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Groundwater studies face computational limitations when providing local detail (such as well draw-
down) within regional models. We adapt the Analytic Element Method (AEM) to extend separation of
variable solutions for a rectangle to domains composed of multiple interconnected rectangular elements.
Each rectangle contains a series solution that satisfies the governing equations and coefficients are
adjusted to match boundary conditions at the edge of the domain and continuity conditions across adja-
cent rectangles. A complete mathematical implementation is presented including matrices to solve
boundary and continuity conditions. This approach gathers the mathematical functions associated with
head and velocity within a small set of functions for each rectangle, enabling fast computation of these
variables. Benchmark studies verify that conservation of mass and energy conditions are accurately sat-
isfied using a method of images solution, and also develop a solution for heterogeneous hydraulic con-
ductivity with log normal distribution. A case study illustrates that the methods are capable of
modeling local detail within a large-scale regional model of the High Plains Aquifer in the central USA
and reports the numerical costs associated with increasing resolution, where use is made of GIS datasets
for thousands of rectangular elements each with unique geologic and hydrologic properties, Methods are
applicable to interconnected rectangular domains in other fields of study such as heat conduction, elec-
trical conduction, and unsaturated groundwater flow.

� 2013 The Authors. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Groundwater problems may be formulated as boundary value
problems using separation of variables. The basis for this method
was established by Fourier [17], who summed Fourier series mul-
tiplied by exponential functions to study the steady propagation of
heat in a rectangular solid. Separation of variables has evolved into
a powerful method to solve problems in domains bounded by nat-
ural coordinates, where solutions are obtained by summing series
solutions to the governing differential equations [1]. Solutions ex-
ist for domains with the geometry of rectangles, circles, parabolas,
hyperbolas, spheres, and ellipsoids [29,30], The specific geometry
of rectangular domains is important in the fields of heat conduc-
tion [8], electrical conduction [40], and unsaturated groundwater
flow [26].

While separation of variables has been successfully applied to
the problem of a single isolated rectangular domain, important
problems exist for grids of adjacent, interconnected rectangles.
Our case study contains thousands of rectangles, each with unique
properties associated with the geologic medium and surficial
fluxes. An existing numerical approach to solving problems on a
rectangular gridded domain is application of the finite difference
method [28], which gives the value of a function at the set of grid
points and utilizes an interpolation scheme to obtain its value
throughout the domain. Another approach that captures the func-
tional variation across rectangular elements uses Cauchy integrals
at the intersections of every rectangle [25,31]. Computational chal-
lenges exist with Cauchy integrals when domains become large
and the number of mathematical functions increase.

Recent groundwater developments in the Analytic Element
Method have enabled separation of variables solutions for individ-
ual elements to be superimposed for modeling domains with mul-
tiple elements. Mathematical developments in a one-layer aquifer
for fully saturated, steady groundwater flow was first presented by
[7] for the geometry of circles, by [44] for ellipses, and by [22] for
spheroids. Such geometries have been extended in many studies to
mutilayer aquifers, unsaturated flow and unsteady flow, and meth-
ods also exist for connected domains with curved boundaries
[5,12]. However, the geometry of such elements cannot intersect
or overlap, and solutions to the Embedded Matrix Method place
the individual elements into a homogeneous background [15]. Sep-
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aration of variables is advantageous in that it very accurately
reproduces local boundary conditions within a regional setting,
typically an infinite domain. This approach also faces the computa-
tional challenge associated with increasing evaluation time with
increasing mathematical complexity.

One method to resolve the numerical challenge associated with
evaluating a large number of Cauchy integrals and separation of vari-
ables solutions is based upon the superblock approach [43]. Here, the
mathematical functions for individual features are gathered into
families of elements, each with a more computationally efficient ser-
ies expansions for evaluation at larger distances from a group of fea-
tures. The computational advantage of superblocks has been
demonstrated for regional modeling with Cauchy integrals [13],
for separation of variables with circles and spheroids [23,24], and
for functions associated with groundwater uptake by fields of phre-
atophytes [34]. However, the superblock approach does not explic-
itly allow for jump in aquifer properties between different
domains. Another approach to dealing with mathematical complex-
ity was developed by [16] who grouped elements into subdomains
and then utilized Cauchy integrals to match continuity conditions
at subdomain boundaries. This method results in a set of polygon
subdomain models, each with their own individual solution.

We develop new methods to solve boundary value problems for
domains with interconnected rectangles by extending the Analytic
Element Method (AEM) to existing, common methods associated
with separation of variables (SOV) for a single, isolated rectangle.
This gathers the mathematical functions for all features into fami-
lies of rectangular elements, and evaluation of functions only re-
quires computation of those associated with an individual
rectangle, similar to the Cauchy integral subdomain approach of
[16]. This solution also enables rectangular heterogeneities to ad-
join along common boundaries and completely fill a domain. The
mathematical development is presented next in the methods sec-
tion; then benchmark studies compare the solution to that ob-
tained using the method of images and also develop a model of
rectangular heterogeneities with log normal conductivity distribu-
tion; and finally a case study illustrates its application to study an
important groundwater problem spanning the High Plains Aquifer
region of southwestern Kansas.

