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THE YIELD-LINE THEORY FOR CONCRETE SLABS

By Pei-Kao Hsueh.

SYNOPSIS

An outline of the yield-line theory, a plastic theory for

the prediction of ultimate flexural strength of reinforced

concrete slabs, developed by K. W. Johansen, is presented.

The theory is based on plastic behavior occurring in a pattern

of yield-lines, the location of which depends on loading and

boundary conditions. The ultimate flexural strength may be

evaluated, even for complex slabs, with limited mathematical

effort. The theoretical strengths obtained are in good agree-

ment with experimental results and generally on the safe side

thereof. The use of zhe theory is illustrated by a numerical

example.



INTRODUCTION

To carry loads safely is the primary function of most re-

inforced concrete structures. It seems proper, therefore, to

base the design of such structures primarily on their ultim^ate

load-carrying capacity. In many cases it is necessary that

structures possess stiffness as well as strength to performi the

function intended in design. It is then desirable to supplement

a design based on strength by considerations of deflections and

deformations at working load.

The pioneers of reinforced concrete design used this type

of design philosophy (1). They were primarily concerned wioh

the strength of structures, relatively little attention being

devoted to conditions at working loads. In later years, however,

this design basis was almost reversed by direct applications of

the theory of elasticity. The elastic theory is a powerful tool

for evaluating stresses and deformations at the working load

level, but it is unsatisfactory for estimating ultimate strength

of many reinforced concrete structures and structural elements

(2). Hence a re-emphasis of strength resulted, and the condi-

tions at working loads were given primary consideration.

Recently, a gradual re-emphasis of strength has taken place

in the field of reinforced concrete design. In most countries

such a return to original thought is found in the miethods used

to proportion sections, while the use of the elastic theory is

-'-Numbers in parentheses refer to references listed in the
Bibliography.



continued for the purpose of analyzing indeterminate structures.

Examples can be found of the code permitting analyses of stat-

ically indeterminate structures with the aid of a plastic theory,

whereby the magnitudes of the sectional forces are derived con-

sidering the plastic properties of the materials (3).

The basic assumption of the yield-line theory, first de-

veloped by Johansen, is that a reinforced concrete slab, similar

to a continuous beam or frame of a perfectly plastic material,

will develop yield hinges under overload, but will not collapse

until a mechanism is formed (ii). The hinges in the slab must be

long lines, along which the maximura momient the slab can resist

will tend to oppose rotation. The general crack pattern which

these yield lines will form may sometimies be deduced logically,

from geom^etry, sometimes inferred intuitively, and must sometimes

be obtained from; model or full-scale tests. Once the general

pattern is known, a specific crack pattern may be calculated for

a particular support and loading condition using energy and/or

force equilibrium. Frequently the resulting equations are too

complex for direct solution, and a system^ of successive approxi-

mations must be used.

All these methods provide upper-bound solutions, and it will

be necessary to investigate all possible yield line patterns to

find the least value of the ultimiate load, so our aimi is to find

the "lowest" value of the upper-bound solutions.



k.

EQUILIBRIIM EQUATIONS METHOD

^This method is based on the equilibrium of the edge couples

and shears .icting on the segments of the slab formed by yield

lines ( 5)
•''

Let us first consider a rectangular slab reinforced in two

directions perpendicular to each other, subject to a uniform

load w, fixed on all four edges as in Fig. 1.

' mo
AaAAAaAAA X AaXA/vA^Xv ^a /s/\a a AA X /

^Vv/'v^n/V^VVVV ^\/'^v'^VVWyVy\/VV VVVy A/y^ /AVm4
b

Pig. 1. Rectangular slab.

In the theory of elasticity, a fixed edge calls for certain

geometrical boundary conditions. In the yield-line theory, how-

ever, the moments m-^, -^.2, mo, and m^ at a fixed support depend

primarily on the amount of negative reinforcement provided.

Likewise, m is the positive moment that depends on the amount of

uniform positive reinforcement provided in the slab. If such a

rectangular .slab is overloaded, yielding will begin in the region

of high amount and, as loading continues, yield line cracks will

form and spread into a pattern referred to as a yield-line



$

pattern. The load-carrying capacity of the slab will be ex-

hausted when the yield-line cracks have spread to the slab edges,

at which load the slab reaches a state of neutral equilibrium

(6). (Same as a mechanism formed in plastic design theory. See

reference ?•

)

'

•' The yield-line cracks divide the slab into several parts,

and a heavy concentration of curvature takes place at these

cracks, exceeding the elastic strength. Near the ultimate load

it is assumed that the individual slab parts are plane, all de-

formations taking place in the yield lines. j It then follows

that the yield line must be straight, and the deformations of

the slab may be considered as rotations of the slab parts about

axes in their support. Furthermore, a yield line between two

slab parts must pass through the intersection of the axes of •

rotation of the two parts. Figure 2 shows some typical yield-

line patterns for various types of slabs; an axis of rotation

must lie in a line of support and must pass through columns.

In this manner the general nature of the possible yield-line

patterns may be determined (8).

Final determination of the yield-line pattern corresponding

to the ultim^ate load of a slab may be made with the aid of equi-

librium conditions for the individual slab parts. The shearing

forces acting in the yield lines must then be found. However,

since the yield momients are principal mxoments, twisting moments

are zero in the yield lines, and in most cases the shearing

forces also are zero (9). Thus only the moment m per unit length

of yield line acts perpendicularly to these lines, and the total



Imple support

Free edge

AT7-7-rr7T7T7~n

Simple support

Axis

Column

Free
edge

IV-a - -^ -^-^

Simple support

Fig. 2. Typical yield-line crack patterns.



moment may be represented by a vector in the direction of the

yield line with magnitude m times the length of the line. The

resulting moment for an individual slab part is then found by

vector addition. Now let

m-j m2 iHo mjj_— = k3_ , — = k2 , — - k3 , — = k,

m m . m m

i.e., m-] = knm, m2 = k2in, m-^ = ^i^, ^u = ki^m. The yield line

should be formed as indicated in Pig. 1, and equilibrium of the

four slab parts gives:

Par^- T
I ± o a.

