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Chapter I

INTRODUCTION

Computers are used widely for the storage of large volumes of

data. Most data stored is not in the public domain as it contains

either vital business/governmental/military information or

confidential information about individuals. The violation of privacy

of an individual is "making such information available to others . .

.

without his or her consent ..." [FELL72] . Consequently, the issue of

data security is of great concern to the owners of databases and has

been receiving great attention from researchers over the last two

decades. According to Miranda [MIRA80] , data security is of greater

importance in database management systems than in any other software

because it can be changed and also because data access is made

available to many via powerful and convenient user interfaces

.

Two kinds of security control can be imposed. One is external

security control in which personnel and physical access to the

computer is limited. The second kind of control is internal security

control. It is in this type of control that abuse by authorized

sophisticated computer users must be restricted or denied.

Internal security mechanisms were surveyed by Denning and Denning

[DENN79b] . They discuss four areas of internal security control:

access controls, flow controls, inference controls and cryptographic

controls. All these controls involve regulating the operations of a

computer system. Access controls regulate modification of data and

programs. Flow controls regulate flow of information from one object



to another. Inference controls regulate the inference of confidential

information from statistical databases. Cryptographic controls

regulate the encryption of the data stored in a computer system or

those transmitted on communication lines. Considerable research has

and is being done in each of the above areas.

Although the above security controls are all equally important

and interesting, the focus of this work is in the area of inference

control in statistical databases. Statistical databases provide

statistical information such as frequency counts, means, medians,

sums, ..., etc, of a certain subset of data in a given population.

The objective is that no confidential information about a particular

individual is revealed but good statistical population measures can be

obtained. However, users can often deduce (or infer) confidential

information from the statistical information. This type of compromise

is very difficult to control because the database is compromised by

legitimate queries. Such compromise is effected through the use of

trackers, logical formulas and a process of manipulating data obtained

from a few overlapping subsets of records.

The exact nature of this form of compromise, the previous

research done in the areas of avoiding this form of compromise and to

making such compromise very difficult is discussed in Chapter II. It

must be noted however that all the methods proposed to date either

have flaws in that the database is still susceptible to compromise or

are very expensive to implement. The present research is an attempt

to find a relatively inexpensive solution to the problem of preventing



the compromise of an individual's privacy via inferential methods from

a statistical database.



Chapter II

LITERATURE SURVEY

INTRODUCTION

Any survey on databases must begin with the specification of the

database model. The terms in this work are defined and examples are

provided to clarify these definitions. The database in Denning,

Denning and Schwartz [DENN79a] was chosen as a basis for most of the

examples in this study. This database which contains information

about employees in a hypothetical university's College of Mathematical

Sciences is shown in Table 2.1.

Table 2.1. Database Containing Information On Employees in a
Hypothetical University's College of Mathematical Sciences.

No. Name Sex Dept Position Salary Political
Contribution

1 Adams M CS Prof 20 50
2 Baker M Math Prof 15 100
3 Cook F Math Prof 25 200
4 Dodd F CS Prof 15 50
5 Engel M Stat Prof 18
6 Flynn F Stat Prof 22 150
7 Grady M CS Adm 10 20
8 Hayes M Math Prof 18 500
9 Irons F CS Stu 3 10
10 Jones M Stat Adm 20 15
11 Knapp F Math Prof 25 100
12 Lord M CS Stu 3



DATABASE MODEL

A statistical database is a collection of records for each

entity. An entity is a "thing that exists and is distinguishable"

[ULLM82]. In the database of Table 2.1, each correspondent (or

individual) is an entity. The database contains information about 12

individuals (sometimes referred to as the size of the database)

.

Entities have properties called attributes . In our example, Name,

Sex, Dept, Position, Salary and Political contributions are all

attributes. Each attribute has many possible values in its domain.