2. Methods

Mathematical development is presented here within a frame-
work called the Analytic Element Method (AEM), which was in-
vented by Strack [41,42]. Our adaptation of the AEM comprises a
four-step process:

1. Divide the problem domain into analytic elements with bound-
aries of prescribed geometry.

2. Develop a set of influence functions that satisfy the partial dif-
ferential equation and allow variation along an element with
forms capable of unique solutions.

3. Build a comprehensive solution comprised of linear solutions of
influence functions for each element times a priori unknown
coefficients, and

4. Develop a solution algorithm to adjust coefficients to match
boundary conditions.

Development of these methods for gridded rectangular domains is
presented next.

2.1. Rectangular elements on a gridded domain

Boundary value problems in domains composed of rectangular
grids are specified as follows. First, the domain is subdivided into
rectangular elements bounded by grid lines in the Cartesian coor-
dinate system as illustrated in Fig. 1. The values of x and y are spec-
ified for each element to take on constant values of x1 on side 1, y1

on side 2, x2 on side 3 and y2 on side 4. The particular geometry
identified in Fig. 1a is used later to illustrate application of the
methods to the groundwater field of study. This geometry with
grids of interconnected rectangles are common to the underlying
GIS raster data (as shown later in Fig. 4), obtained through spatial
analysis of the underlying data sets.

2.2. Influence functions for an element

The two primary variables used to represent solutions to
groundwater problems are related to the groundwater discharge
and elevation measured as head h. Groundwater flow occurs with-
in an aquifer layer with base elevation B, thickness H, and hydraulic
conductivity k. Governing equations may be represented in terms
of a potential function

U ¼
1
2 k h� Bð Þ2 0 6 ðh� BÞ 6 H

kH h� Bð Þ � kH2

2 H 6 ðh� BÞ

(
ð1Þ

where this relation takes on different forms for unconfined and con-
fined conditions [19,41]. Steady groundwater flow satisfies the Pois-
son equation

@2U
@x2 þ

@2U
@y2 ¼ �R ð2Þ

where R is the rate of recharge into the aquifer layer. The ground-
water velocity is quantified using the discharge per width obtained
from minus the gradient of the potential function:

Q ¼ �rU ð3Þ

Dirichlet boundary conditions with given head are specified in
terms of the potential using (1) and Neumann conditions specify
the normal component of the discharge per width, Qn̂ ¼ �@U=@n̂.
Once a solution is obtained in terms of U, the head is obtained by
inverting (1):

h ¼ Bþ

0 U 6 0ffiffiffiffiffi
2U
k

q
0 6 U 6 kH2

2

U
kH þ H

2
kH2

2 6 ðh� BÞ

8>><
>>: ð4Þ

Note that the U < 0 case is considered, since during iteration before
a solution is achieved the potential may become negative, and yet
physically the head cannot go below the base elevation of an aquifer
[33].

In separation of variables, the function U is expressed in the
form

Uðx; yÞ ¼ XðxÞYðyÞ ð5Þ

where X varies only as a function of x and Y is a function of y. Substi-
tuting this form in the Laplace equation

@2U
@x2 þ

@2U
@y2 ¼ 0 ð6Þ

leads to the following set of ordinary differential equations [29,30]

d2X
dx2 ¼ �pX
d2Y
dy2 ¼ �pY

ð7Þ

with solutions composed of cos; sin; cosh and sinh functions of x; y
and the constant p. The potential U is obtained by linear combina-
tions of these functions in (5).

For the rectangular element in Fig. 1b, we formulate the sepa-
rated solutions to vary between �1 on one of the sides, the cos
and sin terms repeat n times on this side, and the function is zero



Fig. 1. Subdividing a gridded domain into rectangular elements.
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on the opposite side. This gives the following set of influence
functions

gn

11
¼

sinh 2pn
x2�x

y2�y1

sinh 2pn
x2�x1
y2�y1

cos 2pn y�y1
y2�y1

gn
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x2�x

y2�y1

sinh 2pn
x2�x1
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gn
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¼ cos 2pn x�x1
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x2�x1
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¼ sin 2pn x�x1

x2�x1

sinh 2pn
y2�y

x2�x1

sinh 2pn
y2�y1
x2�x1

gn

31
¼

sinh 2pn
x�x1

y2�y1

sinh 2pn
x2�x1
y2�y1

cos 2pn y�y1
y2�y1

gn

32
¼
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ð8Þ

These functions are written as gn

kl
ðx; yÞ, where the first overscript

k ¼ 1;2;3;4 denotes the four sides, and the second overscript
l ¼ 1;2 denotes the cosine or sine function respectively.