1 hi
a (mi + m-i )

= — ah-iw —
2 3'
1 p

or am( 1 + k-i ) = — ch-i "^w (1)
6 ^

Part II, 11
bm(l + k2) = — wh-|h2 + — wh-3h2

6 6

1
+ - w(b - hi - ho)h2^ (2)

2

Part III,

1
pam(l + ko) = — waho (3)

^ 6
-^

Part IV,
f

1
P ^ ?

brnid + k||) = — wh-^hh + — whohh*^
6 6

+ - w(b - h3_ - h3)h|^^ (i^)
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and

h2 + h^ = a (5)

™i + ™j

Pig. 3. Vector diagram.

Prom these five equations it is possible to determine five

unknowns m^ h-j^, h2;, h.-^, and hr as functions of a, b, k-]_, k2,

ko, and k^; it is found that

war
m =

2I1-

3 +
b. bpj

(5)

where

2a

3p ~

b;p =

jm^ + y 1 + k^

2b

(6)

(7)

y 1 + k2_ + y 1 + ko

These are general equations for rectangular slabs. Por some

special cases:

(1) Pop simply supported slabs

k, = k^ = k^ = ki =
'2 - ^3

and b-r. = b.

Equation (6) will be



m =
wa

2k
(73 + (a/b)2 - a/b]

(2) For rectangular slabs with restrained ends.

-L • c « ^ •^1 ~ -^2 ~ -^3 ~
•'^ij.

1

(9)

a^ = a/ 2

bp = b/ 2

wa i'

m =

i^8
[73 + (a/b) 2 - a/bj

(3) For square slabs with restrained edges.

m-1 = mo = m-j = ma 3 - ^1; m

I.e.,

and

k^ = k2 = k3 = k^ = 1

a = b Sp — Dp

.

wa'

m = (/ 3 + 1-1
wa

1^8
^

I4.8

(I4.) For simply supported square slabs.

I.e.,

m-| = mp = mo = mr =

k-i = ko = ko = ki, =a

m =

3 -
^Ii-

2wa"^

2k

(5) For simply supported one-way slabs

b- 00

k2 = k[^ =

ap = a

m
wa

21^

wa
3 =

(10)

(11)

(12)

(13
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(6) For fixed ended one-way slabs with m2 = mj. m,

'k.n = k), == 1

a-

wa wa
HI == 3 - 1^)

For design purposes Table 1 and the curves in Plate I have

been, made for any case when m-, = m2 = nio = hik (i.e., k-^ = k2 =

ko = kj.) and the slab is subject to a unifopmly distributed

load of w.

Table 1. Values of wa /m for rectangular slabs.

b/a

1.0 1.2 1.^1 1.6 1.8 2.0 2.5: 3.0: 5.0 10.0

k=0 21).. 20.3 17.9 16.2 15.0 i[^;i 12.6 11.7 10.1 9.0 8.0

k=0.5 36.0 30.^ 26.8 2^.1^ 22.6 21.2 18.9 17.6 15.1 13.5 12.0

k=1.0 Ij-S.O 4-0.5 35.7 32.5 30.1 28.3 25.3 23.4- 20.2 18.0 16.0

k=i.5 60.0 50.7 ^.7 Ij-0.6 37.6 '}>6.2> 31.5 29.3 25.1 22.5 20.0

k=2.0 72.0 60.8 53.6 4-8.7 4-5.1 ^2.^ 37.9 35.1 30.3 27.0 24.0

k=2.5 81^.0 71.0 62.6 56.8 52.6 i+9.4- 44.1 41.0 35.2 31.5 28.0

k=3.0 96.0 81.1 71.5 61^.9 60.1 56.6 50.5 4.6.8 4.0.4. 36.0 32.0

wa'

.m

24.(1 + k)

[73 + (a/b)2'- a/b]

Example : If a rectangular slab that has values of a == li

feet, b = 32 feet is fixed at all four edges with negative
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reinrorcement equal to the positive reinforcement, and is sub-

ject to a uniformly distributed load of I4. k/ft , find the moment

capacity required of the slab.

Solution . In the given case,

b/a = 32/18 =1.78

k = 1.0

Prom Plate I,

waV^^ =15.3

or mp = m = wa'^/15.3

= 88.5 k-ft.

VIRTUAL WORK METHOD

The solution of equations of equilibrium may at times be

simplified by application of the principle of virtual work. If

the yield-line pattern is assumed known, by introducing param-

eters, such as u and v in Pig. i-i-, the position of the axes of

rotation as well as the ratios between the angles of rotation

for the various slab parts are known. Virtual displacement 6

may be chosen so that rotations take place only in the yield

lines. Virtual work of the pairs of concentrated shears m.^ is

then zero for the slab as a whole. Virtual work of the yield

moments for each individual slab part is the scalar product of

two vectors, a rotation and a resultant M of the moments in

the yield lines. Per the slab as a whole, this work of the

internal force has to equal the v;ork done due to external loads.



Ik

Simple support

Pig. I4.. Triangular slab.

In this manner the principle gives

Zm e ^iJfwS dx dy (l5)

which summation is made over the entire slab^ and integration

is made over the individual slab parts.

