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SUMMARY

Realizing the effect of network improvement on the

operation of a highway transportation system, this study

develops a model which enables us to obtain an optimum

investment policy for improving a transportation network.

Consider an area with the future traffic demand assumed

to be known. The problem then is to build (or to improve)

a transportation network to accommodate the demand with

mimimum overall cost, assuming that the desired network

configuration has already been determined. Travel time

cost is assumed to be the only significant factor of

operating cost. Therefore, the overall cost, or trans-

portation cost, is assumed to be equal to the sum of in-

vestment cost and travel time cost.

A non-linear total travel time equation was developed

to express the travel time as a function of the investment

and of traffic volume. Three formulations associated with

three different investment circumstances are presented.

With the zonal interchanges considered as given information,

the discrete maximum principle (1) was utilized to assign

the trips and the investment to each link of the network

based on the criterion of minimizing the overall cost. The

maximum principle enables the location of the optimum with-

out undue difficulties.



INTRODUCTION

The economic analysis of a transportation network

provides valuable guidance in developing a comprehensive,

long-range transportation plan which, as concluded by

Zettel and Carll, is the basic objective of a transpor-

tation study (2). Being part of the public services and

competing for the use of limited resources, the transpor-

tation system should be built and operated economically

while at the same time it should meet the standards and

goals of the community in order to promote growth and

meet the needs of the economic activities. Specifically,

the objectives of a transportation system have been sum-

marized as: (3)

1. Provide a means for moving people and goods

safely, freely and economically.

2. Provide a choice of mode.

3. Make the city a more attractive place to live.

4. Provide the means for fulfilling the needs and

desires of the urban population within their

ability to pay.

Theoretically, an optimal system which best fits the

economic and social objectives would be the desired system

and the evaluation of the system would be based on criteria

which reflect these objectives. However, the evaluation

would be very difficult if it were to be done quantitatively.



For example, The Chicago Area Transportation Study listed

the following six criteria: (4)

1. Greater speed.

2. Increased safety.

3. Lower operating cost.

It. Economy in new construction.

5. Minimizing disruption.

6. Promoting better land development.

It is apparent that a single value system is not available

for measuring all these criteria. Criteria three and four

are easily expressed in dollars, and one and two can be

converted into dollar cost. however, criteria five and

six are not only intangible but also very difficult to

measure quantitatively. For this reason, transportation

system evaluations are generally restricted to economic

analysis and leave the social objectives to be considered,

somewhat subjectively, in the final selection of the op-

timal system. It is, although not perfect, the best ap-

proach available at present.

This study was an attempt to develop a mathematical model

for the economic evaluation of a transportation system.

Like many other studies, a single objective—to minimize

the transportation cost—was adopted. Several surveys have

shown that travel time is dominant as a factor in selecting

a route (5,6). Therefore, to simplify the formulation, it

was assumed that travel time was the only significant factor



of operating cost thereby reducing the objective to min-

imizing the suit, of the investment cost and travel time

cost

.

One of the major setbacks of linear programming type

models is that unit travel time is assumed to be independent

of traffic volume. To overcome the weakness, this study

applied the Discrete Maximum Principle—a powerful optimum

seeking method—which allows the use of a non-linear total

travel time equation. It should be emphasized that although

there is undoubtedly room for improvement in the particular

functional relationship between travel time, assigned volume

and investment cost, the primary purpose of this study was

to demonstrate the usefulness and the ability of the discrete

maximum principle in solving this type of non-linear optimi-

zation problem. Hopefully, by further research and modifi-

cations of the formulation, a more useful model may be

evolved.



REVIEW OF LITERATURE

In the past few decades, several methods of economic

analysis have been developed for use in transportation

planning. Four principle methods are (a) annual cost

method, (b) present worth method, (c) benefit-cost ratio

method, and (d) rate of return method (7, &, 9, 10). The

relative advantages of each method are briefly described

by Prennan and Rothrock (10).

Since World War II, the benefit-cost ratio method has

been given a great deal of attention. In 1952, the American

Association of State Highway Officials adopted this method

and published an informational report on "Road User Benefit

Analysis for Highway Improvement," the so-called, "Red

Book" is). Since that time, it has been accepted by many

planning agencies. Grant, on the other hand, specially

favors the use of the rate of return method. The applica-

tion of this method and its merits have been discussed at

length in his papers (9, 11). Many reports have compared

the uses of the benefit-cost ratio method and the rate of

return method in detail (11, 12). In general, when properly

used, both methods will give the same results.

No matter which method was used, the analyses made in

the past have restricted themselves to comparing alternatives

for a single link or a single route of a network. The over-

all system effect of improvements was completely ignored or

simply adjusted by using engineering judgment. Since the



improvements will generally cause redistribution of traffic

and since benefits on one route may cause a loss of benefits

or. other routes, this approach has sometimes resulted in

an uneconomic or even retarded transportation plan.

Realizing this deficiency, some recent studies have

compared alternatives through complete network analysis.

In the Chicago Area Transportation Study, five alternative

freeway systems were first developed. For each system,

trip distribution and traffic assignment techniques were

employed to obtain the traffic volume on each link of the

system. Three methods, (a) benefit-cost ratio, (b) rate of

return, ana (c) annual cost, were then used to evaluate each

system. They all resulted in the same answer (4, 13). This

approach is in general quite satisfactory. However, because

the number of alternatives to be compared was relatively

small and the development of alternatives was largely based

on engineering judgment, it is quite possible that the best

system was not considered.

At the same time, more and more attention has been

concentrated on the applications of optimization techniques

to the transportation field. In 1958, Garrison and Marble

(14) presented a linear programming formulation for the

analysis of network improvement. Travel cost for each link

was assumed to be constant and the investment was assumed to

increase the capacity linearly. The objective was to miminize

the sum of the investment and travel cost subject to constraints



as flow balance, budget, and capacity limits,

simplex algoithm was employed to seek the optimal solution.

This paper leads to increased interest in developing mathe-

matical models in the following years.

Quandt (15), in I960, presented a similar formulation.

In his problem, a commodity was to be transported from n

sources to m destinations, each node was connected with

every other node by a direct link. Again, linear relations

between shipment cost and volume, and between improvement

cost and capacity were assumed. The problem was then formu-

lated and solved by linear programming. Consideration was

also given to problems with fixed budgets, indirect con-

nection between nodes and multicommodity shipment.

Carter and Stowers (16), in 1963, again utilized

linear programming to formulate a model for fund alloca-

tion for urban highway system capacity improvement. The

basic formulation was the same as the previous papers

except that each link was represented by two arcs, one with

free flow capacity and normal operating cost, the other

with higher operating cost (due to congestion) and capacity

equal to the difference between possible and practical ca-

pacity. The ratio of the capacities of these two arcs was

kept constant as the capacities were improved.

In 196/*, Roberts and Funk (17) developed a linear

programming model for the problem of adding links to a

transportation system. The locations of possible additional



links in the system were first decided. In seeking the

optimum, the additional link was either completely built

or not built at all. If the link were ided, the cost

was included in the objective function. If it were not

added, the flow was blocked. In this formulation an

integer programming technique was used. The paper also

suggested a possible application of dynamic programming

in treating the stage-wise construction problem. As a

result, in 1966, Roberts, et . al. (18) combined the use

of linear programming and dynamic programming techniques

to solve a stage-wise link adding problem. The budget for

each construction period was fixed. The method considered

the budget at the Nth stage as the sum of the budgets from

the first to the nth construction period and used the prin-

ciple, "the links for stage K must be the subset of links

for stage K + l, 1
' to indicate the links which must be con-

sidered at stage N. At each stage, integer programming

was used to select the links to be added. This method is

considered useful for transportation system development in

underdeveloped countries

.

In the same year, Kay, Korlok and Charnes (19) presented

a model for optimal planning of a two-mode urban transpor-

tation system. A two-mode system, private road and public

transit, was to be built in an urban corridor. The road

capital cost was linearly related to capacity and speed.

Transit speed was fixed with the capacity linearly related



to capital cost. The length of the transit route was also

assumed fixed. The choice of mode was linearly related to

the travel time ratio between road and transit. Again, the

linear programming technique was used to formulate the

problem and seek the optimum. The objective function was:

fannual road
]

fannual vehicle] ("annual transit

mirM H M , ,

(capital cost! (operating costj [capital cost

annual transit

\operating costj +<Parking costj

In this formulation, the travel time was excluded from

operating cost and was treated as a constraint to reflect

the minimum level of service desired and the maximum speed

obtainable. For a true optimum, it was required to change

the length of the transit route and run the program several

times

.

Distinct from the linear programming type models,

Ridley (20) in 1965, developed a method for seeking the

optimum investment policy to reduce the travel time in a

transportation network. The unit travel time was assumed

to be decreasing linearly with the investment. It was also

assumed that the flow was far below the link capacity. The

objective was to minimize the total travel time. Because

the travel time was a function of both investment and traffic

volume, the objective function was non-linear in nature. For

some special cases, such as no budget limit, fixed traffic
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volume, fixed investment and single origin-destination,

the formulation can be simplified into a linear program-

ming model. For the general case which has budget and

travel time constraints, the bounded subset method was

utilized to search the optimum.

A common drawback of the above models is that unit

travel time was assumed to be independent of traffic volume

which is not at all close to reality. The linear assump-

tion of travel time improvement in Hay's and Ridley's

models is also questionable.

Although the above review shows some imperfection of

the existing models, it is realized that the mathematical

model is a powerful technique which we can apply in the

field of transportation engineering in order to make a

better analysis. Compared to the alternative comparison

method, the mathematical model has merit in that: (19)

''It selects that system which is optimal among all

possible systems of a given type rather than merely

examining a small number of alternatives.''

There are, however, two difficulties with the mathematical

models.

1. We are trying to express a highly complex real

world phenomenon with a simple equation which is

very difficult or may even be impossible.

2. The model sometimes becomes too complex to man-

ipulate and too sophisticated to understand and
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requires highly trained personnel to carry cut

the analysis.
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;te maximum principle and its recent APPLICATIONS IK

TRANSPORTATION SYSTEMS ANALYSIS

In recent years, optimization has become more and more

important in engineering systems analysis- Since World

War II, many sophisticated techniques have been developed.

Among them, Dynamic Programming and the Discrete Maximum

Principle (1) were developed for the optimization of stage-

wise processes.

In 196/,, ran and Wang developed a discrete version of

the maximum principle (1). Recently, it was demonstrated

that this optimization technique was applicable to tran-

sportation systems analysis (22, 23, 24).

Consider an N stage process with state variables de-

noted by an s-dimensional vector, X « (X , X ?) ... X ), and

decision variables denoted by a r-dimensional vector, 9 =

(a-, , 89,...

S

r ). The performance equations at the n-th stage

are given as:

x»-T»(iri
.xr

1
.---.*r

1
i *?.•§.-.#

where, i = 1,2, ...,s; n = 1,2,. ..,N and &j_ is constant.

A typical optimization problem associated with such a

process is to find a set of 6n , n = 1, 2,..., N, subject to

constraints

:
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ty j ( y, c ?,..., 3 ") — ° n = 1, 2,..., K

i = 1, 2 r

which optimizes the ohjcetive function,

s .,

S = 2Z Cj x X. C. = constant

The discrete maximum principle introduces an s-dimen-

sional vector, Zn , and a Harniltonian function, H , which

satisfy the following relations:

K
n = 2Z Z? T

n
(X
n_1

;
on ), N = 1, 2 N

i-1 * 1

Z"" 1 = -2

—

r i - 1, 2,..., s; n - 1, 2,..., N
x
n-l

w
and Z .' = C

.

The necessary condition for S to be a local extreme with

respect to S is

°H =

when it is inside the boundary of the constraints, or

Hn = extreme

when it is on the boundary of the constraints.

If the objective function is a cumulated measure which

can be expressed as

n-1
'



14

the al :o) i 1 a car. be extended by introducing an extra state

iefined as

XS+1 " °

vn ,,n-l ,|. ,,,n-l n,
x s-rl = x

sil
- 1 Y (X

; a ), n - 1, 2,..., N

new equations together with the original performance

equations specify the process in s+1 variables where the

objective function becomes

n=l

and the primal algorithm of the principle is restored.

In case that some of the state variables at the end

N N
stage, X

i , are fixed, the relation Z
±

= C
i

no longer exists.