Solutions to the Laplace equation may also include functional
forms with variations not captured by Fourier series alone. A set
of influence functions that are constant or vary as a linear or qua-
dratic function of x and y and vary between �1 along the boundary
of an element are given by

g
0
¼ 1; g

x
¼ 2x�ðx2þx1Þ

x2�x1
; g

y
¼ 2y�ðy2þy1Þ

y2�y1
;

g
xy
¼ 2x�ðx2þx1Þ

x2�x1

h i
2y�ðy2þy1Þ

y2�y1

h i
;

g
xy2
¼ 2x�ðx2þx1Þ

x2�x1

h i2
� 2y�ðy2þy1Þ

x2�x1

h i2

ð9Þ

These functions provide quadratic variation in the potential along
the sides of rectangles and eliminates the Gibb’s effect inherent in
SOV solutions [32]. Other functions, such as those presented shortly
in Eq. (12), may be added to these influence functions to account for
additional variations in potential.

2.3. Linear superposition of influence functions

Following the Analytic Element Method, a solution to the La-
place equation over each rectangle is obtained by taking linear
combinations of the influence functions

Uðc; x; yÞ ¼c
0
g
0
þ c

x
g
x
ðxÞ þ c

y
g
y
ðyÞ þ c

xy
g
xy
ðx; yÞ þ c

xy2
g

xy2
ðx; yÞ

þ
XN

n¼1

X4

k¼1

X2

l¼1

cn
kl

gn

kl
ðx; yÞ

þ dðx; yÞ ð10Þ
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where the coefficients c
0
, c

x
, c

y
, c

xy
, c

xy2
, and cn

kl
are gathered in the vector

c ¼

c
0

c
x

c
y

c
xy

c
xy2

..

.

cn
kl

..

.

2
666666666666666664

3
777777777777777775

ð11Þ

Note that n is summed over the N number of times that the Fourier
series repeat, k is summed over the number of sides in each rectan-
gle, and l is summed for the cosine and sine functions.

The function d in (10) is used to incorporate other functions in
the interior of a rectangle that do not take on the forms of the spec-
ified influence functions. For example, our solution in the case
study will incorporate wells as point-sinks [45]

d ¼ Q
2p

ln r ð12aÞ

where Q is the strength and r is the radial distance from the sink.
Our solution will also incorporate a function with uniform diver-
gence (recharge rate R) across an element, which may be chosen
to take different forms but is set here as per [33],

@2d
@x2 þ

@2d
@y2 ¼ �R ! d ¼ �R

x2

2
ð12bÞ

and extends the methods to solutions of the Poisson equation. Note
that the functions used for d contain only specified parameters (Q
and R) to simplify the presentation of solution method to adjust
the coefficients c in (11). Additional functions in d with unknown
coefficients, for example line elements placed within rectangles,
would require additional complexity to determine those coeffi-
cients in the solve algorithms developed next, for example by incor-
porating the solve matrices for Cauchy integrals presented in [37].

2.4. Solution method to satisfy boundary conditions

While the function U in (10) may be evaluated at any point (x; y)
in a single element, it is convenient to use matrices to gather the
equations used to evaluate U at control points where boundary
conditions are to be applied. A set of M equally spaced control
points on each sides of the element are located at

xm
1
¼ x1; ym

1
¼ y1 þ ðy2 � y1Þ

m� 1
2

M

xm
2
¼ x1 þ ðx2 � x1Þ

m� 1
2

M
; ym

2
¼ y1

xm
3
¼ x2; ym

3
¼ y1 þ ðy2 � y1Þ

m� 1
2

M

xm
4
¼ x1 þ ðx2 � x1Þ

m� 1
2

M
; ym

4
¼ y2 ð13Þ

and identified in Fig. 1b.
For a side k with Dirichlet boundary conditions, the potential

function at control point m may be specified to be equal to the va-
lue of Um

k
:

Uðc; xm
k
; ym

k
Þ ¼ Um

k
ðm ¼ 1 : MÞ ð14Þ

This gives a set of M equations that may be gathered in the matrices

A
k

c ¼ b
k

�d
k

ð15Þ
where A
k

contains values obtained by evaluating the influence func-

tions (10) at these points, b
k

contains the specified values Um

k
, and d

k

contains values obtained by evaluating the function d at these
points:

A
k
¼

..

. ..
. ..

. ..
.

1 g
x
ðxm

k
Þ g

y
ðym

k
Þ . . . g
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n
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k
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b
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.

d xm
k
; ym

k
� �

..

.

2
666664

3
777775 ð16Þ

Likewise, a side with Neumann boundary conditions where the par-
tial derivative in the n̂-direction normal to the side is specified at
each control point

@U c; xm
k
; ym

k
� �

@n̂
¼ �ðv n̂Þm

k
ðm ¼ 1 : MÞ ð17Þ

may be gathered in the following matrices in (15) that relate the
unknown coefficients c to the Neumann boundary conditions:

A
k
¼ w

..

. ..
. ..

. ..
.

0 @ g
x

@n̂ ðxm
k
Þ @ g

y

@n̂ ðym

k
Þ . . . @ gn

kj

@n̂ ðxm
k
; ym

k
Þ . . .

..

. ..
. ..

. ..
.

2
66664

3
77775;

b
k

¼ w

..

.

�ðv n̂
k
Þm

..

.

