/

‘\

l}i?
//BATA INTERCHANGE FORMAT FILES:

& SIMPLE, DIRECT APPROACH TO PROVIDING
TRANSFORTABLE GRAPHICS DﬂTﬁ/

by

JAMES J. ?HEEHY JR.
¢

B.5., Ohio State University, 1975

A MASTER’S REPORT
submitted in partial fullfillment of the

requirements for the degree
MASTER OF SCIENCE
Department of Computer Science

KANSAS -STATE UNIVERSITY
Manhattan, Kansas

1283

Approved by:

M4A j Profes

4
1103

$53
B

ALL202 244588
CONTENTS |

PO —

LIST OF FIGURESz-20a sessamsmass

ACKNOWLEDGEMENTScccceccanncsans

Chapter

I.

II.

III.

IV.

V.

INTRODUCTIONccceceans A

GENERAL sBescssnasas
CENTRAL ISSUESccaa.
FINDINGS ...-.. asssessnsaa
DEFINITIONS ...caccasunxa

THE SYSTEM MODEL::cccccan

SYSTEM OVERVIEW
THE DIF FILE ..ccacennaa.
SYSTEM UNIGQUE SOFTWARE ..
COMMERCIAL SOFTWARE

DATA INTERCHANGE FORMAT FILES

GENERALccccccncnann
HARDWARE ENVIRONMENT
SOFTWARE ENVIRONMENT
DIF FILE FORMAT ..cccaa.n
THE HEADER PART
THE DATA PART .c.ccnnnaas
CONCLUSIONS .couwxas smase

SYSTEM UNIQUE SOFTWARE
BENERN— 4 8 ® ¥ &S mE N 8 &S =S= S8 4aS=s
DIF_BUILDER PROGRAM
DIF_BUILDER STRUCTURE ...
DIF.PURGE PROGRAM
ASSESSMENT OF SOFTWARE ..

RECOMMENDATIONSccccacncass
PROGRAM EXPANSION
FUTURE STUDY ..ccanccn===

ii

iv

vi

Page

Ll

(R P

00 N

15
15
16
12
19
21

29

33
33
33
35

45

49

49
49

THIS BOOK
CONTAINS
NUMEROUS PAGES
WITH THE ORIGINAL
PRINTING BEING
SKEWED
DIFFERENTLY FROM
THE TOP OF THE
PAGE TO THE
BOTTOM.

THIS IS AS RECEIVED
FROM THE
CUSTOMER.

THIS BOOK
CONTAINS
NUMEROUS PAGES
WITH DIAGRAMS
THAT ARE CROOKED
COMPARED TO THE
REST OF THE
INFORMATION ON
THE PAGE.

THIS IS AS
RECEIVED FROM
CUSTOMER.

BIBLIOBRAPHY ...cccccacscssonacansaa

REFERENCES " S ® S EESEESSEENESSEES RS ES

APPENDIX A .cucassssssssssannannaana

nFFENDIxB------------.-----------

iii

o1

S2 -

LIST OF FIGURES

FIGURE

FI&

FIG

FIG

FIG

FIG

FIG

FIlG6

FIB

FI16

FIG

FIG

FIG

FIG

FIG

FIG6

FIG

FIG

FIG

FIG

FIG

FI16

FIG

2-1 2 = mm s sESsssE= a8 & msssSses

2-2 " S & &8 & ENFESS SIS SeEwESE e

2-3 S @ w e eSS E e s AR AT EE N

3-1 @ " = W S 5§ 3 3 &8 88 SS9SSSSSSaES

3-4 S & s e =g eSS S3 S S SS eSS eSS SsEEN

3-5 " ® ® 8 " 3 EE S eSS S SSS s EESeES

3-6 5 S e E eSS eSS SSS ST eSS A s

3.7 = m m s S S S 3 sEESSETEEESeTEE.
3.8 & s @ m mE s ESEesss ww CRC B A B O 2 W
4.1 4 4 ® E & 5 2N EESSSESSSSESESES

4-2 = e s "% 5SS SSSESSsEsSEEEwEw

4-3 ----- - s @ e s s =S SsSEFESESSsaS

B'l 4 5 » 2 3 E B S S S S S AN SEESESSS

B-z T E mE = eS8 S®SSS S5 ESEESSESASw

B-3 E m s @ eSS ESSSSSSSSSSesSSaaaSs

B-4 s s m e P ESSssaSssse - s == e

B-5 S @ 5 8 ® 2 AES S eSS ESSSESEEESS -

B-b T S wFT e EEASS S S EE RS E RN

iv

8

13

14

17

20

22

23

24

26

28

31

4

B

41

8

g

81

87

PAGE

FIE B-? " 2 @ @ 5 NS SSESFESSS S EEEe S

FIG B.8 ...uaan

FIG B.? ..caus .

74

9

ACKNOWLEDGEMENTS

Recognition goes to Dr. William J. Hankley for his
quidance and counsel and to Mr. Carlos Buales who gave
freely of his time and knowledge on several different
occasions. Recognition also goes to the remainder of the
"I EAVENWORTH NINE", especially MAJ Donald D. Luftug, for
willing and constant support and assistance. Finally,
very special thanks and recognition goes to my wife Judy
and my children Susan, James and Sean for their patience
and understanding during this undertaking. Without their

selfless, generous support this could not have been done.

vi

Chapter I
INTRODUCTIDN

1.1 GENERAL

A recognized need for improved standards has long
existed within the field of computer science. OFf late, in
the area of computer graphics, more and more emphasis has
been placed upon developing standards which enhance data
transportability in terms of machine, program and language
independence. This report describes a method by which Data
Interchange Format (DIF) files are used to improve data
transportability and independence. The report details how
DIF +files are created on a host {Pérkin—Elmer 8/32) cnmputer
and then transfered to an Apple II computer. Once
transfered, thé DIF file is used as a data input stream for
the Visiplot/Visitrend graphics plotting program. This
project has two purposes. The first is to examine DIF files
in general. The second purpose is to demonstrate the manner
in which data format standards enhance the exchange of data
between applications programs which share a common 1language
and to emphasise how data format standards facilitate both
inter-machine and inter—-language transfer of data. The
DIF_BUILDER SYSTEM is utilized as a tool to demonstrate how
DIF +files accomplish these aims. The report is structured as
follows:

1.) Chapter 1 provides background information on the

project along with an overview of the structure and
content of the report. It highlights what was done, why
it was done and then identifies central issues which
were examined as the work on the project progressed.
Finally, the chapter contains a synopsis of the findings
resulting from the report and a 1list of definitions
essential to the clear understanding of the chapter.

2.) Chapter 2 consists of a SYSTEM OVERVIEW which
provides a general explanation of the DIF_BUILDER
SYSTEM. The discussion begins with an overview of the
system model and identifies each of the model’s three
main conpunenis. Chapter 2 concludes with a discussion
of one of these main components: commercially available
software. The discussion of caommercial software
packages examines applications programs which are
compatible with data presented in the DIF format and
also takes a brief look at a few of the more common
terminal interface communications programs.

3.} Chapter 3 contains a in—depth discussion of DIF
files. It examines how DIF files originated and what
they offer in terms of utility. .Ehapter 3 also contains
an explanation of the DIF file format and structure.

4.) Chapter 4 focuses on the implementation software
which is unique to the DIF_BUILDER SYSTEM. Specifically
it discusses the DIF_BUILDER program which creates the
DIF +files and the DIF.PURGE program which reformats DIF

files after they have been transfered to the Apple 11

2

computer.

5.1 Chapter b contains suggestions for future

improvements to thel DIF_BUILDER SYSTEM

and

recommentations for possible future study in the area of

DIF files.

This report also contains two appendices. Appendix A

contains the program documentation for the DIF_BUILDER

program and the DIF.PURGE program. Appendix B contains

the DIF_TRANSFER User’s Guide which will assist

potential user’s in implementing the system model.
1.2 CENTRAL ISSUES

During the design and implementation of

the

DIF_BUILDER &SYSTEM, particular attention was focused on four

central issues. These issues were consistent with
stated purpose of the project and were as follows:

1. FORMAT STRUCTURE: The structure of the DIF
format was examined so as to assess its utility
as a medium for enhancing data transportability.

2. STRENGTHS AND WEAKNESSES: the DIF format was
evaluated so as to identify strengths and
weaknesses peculiar to the use of D{F files.

3. INTER-MACHINE ENVIRONMENT: The impact of
transfering DIF files between differing machines
was examined.

4. COMMERCIAL SOFTWARE: An examination of
commercially available software was conducted so

as to identify some of the packages which are

the

capable of accepting data in DIF file format.

1.3 FINDINGS

The results of the project demonstrated the feasibility
af transferring data between machines, programs and
languages through the use of a standardized format. It
further demonstrated that DIF +files provide a viable
standardized format and have the following advantages:
- 1. They fill a recognized need.

2. They are easily understood.

3. They are flexible.

4. They provide a standardized "end of data®

feature-

S. They enhance program and language independency.
The project also exposed the following disadvantages
associated with DIF files:

1. They are a "de—facto" standard.

2. They may require "after transfer" processing.

3. They may complicate editing.

4, They increase the opportunity for error.

5. They may make it more difficult to find errors.

.Although the ﬁse of DIF files can increase the 1language
and program independence of data, it does little to enhance
the. machine independence of data. This was evidenced by the
need to reformat the DIF file after it had been transfered
from one machine to another.

An examination of currently available software revealed

4

that there 1is a modest, but still growing, number of
commercial software packages which can be used with DIF
files. To continue this trend, Software Arts, Inc., the
developers of the DIF format, have instituted the DIF
Clearinghouse. The purpose of the clearinghouse is to
provide a central agency for coordination of DIF related
matters.
1.4 DEFINITIONS
1.) DATA INTERCHANGE FORMAT
& format developoed by Software Arts incorporated and
designed to allow for the interchange of data betwgen a
variety of different programs.
2.) TRANSPORTABILITY
Transportability refers to the ease by which data can be
transfered +From one machine environment to another, from
one program environment to another or from one language
environment to anocther.
3.} MACHINE INDEPENDENCE
The degree to which the data is insensitive to the
effects of various machine environments.
4.) PROGRAM INDEPENDENCE
The degree to which the data can be freely passed from
one praogram to another. In this context the programs
are considered to be written in the same language.
5.) LANGUAGE INDEPENDENCE
The degree to which the data can be freely passed

between programs written in different languages.

S

6.) FIELD

The sub-elements of which a DIF file is constructed. A
field may bhe from 1 to 256 bytes in length and is always
terminated with a carriage return. In the DIF_BUILDER
program fields have been arbitrarily limited to 23 bytes

plus the carriage return.

CHAPTER I1
THE SYSTEM MODEL

2.1 SYSTEM OVERVIEW

The the DIF_BUILDER SYSTEM enables a number of users to
build uwunique data files while utilizing the facilities of a
host computer which allows time—sharing. By this method
several individual data files can be generated in parallel.
The intent is to unburden the scarce resource, in this case
the Apple 11 computer, which is then left free to display
the data generated on the larger system. This approach
affords a real advantage by reducing the total amount of
time each user must spend using the scarce resource.