The following equation

can be used for each fixed end stage variable. By solving
N

these equations simultaneously, the Z. values can be determined

(21).

Recently, the discrete maximum principle has beer, suc-

cessfully applied to the traffic assignment problem. In

1964, Yang and Snell (22) formulated the traffic assignment

problem by considering each node of the network as a stage.

The unit travel time on each link was assumed constant and
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a turning oer.alty was included in the travel time equatior.

.

The objective was to minimize the total travel time. Due to

the linear characteristic of the objective function, the

optimum searching procedure was reduced to a shortest path

tree building routine which is similar to Moore' 6 algorithm.

In 1966, Snell, Funk and Blackburn (23) developed a

more complete model. In this model, travel time was non-

linearly related to traffic volume. This characteristic is

considered to be a step toward more realistic traffic

assignment. In 1967, Funk and Snell (2/,) developed a

procedure for an approximate multicopy traffic assignment

problem. The results obtained from this procedure appear

to be very close to the true optimum.
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THE objective function and travel tike equation

As previously explained, the objective of this study-

was to minimize the sum of the investment cost and the

travel time cost. The investment was an independent var-

iable and it was assumed ihat it could be expressed in

.' of dollars per mile. However unit travel time was,

Ln ;eneral, dependent on traffic volume and roadway con-

ditions. In other words, unit travel time was a function

of both traffic volume and investment. The relationship

among them was, in reality, very complex. In developing

a mathematical model, it was generally necessary to make

some assumptions and simplify the relationship in order

to express the relationship by a relatively simple equation

which, was manageable and yet not too far from reality.

To express unit travel time as a function of traffic

volume and investment, some basic characteristics were

observed

:

1. Unit travel time increased as the traffic volume

increased.

2. Unit travel time decreased as the investment in-

creased .

3. Unit travel time had a lower limit. (free flow

travel time)

4. With constant travel time, service volume increased

as the investment increased.
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The typical relation between traffic volume and oper-

ating speed is shown in Fig. la. As the speed is inversely

proportional to the travel time, this curve can be converted

into a travel time-traffic volume relation curve as shown

in Fig. lb. The dotted part of the curve shows the relation

under congested conditions. Therefore, under normal oper-

ating conditions, it is logical to assume that unit travel

time (in hours per vehicle per mile) is linearly related to

traffic volume and should have an equation of the following

form

:

t = K + K'V (1)

where

t = unit travel time (hr/mi/veh)

K = free flow travel time (hr/mi/veh)

K' = slope of the curve in Fig. lb (hr2/mi/veh 2
)

V = traffic volume per unit time (veh/hr)

Keeping basic characteristics in mind and further as-

suming that the free flow travel time is constant for each

link and traffic volume served is proportional to investment

for a constant travel time, an equation of the following

form may be hypothesized:

t = Kx + hv (2)

where

t = unit travel time (hr/mi/veh)
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Link Volume , vph

Fig. la Typical Speed-Volume Curve

Link Volume, vph

Fig. lb Typical Travel Time- Volume Curve
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K, = free flow travel time (hr/mi/veh). The magnitude

depends on the maximum speed obtainable or regu-

lated.

Kp = coefficient of improvement (dollar-hr/mi /veh ).

Its magnitude depends on link location and reflects

the difficulty of improvement.

8 = equivalent hourly investment per unit length

( dollar/mi/hr).

V = traffic volume per unit time (veh/hr).

In the case where old facilities exist, the investment

should be expressed as:

(3)

where, Kj , in dollars per mile per hour, represents the

existing investment and 9 1

, in dollars per mile per hour,

is the additional investment.

The general form of the unit travel tine equation then

becomes

t = jC + __! r
V (4)

The characteristics of this equation are demonstrated in

Figure 2a, 2b and 2c.

Let L be the length of the link and C t the cost of time.

The objective function then becomes

S " 9'L+(K1V + ±1^ V2 ) L C
t (5)



20

b<b„<i,12 3

Investment, 6

Fig. 2a Travel Time-Invest-

ment Curve With Fixed

Volume

Traffic Volume, V

Fig. 2b Travel Time-Volume

Curve With Fixed

Investment

t „<t <; t „12 3
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>
GM

Traffic Volume, V

Fig. 2c Volume-Investment Curve

With Fixed Travel Time
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GENERAL FORMULATION OF THE PKORLEM

This section presents the general formulation of the

optimal network improvement problem. Three investment con-

ditions are considered which result in three different

sets of equations and two slightly different methods of

seeking the optimum.

The formulation is aoplied to rectangular networks only.

However, for many non-rectangular networks, it is possible

to modify them into rectangular forms by adding slack links.

Two examples are shown in Fig. 3.

Definitions

1. Objective Function - a function, which is to be minimized

in this problem, representative of

the total cost.

2. Zone Centroid - a point of trip origin or destination.

3. Node - a point where segments of the road system connect,

i . Link - a connection between two nodes representative

of a segment of the road system.

5. Path - a series of connected links representative of a

trip route.

6. Network - the combination of all links and nodes.

Notations

1. X.' - state variables representing flows from node

(n,m)

.
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slack links with
zero travel time

slack links with
infinite travel
time

Fig. 3 Examples of Network Modification
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2. 6j' - decision variables representing investments on

links leaving node (n,m).

3. Kj£ - Free flow travel time on links leaving node

( n , m )

.

4. K^Q - coefficient of investment on links leaving node

(n,m).

5- K-4 - existing investment on links leaving node (n,ra).

6. LV'
1

* - link length on links leaving node (n,m) .

n m
7. tj - unit travel time on links leaving node (n,ra).

where, j = 1, for horizontal links.

j = 2, for vertical links.

v i-n m
5. X, " - state variable representing the total investment

on horizontal links from node (1,1) through node

(n , m )

.

9. X, ' - state variable representing the total investment

on vertical links from node (1,1) through node

(n , m )

.

10. Xr'
'

- state variable representing the total travel

time cost on horizontal links from node (1,1)

through node (n,m).

11- x6'' " 5tate variable representing the total travel

time cost on vertical links from node (1,1)

through node (n,m).
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12. xS ,m - state variable representing the total investment

on both links from node (1,1) through node (n,m),

13. d!?'^ - decision variable representing the fraction of

the vehicles departing node (n,m) on the hori-

zontal link.

Lrr.e cost.

15. K
n,n - Hamiltonian function at node (n,m).

16. V >m - input trips at node (n,m).

17. GI - total system budget.

IS. SI
n,r

' - section budget at node (n,m).

19. Z?
,m

, Z^'"
1

,..., Z-"'
,r

- - adjoint variables associated

with Xy» , X2 ,.•-, aj

respectively.

20. S - objective function.

Assumptions

1. Ko turn penalties.

2. Zone centroids coincide with the nodes.

3. Traffic directions are preassigned.

4. Traffic distribution is fixed.

5. Transportation network can be represented by a rectangu-

larly arranged combination of links.

6. Travel time is the only factor that influences the

traffic assignment.
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7. Unit travel time on each link can be expressed as:

"J Jl e
n '

m
H K^"1

"'
1

Kn,m
12 x

n,m
( 6 )

where

j = 1, for horizontal links

j = 2, for vertical links

Figure U shows a basic N x M rectangular network with

node (N,M) as the destination and all other nodes as origins.

With the input trips at each node obtained from a traffic

distribution study, the problem is to find an investment

policy under each investment condition such that the total

cost is a minimum.

Investment With No Budget Constraint

In this case, the overall system budget was assumed

unlimited. However, there are three special conditions which

imply upper or lower limits of investment on each link.

The performance equations for a typical interior node

as shown in Fig. 5 were developed as follows:

x
n,m , (x

n,m-l
H x

n-l,m
+ v

n,m
)e
n,m . AI

n,m
e
n,m

(?)

x
n,m = (x

n,m-l
+ x

n-l,m
+
^.m,

(1 .e
M, . Al^d-a"*") (8)

x
n,m = e

ri,m
L
n,m + x

n,m-l
;

e
n,m > (9)

x"-
n = e"'

m
L5'

m
4 x"'"

1- 1
, e"'

m >o (io)
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V
K-1,M-

TnTD (ImT

1*1^ *

i t

(N-l.M)

(N.M-1) \J[N,M)

Fig. 4 Basic N x M Network
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n-1

n+1

m-1

(n-l,m-l)

Yn,ia-1

(n,m-l)

(n-l,m-I)

(n-l,m)

„n-l,m
A
2

r
n,m

m+1

(n,m)

Yn,mX
2

(n+l,m)

(n-1, m+1)

( n , m+1

)

(n-rl.m-rl)

Fig. 5 Typical Interior Node of A Rectangular
Network
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r
n,m-l

X
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2
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U
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x 6
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>
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2
[i-e

3
« )l

2
> c

t
+

j vJiiU
|ai (i-e

3 j

_ yn.m-l-6'
(12)

where ^n.m = :(
n,r.-l

+ x
n-l,m

+
^.n

(13 }

=2

>0

ind < Sj'"^ 1

The Kamiltonian function at this node is defined as:

-n,^_ 7 n,m vn,m „n,m „n,in ,
„n,r. v n,rn ,

„n,m Yn,n- i-j_ A-]_ + l
2

x
2

i- ^
3

Xj + ^ A^

+ 2».» X^ + 2g.» Xg." (14)



29

. Ltutinp equations (7) to (12) into equation (1/J

and takir./i derivatives with respect to state variables, the

adjoint variables are obtained as follows:

n.m-1 _ 3 H
n i m „n.nun.m

, „n,m/, rtn,m>
1 "a^T^T " 1

b
3

+ Z
2

(1 - a
3 '8X

, „n ,iuv n,ni, n,m T n,m-+ Z, K, ,' 9- * L-, ' C'1

7 n,mKn,m; 1 w n,rr. i
T
n,mrZ

6
K
21

(1-b
3

> ) L
2

' C
t

n,m v
n

'
n t"' 131

V + K
lj

. _n,m,.,n,m, 2
AI (b

3
'

)

v
22 n,m/,_

fi
n,m 2

,n,m vn,in
t Ai

n
'
m
(i-e3"

Ui

)

v
23

(15)

r.n-l,ir, _ 3 V = ?n,mfi
n,iri + 7n )

ri fi «n >
m

i 4. 7n,i%n,mQn,mT n,
r.-l,rn

l
l

b
3 V (1_ri

3 '

T z
5

K
li

d
3

L
l

6
]1

21
U d

3 ' 2 t

n,m n,m
r

h 2 z"'
m "12

L
i h ai— (8?"")'

2 an,m , B-n.m 3

-n.ffl, n,m.2
>n,m
3
1 13

K
n,m

L
n,m

c
z
n,n; _22 2 1

A1n,m (1_en,ni)2
6 „n,m n,rr.

A1 u °3 j

b
2 ~ K 23

(16)

7
n,ri-± = dh '

'

r7n,m
"3 "d^^ " '3

(17)
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7
n-l,m = 3 i:

r'' m
= z

n,m
( lf>)

-
dx

n-l,m
4

'5 ~ I^1 " ^

z
n-l,m „ 5 H

n '"'

= z
n,m (20)

6 iyr.-l,ra 6

The original conditions for the state variables are given as:

x
o,o = x

o,o m x
o,o m x

o,o = x
o,o = x

o,o = Q (21 ,

The objective function is

„N,M „N,M VN.M „N,K ,„„»
S = X

3

-

+ X,' - X
5

' + X6
« (22)

Therefore, by definition, the boundary conditions for the

adioint variables are:

z^ f1 - zV" - (23)

z
N,v = Z

N,K = Z
K,M = Z

K,K = x (24)

Substituting equation (24) into equations (17) to (20), the

following ecuation is derived.



3-1

. ::f'
n! - Z"'

nl
- Z?'

m
- 1 for all (n,m) (25)

The Hamiltonian function then becomes:

H
n,m . z

n,m
x
n,r.

4
^.n^n.m

+ x
n,m

+
^n.m

4
^.m

+ x
n,m

(2fi)

Ir. order to have S a minimum, the following conditions are

necessary

:

IK „ e
n,m >0

dH^f = e
n,m >0

a8n,r. 2

^f = o<en
>
m<i

se"> ra 3

/ *i jpd r1 m r n ^ rim
when ISi' , ct"' , bJ' '

J
is an interior point, or H

n ,m
minimum with respect tc those « which are at a boundary-

point of the constraints.