Since "M" is proportional to the unit yield moment m, equation

(15) can be used to determine m for a given load w, if the yield-

line pattern is known.' However, equation (l5) can also be used

to determine the correct yield-line pattern. The moment across

the yield lines being a maximum value, the correct yield pat-

tern, corresponding to a load w will give a maximum value of m

from equation (l5) ss compared to other patterns. If a type of

pattern is assumed in accord with the support conditions and

characterized by a number of unknown parameters x^, X2, Xn,

. , ., equation (l5) '^S'J be written
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m = P(x-L, X2, X-, . . ., w) (16)

The correct yield pattern then is formed by the maximuin

criteria

6x2

a?

= (17a)

= (17h)

8x
(17c)

3

and the final yield moment m is determined by substituting the

corresponding parameter values into equation (I6).

Example 1. Find the collapse loads for a rectangular slab

(as shown in Fig. 5) with uniform reinforcement, sim.ple supports

and subjected to a uniformly distributed load w. With uniform

reinforcement the mode of collapse must be symmetrical and in

any case the central fracture line must be parallel to the edges

since the corresponding axes of rotation never meet (5)* The

one unknown in this figure is the angle ^.

Consider parts A first. The rectangular slab has simple

supports and the vector equivalent of two end fracture lines

adds up to the short length a. If the m.aximum deflection is

unity, the axes of reference x and y are parallel to the edges,

1
the 6y, the rotation about axis y, is equal to

a/2 tan /
2

a tan
and 6^= 0.
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a— tan [*—
2

^

/x/x/vx/'/x ^ y yy' y/ / / //>/

b

Fig. 5« The rectangular slab.

Fop parts B of the slab, 6^ = 2/a, and 0=0.

For the whole slab we may express the contributions to the

dissipation of internal work W-^ vectorially as follows:

Wj = M(Je^ ^ +_/ ©x ^^^

= 2(M . a .

2 2

+ M . b . -)

a tan 0' a

1

=: I4M'

b
(18)

tan jZi' a

The external work,

¥e = w (volume of two end half pyramids + central

portion)

1 1
= - wa^ tan ^ + - wa(b - a tan 0^)

3 2
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Evidently

1 ^ b tan i
= _ va2( )

2 a 3

b tan i2( ^

(19)

wa
M =

1
+ —

(20)

Let

^ tan 0' a

tan )2S' = t b/a = \

wa2 / X - t/3
"l

M = (20a)
8 \^\/t + \ >

There is only one value of t for which, w is rninimum, or M

the required plastic moment is a maximum.

Putting

dM
=

dt

leads to

or

11 t 1
' '- A) - (X - -)( ) =V (21)

3

t2 = 3

(>v - t/3:

(1/t + \)

which we note from equation (20a) is exactly equal to

Therefore

21]. M

2wa"^

M =
wa2 wa^

-2 ^ ^,-,2tan"^
(f) (22)

21]- 21|

Equation (21) is a quadratic in tan 0" and leads to

'

r~ 1
tan 0' = / 3 +

X2 X
(23)

Therefore
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wa
M = '

J 3 + (a/b)2 - a/b] (21^)

2k.
^

Equation (2[|.) is identical to equation (9).

Example 2. Consider a regular n-sided slab, each simple

support being of length a forming a symmetrical collapse

mechanism with an, angle in the plane between each yield line.

(See Fig. 6.) Then if the center deflects a unit distance the

angle of rotation about each support will be l/r, where r is

the inscribed radius, and the vector length for the yield lines

bounding each triangular portion is a = 2 r tan — .

2

"Vector length of
yield line for
each portion Unit deflection

at center

Zero deflection
at edge

Pig. 6. Regular n-sided (n = ,6) slab, each
side of length a, on simple supports.

Clearly the dissipation of energy is

2 r
¥j = n 2 r tan - • - M = 2 Mn tan

n

since ^ =
2ii

n

(25)
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Likewise, the external work Wg for a uniformly distributed load

is given by

¥g = w (volume of deflection figure)

1 ar
= — w . n — (unit deflection)

3 2^
1 %

= — w . n r^ tan —
( 26)

3 n

Hence
1 P

M = - w r"^ (27)

2wa"^

Thus for the equilateral triangle this leads to M

2
^2

and for a square M = a's before. If n tends to infinity

equation (27) clearly expresses the solution for a conical col-

lapse mode of a circular simply supported slab.

If there were a point load P at the center, the external

work is simply P x 1 so that

71

P = 2 Mn tan -
.

n

and — becomes a very small angle if n is large. In zae limit
n 71

when n—^ oo , expanding tan — yields
n

P = 2 Mn(- +*—:+. . . )

n n3

or

P = 271 X = 6.28 M

for a conical collapse mode with a point load acting alone when

there is no negative (top) reinforcemient

.
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Yield line to form a

conical collapse
'/ mechanism

Pig. 7. Circular fan. at yield line under a point load.

Example 3- Consider a square slab with three edges simply

supported and the fourth free (Pig. 8) . The yield lines are

now attracted toward the free edge and with this mode the only

unknown is the distance y. The relevant rotations of the in-

dividual parts are shown in the diagram.

Angle of
rotation
about the

edge

Simple support

Unit deflection

Pree edpce

Fig. 8. Collapse of square slab with a free edge.
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By the vector procedupe it is an easy matter to write the

work equation as follows:

Putting

we obtain-

2

2|Ma -
a ^

y/a = Y

1
+ Ma .

a - y

a a

- (a-y) + - y
3 2 ;

w

h
wa' 1 - Y

6 M 2 + Y

For minimum load

wa
d( )

6 M

dY

2 + Y

(1 - Y)2

=

h + )

1 - Y

(2 + Y)2
=

or

(2 + Y) 1
- (i| + ) =

(1 - Y)'^ 1 - Y

leading to

_
5 25 3

~

ii
~ 16 i|

Since Y must be less than unity we take the negative sign, and

find

Y = 0.311-7
.

whence
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wa^ = llj-.l5 M

It is necessary, however, to check whether the alternative

mode of Fig. 9 could take place. Proceeding as before.

