TUWARD A SOLUTION FU! TYE OPT"MAL ALLOCATION CF INVESTMENT IN GRANSPORTATION NETWCRK DEVELOPMENT

$$
\text { by } 1<8
$$

JIN-JERG WANG

B.S. in Civil Engineering, National Taiwan Universtiy, Taiwan, 1964

A MASTER'S THESIS

submitted in partial fulfillment of the
reouirements for the degree

MASTER OF SCIENCE

Departmert of Civil Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas
1967

TABLE OF CONTENTS

Page
SUMARAY 1
INTRODUCTION. 2
REVIEW OF LITERATURE. 5
DISCRETE MAXIMUM PRINCIPLE AND ITS RECENT APPLICATIONS IN TRANSPORTATION SYSTEMS ANALYSIS 12
THE OBJECTIVE FUNCTION AND TRAVEL TIME EQUATION 16
Fig. la. Typical Speed-Volume Curve 18
Fig. lb. Typical Travel Time-Volume Curve 18
Fig. 2a. Travel Time-Investment Curve With Fixed Volume. 20
Fig. 2b. Travel Time-Volume Curve With Fixed Investment. 20
Fig. 2c. Investment-Volume Curve With Fixed Travel Time 20
GENERAL FORMULATION OF THE PROBLEM. 21
Fig. 3. Examples of Network Modification 22
Fig. 4. Basic $N \times M$ Network. 26
Fig. 5. Typical Interior Node of a Rectangular Network 27
EXAMPLES AND DISCUSSION 50
Fig. 6. Hypothetical Network and Peak Hour Traffic Distribution 51
Table l. Input Data of the Example Problems 52
Fig. 7. $K_{i 2}$ Values for the Example Problems 53
Fig. 8. Ki3 Values for the Example Problems. 54
ric. 9. Optimai Investment and Traffic Assign- ment: Results of Examole i. 56
Fie. IU. Optimal Investment and Traffic Assigr- ment: Results of Example 2. 5 を゙
Fig. 12. Optimal Investment and Traffic Assign- ment: Results of Examole 3. 59
Fig. 12. Optimal Investment and Traffic Assign- ment: Results of Example 4. 61
Table 2. Number of Iterations, Approximate Con- puting Time Used and Total Costs for Example Problems 62
CONCLUSIONS 64
RECOTMENDATIONS FOR FURTHER RESEARCH. C6
ACKNONLEDGEMENTS. 67
BIBLIOGRAPHY. 68
APPENDIX A: VALUES OF CONSTANTS IN UNIT TRAVEL TINE EQUATION 72
Table A-1. Kil Values and Naximum Speed 73
Table A-2. Cost Characteristics of Urban Highways 76
Table A-3. Cost and Travel Time of Urban
Highways 76
Table A-4. $\mathrm{K}_{\mathrm{i} 2}$ Values 77
APPENDIX B: COMPUTER PROGRAMS. 79
APPENDIX C: RESULTS 93
LIST OF SYMBOLS 99

Sealizinc the arfect of network improvement on the operation of a highway trarsportation system, this study develops a model which enables us to obtain ar optimum investrent policy for improving a transportation network. Consider an area with the future traffic demand assumed to ke known. The problem then is to build (or to improve) a transportation network to accommodate the demand with mimimum overall cost, assuming that the desired network configuration has already been determined. Travel time cost is assumed to be the only significant factor of operating cost. Therefore, the overall cost, or transportation cost, is assumed to be equal to the sum of investment cost and travel time cost.

A non-linear total travel time equation was developed to express the travel time as a function of the investment and of traffic volume. Three formulations associated with three different investment circumstances are presented. With the zonal interchanges considered as given information, the discrete maximum principle (l) was utilized to assign the चrips and the investment to each link of the network based on the criterion of minimizing the overall cost. The maximum principle enables the location of the optimum without undue difficulties.

INTRODUCTION

The eccnomic analysis of a transportation network provides valuable gu:dance in developing a comprehensive, long-range transportation plan which, as concluded by Zettel and Carll, is the basic objective of a transportation study (2). Being part of the public services and competing for the use of limited resources, the transportation system should be built and operated economically while at the same time it should meet the standards and goals of the community in order to promote growth and meet the needs of the economic activities. Specifically, the objectives of a transportation system have been summarized as: (3)

1. Provide a means for moving people and goods safely, freely and economically.
2. Provide a choice of mode.
3. Nake the city a more attractive place to live.
4. Provide the means for fulfilling the needs and desires of the urban population within their ability to pay.

Theoretically, an optimal system which best fits the economic and social objectives would be the desired system and the evaluation of the system would be based on criteria which reflect these objectives. However, the evaluation would be very difficult if it were to be done quantitatively.

For exarmle, The Chicago Area Transportation Study listed the following six criteria: (4)

1. Greater speed.
2. Increased safety.
3. Lower operating cost.
4. Economy in new construction.
5. Minimizing disruption.
6. Promotine better land development.

It is apparent that a sinple value systom is not availablo for neasurine all these critoria. Criteria three and four are easily expressed in dollars, and one and two can be converted into dollar cost. However, criteria five and six are not only intangible but also very difficult to measure quantitativoly. For this reason, transportation system evaluations are generally restricted to economic anaZysis and Leave the social objectives to be considered, somewhat suidectively, in the final selection of the optimal system. It is, altrough not perfect, the best approach available at present.

This study was an attempt to develop a mathematical model for the economic evaluation of a transportation system. Iike many other studies, a single objective-to minimize the transportation cost-was adopted. Several surveys have shown trat travel time is dominant as a factor in selecting a route $(5,6)$. Therefore, to simplify the formulation, it was assumed trat travel time was the only significant factor

OI operating cost thereby reducing the objective to minimizing the sum of the investment cost and travel time cost.

One of the major setbacks of linear programing type models is that unit travel time is assumed to be independent of traffic volume. To overcome the weakness, this study applied the Discrete Maximum Principle-a powerful optimum seeking method-which allows the use of a non-linear total travel time equation. It should be emphasized that although there is undoubtedly room for improvement in the particular functional relationship between travel time, assigned volume and investment cost, the primary purpose of this study was to demonstrate the usefulness and the ability of the discrete maximurn principle in solving this type of non-linear optimization problem. Hopefully, by further research and modifications of the formulation, a more useful model may be evolved.

RLVIEW DT LITERATURE

In the nast few decades, several methods of economic analysis have been developed for use in transportation slarning. Four principle methods are (a) annual cost method, (b) present worth method, (c) benefit-cost ratio method, and (d) rate of return method (7, 8, 9, 10). The relative advantages of each method are briefly descriced by Fremman and Rothrock (10).

Since World War II, the benefit-cost ratio method has been given a great deal of attention. In 1952, the American Association of State Highway Officials adopted this method and published an informational report on "Road User Berefit Analysis for Highway Improvement," the so-called, "Red Book" (δ). Since that time, it has beer. accepted by many Dlanning agencies. Grant, on the other hand, specially favors the use of the rate of return method. The application of this method and its merits have been discussed at lerpth in his oapers (9, 11). Jany reports have compared the uses of the benefit-cost ratio method and the rate of return method in detail (11, 12). In general, when properly used, both methods will give the same results.

No matter which method was used, the analyses made in the past have restricted themselves to comparing alternatives for a single link or a single route of a network. The overall system effect of improvements was completely ignored cr simply ad,usted by using engineering judgment. Since the
improvements will generally cause redistribution of traffic and since benefits on one route may cause a loss of benefits on other routes, this approach has sometimes resulted in an uneconomic or even retarded transportation plan.

Realizing this deficiency, some recent studies have compared alternatives throufin complete network analysis. In the Chicago Area Transportation Study, five alternative freeway systems were first developed. For each system, trip distribution and traffic assignment techniques were employed to obtain the traffic volume on each link of the system. Three methods, (a) benefit-cost ratio, (b) rate of return, and (c) annual cost, were then used to evaluate each system. They all resulted in the same answer (4, 13). This approach is in general quite satisfactory. However, because the number of alternatives to be compared was relatively small and the development of alternatives was largely based on engineering judgment, it is quite possible that the best system was not considered.

At the same time, more and more attention has been concentrated on the applications of optimization techniques to the transportation field. In 1958, Garrison and Marble (14) presented a linear programming formulation for the analysis of network improvement. Travel cost for each link was assumed to be constant and the investment was assumed to increase the capacity linearly. The objective was to miminize the sum of the investment and travel cost subject to constraints
such as flcw balance, budget, and capacity limits. The simplex algoithm was erployed to seek the optimal solution. This paper leadsto increased interest in developing mathematical models in the following years.

Guandt (15), in 1960, presented a similar formulation. In his problem, a commodity was to be transported from n sources to m destinations, each node was connected with every other node by a direct link. Again, linear relations between shipment cost and volume, and between improvement cost and capacity were assumed. The problem was then formulated and solved by linear programming. Consideration was also given to problems with fixed budgets, indirect connection between nodes and multicommodity shipment.

Carter and Stowers (16), in 1963, again utilized linear prograrming to formulate a model for fund allocation for urban highway system capacity improvement. The basic formulation was the same as the previous papers except that each link was represerted by two arcs, one with free flow capacity and normal operating cost, the other with higher operating cost (due to congestion) and capacity equal to the difference between possible and practical capacity. The ratio of the capacities of these two arcs was kept constant as the capacities were improved.

In 1964, Rcberts and Funk (17) developed a linear programming model for the problem of adding links to a transportation system. The locations of possible additional

Links in uhe systen. were first decided. In seeking the optimum, the additional link was either completely built or not built at all. If the link wer wed, the cost was incluaed in the objective function. If it were not added, the flow was blocked. In this formulation an integer programming technique was used. The paper also suggested a possible application of dynamic programming in treating the stage-wise construction problem. As a result, in 1966, Roberts, et. al. (18) combined the use of linear programming and dynamic programming techniques to solve a stage-wise link adding problem. The budget for each construction period was fixed. The method considered the budget at the Nth stage as the sum of the budgets from the first to the nth construction period and used the principle, "the links for stage N must be the subset of links for stage $N+1$," to indicate the links which must be considered at stage N. At each stage, integer programming was used to select the links to be added. This method is consiciered useful for transportation system development in underdeveloped countries.

In the same year, Hay, Morlok and Charnes (19) presented a model for optimal planning of a two-mode urban transportation system. A twomode system, private road and public transit, was to be built in an urban corridor. The road capital cost was linearly related to capacity and speed. Transit speed was fixed with the capacity linearly related
to capital cost. The length of the transit route was also assumed fixed. The choice of mode was linearly related to the travel time ratio between road and transit. Again, the linear programing technique was used to formulate the problem and seek the optimum. The objective function was:

$$
\begin{aligned}
\min & \left\{\begin{array}{l}
\text { annual road } \\
\text { capital cost }
\end{array}\right\}+\left\{\begin{array}{l}
\text { annual vehicle } \\
\text { operating cost }
\end{array}\right\}+\left\{\begin{array}{l}
\text { annual transit } \\
\text { capital cost }
\end{array}\right\} \\
& +\left\{\begin{array}{l}
\text { annual transit } \\
\text { operating cost }
\end{array}\right\}+\{\text { Parking cost }\}
\end{aligned}
$$

In this formulation, the travel time was excluded from operating cost and was treated as a constraint to reflect the minimum level of service desired and the maximum speed obtainable. For a true optimum, it was required to change the length of the transit route and run the program several times.

Distinct from the linear programming type models, Rjdley (20) in 1965, developed a method for seeking the optimum investment policy to reduce the travel time in a transportation network. The unit travel time was assumed to be decreasing linearly with the investment. It was also assumed that the flow was far below the link capacity. The objective was to minimize the total travel time. Because the travel time was a function of both investment and traffic volume, the objective function was non-linear in nature. For some special cases, such as no budget limit, fixed traffic
volume, fixed investment and single origin-destination, the formulation can be simplified into a linear procramming model. For the general case which has budget and travel time constraints, the bounded subset method was utilized to search the optimum.

A common drawback of the above models is that unit travel time was assumed to be independent of traffic volume which is not at all close to reality. The linear assumption of travel time improvement in Hay's and Ridley's models is also questionable.

Althourh the ahove review shows some imperfection of tre existing models, it is realized that the mathematical model is a powerful technique which we can apply in the field of transportation engineering in order to make a better analysis. Compared to the alternative comparison method, the mathenatical model has merit in that: (19)
"It selects that system which is optimal among all possible systems of a given type rather than merely examining a small number of alternatives."

There are, however, two difficulties with the mathematical models.

1. We are trying to express a highly complex real world phenomenon with a simple equation which is very difficult or may even be impossible.
2. The model sometimes becomes too complex to manipulate and too sophisticared to understand and
nequares highly trained personnel to carry out the analysis.

TRANSPORTATION SYSTENS ANALYSIS

In recer years, optimization has become more and more important in engineering systems analysis. Since World War II, many sophisticated techniques have been developed. Among them, Dynamic Programming and the Discrete Maximum Principle (1) were developed for the optimization of stacewise processes.

In 1964, Fan and Wang developed a discrete version of the maximum pr nciple (1). Recently, it was demonstrated that this optimization technique was applicable to transpertation systems analysis (22, 23, 24).

Consider an \mathbb{N} stage process with state variables denoted by an s-dimensional vector, $X=\left(X_{1}, X_{2}, \ldots X_{s}\right)$, and decision variables denoted by a r-dimensional vector, $\theta=$ $\left(\theta_{1}, \partial_{2}, \ldots \theta_{r}\right)$. The performance equations at the n-th stage are given as:

$$
\begin{aligned}
& x_{i}^{n}=T_{i}^{n}\left(x_{1}^{n-1}, x_{2}^{n-1}, \ldots, x_{s}^{n-1} ; \theta_{1}^{n}, \theta_{2}^{n}, \ldots, \theta_{r}^{n}\right) \\
& x_{i}^{0}=\alpha_{i}
\end{aligned}
$$

where, $i=1,2, \ldots, s ; n=1,2, \ldots, N$ and α_{i} is constant.
A typical optimization proklem associated with such a process is to find a set of $\theta^{n}, n=1,2, \ldots, N$, subject to constraints:

$$
\psi_{i}^{n}\left(\theta_{1}^{n}, \theta_{2}^{n}, \ldots, \theta_{r}^{n}\right) \leq 0 \quad \begin{aligned}
& n
\end{aligned}=1,2, \ldots, n
$$

which optimizes tre objcetive function,

$$
S=\sum_{i=1}^{S} C_{i} \times x_{i}^{N} \quad c_{i}=\text { constant }
$$

The discrete maximum principle introduces an s-dimensional vector, Z^{n}, and a Hamiltonian function, H^{n}, which satisfy the following relations:

$$
\begin{aligned}
& H^{n}=\sum_{i=1}^{s} Z_{i}^{n} T_{i}^{n}\left(X^{n-1} ; \theta^{n}\right), \quad N=1,2, \ldots, N \\
& z_{i}^{n-1}=\frac{H^{n}}{X_{i}^{n-1}} \quad i=1,2, \ldots, s ; n=1,2, \ldots, N \\
& \text { and } Z_{i}^{n}=C_{i}
\end{aligned}
$$

Whe necessary condition for S to be a local extreme with respect to 6 is

$$
\frac{\partial H^{n}}{\partial \theta^{n}}=0
$$

When it is inside the boundary of the constraints, or
$H^{n}=$ extreme
wher it is on the boundary of the constraints.
If the objective function is a cumulated measure which can be expressed as

$$
S=\sum_{n=1}^{N} \psi\left(x^{n-1} ; v^{n}\right)
$$

the alrominn can re extended by introducing an extra state variahle X_{s+1}, defined as

$$
\begin{aligned}
& x_{s+1}^{u}=j \\
& x_{s+1}^{n}=x_{s+1}^{n-1}+\psi\left(x^{n-1} ; \nabla^{n}\right), \quad n=1,2, \ldots, N
\end{aligned}
$$

The new equations torether with the original performance equations specify the process in s+l variables where the obsective function becomes

$$
s=x_{s+1}^{N}=\sum_{n=1}^{\mathbb{N}} \psi\left(x^{n-1} ; \sigma^{n}\right)
$$

and the primal alecrithm of the principle is restored.
In case that some of the state variables at the end stase, X_{i}^{N}, are fixed, the relation $Z_{i}^{N}=C_{i}$ no longer exists. The following equation

$$
\frac{\partial \tilde{K}^{N}}{\partial \sigma_{K}^{N}}=\sum_{j=1}^{s} z_{i} \frac{x_{i}^{N}}{\sigma_{K}^{N}}=u
$$

can be used for each fixed end stage variable. By solving these eouations simultaneously, the Z_{i}^{N} values can be determined (21).

