(1,mu[t],sigma) 
   ylag[t]<-y[t-1] 
   time[t]<-t 
  } 
     
 Y<-y[(nburn+1):N] 
 #Y1<-ylag[(nburn+1):N] 
 
# BUGS regression estimation 
 
T<-N-nburn 
 
# Data loading 
data<-list("T","Y")   
 
# Declaration of the model parameters to be iterated  
# Loading initial values for 3 MCMC chains 
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parameters<-c("beta0", "beta1", "beta2", "sigma.y", "sigma.beta0",  
"sigma.beta1", "sigma.beta2") 
 
# Invoking an auxiliary sub package “arm” of the R2WinBUGS package 
inits1<-list(beta0=0, beta1=0, beta2=0, tau.y=1, beta0.tau=1, beta1.tau=1, beta2.tau=1)  
inits2<-list(beta0=0, beta1=0, beta2=0, tau.y=0.01, beta0.tau=0.01, beta1.tau=0.01, beta2.tau=0.01)  
inits3<-list(beta0=0, beta1=0, beta2=0, tau.y=0.0001, beta0.tau=0.0001, beta1.tau=0.0001, beta2.tau=0.0001)  
inits<-list(inits1, inits2, inits3) 
 
# Invoking an auxiliary sub package “arm” of the R2WinBUGS package 
library("arm") 
AR1bugs.sim<- bugs(data, inits, parameters, "D:/KSU_Research/Final/AR1GammaModel.txt", 
    n.chains=3, n.iter=5000, 
    bugs.directory="c:/Program Files/WinBUGS14/", working.directory="D:/KSU_Research/Final/Results/", 
clearWD=FALSE, debug=FALSE)      
 
# Applying bugs function entering inputs and running WinBUGS from R  
attach.bugs(AR1bugs.sim) 
 
# Saving key results 
BUGSest[j,1]<-mean(beta0) 
BUGSest[j,2]<-mean(beta1) 
BUGSest[j,3]<-mean(beta2) 
BUGSest[j,4]<-mean(sigma.y) 
} 
detach.bugs() 
 
# Calculation of a bias 
average<-apply(BUGSest,2,ave) 
BUGSsimest<-average[1,] 
BUGSsimest 
 
# Results formulation 
BUGSresults<-matrix(0,nrow=7,ncol=4) 
dimnames(BUGSresults)<-list(c("True value","BUGS estimate","BUGS bias","MSE estimate", 
"MSE SE", "95% MSE lower bound", "95% MSE upper bound"),c("beta0","beta1","beta2","sigma")) 
 
BUGSresults[1,]<-truevalue 
BUGSresults[2,]<-BUGSsimest 
BUGSbias<-BUGSsimest-truevalue 
BUGSresults[3,]<-BUGSbias 
 
#Calculation of MSE 
MSEwork<-apply((BUGSest-truevalue)^2,2,ave) 
MSEest<-MSEwork[1,] 
BUGSresults[4,]<-MSEest 
 
# Calculation of the 95% approximate interval for MSE: 
u<-(BUGSest-truevalue)^2 
ubar<-apply(u,2,sum)/B 
seMSEest<-sqrt(apply((u-ubar),2,sum)^2/(B*(B-1))) 
BUGSresults[5,]<-seMSEest 
 
lowbMSE<-MSEest-1.96*seMSEest 
BUGSresults[6,]<-lowbMSE 
upbMSE<-MSEest+1.96*seMSEest 
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BUGSresults[7,]<-upbMSE 
cat("There are the following results for sample sise of",T,"in",B,"simulations ") 
BUGSresults 
 
################################################################################### 
 
# OLS AR(1) simulation 
# Sampling from the specified distribution 
 
beta0<-0 
beta1<-1 
beta2<-0.5 
sigma2<-1 
N<-1000   
nburn<-0  #A number of the first simulated obs to be burnt 
 
B<-100    
OLSest<-matrix(0,nrow=B,ncol=4)  #ncol=4 parameters of the distribution 
out<-matrix(0,nrow=B,ncol=3) 
time<-matrix(1,nrow=N,ncol=1) 
X<-matrix(0,nrow=(N-nburn),ncol=2) 
 