1 1
M(2a - + 2x -) = w

X a

1 1
2 v -. ax+-a(a- 2x)

3 2

////////// // .//////.

* X ->k- a - 2x-;!4- X -*i

Pig. 9. Collapse of square slab with a free edge.

It is interesting to note here that the combined vector

lengths for the two yield lines of the largest portion of the

slab just come to 2x--there is a gap in. the middle where no

work is done. Putting

X = x/a

we find

1
X + —

wa'^ X

2 M 1 X

2 3
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OP

2

d( )

2 M
=

a X

IX 1 11
( )(1 - — ) + (X + -) -
2 3 X2 X 3

=

1 X rj

(
)

2 3

1X1 11
( )(1 - — ) + (X -i- -) - =

2 3 X^ X 3

Simplified

2 ^X'^+-X- 1 =

3

-?/
16— + ^
9

= 0.533X =
2

which is sn impossible result since X cannot exceed 0.5. So

Pig. 8 will be the only correct mode, and w a = II4..15 ^ will

be the correct solution.

Example U. Consider a triangular slab with one edge free

(Fig. 10) . Take as axes of reference the two edges for parts A

and B, and suppose there is unit deflection at the point where

the yield line meets the edge. The orientation of the yield

line is as yet unknown. Let the length of the yield line be x.

Then the rotation of part A about edge CD

1

©A
X sm u



2i^

m u

Unit deflection
here

Free edge

Simple support

Pig. 10. Simple failure of triangular slab
with a free edge.

and part B about edge CE

1

^B
X sm V

Hence

1 1

¥j = M • X . cos u •

X sin u

= M( cot u + cot v)

area of triangle

+ M . X . cos V
X sm V

W-g = w(-

3

ab sin r

•) (unit deflection)

= w
6

Now

M(cot u + cot v) = M('

cos u sin V + cos v sin u

sm u sm V



2>̂

M sin(u + v)

sin u sin v

M sin r

sin u sin v

Whence

ab
M = w — sin u sin v

6

wab
sin u sin(p - u)

dM wab /

ciu

- sin u cos(r-u) + sin(r-u) cos u =
>

fop a maximum M from wliich u = —
, i.e., the fracture line

2

always bisects the angle of the triangle. Therefore

ab p 1 p
M = w — sin^ — = — (total load) tan —

6 2 6 2

VJ

since the total load = — ab sin p
2

p p
= wab sin — • cos —

2 2

Thepe is no pestpiction on the shape of the tpiangle so

that the fpactupe line and the edge might intepsect at any

angle. • '
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SUCCESSIA/E -APPROXIMATION METHOD

Though the analysis of slabs on an ultiraate strength basis

is reduced to algebra and geometry as compared to the complex

differential equations often resulting from the use of theory of

elasticity, solution of the equilibrium equations may be quite

time-consuming. The yield-line theory is an extremely powerful

analytical tool, and analysis of even complex slabs becomes pos-

sible. A practical -design method is therefore desirable, which

in addition to eliminating the use of differential equations

will reduce design work to simple algebra.

The problem in design, is generally to estimate the necessary

yield moment m for a slab subject to given ultimate loads and

with given, dimensions and support conditions. The correct value

of m is a m_aximum- value resulting from the correct yield pattern,

and satisfying the equations of equilibrium. It may be shown,

therefore, that application of the virtual work principle to

yield patterns v:hich do not differ considerably from the correct

pattern will result in. yield moments only slightly smaller than,

the correct one {l^) .

Accordingly, a yield pattern is assumed which is in accord

with the support work equation, equation {l^) . Since for the

correct yield pattern all m-values should be equal, a check on

the originally assumed yield pattern may be obtained by computing

m for every individual slab part from equilibrium equations. If

the m-values thus computed differ considerably, the separate

values will indicate how the pattern should be altered, and the
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first estimate of m from equation (l5) will indicate how much

the pattern, should be changed. With some experience a designer

will generally assume a yield pattern the first or second time,

which gives a yield moment only a few per cent in error.

This practical method may be illustrated by an analysis

of the following problem.

The floor slab (in Pig. 11) is fixed or continuous on, three

edges, a negative reinforcement equal to the positive reinforce-

ment being chosen, which gives m' = m. The fourth edge is

simply supported, m' = 0, and an opening with a a free edge is

provided for a staircase. The loads indicated represent service

loads multiplied by proper load factors. Thus a uniform load

w = 200 psf, a line load of 2^0 pounds per foot from a partition

wall, and a line load of 1,000 pounds per foot from the staircase

lA

i i

m ! — m
A6.^/-. /s/^/v /\/v/v\ A AA/N/s/v/v/v/N/v/v/yvv yv^/V/>-yv VYyy

Fixed edges

w = 200 Ibs/sq.ft.

B

1000 iPattern No.l
lbs/ft

I (

Pattern No. 2 ^••

250/ vo/'Zy^

_ £.

k-^

\

m'=0
10

20' "^=\

<

<

<

vO

Simple support

Pig. 11. Sketch of floor slab.
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are given. An elastic analysis of such a slab would be extremely

difficult even with the aid of approximate numerical procedures.

A yield pattern is assumed, indicated as pattern No. 1 in

Pig. 11. The assumption is guided by the fact that yield lines

between, two slabs must pass through the intersection of the cor-

responding axes of rotation, that is, the supports. There is

no moment at the simply supported or the free edges. Simply

supported or free edges, as well as openings, attract yield

lines while fixed edges repel them.