The possible values for each of the attributes (or the domains) are:

Name : a character string

Sex : M, F

Dept : CS, Math, Stat

Position : Prof, Adm, Stu

Salary : any integer >=

Political contribution : any integer >-

An attribute or a set of attributes whose values uniquely

identify each entity is called a key . In the above example, the

attribute "Name" is a key. Information about any particular

individual is considered confidential and consequently keys are not

considered to be part of statistical databases. However, an

individual's record can possibly be identified by another group of

attributes. For example, Dodd could be specified by having the values

F, CS and Prof for the attributes Sex, Dept and Position respectively.



We can also view the database records to contain category and

data fields [DENN78]. In the above example, the attributes Sex, Dept

and Position may be considered as category fields (the values do not

represent numerical data) . The attributes Salary and Political

contribution are data fields (the values are numerical data).

A query is a question which can be asked about a database.

Queries could be of two forms : key specified and characteristic

specified . Key specified queries request statistics for a set of

individuals identified by keys. It would be useful, at this point, to

present the model proposed by Kam and Ullman [KAMU77] and Chin

[CHIN78]. They view a statistical database as a function f from

strings of k bits (called the key) to integers. In Chin's model, the

range of f is an ordered pair {0,1} x R. indicates that there are

no records with the specified keys in the database, and a 1 indicates

that there are records with the specified keys in the database. The

value/result of the query is a real number (R) . The database about

employees in the hypothetical university above could be represented by

keys consisting of 25 bits abbccddddddeeeeeeeeeeeeee interpretted as:

(1) a is the Sex of the individual; 0=M, 1-F

(2) bb is the Dept; 00-CS , 01- Math, 10-Stat

(3) cc is the Position; 00-Prof, 01-Adm, 10=Stu

(4) dddddd is the Salary

(5) eeeeeeeeeeeeee is the Political contribution

The database is queried by specifying some of the bits and leaving the

others unspecified. An unspecified bit is denoted by a *. For



example, if the only queries allowed are the queries on salaries, the

sum of the salaries of all males in the CS department could be

obtained from the query:

000**********************

To find the sum of the salary of all female Professors with a

contribution of $100, the query would be:

1**00******00000001100100

It is easily seen that this is very cumbersome and consequently not

very popular. Therefore, the model considered in this work deals with

characteristic specified queries. However, it must be mentioned that

using the above model, Kam and Ullman [KAMU77] and Chin [CHIN78]

guarantee that the database is secure (definition of which appears

later). For a database of this nature, one can only ask queries

involving either the operators SUM or COUNT.

Characteristic specified queries, q(C) , uses a characteristic

formula C to group records in a database. A characteristic formula is

a logical formula over the values of category fields. This logical

formula uses boolean operators: and (&) , or (+) and not ("). The

operands are values of category fields. For example:

C = (Sex=M) & (Dept=CS)

is a characteristic formula which specifies all males in the CS

department. The set of records which satisfy a characteristic formula

C is called a query set . X The size of the query set is denoted by

|X
C |. Records corresponding to Adams, Grady and Lord would satisfy



the characteristic formula C = ( (Sex=M)&(Dept=CS) ) and hence would be

members of the query set X of size three. To give another example,

Dodd is the only member of the query set Xr (of size one) for the

characteristic formula:

C = (Sex=F) & (Dept-CS) & (Position-Prof)

The characteristic specified queries q(C) can take many forms

[DENN78]. Some of the forms are:

COUNT(C) - |X
C |, where |X

C
|

is the size of the query set X

satisfying the characteristic formula C. (1)

SUM(C;j) = 2_ v.
. , where v.. is a data field j of record i. (2)

ieX
c
« lJ

- Sum of all the values in the data field j for all

individuals satisfying C.

select(C;j) = select v where select is MEDIAN, SMALLEST,
C J

LARGEST, MEAN etc. (3)

=» MEDIAN, SMALLEST, LARGEST or MEAN of the data

fields j for all individuals satisfying C.

The COUNT and SUM queries can be written in a more general from

[DENN79a] as:

q(C;j,m) = E. v
m

(4)
ieX

Q
«

where

m = for the COUNT query,



and m - 1 for the SUM query.