Substituting equations (7) to (12) into equation (26)

and taking derivatives with respect to the various decision

variables, the following equations are obtained:

,..r.,m K"' m L?> m C
olj

__ T n,m !<; 1 t n m n m 2
..n,m ~ ^1 " n,rr. ,n,m 2 ( AI ' e i' ) (27)3 „*!•*« -L . ll.il. li . lil

°1 («i T K13 )
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dh ,n,m ,:.: r. T n,m, n.m,-.^ ,„,.>

^Ti L
2 "

(o
n lK "

K
n

f)
2 [XI (I-B3 )} (26)

/ 7 n,iT. 7n.m>. T n,Bi /-.n,m T n,m v.n,mT n,m> >Tn,nu(Z
x

> - Z
2

> )A1 - U> L]_> -K
2 i

L/ )AI C
t

00,

n , ra n , rr.

2
H r.,.T.

^ K
r.,ir.

(A1
' °3

« « K
13

r* m r rr*

Taking derivative of equation (29) with respect to 8 ' ', the

following equation is obtained:

_ 2_12 1 1 {AIn,m
}

/ + 2_J2 2 1
(AI n,m)2 (30)

,n,n.
,

,.n,m n.m v r.,md
l

4 K
13 °2 + K

23

Setting equations (27) and (28) equal to zero and apply-

ir.r '-he boundary conditions of the decision variables, the

values of d '' and 9 ' '' can be obtained from the following

eauations

:

e
i'

m
*yK12

mC
t AI '"^'" 1

- K^m when d^
>rr->0 (3D
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n .:" /, n,ir,„ " .. n ,^ <-- „ i„ i

hi' - U when ,/K 12 C t A,. 83 - KjJ <0 (32)

8
n,m= /K^lr

-C
t

AI
n '
m
(l-e

n '
m
)- K

r

2f when 8°.» >0 (33)

6, = U wnen V^22 t
(I-O3 J- K-23 — l> ^'

When both e"
,m

and e
2

>
m are greater than zero, equations

(31) and (33) can be substituted into equation (29) to obtain

the following equation

_ , 7n,m 7
n,m. ATn,m _ , n,m n,m n,m n,n, n,r.

c
„ n a *= I z

l
"z 2 '

AI
• ( K ll ^1 K 21 ~2 '

Ai u
t

„ Opu" T n,m, T n,m „ OTTnZ" T
n,m. T

n,Ei
n 2/K^ C^' AI - 2 ,/K22

C
t
L
2

Al

. AI
n,m

(
( z

n,m_
z
n,m) + (

^^n.m^mq,^

+ 2t/iff5; I-.- . /ign^ i».»,) (35)

.n.m
60' is eliminated by the substitution and the value oi

n,n;

^

"

n ^ becomes independent of 83 '
' as shown in equation

n ni

(35). This ir.piies that the value of H is linearly

related to 9, ana the extreme of H with respect to

83 '

' : occurs at a boundary. In this case, to obtain the

,n,m

,_•'-.- i
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When I^t—n: <^ If '

r'i-' = °> D
3

,K1
can be any value between

n m n
>
lr*

and 1 because the value of H ' is independent o^ Bj

When either 8? ,m or o^' m is equal to zero, or when

both are equal to zero, equation (35) is no longer valid.

Equation (29) is then set equal to zero and solved for the

optimal value of 6, .

Special Case I: In an urban area, the available space

for road construction is often limited. For example, a free-

way with more than eight lanes would be very difficult to

build near a CBD area. It is, therefore, necessary to set

an unper limit on the size of the links. These limits can

be expressed as limits on investment. Mathematically, they

are expressed as:

,,n,n
,

,n,m <-- „n ,m
Kll " b

l -°1 max.

R21
n b

2 - 9
2 max.

Equations (3D and (33) are then replaced by:

,-,-n.m ^n,m ,,n,m
d
3 " A

13

^1'max. " K
li
m

» (36)



>n,m /„n,nu , T n,m n ,n,n, „n,r

The other equations remain unchanged.

Special Case II: In developing a urban transportation

network, it is sonetir.es required to provide a minimum level

of service for the entire area. For example, arterial streets

would be distributed uniformly throughout the whole area.

This criterion can be fulfilled by requiring a minimum amount

of investment on each link. Mathematically, it can ,oe ex~

pressed as:

K
n,m + e

n,m ^n.a^ (38)

,.n,m j „n,m -> an,m (to)
K
2i °2 — d

2 min.

Special Case III: When the conditions governing both

special cases I and II exist, both upper and lower limits

of investment should be applied to each link. Mathematically,

they are expressed as:

Qn,m <- „n,n ,.n,m<,,n,m /, nl8lmin.- Kli
T °1 -°lmax. (40)

r r.,m <- „n,m , Qn,m <- Qn,m /,,i
e
2 min.- K

2i
4 V - b

2 max. (U)
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• above formulation provides the equations for search-

ing the optimum sequence of the decision variables, 6^'
w
',

gn,;r, an(j ^5J>
m

ariCj the associated values of the state var-
2 J

iables

.

The optimum seeking procedure developed for this problem

is as follows:

1. Assume a set of decision variables, 8_j' .

2. Calculate X" ,m
, X ?

'
" and AI ' by equations (7)

1 *-

(8) and (13) starting at n=m=l and proceeding to

n=N and m=M.

3. Calculate decision variables, o-,'
' and 9,' , by-

equations (31) and (33) and check the boundary

conditions for each special case.

k. Calculate the values of X^' m , i = 3, 4, 5, 6, by

equations (9) to (13) starting at n=m=l and pro-

ceeding to n=N and m=K,

n ,m
5. Calculate the adjoint vectors, Z_. , i = 1, 2, with

the above X- '

" values, by equations (15), (16),

(23) and (25) starting at n=K, m=M and proceeding

backward to n=m=l.

6. Using the above values of X. '
' and Z? ,m

, calculate

dHn,m a
2i^-,rr.

^
">.,^ and , . n n 2 by equations (29) and (30).

7. Adjust the values of 0? ,m by adding an amount equal

to A , where
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A.

3;—

\2„n ,m
o -

n m 206,'")^3

and check the boundary condition.

n m
S. With the new values of 8> , return to step 2 and

repeat the procedure until the value of the ob-

jective function, equation (22), is sufficiently

close to the previous value to indicate adequate

convergence.

Investment With Fixed Node Investment

In developing a large area trunk line system, the

budget for each traffic section is sometimes predetermined.

Suppose that we consider each node and its associated two

links as a traffic section where a fixed budget is allocated,

then a different formulation could be developed.

The budget condition in this case can be expressed as:

e
n,m

+ e
n,m = £:

n,m a ,
}

where, o't
1

'
1

" and 9?
' are total investments instead of invest-

n,m
ments per unit length as in the previous case. Let B\ be

n m
the independent variable, then d

?
can be expressed as:

6
r.,m = SI

n,m
_ G

n,m
{^ }
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Since the total investment is fixed, the individual

investment costs are no longer included in the objective

function and also will not be expressed as state variables.

The performance equations for a typical interior node as

shown in Fig. 5 can be written as follows:

x
n, m _ (x

n,m-l
+ x

n-l,ra
+
^.m^m _ ^.m^.a (u)

X*'
m - (X^-'"

1
+ X^ 1 *18 + V

n ' m )(l-9^
m

) = Al
n

'
m
(l-b5'

ir
') (45)

„n,m T n J
ra p

vn,m „n,m T n,m„ . T n,m an,m _^ 12 1 t , . Tn,mfl
r.,m,2V = Kli V c

t
Ai e

3
T ^TS UI e

3
'

T n,m
+ K13

+ X"'"
1" 1

(46)
5

-6 = K2l Ll c
t

AI (1-^3 )

[Ai
n 'B

(i-ef'"))
2 +'.^;B

-1
(47)

t
r;

i
m r

, Tn,m ,,n,ir.

r
n,m 23

n,r."i „n,m-l ,,n-l,ni ,,n,m i,r>\
where, AI * = X ' -. X

2
' + V ' (43)

< e
r.,m < x

ana < e£'
m< SI n '

E
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. amiltonian function in turn becomes

n,m ,r.,:n n,in
. 7 n,ra Yn,m „n,m Yn,m „n,m Yn,m ,

.

H - ^ >-
x

h ^
2

X
2

h Zj Xj i Z
6

Xg (49,

the cb.lective function is

S = X^'
M

+ Xp:

(50)

The values of the adjoint variables are as follows:

z
n,m-l = z

n-l,a . z
n,m

e
n,m + zM (1.eM) + K^

mL^ r
'C
t (l-e£'

m
)

j(
n , in ^n , m q

+ 2 -12 1 1 AI
n,m

(e
n,mj.a

9n,iB + Kn m 3

"rTTm
Ll

+ 2 ;
2
, 2 t

Ai
n 'B (i^en 'm

)
2 (5D

SI -8-, - K 2 , •?

2
n,m = z

n,n = x for &11 (n>m) ($2)

and

Z1
' = Z

2
' =0 (53)

The initial values of state variables are

>:
o,o . xo,o . Y o,o . Y o,o = Q (54)



^0

To find the minimum value of S, the following conditions are

necessary

d-¥^ = G <6?> m <SI n
'

r;i

(55)

^S=0 0<b^ r'<l (56)

when I
6,*' '

, 6 "' is inside the boundary, or
'X ' -3

(57)

when [S^' , 83' lis at a boundary point of the constraints.

Substituting equations (kU) to (48) and (52) into

equation (A9) and then taking derivatives with respect to

9 '"' and 6n,:K , the following equations are obtained:
l 3

, n,m K
n,a

c3K_ m _ ^-2 t Uln.men >m)2
ae

l' ,_V_ n, m) 2

'T^Tm
+ K

13 ]

"1

c n,m

K2

n,m
Ct ~ [Al^d-b^) }

*

(58)

1 _r.,m T K 23 J



u

,,,n,rn
v

i 2 11 1 <2l <d t

5

Kn re Ln,m c
l<

n,m
£l T K

n,m
rii, in 13
"1

t Urn,m^ fl
n,m

(Al"'
m

)

n,rr. n ,m
K22 L2 c

t
(AI

n
'
m

)

2
(l-e

1?' 111

)

n,m
l
2

Kn,m
23

(59)

Setting equation (58) equal to zero and solving for y

we obtain

n,m

/,.n,m,„ Tn,iii T
,n,m,n,m. n,mT n,m Ln,m..n,m ,. ,.n,m,

T
n,m

T
n,m

3

n,r:_^12 (SI
"
k
23

L
2 >

e
3

Ll -jft22_Ki3 (1~ d
3

)L
1

L
2

1 / ,.n,rr. , , ,r. ,m
| T n,m Xn.n ,,r. ,rn r

n,rr.

V
K 22 '

1_fcl
3

> L2 ^K12 D
3 1

(60)

Using equations (UL) through (53), the optimum seeking

procedure developed in the previous case was again applied

to solve the Droblem.
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Investment V. :t.l- Fixed Sy stem Budget :

It is not unusual for the total budget for a transpor-

tation system improvement to be predetermined. In this case,

the total investment must be equal to the budget. This, then,

becomes a fixed end point problem as described in reference

(21).

The performance equations for a typical interial node

as shown in Fig. 5 can be written as follows:

x
n,m m (x

n,m-l
+ x

n-l,m
+ v

n,m
)b
n,m = ^n.^.m {6l)

x
n,m m (x

n,m-l
+
^-l.m

H
^^m, = AI

n.»
(1 ..e».»j (62)

K"A
m

L,
n ' mC t

r
n,m, n,m,

2

v n,rr. __n,m
T
n,m- n,m n,m A12 1 t , n,m n,m.

_i_
K
n m

T n,m ±3
L
l

+ x^" 1
(63)v

5

Xg'
m - K^nL^' mC

t
AIn 'm (l-e^ m )

vn,rr;
T
n,m

;2 ^2

r. , ::.

^2 . „n,m

T
n,r.

T
"23

^2

t f.-rnm/i - n '
m

\l 2
, v n,m-l ,,.

,- LAI
I''"(l-«3 )J + X

6
' (o4)
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-:...: . d
n,m

4 e
r.,r. + x

n,m-l
(65)

where, AIn ' ffl - X^'
01" 1

+ X^ 1
'

1
" 1 V

n
>
m

(66)

and vertical links respectively at node (n,m).