2
6664

3
7775; d

k

¼ w

..

.

@d
@n̂ ðxm

k
; ym

k
Þ

..

.

2
66664

3
77775 ð18Þ

where ðv n̂Þ
k

m is the normal component of the discharge vector for
control point m on side k. The weight w is used to scale these equa-
tions to contain terms on the same order as those for Dirichlet con-
ditions (16), and set to w ¼ ðx2 � x1Þ=2pN in our implementation.
Together, the four sides of a rectangle provide a set of 4M equations

A
1

A
2

A
3

A
4

2
66666664

3
77777775

c ¼

b
1

b
2

b
3

b
4

2
66666664

3
77777775
�

d
1

d
2

d
3

d
4

2
66666664

3
77777775

ð19Þ

to solve for the 5þ 8N unknown coefficients. The value of N is ad-
justed to contain enough terms so boundary and continuity condi-
tions are accurately matched and M is chosen so the number of
equations is larger than the number of unknowns following the
overspecification principle of Janković and Barnes [21]. Note that
lower-order number of terms N = 5 and M = 15 are used in the case
study, since the quadratic influence functions control the Gibb’s ef-
fect and the model accurately matches conditions with a relatively
small number of Fourier terms. Higher-order elements with N = 30
and M = 90 were used for model comparison in the benchmark ver-
ification section.

The Analytic Element Method is used to extend the separation
of variables solution for a single isolated element in (10) with
equations to satisfy boundary conditions in (19) to grids of inter-
connected elements. Two conditions are specified at control points
located along the intersection of the rectangle and the neighboring
elements on its four sides (shown in Fig. 1c). The first condition re-
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lates the potential at points inside the rectangle to the adjoining
elements as follows:

a
1
Uð c

rect
; xm

1
; ym

1
Þ � b

1
Uð c

side 1
; xm

3
; ym

3
Þ ¼ cm

1
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2
Uð c
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; xm
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2
Þ � b

2
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; ym

4
Þ ¼ cm

2

a
3
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; xm

3
; ym

3
Þ � b
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side 3
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1
; ym

1
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3
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4
Uð c

rect
; xm

4
; ym

4
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side 4
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2
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2
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4

ðm ¼ 1 : MÞ

ð20Þ

wherea
k
;b

k
andcm

k
are specified at each control point, and c

rect
, c

side 1
, c

side 2
,

c
side 3

and c
side 4

are the coefficients (11) associated with the rectangle

and the side elements. This condition is used to satisfy conservation
of energy (continuity of head) across adjacent elements along with
the requirement that the head cannot be lower than the base. Imple-
mentation of this condition follows [33], by evaluating the potential
function in the element with the lowest base elevation (designated
with a minus sign), convert this to head using (4), setting the head
in the adjacent rectangle to be either this head or the base of the aqui-
fer in this element, and then converting to potential using (1):

U�ðx; yÞ ! h�

h� ! hþ ¼ maxðBþ;h�Þ
hþ ! Uþðx; yÞ ð21Þ

This leads to the following coefficients to satisfy the continuity con-
dition in (20)
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ð22Þ

Note the coefficient cm

k
must be updated throughout each iterate of

the solve process using the strength coefficients from the previous
iterate.

The second condition relates the normal component of flux at
control points along the four sides of the rectangle to that in the
adjacent elements:

k
1 @Uð c
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;xm

1
;ym
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Þ
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side 1
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4 @Uð c

side 4
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2
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4

ðm ¼ 1 : MÞ

ð23Þ

This condition is used to satisfy conservation of mass (continuity of
flow) where the normal component of the discharge per width is
continuous across adjacent elements

Q�n̂ ¼ Qþn̂ ð24Þ

This is satisfied by setting k
k
¼ 1;l

k
¼ 1 and mm

k
¼ 0 in (23), although

other conditions might be envisioned where the derivative in the nor-
mal direction jumps across adjacent elements. Likewise, other appli-
cations might utilize a continuous potential across adjacent elements

obtained by setting a
k
¼ 1;b

k
¼ 1, and cm

k
¼ 0. Note that since overspe-

cification is applied, conservation of mass is satisfied across control
points in a least square sense. The errors associated with this approx-
imation are quantified later in the benchmark verification.

A system of equations is developed next to solve for the un-
known coefficients associated with the rectangle and its four adja-
cent neighbors shown in Fig. 1c. This partitioning of elements was
chosen as it gathers those elements necessary to satisfy continuity
conditions across all sides of a rectangle into as small a set as pos-
sible to achieve the fastest possible computational time. Dirichlet
conditions are specified along the outer boundary of this group
of elements, and the continuity conditions are applied across the
interface of adjacent elements. The equations that relate the
strengths of the five rectangles to the set of boundary conditions
imposed on the rectangle attached to side 1 is given by