Recently, the discrete maximum principle has beer successfully applied to the traffic assigrment problem. In 1964, Yang and Snell (22) formulated the traffic assignment problem by considering each node of the network as a stage. The unit travel time on each link was assumed constant and
a tuxnirf oeralty was relugeu in the travel vime equation. The on'ective was so minimize tre total travel time. Jue to the linear characteristic of the objective function, the optirmm searchinf procedure was reduced to a shortest patr. tree huilding routine which is similar to Moore's alporithm. In 1966, Snell, Funk and Blackburn (23) developed a more complete model. In this model, travel time was norlinearly related to traffic volume. This characteristic is considered to be a sten toward more realistic traffic assimnent. In 1967, Funk and Snell (24) developed a procedure for ar approximate multicopy traffic assignment problem. The results obtained from this procedure appear to be very close to the true optimum.

THis OBJECTIVE FUNCTION AND TRAVEL TINE EQUATICN

As previously explained, the objective of this study was to minimize the sum of the investment cost and the travel time cost. The investment was an independent variable and it was assumed nat it could be expressed in terms of dollars per rile. However unit travel time was, in reneral, dependent on traffic volume and roadway conditions. In other words, unjt travel time was a function of both traffic volumo and investment. The relationship among them was, in reality, very complex. In developing a mathematical model, it was generally necessary to make some assumptions and simplify the relationship in order to express the relationship by a relatively simple equation which was manageable and yet not too far from reality.

To express unit travel time as a function of traffic volume and investment, some basic characteristics were observed:

1. Unit travel time increased as the traific volume increased.
2. Unit travel time decreased as the investment increased.
3. Unit travel time had a lower limit. (free flow travel time)
4. With constant travel time, service volume increased as the investment increased.

The typical relation between traffic volume and operailur speed is shown in Fig. la. As the speed is inversely proportional to the travel time, this curve can be converted into a travel time-traffic volume relation curve as shown in lif. lb. The dotted part of the curve shows the relation under congested conditions. Therefore, under normal operating conditions, it is logical to assume that unit travel tine (in hours per vehicle per mile) is linearly related to traffic volume and should have an equation of the following form:

$$
\begin{equation*}
t=K+K^{\prime} V \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathrm{t} & =\text { unit travel time (hr/mi/veh) } \\
\mathrm{K} & =\text { free flow travel time (hr/mi/veh) } \\
\mathrm{K}^{\prime} & =\text { slope of tre curve in Fig. } 1 \mathrm{~b}\left(\mathrm{hr} 2 / \mathrm{mi} / \mathrm{veh}^{2}\right) \\
\mathrm{V} & =\text { traffic volume per unit time (veh/hr) }
\end{aligned}
$$

Keeping basic characteristics in mind and further assuming that the free flow travel time is constant for each link and traffic volume served is proportional to investment for a corstant travel time, an equation of the following form may be hypothesized:

$$
\begin{equation*}
t=K_{1}+\frac{K_{2}}{\theta} v \tag{2}
\end{equation*}
$$

where

$$
\mathrm{t}=\text { urit travel time (} \mathrm{hr} / \mathrm{mi} / \mathrm{ven} \text {) }
$$

Fig. la Typical Speed-Volume Curve

Fiq. Ib Typical Travel Time-Volume Curve

$$
\begin{align*}
& \mathrm{K}_{1}= \text { frec Low travel time (hr/mi/veh). The magritude } \\
& \text { depends on the maximum speed obtainable or regu- } \\
& \text { lated. } \\
& \mathrm{K}_{2}= \text { coefficient of inprovement (dollar-hr/mi } / \mathrm{men}^{2} \text {). } \\
& \text { Its marnitude depends on link location and reflects } \\
& \text { the difficulty of improvement. } \\
& 0= \text { cquivalent hourly investment per unit length } \\
& \text { (dollar/mi/hr). } \\
& V= \text { traffic volume per unit time (veh/hr). } \\
& \text { In the case where old facilities exist, the investment } \\
& \text { should be expressed as: } \\
& \theta= K_{3}+\theta^{\prime} \tag{3}
\end{align*}
$$

where, K_{3}, in dollars per mile per hour, represents the existing investment and θ^{\prime}, in dollars per mile per hour, is the additioral investment.

The general form of the unit cravel time equation then becomes

$$
\begin{equation*}
t=K_{1}+\frac{K_{2}}{K_{3}+0} \mathrm{~V} \tag{4}
\end{equation*}
$$

The characteristics of this equation are demonstrated in Figure 2a, $2 b$ ard $2 c$.

Let I be the length of the link and C_{t} the cost of time. The objective function then becomes

$$
\begin{equation*}
s=e^{\prime} L+\left(K_{2} V+\frac{K_{2}}{K_{3}+0^{+}} V^{2}\right) I C_{t} \tag{5}
\end{equation*}
$$

Fig. 2a Travel Time-Investment Curve With Fixed Volume

Fig. 2b Travel Time-Volume Curve With Fixed Investment

Fig. 2c Volume-Investment Curve With Fixed Travel Time

GENERAL FORMULATION OF THE PROBLFM

This section presents the reneral formulation of the optirial network improvement problem. Three investment conditions are considered which result in three different sets of equations and two slirhtly different methods of seeking the optimum.

The formulation is applied to rectangular networks only. However, for many non-rectangular networks, it is possible to modify them into rectangular forms by adding slack links. Two examples are shown in Fig. 3.

Definitions

1. Obiective Function - a function, which is to be minimized in this problem, representative of the total cost.
2. Zone Centroid - a point of trip origin or destination.
3. Node - a point where segments of the road system connect.
4. Link - a connection between two nodes representative of a semment of the road system.
5. Path - a series of connected links representative of a trip route.
6. Network - the combination of all links and nodes.

Notations

1. $\quad X_{j}^{n, m}$ - state variables representing flows from node (n, m) .

Fig. 3 Examples of Network Modizication

$$
\begin{aligned}
\forall_{j}^{n, n}- & \text { decision variables representing investments on } \\
& \text { links leaving node }(n, m) .
\end{aligned}
$$

3. $\quad K_{j 1}^{n, \text { ri }}$ - Free flow travel time on links leaving node (n, m).
4. $K_{j 2}^{n, m}$ - coefficient of investment on links leaving node (n, m).
5. $K_{j 3}^{n, m}$ - existing investment on links leaving node (n, m).
6. $L_{j}^{n, m}$ - link length on links leaving node (n, m).
7. $t_{j}^{n, m}$ - unit travel time on links leaving node (n, m). where, $j=1$, for horizontal links.
$j=2$, for vertical links.
8. $x_{3}^{r, m}$ - state variable representing the total investment on horizontal links from node (1,1) through node (n, m).
9. $X_{4}^{n, m}$ - state variable representing the total investment on vertical links from node (1,1) through node (n, m).
10. $X_{5}^{n, m}$ - state variable representing the total travel time cost on horizontal links from node (1,1) through node (n, m).
11. x_{6}^{n}, m - state variable representing the total travel time cost on vertical links from node (1,1) through node (n, m).
12. $x_{7}^{n, m}$ - state vailable representing the total investment on both links from node ($1, I$) through node (n, m).
13. $\theta_{j}^{n, m}$ - decision variable representing the fraction of the vehicles departing node (n, m) on the horizontal link.
14. C_{t} - time cost.
15. $H^{n, m}$ - Hamiltonian function at node (n, m).
16. $V^{n, m}$ - input trips at node (n, m).
17. GI - total system budget.
18. $S I^{r, m}$ - section budget at node (n, m).
19. $z_{1}^{n, m}, z_{2}^{r, m}, \ldots, z_{7}^{n, m}$ - adjoint variables associated with $X_{1}^{n}, m, X_{2}^{n, m}, \ldots, X_{7}^{n}, m$ respectively.
20. S - objective function.

Assumptions

1. No turn peralties.
2. Zone centroids coincide with the modes.
3. Traffic directions are preassigned.
4. Traffic distribution is fixed.
5. Transportation network can be represented by a rectangularly arranged combination of links.
6. Travel time is the only factor that influences the traffic assignment.
7. Unit travel time on each link can be expressed as:

$$
\begin{equation*}
t_{j}^{n, m}=\kappa_{j 1}^{n, m}+\frac{k_{j, 2}^{n, m}}{\theta_{j}^{n, m}+k_{j 3}^{n,} x_{j}^{n, m}, ~} \tag{6}
\end{equation*}
$$

where

$$
\begin{aligned}
& j=1, \text { for horizontal links } \\
& j=2, \text { for vertical links }
\end{aligned}
$$

Figure 4 shows a basic $N \times M$ rectangular network with node (N, M) as the destination and all other nodes as origins. With the input trips at each node obtained from a traffic distribution study, the problem is to find an investment policy under each investment condition such that the total cost is a minimum.

Investment With No Budget Constraint

In this case, the overall system budget was assumed unlimited. However, there are three special conditions which imply upper or lower limits of investment on each link.

The performance equations for a typical interior node as shown in Fig. 5 were developed as follows:

$$
\begin{align*}
& x_{1}^{n, m}=\left(x_{1}^{n, m-1}+x_{2}^{n-1, m}+V^{n, m}\right) \theta_{3}^{n, m}=A I^{n, m} \theta_{3}^{n, m} \tag{7}\\
& x_{2}^{n, m}=\left(x_{1}^{n, m-1}+x_{2}^{n-1, m}+V^{n, m}\right)\left(1-\theta_{3}^{n, m}\right)=A I^{n, m}\left(1-\theta_{3}^{n, m}\right) \tag{8}\\
& x_{3}^{n, m}=\theta_{1}^{n, m} L_{1}^{n, m}+x_{3}^{n, m-1}, \quad \theta_{1}^{n, m} \geq 0 \tag{9}\\
& x_{4}^{n, m}=\theta_{2}^{n, m} L_{2}^{n, m}+x_{4}^{n, m-1} \quad, \quad \theta_{2}^{n, m} \geq 0 \tag{10}
\end{align*}
$$

Fig. 4 Basic $N \times M$ Network

Fig. 5 Typical Interior Node of A Rectangular Network

$$
X_{6}^{n, m}=K_{21}^{n, m} X_{2}^{n, m} I_{2}^{n, m} C_{t}+\frac{K_{22}^{n, m} L_{2}^{n, m} C_{t}}{\theta_{2}^{n, m}+K_{23}^{n, m}}\left(X_{2}^{n, m}\right)^{2}+X_{6}^{n, m-1}
$$

$$
=K_{21}^{n, m} A I I^{n, m}\left(I-\theta_{3}^{n, m}\right) I_{2}^{n, m_{C}} C_{t}+\frac{K_{22}^{n, m} L_{2}^{n, m} C_{t}}{\theta_{2}^{n, m}+K_{23}^{n, m}}\left(A I I^{n, m}\left(I-\theta_{3}^{n, m}\right)^{2}\right.
$$

$$
\begin{equation*}
+X n, m-1 \tag{12}
\end{equation*}
$$

where $A I^{n, m}=X_{1}^{n, m-1}+X_{2}^{n-1, m}+V^{n, m}$

$$
\begin{aligned}
& \theta_{1}^{n, m} \geq 0 \\
& \theta_{2}^{n, m} \geq 0
\end{aligned}
$$

and

$$
u \leq e_{3}^{n, m} \leq 1
$$

The Hamiltonian function at this node is defined as:

$$
\begin{align*}
H^{n, m}= & z_{1}^{n, m} x_{1}^{n, m}+z_{2}^{n, m} X_{2}^{n, m}+z_{3}^{n, m} X_{3}^{n, m}+z_{4}^{n, m} X_{4}^{n, m} \\
& +z_{5}^{n, m} x_{5}^{n, m}+z_{6}^{n, m} X_{6}^{n, m} \tag{14}
\end{align*}
$$

$$
\begin{align*}
& x_{b}^{n}, \tilde{K}_{11}^{n, w} X_{1}^{n, m} I_{1}^{n, m} C_{t}-\frac{K_{12}^{n, m} N_{1}^{n, m} C_{t}}{\theta_{1}^{n, m}+K_{13}^{n, m}}\left(X_{1}^{n, m}\right)^{2}+X_{5}^{n}, m-1 \\
& -K_{11}^{n, m} A I^{n, m_{\theta} \theta_{3}^{n}, m_{L} L_{1}, m_{C}}+\frac{K_{I 2}^{n, m} I_{1}^{n, m} C_{t}}{\theta_{1}^{n, m}+K_{13}^{n, m}}\left(A I^{n, m_{\theta} n, m}\right)^{2} \\
& +x_{5}^{n, m-1} \tag{11}
\end{align*}
$$