Since tctal investment is a fixed amount, the objective

function becomes:

S - xf
U

+ xJ'
M

(67)

The Hamiltonian function is

T,n, m ,n,m ..n,m , „n,m „n,m
,

,,n.m vn,m r.n,m ,.n,m
H - Z, k-^ + Z2 X, + Zj lr t Z^ A£

+ Z^'
r

' X2'
m

(66)

The boundary conditions are given as follows:

.0,0 _ „o,o _ ,-o,o ^ .,0,0 _ v o,o
c
l * H ~ A

5 " H ~ "7 ~

,N,M = 7N,M

(69)

(70)

Z5'" - z^>
r

- = 1 (71)



X
K,K-1 . X

N,M = GI (72)

Since X~'
M

is fixed, Zy' ' becomes an unknown. However,

'with x
N,I''_1

fixed, Zy'*"
_1

can be obtained by solving the

following equation:

^f -
. ICi

Ct ^ K,::- 1
)

2
- 4

,K_1
° (73)

( .N,K-1 + Kii" '

L
l

^N '
M- 1 = GI - 4- K- 2

Therefore, zi^1 - ^t_ _ (74)

(7* + kN.M"1
)1

LN M-l
A
13L

l

Since Z"'"-
1

= ^n '
m

= Z*>
m

z
n,rr. _ Z

M,M-1 for ali (n>m) (?5)

The values of the adjoint variables are as follows:

Z x ' = z 2
z
l °3 T Z

2
ll-e

3
] T Kll °3 Ll

K^' m i?
,m

c
t

yn,mn „n,mwn,mr , -== = n,m, n,ir.,2
K2i (1"9

3
)L

2
C
t

T 2
e£>

ffl AI ( fa
3 »

Tn^E "> Klj
L
l
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.. Ln,ra c

4 2 _22 2 t
A1n f B (1.en,B )

2

,r. ,rr. 3 (7o)
-2

n K
n,m

„n,m „n,ir.

j

,a
- Zg'™ = 1 for all (n,m) (77)

KK,M-lr ,, T N,M-1,
2

Z">
l:l » i2

>;
,,̂ for all (n,m) (78)

(

GI"X 7'
"

+ rN.M-IjZ
1

T
N,K-1

rv

13 '

L
l

The necessary conditions for S to ce a local minimum is that:

3kLl!! . <en,m < GI _ xa,a-l _ rf.m-1 (79)
aa

n,m
5 6

Oo n ' ^ ° -*-

i^^ o<e^ m<i (8i)

, f ,.n,rr. n.rr. .n.ffi 1 . , .

when 16,' , 8,' , 6,' j is an interior point, or

h ' = minimum (82)

( n n"i ^ in ~ n , m^
when Id'' , S_ , 9, is at a boundary point of the con-

straints.
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equations (61) to (66) and equation (77)

into equation (68) and taking derivatives with respect to

various decision variables, the following equations are

obtained

:

,. n , r. / , T r. , m , n . r. \ 2r
itin,m K, i (AI ' o,' I C

A
,r. ,rr. n,m 7

0o
l ,

e
l „n,m. 2

(7^ + K
13 >

L
l

zV- 1
(83)

a n,rn " ,n,m ->

l

T
n,ir,

4 K
23 '

L
2

Z
1^-1

(34)

- (Z?'m - z5'
n
)Al

n »" + (K^X"
m-K^' m

) C
t
AI

n
'
m

K
n,r,

(A: r., S) 2 8 n,rr.Ln,m^

. r. , bi

-n,^
+ K

13

Kn,m (AI
n,mj 2

(1.en,m) Ln,m^

e2'
r'

n t*- J. T/Hj.L

T
n,m 23

(85)

Taking derivative of equation (85) with respect to 9"'m
, we

obtain
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,2Hn,m K?- m (AIn ' ra
)
2L?' niC Kr :n (AI n,m)2 Ln,mc

•2-i:
7 - 2 _i~ ± i + 2 -22 ^ 1 (36)

[dei' )

6
1

.
„n,m 92 , Kn,m

T
n,n 13

T
n,m 23

1 L
2

Settinr equations (83) and (84) equal to zero, we obtain the

following:

n.m ~*-*i?'
c
t

6 ' = t „r -i AI
n.m _n,m T n,ui „n,m T n,m /n,i

o ' L ' - K ' L ' (87)T^T" Ki °3 *1 - "13 "l

n,m
n.m _ K 22 c t , Tn,m /n ,n,m, T n,m v n >

m
T
n,m

, ai}1
'? ~ M f i

AI (!-"-, )L? - K 9 , L9 (88)

The optimum seeking procedure developed for this problem is

as follows

:

1. Assume a set of decision variables
( 8^>

m
, e"'

17
"', t^*

111

}
.

2. Calculate values of X
n

'
m

, i = 1, 2, 5, 6, 7 and AI
n

'
m

i

starting at n=m=l and proceeding to n=N, m=M.

3. a.) For the first iteration, calculate Zy' *~ by

equation (74) with the above X. '
' and AI 'm values

and go to step 4.

b.) For the second and the following iterations, cal-

culate 2^' by equation (74) with the above X? ,m

and AI n,ir
' values. This z'' ~ value is then com-

pared with the value obtained in the previous



iteration. If the two values are sufficiently

close, proceed to step 6. If they are not suf-

ficiently close, proceed to step 4.

Calculate new values of h^'^ and 82
' using equations

(87) and (38) and check the boundary conditions.

Return to step 2.

With the above 9^' and X?
,m values, calculate Z^

1 '"

and Zp'^
1

starting at n=N, m=M and proceeding backward

to n=m-l by the use of equations (70) through (76)

Using the above values of X
n

'
m

and z
n,m

,
calculate

—4r-z: arc _ _ „ through the use of equations (85)
9\' Ob, ' )*

and (86).

Adjust the values of 8
n,tn

by adding an air.ount equal to

A , where

an
n ,m

3 6?
,m

a
2

:,:

11 ,m
A = -

3'

, -
. n , m , 2

(3«3 )

and check the boundary conditions.

9. Return to step 2 and repeat the procedure until the

value of the objective function [equation (67)) is

sufficiently close to the previous value to indicate

adequate convergence.
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In the case where a minimum level of service is to be

provided, the minimum investment can be treated as the exist-

ing facilities. The problem can then be solved by the general

method without chancing the algorithm. In other words, when

the values of K^j ' are less than the minimum required in-

vestment , set them equal to the minimum investment and de-

duct the difference from the total budget.

The above formulation provides solutions to a single-

quadrant network, single-copy problem. To solve a multi-

quadrant network, multi-copy problem, the procedures de-

veloped by Snell, et . al. (23, 24) can be employed. How-

ever, due to the capacity restriction of the available

computer, this extension has not been accomplished.



50

EXAMPLES AND DISCUSSION

Several examples under different investment, conditions

are presented in this section to demonstrate the use of the

model.

A hypothetical network was developed as shown in Fig. 6.

Node U,i) was assumed to be the centroia of the CBD. Peak

hour trins which are produced in the other zones and destined

to the CBD are also shown in the figure. All links have an

equal length of one mile. The area was divided into two

parts by a diagonal line which passes through nodes (1,A.)

and (/.,1). The lower r>art which is adjacent to the CED was

assumed lo be densely developed. The upper part was assumed

to be less densely developed. Assuming the maximum speed in

the densely developed area to be 60 mph and in the less

densely developed area 70 mph, minimum travel times in these

two areas become O.JI67 hour per mile and 0.0143 hour per

mile respectively. Single line links represent existing

local streets and double line links represent existing

arterial streets.

Innut data for the models are summarized in Table 1.

Values of K.„ and K are also indicated in Fig. 7 and Fig. S

respectively. Since construction cost and right-of-way cost

will not be the same in each area, two values of K., were

assigned to the links even though these links represent the

same type of facilities. For the same reason, in the link

investment constraint model, links have different values for
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Distribution
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maximum and minimum investment levels. The derivation of

these data is discussed in Appendix A. Time cost (C
t ) is

assumed to be $1.55 per hour per vehicle as suggested by

AASHO (8).

Example 1 : Theoretical optimal system.

Suppose we are planning for a completely undeveloped

area where no facilities exist and there is no budget limi-

tation on link investment. A theoretical optimal system

can then be developed to accommodate the predicted trip

demand. Using the formulation of "Investment With No

Budget Constraint" and letting K"'
m = 0, for all (n,m),

the resulting system is shown in Fig. 9. Notice that the

system forms a shortest path tree in which only one route

is built for each origin-destination pair and all trips are

assigned to this route. This result coincides with the

analysis discussed in page 33 which shows the linear

characteristic of the problem under no limit condition.

Example 2 : Optimal investment with upper and lower limits

on link investment.

The hypothetical network shown in Fig. 6 is to be im-

proved with the following conditions:

1. No system budget limit.

2. A minimum level of service (arterial street) is to

be provided for the entire area.
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3. Roadway space obtainable in restricted.

nvestmont limits, tj.min. and B.max. ,
associated with

conditions 2 and 3 are listed in Table 1. The formulation of

this problem has been aeveloped in the previous section under

the category, ''Investment with no budget constraint: special

case III."

The results are shown in Fig. 10. Note that with the

minimum level of service provided for the entire area, trips

are assigned rather uniformly to take advantage of all

facilities. When traffic is focused on the CBD, a space

limitation is in effect which forces traffic to split and

enter the CBD area from two directions. Considering existing

facilities as part of the cost, total cost becomes §2,875.99

(2,603.99 + 272.00). Comparing this cost with the total cost

in example 1 ($2,319.86), the difference is only about two

percent. This indicates that providing a minimum level of

service might be desirable in an urban area.

Example 3 : Investment with fixed node budget.

This is the fixed node investment problem as formulated

in a previous section. Investment for each node (SI ' ') is

listed in Table 1. Consider the area as completely undeveloped

K^m = 0), the resulting system is shown in Fig. 11. Regard-

less of the investment level, as compared with previous ex-

amples, travel Lime costs in this problem are greater than

in the previous examples. This result demonstrates that
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improper allocation of funds could be very costly. It also

indicates the advantage of area-wise transportation system

development which is carried out by a single authority.

.:-;r.:- ole I. : Investment with fixed system budget.

The hypothetical network as shown in Fig. 6 is to be

improved with a total system budget of $300 (GI = 300,

equivalent peak hour budget). The resulting traffic assign-

ment and link investments are shown in Fig. 12. Most in-

vestment ar>oears to be made along the shortest path trees

as obtained from example 1 which are also the routes that

will cost "Che least to improve. This is logical since the

budget is substantially less than that required by a

theoretical optimal system (compared with example 2).

Comparing the costs with those obtained in example 2, it is

evident that although investment cost decreases more than

}C percent, total cost increases only 1.4 percent. This

again coints out the advantage of area-wise transportation

system development.

In order to verify the optimality of the results, two

procedures were used.

1. Assuming a new set of decision variables (»i'
',

^ m n m \

bj ,
8,' ) to start with, each problem was solved once

more. The results were then compared with the previous ones.

No significant differences between the two solutions of each

problem were observed. Total costs are summarized in Table 2.
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stile 2 Number of Iterations, Approximate Computing Time Used And
Total Costs for Example Problems

Example No. Starting Point
Number of

Iterations

Time Used

(min.

)

Total Cost

(?)

1

,,n.m , „
B
3 " °' 7 15 20 2,819.36

n , in , „
ti-, = 0.3
3

25 30 2 , 819 • 87

2

n , m
9, =0.7 18 25 2,603.99

,.n,m
83 = J . 3 18 25 2,604.39

3

8 ' = 0.3
i

11 15 3,112.92

n,m
8-3 = .

7

12 16 3,112.95

L

cji — -L? bo —

>

x
-,r. ,m -~,
93' = 0.

j

16 120 2,639.38

en ,m=io eg'^io
^ e^- 0.7 20 160 ^,o_>7 -j°
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Pinal results, in the original computer output format, are

presented in Appendix C. Although this is not a rigid proof

of the optimality, it does indicate that the results are

properly converged and, therefore, are likely the optimal

solutions

.