The necessary yield moment m is first computed for each slab

part separately by equilibrium of moments about the supports.

Part A.

6^ 7 1,^2

10(m^v,i) = 200 X 10 X — + 250 X
6 . 2 .

20 m = 13A70 or m^ = 67!^ Ib-ft.

Part B.

72 72 52
20(m+m) = 200(6 x — +10x — + I^x —

)

6 2 - 6

k-

+ 250(6.57 X I|. + 3 X ^.^) m X 5
5

1^0 (m) = 72,900 - Ipi

mg == 1653 Ib-ft.

Part C.

5(m+m) = 200 x 5 x — + 1000 x — + - m x i+

6 25
10 m ^ 10.670 + 3.2 m

or mc = 1568 Ib-ft.
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Part D.

32 32 32

l6(m+0) = 200(6 X — +10 — ) + 2^0 x —62 2

16 m = 12.030 or rnj) = 753 Ib-ft.

It is seen, that the m-values vary from 6714. to 16^3 pounds

and the assumed yield pattern is therefore nol: the correct one.

An estimate of the correct yield moment may nevertheless be ob-

tained by applying the virtual work equation. A virtual de-

flection of unity along the yield line a-b gives the rotations:

6b = 1/7

5/7 1

6, = — = —
k 5.6

% = 1/3

The equilibrium equations above are written in such a manner

that the virtual work equation can be established easily.

^ _> _ 20 kO 10 16
Wj =^ M e = m(— + — + r + — ) = 16.17 m

6 7 5.6 3

We
^^ 13.ii-70 72.1^90 10.670 12.030

= ^ j J
wS dx dy =

6 6 5.6 3

= 18.560

Wj = Wg

which gives

18.560
mn = = 111^8 Ib-ft.

16.17

for yield pattern Xo. 1.

It is found that m^ and m-^ are less than m-j^; and mg and ra^
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are greater than m-,; therefore the area of slab parts A and D

must be increased and that of slab parts C and D must be de-

creased. Such correction leads to pattern No. 2, in Fig. 11_,

which gives:

M^ = 1,21^3 Ib-ft. -

Mb = 1,182 Ib-ft.

M^ = 1,167 Ib-ft.

M]3 =^ 1,190 Ib-ft.

The corresponding virtual work equation gives

m2 = 1,192 Ib-ft.

In. this case the four m-values are almost eo^ual and m =

1,192 Ib-ft. is a satisfactory design value. It should be

noticed that m2 is only 3.8 '9Q^ cent greater than m-^ . Applica-

tion of the virtual work equation to yield patterns reasonably

close to the correct one gives yield mioments only slightly less

than the correct value.
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ORTHOGONALLY ANISOTROPIC REINFORCEMENT AND
/'.N ECONOMIC STUDY- OP REINFORCEMENT

A slab vjhich has resisting moments in, two perpendicular

directions that are not equal is called orthogonally anisotropic.

The analysis of two-way slabs presented herein has so far been

concerned only with slabs having an equal yield mioment in all

directions. Such isotropic reinforcemient is often not econom-

ical, and methods of analysis for anisotropic reinforcement are

therefore desirable. Johansen (Ij.) has shown that the analysis

of slabs with yield m^om.ents m and mJ = k • mi in one direction

and [iia, |j-m' = kam in an orthogonal direction may be reduced to

the case of isotropic reinfcrcemient ij, = 1.0.

A slab part with positive and negative yield lines is shown

in Pig. 12, the co-ordinate axes being in the directions of m

and i-Lm. It is assumed that the negative m.oments m' and |j-m' have

the same directions. The resultant of the positive moments act-

ing on the slab part shown is the vector a^ times the yield .mo-

ment in its direction, and the resultant moment components in

the X ana y ai.rcCLions are M^ = m • a^^^ and My = n-m. . ay respec-

tively, in which a^ and ay are components of the vector ~a . In

the sam^e manner the negative momients give M^' = J^f^'^^x ®"^^^

My ' = n,m ' by

.

Let the axis of rotation R-R of this rigid portion R inter-

sect the X-axis at an angle »<, such that if the rotation of the

rigid portion about R-R is 9j^, the component rotations are 6^

and 0y. Line R-R is a line of constant deflection, and will

pass through a column support. There is a distributed load of
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intensity vi , a line load of intensity w and oT length /- inclined

at ^ to the X-axis and a concentrated load of P.

y

:±

=L

Line load

R

1±

Column Point load

R

m, m'

Pig. 12. Slab with orthogonally aniso-
tropic reinforcement.

Then, the equation of energy equilibrium becomes

(may- + mJb-j.)9 + {[ima^ + [j,m'b )G
y 'y'^y

zwdx dy + i w z ds + Pz
-^0 ^

(28:

where z is the deflection at a point x, y; z is the deflection

at a point on. the line load; and z is the deflection of the

point load.

Considering the line load in m^ore -detail and observing

? ? ?that ds = dx + dy
_,

then

"A _ _ / dy2
wzds=/ wz/l+ • dx

'0 ^0 V dx2
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r-^yi p ::

—

= / w z / 1 + tan^ dx (29)

Wow consider a slab with positive plastic moment m in both,

directions and likewise negative moments m' in both directions,

and suppose that this slab has all its dimensions in the y-

direction multiplied by k. Then in order to have corresponding
I

deflections at corresponding points, we make the rotation ©p^ of

the region R in the slab have the components ' =
©x/-^'-'

Hence the equation of energy equilibrium is

(mkay + m'kb^)0y -r (ma^ + m'.b-^)9^/k

r ^
=

\ I w'z dx k dy + w z ds' + P'z^ (30)

where w', w, P' are corresponding loads on the slab.