Wh stitut?ne equations (7) to (12) into equation (11) ant akink derivativos with respect to state variablos, the adioint varjables are obtained as follows:

$$
\begin{equation*}
+2 z_{6}^{n, m} \frac{K_{22}^{n, m} L_{2}^{n, m} C_{t}}{\theta_{2}^{n, m}+K_{23}^{n, m}} A I^{n, m}\left(1-\theta_{3}^{n, m}\right)^{2} \tag{15}
\end{equation*}
$$

$$
z_{2}^{n-1, m}=\frac{\partial H^{n, m}}{\partial x_{2}^{r-1, m}}=Z_{1}^{n, m_{1}} \theta_{3}^{n, m}+Z_{2}^{n, m}\left(1-\theta_{3}^{n, m}\right)+2_{5}^{n, m_{1}^{n}, m_{1}^{n} \theta_{3}^{n, m_{L} n, m_{1}} C_{t}}
$$

$$
+2{\underset{6}{n}, m_{K}^{r}}_{2, m}^{m}\left\langle 1-\theta_{3}^{n}, m\right\rangle L_{2}^{n}, m_{C}
$$

$$
\begin{equation*}
Z_{3}^{n, m-1}=\frac{\partial H^{r, m}}{\partial \times_{3}^{n, m-1}}=2_{3}^{n, m} \tag{1.7}
\end{equation*}
$$

$$
\begin{aligned}
& Z_{1}^{n, m-1}=\frac{\partial H^{n, m}}{\partial X_{1}^{n, m-1}}=Z_{1}^{n, m_{U}} \int_{3}^{n, m}+Z_{2}^{n, m}\left(1-G_{3}^{n, m}\right)+Z_{5}^{n, m_{1}} K_{1}^{n}, m_{1} G_{3}^{n, m} L_{1}^{n, m_{C}} C_{t} \\
& +Z_{6}^{n}, m_{K}^{n}, m\left(1-\theta \frac{n}{3}, m_{2}\right) I_{2}^{n, m_{C}}{ }_{t} \\
& +2 Z_{5}^{n, m} \frac{K_{12}^{n, m} L_{1}^{n, m} c_{t}}{\theta_{1}^{n, m}+K_{13}^{n, m}} A I^{n, m}\left(\theta_{3}^{n, m}\right)^{2}
\end{aligned}
$$

$$
\begin{equation*}
=n_{4}^{n-1, m}-\frac{\partial 1^{n}, m}{\partial x_{4}^{n-1}, m}=r_{4}^{r_{1}, m} \tag{18}
\end{equation*}
$$

$$
\begin{equation*}
z_{5}^{n, n:-1}=\frac{\partial 11^{n, m}}{\partial x_{5}^{n, m-1}}=z_{5}^{n, m} \tag{19}
\end{equation*}
$$

$$
z_{6}^{n-1, m}=\frac{\partial H^{n, m}}{\partial X_{6}^{n-1, m}}=z_{6}^{n, m}
$$

The original conditionsfor the state variables are given as:
$X_{I}^{0,0}=X_{2}^{0,0}=X_{3}^{0,0}=X_{4}^{0,0}=X_{5}^{0,0}=X_{6}^{0,0}=0$
The orjective function is
$S=X_{3}^{N, M}+X_{4}^{N}, N+X_{5}^{N}, M+X_{6}^{N}, N$
Therefore, by definition, the boundary conditions for the adfoint variables are:
$Z_{1}^{N}, M=Z_{2}^{N}, N=0$
$Z_{3}^{N, M}=Z_{4}^{N, N}=Z_{5}^{N, M}=2_{6}^{N, M}=1$

Substituting equation (24) into equations (17) to (20), the following equation is derived.
$\therefore n-n=n, m-n, m=\frac{n}{4}-m \quad$ for all (n, m)

The Hamiltonian function then becomes:
$!^{n, m}=z_{1}^{n, m_{X} n, m}+z_{2}^{n, m_{X}^{n, m}}+x_{2}^{n, m}+x_{4}^{n, m}+x_{5}^{n, m}+x_{6}^{n, m}$

In order to have S a minimum, the following conditions are necessary:
$\frac{\partial H^{r, m}}{\partial \theta_{1}^{n, m}}=0 \quad \theta_{1}^{n, m}>0$
$\frac{\partial r^{n, m}}{\partial \theta_{2}^{n, m}}=0 \quad \theta_{2}^{n, m}>0$
$\frac{\partial H^{n}, m}{\partial \theta_{3}^{n, m}}=0 \quad 0<e_{3}^{n, m}<1$
when $\left(\theta_{1}^{n, m}, \theta_{2}^{n, m}, \theta_{3}^{n, m}\right)$ is an interior point, or $H^{n, m}=$ minimum with respect to those $\theta_{j}^{n, m}$ which are at a boundary point of the constraints.
Substituting equations (7) to (12) into equation (26)
and taking dorivatives with respect to the various decision variables, the following equations are obtained:
$\frac{\partial F^{n, m}}{\partial \theta_{1}^{n, m}}=L_{1}^{n, m}-\frac{K_{1}^{n, m} L_{1}^{n, m} C_{t}}{\left(\theta_{1}^{n, m}+K_{13}^{n, m}\right)^{2}}\left(A I^{\left.n, m_{n}^{n} \theta_{3}^{n, m}\right)^{2}}\right.$

$$
\begin{align*}
& \frac{\partial 1^{n}, \ldots}{\partial \theta_{2}^{n, m}}=L_{2}^{n, n}-\frac{k_{2}^{r, n} i_{2}^{n, m_{2}} t}{\left(\theta_{2}^{n}, m_{i}+K_{23}^{n, m}\right)^{2}}\left[A I^{n, m}\left(1-\theta_{3}^{n, m}\right)\right]^{2} \tag{28}
\end{align*}
$$

$$
\begin{align*}
& -2 \frac{K_{12}^{n, m} L_{1}^{n, m} c_{t}}{\sigma_{1}^{n, m}+K_{13}^{n, m}}\left(A, I n, m,{ }_{\because}^{n}{ }_{3}^{n, m}\right. \\
& -2 \frac{K_{22}^{n, m} L_{2}^{n, m} c_{t}}{\theta_{2}^{n, m}+K_{23}^{n, m}}\left(A I^{n, m}\right)^{2}\left(1-\theta_{3}^{n, m}\right) \tag{29}
\end{align*}
$$

Taking derivative of equation (29) with respect to $\theta_{3}^{n, m}$, the followins equation is obtained:
$\frac{\partial^{2} n, m}{\left(\partial 0_{3}^{n, m) 2}\right.}=2 \frac{n_{12}^{n, m} I_{1}^{n, m} c_{t}}{\theta_{1}^{n, m}+K_{13}^{n, m}}\left(A I^{n, m}\right)^{2}+2 \frac{K_{22}^{n, m} I_{2}^{n, m_{C}}{ }_{t}^{n, m}+K_{23}^{n, m}}{\nabla_{2}^{n}}\left(A I^{n, m}\right)^{2}$

Settinp equations (27) and (28) equal to zero and applyinr the boundary conditions of the decision variables, the values of $\sigma_{1}^{r, m}$ and $\theta_{2}^{n, m}$ can be obtained from the following equations:
$\nabla_{1}^{n, m}=\sqrt{K_{12}^{n, m_{1}} C_{t}} A I^{n, m_{\theta}^{n, m}} K_{13}^{n, m} \quad$ when $\theta_{1}^{n, m}>0$
or
$N_{i}^{r, \cdots}=\quad$ when $\sqrt{k_{12}, C_{t}} A_{1}{ }^{r, m} n_{3}^{n, m}-K_{13}^{n, m} \leq u$
$\theta_{\hat{2}}^{n, m}=\sqrt{K_{22}^{n, m_{n}}} A_{t}^{n, m}\left(1-\theta_{3}^{n, m}\right)-K_{23}^{n, m}$ when $\theta_{2}^{n, m}>0$
or
$\theta_{2}^{n, m}=0$ when $\sqrt{K_{22}^{r, m} C_{t}} A I^{n, m}\left(1-0_{3}^{n, m}\right)-K_{23}^{n, m} \leq 0$
When both $\partial_{1}^{n, m}$ and $\theta_{2}^{n, m}$ are greater than zero, equations (31) and (33) can be substituted into equation (29) to obtain the following equation

$$
\begin{align*}
& =A I^{n, m}\left[\left(z_{1}^{n, m}-Z_{2}^{n, m}\right)-\left(K_{11}^{n, m_{L} n, m_{1}}-K_{21}^{n, m_{L}} L_{2}^{n, m_{C}} C_{t}\right.\right. \\
& \left.+2\left(\sqrt{K_{12}^{n, m} C_{i}} I_{1}^{n, m}-\sqrt{K_{22}^{n, m_{C}}} I_{2}^{n, m}\right)\right) \tag{35}
\end{align*}
$$

$63^{n, m}$ is eliminated by the substitution and the value of $\frac{\partial H^{n, m}}{\partial \theta_{3}^{n, m}}$ becomes independent of $\theta_{3}^{n, m}$ as shown in equation
(35). This implies that the value of $H^{n, m}$ is linearly related to $\theta_{3}^{n, m}$ and the extreme of $H^{n, m}$ with respect to $\theta_{3}^{n, m}$ occurs at a boundary. In this case, to obtain the minimum value of $H^{n, m}, G_{3}^{n, m}=0$ when $\frac{\partial H^{n}, m}{\partial \theta_{3}^{n, m}}>0$ or $\theta_{3}^{n, m}=1$
when $\frac{\partial n^{n, m}}{\partial \theta_{3}^{m, m}}<w$. If $\frac{1^{n}, \ldots}{\theta_{3}^{n}, m}=u, \theta_{3}^{n, m}$ can be any value between 3 and I because the value of $H^{n, m}$ is independent of $\theta 3^{n, m}$. When either $\theta_{1}^{n, m}$ or $\theta_{2}^{n, m}$ is equal to zero, or when both are equal to zero, eçution (35) is no longer valid. Equation (29) is then set equal to zero and solved for the optimal value of $\theta_{3}^{n, m}$.

Special Case I: In an urban area, the available space for road construction is often limited. For example, a freeway with more than eight lanes would be very difficult to build near a CBD area. It is, therefore, necessary to set an upper limit on the size of the links. These limits can be expressed as limits on investment. Mathematically, they are expressed as:

$$
\begin{aligned}
& K_{11}^{n, m}+\theta_{1}^{n, m} \leq \theta_{1}^{n, m} \max \\
& K_{21}^{n, m}+\theta_{2}^{n, m} \leq \theta_{2}^{n, m} \max
\end{aligned}
$$

Equations (31) and (33) are then replaced by:

$$
\begin{align*}
\theta_{1}^{n, m}= & \sqrt{K_{12}^{n, m_{C}}} 4 I^{n, m} \quad \theta_{3}^{n, m}-K_{13}^{n, m} \\
& 0<\sigma_{1}^{n, m} \leq\left(\theta_{1}^{n, m} \max .-K_{11}^{n, m}\right) \tag{36}
\end{align*}
$$

$$
\begin{gather*}
\theta_{2}^{n, m}=\sqrt{M_{2}^{n}, m} C^{n} A I^{n, m}\left(1-\theta_{3}^{n, m}\right)-K_{23}^{n, r} \\
 \tag{37}\\
0<\theta_{2}^{n, m} \leq\left(\theta_{2}^{n}, m a x .-K_{21}^{n, m}\right)
\end{gather*}
$$

The other equations remain unchanged.
Special Case II: In developing a urban transportation network, it is sometimes required to provide a minimum level of service for the entire area. For example, arterial streets would be distributed uniformly throughout the whole area. This criterion can be fulfilled by requiring a minimum amount of investment on each link. Nathematically, it can be expressed as:

$$
\begin{align*}
& K_{11}^{n, m}+\theta_{1}^{n, m} \geq \theta_{1}^{n, m} m \tag{38}\\
& K_{21}^{n, m}+\hat{\theta}_{2}^{n, m} \geq \theta_{2}^{n, m} m \tag{39}
\end{align*}
$$

Special Case III: When the conditions governing both special cases I and II exist, both upper and lower limits of investment should be applied to each link. Mathematically, they are expressed as:

$$
\begin{align*}
& \theta_{1}^{n, m} \leq K_{11}^{n, m}+\theta_{1}^{n, m} \leq \theta_{1}^{n, m} \max \tag{40}\\
& \theta_{2 m m i n}^{n, m} \leq r_{21}^{n, m}+\theta_{2}^{n, m} \leq \sigma_{2}^{n, m} \max \tag{41}
\end{align*}
$$

The above formulation provides the equations fer searchns the optimum sequence of the decision variables, θ_{1}^{n}, r, $\theta_{2}^{n, m}$ and $\ddot{\theta}_{3}^{n, m}$ and the associated values of the state vartables.

The optimum seeking procedure developed for this problem is as follows:

1. Assume a set of decision variables, 63^{n}.
2. Calculate $X_{1}^{n, m}, X_{2}^{n, m}$ and $A I^{n, m}$ by equations (7) (8) and (13) starting at $n=m=1$ and proceeding to $n=N$ and $m=N$.
3. Calculate decision variables, $\theta_{1}^{n, m}$ and $\theta_{2}^{n, m}$, by equations (31) and (33) and check the boundary conditions for each special case.
4. Calculate the values of $X_{i}^{n, m}, i=3,4,5,6$, by equations (9) to (13) starting at $n=n=1$ and proseeding to $n=\mathbb{N}$ and $m=1 \%$.
5. Calculate the adjoint vectors, $z_{i}^{n, m}, i=1,2$, with the above $X_{i}^{n, m}$ values, by equations (15), (16), (23) and (25) starting at $n=N, m=N$ and proceeding backward to $n=m=1$.
6. Using the above values of $X_{i}^{n, m}$ and $2_{i}^{n, m}$, calculate $\frac{\partial H^{n, m}}{\partial \theta \frac{n}{3}, m}$ and $\frac{\partial^{2} H, m}{\left(\partial \theta_{3}^{n}, m\right)^{2}}$ by equations (29) and (30).
7. Adjust the values of $\theta_{3}^{n, m}$ by adding an amount equal to \triangle, where

$$
\Delta=-\frac{\frac{\partial 1^{n, m}}{\partial \theta_{3}^{n, m}}}{\frac{\partial^{2} n^{n, m}}{\left(\partial \sigma_{3}^{n, m}\right)^{2}}}
$$

and check the boundary condition.
8. With the new values of $\theta_{3}^{n, m}$, return to step 2 and repcat the procedure until the value of the objective function, equation (22), is sufficiently close to the previous value to indicate adequate convergence.

Investrent With Fixed Node Investment

In developing a large area trunk line system, the budget for each traffic section is sometimes predetermined. Supnose that we consider each node and its associated two links as a traffic section where a fixed budget is allocated, then a differcnt formulation could be developed.