2. Ore decision variable was selected arbitrarily and

its value was changed from one percent to ten percent (some-

what arbitrarily but related to its original value). Keeping

the values of other decision variables unchanged, the total

cost was calculated. This cost was then compared with the

one previously obtained. All perturbations resulted in a

higher cost which indicates that the results obtained from

this model are at least very close to a local minimum. The

costs resulting from several perturbations for each problem

are shown in Appendix C

.

Due to storage limitations of the available computer

(IBM 1620), no attempt was made to apply this technique to

a more complex network. The above examples are restricted

to one quadrant, single copy problems. Therefore only a

limited comparison of the results to the real world is pos-

sible at this stage of development.

Computer programs, one for each budget condition, written

for use on the IBM 1620 computer are presented in Appendix 3.

The number of iterations and approximate computing time used

for each example problem are summarized in Table 2.
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SIONS

A new technique for the analysis of transportation

systeir. investment problems has been presented in this study.

Considering each node of a rectangular network as a stage,

the discrete maximum principle was utilized to formulate a

transportation system model. Investment models under dif-

ferent investment conditions were investigated and search

procedures were developed to obtain the optimal investment

policy and to assign trips to the network. This provides

a broad application of the model to solve various problems

which have specific investment restrictions.

As opposed to linear programming models, this model is

capable of solving transportation system investment problems

with travel time being non-linearly related to traffic volume

and investment cost. The formulations presented in this

study are applicable to one quadrant network, single copy

problems. With minor modifications, the technique would be

equally applicable to a more complex network once a larger

computer is available.

The optimum seeking procedures appear' quite efficient

and yield reasonable results as shown by the example problems.

Although direct comparison of the results with the real world

is net feasible with the limitation of computer capacity, the

model does represent a significant step toward more realistic

analysis of transportation systems.
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Although the travel time function derived in this study

could be further improved and the objective function might

include additional variables, this study has demonstrated

the usefulness and the ability of the discrete maximum

principle in solving this type of non-linear optimization

problems. It also indicates that the discrete maximum

principle could be a powerful tool in transportation system

analysis

.
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HECOKMISNDATIOKS FOR FURTHER RESEARCH

The relationships between travel time, trafi'ic volume

and investment cost are complex. Although the non-linear

travel time equation developed in this study is considered

to be more realistic than a linear approximation, there is

undoubtedly room for further improvement. Two improvements

which might be considered are: (a) the desirability of

capacity restriction on links, (b) the relationships of

free flow travel time to investment.

Previously, it was mentioned that an approximate pro-

cedure has been developed to solve multicopy problems.

However, this procedure will become invalid when the system

budget is restricted, which is not uncommon in the real

world. Therefore, to develop a useful model, an improved

technique is required. One possible approach is to con-

sider each copy as a large stage and each node becomes a

small stage inside the larger stage. The objective function

of each copy becomes the Hamiltonian of the larger stage.

By this concent, the discrete maximum principle could be

utilized to develop a complete model for multicopy tran-

sportation problems.
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APPENDIX A

VALUES OF CONSTANTS IN UNIT TRAVEL TIKE EQUATION

Unit travel time has been expressed as:

..

K
2

t = K, +

t = unit travel time (hr/mi/veh)

Kj_ = free flow travel time (hr/mi/veh). The magnitude

depends on the maximum speed obtainable or regulated.

K- = coefficient of improvement ( dollar-hr/mi'yveh ) •

Its magnitude depends on link location and reflects

the difficulty of improvement.

K, •= existing investment (dollar/mi/hr

)

o = equivalent hourly investment per unit length

(dollar/mi/hr)

V - traffic volume per unit time (veh/hr)

In this section, a set of K values are derived from real

world data reported by other researchers. The purpose of

this section is two fold:

1. To justify the fitness of the equation.

2. To obtain a set of K values for the example problems.

Values of K-,

The Kt value is equal to the reciprocal of the maximum

speed obtainable or regulated in each area. Several common



e shown in Tabic A-l.

Table A-l

mum Speed K]_ Values
(mph) (hr/ir.ile)

70 0.0143

60 0.0167

50 . 0200

For the example problems, maximum speeds were assumed

-„o te 70 r.ph in less densely developed areas and 60 mph in

densely developed areas. The K-j_ values are therefore,

0.0113 hours per mile and 0.0167 hours per mile respectively.

Values of K9

1. Near CBD Area:

The average cost of an 8 lane freeway near the CBD, as

estimated by Aitken (19), is $15,500,000.00 per mile. As-

suming 30 year life and 6% interest, annual cost is equal

to $1,130,000.00 per mile. If we further assume peak hour

traffic is 10$ of daily traffic, the equivalent peak hour

cost becomes:

$1,130,000 X 1 —]— = v3l4 ser mile cer hour
10

This freeway can handle 1100 vph per lane at unit travel time

of 0.02 hr/mile. Assuming K
x

= 0.0143 hr/mi/veh (70 mph



Spec . ws:

: ...:..; h
"•

(1100 X 8) - 0.020

3H

K, - 0.00207 dollar-hr/mi 2/veh 2 (A-2)

Using Haikalis' data and adjusting for the downtown area

(19), an arterial street with 2,000 vph volume at unit travel

time of O.G333 hour per mile costs $3,400,000 per mile or

$250,000 per mile annually. Equivalent peak hour cost be-

comes :

$250,000 X —t— X —— - $69-5 per mile per hour.
3o0 lo

Assuming K] ™ 0.025 hr/mi/veh (40 mph speed), K is derived

as follows:

0.025 + ——— 2,000 = 0.0333,
69.5

K, = 0.0'8O2S£ dcllar-hr/mi 2/veh2 (A-3 )

2. Average Urban Area:

The overall average cost for an 8 lane urban freeway is

$5,001 ,000 per mile as estimated by Koskowitz (26). Assuming

30 year life ar.d 6% interest, equivalent peak hour cost be-

comes :

$5,000,000 X 0.0726 X —=— X —L- = $101 ser mile oer hour.
360 10
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.
..;.,' in "Hi :hway Capacity Manual" (25) , a

typical freeway will: '." tup average highway speed cor, handle

1800 vph per lane at a speed of 1,5 mph . The K
2

value is

derived as follows:

K-, = 0.0143 hr/n.i/veh

0.0143 + Ji_ (1600 X 8) = 0.0222

101

K
2

= 0.0000553 doliar-hr/mi 2/veh 2

Summarized from "Automobile Transportation Systems:

Cost Characteristics" (27), Table A-2 shows relationships

amor.?; volume, average speed and cost for three types of

urban roads. Using these values and the assumed maximum

speeds arid average lanes, Table A-3 is obtained. The K
2

values are, then, derived as follows:

K2
local street: 0.0286 + —— X 1000 = 0.05

K
2

= 0.000227 dollar-hr/mi 2/veh 2 (A-5)

K,
arterial street: 0.025 + _s: X 28u0 = 0.308

19.2

K 2
= 0.0000398 dollar-hr/mi 2/veh 2 (A-6)

K,
freeway: 0.0143 + -4— 10S00 - 0.0182

161

K 2 - 0.0000582 doilar-hr/mi 2/veh2 (A-7)
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Table A-2 Cost Characteristics of Urban Highways

Practical Capacity
(vph/lane

)

Average Speed
(mph)

ROW Cost
($/raile)

Construction Cost
(t'/miie )

Total Cost
($/mile)

Local Street Arterial Freeway

5U0 700 1800

20 25-40 45-^5

250, 00U 450,000 4-8 million

300,000 500,000 4-6 million

550,000 950,000 8-14 million

source = Ref. (28)

fable A-3 Cost and Travel Time of Urban Highways

No. of lanes

Total Volume
(vph)

Average Speed
(mph)

Total Cost
(S/mile)

Equivalent Peak -hour
cost (S/mile)

Assumed maximum
speed (mph)

Minimum unit
travel time (hr/mile)

Average Travel
Time (hr/mile)

cal Street Arterial Fr eeway

2 4 6

1,000 2,800 10,800

20 32.5 55

550,000 950,000 8-14 million

11.1 19.2 161-282

35 40 70

0.0286 0.025 0.0143

0.05 0.0308 0.0182

source = Ref . (28)



77

0.0143 -i
- luSoo - 0.0182

K
2

«= 0.000102 dollar-hr/mi 2/veh2

Rural Area:

(A-

Cost aata for rural highways is not generally available.

However, the cost of a rural freeway nay be assumed as equal

to the lowest cost of a freeway in an urban area.

Or. this basis an 8 lane freeway will cost about ;;;3,00u,000

per mile (27). Using Fig. 3-38 in the "Highway Capacity

Manual" (25), a typical freeway with 70 mph average highway

speed can handle 1800 vph per lane at 45 mph speed. Equiv-

alent peak hour cost becomes:

$3,000,000 X 0.0726 X ri- X ~
3o0 10

$60.5 per mile per hour

The K- value is derived as follows:

K 2
0.0143 + 7—— (1800 X 8) = 0.0222

60. 5

K, .00003322 dollar-hr/mi^/veh' (A-9)

Excluding equation A-5, K
z
values are summarized in Table

A-4.

Table A-4

type 01 Ares Range of K 5 Value

C3J 0.000207-0.000288

Average Urban Ar<

Rural

. 0000398-0 . 000102

0.000^332
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..,..'. ....

free-way costs as shown in Table

airly consistent in each area.

3d correlation between the equation

world situation.

The ':.
, value represents the existing facilities in terms

of cost oar mile per hour. Equivalent peak hour cost, for

each type of road, derived in the previous sections indicates

the avera
;

; ral\ '

. .

The K val es usee in the example problems are su.-r.rr.arized

Fable 1.
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COMPUTER PROGRAMS
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1

n
1 2

2 02

i

HK4
-

' " ." T

1

f 4AT

CRMAT

CSTP=
FYSC =

UNCH
F< I-N
F(J-M
3< I .J
r to
^>( I .J

C TO
•?

( I ,J

C 103

TER=I
F ( I T E

: 213
21 1

Kl-l
n j-i

•

4,4) ,SH
( 'i I '.

!

.

I
I

(2I4.7E
(14H ER
(15H EM

•

(

(74H R

Zil

(3X.2I3
(7E11.4
I6F12.5
.

. DELTA

. . .

i . r t<i thou , i

4,4) >VV<4,4) . I ('..l),Ui(4,4l,Li3['t,'.l,
4>4)»V(4,4),ZH(4>4)>ZV(4,4),ALl(4,4),AL2[4,4>f

• .4 ) >CV2(4f4) »CV3<4,4)
2(4>4)>SV1<4,4), V 2 ( 4 . 4

)

IN OUT)

5.4)
)

CW CCL HV
ZV)

I .

.

1

)

IC1

I = 1,N
•

. V ( I ,

12. V(

) 2' 1 ,

•

II 2

)= .

1C2
1 = 1 .

i

1 = 1, N

J=l, ,

» CHK
i CVK
11. CH
1 1 , cv

I ( I .J) ,AL2( I »J)

I ,J)»AL1( I ,J),AI
-'11?
-

I .J) , CH2 { 1 ,J) , Ch3< 1 ,J) .ihll 1 , J ) »SH2 ( I .J)
I,J),CV2( I .J) >CV3( I »J) »i>VK I.J) ,SV2< I,J>
II I.J) .CH2( I.J) .CH31I.J) »SH] ( I ,JI ,SH2( I.J)
1< I,J),CV2(I»J) ,CV3(I»J) ,SV1< I,J) ,SV2( I ,J)

.1111,11]?R-ini ii

T^R+l
R - 1 C 1

1

1

i = J ,N

J=1,M
•

I

i 1112,411,412
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/.
]

i

312
511

1

] 6

1- 7

] i r

221

i 1 1

I (

IF(
'•

I (

'
1 (

I
(

1 f

IF (

'1
(

IF(

] (

IF(

IF(

(

IK
; i

:

I

C

(I

CCS

IF(

TYP

IF(

IF (

•

I iJ

»J

rc
•

T

J-!

I »J

T

:
•

TC

[ IN

\/(

I ,J

rc

i ,j

Dl (

I ,J
TC

1 !

I , ...I

VV(
-

I iJ

TC
I

1 »J

T

I.J
T IN

TH =

TV =

TT =

2 ? ]

TH=
TV
1 1

=

( I

2 ( !

TI =

T = (

CH
CH

)=V( I.J)
I
= a

1 ( i ,,; i |l .,!i

I I ( I ».))*{ 1 .-D3( I.J))
211
)=HV( 1 .J-l )+Vl 1 .J)

.