# Data simulation 
for (j in 1:B){ 
 y<-matrix(0,nrow=N,ncol=1) 
 ylag<-matrix(0,nrow=N,ncol=1) 
 mu<-matrix(0,nrow=N,ncol=1) 
 t<-1 
 mu[t]<-beta0+beta1*t+beta2*0  #y[t-1] is unknown 
 y[t]<-rnorm(1,mu[t],sigma) 
 
  for (t in 2:N){ 
   mu[t]<-beta0+beta1*t+beta2*y[t-1] 
   y[t]<-rnorm(1,mu[t],sigma) 
   ylag[t]<-y[t-1] 
   time[t]<-t 
  } 
     
 X[,1]<-time[(nburn+1):N] 
 X[,2]<-ylag[(nburn+1):N] 
 Y<-y[(nburn+1):N] 
 
 # OLS regression 
 out<-lm(Y~X)   #The 1st 200 obs are burnt out 
 summary(out) 
 out<-summary(out) 
 out 
 
 OLSest[j,1]<-out$coeff[1,1] 
 OLSest[j,2]<-out$coeff[2,1] 
 OLSest[j,3]<-out$coeff[3,1] 
 OLSest[j,4]<-out$sigma 
} 
# Calculation of a bias 
average<-apply(OLSest,2,ave) 
OLSsimest<-average[1,] 
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# Results formulation 
results<-matrix(0,nrow=7,ncol=4) 
dimnames(results)<-list(c("True value","OLS estimate","OLS bias","MSE estimate", 
"MSE SE", "95% MSE lower bound", "95% MSE upper bound"),c("beta0","beta1","beta2","sigma")) 
 
results[1,]<-truevalue 
results[2,]<-OLSsimest 
 
OLSbias<-OLSsimest-truevalue 
OLSbias 
 
results[3,]<-OLSbias 
 
#Calculation of MSE 
MSEwork<-apply((OLSest-truevalue)^2,2,ave) 
MSEest<-MSEwork[1,] 
results[4,]<-MSEest 
 
# Calculation of the 95% approximate interval for MSE: 
u<-(OLSest-truevalue)^2 
ubar<-apply(u,2,sum)/B 
seMSEest<-sqrt(apply((u-ubar),2,sum)^2/(B*(B-1))) 
results[5,]<-seMSEest 
lowbMSE<-MSEest-1.96*seMSEest 
results[6,]<-lowbMSE 
upbMSE<-MSEest+1.96*seMSEest 
results[7,]<-upbMSE 
 
cat("There are the following results for sample sise",N-nburn,"in",B,"simulations ") 
results 

 

 

 

 

 

 

  

 44



Appendix E. A code with the model description from a file 

AR1Gamma.txt that was used in the simulation study 

# 1. Model AR(1) specification 
model #AR(1) with diffuse normal disns   
 
var 
Y[T], t; 
 
{ 
theta.Y[1] <- beta0 + beta1*0 +beta2*1 
Y[1]~ dnorm(theta.Y[1], tau.y) 
for(t in 2:T) 
 { 
 Y[t] ~ dnorm(theta.Y[t], tau.y) 
 theta.Y[t] <- beta0 + beta1*t + beta2*Y[t-1] 
 } 
 
# Priors 
beta0 ~ dnorm(beta0.c, beta0.tau) #non-informative diffuse normal distn 
beta1 ~ dnorm(beta1.c, beta1.tau) #non-informative diffuse normal distn 
beta2 ~ dnorm(beta2.c, beta2.tau) #non-informative diffuse normal distn 
tau.y ~ dgamma(0.001,0.001) 
sigma.y <-pow((1/tau.y), 0.5) 
 
beta0.c ~ dnorm(0, 1.0E-6) #non-informative diffuse normal distn 
beta0.tau ~ dgamma(0.001, 0.001) 
sigma.beta0 <- pow((1/beta0.tau), 0.5) 
 
beta1.c ~  dnorm(0, 1.0E-6) #non-informative diffuse normal distn 
beta1.tau ~ dgamma(0.001, 0.001) 
sigma.beta1<-pow((1/beta1.tau), 0.5) 
 
beta2.c ~  dnorm(0, 1.0E-6) #non-informative diffuse normal distn 
beta2.tau ~ dgamma(0.001, 0.001) 
sigma.beta2<-pow((1/beta2.tau), 0.5) 
} 
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Appendix F. Estimation summary from a test WinBUGS run of the 

research model with a generated sample of 1000 observations  

Table F.1. WinBUGS summary on the estimators’ posterior distributions 
Node statistics 
 node  mean  sd  MC error 2.5% median 97.5% start sample 
 beta0 0.04547 0.07509 0.00603 -0.1011 0.0497 0.1929 359 1074 
 beta1 1.002 0.04578 0.006088 0.962 0.9764 1.068 359 1074 
 beta2 -0.001982 0.04579 0.006088 -0.06801 0.02355 0.03792 359 1074 
 sigma.beta0 639.5 8306.0 247.7 0.04333 9.805 3937.0 359 1074 
 sigma.beta1 504.9 3050.0 90.06 0.04427 11.33 3735.0 359 1074 
 sigma.beta2 453.1 2044.0 60.28 0.05066 11.13 4037.0 359 1074 
 sigma.y 0.9809 0.02216 7.179E-4 0.9391 0.9809 1.027 359 1074 
 
dic.stats() 
 