The DIF_BUILDER SYSTEM is designed around the following
three elements:

1. Commercially available software

2. Applications programs which were specificaly written

to support the DIF_BUILDER SYSTEM

3. The standardized DIF file format.
Figure 2.1 provides a graphic overview of the system. To
accomplish its objectives the DIF_BUILDER SYSTEM employs a
interactive program which is resident on the Perkin—Elmer
8/32 to create DIF files. The program uses a series of
questions to lead the user through the construction of the
DIF file. When the file is complete DIF_BUILDER

automaticaly writes the newly created DIF file into the

S PERKIN-ELMER
| 8/32
TERMINAL |
I DATA)
[CAPTURE |
i - 4.0___,
MICRO
COMPUTER
{APPLE II)
'
<
DISPLAY FLOPPY/
MEDIUM " DISK !
STORABE,
J l——-——db——-l mlm
'WISIPLOT/ !«
IVISITREND!
LEGEND:

SYSTEM UNIQUE SOFTWARE =—————

DATA FLOW

FIG 2.1

user’s disk Ffile space. To transfer the file the user must
access the Perkin—-Elmer computer via the Apple Il system. 1
elected to establish a data link between the two computers
through the use of a commercially available software
package. In this case the Data Capture Terminal Interface
Program (TIP) was used. By implementing the Data Capture
TIP on the Apple II, the user is able to transfer to the DIF
file created on the host computer to an Apple II storage
disk. The file is transfered as a text file. Once
transfered the file must be reformated so that it is
consistent with DIF files created on the Apple system. To
do this the DIF.PURGE program was developed. Once
reformated the the file is ready to be used as an input data
stream for the Visiplot/Visitrend software package. The
DIF format is the central feature of the system and serves

ta effect a bhridge or link between the other two elements.

2.2 THE DIF FILE

Because of their relative importance DIF files will be

discussed in detail in a separate chapter. See chapter 3.-

2.3 SYSTEM-UNIGUE SOFTWARE

System—unique software will be discussed in detail in
chapter 4. Appendix I.A contains the program listing for
the DIF _BUILDER program. Appendix I1.B contains the program
listing for the DIF.PURGE program.

2.4 COMMERCIAL SOFTWARE

1. TERMINAL INTERFACE PROGRAM (TIP)

A TIP is a program which allows the user of a
personal computer, such as the Apple II to interface with
a larger host computer. The host is generally cunsfdered
to be of the "mainframe® variety. The word “"mainframe” is
used here to connotate a computer sufficiently large
enough to posses a sophisticated operating system and
which nnrmaily provides service on a time—-sharing basis.
The TIP allows the user to access the resources of the
host computer by establishing and maintaining a
communications link with the host via a modem.

Currently there are several TIP’s which are
commercially available. Each of these programs provide
the user with the ability to emulate other terminals which
are "permanently” connected to the host. These programs
vary in cost from $100.00 to $200.00 based upon their
sophistication and capabilities. They offer features such
as automatic dialing, software controlled madificatian of
communications parameters and generation of ASCII
characters which may not normally be available to the
user. More importantly, these programs provide the user
the ability to transfer, edit, transfer to the screen and
write to storage text files passed from the host computer.
Although these programs are generally equivalent, the? may
vary in areas such as the range of features offered, their
degree of user friendliness and their data transfer rates.

The following list contains the names of a few of the

10

currently available TIP’s and their manufacturers: DATA
CAFTURE, Southeastern Software Inc.s ASCII EXPRESS,
Socuthwestern Data Systems: HAYES TERMINAL PROGRAM, Hayes
Micrcomputer Products Inc. and TRANSCEND, SE6M
Microcomputer Products Inc.

| The DATA CAPTURE program was used during this
project. DATA CAPTURE was selected upon the basis of its
availability and, although adequate, there are a number of
other programs which would have served as well.

2. VISICALC .. VISIPLOT/VISITREND

Visicalc and Visiplot/Visitrend are two of a series
of commercial applications software programs which have
been developed by Personal Software Inc. These packages
are in the $150.00 to $300.00 price range and were
developed for the small business and personal use computer
markets.

The Visicalc package offers the ability to enter data
into a table or matrix type format. The matrix columns
are ordered from "AY through "BK" and the rows are
numbered from 1' through 254. The result 1is a matrix
capable of holding 146002 individual data points. A matrix
of this size serves to emphasise the need for a medium
(such as a DIF filE) through which data can be entered
quickly and efficiently. Visicalc algo allows the user to
enter equations which are unique to the user’s need. Once
entered along with the data, the user is able to edit,

modify or expand the data as necessary. #As a result the

11

final form of the data may be substantially different from
its original form. When a session is complete the final
form of the program matrix can be saved on a storage
device for later use.

The Visiplot/Visitrend package consists of two
distinct sub—-packages. The Visiplot portion allows the
user to display graphics images on a monitor or to
reproduce them with on a printing device. The images that
can be created are of a class normally associated with
business graphics. As a result Visiplot has the
capability to produce the following six types of charts:
line, bar, area, hi-low, pie and scatter (see Figures 2.2
and 2.3). Each chart can be displayed individually or can
be combined with other charts of the same type or of a
different type; thus the user can create composite type
charts. Visitrend is a statistical sub-—package which
develops data series for use with sophisticated analysis
and Fforcasting techniques. Its features include moving
average, data smoothing, percent of change, lead/lag and
cumul ative total functions.

Both Visicalc and Visiplot/Visitrend are capable of
reading and writing data which is in DIF format. This
provides both of these packages with an extremely rich

medium through which they can share data.

12

L
15
=

i

[i

A" TEMP

2 PFRECIPITAGTION

LINE CHARTS CREATED WITH THE
VISIPLOT/VISITREND SOFTWARE
PACKAGE

FIG 2.2

13

1
&
=

i

Ly

(]|

0

T S el o

(1 T O w AR R B

e
LA

5]
!

oo ox

(g

i

)

LN oen o nonoan

FRECIFPITATION

FRECIPITSTIOHN

BAR AND AREA CHARTS CREATED
WITH THE VISIPLOT/VISITREND
SOFTWARE PACKAGE

FIG 2.3

14

CHAPTER III
DATA INTERCHANGE FORMAT FILES

3.1 GENERAL

DIF +files are not purely a data base exchange format nor
are they purely a graphics exchange format. Rather, the
function of DIF files lies between these two extremes. As a
result DIF files can best be defined a a data table exchange
format. This type of format 1is particularily useful for
providing data input streams to certain types of commercial
software packages. Examples of commercial software for which
DIF +files have particular a#plicability include: "“spread
sheet” type packages such as Visicalci business graphics
plotting packages such as Visiplot and statistical analysis
packages such as Visitrend.

The DIF file concept was developed by Software Arts
incorporated in response to a widely recognized need for a
standardized data exchange format. The need for an
agreed—-upon data exchange format becomes clear when the
alternatives for transfering data in an environment lacking
such a standard are examined. Currently there are three
alternatives which may be employed, they are as follows:

1.) Create a new file in the correct format.

2.) Restucture the offending program to output the data
in an acceptable format.
3.) Design separate programs to reformat offending files.

None of the alternatives offer an acceptable approach when

iS5

considered for use in a dynamic, multi-program environment.

The first requires substantial duplication of effort; the
second requires modifying otherwise suitable software. The
final approach can lead to an excessive burden in terms of
the development of programs to do the reformating and in
terms of processing overhead. As an example, Figure 3.1
depicts an environment where there are five distinct
programs, each of which requires a different data format.

As a result ten separate data reformating programs are
required if each program is to be able to use data files
created +for use by any of the remaining programs. To further
emphasize this point the number of reformating programs
required in an environment where there were 20 separate
programs would increase by 12 times to a total of 190. This
example serves to illustrate the growing need Ffor an
established, standardized data exchange format. DIF files
serve to satisfy this need through the employment of an
uncomplicated, flexible format. The primary appeal of DIF
files is that they provide a data transfer medium that is
flexible enough to have broad, general appeal and at the same
time uncomplicated enough to be easily understood and
implementated. Finally, it is by virtue of their uncomplex
nature that DIF files are able to gain insensitivity to

changes in their hardware and software environments.

3.2 HARDWARE ENVIRONMENT

The hardware environment can be separated into two

16

MULTI-PROGRAM

ENVIRONMENT

~

LEGEND:

PROGRAM A) = UNIGUE PROGRAM

DATA FORMAT TRANSLATION

FI6 3.1

distinct divisions. In the case where the machines are
architecturally similar a homogeneocus hardware environment is
said to exist. However, if the machines are not
architecturally equivilant then the hardware environment is
said to be heterogenecgus. In a heterogeneous environment a
machine-level interface must be employed in order for the
machines to communicate, regardless of the data transfer
format employed. This would be the case if one machine
utilized ASCII code while ancther machine used EBCDIC.

Before these machines could be effectively linked an
interface device unqld have to be implemented which could
convert a bit stream from one type code to another. Again,
this would be required irrespective of the data transfer
format employed. In the case of homogeneous hardware, a
translator at thé machine—interface level is not required as
long as the operating systems of both machines are identical.
Where the operating systems are not idendical it may be
necessary to process the input stream at some higher level to
remove or modify inconsistent padding or control characters.

From the preceding, it is apparent that DIF files do not
enhance the efficiency of intercomputer data links. However,
once the machines have been linked, the use of DIF files can
significantly reduce or eliminate the need for further
processing of the data prior to its use by a program.

Further, if modifications are made to the machine environment
DIF files will remain unaffected as long as the protocols at

the machine—-interface level are modified accordingly.

i8

3.3 SOFTWARE ENVIRONMENT

In the software envirnnﬁent DIF +iles exhibit a high
degree of both program independence and language
independence. From the standpoint of program independence
DIF files effectively facilitate the transfer of data between
programs designed for widely different purposes. As an
example, the same DIF +file could be used as a data source
both for a graphics plotting program and a statistical
analysis program (see Figure 3.2). In addition, if the
output from the statistical analysis program was written into
a DIF +file, then that output could be passed to other
programs which accepted DIF formated data. In the case of
Figure 3.2, data from the statistical analysis package could
be passed to the graphics display package. In addition to
program independence, language independence is also gained
through the use of DIF files. Once a program is structured
to accept DIF files it will be able to process all properly
formated files regardless of the parent language used to
create the file. Figure 3.2 serves to illustrate this point
by showing how a DIF file can be created in PASCAL on machine

"aA" and processed in BASIC or PASCAL on machine “"B."

3.4 DIF FILE FORMAT

Much of the material in this section was extracted from
[SOFT 801 and modified as necessary. For a more detailed

treatment of this subject see [SOFT 801 and [CAND 811.

19

FILE TRANSFER

ENVIRONMENT

. 8 2 3 M}h
ﬁ tIII]J m m m pM+“
: 82 E E
: 0 F oA
2 ¥
y — B

\
<
I 1R
: 2 B
g R

— = MACHINE ENVIRONMENT

LEGEND:

APPLICATIONS PROGRAM

FI6 3.2

The DIF +file format has the advantage of being both
versitile and uncomplicated. Figures 3.3 through 3.8 will be
used to assist in the explanation of the DIF file format.
Figure 3.8 contains a diagramatic representation of the DIF
file structure. Figure 3.3 represents a table containing
data which is to be entered in a DIF file. Data in Figure
3.3 can be viewed in two different wéys. When viewed from
the perspective of a row, the data in the row is said to
comprise a TUPLE. Each TUPLE is made up of all the data
elements in a row and all rows must have the same number of
data elements. A DIF +file wmust have at least one TUPLE.
When viewed from the perspective of a column the data in the
column is said to comprise a VECTOR. All VECTORs must be of
equal length. Thi=s means that that each VECTOR must possess
the same number of data items as all other VECTORs in the
file. The concept of VECTORs and TUPLEs is centeral to the
construction of DIF files. DIF files are divided into two
major parts, the HEADER PART and the DATA PART (see Figure

3.4).