) =VVI I-1.J1+VI J .J)

l=HV( I .J-l ) +VV( I-l.JH V( I .J)

I . J ) ) 1 1 1 2 .

)-0.

)=HVI I .J)*(CH2I I .J)*T )
' (I .J)

1 .J1-SH1 ( I ,J) ) : . -107
)=SH1 ( I, J)

115
I .J I-SH2I I.J) 1115.]

I I.J)
I .J ) I 1

'

)=VV( I.J)*(CV2( I »J)*T)** . II. J)
I .J1-SV1 ( I ,J) )

.

)=SV1( I .J)

i -J I-SV2 ( I . J) ) 4 •

I
I.J)

•i

)= j.

UE
.

i .

I

J

C

c

.J

1 1 .J)
•J! *AL2 II, J)

T+ICH1I 1 ,J)*HVI I .J1+CH21 I.J) .J ,J)+
11 I.J)+(CVlt I»J)«VV( I.J1+CV21 I.J)*VV(I.J)**2/

CV3( I.J) ) )*T*AL2 I I ,J)
H+CCSTV

C5T.CC5
I

-

ITCH
T

( ( rPi/ccsT)
.11 1,1101.11 2

.1111.111
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i r 2 3 1 i = i,'

» i
-

1

LM=M+] - J

NP=LN+1
i M+l

IF(LN-N)6] l.i

[FILM- 1611.6] -1112
613 D: ( LN.LI I =l.i

I
= .

2V{LN»I M)= .

rc 231
i IF(J-1)1111.711.7]?

i - • ! +Z V ( LN . MP ) * ( 1 . - [ L N t MP )

H

l(CHl(LN,MP)*l>3fLN»MP)+2. • • )

/

, 1. (LN.MP) fCI ,. .MP) ) )*T*ALl(Lf »MP)+( CV1 ( LN .MP )* < 1.

. *CV2(LN»i* F )*VV( • i ) I I .

A T*AL2(LN.KP)
IF( 1-1)1111.811,711

611 ZV(LN.LM) =ZH(LI •

711 ZV(LN»LM)=ZH(NP»I •
I
* ( 1.-D3 ( NP.LM ) I +

i (CH1(NP,LM)*D3(NP»LM)+2.*CH2(NP»I l»HV(l )/

? [ Dl ( NP . LM ) +CH3 ( NP . I I ) ) ) *T 4 L 1 ( NP » L I + ( C V 1 ( -
1 I * ( 1 . - I ( NP . L M ) )

4

3 2.. . .i'!i. (NP.LM)
A T*AL2(I P.L !

IF( J-l ) 1111,815,23]
815 ZH(LN,LM)=ZV(LN,l I

231 CONTINUE
IF( I TCH 3) 15U2.15

..111?

[ = 1,N
J=] iM

• [,J,HV( I.J) .VV(I.J) .Did ,J) ,D2( I»J),D3( I .J) .

H(I»J).ZV(I,J)

ITCH 1)15 1,15 7

2 40 I = 1 ,N

IF( I-N 1119.116,]

I

[10 J F(J-M) T17,1 1 ! ,111?
116 I I.J1-1.

rc 24] -

3 1 I, J 1=0.

II,

U ( I . J ) = 1 .
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i

l (

IF

251 D3

262 D3

2 5 7 IF

217 GC
2>: 1 CC

CC

TY

1112 TV

T

CV2( 1

H=(2.

(I>J)

( I , J )

(I.D

NT I Nl

TC 1

TC 1

CP

J) -7\
I I

• i ( I , J > + (CHI ( I,J)*AI ( I»J)+2.*CH2( r,J)*03(I»J1
U 1 , J )

-
I

' V 1 ( 1 , .
i

) = M ( I .

)*( l.-D3< I»J> )*AI ( 1 ,J)**2/I • ,J)

)

)*T*AL2(I>
H2( I »J)*AI ( I »J) • .J! )

i
I »AL1( I.JJ +

I f J)*AI ( I>J)**2/(D2( I »J)+CV3{ I.J) )
)*-[*

3 ( I i J )
-

) - 1 . )

I ]
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CPTII
l/(4-»4),VV(4»4)»Dl(4»4)>D2 (4.41.1 - -•>>

[ {it, it) ,v<4,4) .ZHI4.M .ZVI4.4) »AL1<4,4) .AL2{4.4) .

HI (4.4) .CH2I4.4) .CH314.4) ,CV1 (4,4) >CV2 (4,4) , . 1(4,4)
• R M A T ( 4 1 4 )

2 F r . 4 )

T S
)

r(2I4»7E] .

5 FORMAT! 14H UT

)

6 F ORMATI 15H EN,

7 i OF 1AT( I 3.4I 15.4)
8 r :

'

' COt HV vv H1NV VI NV
! ZH ZV)

\T(3X.2I3»3X>
ii FC WATI7E11.4)

.^ i

. IC1

. T. AK.AI • •

READ 2,
- LTAi .52

COSTP=99
i iC=^

•

1= 1 ,
:

\D 2 . V ( I , J ) , AL1U»J)»AL2(I.J)»S1(I,J)
NCH 12, V( l.J) »AI_1 ( I,J).AL2( I »J) .51 ( I ,J)

'.1112
[ I (

)-"
) 1, ,1112

13 ( I »J)=D

( I , J ) = .

" 1' 2

3 ( I . J > = 1 . C

1 = 1.

N

13 J=] ,;•'

?, CHHI.J) »CH2(I,J> »CH3(I ,J)
- "VI (J.J) »CV2< I ,J) « r v''' ( I ,J)

L( l.J) ,CH2( I, J) ,CH3( I ,J)

I • "v L( l.J) ,fV2( 1 ,J) .CV3 ( I , J)

IT' R=i

i IF( ITER-IC1) ; 01.1111.1112
i

I I TER= I TE
IF( ITER- 1 CD - .1112

322 KEY5C=1
I ] 1 = 1, N

>11 J=1.M
I F ( J - i

)

'

1
r

(
.1-1

)
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I (

1

tJ)=V< I tJ)
, (

I

- ' (It. ( I , J

)

VV( I.J)=AI( I tJ)*( 1.-D3I r.J)

)

if 7

412 A I ( I ,J)=iiV( I tJ-1 )+V( 1 ,J)
or T"

312 IFIJ-1 ) 1112,511»S12
'

I 1 ,J)=VV( 1-1 |J)+V( ItJ)
GC TC 43C

I ( I tJ)=HV( I tJ-1 )+VV ( I-1.J1+VI I »J)

GO Tl

211 CCNTII
DC At. 1= .

-

IF( I-C )31»32tlU2
L( I tJ)=Sl( I tJ)

D2(I.J)= .

: 2 <i

31 1 F( J-M) 33 t 34 til 12
( I • J ) = S 1 ( I , J )

1(I,J)=0.
gc t:

3 3 Dl(

I

tJ)=(CH2< ! tJ)**0.5*ALK ItJ)*D3(I » J ) * ( SI 1 1 1 J ) +CV3 !

2

tJ)*AL2(ItJ!
1 )-CV2< I tJ)**0.5*AL2(

I

tJ)*(l.-D3( I tJ) )*CH3< 1 tJ)*ALl

(

ItJ))/(
2 CV2II tJ)**0.5*AL2l ItJ)*(l.-D3( ItJ) )+CH2( I»J)**0.5*AL1( ItJ)*
3 D3( I tJ) )

1F(D1 ( I tJ)-Sl( I tJ) 1 1 7 t 106 t 106
106 Dl< I tJ)=SK I tJ)

GC TC 115
1 07 I F ( D 1 ( I t J ) -! I ] • ill!

I
; . i

|

( I tJ)=SK I tJJ-D] I I tJl
h CCNTII

.

CCSTV=t
CC5TT=
DC 221
DC 221

1 = 1 t N

J=] ,

CCSTH=CCSTH+D1( I ,J)

CCSTV=CCSTV+D2( I.J)

221 CCSTT=CCSTT+(CH1I I tJ)«HV<I tJ)*ALl( ItJ)+CH2( It J)*(AL1(I tJ)*HV( I tJ)

)

1 #*2/(01 I I.J)+CH3( I.J)*AL1(I tJ) ) )*T+(CV1( ItJ)*VV( I tJ)*AL2( I .J1+CV2
2 (ItJ)*(AL2(I tJ)*VV( I tJ) 1**2/ ( SI ( I >J)-D1( I,J)+CV3( I t J) *AL2 ( 1 1 J) )

]

3 *T
<:r r.Ti=ccsTH+ccsTV
CCST=CCSTI+CCSTT

MCH 7. IT RtTtAKK
PUNCH 8, CCST.CCSTI tCCSTT
I f- (SENSE SWITCH 2 ) 125,243

125 TYPE 8, COST
(CCST-CCSTP)/ :



86

711 L

1*

2L
3D
4

'

612
613

e 11

71?

815

22
23
26

1

25

F(PFLT :-:-

I

:

EYSC=1
TC 110

FY5C=-
2 3 1 I =

231 J=
N=N+1-I

P=LM+1
f- ( LN-f 1 6

3(LN»LM)
H(LN.LM)
V(LN»LM)

TC 231
F < J-l 1 1

1

H( LN.U )

\ L 1 ( I •

P)/(0] (

L

•

SKI .

r
( J-l ) l 1

•

TC 231
V(LN.LM)
AL1 INI »L

. )/ (i. I ( I

3 (NP.L A)

SI (NP.L '

F( J-l ) I

]

•

;NT If !

:

-

UNCH 4,
ZH( I.J).

ft ? » A

241 1
=

241 J =

F (
I -N ) 1

]

FtJ-Ml 1

1

? < I » J ) = 1

C TC 241

11101.11
3.1111.111

1J ,61 ?,] 1 12

11.613.11

1

, n ?

=ZH( L •
I 1(1 • l+ZVll i :

) Hi- -
I ) + (CH

• i

J >+2.*CH2 ( Lf .1 P )
-• LI ( L' • '

I

•
! )*AI MLN.MP) )+CVl(l

)+2.*CV2(LN»MP)*AL2 ILN.MPJ
1-01 ( LN . P ) +CV3 (LN .MP ) *AL2 ( L N , MP ») )*T

1.711
»Lf- >

' P , ] f . .. i i • | * ( 1 . - i ( IMP . L f'i ) 1 + ( CH
(NP.LMI+2. (NP.I ) --L1 t

P.LM I+CM3 (NP.I
I
tin) )+CVl (IMP.LM)*

)+2.*CV2 (NP.LM)*AL 2INP.L.-1] •

P . L I +C V J I • - ) ) ) «

T

,231
=ZV(LN,LM)

C) 22, 23.1 112
1 12^,26,1 112

1 ,H

l.M
I .J,HV( I .J) .VV(I.J) .01 (l.J) .02 ( I ,J) .1

2V( I .J)

1 »N

9,116.1
.11'-

)*(!.-
»VP) )/(

I * ( 1 . -

,LM) )/(
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! . r .
Ji - .

i

117 I F< AH I ,J) 11112.121 ,

i
( I . J ) = 1 .

L(I »J)*AL2( 1

CH2 [ I »J) »AL1( I i J) ' ' -
I / I

'

I -
I Ll(

' »J)*AL2( 1 »J)**2*VV< I.J!/IS1UiJ)-D1IIiJH
*T
DH=(2.*CH2( I.J)*AL1( I»JI**2*AI (I .J)/l

( I,J)*AL2(I.J)**2*AI ( I »J)/(S1U,J)-D1U»J)+CV
'! 2(1 .J) ) )*T

H)-AFK)21 i
•

/ODH
F(

IF(ADD3-S3)271 .27] •

|
. : . •

2 52

272 II

[ I , ,

-

.

- r;

(I »J)-S3
[F(D3(I .J)-l.) • --'6?

( I .J) = l .

TC 217
I ( 1 .J) 126?. 263, 217
! I tJ)=u.

241 CCNT1I
TP=CCST
• -

H 6

TY!'

! 31 2 T Y

STOP

»J> )*T+
I * J > )-2
•

3 ( I » J ) *

i . .