The budget conditior in this case can be expressed as:

$$
\begin{equation*}
\theta_{1}^{n, m}+\epsilon_{2}^{n, m}=S I^{n, m} \tag{42}
\end{equation*}
$$

where, $\theta_{1}^{n, m}$ and $\theta_{2}^{n, m}$ are total irvestments instead of investments per unit length as in the previous case. Let θ_{1}^{n}, m be tre independent variable, then $\sigma_{2}^{n, m}$ can be expressed as:

$$
\begin{equation*}
\theta_{2}^{n, m}=S I^{n, m}-G_{1}^{n, m} \tag{43}
\end{equation*}
$$

Since the total investment is fixed, the individual investment costs are no longer included in the objective function and also will not be expressed as state variables. Tine performance equations for a typical interior node as shown in Fig. 5 car be written as follows:

$$
\begin{align*}
& x_{1}^{n, m}=\left(x_{1}^{n, m-1}+X_{2}^{n-1, m}+V^{n, m}\right) \theta_{3}^{n, m}=A I^{n, m} \theta_{3}^{n, m} \tag{44}\\
& x_{2}^{n, m}=\left(X_{1}^{n, m-1}+X_{2}^{n-1, m}+V^{n, m}\right)\left(1-\theta_{3}^{n, m}\right)=A I^{n, m}\left(1-\theta_{3}^{n, m}\right) \tag{45}
\end{align*}
$$

$$
X_{5}^{n, m}=K_{11}^{n, m} I_{1}^{n, m_{C}} C_{t} A I^{n, m} \theta_{3}^{n, m_{2}}+\frac{K_{1}^{n, m} L_{1}^{n, m} C_{t}}{\frac{\theta_{1}^{n}, m}{I_{1}^{n, m}}+K_{13}^{n, m}}\left\langle A I^{n, m_{\theta} n, m}\right\rangle^{2}
$$

$$
\begin{equation*}
+x_{5}^{n, m-1} \tag{46}
\end{equation*}
$$

$X_{6}^{n, m}=K_{21}^{n, m} I_{1}^{n, m_{1}} C_{t} \quad A I^{n, m}\left(1-\theta_{3}^{n, m}\right)$

$$
\begin{equation*}
+\frac{K_{22}^{n, m} L_{2}^{n, m} c_{t}}{\frac{S_{1}^{n, m}-\theta_{1}^{n, m}}{I_{2}^{n, m}}+K_{23}^{n, m}}\left[A I^{n, m}\left(1-\theta_{3}^{n, m}\right)\right]^{2}+X_{6}^{n, m-1} \tag{47}
\end{equation*}
$$

where, $A I^{n, m}=X_{1}^{n, m-1}+X_{2}^{n-1, m}+V^{n, m}$

$$
0 \leq \theta_{3}^{n, m} \leq 1
$$

$$
\text { and } 0 \leq \theta_{1}^{n, m} \leq S I^{n, m}
$$

The liamiltorian function in turn becomes

$$
x^{n, m}=z_{1}^{n, m} x_{1}^{n, m}+z_{2}^{n, m} x_{2}^{n, m}+2_{5}^{n, m} x_{5}^{n, m}+2_{6}^{n, m} x_{6}^{n, m}(4,9)
$$

the objective function is

$$
\begin{equation*}
s=x_{5}^{N, N}+x_{6}^{N, N} \tag{50}
\end{equation*}
$$

The values of the adjoint variables are as follows:

$$
\begin{align*}
& z_{1}^{n, m-1}= z_{2}^{n-1, m}=z_{1}^{n, m} \theta_{3}^{n, m}+2_{2}^{n, m}\left(1-\theta_{3}^{n, m}\right)+K_{11}^{n, m} L_{1}^{n, m} C_{t}\left(1-\theta_{3}^{n, m}\right) \\
&+2 \frac{K_{12}^{n, m} I_{1}^{n, m} C_{t}}{\frac{\theta_{1}^{n, m}}{\frac{L_{1}^{n, m}}{L_{1}}} K_{13}^{n, m} A I^{n, m}\left(\theta_{3}^{n, m}\right)^{2}} \\
&+2 \frac{K_{22}^{n, m} L_{2}^{n, m} C_{t}}{S I_{1}^{n, m}-\theta_{1}^{n, m}}+K_{23}^{n, m} A I^{n, m}\left(1-\theta_{3}^{n, m}\right)^{2} \tag{51}\\
& I_{2}^{n, m}
\end{align*}
$$

$z_{5}^{n, m}=z_{6}^{n, m}=1 \quad$ for all (n, m)
and
$z_{1}^{N, M}=z_{2}^{N, N}=0$
The initial values of state variables are

$$
\begin{equation*}
x_{1}^{0,0}=x_{2}^{0,0}=x_{5}^{0,0}=x_{6}^{0,0}=0 \tag{54}
\end{equation*}
$$

To find the minimum value of Σ, the following conditions are necessary

$$
\begin{array}{ll}
\frac{\partial H^{n}, m}{\partial \theta_{1}^{n}, m}=0 & 0<\theta_{1}^{n, m}<S I^{n, m} \\
\frac{\partial H^{n}, m}{\partial \sigma_{3}^{n, m}}=0 & 0<\theta_{3}^{n, m}<1 \tag{56}
\end{array}
$$

when $\left(\theta_{1}^{n, m}, \theta_{3}^{n, m}\right)$ is inside the boundary, or

$$
\begin{equation*}
\mathrm{H}^{\mathrm{n}, \mathrm{~m}}=\text { minimum } \tag{57}
\end{equation*}
$$

when $\left(\theta_{1}^{n}, m, \theta_{3}^{n, m}\right)$ is at a boundary point of the constraints. Substituting equations (44) to (48) and (52) into equation (49) and then taking derivatives with respect to $G_{1}^{n, m}$ and $\hat{3}_{3}^{n, m}$, the following equations are obtained:

$$
\begin{align*}
\frac{\partial H^{n, m}}{\partial \theta_{1}^{n, m}}= & -\frac{K_{12}^{n, m} C_{t}}{\left(\frac{\theta_{1}^{n, m}}{I_{1}^{n, m}}+K_{13}^{n, m}\right)^{2}}\left(A I^{n, m_{\theta}^{n}, m}\right)^{2} \\
& +\frac{K_{22}^{n, m} c_{t}}{\left(\frac{S I^{n, m}-\theta^{n, m} 1}{I_{2}^{n, m}}+K_{23}^{n, m}\right)^{2}}\left(A I^{n, m}\left(1-\theta_{3}^{n, m}\right)\right)^{2} \tag{58}
\end{align*}
$$

$$
\begin{align*}
& \frac{\partial H^{n, n}}{\partial 0_{3}^{n, i}}-\left(L_{1}^{n, n}-Z_{2}^{n, m}\right) A I^{n, m}+\left(K_{11}^{n, m} I_{1}^{n, m}-K_{21}^{n, m} I_{2}^{n, m}\right) C_{t} A I^{n, m} \\
& +2 \frac{K_{12}^{n, m} L_{1}^{n, m} C_{t}}{n, m}\left(A I^{n, m}\right)^{2} \quad \theta_{3}^{n, m} \\
& \frac{01}{I_{1}^{n, m}}+K_{1,}^{n, m} \\
& -\frac{2 \frac{K_{22}^{n, m} L_{2}^{n, m} C_{t}}{S I^{n, n}-\theta_{1}, m}}{L_{2}^{n, m}}+K_{23}^{n, m}\left(A I^{n, m}\right)^{2}\left(I-\theta_{3}^{n, m}\right) \tag{59}
\end{align*}
$$

Setting equation (58) equal to zero and solving for $\theta_{1}^{n, m}$, we obtain
$\theta_{1}^{n, m}=\frac{\sqrt{K_{12}^{n, m}}\left(S I^{n, m}+K_{23}^{n, m_{1} n, m}\right) \theta_{2}^{n, m_{1} n, m_{1}} \sqrt{K_{22}^{n, m_{2}}} V_{13}^{n, m}\left(1-\theta_{3}^{n, m}\right) L_{1}^{n, m} L_{2}^{n, m}}{\sqrt{K_{22}^{n, m}\left(1-\theta_{3}^{n, m}\right) L_{2}^{n, m}} \frac{\sqrt{K_{12}^{n, m}} \theta_{3}^{n, m} L_{1}^{n, m}}{\sqrt{n}}}$
, ... (60)

Using equations (44) through (58), the optimum seeking procedure developed in the previous case was again applied to solve the problem.

Invostreent intr ixeu oystem Budget:

It is rot unusual for the total budget for a transportation system improvement to he predetermined. In this case, the total investment must be eoual to the budget. Fhis, then, becomes a fixed end point problem as described in reference (21).

The performance equations for a typical interial node as shown in Fie. 5 can be written as follows:

$$
\begin{align*}
& x_{1}^{n, m}=\left(x_{1}^{n, m-1}+x_{2}^{n-1, m}+v^{n, m}\right) \theta_{3}^{n, m}=A I^{n, m} \theta_{3}^{n, m} \tag{61}\\
& x_{2}^{n, m}=\left(x_{1}^{n, m-1}+x_{2}^{n-1, m}+V^{n, m}\right)\left(1-\theta_{3}^{n, m}\right)=A I^{n, m}\left(1-\theta_{3}^{n, m}\right) \tag{62}
\end{align*}
$$

$x_{5}^{n, m}=K_{11}^{n, m_{L} n}, m_{C_{t}} A I^{n, m_{\theta} n, m}+\frac{K_{12}^{n, m} L_{1}^{n, m} C_{t}}{\frac{\sigma_{1}^{n, m}}{L_{1}^{n, m}}+K_{13}^{n, m}}\left(A I^{n, m_{\theta}^{n, m}}\right)^{2}$

$$
\begin{equation*}
+x_{5}^{n, m-1} \tag{63}
\end{equation*}
$$

$X_{6}^{n, m}=K_{21}^{n}, m_{2}^{n}, m_{C}{ }_{t} A I^{n, m}\left(I-\theta_{3}^{n, m}\right)$

$$
\begin{equation*}
+\frac{K_{z 2}^{n, m} I_{2}^{n, m} c_{t}}{\frac{\theta_{2}^{n}, m}{I_{2}^{n, m}}+K_{23}^{n, m}}\left[A I^{n, m}\left(1-\theta 3^{n, m}\right)\right]^{2}+x_{6}^{n, m-1} \tag{64}
\end{equation*}
$$

$x_{7}^{n,:: i}=\theta_{1}^{11, m}+\theta_{2}^{n, m i n}+x_{7}^{n, m-1}$
where, $A_{-}^{n, m}=X_{1}^{n, m-1}+X_{2}^{n-1, m}+V^{n, m}$
and

$$
\begin{equation*}
u \leq \theta_{3}^{n, m} \leq 1 \tag{66}
\end{equation*}
$$

Fere, $\theta_{2}^{n, m}$ and $\nabla_{2}^{n, m}$ are total investments on the horizontal and vertical links respectively at node (n, m).

Since total investment is a fixed amount, the objective function becomes:

$$
\begin{equation*}
S=X_{5}^{N, M}+X_{6}^{N, M} \tag{67}
\end{equation*}
$$

The Hamiltonian function is

$$
\begin{align*}
H^{n, m} & =z_{1}^{n, m} x_{1}^{n, m}+z_{2}^{n, m} x_{2}^{n, m}+z_{5}^{n, m} x_{5}^{n, m}+z_{6}^{n, m} x_{6}^{n, m} \\
& +z_{7}^{n, m} x_{7}^{n, m} \tag{6を}
\end{align*}
$$

The boundary conditions are given as follows:

$$
\begin{align*}
& x_{1}^{0,0}=x_{2}^{0,0}=x_{5}^{0,0}=x_{6}^{0,0}=x_{7}^{0,0}=0 \tag{69}\\
& z_{1}^{N, N}=z_{2}^{N, N}=0 \tag{70}\\
& z_{5}^{N, N}=z_{6}^{N, N}=1 \tag{72}
\end{align*}
$$

$x_{7}^{n}, \because-2=X^{n}=G I$
Since N, T is fixed, $2_{7}^{i N}, N$ becomes an unknown. However, with $X_{7}^{\mathbb{N}, \text { Nil }}$ fixed, $z_{7}^{N, N-1}$ can be obtained by solving the following equation:
$\frac{\partial H^{N, N-1}}{\partial \theta_{1}^{N, N-1}}=-\frac{K_{12}^{N, N-1} C_{t}}{\left(\frac{0_{1}^{N, N-1}}{L_{1}^{N, N-1}}+K_{13}^{N, N-1}\right)^{2}}\left(A I^{N}, N-1\right)^{2}+Z_{7}^{N, N-1}=0$
where, $\theta_{1}^{N, N-1}=G I-X_{7}^{N, M-2}$
Therefore, $2_{7}^{N, N-1}=\frac{K_{12}^{N, N-I_{C}}\left(A I^{N}, M-1\right)^{2}}{\left(\frac{G I-X_{7}^{N, N-2}}{L_{1}^{N, N-1}}+K_{13}^{N, M-1}\right)^{2}}$
Since $z_{7}^{n, m-1}=\frac{\partial H^{n, m}}{\partial X_{7}^{n}, m-1}=z_{7}^{n, m}$

$$
\begin{equation*}
2_{7}^{n, m}=2_{7}^{N, N-1} \quad \text { for all }(n, m) \tag{75}
\end{equation*}
$$

The values of the adjoint variables are as follows:
$z_{1}^{n, m-1}=z_{2}^{n-1, m}=z_{1}^{n}, m_{\theta_{3}}^{n, m}+z_{2}^{n, m}\left(1-\theta_{3}^{n, m}\right)+K_{11}^{n, m_{\theta_{3}}^{n}, m_{1} n, m_{1} c_{\tau},}$

$$
+K_{21}^{n, m}\left(1-\theta_{3}^{n, m}\right) L_{2}^{n, m_{C}} C_{t}+2 \frac{K_{12}^{n, m} I_{1}^{n, m} C_{t}}{\theta_{1}^{n, m}} \frac{\frac{\theta_{1}^{n}, m}{L_{1}^{n}}+K_{13}^{n, m}}{I_{1}, m}\left(\theta_{3}^{n, m}\right)^{2}
$$

$$
\begin{align*}
& \frac{k_{22}^{n} 2^{m} L_{2}, m U_{t} A I n, m\left(2-E_{3}^{n}, m\right)^{2}}{\frac{0_{2}, m}{L_{2}^{n}, m}+K_{23}^{n}, m} \tag{76}\\
& 2_{5}^{n, m}=2_{6}^{n}, m=1 \quad \text { for all }(n, m) \tag{77}
\end{align*}
$$

The recessary conditions for S to be a local minimum is that:

$$
\begin{equation*}
\frac{\partial Y^{n}, m}{\partial \sigma_{1}^{n, m}}=v \quad 0<\theta_{1}^{n, m}<G I-X_{5}^{n, m-1}-X_{6}^{n, m-1} \tag{79}
\end{equation*}
$$