0 A
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ð25aÞ

Here, the Dirichlet condition along the three sides of this rectangle
that do not adjoin side 1 of the central rectangle are contained in

the matrices A
1

side 1
, A

2

side 1
and A

4

side 1
; b

1
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, b

2
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, and b

4

side 1
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(16); and d
1
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2
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side 1
take on the value of the interior func-

tion for the rectangle adjacent to side 1. The continuity condition

for side 1 in (20) is satisfied by filling A
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with the contributions for the adjacent rectangle. Note that

the these matrices for A and d are fixed, but the matrix b must be
updated as iteration progresses. Similar equations exist for side 2
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for side 3
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and for side 4
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The conditions associated with continuity of the derivative in the
normal direction (23) for the groundwater application may be gath-
ered in the following matrices
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where the rectangle’s matrices A
1

rect
, A

2

rect
, A

3

rect
and A

4

rect
are filled with val-

ues associated with the normal component of the vector field using

(18); and the matrices A
1

side 1
, A

2

side 2
, A

3

side 3
and A

4

side 4
contain the contribu-

tions to the normal component of the vector field for the adjacent
rectangles. Continuity also requires that the interior vectors in this

equation: d
1
, d

2
, d

3
and d

4
contain derivatives of the interior function d

for the rectangle (18) minus this derivative for the functions interior

to the adjacent rectangle on the side associated with d
k

.
The system of equations in (25) and (26) contains 5ð4MÞ equa-

tions and 5ð5þ 8NÞ unknowns associated with the rectangle and
its neighbors in Fig. 1c. These matrices are easily adapted for rect-
angles with boundaries that contain both the edge of the model do-
main (with Dirichlet or Neumann conditions) and adjacent
elements (with continuity conditions) by removing the equations
and strengths associated with the side (s), and replacing those con-
ditions with the corresponding portion of the matrices for Dirichlet
(16) or Neumann (18) conditions. We adopted an iterative solution
method [21] to achieve a solution across all rectangles that cycles
through all rectangles and updates coefficients for each rectangle
while holding the strengths of the other rectangles at the value
of the previous iterate. Upon completion of each iterate, the value
of the potential is computed at the control points of each rectangle
as it is needed in the side element portions of (25) for the next iter-
ate. Iteration continuous until only small changes occur between
successive iterates (maximum difference in head at control points
between successive iterates of 10�6m in the benchmark studies).
This schema allows for parallelization and was implemented in Sci-
lab and executed on Beocat, the Beowulf grid computing cluster at
Kansas State University.
3. Benchmark model verification

While the influence functions for rectangular elements obtained
using separation of variables exactly satisfy the governing equa-
tions (to within computer accuracy), errors exist in approximating
boundary conditions using the Analytic Element Method. Two
benchmark comparisons were conducted to verify the capacity of
the model to accurately reproduce continuity and boundary condi-
tions. The first examines the distribution of head between adjacent
rectangles when a high capacity well (singularity) exists in one
rectangle near their common boundary. The second examines dis-
charge across rectangular elements in a heterogeneous porous
media.

3.1. Conservation of energy (continuity of head)

A benchmark solution is shown in the top row of Fig. 2 for a do-
main with fixed heads to the left (x ¼ x1) and right (x ¼ x2), and
impermeable conditions on the bottom (y ¼ y1) and top (y ¼ y2).
The particular configuration is shown for rectangular dimensions
x1=-8 m, x2=8 m, y1=-4 m and y2=4 m; aquifer parameters B = 0,
H = 1 m and k = 10 m/day; boundary conditions hðx1Þ=10 m and
hðx2Þ=9.984 m; and the head is shown at 32 contours with intervals
of Dh=0.0005 m. The well is located at zw ¼ xw þ iyw with xw=-
0.1 m, yw ¼ 0, and pumping rate Q. This solution was obtained
using the complex potential obtained from the method of images:

X ¼ Uþ iW

¼ Q
2p

lnðz� zwÞ þ Q x0xþU0 þ
XNx

i¼1

X4

j¼1

XNy

k¼1

X4

l¼1

ð�1Þj Q
2p

ln½z

� ðxij þ iyklÞ� ð27Þ

where the image wells are located by reflection across the lower
and upper bounds of the domain:

xi1 ¼ x1 � 2ði� 1Þðx2 � x1Þ � ðxw � x1Þ
xi2 ¼ x1 � 2iðx2 � x1Þ þ ðxw � x1Þ
xi3 ¼ x1 þ 2iðx2 � x1Þ � ðxw � x1Þ
xi4 ¼ x1 þ 2iðx2 � x1Þ þ ðxw � x1Þ
yk1 ¼ y1 � 2ðk� 1Þðy2 � y1Þ � ðyw � y1Þ
yk2 ¼ y1 � 2kðy2 � y1Þ þ ðyw � y1Þ
yk3 ¼ y1 þ 2kðy2 � y1Þ � ðyw � y1Þ
yk4 ¼ y1 þ 2kðy2 � y1Þ þ ðyw � y1Þ

ð28Þ

Note that the ð�1Þj term sets the sign of the image wells to repro-
duce the specified boundary conditions. The values of Qx0 and U0

are set such that Uðx ¼ x1Þ ¼ U1 and Uðx ¼ x2Þ ¼ U2, where these
potentials are obtained from h1 and h2 using (1). The number of
images was chosen such that Nx ¼ Ny ¼ 20, which satisfied the
boundary conditions at the left and right to within 0:002Dh.
Streamlines with constant W illustrate that the capture zone for
the well contains approximately 1=2 the discharge flowing from
the left to right boundary.