I

i . ) i
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L TRAFFIC 1

h ,4) ,\/v [4, ^1,01(4.4). 02(4, A). D3 (4, 4) »X5(4»4)

»

]
AI(4»4)>V(4. • .4) »ZV(4>4> .ALK4.4) .AL2I4.4)

. >4), I .4) >CH3<4>4) »CVl (4.4) >CV2<4>4> »CV3<4»41

D /\T/.)

OUT)

HV

AKK1.

IF! U (414 ]

2 FORMAT! /Fli.41
3 FOR -1AT (15H I i

T ( 2 1 4 , 7 E I . 4 )

[14

OF PR

I

.
I

IATI

ATI74H
1 /V)

it FCPMAT(7F1] .4]
, .

•

-Li, r . u i

,

.

2. S1.SS2.S3.S4
, . ELTA.G1 .Sl.S 52 >S4.

CCSTF= .

<FYSC=v
DC 3 I=1.N

1 = 1.
• V( I. J). ALII I.J) .A|_2( I.J)
2. V( I .J) »AL1( 1 .J) »AL2( I .J)

Did >J)=DA
D2( I .J)=DASM2
U3( I .J)= .

CONTIKUl
DC 4u 1=1,

N

DC 4' J = 1,M
READ 2 . CH1II»J)>CH2(I.J).CH3(I>J)»CV1(I»J>'

1

J1. »CH1< I.J) »CH2( I »J) »CH3( 1 »J)»CV1 ( I »J)

NC=NC]
IF( ITER-IC141.] 11 1 .1112
I TFR= I TF R+]
Z5P=0.
I F

(

ITER-IC142.43.1 1 12
.0=1

42 DC 50 1 = 1,

N

DC 5< J=l ,:•

IF1I-N121.22.1112
2 2 IF( J-M 123.24 .11 12

24 D3 ( I » J ) = 1

.

1 1 I ,J)=0.
D2( I .J)=( .

'
( I ,J) = ] .

D2< I >J)=J.

33

41

CV2( I ( l.J)
( I ,J)
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21 IF

h\ 1

II,

'-
1 ! (

, -
4 j |

c C

S

I

i

'

61 IF

S5 X5

64 X5

i

?

cc
( :

Cf

:

J- l
' •

I,J) = .

I , J ) = .

1-1)11]
J-l ) 1 ! I

I,J)~V(
•

•

TC 46
J-] ) i

i

1

I ,J)=VV

I » J ) = H V

r ini

6l 1=1,
6C J=l,

J-M4
! )

2

I »J)=GI
I

I ,J)=X C

T« £

1-1)111
J-l ) 1 1 1

•I

J-l ) 1 1 I

I ,J)=X5
TC 66
I ,J)=X5
X5( I, J)
Dl( I, J)

• '

I , J ) = 2

I , J ) =G I

TINUE
TH= .

TV= .

TT= .

/ 1-1 .

7 j = l,
Th=CCST
TV=COST
TT=CCST
1(1, : I I

I, J)

( I , J ) * 3 ( I , J )

( I ,J)*( 1
.-.

( I .J-l )+V( 1 .-i I

tI-l,J)+V(I,J)

( 1 ,J-1 l+VVI I-1,J)+V( I ,J)

-

-X5( I ,J-1

)

( ! ,J-1

)

( I ,J)+D2 ( I ,J)

( I-1.M1+D1 (

I

»J)+D2 1 I, J)

( I ,J-1 ) + !'] ( I ,J) + D2 ( I ,J)
. ,75

+ D2( I ,J)
( I ,J)-!X5( I ,J)-GI )* 1(1,
(I,J)-(X5(I,J)- 1)1

H+Dl I I, J)
' ..! I

• • -
J<2/ ( L 1 ( I , J ) /AL1 ( I , Jl+CHJ ( I ,J) ) )*

•'i-'t
( 1 ,J)/AL2( I ,J)+CV3( I

•
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tit )•! ( Mil ) */( Ii J)*AL1( 1 iJ)+CVl< I iJ)*VV( I iJ)*AL2(I j

rr

. 1 1 •
,

1

.

-

IFtSI I 67i
b 7 TYF"

I

'

1
-

:

! !

Z5=CH2(NiM-l)*HV(N»M-l)**2/ ( (i I- (NiM- I1/AL1I >M-1] -1)1

1 **

|

Z ) 2 1 1 1 2 1 1

.

[ = 1 1 N

i
.'=

1
,'•

=Zb -CH2I IiJ)*MV( IiJ) L( I .Jl/ALll I »J)

Ll(l>J)/<Dl(I.J)/ALlUiJ) +

1 CH3II. J) H
=Z5 -CV2( l.J)*VV(I»J r/(02( IiJ)/AL2( I iJ)+CV3(I »J)

- . :v?( >J)*VV( I tJ)»*2*T/AL?< IiJJ/(D2( IiJ)/AL2( IiJ)+
i CV3( i ,j) i •

f{\ . 1 )

I 1 )

127 IFl/v?; -)ii.'
<i

: = S2
135

131 IFIAD2+S2 M
- -S2

l( I.J)*D1(I |J)

IFID1 ( I iJ) ) 1 23il23il24
t< I.J!= i.

124 IF(AP
J=S2

.

-:

(I iJ)=D2( I .Ji-
ll .J) 1125.123.126

! ( 1 i J 1 = • .

126 I F( Dl ( I .J ) -S3) 141 i 142. 142
tl "

.

)** ,5»HV( IiJ)-CH3U iJ) )*ALlt I.J)
It I .J1-DT1 )143.1 12.14 2

,148.1
|

|
.

147 IFID2I I .J)- i
'

• •
! 4'.

144 :
)** .5*VV( 1 .J1-CV31 I .J) )*AL2( I , J )

t I . J ) - r 2 )

1

46 .

( I »J)=DT2
t 1 . J ) -S 4 ) ] • 1 1 i

(
I

•
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GC TC 1

CCNTINU

•

GC TC 1

DC I

DC
=N+1-

4 1

=LN+1

IF (LN-N
2 IK

! LN»L
ZHILN.L
ZV ( LN > L

1 IF( J-l)
( L N » L

1 HVI
2 *T+ZV(
3 CV2 (

I

4 C V

11(1-1)
6 ZV(LN»L

TC fa

4 Z V ( LN »

I

•

•
] , " (

IF( J-l

)

7 ZHILN.L
. CCNTINU

IF( ITER
I

IF (

I T CI 1)1 •

•

I

J

)
= 1

.

)
- .

!

•

1)=ZH(LN. : KLN,MP)+(CH] (LN.MI
- )/(Dl(L • -i Lilt P)+CM3(I •

I LI (L.N

•
I

' Hm- (I • '-') l+ICVl ( LN.I P)*(l.
»MP)*VVtl •

) (1. MLN.MP) )/(L>2 (LN,I> PJ/AL2 ( I. •

.MP) ) ) *AL2 tLN»Mi )

)=ZH(LN»I I

!
) =ZH( P.LI )*l 3INP.I l+ICh] INP.I • [NP.LM1+2. •

I l)*D MNP.LM)/(Dl(NP.LM)*ALl(NPi
.i |*(1. .'

I ) + (CVl(NP»l '

I
• INP.I ' ! +2.*

'V<NP»LM)»(1. • ,L I/AL2 INP.I ) +

-Li") ) >*AL2(NP»LM)*T
. .

M ) = ZV ( L N i L )

E

-
! • .1112

- LTAU83.16 •

1 ZV< I

CI

» I.J.HVI I.J) .VVI UJI .Dili ,J) »D2I I, J ) ,03t I.J) »ZH( I, J),

12

9t

CCNTINU
IFIKEYS :-l 175,97.1 1 1

,

5WITCI i)97.9<
1 = 1,1'.

1 , X5( I.J) >Z5
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71 IFIKFY5C-1 (73. Ill 1 .1112
' D=]

98 IFISEf - •

95 DC 101 1=1,

N

•

107 I F ( A I ( I ,J ) ) 1112,11 !
•

1 -1 .

: 112
A I ( I , J )

112 DH1=ZH(1,J)-ZV( I »J) + (CH1( I »J1*AL1( 1»J1-CV1< 1 ,J)*AL2< I, J) )*T+2.«
12 (I >J)*AII*D3( I »J)/(D1( I .JI/AL1! I ,J)+CH3( [ ,J) ] »AI 1 ( i . J 1 * I

- .

2 CV2I 1 ,J)*AI I*( 1.-D3I I.J) )/( D2( I ,J ) /Al_2 ( I ,J ) +CV3 < I , J ) ) *AL2 < I , J ) *T
( I » J )*A I I *AL1(I»J)/I 1( I , Jl/ALK I ,J)+CH3( I »J)

,*CV2(

I

*J)*AI I ,;,/( 2( 1,J)/AL2( I,J)+CV3< I»J) )*T
.

IFI I121i 121,122
12? IF(A01)162i
162 .

: 121
17?
121 D3( 1»J)=D3(.I.J)-,

IF(D3II,J)-1. 1151,152,1!
(

: . j i = i

.

GC TC 1 1

J 5] IF \: -
( I,JH153,153,] i

[ I , J ) =0

.

H 1 CONTINUE
CCSTP=CCST
GC TC i

1111 PUNCH 6

TYPE 3

PAUSE
GC TC

111? TYPi
STCP
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1
' . SOLUTION 1

. 6.

28 . n . 1 1 21 .01231!
CCL HV vv 1 1 1 N v V INV . ZH ZV

i 1 .199 .136' 4 . 1 3 1 7 E - a .99991 - .24511 - .2451E-
i 2 . i

1 FT — . 3 . .784! .44 1 : + 2 .1834E-06 . .

1 3 . E—99 .9171E- -'
- . . .17241 • 165(

1 '4 E-99 . ! . . E-99 .12161 - .12161 -

? 1 . . . 1 * . .99991 - .2054 .

2 2 • A7'y2E+Cl 1
4 ', .46? 3E+02 . .1656: - .1656

2 3 E-99 . ! 4 - + A . E-99 .11] E-99 .1216! - .1 174

2 A .OO^uE-99 _4 A . .1524E+U2 . .6525E-01 .

••

1 E-99 E-03 -
. 7679E-C

3

. •1656E-U0
3 2 >2E+04 .3136E+I 1 t+03 . 1 A L - 1 .9996E-00 . 1174E-00 .1 174
3 3 •1947E-01 t+ .5 . . 1676E+C3 • 177 .

- .6525E-01 .

3 A E-99 + A -99 BE+02 .OOOOf - -E-99 .

4 1 . 1 1 4- A E-99 .1113 - . . 1 .] 174E- .117'
'

? 3 E + f 4 E-99 .1529 1 1
-99 .1 E+ 1 .6] 91 - 1 .

4 3 E+05 . .2112 E-99 .i >i E-99 .

A A - . t E-99 .1 E+OJ . .

EX/ MPLE 1 » SOIL!

1

5 - igOJ 6.

2£ t 629E+C 1 21 .0123!
ROW CCL HV VV H I N V VINV D.VAR ZH

1 1 . >E+.4 .34 1 .2577E- 4 •9999C- . 2 4 5 1 E-
i /'- A 1 ". . .44 i .36741 - .

1
i . 612 2E- . E-99 . -03 .1724E-00

1 '• E-99 .
i E+04 . .1244 I0E-99 .12161

2 E+04 - 3 .2641 E+ 2 • . .20541 -

2 2 •8844E+L1 L E+ u4 . - .110! - .1656: -

2 ! . '
. -

. .1 BE+ O' . >E-05 E+02 .. . 1216E-00
2 A . E-99 . 1 E 4 4 . 1 5 2 4E+ i 2 - .6525E-01
3 1 .136bE-L4 .

:
-

i LE-05 .4550E-01 .1656E-
3 2 1 E +04 . 4 1 LE-OJ . . 11 74E-00

:
J •9771E-02 + 5 . . 61 E +03 . 5E-01

"
A : - .1 4 A . - . E-99

4 i . i ( . .1113 . . ] 001 . 1 1 741 -

A 2 ' . E-99 . 1 1-0] .

4 3 .1199E+05 E-99 .2112E + 1 3 .1
:
- ! E-99

A A E-99 .1618F+ -3 . . ''E-99



95

MPLE 2 » SCI n

8 .
'

2 c »22E+i Hi, )2E + 01 26E+02
HV . ZH

1 1 •1143E+04 • . i ; .571oi - .2548E-CQ .

1 ; . 141GE+04 t i - 4E-00 .2134E- .2151
1 3 . • *E +03 . . .3834E-00 . .