Examples of some characteristic specified queries are:

COUNT((Sex=M) & (Dept=CS))) = 3

- Number of males in the CS

department.

SUM ((Sex-M) & (Dept=CS); Salary) = 33K

- sum of the salaries of all males in

the CS department.

MEDIAN ((Sex-M) & (Dept=CS) ; Salary) - 10K

- median of the salaries of all males

in the CS department.

SUM ((Sex=M) & (Dept=CS); Political Contribution) = $70

- sum of the political contributions

of all males in the CS department.

COMPROMISE

As mentioned earlier, the aim of a statistical database is to

provide statistical information about a group of individuals without

revealing information about any specific individual. The example

below shows how a user can deduce information from the database of

Table 2.1 about an individual, say Dodd. If the user has pre-

knowledge that Dodd is a female Professor in the CS department and

wants to find Dodd's salary, the user could first ask the query:

COUNT ((Sex-F) & (Dept-CS) & (Position=Prof )

)



The user would now conclude that Dodd is the only one with the above

characteristics because the response to the above query is one. It is

now quite trivial to deduce Dodd's salary. The query to determine

Dodd's salary would be:

SUM ((Sex-F) & (Dept-CS) & (Position-Prof); Salary)

Since information about an individual (Dodd in this case) was not

known previously and has been deduced, compromise or disclosure is

said to have taken place. More formally, compromise or disclosure

occurs when one can gather information which is not previously known

about an individual from one or more queries.

Most databases do not answer all queries. As an example, the

query SUM(C;j) may not be supported/permitted by some databases. Even

when queries such as SUM(C;j) are not allowed, a user can still deduce

information (say salary) about an individual (Dodd). The scheme to do

this was given by Hoffman and Miller [HOFF70]. Once it is established

that the characteristic C - ((Sex-F) & (Dept-CS) & (Position-Prof))

identifies Dodd, the user could check if Dodd's salary is any value

(say $20K) . This query would be:

COUNT( (Sex-F) & (Dept-CS) & (Position-Prof) & (Salary-20))

A response of indicates that Dodd does not earn $20K. The user

could infer the exact salary of $15K when the response to a query is

one. In this example, the query would be:

COUNT ((Sex-F) &(Dept-CS) & (Position-Prof) & (Salary-15))

10



Compromise still seems to have taken place when a user deduces

that Dodd does not earn $20K because the user did not have this

information earlier. This kind of compromise in which it is revealed

that an individual does not have a particular value in one of the data

fields of that individual is called negative compromise . In a

positive compromise . it is revealed that an individual has a

particular data value in one of the fields of that individual's

record. For example, deducing that Dodd's salary is $15K is positive

compromise.

Complete compromise occurs when one deduces everything in the

database. Partial compromise occurs if deductions regarding some

individuals can be made but the entire database is not deduced.

Further, if no positive or negative compromise can occur in a

database, then the database is strongly secure . If only negative

compromise can occur in a database then the database is weakly secure .

Since databases can be compromised, many queries on the database

are not allowed. Queries that are permitted by the database are

permitted queries, otherwise they are restricted queries . Schlorer

[SCHL80] distinguishes the knowledge a user possesses because of

permitted queries (working knowledge ) from the knowledge a user

learns/possesses from "anything which cannot be learned from publicly

available system discription plus normal statistical evaluation"

(supplementary knowledge ) . It must be pointed out that it is very

difficult to know exactly how much supplementary knowledge a user

11



possesses. It may be reasonable to assume that for the database of

Table 2.1, a user would know the sex, department and position of an

individual

.

Disclosure could be of two types [SCHL80, HAQ75]: statistical

disclosure and personal disclosure . Statistical disclosure occurs if

a user learns a restricted statistical quantity. Statistical

disclosure could either be resultant disclosure (when only working

knowledge is used) or external disclosure (when supplementary

knowledge must be used) . Personal disclosure occurs when a user gains

a piece of new information about an individual.