3.5 THE HEADER PART

The HEADER PART is composed of a number of three field
elements called' HEADER ITEMS. The purpose of a HEADER ITEM
is to relay 5pecia1.infarmatiun about a partiéular DIF +ile
to the using program. The three field structure used by each

HEADER ITEM is shown in Figure 3.35.

21

TUPLES

RAW DATA

TABLE
VECTORS
f’ N
MAX. MIN.
PRECIPITATION | AVE. TEMP | AVE. TEMP | KILOWATTS
3.7 29 21 20, 150
4.9 32 27 18,200
11.3 a7 33 14,350
10.2 63 45 10,211
FIG 3.3

TUPLE# 1§

TUPLE# 2<¥

TUPLE# 3<

TUFPLE# 4

TUPLE# S

TABLE
VECTORS -———— HEADER
no ————— ITEM
TUPLES

0,5

DATA

0,0

>>HEADER
PART

r—=1,0
BOT
1,0
PRECIPITATION
1,0

"AVE. MAX TEMP"
1,0

. "AVE. MIN TEMP"
1,0

~ KILOWATTS

AVE.

0<CE>C
3
|
|

N
(e

————=— AVE.

(

————— PRECIPITATION

MAX TEMP

MIN TEMP

————= KILOWATTS

L-Cf)*:
S
2

o

o
et
0

————— DATA

i
N

'CEDCJD<:CIC
g
g

/

e PRLLIE

TUPLE

|
(WY
o

m
O
o

FIG6 3.4

23

DATA

PART

HEADER ITEM

FIELD# 1 TOPIC |CR

FIELD# 2 | VECTOR NUHBER,VALUEICR'

FIELD# 3 ["STRING VALUE"|CR |

FIG 3.5

The TOPIC is a keyword which occupies The first field in each
HEADER ITEM and which identifies the purpose of the HEADER
ITEM. The VECTOR NUMBER is used to identif? the specific
VECTOR to which a particular HEADER ITEM applies. If the
HEADER ITEM applies to more than one VECTOR then a "0" is
entered in the VECTOR NUMBER location. The VALUE is an
integer which conveys numerical information concerning the
HEADER ITEH. Az an example, the VALUE associated with a
HEADER ITEM which has "TUPLES" as a TOPIC identifier, would
be used to convey how many TUPLEs are in the file. The
STRING VALUE occupies its own unigue field and is used to
associate input string data with a particular TOPIC. In sum,
each HEADER ITEM consists of three fields, each of which is
terminated by a carriage return. The first field in each
HEADER ITEM contains the TOPIC. The second field contains

the VECTOR NUMBER and the VALUE separated by a comma. I+ the
VECTOR NUMBER or VALUE are not used, a "0" is entered in the

appropiate location. When the STRING VALUE is not used double

24

quote marks are entered in the string field. Two TOPICS,
TABLE and DATA, are required in all DIF files. The remaining
items are optional. A brief description of the most common

header items follows:

i. TABLE This is the first entry in the file.
It identifies the file as a table of data. This
is a required HEADER ITEM in all programs.

2. VECTORS ... Tells how many VECTORs are in the
data file. Some programs may treat VECTORS as a
required TOPIC. In addition, this item must
appear in the file prior to any HEADER ITEMS
which reference VECTORs by number.

3. TUPLES This item gives the count of TUPLEs
in the file.

4. LABEL Provides the user an optional methad
with which to label the VECTORs.

S. DATA Alerts the program that the HEADER

PART is ending and the DATA PART is begining.

3.6 THE DATA PART

The second major division of the file consists of the
DATA PART. The DATA PART is made up of TUPLEs, each of
which has its own set of VECTOR values. As illustrated in
Figure 3.4 the first TUPLE consists of data taken from the
first row in Figure 3.3. The data in the second row is in

TUPLE# 2, etc. TUPLEs are made up of one or more two—field

25

groupingss these groupings are called DATA VALUEs. The
first of these fields serves a dual purpose. It indicates
the type of data to be found in the DATA VALUE and it is
used to pass numeric data. The second field in the DATA
VALUE is used to pass string data. Figure 3.6 is a diagram

of the DATA VALUE structure.

DATA VALUE

FIELD# 1 [TYPE INDICATOR,NUMBER VALUE[CR]|

FIELD# 2 |STRING VALUE |CR |

FIG 3.6

FIELD# 1 has two elements, the first of these is the
TYPE INDICATOR element. The TYPE INDICATOR requires an
integer value and act as a four position flag. The flag
indicates to the program how to interpret the NUMBER
VALUE and the STRING VALUE associated with each DATA
VALUE. The four valid TYPE INDICATOR entries are as
follows:
1. (-1)... Indicates the DATA VALUE has a
special status. Special status DATA VALUEs
are used to mark either the begining of a
TUPLE or the end of the data file.
2. {(0).... Indicates that the data stored in the

DATA VALUE is numeric and will be found in

26

the NUMBER VALUE location.
3. {(1).... Indicates that the data stored in the
DATA VALUE is in the form of a string and
can be found in the STRING VALUE field.
4. (2).... Indicates the data stored in the DATA
VALUE is application specific and may have
some special meaning to programs which share
the data.
The second element in FIELD# 1 is the NUMBER VALUE. A
numerié value is always entered in this location. The
number may be preceded by a unary operator (+,-), it may
have a decimal and may be followed by the letter "E" and
a base ten exponent. The exponent may also be preceded
by a unary operator.

FIELD# 2 is used for string values. If the TYPE
INDICATOR is set to "0", indicating the data is numeric,
then the letter "V" is placed in the string value field.
Under these conditions the letter “"V" is not enclosed in
quotes. The DIF format also provides the user the
ability to override the value that is located in the
NUMBER VALUE field. This is done by placing a VALUE
INDICATOR in the STRING VALUE field even though the TYPE
INDICATOR is set to "0", a condition which indictes that

the DATA VALUE contains numeric data (see Figure 3.7).

DATA VALUE

FIELD# 1 TYPE INDICATOR NUMBER VALUE|CR

O i 4525 cr

FIELD# 2 STRING VALUE(CR

NA cr

FIG 3.7

In Figure 3.7 "NA" is a VALUE INDICATOR which instructs
the program to ignore the NUMBER VALUE stored in FIELD#
1. VALUE INDICATORs can be viewed as embeded
instructions which provide the user the flexibility to
influence how a program treats selected NUMBER VALUESs.
VALUE INDICATORs can be user defined but should be
registered with the DIF Clearinghouse. VALUE INDICATORs
are not enclosed in guotes.

If the TYPE INDICATOR is set to "1", indicating
that the DATA VALUE contains string data, then the input
will be located in the STRING VALUE field. Guote marks
are only required when input strings contain blank
spaces. TUPLE# 1 in Figure 3.4 illustrates the use of
STRING VALUESs.

All TUPLEs are made up entirely of a set of DATA
VALUESs. In this regard, there are two special cases of

DATA VALUEs which require examination. These are the

28

DATA WVALUEs which mark either the begining of a TUPLE or
the end of the input_déta. Special case DATA VALUEs can
be easily identified because they always have a TYPE
INDICATOR entry of "—1" and a NUMBER VALUE of "0." When
the intent is to mark the begining of a TUPLE, then
“BOT" is placed in the DATA VALUEs STRING VALUE
location. When used to mark the end of data then "EOD"
is placed in the STRING VALUE location.

3.7 CONCLUSIONS

As indicted by their structure and format, DIF
files provide a powerful medium for the transfer of
data. A list of some of the advantages gained from the
use of DIF files includes:

1. DIF files fill a recognized need for a data
exchange format.

2. The DIF file format is both uncomplicated
and easy to understand.

3. DIF files are flexible enough to be adapted
to specalized situations.

4. The "EOD" feature provides a graceful way in
which to mark the end of the data file.

S. DIF files enhance language and program
i ndependence.

Disadvantages of DIF files include:

1. DIF files are only a "de—facto" standard.

2. Some processing of DIF files may be required

due to differences in operating systems.

29

2. If necessary, editing of DIF files may
require more effort than when the DIF format
is not used.

4. Because a DIF file may "fail to load" as a
result of either inconsistancies in data or
inconsistancies in file structure, there is
a greater chance for errors. As a result,
errors that do occur may be more difficult
to locate.

On balance, DIF files provide an exceptional tool
for the transfer of data. They represent a large "first
step” in the direction of establishing a much needed
industry standard. Currently, the number of software
developers who are using the DIF format is steadily
increasing. This indicates that the economic as well as
operational advantages of DIF files are begining to be
recognized throughout the industry. While DIF files may
never become an accepted, industry—-wide data exchange
standard, they hold the.potential for providing a solid
basis for such a standard should one be developed. To
this end, Software Arts, Inc. has established the DIF
Clearinghouse for the purpaose of coordinating
information concerning DIF files. For further
information concerning DIF files, correspondence can be
sent to:

DIF Clearinghouse

P.0. Box 527
Cambridge, MA 62139

30

10.

11.

12.

i3.

14,

15.

16.

17.

18-

19.

20.

<DIF FILE>
<{HEADER PART>
{HEADER ITEM>
<H-FIELD#1>

<H-FIELD#2>

<H-FIELD#3>
<DATA PART>
<TUPLE>
<{VECTOR>
<DATA VALUE>

<D-FIELD#1>

<D-FIELD#2>

<TOPILC>

<NUMBER VALUE>

<{STRING>

<DIGIT:>

<ALPHA>

{CHAR>

<COMMA>

<TYPE INDICATOR>

(3]

<HEADER PART>:<{DATA PART>
2{{HEADER ITEM>}
<H-FIELD#1>:<{H-FIELD#2>: <H-FIELD#3>
<TOPIC>:<CR>

<TYPE INDICATORZX:<COMMAX>:<NUMBER
VALUE>:I<CR>

<{BUOTE>:<STRING>!<{NULL>:<QUOTE>:<CR>
1{<{TUPLE>}

<DATA VALUE>:1{VECTOR}:<DATA VALUE>
1{{DATA VALUE>}
<D-FIELD#1>:<D-FIELD#2>

*{MINUS>I<{TYPE INDICATORX>:<COMMA>:
<{NUMBER VALUE>:<{CR>

*{EUBTE>:(STﬁINE}l<UALUE INDICATOR>:
*QUDTE>:<CR>

{<ALPHAS>?}

* OPERATORS>: 1{<{DIGITS>J: *[{EXPONENTS>!
*<OPERATORS>: 1{<DIGITS>31

*{~{ALPHA>1 1™{DIGIT>i 1"{CHAR>}
O11§2)....19
AIBICI....I1Z

#l1E1%l.... 17

o1tz

Fi6 3.8

(CONTINUES ON NEXT PAGE)

31

21. <OPERATOR>

22. <MINUS>

23. <EXPONENT:>

24. <CR>

25. <NULL>

LEGEND:

11 AND

! = 0OR

*+ = 00R 1

3

I

I

O OR MORE

<> NON-TERMINAL

IS FOLLOWED BY

n OR MORE (WHERE n IS SOME NUMBER)

FIG 3.8 (CONT.)

32

CHAPTER IV

SYSTEM UNIQUE SOFTWARE

4.1 GENERAL

In addition to the commercial software packages, it was
necessary to develop two applications programs which were
unique to the DIF BUILDER SYSTEM. The Ffirst of these
programs, refered to as DIF_BUILDER, 1is designed to
construct DIF files +rom data supplied by the user. The
DIF_BUILDER program resides on the Perkin—Elmer 8/32. The
second program developed for the DIF_BUILDER SYSTEM,
DIF.PURGE, resides on the Apple 11 énmputer and is used to
reformat the DIF file (see Figure 4.1). For ljstings of

these programs see Appendix A.