Then dividing both sides by k we get typical expressions,

6x
(may + mi'by)ey + (ma^ + m'b-^^)

ds' P'
= if w'z dxdy + w'z + (31)
•^•^ k k

It will now be observed that these equations are exactly the

same as for the original ( orthotropic) slab provided we make

the following transformations. This is the so-called "affinity

theorem" that was developed by Hognestad (9) and Johansen (10).

(1) Length ratio k^ = l/l-^, or k = l/ |J- .

(2) Distributed load, w' = w, i.e., the same intensity

of load.

(3) Concentrated load, P
'
/"T = P, or P ' = P//~jI~ .
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If.) Line load; observing that

V
ds' ==

/ dx^ + x^(dy)

Hence we must make

1 + tan^^ _

[i. + tan^'/J

which simplifies to

w
w' =

\L cos^^ + sinful)

Example 1, Consider a triangular slab (Pig. 13) with 30

degreeS;, 60 degrees, 90 degrees^, and a free edge opposite the

right-angled corner, the other sides being simply supported.

Lengths of sides 10 feet, 5.77 feet, 11.5^ feet. There is a

line load of intensity w along the free edge. Find the collapse

load, w , ignoring corner effects, if there is a plastic mom.ent

of m for the reinforcement parallel to the 10-foot side and [\m

at right angle to it.

-'-In orthotropic reinforcement problem.s, \x can be assumed
to be any value theoretically. The assumption for the value of
1-L does not assure the most economical section. Values of \l

which result in the most economical sections are discussed on
pages 39-1^1 . Here it is assumed 11 = 14. only for convenience,

because /"[T - J I4-' - 2.
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Line load w lbs/ft

Fig. 13a. Original opthotropic triangular slab.

Line load w lbs/ft

Fig. 13b. Equivalent isotropic triangular slab,



(i) Solving by virtual work (see Pig. 13a) • Taking the

deflection viiere the yield line meets the edge to be unity^ then

1 . 1
¥- = 14- m/cos i • + m . / sin

l^^

/sin0' ^^0030"

= L|. m cot 0' + m tan 0'

whatever the separate lengths of line loads are, the centers of

gravity deflect a distance of l/2 so that

¥g = 11.51^-. w . 1/2 =^ 5.77 w

¥j = We

Hence

W/m = 0.693 cot / + 0.173 tan 0' (32)

d(w/m)

d0'

.693 csc^^ + 0.173 sec^/ =

0.693
tan,^0 = ^ h,

-

0.173

leading to tan 0' = 2, or 0' = 63 30 ' for the inclination of the

yield line.

Substituting into equation (32)

1
w = 0.693 • - m + 0.173 • 2 m

2
= 0.693 m

(ii) Solving by the affinity theorem (see Fig. 13b) . Con-

sider the slab ab = 5-77/7 ^ ~ 2.885, t>c = 10; therefore the

free edge is lu.l|l feet long. For this slab

Wj^mcotZ+mtan/
from previous solution which is minimum when = \\'^ degrees.

1
Wg = 10.[|.1 w . -
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Wj = ¥e leading to

1
2m = - • iC.i^l w'

2

w' = 0.38ij- m

Then apply the transformation rule^,,

I
—w '

=

y Ii . cos^ 30° + sin^ 30'

\<!

= 0.551]. w

Then

0.381^
vj = m = 0.693 m

0.55i|-

as before.

Example _2. Consider the slab of Fig. ±h. and let the resist-

ing moment in the long direction equal m; and^ in the short di-

rection, equal [am, where (a = Ij.. For the simply supported slab

there is only one variable as before, namely, the angle 0' of

the yield lines.

Applying the affinity theorem^, the transform^ed slab remains

of length a in the m direction, but the length in the ixm direc-

tion is divided by / ll. Hence the slab has an effective ratio

b' b b— = - J '^ = - ' J~h^
a ' a a

A s sume b/a = 2.5

Then b'/a' = 2.5 • /"aT = 5.0

From our previous results equation (9), or directly from Plate I
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Simple support

/

Pig. iLj.. Simply supported rectangular slab with,
orthotropic reinforcement.

m
wa^ r 1 9 1 2— ( M + (-)^ - -)

21J..0
^

S S

wa 2

^O.Ii.

wa'
\xa.

10.1

in, the lonp: direction.

in the short direction.

From Plate I we also have m = w a'^/l2.6 in both directions with

isotropic reinforcement. Comparing these results with each

other, we obtain the ratio of total steel

1 1
+

10.1 ^0.1
r = = 0.78

1
X 2

12.6

This tells us that the use of orthogonally anisotropic reinforce-

ment will save 22 ner cent of the steel.
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Now we can evaluate the comparable amounts of steel for

all values of u(n,> 1) and for various chapes of rectangles.

Wood (5) has found the various results as plotted in Pig. 1$

,

where a total weight ratio of unity means that the same weight

of steel would be used for any particular rectangle as would be

required for that rectangle if isotropic reinforcement had been

used. Values less than unity imply a corresponding saving of

steel for the unequally disposed reinforcement. It is conven-

ient to plot: the chart on a base of l/\i, since with longitudinal

reinforcement omit-ced altogether the value of ;j- is oo . It will

be observed that with a 2:1 rectangle some 19 per cent of the

o

-p

CD

^ k=1.5
•l I

(D

CO
4J

O
EH

1.5 -

I'k- -

1.3

1.2

1.1

<

^ k=1.0

1.0 >^ ^<^=\^^^SS'S-s^'^^--^-^-

.8

.7

.6

.5

'k

.3

.2

'/i-'^

/k^*^
[J, = most economical co-

efficient of
orthotropy

0.2 O.li 0.6 0.8 1.0
I I—*-

.1 C.3 0.5 0.7 0.9

Value of l/|a =
longitudinal reinforcement

transverse reinforcement

Pig. 15. Simply supported rectangular slabs: Proportionate
wei,2,ht of reinforcement by using orthotropic reinforcem^ent com-
pared with isotropic reinforcement. Uniform loading.
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steel csn be saved, but that the raost economical coefficient of

orthotpopy [i is very large, being as much as 10.