PROTECTION MECHANISMS

It was seen earlier that compromise/disclosure is possible from

statistical databases. Before any protection mechanisms are

presented, one must look into the various ways in which data is

distributed to the users. Once the means of dissemination are

identified, mechanisms to prevent disclosure can be presented.

Fellegi [FELL77] pointed out three kinds of dissemination programs:

(1) Printed publications

(2) Public use of tapes

(3) Custom-made retrievals or query-based statistical outputs

[SCHL83b]

Although these dissemination programs seem to be different, the

security problems in all the above dissemination programs are similar.

The mechanisms for protection apply to all three dissemination

12



programs. Greater emphasis would however be put on query-based

statistical outputs. The reason is that printed publications and

tapes are planned dissemination programs. One can either control,

restrict or control and restrict the amount of information published.

Custom-made retrievals are made on multi-purpose databases and the

consequences of this are [FELL77]

:

(1) The information in the public domain increases.

(2) Each answered query represents a potential risk in

compromising the database for future retrievals.

There are possibly many ways to categorize the protection

mechanisms [PALM74, SCHL83b, DENN78, DENN80b]. Basically, there are

two possibilities regarding the storage of data in the database:

(1) Dummy/modified data is stored in the database.

(2) Actual data is stored in the database.

The strategies for protection against compromise change with the

way in which the data is stored. Hence, they are considered

seperately.

STORAGE OF DUMMY DATA IN THE DATABASE

In this scheme, actual data is not stored in the database. There

are three basic schemes for modifying the database:

(1) Micro -aggregation

(2) Random modification of data

(3) Data Swapping

13



Micro -aggregation

In micro-aggregation, individuals with similar characteristics

are grouped together to form single "aggregate individuals" [FEIG70].

These "aggregate individuals" replace the actual data. Statistics are

computed for these aggregates rather than the real ones

.

Questions do arise as to how much to aggregate and which

individuals need to be chosen for aggregation. It was rightly pointed

out by Feige and Watts [FEIG70] that the cost of aggregation must be

measured in terms of the usefulness of the aggregated data for

research purposes. They examined the usefulness of this data when

they were taken as inputs to regression analysis. When the regression

model is known in advance, it is possible to devise grouping schemes

that avoid disclosure of individual microdata and still maintain the

property that the grouped estimators are unbiased. It seems quite

unreasonable to expect the knowledge of the regression model for query

based databases

.

For published data (such as printed publications and public use

of tapes), this strategy could probably be implemented at a high cost.

For multipurpose data which allows custom-made retrievals, this

strategy is almost impossible to implement. The database is usually

not static. Modifications may be made continuously to the database.

Under such circumstances, the choice of individuals for aggregations

may need continuous change. The cost of this evaluation after every

modification of the database can be prohibitive and hinder the

usefulness of the database.

14



Random modification of the data

In this strategy, some of the data could be modified at random

and stored. Reed [REED73] related security in data banks with

information theory. He defined a privacy transformation T which

transformed each record as it was saved for use in data banks.

Associated with each element in the privacy transform T, was a

probability P, . Each record was transformed to a new value which

depended both on the privacy transform and the associated

probabilities. This transformation can also be applied to the data

every time it is retrieved from storage. The data stored could be the

actual data itself. The cost of doing this is going to be large since

the transformation is applied to each record.

More recently, Traub, Yemeni and Wozniakowski [TRAU84] suggested

that instead of storing the actual record, a record distorted by a

random perturbation vector be stored. The components of the

perturbation vector are random with a mean zero. For example, in the

database of Table 2.1, the values of salary and political contribution

for Dodd could be stored as $14K and $53 respectively. A problem with

this method is that there could be queries which could result in large

errors. This could easily happen if the user chooses a group of

records for which all perturbations are on one side of the mean and

therefore the resultant error for all the records grouped together may

be unacceptable. A suggestion by the authors was to monitor the error

and to take appropriate action when it exceeded a certain threshold.