$\frac{\partial H^{r, m}}{\partial \sigma_{2}^{r, m}}=0 \quad u<\theta_{2}^{n, m}<G I-X_{5}^{n, m-1}-X_{6}^{n, m-1}-\theta_{1}^{n, m}$
$\frac{\partial H^{n, m}}{\partial \theta_{3}^{n, m}}=0 \quad 0<\theta_{3}^{n, m}<1$
wher $\left(\theta_{1}^{n, m}, \theta_{2}^{n, m}, \theta_{3}^{n, m}\right)$ is an interior point, or

$$
\begin{equation*}
H^{n, m}=\text { minimun } \tag{82}
\end{equation*}
$$

wher $\left(\theta_{1}^{n, m}, \theta_{2}^{n, m}, \theta_{3}^{n, m}\right)$ is at a boundary point of the constraints.

```
-ut st?tutin equat.ons (61) co (60) anu equation (77)
```

into equation (68) and takirg derivatives with respect to various decision variables, the following equations are obtained:

$$
\begin{align*}
& \frac{\partial M^{n, m}}{\partial_{1}^{n, m}}=-\frac{K_{12}^{n, m}\left(A I I_{1}^{n, m_{\theta}^{n}, m}\right)^{2} C_{t}}{\left(\frac{\theta_{1}^{n}, m}{L_{1}^{n, m}}+K_{13}^{n, m}\right)^{2}}+z_{7}^{N, N-1} \tag{83}\\
& \frac{\partial H^{n, m}}{\partial \theta_{2}^{n, m}}=-\frac{K_{22}^{n, m} A I^{n, m}\left(1-\theta_{3}^{n, m}\right)^{2} C_{t}}{\left(\frac{i_{2}^{n}, m}{L_{2}^{n, m}}+K_{23}^{n, m}\right)^{2}}+2_{7}^{N, M-1} \tag{84}\\
& \frac{\partial H^{n, m}}{\partial \partial_{3}^{n, m}}=\left(Z_{1}^{n, m}-Z_{2}^{n, m}\right) A I^{n, m}+\left(K_{11}^{n, m_{1}} L_{1}^{n, m}-K_{21}^{n, m_{L} n, m}\right) C_{t} A I^{n, m} \\
& +2 \frac{K_{12}^{n, m}(A I n, m)^{2} \theta_{3}^{n, m_{L} n, m_{C}} C_{t}}{\frac{\theta_{1}^{n, m}}{L_{1}^{n, m}}+K_{13}^{n, m}} \\
& -2 \frac{K_{22^{n}}^{n, m}\left(A I^{n, m}\right)^{2}\left(1-\theta_{3}^{n, m}\right) L_{2}^{n, m} C_{t}}{\frac{\theta_{2}^{n, m}}{L_{2}^{n, m}}+K_{23}^{n, m}} \tag{85}
\end{align*}
$$

Taking derivative of equation (85) with respect to $\theta_{3}^{n, m}$, we obtain
$\frac{\partial^{n}, \ldots}{\left(\partial \theta_{3}^{n, m} m^{2}\right.}=2 \frac{K_{12}^{n, \cdots}(A I n, \ldots)^{2} L_{1}^{n}, m_{C}}{\frac{\theta_{1}^{n, m}}{L_{1}^{r, m}}+K_{13}^{n, m}}+2 \frac{K_{22}^{n, m}(A I n, m)^{2} L_{2}^{n, m_{C}}}{\frac{\theta_{2}, m}{L_{2}^{n, m}}+K_{23}^{n, m}}$
Setting equations (83) and (84) equal to zero, we obtain the following:
$\theta_{1}^{n, m}=\frac{K_{1}^{n, m} C_{t}}{2_{1}^{n}, N-1} A I^{n, m} \theta_{3}^{n, m} L_{1}^{n, m}-K_{13}^{n, m} L_{1}^{n, m}$

The optimum seeling procedure developed for this problem is as follows:

1. Assume a set of decision variables $\left(\theta_{1}^{n, m}, \theta_{2}^{n, m}, \theta_{3}^{n, m}\right)$.
2. Calculate values of $X_{i}^{n, m}, i=1,2,5,6,7$ and $A I^{n, m}$ starting at $n=m=1$ and proceeding to $n=N, m=M$.
3. a.) For the first iteration, calculate $z_{7}^{\mathrm{N}, \mathrm{M}-1}$ by equation (714) with the above $X_{i}^{n, m}$ and $A I^{n, m}$ values and go to step 4.
b.) For the second and the following iterations, calcurate $Z_{7}^{\mathbb{N}, N-1}$ by equation (74) with the above $X_{i}^{n, m}$ and $A I^{n, m}$ values. This $Z_{7}^{N}, M-1$ value is then compared with one value obtained in the previous
iteratior. If the two values are sufficiently close, proceed to step 6. If they are not sufficiently close, proceed to step 4 .
4. Calculate new values of $\theta_{1}^{n, m}$ and $\theta_{2}^{n, m}$ usinp equations (87) and (88) and check the boundary conditions.
5. Return to step 2.
6. With the above $\theta_{i}^{n, m}$ and $X_{i}^{n, m}$ values, calculate $Z_{1}^{n, m}$ and $Z_{2}^{n, m}$ startins at $n=N, m=M$ and proceeding backward to $n=m=1$ by the use of equations (70) through (76)
7. Using the ahove values of $X_{i}^{n, m}$ and $Z_{i}^{n, m}$, calculate $\frac{\partial H^{n, m}}{\partial \theta_{3}^{n, m}}$ and $\frac{\partial^{2} n, m}{\left(\partial \theta_{3}^{n, m}\right)^{2}}$ throurh the use of equations (85) and (86).
ع. Adiust the values of $\theta_{3}^{n, m}$ by adding an amount equal to Δ, where
$\Delta=-\frac{\frac{\partial H^{n, m}}{\partial \theta_{3}^{r}, m}}{\frac{\partial^{2} H^{n}, m}{\left(\partial \theta_{3}^{n, m}\right)^{2}}}$
ard check the boundary conditions.
8. Returr to step 2 ard repeat the procedure until the value of the obiective function (equation (67)) is sufficiently close to the previous value to indicate adequate convergerce.
-r the case where a rinimum level of service is to be proviaed, the minimum investment can be treated as the existtrr facilities. The problem can then be solved by the general rethod without chancing the algorithm. In other words, when the values of $\mathbb{K}_{l}^{n} 3^{m}$ are less than the minimum required investment, set them equal to the minimum investment and deduct the difference from the total budpet.

The ahove formulation provides solutions to a sinflequadrant network, single-copy problem. To solve a multicuadrant network, multi-copy prohlem, the procedures developed by Snell, et. al. $(23,24)$ can be employed. However, due to the capacity restricticn of the available computer, tris extension has not been accomplished.

EXAMPIES AND DISCUSSION

Several examples under different investment conditions are presented in this section to demonstrate the use of the model.

A hypcthetical network was developed as shown ir Fig. 6. Node (4,4) was assumed to be the centroid of the CBD. Peak hour trins which are produced in the other zones and destined to the CBD are also shown in the figure. All links have an eoual lengrth of one mile. The area was divided into two parts ky a diagonal line which passes through nodes (1, 4) and (L, I). The lower part which is adjacent to the CBD was assumed to be densely developed. The upper part was assumed to re less densely developed. Assumirg the maximum speed in the densely developed area to be 60 mph and in the less dersely developed area 70 mph , minimum travel times in these two areas become 0.0167 hour per mile and 0.0143 hour per mile respectively. Single line links represent existing local streets and double line links represent existing arterial streets.

Inout data for the models are summarized in Table 1. Values of $K_{i 2}$ and $K_{i 3}$ are also indicated in Fig. 7 and Fig. 8 respectively. Since construction cost and right-of-way cost will not be the same in each area, two values of $K_{i 3}$ were assigned to the lirks ever though these links represert the same type of facilities. For the same reason, in the link investment constraint todel, lif..s have different values for

Fig. 6 Hypothetical Network and Peak Hour Traffic Distribution

Table 1 Irput Data of Example Problems

FiE. 7 V. Values For The Example Problems

Fig. $\mathrm{K}_{i 3}$ Values For The Example Problems
maximum and minimum investment levels. The derivation of these data is discussed in Appendix A. Time cost $\left(C_{t}\right)$ is assumed to be $\$ 1.55$ per hour per vehicle as suggested by AASHO (8).

Example 1: Theoretical optimal system.

Suppose we are planning for a completely undeveloped area where no facilities exist and there is no budget limitation on link investment. A theoretical optimal system can then be developed to accommodate the predicted trip demand. Using the formulation of "Investment With No Budget Constraint" and letting $K_{i 3}^{n, m}=0$, for all (n, m), the resulting system is shown in Fig. 9. Notice that the system forms a shortest path tree in which only one route is built for each origin-destination pair and all trips are assigned to this route. This result coincides with the analysis discussed in page 33 which shows the linear characteristic of the problem under no limit condition.

Example 2: Optimal investment with upper and lower limits on link investment.

The hypothetical network shown in Fig. 6 is to be improved with the following conditions:

1. No system budget limit.
2. A minimum level of service (arterial street) is to be provided for the entire area.

Fifg. 9 Optimal Investment and Traffic Assignment: Results of Example 1
. Koldway space ontainable is rostrictea.
The invesmment limits, $\dot{\sigma}_{i} m i n$ and $\theta_{i} m a x$, associated with cordttions 2 ard 3 are listed in Table l. The formulation of this probler, has been developed ir the previous section under tho category, "Irvestment with ro budget constraint: special case III."

The results are shown ir Fig. 10. Note that with the minimum level of service provided for the entire area, trips are assigned rather uniformly to take advantage of all facilities. When traffic is focused on the CBD, a space limitation is in effect which forces traffic to split and enter the CBD area from two directions. Considering existing facilities as part of the cost, total cost becomes $92,875.99$ $(2,603.99+272.00)$. Comparing this cost with the total cost in example $1(\{2,819.86)$, the difference is only about two percent. Tris indicates that providing a minimum level of service might ce desirable in an urban area.

Examnle 3: Investment witr fixed node budget.

This is the fixed node investment problem as formulated in a previous section. Investment for each node ($S I^{n, m}$) is listed in Tacle I. Consider the area as completely undeveloped $K_{i 3}^{n, m}=0$), the resulting system is shown in Fig. II. Regardless of the investment level, as compared with previous examples, travel time costs in this problem are greater than in the orevious examples. This result demonstrates that

Total Investment $=\$ 4.45 .04 \quad$ I, 143 \quad : Traffic volume
Travel Time Cost $=\$ 2,158.95 \quad$ Investment
Total \quad Cost $=\$ 2,603.99$

Fig. IU Optimal Investment and Traffic Assignment Results of Example 2

Total Investment $=\$ 860.00 \quad 1046 \quad$ traffic volume
Travel Time Cost $=\$ 2,252.91 \quad \frac{104}{(19.48)}$ investment
Total \quad Cost $=\$ 3,112.91$

Fig. 11 Cptimal Investmont and Traffic Assignment: Results of Example 3
i. . \quad per allocation of funds could be very costly. It also nacates the advartare of area-wisc transportation systcm developmert which is carricd out by a single authority. Example 4: Investment with fixed system budget.

The hypothetical network as shown in Fig. 6 is to be improved with a total system budget of $\$ 300$ (GI $=300$, couivalent peak hour budget). The resulting traffic assignn.ent ard link investments are shown in Fig. 12. Most investment appears to he made along the shortest path trees as obtained from example 1 which are also the routes that will cost the least to improve. This is logical since the budget is substantially less thar that required by a theoretical optimal system (compared with example 2). Comparing the costs with those obtained in example 2, it is evidert that although investment cost decreases more than 30 percent, total cost increases only 1.4 percent. This again points out the advantage of area-wise transportation syster. development.

In order to verify the optimality of the results, two procedures were used.

1. Assumine a new set of decision variables $\left(\theta_{1}^{n}, m\right.$, $\left.\forall_{2}^{n, m}, \theta_{3}^{n, m}\right)$ to start with, each problem was solved once more. The rcsults were then compared with the previous ones. N. O significant differences between the two solutions of each problem were observed. Total costs are summarized in Table 2.

تig. 12 Optimal Investment and Traffic Assignment: Results of Example 4

Table 2 Number oi Iterations, Approximate Computing Time Used And Total Costs for Example Problems

'iral : mive, or the sifinal computer output format, are proscuted in Apperdix C. Althourr this is not a riria proof of the ontimality, it does irdicate that the results are nroverly converged and, therefore, are likely the optimal solutions.
2. Ore decision variable was selected arbitrarily and its value was chanced from one percent to ter percent (somewhat arbitrarily but related to its original value). Keeping the values of other decisior variables unchanged, the total cost was calculated. This cost was then compared with the one previously obtaired. All perturbations resulted in a higher cost which indicates that the results obtained from this modol are at least very close to a local minimum. The costs resulting from several perturbations for each problem are shown ir Apperdix C.

Due to storase limitations of the available computer (IBM: 1620), ro attempt was made to apply this technique to a more ccmplex network. The above examples are restricted to one ouadrant, single copy problems. Therefore only a limited comparisor of the restilts to the real world is possible at this stage of development.

Computer programs, ore For each budget conditior, written for use on tre IEN 1620 computer are presented in Appendix B. The number of iterations and approximate computirg time used for each example problem are summarized in Table 2.

A new iechnique for the analysis of transportation syster investment probloms has been presented in this study. Considerine each rede of a rectangular network as a stage, the discrete maximum principle was utilized to formulate a trarsportation system, model. Investment models under different investment conditions were investigated and search procedures were developed to obtain the optimal investment policy and to assign trips to the network. This provides a broad applicatior of the model to solve various problems which have specific investment restrictions.

As oopcsed to linear orogramming models, this model is capable of solvirg transportation system investment problems with travel time being non-linearly related to traffic volume and investment cost. The formulations presented in this stidy are apolicable to one cuadrart network, single copy problems. With minor modifications, the technique would be equally applicable to a more complex retwork once a larger computer is available.

The optimum seeking procedures appear quite efficient and yield reasonable results as shown by the example problems. Although direct comparison of the results with the real world is rot feasible witr the limitation of computer capacity, the model does renresent a sirnificant step toward more realistic analysis of transportation systems.

Althou!' the uravel tirc sunetion derived in uhis study cowid be further improved and the objective function mieht ircluac additional variables, this study has demonstrated the usefulness and the ability of the discrete maximum. principle in solving this type of non-linear optimization proolens. It also indicates that the discrete maximum principle could be a powerful tool in transportation system aralysis.

Tho relationshins betweer travel time, traffic volurie and investmont cost are complex. Althoush the non-lirear travel time equation developed in this study is considered to be more realistic than a linear approximation, there is undountedly room for further improvement. Two improvements which might be considered are: (a) the desirability of capacity restriction on links, (o) the relationships of rree flow travel time to irvestment.

Previously, it was mentioned that an approximate procedure has been developed to solve multicopy problems. Fowever, this procedure will become invalid when the system kudget is restricted, which is not uncommon in the real worid. Therefore, to develop a useful model, an improved vechricue is recuired. One possible approach is to consider each copy as a large stage and each node becomes a small stafe irside the larger stage. The objective function of each coyy becomes the Familonian of the larger stage. By this concept, the discrete maximum principle could be utilizod to develop a complete model for multicopy transportation problems.

ACKNOWLEDGEMENTS

I wish to express my most sincere appreciation and thanks to Dr. Rohert R. Snell for his advice and guidance. Without his efforts and direction, this study would not have beer possible.