This method of images solution is compared to that obtained
using rectangular elements in Fig. 2. The second row shows two
lower-order rectangles (number of strength coefficients, N ¼ 5),
where a well was added to the interior function d in (10) for the
rectangle to the left of x = 0 but not included in the right rectangle.
The graphs in the right column shows head at the intersection of
the two rectangles (x ¼ 0 and y between y1 and y2) with intervals
of 1 dimensionless unit representing a change in head of Dh, the
contour interval spacing. Results illustrate that, while this lower-
order solution matches continuity conditions of head being equal
in both rectangles at control points fairly well, there is a consistent
error with head being too low when compared to the exact solu-
tion (by a factor of 2Dh). Using the rectangles with higher-order
elements (N = 30) in the third row of Fig. 2 gives a more accurate
solution, with a maximum absolute difference between this and
the exact solutions of 0.06Dh and an average difference of
0.002Dh (the same accuracy with which the method of images
matches boundary conditions to the left and right). Another meth-
od to increase the accuracy of the solution is presented in the last
row, where lower-order rectangles (N = 5) were used but the well



Fig. 2. Benchmark for conservation of energy: comparing rectangular elements near a singularity to the method of images (exact solution). The domain has fixed heads on the
left and right sides, and no flow occurs across the top and bottom sides.
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was also included in d in (10) for the right rectangle, thereby repro-
ducing the functional variation of the singularity directly in the
equation for this rectangle. The maximum absolute difference be-
tween this and the exact solutions is 0.10Dh and the average differ-
ence is 0.04Dh.
Thus, our AEM solution accurately satisfies the condition of con-
servation of energy across adjacent rectangles, with greater preci-
sion obtained by increasing the number of coefficients or by adding
interior functions to account for the singular behavior occurring
outside a rectangle.



96 D.R. Steward, A.J. Allen / Advances in Water Resources 60 (2013) 89–99
3.2. Conservation of mass (continuity of flow)

The benchmark solution containing rectangle elements that
completely fill a heterogeneous porous media, each with distinct
properties as illustrated in Fig. 3. The hydraulic conductivity is
log normally distributed

k ¼ kGeY ; lY ¼ 0; rY ¼ 1:5 ð29Þ
Fig. 3. Benchmark for conservation of mass: comparing the discharge per width across tr
no flow occurs across the top and bottom sides, and the log normally distributed hydra
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where kG is the geometric mean, and lY and rY are the mean and
standard deviation of Y [14]. The particular configuration shown
in Fig. 3 contains 16 lower-order (N = 5) rectangles with aquifer
parameters B = 1 m, H = 1 m and kG=10 m/day, impermeable bound-
ary conditions at the bottom and top, boundary conditions of fixed
head at the left (h = 10 m) and right (h = 9 m), and the head is
shown at 50 contours with intervals of Dh=0.02 m. The standard
deviation ry=1.5 was chosen such that the porous media is highly
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ndwater case study.
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heterogeneous, and yet each rectangle has a value of k that allows
easily discernible variation in head contours to visually verify con-
servation of energy. There is no correlation between the conductiv-
ities of the rectangles, following [23].

This solution was used to plot the normal component of the dis-
charge per width (Q x) across adjacent rectangles in the right graph
of Fig. 3. This is shown along the boundaries of rectangles on both
sides of three transects where x = 2, 4 and 6 m, and y varies be-
tween the bottom (y = 0 m) and top (y = 8 m) of the domain. The
discharge per width is plotted on a dimensionless axis obtained
by dividing Qx by the average discharge that enters the domain
on the left and leaves the domain on the right. Results illustrate
that the normal component of flow between points on each side
of the three interfaces are very close, with an average absolute dif-
ference between all control points for all transects of 0.024, or
about 1/10 the distance between tick marks on the y-axis. The
net flux across the domain was also computed across the three
transects by numerical integration of the normal component of
flow, and these dimensionless discharges match to within 0.0009.
This means that less that 0.09% of the net discharge is numerically
lost or gained as flow moves across the rectangles in the domain.

Thus, our AEM solution accurately satisfies the condition of con-
servation of mass for the discharge vector at individual points in
neighboring rectangles, and for the net discharge occurring across
adjacent rectangles. Note that head contours in both Fig. 2 and 3
illustrate that boundary conditions are accurately satisfied for the
Fig. 5. The groundwater model results for the High Plains Aquifer in southwestern Kan
dimensions specified in units of km. Results are shown for square elements with sides of
wells.
constant head at the left and right, and for the no flow conditions
at the bottom and top (perpendicular to contours of constant
head).