15



This strategy would require storage of the actual data also. The cost

of storing both the actual as well as the perturbed data could be

large and therefore maybe unacceptable for most organizations.

Data Swapping

In multidimensional transformation or data swapping, the values

of fields of records are interchanged [SCHL81] . The data field in a

record for any particular individual need not be correct. In a sense,

the database is transformed to a new database. Data swapping

therefore reduces the risk of compromise. However, there is no

efficient way of finding which records are to be used for data

swapping.

For example, in the database of Table 2.1, one could swap the

salaries of Adams and Dodd because they are both professors in the CS

department. A question could be raised, however, as to why a swap is

made between individuals of opposite sexes. The determination of

which records to use in a swapping operations is not a trivial process

and can be very costly.

STORAGE OF ACTUAL DATA IN THE DATABASE

In these schemes, the actual data is stored in the database.

While presenting the data, or while answering queries, two control

strategies can be implemented:

(1) Output restriction techniques:

16



A query is answered or a value published only if some

conditions are satisfied. However, the response is

always the true value. Some of the techniques are:

(i) Cell suppression techniques

(ii) Controls on the size of the query set.

(iii) Controls on the overlap of queries.

(iv) Table restrictions

(2) Output perturbation techniques

In these techniques the answer to the query or the

value to be published is perturbed from the true value.

There are two categories of perturbation techniques:

(i) Record based perturbations

(ii) Rounding techniques

Cell suppression techniques

These techniques are popular among the census agencies [COX75,

COX77, COX79, COX80, JABI77, ZEIS77] where the dissemination programs

are printed publications or public use tapes. The published data are

viewed as tables. These tables consist of cells . Under cell

suppression techniques, all cells identified as disclosure cells (or

sensitive cells) are suppressed from publication. A cell is

considered sensitive if an unacceptable estimate of the value of the

data cell is made from the data. Merely suppressing sensitive cells

is not enough since users may find out what the sensitive cells are

17



and find the values of these cells by algebraic manipulation.

Therefore, related non-sensitive cells, called complementary

suppressions . may also be suppressed from publication. The non-

sensitive cells are chosen so as to ensure that no value of sensitive

cells may be derived from the published data.

It may be feasible to apply cell suppression for custom-made or

query based retrievals. This, however, needs further study [SCHL83b].

Controls on the size of the query set

Once it is established that a set of characteristics identifies a

specific individual, the database is easily compromised as shown in

earlier examples. It was shown for the database of table 2.1, that

Dodd's salary could be deduced from either of the queries:

SUM ((Sex-F) & (Dept-CS) & (Position-Prof); Salary)

COUNT ((Sex-F) & (Dept-CS) & (Position-Prof) & (Salary-15))

A simple solution to avoid identification of an individual could be to

have controls on the query size n for any characteristic formula C.

A query q(C) is answered only if the query size n is in the range

[k,N-k]
,

where k is a chosen parameter and N is the total number of

records in the database.

Although this seems to be a good idea, this control is easily

subverted by a tool called the tracker [DENN79a, SCHL75, SCHL80,

DENN80a]
.

A tracker is a set of characteristic formulas which help in

18



padding the query set of the original formula to form answerable

queries

.

Schlorer [SCHL75] considered the case where k was in the range

(l.N/2] and the query set size was in the range [k,N-k] . He

introduced the concept of an individual tracker . If a user wants to

find the answer to a query q(C) which is restricted, then, to deduce

q(C) , the user could find a split of C into disjoint sub-

characteristics A and B where C - A & B such that q(A & B) and q(A)

are both answerable. q(C) is then calculated from:

q(C) - q(A) - q(A & B) (5)

The formula T= A & B is called the individual tracker. To illustrate

the use of the individual tracker, consider the database of Table 2.1.

If a user knows that Dodd is identified uniquely by the

characteristic

:

C - (Sex-F) & (Dept-CS) & (Position-Prof)

and if only those queries whose size is in the range [2,10] (i.e. k-2)

are answered, then an unanswerable query q(C) is calculated from Eq.