I would also like to extend my sincere thanks to Prof. Monroe L. Funk for his valuable suggestions and advice; Dr. Jack B. Blackburn, Head of the Civil Engineering Department, for his help and guidance; Dr. Liang-tseng Fan and his associates, for their helpful suggestions; and to the National Science Foundation for their financial support through Grant GK 585.

1. ran, Liarg-tseng and Wang, Chiu-sen, 'he Discrete Nax$\frac{\text { jmum Principle--a Study of Nultistape Optimization }}{\text { fohn Wiley, New York, } 1964 \text {. }}$
2. Zettel, Richard M. and Carll Richard R., Summary Review of Maior Metropolitan Area Transportation Studies in the United States, IrTE゙ Special Feport, University of Califorria, Berkeley, November, 1962.
3. Committee on Urban Transportation of the Highway Division, "Urban Transportation Problem," Journal of the Hiehway Division, ASCE, Vol. 83, No. HW3, October, 1958 , Proc. Paper 1801.
4. Cricago Area Transportation Study, Transportation Plan, Final Report, Vol. III, April, $1 \overline{962}$.
5. Noskowitz, K., "California Method of Assigning Divided Traffic to Proposed Freeways," Bulletin No. 130, Highway Research Board, 2956.
ó. Camprell, E.W. and McCargar, R.S., "Objective and Sub"ective Correlates of Expressway Use," Bulletin No. 119, Highway Research Board, 1956.
6. Grant, E.L., Principles of Engineering Economy, 4th edition, Ronald, New York, 1960.
7. American Association of State Hichway Officials, Road $\frac{\text { User Benefit Analysis for Highway Imorovements, }}{\text { Washincton, D.C., } 1960 \text {. }}$
8. Oglesby, C.H. and Crant, E.I., "Economic Analysis--The Fundamertal Approach to Decisions in Highway Planning and Design," Proceedinps, Vol. 37, Highway Research Board, 1958, pp. 45-57.
lu. Brenar, M.F. and Fothrock, C.A., "Principles of Highway Engineering Economic Analysis," Report presented at the 44 th Annual Meeting of Highway Research Board, January, 1965.
9. Grant, E.I. and Oglesby, C.H., "Economic Studies of Highways," Pulletin No. 306, Highway Research Board, 1961, pp. 23-38.
10. Wan. N. "Concopts and Anplications of Enkzeering Ecoromy in the Hlghway Field," Special Report No. S6, Hifhway Research Roard, 1959, pp. 19-29.
11.

Faikalis, G. and Joseph, H., "economic Evaluation of Traffic Network," Pulletin No. 306, Highway Research Foard, 1901, pp. 39-03.
14. Garrison, W.I. and Marble, D.F., "Analysis of Higrway Networks: A Linear Programming Formulation, " Proceedings, Vol. 37, Highway Research Bcard, 1958, pp. 1-17.
15. Quandt, R.E., Models of Transportation and Optimal Network Construction, " Journal of Regional Science, Vcl. 2, No. 1, 1960, pp. 27-45.
16. Carter, E.C. ard Stowers, J.R., "Model for Funds Allocation for Urban Highway Systems Capacity Improvements," Highway Research Record No. 20, Highway Besearch Board, 1963, pp. 84-102.
17. Funk, IT.I. and Roberts, P.O. "Toward Optimum Nethods of Link Addition in Networks," Report, Department of Civil Engineering, Northwestern University, Evanston, Illinois, September, 1964.
18. Roberts, P.O., Burns, R.E. and Tabora, P.N., "A Model for the Formulation cf Transportation System Alternatives," Preprint 3ló, ASCE Structural Engineering Conference, Mia:i, Florida, January, 1966.
19. Hay G.A., Morlock, D.K. and Charnes, A., "Toward Optimal Planning of a Two-Mode Urban Transportation System: A Linear Programming Formulation, Highway Research $\frac{\text { Record No. } 148}{20-38 \text {. Highway Research Board, } 1966, \text { pp. }}$
20. Ridley, T.M., An Investment Policy to Reduce the Travel Time in a Transportation Network, Operations Research Center, University of California, Berkeley, December, 1965.
21. Cheng, C.Y., Hwang, C.I. and Fan, L.T., "Elementary Interpretation of the Naximum Principle--Relations Between the Discrete and the Continous Maximum Principle," Bulletin, Special Report No. 69, Kansas State University. May, 1966.
22. are, . i. anu wroll, \because., "rralicic Asasprment by uhe "aximur Principle," Journal of the Highway Division, ASCE, Vol. $92, \mathrm{NO}$. HN2, October, 1966.
23. Snell, it. . Funk, N.L. and Blackburn, J.B., "Trip Assignmert Usirg, Non-Linear Time-Volume Functions," Jourral of the Highway Division, ASCE Vol. 93, No. Ki2, 1967.
24. Funk, $\because . L$. ard Snell, R.त., "Optimal Allocation of Mrips to A Street Network, "Preprint 442, ASCE Enviromental Engineering Conference, Dailas, Texas, Eebruary, 1967.
25. Hichway Cabacity Nanual, Special Report No. 87, Highway
20. Noskowita, K., "A Note on Prorating Highway Costs," Unpublished Report June, 1964.
27. NoElrath, D., Pothenbers, T., Shuldiner, P. and Funk, M.L., Automobile Transportation Systems: Cost Characteristics, : The Mid-Twentieth Century City Study, Preliminary Report No. 3, The Transportation Certer, Northwestern University.

APPENDIX A

VAIUES OF CONSTANTS IN UNIT TRAVEL TINE EQUATION

APPLNDIX A

TALUEs of constangs in untt travel mine equation

Unit travel tirie has been expressed as:

$$
t=K_{2}+\frac{K_{2}}{0+K_{3}}
$$

$$
t=\text { unit travel time (} \mathrm{hr} / \mathrm{mi} / \mathrm{veh} \text {) }
$$

$K_{1}=$ free flow travel time (hr/mi/ven). The magnitude depends on the maximum speed obtainable or regulated.
$K_{z}=$ coefficient of improvement (dollar-hr/mi ${ }^{2} / \mathrm{veh}^{2}$). Its magnitude depends on link location and reflects the difficulty of improvement. $\mathrm{K}_{3}=$ existing investment (dollar/mi/hr)
o = ecuivalent hourly investment per unit length (dollar/mi/hr)
$\mathrm{V}=$ traffic volume per uniz time (veh/hr)
In this section, a set of K values are derived from real world data reported by other researchers. The purpose of tris section is two fold:

1. To .ustify the fitness of the equation.
2. To obtain a set of K values for the example problems.

Values of K_{1}

The K_{1} value is equal to the reciprocal of the maximum speed obtainable or refulated in each area. Several common
values are shown in Table A-1.

Table A-1

itaximum:Speed (mph) 70K $_{\text {I }}$ Values $(\mathrm{hr} /$ mile $)$	
60	0.0143
50	0.0167

For the example problers, maximum speeds were assumed to be 70 mph in less densely developed areas and 60 mph in densely developed areas. The K_{I} values are therefore, 0.0143 hours per mile and 0.0167 hours per mile respectively. Values of K_{2}

1. Near CBD Area:

The average cost of an 8 lane freeway near the CBD, as estimated by Aitken (19), is $\$ 15,500,000.00$ per mile. Assuming $3 u$ ycar life and 6% interest, annual cost is equal to 1 ,Iふu, OOL.UU per mile. If we further assume peak hour traffic is lo\% of daily traffic, the equivalent peak hour cost becomes:

$$
\$ 1,130,000 \times \frac{1}{300} \times \frac{1}{10}=\$ 314 \text { per mile per hour }
$$

This freeway can hancle lloo vph per lane at unit travel time of $0.02 \mathrm{tr} / \mathrm{rrile}$. Assuming $\mathrm{K}_{1}=0.0143 \mathrm{hr} / \mathrm{mi} /$ veh $(70 \mathrm{mph}$

ソecis, $:$, Hithers a. ollows:

$$
0.1143+\frac{K_{2}}{314} \quad(11 \cup 0 \times 8)=0.02 \cup
$$

Or

$$
\begin{equation*}
\mathrm{K}_{2}=0.00207 \text { dollar-hr } / \mathrm{mi}^{2} / \operatorname{veh}^{2} \tag{1.-2}
\end{equation*}
$$

Using liaikalis: data and adjusting for the downtown area (19), ar arterial street with 2,000 vph volume at unit travel time of 0.0333 hour per mile costs $\$ 3,400,000$ per mile or $\$ 250,000$ per mile annually. Equivalent peak hour cost becomes:

$$
250,000 \times \frac{1}{360} \times \frac{1}{10}=\$ 69.5 \text { per mile per hour. }
$$

Assuming $K_{2}=0.025 \mathrm{hr} / \mathrm{mi} /$ veh $\left(40 \mathrm{mph}\right.$ speed),K_{2} is derived as follows:

$$
\begin{align*}
& 0.025+\frac{K_{2}}{69.5} \quad 2,000=0.0333 \\
& \mathrm{~K}_{2}=0.000288 \text { dollar-hr } / \mathrm{mi}^{2} / \mathrm{ven}^{2} \tag{A-3}
\end{align*}
$$

2. Average Urban Area:

The overall average cost for an 8 lane urban freeway is $\because 5, \cup \cup O$, , vO per mile as estimated by Moskowitz (26). Assuming 30 year life ard 6\% interest, equivalent peak hour cost becones :
$85,000,000 \times 0.0726 \times \frac{1}{360} \times \frac{1}{10}=\$ 101$ per mile per hour.
 typical frow way with mon average highway speed can handle Lieu val: nor lane at a speed of 45 mph . The K_{2} value is derived as follows:

$$
\begin{aligned}
& \mathrm{K}_{1}=0.0143 \mathrm{hr} / \mathrm{mi} / \mathrm{veh} \\
& 0.0143+\frac{\mathrm{K}_{2}}{101}(1800 \times 8)=0.0222 \\
& \mathrm{~K}_{2}=0.0000553 \text { dollar-hr} / \mathrm{mi}^{2} / \mathrm{ven}^{2}
\end{aligned}
$$

Summarized from "Automobile Transportation Systems: Cost Characteristics" (27), Table A-2 shows relationships among volume, average speed and cost for three types of urban roads. Using these values and the assumed maximum speeds and average lanes, Table $\mathrm{A}-3$ is obtained. The K_{2} values are, then, derived as follows:

$$
\begin{array}{r}
\text { local street: } 0.0286+\frac{\mathrm{K}_{2}}{11.1} \times 1000=0.05 \\
\mathrm{~K}_{2}=0.000227 \text { dollar -hr } / \mathrm{mi}^{2} / \mathrm{veh}^{2} \tag{A-5}
\end{array}
$$

arterial street: $\quad 0.025+\frac{\mathrm{K}_{2}}{19.2} \times 2800=0.308$

$$
\begin{equation*}
K_{2}=0.0000398 \text { dollar-hr/mi } 2 / \operatorname{ven}^{2} \tag{A-6}
\end{equation*}
$$

freeway: $\quad 0.0143+\frac{K_{2}}{161} 10800=0.0182$

$$
\begin{equation*}
K_{2}=0.0000582 \text { dollar meh } / \mathrm{mi}^{2} / \mathrm{veh}^{2} \tag{A-7}
\end{equation*}
$$

incl Street Arterial Freeway

Table A-3 Cost and Travel Time of Urban Highways

Local Street Arterial Freeway
No. of lares

Total Volume (ph)

Averare Speed
(mph.)
Total Cost
($\% / \mathrm{mile}$)
Equivalent Peak -hour
$\underset{\text { speed }}{\text { Assumed maximum }} \underset{(\text { mph }}{\text { s. }}$
Minimum: unit
travel time (hr/mile)
Average Travel
Time (hr/mile)

2	4	6
1,000	2,800	10,800
20	32.5	55
550,000	950,000	$8-14$ million
11.2	19.2	$161-282$
35	40	70
0.0286	0.025	0.0143
0.05	0.0308	0.0182
	source $=$ Ref. (28)	

$$
\begin{align*}
& \mathrm{K}_{2}=0.0001 \mathrm{v} \text { dollar-hr/mi } \mathrm{mi}^{2} / \mathrm{veh}^{2} \tag{A-8}
\end{align*}
$$

3. Rural Area:

Cost data for rural highways is not generally available. Fowever, the cost of a rural freeway may be assumed as equal to the lowest cost of a freeway in an urban area.

On this basis an 8 lane freeway will cost about $\$ 3,000,000$ per mile (27). Using Fig. 3.38 in the "Highway Capacity Marual" (25), a typical freeway with 70 mph average highway speed can handle 1800 vph per lane at 45 mph speed. Equivalent peak hour cost becomes:
$\$ 3,000,000 \times 0.0726 \times \frac{1}{200} \times \frac{1}{10}=\$ 60.5$ per mile per hour The K_{2} value is derived as follows:

$$
\begin{align*}
& 0.0143+\frac{\mathrm{K}_{2}}{60.5}(1800 \times 8)=0.0222 \\
& \mathrm{~K}_{2}=0.00003322 \text { (0.11ar-hr} / \mathrm{mi}^{2} / \mathrm{veh}^{2} \tag{A-9}
\end{align*}
$$

Excluding equation $\mathrm{A}-5, \mathrm{~K}_{2}$ values are sumarized in Table A-4.

Table A-4	
Type of Area	Range of K K Value
CBD	$.000207-0.000288$
Averate Urban Area	$0.0000398-0.0001 \mathrm{~V}$
Rural	0.0000332

 (ah an ... "s lati urn - .away cons as shown in Table
 7. . schive. a fatly roo c correlation between the equation and the near word situation.

Values of K_{3}
The K_{3} value ropredents the existing facilities in terms o 2 cost der mine per hour. Eoxivaient peak hour cost, for each type cz road, derived in the previous sections indicates the average values of i.,
roc A values used in the example problems are summarized in Table 1.