4.2 DIF BUILDER PROGRAM

The DIF_BUILDER program resides on the host computer,
its function is to construct DIF files. The program
employes Perkin—-Elmer PASCAL as its base language and is
implemented on a Perkin—-Elmer 8/32 computer which operates
under the 0s/32 operating system. DIF_BUILDER is a
interacitive program which can be run by invoking a CS5S
file. The CSS filename is BUILDER. When run, this program
creates a text File. The text file is constructed in the
DIF file format and then written into the user’s filespace.

i one of its features, DIF_BUILDER automatically name the

33

THE DIF_BUILDER

ENVIRONMENT
“
INPUT
[USER_INTERFACE |
%
pATA SYSTEM
STREAM COMMAND
¥ STREAM
,{
i
f PE 8/32 DISK
05/32 STORAGE
) DEVICE
l > BUILDER-]
;L |
DIF_BUILDER {DIF_BUILDER|
!
’i
Ln-z—q—-x—n-—x-— = X = HeX == XX x = K= A=) —"_D IF. PE

FIG 4.1

file it creates. In all cases the new file will be
identified as DIF.PE (DATA INTERCHANCE FORMAT.PERKIN-ELMER}.
The user®s can access, edit or transfer a given DIF file by
refering to DIF.PE. In addition, the option to rename the
file anytime after its construction is available through the

use of the rename command.

4.3 DIF_BUILDER STRUCTURE

DIF_BUILDER is comprised of six distinct procedures.
These procedures are INIT_FILE, HEAD BUILDER, DATA_BUILDER,
CONVERTER, READ_TERM and WRITE_FILE (see Figure 4.2). A
brief description of the functions of each procedure
follows.

1. INIT_FILE: The purpose of INIT_FILE is to
establish the program’s interactive relationship
with the user. It accomplishes this by
providing the user with a brief introductian to
the program and its purpose. The user is then
given the opportunity to continue when he is
ready or to terminate if he so desires. If the
user elects to continue, INIT_FILE opens a file
into which DIF formated output can be written.

2. HEAD_BUILDER: This procedure is called from
INIT_FILE. The purpose of HEAD_BUILDER is to
construct the DIF file HEADER PART. DIF_BUILDER
empl oys only the four, most common, TOPIC

IDENTIFIERS (TABLE, VECTORS, TUPLES, DATA).

35

PROGRAM STRUCTURE

—

LEGEND?:
INPUT
OUTPUT
(\\‘FPROGRAH
CONTROL
. _ _ CROSSOVER
‘ ¥ = opINT

WRITE_FILE

©

READ_TERM

CONVERTER

®

[

r

DATA_BUILDER

®

HEAD_BUILDER

®

INIT_FILE

MAIN PROGRAM

FIG 4.2

Although these are more than adequate in most
Cases, this restriction may, under certain
conditions, 1limit the ability of the user to
tailor a given file to his particular needs. If
desired the program could be restructured to
allow for the addition of other TOPIC
IDENTIFIERS -to the HEADER PART. In addition to
allowing for the introduction of the two
required TOFPIC IDENTIFIERS into the file,
DIF_BUILDER also allows the user to enter the
number of VECTORs and TUPLEs from which the DIF
file will be constructed. This not only
provides a control mechanism for the
construction of the file but also enables
certain using programs to calculate the amount
of memory storage required to process the data
file. In all cases the number of VECTORs and
the number of TUPLEs is limited to between 1 and
9. Minor modification to this procedure and
the CONVERTER procedure would be required to
alter these limits. File output from
HEAD_BUILDER is passed to the WRITE_FILE
procedure for inclusion in the DIF file under
construction. Upon completion of this procedure
caontrol reverts to the main program.
DATA_BUILDER: This procedure is called from the

main program; its purpose is to construct the

37

DATA PART of the DIF file. The procedure begins
by automatically constructing a +Field with a
SPECIAL DATA VALUE, this is followed by a second
field which contains a STRING VALUE of "BOT."

This is a special case of the DATA VALUE which
marks the begining of all TuUPLEs. Following
this the procedure interactively queries the
user to enter the (data) TYPE INDICATOR and the
(data) NUMBER VALUE or the (data) STRING VALUE
for each VECTOR in the TUPLE. Requests for
input data are identified to the user in TUPLE,
VECTOR order. DATA_BUILDER constructs fields
which are 25 charactes 1long; any excess field
spaces are padded with blanks. As each field is
completed it is sent to WRITE_FILE for inclusion
in the file under construction. Finally,
DATA_BUILDER automatically inserts the "EOD"
DATA VALUE when it determines that data has been
recieved for all TUPLEs and VECTORs. When
completed, control returns to the main program
and the program terminates.

CONVERTER: This procedure is called by
HEAD_BUILDER. The purpose of CONVERTER is to
convert qiven input from character to integer
values. Once the conversion is complete,
program control returns to HEAD_BUILDER where

the integer numbers are used to monitor-the

38

count of VECTORs and TUPLEs created by the
program.

READ_TERM: Procedure READ_TERM is accessed by
several procedures within the program. It is
used to "read in" an 80 character input line
from the‘ terminal and then pass the line to the
calling procedure;

WRITE_FILE: This procedure is accessed by two
other procedures, HEAD_BUILDER and DATA_BUILDER.
1t serves two primary functions. First it edits
each input 1lime by removing all unnecessary
blanks and then adding a carriage return at the
end of the useable data in each field. This
reduces the total number of bytes which are
contained in the +file and serves to create a
field which is identical to the concept of the
field format as discused in CHAPTER 1III.
Second, WRITE_FILE writes the field, which is
now in its +final form, into DIF.PE. Finally,

WRITE_FILE can be used by any new procedures

~which might be added to DATA_BUILDER. Thus,

procedures could collect data other than
directly from the user. These procedures could
be designed so as to write their data into
arrays of type character. After the
construction of each array it would be passed to

WRITE_FILE for inclusion in the +file under

39

construction. Figure 4.3 provides an example of
DIF.PE as it would appear after being written

into the user file space.

4.4 DIF.PURGE PROGRAM

The DIF.PURGE program reformats DIF files which have
been transfered +from the host computer to the Apple II
computer. This reformating is required because the 05/32
operating system adds special padding characters to each DIF
file field as the field is being created (see Figure 4.3).
The unwanted characters consist of a series of three
underscore characters, a dash and then two more underscore
characters in front of each field. An additional underscore
is placed at the end of each field just prior to the
carriage return. These padding characters are suppresed by
the 0S/32 operating system and thus are never seen by the
user. However, since they cannot be ignored by the Apple II
nor by any of the software which uses DIF files, these
characters must be removed. DIF.PURGE accomplishes this by
individually examining each character to determine if it is
a padding character and then retaining or discarding the

character as necessary.

4.5 DIF.PURBE_LOBIC

The DIF.PURGE program is interactiv only to the extent
that it requires the user to specify the input filename

(DIF.PE unless previously changed by the user) and output

40

——

———

———— i —

—— e —

TUPLES_
0,5_

&5 12

- _DATA_

—— o —

—— —
———
—— ——

—

1,0_
PRECIPITATION_
1,0_ '
"AVE. MAX TEMP"
1,0_

"AVE. MIN TEMP"

FIG 4.3
(CONTINUES ON NEXT PAGE)

41

FIG 4.3 (CONT.)

42

filename. The wuser can rename his +file at this point.
DIF.PURGE has been designed to operate on a system which is
supported by at least two disk drives. As a result it
expects to read_the input file from disk drive# 1 and write
an output file +to disk drive# 2 (see Figure 4.4).

DIF.PURGE performs a character by character examination
of the input file. In every instance it tests to see to see
it the character to be removed 1is either a dash or an
underscore. The program assumes all underscores are
unwanted, thus it discards all such characters. However,
because a dash {or minus) frequently assumes a valid role in
the construction of a DIF +file, DIF.PURGE must perform a
seperate test each time a dash is located. This is done by
keeping track of whether or not a dash has already been
removed from the field that is currently being scanned.
Since there is only one offending dash in each field and
this is always the first dash encountered, it is possible to
determine the validity of a dash contingent upon whether or
not a dash has been previocusly removed from the field being
scanned. If a dash has already beén removed from the field
the “"suspect dash" is retained. If a dash has not been
removed from the current field then the "suspect dash” is
purged.

When it is determined that a character is valid that
chacter is stored in memory. After each character in the
file has been examined DIF.PURGE opens a new file and then

writes the valid character stream into the new file. Upon

43

THE DIF.PURGE ENVIRONMENT

DISK# 1

<DIF.PE>

DISK# 2

<{USER FN>

V—l——/

LEGEND: <FILENAME>

FIG 4.4

completion of the write process the program terminates.
Figure 4.5 depicts a DIF file after the file has been

processed by DIF.PURGE.

4.5 ASSESSMENT OF UNIQUE SOFTWARE

Both programs were instrumental in contributing to the
accomplishemnt of the stated intent of the project. First,
DIF_BUILDER made it possible to create a DIF file. Next,
DIF.PURGE enabled the file to be run in a machine
environment different from the one in which it was created.
Both of these functions were supportive of the overall
ocbjective of creating and transfering DIF files. In
addition, the development of these programs contributed
either directly or indirectly to the assessment of the
specified central issues:

1. Assess the utility of DIF files for use as a
data transfer medium.

2. Examine software which uses DIF files.

3. Ascertain the strengths and weaknesses of DIF
files.

4., Assess the impact of operations involving DIF
files when conducted in an inter—machine
environment.

Al though both programs exceeded the minimum
requirements necessary to accomplish their stated purpose,
they could both be enhanced through the implementation of

various modifications. DIF_BUILDER, could be improved by

435

TABLE
0,1

VECTORS

0,4

TUPLES

0,5

DATA

0,0

-1,0

BOT

240
PRECIPITATION
1,0

"AVE. MAX TEMP"
1,0

"AVE. MIN TEMP"
1,0

KILODWATTS

-1,0

BOT

0,3.7

v

0,29

FIG 4.5
(CONTINUES ON NEXT PABE)

-1,0
BOT
0,10.2
v

0,63

v .

0,45

v
0,10211
v

-1,0
EOD

FIG6 4.5 (CONT.)

47

enriching the number of TOPIC IDENTIFIERS which it supports.
Further, the program lacks the sophisticated error handling
routines necessary if & program is to be considered "user
friendly." DIF.PURGE could be converted to a structured
language such as PASCAL. In addition, DIF.PURGE should be
integrated with the terminal interface program. This should
be done to reduce the number of steps in the file transfer
process and to make the operation of DIF.PURGE transparent
to the user. Finally, because there are rare occasions when
an underscore may appear within a STRING VALUE of a given
DIF file, DIF.PURBE should be modified to enable it to test

each underscore for validity.

CHAPTER V

RECOMMENDAT IONS

5.1 PROGRAM EXPANSION

The DIF_BUILDER SYSTEM was designed as an instrument
through which DIF files could be studied. As a result, not
all features of tﬁe DIF format were incorporated into the
file construction program. This shortcoming could be
corrected by expanding DIF_BUILDER to include all DIF file

features as discussed in [SOFT 801].