4. Case study and results

The capacity of our AEM approach to model practical problems
is illustrated by this case study of groundwater pumping in the
High Plains Aquifer of southwest Kansas, identified in Fig. 1a.
Groundwater use for irrigated agriculture supports a dynamic re-
gional economy [3,36] and this congressional district has the high-
est market value for agricultural production in the United States
[46]. The region is experiencing sustainability challenges associ-
ated with a declining resource where groundwater is being tapped
beyond the rate of natural recharge [39]. Addressing this problem
requires a computational method, such as our AEM model, that is
broad in scope and capable of modeling a large region while also
incorporating the local detail of drawdown from wells [35].

The data for the study region are illustrated in Fig. 4. The base
elevation and hydraulic conductivity were obtained from contour
maps developed for the USGS Regional Aquifer-System Analysis
project [18] and digitized by [9,10]. This model incorporates sur-
face water interactions associated with both recharge and the gain-
ing and losing sections of rivers [2], using the rate of recharge
obtained from contour maps of terrestrial recharge developed for
the Kansas Division of Water Resources [20] and subtracting the
sas, showing rectangular elements, head contours at intervals of 10 m, and domain
length 10 km, 5 km and 2 km, and a closeup view is shown for the 2 km model with



Table 1
The computational costs associated with solving the system of equations and then gridding the head for the High Plains groundwater model. Results illustrate that the solve time
necessary to determine coefficients scales with the number of rectangles and the number of iterates. The grid time to compute the head across 500 � 500 points is approximately
the same time as one solve iteration. The computer memory storage requirements for all data including solve matrices for all rectangles is also reported. The number of
coefficients was set to N = 3 for the 2 km model due to memory storage limitations.

Rectangle size 10 km 5 km 2 km
Convergence criteria [m] 10�4 10�5 10�6 10�4 10�5 10�6 10�4 10�5 10�6

Solve time (tS) [hr] 2.08 2.54 3.04 26.53 33.54 39.38 315.05 474.75 602.52
# of iterations (I) 707 888 1069 2186 2832 3478 6920 9496 12073
# of rectangles (J) 224 224 224 859 859 859 5096 5096 5096
Solve per iterate (tS=IJ) [sec] 0.047 0.046 0.046 0.051 0.050 0.047 0.032 0.035 0.035

Grid time (tG) [sec] 12 13 13 42 48 51 196 197 192
Grid per rectangle (tG=J) [sec] 0.054 0.058 0.058 0.049 0.056 0.059 0.038 0.039 0.038

Memory [MB] 111 440 1763
Solve coefficients N = 5, M = 15 N = 5, M = 15 N = 3, M = 15
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rate of baseflow extraction occurring from groundwater to surface
water [4]. Note that this results in some negative values for re-
charge, indicating net extraction of groundwater to surface water
exceeding terrestrial recharge over the rectangle. Raster maps
were obtained for these data using the ‘‘Topo to Raster’’ tool in Arc-
GIS and results were aggregated to the size of the rectangles, and
these properties were assumed uniform in each element. Wells
were incorporated in some of the elements using pumping rates
and locations obtained from the WRIS (Water Rights Information
System) database at the Kansas Division of Water Resources.

Boundary and continuity conditions were specified as follows.
Dirichlet conditions along the western and eastern boundaries
were obtained using the head from predevelopment maps of
groundwater elevation [11,18]. The location of these boundaries
was identified by limiting the model domain to rectangles with a
predevelopment saturated thickness of at least 5 m following
[27], a criteria that was also applied to identify rectangles inside
the domain where groundwater did not exist. Neumann conditions
along the northern and southern boundaries specify a normal com-
ponent Q n̂ ¼ 0, as groundwater flow in the region is predominated
by a west-to-east sloping bedrock [39]. Continuity conditions were
applied across adjacent rectangles to satisfy conservation of energy
and mass conditions.

The model was executed using elements with sides of length 10,
5 and 2 km, and the resulting distribution of head is illustrated in
Fig. 5, where x and y units are km and head is contoured at 10 m
intervals. The local view in Fig. 5d illustrates the capacity of this
model to incorporate local detail of well-on-well interactions with-
in a regional setting. Each well individually withdraws a much
lower percentage of the regional flow than the benchmark study
in Fig. 2, and hence, drawdown is not as pronounced as in that fig-
ure. The solution accurately matches boundary and continuity con-
ditions, and show the gentle west to east head gradient that
extends existing stepping base models [33,38] to a two-dimen-
sional setting.

The computational costs associated with the case study model
are reported in Table 1. For each grid resolution, the model was
run until the error (maximum difference in head between succes-
sive iterates across all control points for all rectangles) was 10�4,
10�5 or 10�6, and the number of iterates required to achieve this
accuracy are reported. The time to solve scales directly with the
number of iterates and the number of rectangle elements in the do-
main. The time to evaluate the solution by gridding head across is
relatively small, and on the same order as one solve iteration.
Memory requirements scale with the number of rectangles, as
the solve matrices were saved individually for each rectangle in
our implementation. Considerable computational advantages
would be realized through modifying code to use parallel process-
ing of the iterative solve process [6].
5. Conclusions and discussion