APPENDIX B

COMPUTER PROGRANS


```
    F:1"\becauseAT('+14)
    F\cdots\cdots...AT(/F).4)
    2 +ミ`"AT(15H:*TEN* ' -ATA)
    4FORM^Tl2I&,7FT .c)
    FSH AT(14: 5% &1 &N こ()
    - St*AT(1)-&' OF PRRO-AN)
    トこ\mp@code{*T(I*,4F!*.4)}
    r= AT (3-2,6)
```



```
        LH ZV)
    F:\cdotsAT(3X,2I3,3X,4L1).(N)
    11 F:'3NAT(7511.4)
    1? F~F,*AT(6F1`.b)
    MFAD 1 * N * *, 1C7
    #FAD - . 2 LLTA, AK, T, AK, AF
    OFND ?. DACIN.NACW2, "ACH:`
    PlMCH 4, *,*", FFLTA,AN
    COSTP=*10U-% AO.
    <EYSO=
    1こ 1 2 1=1, .
    | < < }J=1\mathrm{ , ,
        &,U 2,V(I,J), Ll(1,J),ALZ(I,J)
    |!CH12,V(J,J),LI(I,J),AL<< (I•J)
    IF(I-f) ? 1,? ?,!11?
1 IF(J-`) 3 1, 2 ?, 11!2
    "2(I, I)= )/0%=
    r@ TR 1 2
    N(I\cdotJ)=.
    10TS 1 2
        ~(I,J)=1.
    SCNTINLL
    :13 1=1,
        I 3 J=1,
```



```
        \TF%=,
1 If(ITFH-1O7) ]:1&1,711
11 IT-R=IT「.+1
    |F(ITF,-IC\)2,1.. ! ! :
    FY:S=1
* ! 211 1=1,
    (2 211 J=1,
    1ト(I-1) 11&, . . . 1,
27 IF (J-1) } 1%专,\1,\1
```



```
            Tこ
    1F(J-?', | , 1.
```



```
        .•T
    12•i(I,1)(i,J-1)+VV(I-1,J)+\゙S1.J
        *- T- #
*, CNMTIN:T
    A 4 +- ,
    |F(tV(I,J))]1J, 1\cdots,L.
    1 1 (1, (J)=.
    1=T-1L2
```



```
    | 1(J.J)=SHI(I,J)
        :TS:15
    ] T Tf(NT(I,J)-cl2(I,J!)] a, B,?\cdots
    1.人111(I, J)=cl?(I,J)
    195 !F(VV(I,J))111?,&1上, 175
    \フ下, 2(I,J)=VV(I, ))*(rV2(I,J)*T)***5-NV I,J)
    IF(2(I,J)-5VI(I,J))2 6,3 6. \(7
    6.12(I•J)=SV1(I•J)
        T0
```



```
        2(I,J)=V2(I,J)
        < T@ 4
        ?(1., )=.
    4 (~NTIN.
    MFCTH= .
    CN!TV='.
    ~mTT=.
    :271 I=1,*
    |in 221 J=1,
    「N5TH=C\Omega5TH+1(1*)***LI!1...*
    G: TV=CO-TV+\cdotsL(1,J)*mL2(I.3)
```



```
    2(-2(I,J)+CV3(I,N)))*T*AL< (I,J)
    CSSTI=C2ST T + Cv5TV
    \becauseST=CORTI+COTT
    :1NCH 7. IT`F.T. ak.b
        MNCH-. -NTT.LCTI.CNTT
    TF(SFA = 1TrH2)1?, 24
    1,F TYPF , ``T
    U'FLT=eSSF(A +(\cdots,rT-(y&TH)/(SNT)
    IF(OFLT -1'LT`:11 1.]1 1.11<
11 } IF(KFY大こ-1)11 *,11!7.1:1
```

```
,
M11 ? FYNO= 
    |\mp@code{ッッ = = .}
    \sumN=N+'-1
    1 N=M+1-1
            P=LN+1
            N}=LN+
    IF(LN-)0&1,%),114.
    *)i| IF(L!-`):1T,6! •17 
    6I= r.2 (LN,L)=1.
        <H(LN,!')=.
        7V(LN!! ) = .
        「^Tのに1
    61! TF(J-1)1111.0)1.
```



```
    4 T*AL2(LN,P)
        IF(I-1)1111,011,111
-1 ZV(LN\cdotL`)=ZH(LN.1 ')
    (NTO23]
```



```
    4 T*&AL? (N.P,L*)
            IF(J-1)1111, 15.31
    31) ZH(LN\cdotL,)=ZV(LN,L)
    18|くごなImんた
        IF(\OmegaEA.L 5.1TrH 3)15,\angle.1う'
1.1 IF{NEY\J-1)1ち 4, 1H そ.111?
    9!17 1|(CH)
    ~2 I=1,*
        # , J= ', M
```



```
    ! Zh(!.J).?V(I,.J)
    *-& ConTINUH
?: IFISFA & S:ITCl| 1)IF 1,TE %
*E1 HFAMつ."KV
    S 241 1=1,\
        "& 24l J=1,
    IF(I-N)11」,11&, 1 1]
    T1OTF(J-M)\17.11 . T1?-
    116 3(I,J)=3.
        ~T^241
    11夕**(J.))=。
        ~~TS 24.1
    117 IF(AI(T.1)|111~.14T,!.
    129* (1 1.J)=1.
```



```
    IF(NFC+(:N1)-12f+)\17,c.17%
```



```
    . , 2(I!J)-1.
    &TS 217
```



```
    2 + +2 (I.1)- .
\17 r \ T- <4.1
3)1 O2NTIN !
    QSTP=CSST
    \therefore10 1 .
7!! F&&CH6
    TYP1
    BMUSF
    コつTS1
111? TYPE %
    c. TOP
    &NT
```



```
            QRMAT (4!4)
            OF~AT(7+1..
```



```
            AT(15m =, 且 &, wowl&)
            AT(13,4F1\vdots。.)
            AT(5-% .6)
```



```
    2H1
    FA%AT(7F11.4)
    I? FNF:AT(EF1?.5)
I
    IFAD 1, *** , ICi
    KEAD ?, FFLTA,GK&, T, AK,AFK, ,i, ?
    REAL 2, 'A`M1, UA 3M2, LANM3
```



```
    EこSTP=
    k+Y林
    10 1 2 1=1, %
    10~ l 2 J=1,
    जFAD ?, V(I,J), NL1(I,J),AL`(I,J),JI(I,J)
```



```
    1F(I-N) ? 1.2.?.1712
    IF(J-v) * 1,2 2,111?
    1 ก2(I,J)=1)ACN:A
        ミT? 1-2
    U2}(I,J)=.
    C T^ 1 2
    \prime! (II,J)=1
    #- TIMct
        1 こ 1=1,N
        \therefore1 2 J=1,*
    PFत\Gamma ?, (H](T,J),CH2(L,J),CH2(I,J)
    马FA\cap ?. 「V1(T,J), rV2(T,J)*(V`(I,J)
    MCH 1}, CHI(I,J),CH2(I, J), (H3{I, J)
?. 'NCH 11. CV1(I,J),CV2(I•J).「V2(I,J)
            = क
        ! TrR=
    IF(ITEk-IC1) 1 41.1111,111
    IT&R=ITもR+1
    IF(ITEK-ICI)*LI,3!2,+11/
*2& * Y C=]
    *1, ミ211 I=1,N
    ' = 211 J=1,
    1F(I-1) 111`.
*9TF(J-1) 1110,611,47=
```

```
4,\ | (1,,J|=V,|,.|
```



```
    V(I,J)-I(I,,1)*1!.- 3(:, (1)
        TO21t
4 :(1,J)=,N(I,J-I)+V(1,,1)
        T? 43
```



```
51! \DeltaI(I,J)=VV(T-1,J)+V(I,J)
    r- T~ 43
    1? i I(I,J)=HV(I,J-1)+VV(i-1,Ji=wij.J)
    「ミT:43
&1} <CNTINu-
    | C4 1=1,*
    (C 4: J=1,
    IF(1-N)31,32,111?
    \](I,J)= L. (I I, J)
        2(I,J)=`.
        TV 4
    4) IF(J-ツ)22,24,111?
    34 Dつ(! | J)=5! (I,J)
        N1(1, J)='。
        re Tn 4
```



```
    I )-CV2(I,J)**i.b*AL.2(I,J)*(I, -L 3(, , ,))*(H3(I,J)*ALI(I,J))/(
```



```
    3 「3(I,J))
    IF(1 1(I,J)-SI(I,J))1(7,I(6,1,6
1GU1(I,J)=S1(I,J)
    r= T= 115
1) 7 IF(1(i,J)-S2)1%,8.7 8,115
-8-1(I,J)= &2
15 2(I,J)=S1(I,J)=ח1(I.J)
    4. CNNTINN:
        C^cTH= .
        CNSTV= .
        COSTT = .
        O 221 T=1,N
        C221 J=1,
            COSTH=COSTH+D)I(I,J)
            C气STV=CこSTV+D2(I,J)
*' = SSTT=COSTT+(CH1\I,J)*HV(I,J)*ALI(I,J)+(H2 (I,J)*(ALI(I,J)*HIV(I,J))
    I**2/(DI(I,J)+CH3(I,J)*ALI(I,J)))*I+(CVI(I,J)*VV(I,J)*AL2(I,J)+CV2
    ?(I,J)*(AL2(I,J)*VV(I,J))**?/(sI(I,J)-DI(I,J)+CV3(I,J)*AL2(I,J)))
    3 * T}
        CNSTI=COSTH+C气STV
        COST=CことTI+CこSTT
        PUNCH 7, ITER•T•AKK
        PLNCH &, COST,COSTI,COSTT
        IF(SENs, SWTTCH 2)125.243
12= TYPE O.COST
\angle4亏 UELTA=AESF(AOSF(COST-COSTP)/COST)
```

```
    |F|\capF:N-8L-1ut |7 , ,
* 11 1
    TF(NF:-:- \1) ,O171,
                TC:14
1. iroこ=
1 3 4 4- za? i= 1.0
```



```
    1. }\textrm{N}=\textrm{N}+\textrm{I}-\textrm{I
    O=+1-
    ! F'=LN'N+1
        P=LN+1
    IF{2N-N)S}1,A}?.7'!
    615
```



```
    6?%,3(LN,L:)=1.
    ZH(LN.L) = *
    ZV(L&,L\cdot)=.
    GC TO 231
    &1) 1F(J-1)1111,\&?,
```



```
    2 %I(LN,*P)-DI(LN***)+CV3(LN,*P)*AL2(L**P)))*T
    1F(I-1)1111, &17.771
    117V(LN.1)=ZH(LN,!)
    GOTO 2*I
```



```
    4S1(NP,L')-U1(NP,L')+CV3(NH,LF)*,LL(, H,L, ))) #T
    IF(J-7)1111, &1* .?al
7% ZH(LN•L*!)=7V(L.N•L',)
    31 CNNTIN F
        IF(ITFK-NC122,2:,1J12
    ? IF(K[Y~Z-1)25,76,1]12
        `C=NC+5
    8. PUNCt: ,
        LE 3 I=],
        l公 S J=1.
```



```
        ZH(I,J),Z\vee(1,J)
        #~TIN!と
    IF(SFM5, &.IT(H1 1)15 1. 15,7
    EFAD つ.NFV
    Ton 24` I=1,
    0N247J=1,
    1F(I-N)1]c,1]+*111_
    110IF(J-N)117•11*•111%
    116 ( 3 (I,J)=1.
        OTO241
```

```
L
                (1, 1-2-
117 If(A)1:1,!)):110.1 ,
121 A1(I.J)-3.
```



```
    = *T
```



```
    ? ALZ(1,J)))*T
        1f(ALSi (汭)-itk)21i,c|i,I
** \Gamma(:*=AK**)t/0以N
    .i| J=A L.FF( L 3)
        IF(ADN;-S3)271.271. L'
    71 3(1,J)=)2(I,J)-`
        \thereforeO TS 26.2
**) IF&[กH3)27=, ?7=.274
    7x-2(1-1)= )= (1. 1)+5x
        CNTC2h2
    74 `2 (I, J)=\2(I, J)-C,2
```



```
\-2 (1,J)=1.
    = I&<17
    \&&1F([2(1,J))26*, <6.,'1%
    M, 3(I,J)=.
    17 - T5:41
    4](こ.TItwar
    C-RTP=COST
    c& T= 1 1
1111 अFACH f:
    TYME 3
    PAl CF
    &TS 1
11）TYPE
        STUP
```



```
    FE..AT(4i4)
```



```
    トこち.AT(214,7t?.4)
    FCNAT(14-1 E +5:11NN T)
    FROHMAT(15,1 FINS SF FREN.A )
    |のFサAT(I2.4+15.人)
    & ^ミMNT(~F:.N)
```



```
    1 Z! (V)
11 FMPMAT(7F1).4)
    REAU 1, ,, , IC,OCI
    REMU ?, L+LTA, T, UI, MKK1, \K, ,.LL
    READ 2, AS,41•UASVZ2, UACM3
    TFAF1 2, 51,_57,53, $4
```



```
    COSTF=.
    FYS0=
    ") = I=1.*
        * J=1,
    RHAU 7. V(I,J),ALJ(T,J),ALZ(I,J)
    -UNCH , V(I,J),ALI(I,J),ALZ(I,J)
    T1(1,J)=DASN1
    '7(1,J)=)ASN2
    33 U3(1,J)= JASN 3
    4 CONTINU5
    しこ 4u I=1,N
    i= 4' J=1,
    READ 2, (H11(I,J),CH&(I,J),C+B(1,J), VI(I, J),(V2(I, J), Vs(1,J)
    4 FIINCH 11,CH](I,J),CH2(I,J),CH3(I,J),CV1(I,J),VV2(I,J),NV3(I,J)
    ITF=?=
    NC=NC1
1.IF(ITER-1C)41.111],1112
41 ITFR=1T+R+1
    ZEF=..
    IF(1TE和-l()4え,43,1]1<
4; ^EYSO=1
42 LC 5L i=1,*
    DC 5 J=1,
    IF(I-N)21.22,]11?
22IF(J-M)23,24,111?
24 「3(1, ))=1.
    n1(I:J)= .
    n?(1,J)=|
    C0 TC bo
ว``3(1,J)=1.
    D2(I.J)= .
```

```
        - T
        F(J-1, , ? 9 ?
        2(1,.1)=
            1!I,!= =
    =r(I-1)!11.E4*4.
    44 r(J-1)111 1 , 45,4i
    4n:I(I,J)=V (1,J)
\therefore6 |V(1,J)=0\{L,J)* *)., ,
        *V(1,J)=1T(1,J)**(1.- - ! .! |
        #Tこそ.
- i - I(I, J)= +V(I,J-1)+V(1,.1)
            TO40
4* ! (| J~1) 17!?, 1,:?
E= I(1,J)=VV(!-1.J)+/(1,N)
        O-T:16
```



```
        HのT^んG
「cきTIN
        AK*2=1.:
        \Xi2=我?
            -6 I=1,
            \therefore6. }J=1=1
        IF(I-1),.), ,111?
            1 IF(J-リ゙+1)? 1, & ? 4
            1 1(I,J)=GIT-X5(I,J-1)
            ~Tr 52
                (1, 1)=x=(!, 1-1)
        -ata F
```



```
                        \therefore= x (1,J)=11(1,J)+C2(1,J)
            ~T= 20
    * 1F(J-1)1113",6%.こん
            {&(1,J)=X-(I-1.) + 1(1,J)+ 1,J)
                OT-*&
        4+(1,J)=x4([,J-1)+`](1..J)+(1,J)
                        6h !F(X5(0,J)-(!)6, % ,7!=
                        72;n=1({,J)+2(I,J)
        * 1(1,1)=\1(I,1)-(x4(I),1)-1,1)= 1(I,J)/彳
```



```
        * F(I, J)= = % I
        C0NTI!!!
        SOSTH= .
        \therefore.TV = .
        SSTT= .
        1. }7\mathrm{ I I=1,
        < 7 ~=1,
        `:TH=CこST&+ 1(I.J)
        * ncTV=cここTV+ ({T,.\)
```



```
        T1-\cdots.NT+i TV
        T=i i,TT+i=.TI
    1 - l- IT\ell ,T,t心1,
    M, ', 'Tar`Tl,rE,
;? TYFr, CorT
```



```
    1 ***T
        Z=AT&F((Z
        If(DZ-\GammaZ)21!,217•つ12
        ZS= =2.
        12 i=1,
        < 2 J=1,
```



```
    1 11,3(1. 11)**3
        = = Z 
```



```
    \sum [: 2(1, 1) )**=
```



```
        B=A&<2* 13/(0)+ 3+ 0. 1)
177 1F(ADZ-52)13)•123,12%
&1-8, < < =52
    # TO 1 $5
1 IF(N)<+02)134,1 ,15:
```



```
12= l(1,j)=)1(1, 1)-\ 2
    IF(51(1,J))12, 12=,1>4
1\cdots 1(1, J)=1.
1ว& IF(\Lambda\cap2-s2)126,127.121
137 NM2= 5.7
    BのT^12C
l2h IF(Ar3+57)12:,13c, 1*
!33 A\Gamma'%=-52
13.1.l(1,J)= )2 (1, J)-A.3
    IF(ט?(1, J)) 125,12:,1<
124, 2(1,.1)=.
?76 1F(م1(1, 1)-53)141,14 c, 14
```



```
    If(\cap1(1,J)-T1)142,142.14?
]43 ก1(I, 1)=ワT1
147 IF(0.(1, 1)-6&)147,)44.144
140 1(1. 1)=5
i+7 if(\Gamma?(i,j)-52)744,744,14
144 T&-{(cbこ!(1,J)*T/L! )
    1F(Uつ(I,J)-LT<)14も,14!,i.
146, 2(1, 1}= T?
145 if(17 (.,J)-54)14,01?, 1-
l\pi}\cdots?(1\cdotJ)=
```

```
1.
    -T
```



```
1.4 1.FAD ? - K\<.
1 5 万0 TS 1. 
二11 M= &, I=1.
    nn क! J=1,"
    L''=N+I-I
    LN=N+1-J
        ,P=LN+1
    P=L}+
    IF(LN-N)&1, !1,111%
    IF(LN- )81, %,1112
    L 3(LN, L'1) =1.
    7H(LN,L'*)= .
    7V(LN,LM)=.
        TS
```



```
    ? HV(LI,P)*)3(L, P)/(D](LN, P)*MLL(L, P)+C+3(L, , )) )*MLL(1, ,
```



```
    4(V3(LG,伊)))*AL2(LN,..け)*T
        IF(I-1)1112,06,04
:6 ZV(LN,L:)= ZHI(LN,Li)
    にこ丁心
```



```
        (VZ(N+,L'*)))*AL2(*P,L`)*T
        IF(J-1)1112,N/,O%
7% ZH(LN,L')=ZV(L'*L')
    CNNTINLた
    IF(ITEK- \C)6., 1*? ? ? \%
6- IF(UELT - [LT,.)10゙, 10去,
    NEYSO=
    IF(5FNSt SWITCH4)18:0.8
182 जC=NC+N.C1
182 n!1NCF
    [S
```



```
    1 7V (I,J)
    COPTIN㨁
    IF(KEY:0-1)7:., 111%
    73 IF(SEM = S'ITC1, 3)57, f6
    7 UN 12, 1=1,1.
    | 12 J=1,
12 अ14.(1) 11, X=(i, J), <5
    76 1F(DELT•-゙!LTN)71•11,/&
```

```
    71 , F(KFY :-1),7 0 271,115
    # EYC气=?
        ~T^!..
    7. <FYSN=
    *O IF(SLNS1 %.ITC 1),4.
    -FNの2.N人K1, 1
    |E 1 l : = 1,
    ~(1.1 J=1,
|!!(A1(1,J))111.1.1.IJ
1)1 *II=`.
    -こTた 112
1I2 II=AI(I,J)
```



```
    IF(AFGF(A1 1)-G1)17T,1<1,122
1<7 IF(AN1)162,?6,.17?
162 -DI = .-51
    ひTS 121
172 AN1=S1
121 D3(I,J)=33(1,J)-N11
    IF(D3(1,J)-1.)151.15, ,15?
    152 nว(i, J)=1.
    ri^ T^ 1 1
951 IF(D3([,J))152.15* •1 1
353-2([,J)=1.
1](ごけI)Jt
    COSTP=COST
    Gこ Tこ 1
1111 FUNCH 6
    TYPE 3
    HAJSE
    ๑Tこ1
1117 TYPF 5
    * TこP
    FAD
```