5.2 FUTURE STUDY

Although DIF files provide a powerful method by which
to transfer common data streams (such as a stream of numbers
to be processed by a statistical analysis program), it is
possible that their scope of usefulness may extend other
more complex areas. In particular, DIF files may prove to
be a worthy medium for transporting data streams made up of
program elements or primitivg commands. Two unique
possibilities come to mind. First, in the area of computer
graphics, DIF files could be used to transfer series of
primitive commands which could be used by a recieving
program to recreate an image created on another machine.
The implication is that a larger machine would perform the
heavy processing associated with creating the original image
and writing the primitives into a DIF file. A smaller

machine would recieve and display the image.

49

A second area for consideration would be to study the
feasibility of wusing the DIF format to transport programs
from machine to machine. The receiving program would
convert the text input from the DIF file into a tokanized
output stream which could be written into a separate file.

After completion the tokanized file could be run as a

program.

[SOFT 8017

LCAND 811

[AHL 811

[VISI 811

BIBL IOGRAPHY

Software Arts Inc., Programmer’s Guide to DIF,
Software Arts Technical Note: SATN-18, 1980

Calish, C.E., and Mayer, M.F., DIF: A Format for
Data Exchange Between Applications Programs,
Byte, vol. &, no. 11, pp. 174-204, November 1981

Ahl, D.H., Evaluation of Visitrend and Visiplot
from Personal Software, Creative Computing, vol.
7, no. 12, pp. 98-104, December 1981

User’s Buide for Apple II % Ig_flus, 48K 16
Sector, Software Arts Inc., 1981

a1

8.

10.

11.

12-

13.

14.

15.

16.

REFERENCES

Lelbson, 5., The Input/Output Primer Part 1: What is
1/07, Byte, vol. 7, no. 2, February 1982.

Lelbson, S., The Input/Output Primer Part 2:

Interrupts and Direct Memory Access, Byte, vol. 7, no.
3, March 1982.

HP, With Software Packages, Lets Desktop Line
Communicate With Firm’s Mini’s, Data Communications,
vol. 10, no. 6, June 1981,

Private, Public Link is Videotex Key, Data
Communications, vol. 10, no. 5, May 1981.

Reintjes, P.B., Network Tools, Ideas for Intelligent
Network Software, Byte, vol. &6, no. 10, October 1981.

Loingfield, M., Build an Intercomputer Data Link,
Byte, vol. &6, no. 4, April 1981.

Saal, H.J., Local Area Networks, Byte, vol. 7, no. 10,
October 1981.

Malone, J., The Microcomputer Connection to Local
Networks, Data Communications, vol. 10, no. 12,
December 1981.

Klein, M., Files on Parade Part 1: Type of Files,
Byte, vol. 4, no. 2, February 1979

Klein, M., Files on Parade Part 2: Using Files, Byte,
vol. 4, no. 3, March 1979.

Paring a Local Net with Some Apples, Data
Communications, vol. 10, no. 1, January 1981.

Communications and Networking Invade the Home Front,
Data Communications, vol. 10, no. 2, February 1982.

Data Capture 4.0 Documentation, Southeastern Software,
1980

The DOS Manual, Apple Computer Inc., 1980.

Apple 11 Reference Manual, Apple Computer Inc., 197%9.

Applesoft Tutorial, Apple Computer Inc., 1979.

=2

17. BASIC Programming Reference Manual, Apple Computer
Inc., 1978.

18. Perkin—-Elmer PASCAL User’s Buide, Language Reference
and Run Time Support Reference Manual, Edward Sherman
Brown Data Systems Group, 1779.

APPENDIX A

Al

DIF_BUILDER PROGRAM LISTING

25

PROGHRAM DIF_BUILDER (CGUTPUT , TERi_IN , DIF_OUT)

(# DIF_BUILDER IS AN IHTERACTIVLE PROGRALL #)
(# WHICI ZUILDS DIF FILES FROM USER IHNPUT #)

; COHST ITEH _LIMIT =

; HEAD 1 = 'TABLE s
;3 HEAD 2 = 'VECTORS t
; HEAD_3 = 'TUPLES t
; HEAD 4 = 'DATA s
; HEAD 5 = '0,1 '
: READ_6 = '0,0 '
: HEAD_Q = 'nw '
; DATA_1 = '=1,0 t
; DATA 2 = 'BOT !
; DATA_3 = '0, '
;s DATA_ Y4 = 'V '
s DATA 5 = "1,0 '
; DATA 6 = '"EOD L
; MAXLN = 80

s STUB_SIZE =

; LAX_ENTRY_LEN = 25

; TEL = 10

TYPE <RY_ IHBE}: =1 .. HAX ENTRY_LEN

; TERii_INDEX = .+ HFAZLH

; STUS_INDEX = 1 .« STUS_SIZE

: TERM_LN = ARRAY [TEKM_INDEX] OF CHAR

s ENTRY_LK = ARRAY [EKTRY_INDEX] OF CHAR
: STUE = ARRAY [STUB_INDEX] OF CHAR

s DIF_FILE = FILE OF ENTRY_LI

: VAn INT_LUM : INTEGER

: TERM_IN : TEXT

TERIM_OGT : TERLL_LK

DIF _OUT : TEXT

VECTORS , TUPLES : CHAR
TEP_VEC , TELP_TUP : STUB
DOLE_FLAG : BOOLEAN

we We Wwe s Ws we

; PKOCLDURE URITE_FILE (DIF_LIME : ENTRY_LK)

(¥ THE WRITE_FILE PROCEDURE HAS SOLE RE= #)
(¥ SPOMSIBILITY rOR WRITIHG IHTO THE DIF #)
(# FILE SPACE &)

-e

VAR DIF_INDEX , OQUT_INDEX : ENTRY_INDEX
; STOP_INDEX : STUB_INDEX

;7 STOP_TST : STUB

; OUT_DOHE : BOOLEAN

BEGIN

OUT_DONE := FALSE

OUT_INDEX := 1

STOP_INDEX :=

DIF_IHDEY := 1

REPEAT

; DIF_INDEX := CQUT_INDEX

; FOR STOP_IHDEX := 1 TO STUB_SIZE
DO BEGIH

STOP_TST [STOP_INDEX] := IjIF__LIHE [DIF_INDEX]
; DIF_INDEX := SUCC (DIF_INDEX)

e we we we

?
END
IF STOP_IST = ' !
THEN BEGIH
OUT_DONE := TRUE
; DIF_LINE [OUT_INDEX] := CHR (13)
’
EHD
DIF_OUT " := DIF_LINE [OQUT_INDEX]
PUT (DIF_OGT)
OUT_INDEX := SUCC (OUT_IHDEX)
IF QUT_IHDEX = HAX_ENTRY_LEN + 1
THEH OUT_DOBE := TRUE
UNTIL OUT_DONE
OUT_INDEX :=
GIF_LINE := ' '
STOP_TST := ' !

we we we wua “we

[x] we we we we
]

:D

; PROCEDUEE READ_TERL: (VAR TERMINAL : TERK_LN)

(# PROCEDURE READ_TER! IS RESPONSIBLE FOR ¥)
(# ACCESSING 24D PASSING Ok TO THE OTHER #)

(# PROCSDURES ALL USER INPUT WHICH IS #)
(# RECIEVED VIA THE TERMINAL ®)

s VAR J : TERF_INDEX

s BEGIH
FOR J := 1 TO HAXLH DO BEGIN TERMINAL [J] := * ' ZND
RESET (TEREL_IN)
Jd =1
WHILE HOT (EOLH (TERH_IN))
DO BEGIH _
TERMINAL [J] := TER_IN ©

e WMé we

; J 3= SUCC (J)
; GET (TERFL_IN)
H
EHND

H

EED

; PROCEDURE COHVERTER (VAR TEMP_HUH : SiUB)

(# PROCIDUHE COIHiVERTER COHVERTS CHARACTER ¥%)
(# TYPE INPUT INTO INTEGER VALUES....THE ¥#)
(# INTEGER VALUES ARE USED BY PROCELUEE #)
(# DATA_BUILDER AS CQNTROL VAKIABLES ®)

; VAR CEVIR_CHNT : STUB_INDEX
; INT_RESULT : INTEGER
; SECOND_DIGIT : BUOLEAH

: REGIN
; CNVTR_CNT := 1
; SECOHD_DIGIT := FALSE
; INT_NUM := O
: FOR CNVTR_CNT := 1 TO STUE_SIZE
DO BEGIN
IF CNVTR_CNT
THENL BEGIN
INT_RESULT := ORD (TEP_NUH [CKVTK_CNT]) - ORD ('0')
INT _NUM := INT_RESULT ¥ TEK

1

ERD

H
EKND
IF CHVTL_CHT = 2
THEK CASE TEL:P_NUM [CHKVIR_CHT]
OF
101 ' 111 . 12! ¥ l3l . l}_|_| ’ !5! i iﬁl . iTl 3 '5' p lg!
: BEGIH
SECOND_DIGIT := TRUE
; INT_RESULT
:= ORD (TEIP_NUM [CHNVTR_CNT]) = ORD { 'O)

H
END
OTHERWISE TENP_NUM [CHVTR_CHNT] := ' '

END (# CASE TEWP_NUM OF #)
; IF SECOND_DIGIT
THEN INT_HUM := INT_HNUM + INT_RESULT
ELSE INT_NUM := INT_NUHM DIV TEN

?
ERD

oS9

L 3 U

; PROCEDURE DATA_BUILD:zR

PLOCEDUEE DATA_3UILDER COHSTRUCTS THE #)

DAT& PART OF THE DIF FILE. THIS IS #)
THE ONLY PROCEDURE WHICH CAKN CREATE)
INPUT DATA STRUCTURES FOR THE DIF FILE ¥#)
DATA PAKT ¥)

: VAR VEC_NUH , TUP_NUK : INTEGER
TERF_CKT , VCI_INDEX , TPL_CHNT : INTEGER
PRINTED : BOOLEAN

DIF_LK : EHTRY_LH

LINE_INDEX : ENTRY_INDEX

TERKINAL : TERI_LH

we We Wa wa we

BEGIN
PRINTED := FALSE
; LINE_INDEX :=
FOR LINE_INDEX := 1 TO MAX_ENTRY_LEN
DO DIF_LN [LIHE_IHDEX] = ' '
CONVERTER (TBHP_VEC)
VEC_HUM := INT_NUM
CONVERTER (TEWP_TUP)
TUP_HUM := INT_NUH
FOR TPL_CKT := 1 TO TUP_NUH
DO BEGIN
DIF_LE := DATA_1
WRITE_FILE (DIF_LN)
DIF_LN := DATA 2
WRITE_FILE (DIF_LKN)

-

e WMe We wWe

VCI_INDEX :=

s WHILE VCT_INDEX < VEC_NUn
DO BEGIN
: VCT_INDEX := SUCC (VCT_INDEX)
: WRITELE '

{ 'ENTER DATA TYPE FOR TUPLE..' : 27 , TPL_CNT : 3
s ' VECTOR..' : 10 , VCT_INDEX : 3)

3 IF NOT PRINTED

THEN BEGIN

HRITELK

URITELH

WRITELL ('REMIKDER: ENTER "0" FOR LUHERIC DATA')

WRITELR

WRITELN

WRITELM ('REMINDER: EKTER "1" FOR STRING DATA!')