We will discuss in more detail the most economical arrange-

ment of reinforcement in two directions for a rectangular slab.

Let [I be the most economical proportion.

¥e have noticed in the previous calculation that

2 2wa^ wa
tan^ 0' = t^^im = —

2Li 2i^

where t = tan ^'. Now the weight of reinforcement per unit

area of slab is very approximately proportional to m -f \im.

Hence the unit weight

W<<m+iim-c(l + l/iJ.)t

Since

b / [i,

we find that

Iit2 a2

3 - t2)2 b^
^ =

-

^7? • Z2
^^^^

and

(3 - t2)2 b2
W -C — + t

k a2

2

Now

dw dw dt

d[i dt dj-L

dt
and observing that — will not be zero within the range of values

dia dw
of 10, we are considering, then for minimum weight — = 0.

dt
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This obtains

3 - t2 =
2.2

b2

Substituting into equation (33)^ 'we get the most economical

value of y, which is

b2
^. = 3 ~ - 2 (3U

a'
^ ' ,2

This leads to some surprisingly large values of p,^ . For

instance, when b/^, = 2, [j, = 10 ; b/a = 3, l-i-
= 25. Consequently

the distribution of reinforcement m.ay be determined by the min-

imum am.ounts of reinforcement specified in various codes.

However, the optimum value [i can be misleading because

it does not indicate just how much superior it is to other

alternative values. Figure 1^, where a dotted curve represent-

ing i-i is shown, is much better in this respe.ct.

CORNER EFFECT

It has so far been assum^ed that yield lines enter the

corners between two intersecting supported sides without diverg-

ence. Tests to failure on slabs indicate that the localized

yield-line patterns may occur in the region of the corners and

the main yield lines fork as shown in Fig. l6 (6). The small

planar elements B rotate about the broken lines and these are

referred to as corner levers.

The corner lever appears because the Y-shaped yield-line

pattern is miore dangerous, that is,' gives a higher necessary
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x^lg. 16. So^uare slab with corner levers. .

yield moment, than the single yield line. According to Johansen

(10) it is most expedient in practical design to disregard the

corner levers and then later apply corrections, for which he de-

veloped general eo^uations and tabulated the most comnQon cases.

In this brief presentation, however, the characteristics of

corner levers are probably best illustrated by an example.

Consider a simply supported and uniformly loaded square

slab; equation (12) gives m = Ma^/2\\. assuming that no corner

levers form. If it is assumed that the corner effects are held

down and that symmetrical corner levers exist as indicated in

Pig. 16, a yield line with m' = K m may be present across the

corners. Equilibrium of Fioments for triangle B about axis b-b

then gives

xj 2 (m + m') = vx 2 —

or n = 6(1 + k) (35)
V w
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Equilibrium of slab part A about its supported side leads to

F(x . m . w) =m(a - 2x) - w
f a3- 2[j. X ii ^ 1

(_ + )^ = (36)
I 21]. 6 2 2 >

Equation (36) defines m as an implicit function of x and w. For

a given w^ an x corresponding to a maximum of m is sought. We

have the criterion

dm dF/^x

ax 9F/S>m

— = .

dx

=

Assuming ^P/^m is finite and not equal to zero,

SF— = gives
9 X

X = -
( / - h2 +

3 ^ 2

m
18 - -

w

h

Substituting h from equation (35),

2 / m ^

X = -
/
- I721 + 3k - / 12(1 + k)

3 V w <

(37)
^

The maximum value of m may then be found by solving eo^ua-

tions (35), (30), and (37) for m, which solution is algebraically

rather cumbersome.

A solution may be obtained easily, however, using successive

approximations. An initial estimate of the value m/w is made,

mi/w = a^/2L;. being a reasonable value. For this m/w, h and x are

computed from equations (35) a^d (37), and a new value of m/w

is found from equation (3^) • This new m/w is returned to



kh

equations (35) an.d (37)^ and so on.

For the various values of k = m'/m^ the solutions. as

itemized in Table 2 are found.

Table 2. Values of m/w for square slabs with corner effect

k = m'/m X h : m/v;

0.159 a 0.523 a a2/22.0

lA 0.110 a 0.571 a a2/23.0

1/2 0.069 a 0.619 a a2/23.6

1 0.000 a -- a2/2^.0

It appears that even a weak corner reinforcement brings the

yield moment in square slabs close to the value m = wa /2lj. cor-

responding to m' = m^ for which the corner levers disappear.

When no corner reinforcement is provided^ however, the yield

moment is increased about 9 per cent. In. reality concrete has

some flexural strength and the actual influence of the levers

will be somewhat smaller than indicated. It should be noted,

however, that in some cases the influence of corner levers may

be considerably larger than, for a sq_uare slab. In triangular

slabs (Pig. 5) for instance, the absence of corner reinforce-

ment may increase the yield moment 20 to 35 per cent (9).



45

CONCLUSION

The yield-line theory is intended for the prediction of

the ultimate flexiiral strength of reinforced concrete slabs.

The theory seems best suited for ultimate load design. However,

experience has indicated that a design based on flexural strength

using the yield-line theory must be supplemented by a check of

the conditions under service loads, particularly deflections

under sustained loading. In comraon designs this may be achieved

through specification of minimum values for reinforcement and

for slab thickness.