APPENDIX C

RESULTS

EXA：「＿？，2SYUTIC

1．XAMPLE 1 ，SOLUTIOI． 2

25 1．05．
 ROW COL HV VV 1 ？•1827F－4．4のノ1F＋4 $13 \cdot 6122 E-9 \cdot 1836 E-4$
$\begin{array}{lll}\therefore-09 & E & E+4 \\ \therefore & E+4 & 3\end{array}+3$
$\cdot \times 844 E+1 \cdot 7$ •791E＋ 4
．29し2E－ $5 \cdot 1$ 明 +4
－ $6-99 \cdot 16 E+14$
．130DE－． 4 ．？ 8635 －3
－ 0 ソロ7に＋ 4 •4N09た＋1
－9771ヒ－••10yくt＋b
－F－rca．l．f＋4
$\cdot 16$ F＋ 4 • 1＋-49
？$\cdot 1,1,4 E+4$ • + － 45
4 2 •11ヶ～F＋5 • 「－69
4 4．170．9F＋5 ．．F－40
$71 \cdot 63 n 29 t+1$
－$[-99$
－（1．F－99
－\quad F -99
－ $2641 \mathrm{~L}+\mathrm{+} 2$
． $529 t-\mathrm{c} 1$

－$t-\sqrt{-c} y$
－1．！t－y＝
－1 +3
－147 2－
$\cdot .11 \rho^{+}+$
$.152++$ ？
．？112F＋？
$.1618 F+$

HINV VIVV

.44
•誛为
$.3674 \mathrm{E}-$－
． 1
－3332F－ 3 ．
－ 12
－18地上ー 5
． $734 t+2$
－＂NのE－90
－1724E－（ 1
．1216E－C^{\prime}
． $21.54 \mathrm{E}-\mathrm{C} 0$
．1656E－
－11クさヒ＋12
－］ $105 \mathrm{E}-12$
－ $1<16 t-06$
－ $15 \angle 4 t+<$
－．．t－95 ．ن5255－i 1
－1761上－ 5

－1070＋0 ．－0080t－6．0525E－01
－1565t ${ }^{\circ} \mathrm{C}$ ． $\mathrm{E}-90$ ． $\mathrm{E}-99$
－E
－
E－
E－
E－
－1．n R t＋1 •1
$\begin{array}{lll}\cdot 1 & F+\cdots 1 \\ \cdot 1 & +61\end{array}$
$4 \mathrm{E}-\mathrm{C}$

F－09
－1． $1 . F+1$
． $1656 \mathrm{r}-$
$.1174+$
－ $254-$
－626－
$.1216^{\prime \prime}-$
－ 2.63 －
． 1174 －
－ンン25＿－
． 1636 －
． $1174 \mathrm{t}-$
．61Cット－
－ヘ…－
$.610-$
－$\quad-1$ ？

FXA. PLF ? , A*TIO

 =XA PLE ? , SULUTIU 2

FXiflif , it -i=

FXA'PLT $=$, SOLITIN?
12

1

XA, PLL 4 , SULUTIC 2

Decision Variables being Perturbed	Oririnal Values	Values after Perturbation	Resulting Total Costs
$\theta_{3}^{1,1}$	1.0000	. 9500	622818.51
$8_{2}^{1,2}$	44.0100	40.0000	2820.25
$\theta_{1}^{2,3}$. 0000	. 1000	2819.95
$\theta_{2}^{2,4}$	15.2400	16.0000	2819.88
$\theta_{3}^{3,2}$	1.0000	. 9500	31390309.00
$\theta_{2}^{3, L}$	19.6800	18.0000	2820.01
$\theta_{1}^{4,1}$	11.1300	12.0000	2819.91
$\theta_{1}^{4,3}$	211.2000	215.0000	2819.91

ORIGINAL TOTAL COST $=\$ 2,819.86$

RESULTS OF PERTURBATION , PROBLEM 2

Decision Variables Being Perturbed $\theta_{2}^{1,1}$
$\mathrm{U}_{3}, 3$
$\theta_{2}^{2,2}$
$\theta_{3}^{2,3}$
$\theta_{1}^{3,1}$
$\theta_{3}^{3,3}$
$\theta_{1}^{L_{1}, 1}$
$\theta_{1}^{4,3}$
ORIGINAL TOTAL COST $=\$ 2,603.99$

Original	Values after Values	Resulting Perturbation
2.0000	2.2000	2604.10
.3834	.4000	2604.01
24.0300	23.0000	2604.03
.3743	.3600	2604.05
2.0000	2.2000	2604.06
.4307	.4200	2604.07
6.0800	6.5000	2604.00
85.0000	84.0000	2604.62

RESULTS OF PERTURBATION , PROBLEM 3
Decision Variables Original Values after Resulting

Being Perturbed

ng Perturbed	Values
$\theta_{3}^{1}, 1$.5231
$\theta_{1}^{1}, 3$	21.7300
$\theta_{2}^{2}, 2$	31.8000
2	.3174
$\theta_{3}^{2}, 3$	29.6600
3	
$\theta_{3}^{3}, 1$.4083
$\theta_{3}^{3}, 3$	
3	$\$ 3,112.90$

Perturbation Total Costs . 50003112.95 $22.5000 \quad 3112.91$ $31.0000 \quad 3112.92$. $3100 \quad 3112.95$ 31.0000 3112.92 3112.96

RESULTS OF PERTURBATION , PROBLEM 4

Decision Variables Being Perturted

$\theta_{3}^{2}, 1$.5721
$\theta_{3}^{1}, 1$.5721
$\theta_{2}^{1,2}$	8.0040
$\theta_{2}^{2,1}$	5.2560
$\sigma_{3}^{2,2}$.2672
$\theta_{2}^{2,3}$.2672
$\theta_{2}^{2,4}$	4.7630
$\theta_{3}^{3,1}$	15.2200
$\theta_{3}^{3}, 1$.4999
$\theta_{1}^{4,1}$.4999
$\theta_{1}^{4}, 2$.9788
$\theta_{1}^{4}, 2$	23.3100
$\theta_{1}^{4,3}$	23.3100

Values after Resulting Perturbation Total Costs
. 5500
. 5500
.8800
4.4560
2654.22
. 2800
. 2800
2639.52
5.0000
14.9800
.4600
.4600
2639.65
1.0000
23.2900
2639.44
23.0000
109.2100

ORIGINAL TOTAL COST $=\$ 2,639.38$

LIST OF SYMBOLS

Discrete Maximum Principle

X state variable.
$\theta \quad$ decision variable.
T transformation operator.
n the n-th stage.
$N \quad$ the $N-t h$ stage or the total number of stages.
$s \quad$ total number of state variables in each stage
r total number of decision variables in each stage.
H the Hamiltonian.
z adioint variable.
c
constant in ob.jective function.
S objective function.

General Formulation of the Problem
$X_{j}^{n, m} \quad$ state variables representing flows from node (n, m).
$\theta_{j}^{n, m}$ decision variables representing investments on links leaving node (n, m).
$K_{j 1}^{n, m}$ free flow travel time on links leaving node (n, m).
$K_{j 2}^{n, m}$ coefficient of investment on links leaving node (n, m).
$K_{j 3}^{n, m}$ existing investment on links leaving node (n, m).
$L_{j}^{n, m} \quad$ link length on links leaving node (n, m).

$$
\begin{gathered}
t_{j}^{n, m} \text { unit travel time on links leaving node }(n, m) . \\
\text { where, } j=1, \text { for horizontal link. } \\
j=2, \text { for vertical link. }
\end{gathered}
$$

state variable representing the total investment on horizontal links from node $(1,1)$ through node (n, m). $x_{4}^{n, m} \quad$ state variable representing the total investment on vertical links from node (1,1) through (n, m).
$X_{5}^{n, m}$ state variable representing the total travel time cost on horizontal links from node (1,1) through node (n, m).
state variable representing the total travel time cost on vertical links from node (1,1) through (n, m). state variable representing the total investment on both links from node (1,1) through node (n, m).
$\theta_{3}^{n, m}$ decision variable representing the fraction of the vehicles departing node (n, m) on the horizontal link.
C_{t} time cost.
$H^{n}, m \quad$ Hamiltoniam function at node (n, m).
$V^{n}, \mathrm{~m}$ input trips at node (n, m).
GI total system budget.
$S I^{n, m}$ section budget at node (n, m). $\mathrm{Z}_{1}^{\mathrm{n}, \mathrm{m}}, \mathrm{Z}_{2}^{\mathrm{n}, \mathrm{m}}, \ldots . \cdot \mathrm{Z}_{7}^{\mathrm{n}, \mathrm{m}}$ adjoint variables associated with $X_{1}^{n, m}, X_{2}^{n, m}, \ldots, X_{\eta}^{n, m}$ respectively.

S objective function.

TCGA. W A SULUT1 UN FG HU OPTINAL ALLOCATION OF INVESTMLNT IN l'HANSPORTATION NETWORK DEVELOPMENT

by

JIN-JERG WANG
B.S. in Civil Engineering, National Taiwan University, Taiwan, 1964

```
AN ABSTRACT OF A :'ASTER'S THESIS
```

```
submitted in partial fulfillment of the
```

requirements for the degree
MASTER OF SCIENCE
Department of Civil Ergineering
KANSAS STATE UNIVERSITY
Vanhattan, Kansas
1967

ABMARCT

Followinf an introduction to the purpose of the economic analysjs of transportation networks, the objective and criterion problems are briolly discussed. A sinfle objective is selected for this study. A review of the literature shows the historical development of the methods of economic analysis. Va, ior drawbacks of the traditional methods developed in the past are described. The merits and demerits of mathematical models are presented.

The discrete maximum principle is introduced with a brief review of its recent applications to transportation systems analysis. Starting with a description of the relationships between travel time, traffic volume and investment cost, a non-linear total travel time equation is developed which expresses travel time as a function of traffic volume and investment.

The purpose of this research was to formulate ar optimal network improvement model (in equation forms as described) by the discrete maximum principle. Utilizing these equations, optitium seeking procedures were then developed. Three investment conditions were considered which resulted in three different sets of equations and two slightly different ways of seeking the optimum. Three special cases which implied Limits or Link investment were also described. This formulatior provided a broad application of the technique to
problems with various constraints and assumed conditions. Finally, four examples were presented to demonstrate the usefulness of the technicue in different investment conditions. Dorivation of the data used in example problems and the computer programs developed to solve the problom were presented in Appendix B.