WRITELN

WRITELN

PHINTED := TRUE

[T] we wa we e we we w6 un we

=

1

; READ_TERHM (TERMINAL)
; FOR LINE INDEX := 1 TO HAX_EWTRY LEK
DO BEGIN
DIF_LL [LINE INDEX] := TERMINAL [LIHE_INDEX]

END

; CASE DIF Lis L 1]
OF
lol
: BEGIN
DIF_LE := DATA_ 3
WRITELL: ('ENTER HURERIC DATA')
READ_TERM (TERMINAL)
TERM_CNT := 1
FOR LINE_TIHDEX := 3 TO HMAX_ENTRY_LEN
DO BEGINH
DIF_LK [LINE_INDEX] := TERKINAL [TERi CKT]
s TERM _CNT := SUCC (TERH_CHT)
EH4D
WRITE_FILE (DIF_Lk)
DIF_LN := DATA U4
YRITE_FILE (DIF_LE)

e wE We wa

EKD
I1]

: BEGIN

DIF_LK := DATA S

WRITE_FILE (DIF_LN)

WRITELN ('EKTER STRIHG DATA')

READ_TERM (TERMINAL)

TuRIL_CHT :=

FOR LIHE_INDEX := 1 TO HAX ENTRY_LEN

DO BEGIN

; DIF_LN [LINE _INDEX] := TERMIHAL [TERr_CNT]
: TERM _CNT := SUCC (TERH_CNT)

EHD

WRITE_FILE (DIF_LY)

-

e Me WE Wws wWe

* we

b

END

OTHERWISE

~ BEGIN _ _
WRITELK ("ATTEMPT TO ENTER INVALID DATA TYPE')
WRITELN ('RE-ENTER DATA TYPE AS INSTRUCTED')
VCT_INDEX := PRED (VCT_INDEX)

-e

we W we we

END _
END (# CASE DIF_LN OF #)
?
END
;
END .
DIF_LN := DATA_1}
WRITE_FILE (DIF_LK)
DIF LN := DATA_6
WRITE_FILE (DIF_LK)

[x] =+ ws ws we we

KD

&1

; PROCEDURE HEAD_BUILDER

(* TEIS PROCELURE COSTRUCTS THL HEADER #)
(# OF THE DIF FILE. IT IS HITHIN THIS %)
(* PROCELUHE ThAT THE &ULMBER OF VECTORS ¥#)
(# AlD TUPLES THZ #»ILE WILL CONTAIN IS *)
(* ESTABLISHED BY THE USER. ®)

; VAR VEC_CNT , HEAD_CRT , TEMP_CHT , TUP_CNT : ENTRY_INDEX
; LOOP_CNT , VEC_NUE , TUP_NU# : INTEGER
; HEAD _DOGIIE , COUNT_DONE : BOOLEAN
; TERMINAL : TERM_LK
3 FILE_LEK : ENTRY_LN

; BEGIN
WRITELH
(
'THIS PROCEDUKE CONSTRUCTS 4 STAIDARD HEADING SECTIOM FCGR A DIF_FILE®
)
WRITELN ('"ENTER THE NUMBER COF VECTORS')
READ_TERi{ (TERHINAL)
VEC_CHT := 1

H

:

- =

; HEAD _CHT := 1

7 TEHP_CHT := 1

; TUP_CHNT := 1

; FOR HEAD _CNT := 1 TO MAX ENTRY_LEN
DO FILE_LN [AD CKRT] 2= * ¢

HEAD_CNT := 1
; FOR VEC_CNT := 1 TO 2
DO BEGIN
CASE TERMINAL [HEAD_CNT]
OF
IGI " 11' ' |2l " l3| . lhl . I'5! y |6|' y !TI y !6! ’ Cgl
: BEGIN
TEL.P_VEC [HEAD CNT] := TuREIWAL [HEAD_CHT]
; HEAD_CNT := SUCC (EEAD_CNT)

?
ERD
OTHERWISE TEHP_VEC [HEAD CHT] := ' !

?
3
ELD

)
EKD

62

We we ws we s

e we Wy we W

VRITEL: ('EWTER THE KUMBER OF TUPLES')
READ_TERH (TERMINAL)
TUP_CNT :=
HEAD_CHT := 1
FOR TUP_CHT := 1 T0 2
DO SEGIN
CASE TERIIHAL [HEAD_CWT]
OF
IGI i I‘ll 5 l2| ' 13I " 'ul . ISI § l6| ¥ |7l 5 16' § lgl
: BEGIN
TEi:P_TUP [EEAD_CNT] := TERKINAL [HEAD_CHT]
HEAD_CKT := SUCC (HEAD_CHT)

?
END
OTHERWISE TEIP_TUP { HEAD_CKT] := ' !

H
H
EID (# CASE OF TEKP_TUP ¥)

’
Ei.b (® FOR TUP_CHT #)
HEAD_CHNT := 1
VEC_CHT :=
TUP_CHT := 1
LOOP_CRT :=
REPEAT BEGIN

LOOP_CNT := SUCC (LOOP_CKT)

; CASE LOOP_CHT
OoF
1

BEGIHN
FILE LK := HEAD_1
WRITE_FILE (FILE_LN)
FILE_LIi := HEAD_S
WRITE_FILE (FILE LN)

ae

D (% FIRST HEADING ITEM #)

s PO [T] we we we we

BEGIH
FILE LN := HEAD 2
WRITE_FILE (FILE LN)
FILE LN := HEAD 5
FOR HEAD_CKRT := 3 TO &
DO BEGIH
FILE LN [HEAD CNT] := TEHP_VEC [VEC_CWT]
; VEC_CNT := SUCC (VEC_CHNT)

we we ww

EKD
: WRITE_FILE (FILE_LN)
END (# SECOND HEADING ITENM #)
HI
: BEGIN

FILE LN := HEAD_ 3
WRITE_FILE (FILE_LH)
; FILE_LK := HEAD S5
; FOR HEAD_CHT := 3 TO &
DU BEGIN
FILE LY [EEAD_CNT] := TEMP_TUP [TUP_CWT]
; TUP_CHNT := SGCC (TUP_CNT)

)
END &3

YRITE_FILE (FILE LN)

-

EXD (% THiIRD HEADIUG ITEW #)
; 4

: BEGIN
FILE LN := HEAD_&4
WRITE_FILE (FILE_ LN)
FILE LK := HEAD 6
WRITE_FILE (FILE_LN)

we we wm we

END (# FORTH HEADING ITEl #)
3 OTHERWISE HEAD_DONE := TRUE
END (® CASE LOOP_CHT OF #)
FILE Lk := HEAD Q
WRITE_FILE (FILE_LN)
‘IF LOOP_CNT = ITEl_LIMIT
THEH HEAD_DOHE := TRUE

-a we Wa

iy e

EHD

3
UNTIL HEAD_DOHE
; DONE_FLAG := FALSE

L]
EED

(=
(E

; PRGCZDULE INIT_FILZ

-1
i
KE

INIT_FILE ESTABLISHES THE INTERACTIVE #)

LATIONSEIP \ITH THE USER. ®)

VAR TERM_KMSG : TERK_LK

.

TEST : ARRAY [1 .. 5] OF CHAR

y LI_INDEX : TERK_INDEX

BEGIN

WE we We wa wa we we

e M e wE e ME WA We e W

; DONE_FLAG := FALSE

WRITELN
(
'THIS PROGRAM BUILDS A "DATA INTERCHAWGE FORIAT"™ (DIF) FILk.'
)
WRITELN
WRITELH
URITELH
(
'*DURING THIS SESSION A DIF FILE WILL B£ CREATED AND WKITTER'
)
YRITELN ('INTO YOUR FILE SPACE')
WRITELH
WRITELN
WRITELE ('THE FILE CAN BE ACCESSED BY REFERING 10 DIF.pPE')
WRITELK
WRITELKN
WRITELN
(
'FOR FURTHER INFORMATION REFER TO "THE DIF BUILDER TUTORIAL"'
)
WRITELE ('APPENDIX "B" TO KSU HASTER™S REPORT ENTITLED :')

WRITELN (' "DATA INTERCHAKGE FORMAT FILES:')
WRITELH ('A SIMPLE, DIRECT APPROACH TO PROVIDIKG®)
WRITELK (* TRANSPROTABLE GRAPHICS DATA®!)
WHITELE

WRITELL

WRITELL ('WHEK YOU ARE READY TO COWTIJUE TIPL "START®')
WRITELN ('TO TERHINATE TYPE “STOP"')

READ_TERH (TERN_IMSG)

FOR LN_IHDEX := 1 T0 5

DO BEGIN

s TEST [LN_INDEX] := TLRE _IiSG [LN_INDEX]

)
"EWD

IF TEST = 'START'

THEN HEAD_BUILDER

ELSE BEGIN

URITELN ('PROGRAM TERHINATED')
DONE_FLAG := TRUE

e Wy we

EKD

ERD

; BEGIN

e we we we we

RIWRITE (LIF_OLT)
TEIP_VEC := v 1
TEL:P_TUP := v 7
IKIT _FILE

IF DOHE_FLAG = FALSE
THE} DATA BUILDER
ELSE

EiiD

XDEL DiF.PE

AL DIF.PE,IH#,80
LO DIFGLDK

AS 0,COL:

AS 1,COH:

AS 2,DIF.PE

ST

SEXIT

67

A2

DIF.PURGE PROGRAM LISTING

&8

S REM PROGRAM DIF.PURGE

10 CLEAR : REM SETS ALL FIELDS TO ZERO
20 PRINT D%$;5 "MAXFILES 5": PRINT

22 REM VARIABLE DECLARATION SECTION

24 REM A% — ARRAY IDENTIFIER

25 REM B$ - VARIABLE USED TO RETRIEVE
INPUT CHARACTERS

26 REM C% — USED TO TEST FOR THE END
OF THE FILE

30 REM I$ — INPUT FILE IDENTIFIER
40 REM W$ — DUTPUT FILE IDENTIFIER

45 REM "I"™ — INPUT LOOP-CONTROL VARIABLE..
USED TO IDENTIFY EACH ROW IN AN ARRAY

S0 REM “J" — INPUT/0UTPUT LOOP—-CONTROL
VARIABLE..USED TO IDENTIFY EACH CHARACTER
IN EACH ROW OF AN ARRAY

a5 REM "K" - OUTPUT LOOP-CONTROL VARIABLE..
USED TO IDENTIFY THE CURRENT ROW DURING THE
OUTPUT PROCESS :