Although yield-line patterns with corner levers are gener-

ally more critical than those without, they are often neglected

in yield-line analysis. The analysis becomes considerably Fiore

complicated if the possibility of corner levers is introduced,

and the error made by neglecting them is usually small. An

analysis of the square slab results in a required moment of

w a^/22, an increase of about nine per cent as compared with

the results of an analysis neglecting corner levers.
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APPENDIX

An Assigned Problem . Design a rectangular slab 21). feet by

16 feet to support a uniform live load of I80 psf . The edge

conditions are to be as shown on Fig. 17. A l4.,000-psi concrete

and steel with fy = i4.0,000 psi are to be used.

Angle rota-
tion 0-1

Angle Rota-
tion 0'

Fixed edge
yQjy^KAAX'<^y<y\y^A^/^/'\/<y^Xy<y'y<.Ay</<AA ^-A/<A-//<

r 21^'

Pig. 17. A rectangular slab with two
adjacent free edges.

The minimum thickness, by which ACl Code (11) of
{2k - 16)2

= .hh^S foot. Use 9 inches; because of heavy loads, deeper

slabs lead to steel savings which frequently prove more econom-

ical than minimum thickness slabs. Consequently the dead load

is 9/12 X 150 = 112.5 psf, and the design loads for ultimate

strength design are
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Live load:. 1.8 x l80 = 32i+ psf

Dead load: 1.5 x 112.5 = l69 psf

Total . 1^93 psf

It is known that to use orthogonal anisotropic reinforce-

ment is more economical than to use the isotropic type. Then

observe the rules that: (1) The yield line must pass through

the point of intersection, of the axes of rotation of the two

adjacent slab segments; and (2) the yield line must be straight,

¥e may now assume any straight line that passes through the

point of intersection to be a correct yield line. The angle

(measured from edge OC to the central yield line) may vary

from degrees to 90 degrees theoretically, depending only on

what ratio of moment capacity in the two orthogonal directions

we prefer. In. other words, the tangent of angle is propor-

tional to the moment capacity ratio in the two directions; the

angle will increase as the moment capacity ratio of the two

directions increases. For convenience, the one that goes along

the diagonal of the rectangular slab has been chosen.

Then applying the principle of virtual work, we have the

energy equilibrium ¥-r '= W-g. Substituting,

-

(16 + l6)m-^e-j_ = 1/2 X 16 X 2^ X k-93 x l/3 x 2l| 6^

or m^ = 23,7000 ft-lbs = 28ii., 000 in- lbs.

Likewise
1 1

(2I|. + 2L|.)mpep = - 16 . 114. . ^93 . - . 16 Op
2 3

See discussion on page 37

•

p
See page 5*
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OP m2 = 10,500 ft-lbs = 126,000 in-lbs.

Following the ACI Building Code 318-^3 (H) ,

m-, 281|.,000
±_ = = ^37

^hd^ 0.9 X 12 X 7^

By graph, on page 6314. of reference (•?),

p = O.OllfO

and

A^ = 0.011|6 X 12 X 7 = 1.23 sq.in.

Use No. 6 bars at a spacing of i\. inches c, to c, both top and

bottom along the long span direction,

mg 126,000

^bd2 0.9 X 12 X 7

p = 0.0051]-

2
= 212

and

As = 7.7 X 12 X 0.0054 = 0-5 sq.in.

Use No. 6 bars at a spacing of 6 inches c. to c., both top and

bottom along the short span direction.

This seems to be a satisfactory pattern of reinforcement.

Designs for other yield lines m.ay be tried and analyses made

to compare the relative economics of the resulting slabs.

Details of the rectangular slab which was designed are

shown in Fig. I8. The reinfoi^cement in both directions is

specified on the plan in the usual manner, and two typical sec-

tions are shown. The short direction reinforcement is placed

on the outside of th.:. long direction bars as the moment in the

short direction is less than that in the long direction.
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Pig. l8. Details of the rectangular slab design.
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An. outline of the yield-line theory, a plastic theory for

the prediction of ultimate flexural strength of reinforced con-

crete slabs, developed by K. ¥, Johansen, is presented. The

theory is based on. plastic behavior occurring in a pattern of

yield lines, the location of which depends on loading and bound-

ary conditions. The ultimate flexural strength may be evaluated,

even, for complex slabs, with limited mathematical effort. The

theoretical strengths obtained are in good agreement with ex-

perimental results and are generally on the safe side. The use

of the theory is illustrated by numerical examples.

The basic assumption, of the yield-line theory is that a

reinforced concrete slab, similar to a continuous beam or frame

of a perfectly plastic material, will develop yield hinges under

overload, but will not collapse until a mechanism is formed.

The hinges in the slab must be long lines, along which the maxi-

mium resisting moment of the slab will tend to oppose rotation.

The general crack pattern, which these yield lines xvill form may

be deduced logically from geometry, and sometimes must be ob-

tained from model or full-scale tests. Once the general pattern

is known, a specific crack pattern, may be calculated for a par-

ticular support and loading condition using the principle of

virtual work or force equilibrium. Sometimies the resulting

equations are too complex for direct solution, and systemis of

successive approximations miust be used.

An economic study of reinforcement is a problem in which

we are interested. Steel may be saved in plastic design of

slabs by the use of orthoLropic reinforcement, i.e., with



difrerent quantities of steel per foot of width in different

directions. If the eq_uilibrium of rigid portions in a mechanism

is examined, then reductions in the total reinforcement can be

made.

The yield-line theory seems best suited for ultimate load

design. However, experience has indicated that a design based

on flexural strength using the yield-line theory must be supple-

mented by a check of the conditions under service loads, par-

ticularly of deflections under sustained loading.