1 4 UE-99 . . .Iloxt, 1 • .1271E- -

2 i .2U99E+04 . .b946E4 1 .5443E-00 . .2136
2 2 .9653E+G3 . ..

i

- .17511 -
.

'
3 1EH .17/ E-99 . 1 ! . f43E- .127] .

2 . .26 . .^46'
:

• .701 - 1 .

] •8641E+U3 *
.

-t- J . .49 1 , .1752E- .

2 . i , . . -,E-00 .127:,- -
.

3 •3193E+U4 .422. . E+02 . . .

3 '4 E-99 .5795E4-',4 . E + 2 E-99 E-99 .

4 1 . . . . 0E+ Q1 .1269E-00 .

'i ? .
I

IE +C4 E-99 . .i E-99 . 1 .7055E-
4 3 . -t E-99 . '

I E-99 .

4 i ,]
- F + .. 3 .Li ' F-'59 . . .

PLE ? , SCLU1

I

8 1.55uu 1.

2( >57E+l:2 4^ 3E+01 •609271E+02
ROW I 01 •IV vv HINv V I N V .VAR ZH

i 1 .856< 1 • + ] .5716E-0C .2552: -

1 2 .
1

"

.27 ,'
; +' 4 + i SE+ r2 .346' .21;

1 3 . 5 4 2 5 E + 1 3 . 14-1 E+Cl •3778E-00 . 1782E-00
1 4 E-99 . . . . .12 7'.

2 1
. . . .911 .5378E-00 .2155E-00

2 2 . .37 i 4 4 . .234; . .1751
2 ? .H >5E + 4 . . . • •1274E-00
2 4 E-99 .2567E + >j4 . • 2445E+I 2 . .71C5E-01
3 1 . .9168E+ 3 + i E + 1 •4856E-00 .1757E-00
3 2 . .126SE+04 LE + O. .81 4E- .775 n -

.

i E+04 .! + 4 .3741 E+ i 2 - . , , - .

3 m . .
4- 4 F-9 9 •B5 E+C2 . .

' i .
: -

'

. . .lOOOE+01 . 1267 1--
1

4 y .3] b6 r 4-< 4 - 9 . . .1 .1.4 1 .

4 . 7 1 7 1 E + 1 4 -99 . . .1 + 1 .

4 4 * . E + L'3 IE- 1

3 .1 E-99
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FXAI-'PLT 3 . SOLUTION 1

. •a

i] .129 2 . .

r COL HV vv 1 1 I I V VI NV . VAR
l 1 . . . 1 . . .2662E-00
l 2 . . , . _ L + 4 I . .5766 -

i

-

i 3 ./'6oVLto . .2172t+u2 . • 5E-00
i 4 . . i 7bt E+04 E-9 9 . . .1549E-Q0
2 1 .16.56t + j4 . . ..'liit +u .414.- - -

2 2 . 149SE +v.4 . . - . . , ! • - .196
: 3 . - . • •3174E-00 .

2 4 . E+ 4 . . . .

1 . 1 1A5E + : A .117] . . .494 4" -
.

3 2 . + 4 | + ' . .726,'- -
.

3
' .2726E+l4 49E + 4 . . . . 1 00£

3 4 . . . E+ l 2 . .

* 1 • 2171E + I 4 . . E + ui E-99 .101 + .

4 . : + 4 E-99 1 - .

4 3 ,7214E+u4 . t +w 2 E-99 . i .

4 4 . .. i E-99 • .

.

2 .

3
:

! + 1 t 1 . . 16E+C ,.

CCL nV VV HINV VI^V . V

1 I . . . . ... 77E-0 .266..

1 2 • 22olt + :,4 . 1 7 1 4 l_ + U 1 .2372E+1/2 . - .

1 3 .7697E + 1 3 -
.
M . . i

1 4 . > .'., o E+02 - 6E-00
2 1 .1635E+I 4 . . • 2277E-, C

2 2 . i t . 3 1 1 7 E + , .4577 - .

2 3 .1344E + 1 4 . •2861F+, 2 . 1 4 -

2 4 . . 3 1 1 4 E + ti .. io f -99 E-t 2 .

3 1 .122' . 1 1 43 E + 4 . . .5174E-00 .

2 . * 4 . 4E+ 0; - .

3 3 . . i f . . .
1

3 4 . . . » .i .

4 1 • 2143E + ..4 . t 2 . .
i E-99 . 1 * .156:

4 2 .327 .. E + -

4

E-9 9 . . <
' l - 9 9 E+01 .

4 3 . . t .™ E-99 • i E-99
4 4 .1 .

- i ic-99 .. !
- .. iuu. t-99 -

:
"
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r.PLE 4 , SOLUTION 1

8 . 1. .

?f . J l
:
+< ; 231.39371

CCL HV W i.VAR ZH
1 1 . 1144E + ..4 . E-99 - ' •5721E-0C .

1 2 . .2741-E + . 4 .'1 'i . .3386E-0C .

1 3 . .1 . . • .

1 4 . C i .

r_ - - J . . . .14531 -

2 1 .2 1 3 E + 4 . » . 2E-00 .2413E-00
2 2 . ! .

i 1 .
:
- - . • .1955! -

2 3 .1169E+U4 . ; 17 * - . .4763E+01 'OE-00 . 1453E-0C
2 .'. .COt E -99 . + 4 . . • . 7864E-01

I . E+ 3 . E-99 . . 1955E -

2 . _ + 4 1 . .73231 -i .

3 . 1 + ' E+ 4 . E + l 2 .13051 - .786,
4 . .3567E + I 4 . E+C 2 . .

4 1 . '
' f .OC -

-9< . . .100 .

4 ? .3367E+04 E-99 .23j>i
i
-99 . ;--oi

4 3 2E + 1 4 . .1u8S . . i E-99
4 A . . . i t-9S .- E-99 . i .

EXA MPLE 4 , SCLUT I CM 2

. 1 .

2e '

t 2 1 + 1 23 .

COL HV VV H I ImV D.VAR ZH
1 1 . . 86 ] +0 3 . . .

1 2 . 1 4 '- :. E + 4 .2732C + ..4 . I

!
I ' .3396E-00 .

1 3 .4803 1

' + - . . •3417E- .

1 4 . . . E-99 . . -
1 L-99 .143

2 1 5E + 04 . _+ 4 .3174 l+01 . • .241
2 2 . . 3461E + L-4 . .1274 .2692E-00 . iL-U
2 3 . . • .3644 . 1453E-00
2 4 -

• . . E-9S - • .7863E-01
3 1 •9246E+03 . . . -

3 2 .3936E+04 1 .2.. 7 1i!+ 2 . • •1398E-00
3 3 . 1 . . • .

3
'< E-99 . . :

— 9 . . .

4 1 E+04 . . . . .1396, -

4 ? ,33b2E + i 4 . » . . E-99 - .

4 3 . t-9< . . t . E- 9

9

E +01 .

4 4 - 3 i

-
. .

1
:
-
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RESULTS OF PERTURBATION , PROBLEM 1

Decision Variables
being Perturbed

Original
Vaiues

Values after
Perturbation

Resulting
Total Costs

^ 1 . OOOO • 9500 622818.51

e
l )2 44.0100 40.0000 2820.25

92,3 .0000 .1000 2819-95

#* 15.2400 16.0000 2819-88

.}.» 1.0000 .9500 31390309.00

fi
3,49
2

19.6300 18.0000 2820.01

e^-
1 11.1300 12.0000 2819.91

e^3 211.2000 215.0000 2819.91

ORIGINAL TOTAL COST = $2,819 .86

„

RESULTS OF PERTURBATION , PROBLEM 2

Decision Variables
Being Perturbed

.1 T

Original
Values

Values after
Perturbation

Resulting
Total Costs

H1 -
1V 2.0000 2.2000 2604.10

bJ.* • 3834 .4000 2604.01

e2,2 24.0300 23.0000 2604.03

e2,3 • 3743 .3600 2604.05

93.1 2.0000 2.2000 2604.06

e3,3
3

• 4307 .4200 2604.07

e^.i 6.0800 6.5000 2604.00

a*.

3

X
85.0000 84.0000 2604.62

ORIGINAL TOTAL COST = $2,603 .99
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RESULTS OF PERTURBATION , PROBLEM 3

Decision Va riables Original Values after Resulting
Being Perturbed Values Pe;rturbation Total Costs

«$.! .5231 .5000 3112.95

e£.3 21.7300 22.5000 3112.91

e2,2
2

31.8000 31.0000 3112.92

e2,3
3

• 3174 .3100 3112.95

93,1
1

29.6600 31.0000 3112.92

e3,3
3

.4083 .4000 3112.96

ORIGINAL TOTAL COST = $3,112 .90

Decision Variables
Being Perturbed

Original
Values

Values after
Perturbation

Resulting
Total Costs

V .5721 .5500

V .5721 .5500 2639.49

e^. 2 8.0040 .8800

92 -
1 5.2560 4. 4560 2654.22

°3'
2 .2672 .2800

,2,3 .2672 .2800 2639.52

eg.* 4.7630 5 . 0000

e3,i 15.2200 14.9800 2639.46

93,1 .4999 .4600

e^.i .4999 .4600 2639.65

8*. 2
.9788 1.0000

eA,2 23-3100 23.2900 2639.44

9U,3 23.3100 23.0000

108 . 9000 109.2100 2639.45

ORIGINAL TOTAL COST = $2,639.38
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LIST OF SYMBOLS

Discrete Maximum Principle

X state variable.

9 decision variable.

T transformation operator.

n the n-th stage.

N the N-th stage or the total number of stages.

s total number of state variables in each stage.

r total number of decision variables in each stage.

H the Hamiltonian.

z adjoint variable.

c constant in objective function.

S objective function.

General Formulation of the Problem

X
n,m

state variables representing flows from node (n,m).

-.rum
3
j

decision variables representing investments on links

leaving node (n,m).

K-;{ free flow travel time on links leaving node (n,m).

K' coefficient of investment on links leaving node (n,m),

K.'i ' existing investment on links leaving node (n,m).

L.' link length on links leaving node (n,m).
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t .' unit travel time on links leaving node (n,m).

where, j = 1, for horizontal link.

j = 2, for vertical link.
n,m

X3 state variable representing the total investment on

horizontal links from node (1,1) through node (n,m),

X. ' state variable representing the total investment on

,n,m

vertical links from node (1,1) through (n,m).

state variable representing the total travel time

cost on horizontal links from node (1,1) through

node (n,m).

X^' state variable representing the total travel time

cost on vertical links from node (1,1) through (n,m),

„ n , m . , -, . .,

X7 state vanaDle representing the total investment on

both links from node (1,1) through node (n,m).

60' decision variable representing the fraction of the

vehicles departing node (n,m) on the horizontal

link.

C^ time cost.

Hn '
m Hamiltoniam function at node (n,m).

V '
m input trips at node (n,m).

GI total system budget.

SI n,m section budget at node (n,m).

Z,' , Z '
,

Z ' adjoint variables associated with

vn,m vn,m v n,m . . ,

1 » ? *
* " '

' » 7 respectively.
7

objective function.
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Al STRACT

Following an introduction to the purpose of the economic

analysis of transportation networks, the objective and cri-

terion problems arc briefly discussed. A single objective is

selected for this study. A review of the literature shows

the historical development of the methods of economic analysis.

Major drawbacks of the traditional methods developed in the

past are described. The merits and demerits of mathematical

models are presented.

The discrete maximum principle is introduced with a

brief review of its recent applications to transportation

systems analysis. Starting with a description of the rela-

tionship between travel time, traffic volume and invest-

ment cost, a non-linear total travel time equation is

developed which expresses travel time as a function of

traffic volume and investment.

The purpose of this research was to formulate an optimal

network improvement model (in equation forms as described) by

the discrete maximum principle. Utilizing these equations,

optimum seeking procedures were then developed. Three in-

vestment conditions were considered which resulted in three

different sets of equations and two slightly different ways

of seeking the optimum. Three special cases which implied

limits on link investment were also described. This formu-

lation provided a broad application of the technique to



problems with various constraints and assumed conditions.

Finally, four examples were presented to demonstrate

the usefulness of the technique in different investment

conditions. Derivation of the data used in example problems

and the computer programs developed to solve the problem

were presented in Appendix B.