70 D$ = CHR$ (4): REM CONTROL D (ET)

0 R$ = CHR$ (13): REM CONTROL M (CR)

100 U$ = CHR$ (95): REM (UNDERSCORE)

110 DIM A%$(200,20): REM DEFINES AN INPUT
OUTPUT ARRAY

120 PRINT "THIS PROGRAM RETRIEVES AND EDITS
TEXT FILES CREATED BY THE DATA CAPTURE PROGRAM"

130 PRINT

140 PRINT "INPUT FILES ARE ACCESSED FROM
DISK 1"

141 PRINT

150 PRINT "OUTPUT FILES ARE WRITTEN TO
DISK 2"

151 PRINT

&9

- 160 PRINT "MON C,I,0 IS IN EFFECT"
170 PRINT : PRINT : REM DOUBLE SPACE

180 INPUT "ENTER INPUT FILENAME "5Z%: PRINT :
REM REGUIRES THE USER TO IDENTIFY THE
INPUT FILE

190 INPUT “"ENTER OUTPUT FILENAME "sW$: PRINT :
PRINT : REM ALLOWS USER TO NAME HIS
OUTPUT FILE

210 PRINT D%;"MON C,I,0": PRINT :
REM ALLOWS USER TO MONITOR DOS (DISK
OPERATING SYSTEM) COMMANDS AND DOS 1/0

220 PRINT D$;"OPEN "3Z$;",Di": REM OPENS
THE FILE TO BE REFORMATTED

230 PRINT D$:;"READ "3Z$: REM READS THE
FILE TO BE REFORMATTED

240 I =1+ 1: REM COUNTER FOR ROWS IN THE
ARRAY :

250 J = 0: REM COUNTER FOR CHARACTERS IN
EACH ROW

2560 GET B$: REM RETRIEVES A SINGLE CHARACTER
FROM THE INPUT FILE

270 FLAG = 0: REM INITIALIZES "FLAG"..
»Q"INDICATES THAT THE CURRENT CHARACTER
1S vALID

280 IF B$ = R$ THEN GOSUB 1000:
REM THIS IS AN END OF FILE TEST

00 IF B$ = “-" THEN GOSUB 2000:
REM TESTS FOR A VALID DASH OR MINUS
SIGN

305 IF FLAG = 1 THEN GOTO 260: REM
CAUSES THE NEXT CHARACTER TO BE RETRIEVED
WHEN THE DASH IS NOT VALID

310 IF B$ = U$ THEN GOTO 260: REM DELETES
THE UNDERSCORE THEN GETS NEXT CHAR.

320 J =J + 1: REM NUMBER OF CHARACTERS

IN THE CURRENT ROW IS INCREMENTED
BY ONE

70

340

350

410

420

430

450

4450

470

420

&00

610

A${I,J) = B%: REM ASSIGNS THE CURRENT
INPUT CHARACTER TO THE INPUT ARRAY

Cs = Bs: PRINT B#3;: REM C$ IS USED AT
LINE 1000 TO TEST FOR END OF DATA

IF B$ = R$ BOTO 240: REM TESTS FOR A
CARRIABE RETURN..IF TRUE, "I" IS5 INCREMENTED
BY ONE AND "J" IS SET TO ZERO

GO0TO 260: REM LOOPS BACK TO ACCESS
NEXT CHARACTER

REM THE FOLLOWING SECTION IS USED

TO WRITE THE REFORMATTED FILE TO

DISK 2. IF A FILE OF THE SAME NAME ALREADY
EXISTS ON DISK 2 IT WILL BE OVERWRITTEN
PRINT R$;D$"OPEN";W$;",D2

PRINT D$;"DELETE "iW$

PRINT D$3;"OPEN ";W$3;",D2

PRINT D$;"WRITE "iW$

I =1-1: REM RESETS "I" ERUAL TO
THE LAST ROW IN THE INPUT ARRAY WHICH
HAD VALID INPUT

J =0

FOR K =1 7O I: REM "K" 15 ESTABLISHED
AS A LODOP CONTROL VARIABLE..WHEN "K" IS
BREATER THAN "I" THEN THE ARRAY WILL BE
EMPTY

J = 1: REM SETS "J" TO THE FIRST CHARACTER
IN EACH ROW '

FOR J = 1 TO B8O
PRINT A$(K,Jd)}:

IF AS(K,Jd) < > R$ THEN NEXT J: REM
TEST FOR END OF CURRENT OUTPUT LINE

NEXT K
PRINT D$;"CLOSE "3W$: REM FILE *HOUSEKEEPING~

PRINT D$;"CLOSE "3Z%: REM FILE “HOUSEKEEPING

71

&20 PRINT D$5“NOMON C,1,0": REM TURN MONITOR OFF
&30 END

00 REM THIS SUBROUTINE TESTS FOR THE
END OF THE INPUT FILE

1000 IF B$ = C$ THEN &0TO 400 REM THIS
CONDITION CAN ONLY OCCUR IF THE END OF
THE INPUT FILE HAS BEEN REACHED..IF TRUE,
CONTROL IS SENT TO THE PROGRAM OUTPUT
SECTION.

1010 RETURN

2000 REM TEST FOR VALID DASH OR MINUS SIGN

2010 IF H =1 THEN FLAG = 0: REM INDICATES A
DASH HAS ALREADY BEEN REMOVED FROM THE
CURRENT INPUT LINE

2020 IFH< > 1 THEN FLAG = 11 REM
INDICATES A DASH HAS NOT YET BEEN REMOVED
FROM THE CURRENT LINE

2030 IFH< >1I THENH = I: REM SETS
"H" TO THE CURRENT INPUT LINE VALUE..
THIS IS USED TO INDICATE A DASH HAS
BEEN REMOVED FROM THE CURRENT LINE

2040 RETURN

72

APPENDIX B

DIF BUILDER TUTORIAL

INTRODUCTION

The DIF BUILDER TUTORIAL consists of step-by-step
instructions for implementing the DIF_BUILDER SYSTEM. The
system is designed to allow the user to create a DIF file on
the Perkin-Elmer 8/32Z computer and then transfer the file to
an Apple 11 computer. The DIF file serves as a medium by
which the user can transport data. Once transfered the DIF
file is used to provide a data input stream to the
Visiplot/Visitrend graphics plotting package. To
successfully create and transfer a DIF file four separate
phases ﬁf activity must be accomplished. Each of the phases

will be discussed in detail in the following four sections

74

SECTION I

PHASE 1I: FILE CONSTRUCTION

Phase 1 is the only phase conducted on the Perkin—-Elmer
8/32 computer. Implementation of this phase requires the
DIF_BUILDER program and the BUILDER command substitution
system (CSS) Ffile to be resident on the host computer.
These +Files may be either in a puﬁlic access mode or in the

user’s file space.

STEP I: You should organize your data in TUPLE,
VECTOR order. This can be thought of as row, column
order, with the TUPLEs equating to rows and the columns
equating to VECTORs. Each TUPLE can be viewed as
containing data from a ’snapshot’ in time. The VECTORs
would represent the components of the “snapshot.’ For
example, a file containing revenue, cost and profit data
for an entire year could be visualized as a data matrix.
Each month of the year would be assigned a TUPLE (or
row) and each TUPLE would contain three VECTORs (or
cnluﬁns). In this case the VECTORs in each TUPLE would
be revenue, cost and profit for a given month. For a
more detailed explaination of VECTORs and TUPLEs and how
they are used to organize data see Chapter III of this

report.

75

STEP II: Once the data is organized, sign—on to the
host computer. After signing—on, activate DIF_BUILDER
by entering "BUILDER". This produces a call to a €SS

file which activates the DIF_BUILDER program.

STEF III: When the DIF_BUILDER program is initiated the

screen will display the following messages:

"THIS PROGRAM BUILDS A DATA INTERCHANGE FORMAT FILE"

"DURING THIS SESSION A DIF FILE WILL BE CREATED AND
WRITTEN INTO YOUR FILE SPACE"

"THE FILE CAN BE ACCESSED BY REFERING TO DIF.PE"

"FOR FURTHER INFORMATION REFER TO THE DIF BUILDER
TUTORIAL"

"APPENDIX °B° TO KSU MASTER’S REPORT ENTITLED: "

= DATA INTERCHANGE FORMAT FILES =

"A SIMPLE DIRECT APPROACH TO PROVIDING"

" TRANSPORTABLE GRAPHICS DATA "

"WHEN YOU ARE READY TO CONTINUE TYPE *START"

"TO TERMINATE TYPE ’STOP’"

If vou respond with input other than "START" the message
"PROGRAM TERMINATED" will appear and the program will

terminate. In order to continue, enter "START". The

following messages will appear:?

"THIS PROCEDURE CREATES A STANDARD HEADING SECTION
FOR & DIF FILE"
"ENTER THE NUMBER OF VECTORS®

After vyou have entered the number of VECTORs in your

76

data matrix you will recieve the following message:

"ENTER THE NUMBER OF TUPLES"

Respond to this message by entering the number of TUPLEs
contained in your data matrix. Next vyou will be
prompted to enter the data TYPE INDICATOR for each

VECTOR within each TUPLE.

"ENTER DATA TYPE FOR TUPLE..1 VECTOR..1"

The following reminders occcur only on the first

iteration of the data entry loop.

"REMINDER: ENTER ’0° FOR NUMERIC DATA"

"REMINDER: ENTER "1° FOR STRING DATA"

At this point enter the data TYPE INDICATOR for the

TUPLE and VECTOR as indicated in the prompt. The next

prompt will depend upon the data TYPE INDICATOR most

recently entered.

"ENTER NUMERIC DATA"

"ENTER STRING DATA"

When the prompt is recieved, enter the DATA VALUE or
STRING VALUE as indicated in the prompt. The program
will continue to request data wuntil input has been

acquired for each VECTOR of each TUPLE.

The program will terminate once all items within the
data matrix have been satisfied. At this point a file
entitled DIF.PE will have been written into your file space.
DIF.PE can be treated as any other file in your file space.
If you would like to rename DIF.PE now would be a good time
to do so. If yvou intend to create more than one DIF file,
DIF.PE will have to be renamed since DIF_BUILDER over—-writes
any existing file named "DIF.PE" each time it is run. This

ends PHASE 1.

78

SECTION II

PHASE II: FILE TRANSFER

During PHASE 11 you will transfer a file from the host
computer to the Apple Il computer. To do this you will need
to use two of the four diskettes which help to make up the
DIF BUILDER SYSTEM. The diskettes are labeled
"VISIPLOT/VISITREND", ©“DIF.PURGE", "DATA CAPTURE 4.0" and
"PURGED FILES." Place the diskette labeled "DATA CAPTURE
4.0" into DRIVE# 1 and the diskette labeled "DIF.PURGE" into
DRIVE# 2 (see Figure B.1). Switch the Apple 11 and the
monitor “ON" after inserting the diskettes. The "ON/OFF"
switch for the Apple II is located at the left-rear of the

machine.

79

APPLEAII DRIVE® 2

DRIVE# 1
VISIPLOT/ PURGED DIF.PURGE DATA CAPTURE
VISITREND FILES 4.0

FIG B.1

After a short pause the following heading will appear on

your monitor:

DRIVE = 1 CAPTURE ON TRRNSHIT.DN

LINES = 0 SPECHAR|[OFF| DUPLEX [HALF
BAUD = 300 REMOTE CARRIER [OFF]

* INDICATES INVERSE DISPLAY: | [

FIG B.2

The Ffollowing series of steps changes the DATA CAPTURE 4.0

default conditions, thus making it compatible with the host

80

computer.

1. PRESS "ESC" {(accesses a generalized menu)

2. PRESS "T" (accesses a "toggle" menu"”

3. PRESS "A" (establishes DRIVE# 2 as the primary drive)
RESULT: DRIVE = 2

4. PRESS "ESC"

5. PRESS "T"

&. PRESS "C" (disables data capture ability)
RESULT: CAPTURE OFF

7. PRESS "ESC"

8. PRESS "T"

9. PRESS “D" (puts data capture in duplex mode)
RESULT: DUPLEX FULL

Data capture 4.0 is now properly configured — your monitor

should appear as follows:

DRIVE = 2 CAPTURE = OFF TRANSMIT ON
LINES = 0 SPECHAR =[OFF_] DUPLEX FULL
BAUD = 300 REMOTE CARRIER

FIG B.3

To establish a communications 1link with the host computer

follow these steps:
i. PRESS "“ESC"

2. PRESS “E" (This allows you to enter the phone number

81

through which vyou will be 1linked to the host
computed.)
MONITOR DISPLAY:

PHONE DIAL ING ROUTINE

ENTER THE NUMBER TO BE DIALED

PRESS RETURN TO ABORT

PHONE#

{NOTE: Current numbers through wihich the
Perkin-Elmer can be accessed are: 537-0463/1832.