DIC 
Dbar = post.mean of -2logL; Dhat = -2LogL at post.mean of stochastic nodes 
 Dbar Dhat pD DIC  
Y 2800.030 2794.980 5.044 2805.070  
total 2800.030 2794.980 5.044 2805.070  
history(*,D:/KSU_Research/Final/Results/history.odc) 

Plot F.1. History of Winbugs iterations for ࢼ૙ 
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Plot F.7. History of Winbugs iterations for ࢅ࣌ 
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Appendix G. Testing hypothesis of equality of the OLS and Gibbs 

Sampler MSE estimates in the research model  

ܻ , ଵߚ ܰ ሺߚ଴ ൅ ݐଵߚ ൅ ,௧ିଵݕଶߚ ௒ߪ
ଶሻ ௧|ݕ௧ିଵ, ଴ߚ , ,ଶߚ ௒ߪ

ଶ~ ଵ

:଴ܪ   ை௅ௌܧܵܯ ൌ ௜௕௕௦ீܧܵܯ

:஺ܪ ை௅ௌܧܵܯ ്  ௜௕௕௦ீܧܵܯ

with a t atistiest st c 

ܶ ൌ ெௌா෣ ಸ೔್್ೞିெௌா෣ ೀಽೄ

ඥௌாሺெௌா෣ ಸ೔್್ೞሻమାௌாሺெௌா෣ ೀಽೄሻమ   ௗ௙ୀሺ௡ಸ೔್್ೞା௡ೀಽೄିଶሻ,ሺଵିఈ/ଶሻݐ~

w

݊ீ௜௕௕௦ is a size of the samples that were used in simulations to estimate Bayesian Gibbs 

Sampler MSE estimator, ܧܵܯ෣ீ௜௕௕௦; 

here 

݊ை௅ௌ is a size of the samples that were used in simulations to estimate OLS MSE 

estimator, ܧܵܯ෣ை௅ௌ. 

The calculations below are based on the average Gibbs Sampler MSE estimate obtained 

from three chains with different initial values and on OLS MSE estimate for time trend 

coefficient ߚଵ.  All values used in these calculations are provided in Excel tables. 

For a sample size n=10 

ܶ ൌ  െ6.186 ~ ݐௗ௙ୀଵ଺  

p-value = Prob(|t|൒6.186)=1.3*10-5 

Conclusion 

Since p-value of time trend coefficient, ߚଵ, is less than 1%, there is strong evidence of 

significant difference between Gibbs Sampler MSE estimate and OLS MSE estimate. Gibbs 

Sampler MSE estimate tends to be smaller in average than OLS MSE. 

For sample size n=30 

ܶ ൌ  െ3.327 ~ ݐௗ௙ୀହ଺  

p-value = Prob(|t|൒ 3.327)=0.0016 

Conclusion 

Since p-value of time trend coefficient, ߚଵ, is less than 1%, there is strong evidence of 

significant difference between Gibbs Sampler MSE estimate and OLS MSE estimate. Gibbs 

Sampler MSE estimate tends to be smaller in average than OLS MSE. 
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For sample size n=100 

ܶ ൌ  െ0.480 ~ ݐௗ௙ୀଵଽ଺  

p-value = Prob(|t|൒ 0.480)=0.632 

Conclusion 

Since p-value of time trend coefficient, ߚଵ, is more than 1%, there is no evidence of 

significant difference between Gibbs Sampler MSE estimate and OLS MSE estimate.  

For sample size n=1,000 

ܶ ൌ  െ0.0153 ~ ݐௗ௙ୀଵଽଽ଺  

p-value = Prob(|t|൒ 0.0153)=0.988 

Conclusion 

Since p-value of time trend coefficient, ߚଵ, is more than 1%, there is no evidence of 

significant difference between Gibbs Sampler MSE estimate and OLS MSE estimate.  
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