A new model is developed by adapting the Analytic Element
Method to extend separation of variables solutions to rectangular
gridded domains. First a domain is discretized as a set of intercon-
nected rectangular elements in Fig. 1, each with unique properties
associated with the problem domain (Fig. 4). A set of influence
functions are developed from separation of variables (8) along with
constant, linear and quadratic functions (9) that help resolve the
Gibbs phenomenon. These functions are linearly superimposed
with functions for wells and recharge to give the potential function
for a rectangle (10). Equations are developed to satisfy boundary
conditions at control points - Fig. 1 - and gathered in matrices -
(15) and (19) - for Dirichlet (16) and Neumann (18) conditions.
Continuity conditions are developed for the potential (25) and
the normal component of its derivative (26) to satisfy conservation
laws across adjacent rectangles. This system of equations is solved
iteratively to obtain a continuously varying function across a rect-
angular grid with specified boundary and continuity conditions.

Benchmark studies were performed to verify that the model
accurately satisfies continuity and boundary conditions. The first
benchmark compared the solution to that obtained via the method
of images for a high capacity well in a bounded domain, and results
in Fig. 3 illustrate that conservation of energy is accurately satis-
fied. The second benchmark studied rectangles with log normal
heterogeneity in hydraulic conductivity, and results in Fig. 3 illus-
trate that conservation of mass is accurately satisfied. A case study
illustrates the capabilities of the AEM approach to model ground-
water in the High Plains Aquifer of southwestern Kansas, identified
in Fig. 1. This region is spatially large with variable aquifer and
hydrologic properties, and local interactions amongst irrigation
wells. A variety of GIS vector and raster data sources were used
to develop unique properties for each rectangular element in
Fig. 4. Results in Fig. 5 illustrate that boundary and continuity con-
ditions are accurately matched, and that the model generates a
continuous function across the region that incorporates the detail
of local well pumping. Table 1 summarizes the impact of changes
in resolution on computational costs associated with running the
model.

Our new model for rectangular gridded domains poses several
advantages. Unlike the Embedded Matrix Method that places het-
erogeneities inside a homogeneous background [15], rectangular
heterogeneities may completely fill the domain (see Fig. 3). Such
elements allow for jumps in properties such as hydraulic conduc-
tivity and aquifer bedrock across a study area (see Fig. 5). Comput-
ing head and velocity at grid points in a domain with rectangular
elements only requires evaluation of the influence functions and
interior functions for the rectangle in which the evaluation point
resides, (10), resulting in evaluation time as documented in Table 1,
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which are much faster than previous studies of the region that
used Cauchy integrals [38]. Our model ties the rectangular ele-
ments directly to the raster data sources in ArcGIS (see Fig. 4),
which were obtained through spatial analysis of the underlying
data sets, with the vector datasets for the location and pumping
rates for wells, which retain their point data attributes. The size
of the elements for the regional model – 2.5, 5 and 10 km in
Fig. 5 – are on the same order as previous finite difference models
– with grid spacings of between 1.61–16.1 km [18,27] – and pro-
vide a continuously varying function within rectangles across the
region that accurately captures well-on-well interactions. The
capabilities of the methods to accurately reproduce the singular
behavior of well drawdown near the side of a rectangle was estab-
lished in Fig. 3.

Future work is envisioned to extend the existing model that was
executed on a grid computing system. By isolating evaluation of
functions to those occurring within isolated rectangles, the compu-
tations associated with head and velocity as well as the iterative
solve process are well suited for parallel computations. The math-
ematical and numerical implementation is applicable to other
fields of study with interconnected rectangular elements, such as
heat conduction, electrical conduction and unsaturated groundwa-
ter flow.
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[13] Craig JR, Janković I, Barnes R. The nested superblock approach for regional-
scale analytic element models. Groundwater 2006;44:76–80.
[14] Dagan G. Models of groundwater flow in statistically homogeneous porous
formations. Water Resour Res 1979;15:47–63.

[15] Dagan G. Analysis of flow through heterogenous random aquifers by the
methods of embedding matrix 1. Steady flow. Water Resour Res
1981;17:107–21.

[16] Fitts CR. Modeling aquifer systems with analytic elements and subdomains.
Water Resour Res 2010;46:W07521.

[17] Fourier, JBJ. Mémoire sur la propagation de la chaleur dans les corps solides,
Nouveau Bulletin des Sciences par la Société Philomathique de Paris, 1808,
pp.112–116 (reprinted in Oeuvres complètes, tome 2. pp. 215–221).

[18] Gutentag, ED, Heimes, FJ, Krothe, NC, Luckey, RR, Weeks, JB. Geohydrology of
the high plains aquifer in parts of Colorado, Kansas, Nebraska, New Mexico,
Oklahoma, South Dakota, Texas and Wyoming, Professional Paper 1400-B, U.S
Geological Survey, 1984.

[19] Haitjema HM. Analytic element modeling of groundwater flow. San
Diego: Academic Press; 1995.

[20] Hansen, CV. Estimates of freshwater storage and potential natural recharge for
principal aquifers in Kansas, Water resources investigations 87–4230, U.S
Geological Survey, 1987.
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