The dash is optional.)

At this point you should be linked to the host computer.

The Apple II will be treated as any of the other terminals

hocked to the host, except it will be slower (300 baud).

Take the following steps:

SIGN-ON AS YOU NORMALLY DO
TYPE "COPYP filename,CON: [DO NOT PRESS RETURN 1
PRESS "ESC" (MENU..You are in the "smart" terminal
mode)
PRESS "T® ("toggle" mode)
PRESS "C" (enables data capture)
RESULT: CAPTURE ON

PRESS "RETURN" (Wait for a few seconds)

The DIF file will appear on the monitor as it is being

loaded

which

into memory. Note that the maximum number of lines

can be transfered via DATA CAPTURE 4.0 is 300. To

82

transfer larger +Ffiles see the DATA CAPTURE documentation.
When the entire file has been transfered, review your file
by using the DATA CAPTURE list feature. But first you must

disable the data capture feature. Take the following steps:

1. PRESS "ESC"

2. PRESS "T"

3. PRESS "C"

4. PRESS "ESC™

5. PRESS "L"

6. PRESS "RETURN"

7. PRESS <any key> (to stop listing)

8. PRESS "ESC" (to continue listing)

Dnce satisfied that the file is complete, you must remove
any excess lines which were transfered as part of the data
capture process. Excess lines will appear prior to the
first 1line of the DIF +File and after the last legitimate
line in the DIF file. The first and last lines of DIF file

should always appear as shown below:

FIHST LIE assmaw ________TABi_E

LAST LINE =

In Figure B.4, 1lines 1 through 3 would be have to be

deleted. To delete unwanted lines:

i. PRESS "ESC"

9-

10.

11.

12.

After

PRESS “D"

ENTER BEGINING LINE# (line# 1 in FIG B.4)
PRESS "RETURN"

ENTER ENDING LINE# (line# 3 in FIG B.4)

PRESS "RETURN"

RE-LIST THE FILE {(Note that the line numbers have
changed.)

IDENTIFY UNWANTED LINES AT THE END OF THE FILE
{(Lines 63 and 464 in FIG B.3)

PRESS "ESC"

PRESS “D"

ENTER LINE NUMBERS TO BE DELETED

PRESS "RETURN"

completion your file should appear as in Figure B.é4.

Note the first and last lines. Once satisfied with the

transfered +File write the file to the diskette. Proceed as

indicated:

CHECK MONMITOR DISPLAY TO INSURE THAT YOU ARE WRITING
TO THE CORRECT DRIVE (I.E. DRIVE = 2). IF NOT,
PRESS “ESC", PRESS "T", PRESS "A". (Now your
display should read: DRIVE = 2.)

PRESS "“ESC*

PRESS "W

ENTER THE FILENAME TO BE SAVED. (You can rename your
file at this point if you so desire.)

PRESS "RETURN" (Your file is now being saved to the

84

2-
3. _
r'y -__TABLE_

S. - _0,1_

&, - Hu

7. ___—__VECTORS_
8. ___ - _0,1_

9- --__—II H-

10. ___-__TUPLES_
11. ___— _0,12_
12. --—_—-Il I"

13. ___—-__DATA_
14. ___ - _0,0_

15. - _un
16. -__-1,0
7. - __BOT_
18. -__0,103_
19. -

20, ___—-__-1,0_
21. ___—-_ _BOT_
22, ___-__0,107_
23. ___~—-__V_

24, - _-1,0_
25. ___—__BOT_
26. ___—__0,119_
27. ___—__N_

28. ___~-__-1,0_

29 - -__BQT_
30. -~ 0,105_

31. ___-__V_

32. ___ - __-1,0_
33. ___—__BOT_
34. ___-__0,87_
3D. ___-—__NV_

36. ___~—__—-1,0_
37. ___-—__BOT_

38. ___-__0,82_
39. -V

40, - -1,0_
41. - _BOT_
42, - 0,79_
43. -V

43, - -1,0_
45, - __BOT_
46. ___—__0,93_
47. -V

FIG B.4

(CONTINUES ON NEXT PAGE)

48.
49,
50.
S51.
S2.
S3.
o4.
S5.
o6.
S7.
S58.
9.
&0.
61,
62.
63.
&4.
&5.
&b.
&7.
0

8.

———

- _JIM --ND OF TASK CODE=

ELAPSED TIME=00:00:32

FIG B.4(CONT.)

8&

1.
2.
3.
4.
3.
&.
7.
B.
7.
10.
11.
12.
13.
14,

___-__0,82_

FIG B.S

(CONTINUES ON NEXT PAGE)

87

44, - ~-1,0_
45.. - BOT_

46. - _0,62_
a7. ~

48. - -1,0_
49, - __BOT_

50. -__0,54_
s1. -

52. ___—-__—1,0_
53. - BOT

o>4. -__0,856
595. -__V

56 ___-—___—1,0_
S7. ___-—__BOT_
8. ___-__0,87_
299. ___—__V_

&0. - -1,0_
61. __ - EOD_

&2. -
&63. -__JImM ——ND OF TASK CODE=

&4. ___ELAPSED TIME=00:00:32_

FIG B.S(CONT.)

(CONTINUES ON NEXT PAGE)

- __VECTORS_

FIG B.&

89

44, -__-1,0

45. ___—__BOT_
46, ___—__0,62_
47 . ___—__V_
48. ___-__-1,0_
49. ___—__BOT_
50. ___-—__0,54_
S1. ___—-__V_
S2. ___-__~-1,0_
S3. ___~__BOT_
54. ___—__0,86_
S55. ___-—__V_
96. ___~—___-1,0_
57. ___—__BOT_
°8. ___-__0,87_
99. ___—-__NV_
&0. ___—__-1,0_
6i. ___ - EOD_
62, -

NOTE: LINE NUMBERS ARE PROVIDED BY THE
DATA CAPTURE PROBRAM AND WILL NOT BE
WRITTEM INTO YOUR FILE.

FIG B.&6{(CONT.)

0

diskette as a text file.}

Once the file has been written onto the diskette, PRESS
"RETURN". This will cause the host cemputer prompt to
appear. You can now sign—off the host computer. After
signing—off, sever the communications link between the two

computers as follows:

1. PRESS "ESC™

2. PRESS "H" ({(Severs the phone link between the
computers)

3. PRESS "8" (Exits the DATA CAPTURE 4.0 program.)

4. PRESS "Y"

S5. PRESS "RETURN"

This completes phase Il.

21

SECTION III

PHASE III: REFORMATING THE FILE

During PHASE IlI, the +file transfered during PHASE II
will be reformated so as to make it compatitble with the
Apple 11 computer. To reformat a file, take the following

steps.:

1. PLACE THE "DIF.PURGE" DISKETTE IN DRIVE# 1 (see FIG
B.7)

2. PLACE THE "PURGED FILES" DISKETTE IN DRIVE# 2

APPLE II DRIVE#® 2
DRIVE# 1
DATA CAPTU#E VISIPLOT/ FURGED DIF.PURGE
4.0 VISITREND FILES
FIG B.7

3. ENTER "PR#6" (NOTE: All entries are followed by a

92

carriage return!)

4. ENTER "CATALOB" (A listing of the files contained on
the diskette will be displaye&. Among those listed
should be the name of the file you transfered during
PHASE II, in addition there should alwo be a file
named DIF.PURGBE. If the file you wish to reformat is
not on the diskette in DRIVE# 1, proceed as follows:
ENTER "LOAD DIF.PURGE"; put the diskette with the
file to be reformated in DRIVE# 1; ENTER "RUN®.
Proceed to step# 5.

S. ENTER "RUN DIF.PURGE"

&. ENTER <filename> (This is the file which yﬁu wish to
format.)

7. ENTER <{filename> (This is the name the file will have
after it has been reformated. This can be the same
as the input filename. However, it is suggested that

a different name be used for the output file.)

After eptering the output Ffilename DIF.PURGE will reformat
the input Ffile. You; monitor will display the file as it is
written into thé computer’s memory and then again as it is
written onto the "PURGED FILES" diskette in DRIVE# 2. You
now have a useable DIF file on the “PURGED FILES" diskette.

Figure B.8 depicts the typical structure of this file. This

concludes PHASE I11.

F3

TABLE
0,1
VECTORS
0,1
TUPLES
0,12
DATA
0,0
-1,0
BOT
0,103
v
-1,0
BOT
0,107
v
-1,0
BOT
0,119
v
-1,0
BOT
0,105

_l ,0
BOT
0,87

-1,0
BOT
0,82
BOT
0,79

BOT
0,93

FIG B.8

{CONTINUES DN NEXT PAGE)

4

-1,0
BOT

0,62

~1,0

BOT

0,54

-1,0

BOT

0,86

~-1,0
BOT

0,87

~1,0
EOD

FIG B.8(CDONT.)

25

SECTION 1V

PHASE IV: DISPLAYING THE FILE

During PHASE IV the file which was reformated during

FHASE I1I will be graphicaly displayed by employing the

VISIPLOT/VISITREND shoftware package. Take the following

steps:

INSERT THE VISIPLOT/VISITREND DISKETTE IN DRIVE# 1
INSERT THE DISKETTE LABELED "PURGED FILES" INTO
DRIVE# 2

ENTER "PR#&4" (This will load VISIPLOT/VISITREND into
the Apple II1.)

{NOTE: For a camprehensive tutorial on
VISIPLOT/VISITREND refer to the "VISICALC/VISIPLOT"
LESSON MANUAL"™ by Donald L. Loftus, Graduate
Student, Kansas State University and to the
VISIPLOT/VISITREND documentation provided with the
software package.)

TO LOAD YOUR FILE FOLLOW THE INSTRUCTIONS PROVIDED

BY THE VISIPLOT/VISITREND PROGRAM.

Once your file has been loaded, graphics of the type shown

in Figure B.9 and Figure B.10 can be displayed using the

VISIPLOT/VISITREND package. Note that these graphs were

created using input from the DIF file shown in Figure B.8.

94

This ends PHASE IV.

97

mITrrog.

EE GG

,
1al

B
=
b3

e

WA o

[

BopL R S
SEYUIEN RESORT

LINE AND BAR CHARTS PRODUCED BY THE
VISIPLOT/VISITREND GRAPHICS PACKAGE

FIG B.7?

78

e TR A~ R T
SEYUIEW RESORT

AREA CHART PRODUCED BY THE
VISIPLOT/VISITREND GRAPHICS PACKAGE

FIG6 B.10

77

DATA INTERCHANGE FDRMAT FILES:
A SIMPLE, DIRECT APPROACH TO PROVIDING
TRANSPORTABLE GRAFHICS DATA

by
JAMES J. SHEEHY JR.

B.S5., BDhio State University, 1975

AN ABSTRACT OF A& MASTER™S REFPORT
submitted in partial fullfillment of the
requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1983

ABSTRACT

This regn;t describes a method by which Data
Interchange Format {(DIF) +iles are created on a host
(Perkin—-Elmer 8/32) computer and then transferred to an
Apple I1 computer. Once transferred, the DIF file is used
as a data input stream for the Visiplot/Visitrend graphics
plotting program. The purpose of this project is to
demonstrate the manner in which data—-format standards can
enhance the exchange of data between applications programs
which use a common language and to emphasise how data—format
standards can facilitate the inter—machine and the
inter—-language transfer of data. The DIF;BUILDER SYSTEM is
utilized as a tool toc demonstrate how DIF files éccamplish

these aims.