(5) using the tracker T - A & B where A - (Sex-F) and B = ((Dept-CS)

and (Position-Prof)). In fact, Eq. (5) could be used to verify that

Dodd is the only individual with the characteristics given by C:

COUNT((Sex-F) & (Dept-CS) & (Position-Prof))

- COUNT(Sex-F) - COUNT (( Sex-F) &( (Dept-CS) "&" (PSsitI8n-Prof ) )

)

- 5-4

19



-1

It is to be noted that both q((Sex-F) & (Dept=CS"&"Position=Prof ) ) and

q(Sex-F) are permitted queries. To determine Dodd's Salary, Eq. (5)

can be applied utilizing the SUM query:

SUM((Sex«F) & (Dept=CS) & (Position-Prof); Salary)

= SUM(Sex=F; Salary) -SUM((Sex-F)&(Dept=CS)&(Position=Prof); Salary)

= $90K - $75K

- $15K

Individual trackers must be found for each individual for complete

compromise. A tracker called the general tracker applicable to all

individuals in the database was presented by Denning, Denning and

Schwartz [DENN79a]

.

A general tracker is any characteristic formula T whose query set

size is in the range [2k,N-2k] . Therefore, the value of k is

restricted to [0,n/4]. Any restricted query q(C) may be calculated

from:

q(C) = q(C+T) + q(C + f) - q(T) -q(T) if COUNT(C)<k (6a)

q(C) = 2q(T) + 2q(T) - q(C + T) - q(C + f) if COUNT(C)>N-k (6b)

It was shown that all the queries on the right hand side of Eq. (6)

were answerable. For example, if k-2 , then the general tracker must

have a query set size in the range [4,8] for the database of Table

2.1. A general tracker could be T=(Sex=M) since COUNT(T) is 7.

Dodd's salary can be determined from:

SUM((Sex-F)&(Dept=-CS)&(Position=Prof); Salary)

20



- SUM(((Sex=F)&(Dept=CS)&(Position=Prof)) + (Sex=M); Salary) +

SUM(((Sex=F)&(Dept=CS)&(Position=Prof)) + (Sex-M) ; Salary) -

SUM((Sex=M); Salary) - SUM( (Sex=M) ; Salary)

- $119K + $90K - $104K - $90K

- $15K

There could be many general trackers. For example, T = (Dept=CS) is

also a general tracker since COUNT(T) is 5 and is in the range [4,8].

Denning, Denning and Schwartz [DENN79a] found an even more powerful

tracker called the double tracker. For a general tracker to be found,

k must be in the range [0,n/4]. In the case of a double tracker, k

needs to be in the range [0,n/3] . A double tracker is a pair of

characteristic formulas (T,U) satisfying:

h:- *V (7a)

COUNT(T) is in the range [k,N-2k] (7b)

COUNT(U) is in the range [2k,N-k] (7c)

Any restricted query q(C) is found from:

q(C) = q(U) + q(C+T) - q(T) - q(C&f&U) for COUNT(C)<k (8a)

q(C) = q(U) - q(C+T) + q(T) + q(C&T&U) for COUNT(C)>N-k (8b)

For example, if k=4, there cannot be any general tracker because of

range restrictions. However, (T,U) =
( (Dept-Math) ,

(Position-Prof ) ) is

a double tracker since it satisfies Eq. (7):

X^, = records of Baker, Cook, Hayes and Knapp
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X - records of Adams, Baker, Cook, Dodd, Engel, Flyrm, Hayes and

Knapp

C0UNT(T)=4 and is in the range [4,4]

C0UNT(U)-8 and is in the range [8,8]

To determine Dodd's salary:

SUM((Sex-F)&(Dept-CS)&(Position-Prof); Salary)

- SUM( (Position-Prof) ;Salary)+

SUM( ( (Sex-F)&(Dept-CS)&(Position-Prof ) )+(Dept-Math) ; Salary)

- SUM((Dept-Math); Salary)

- SUM((Sex-F)&(Dept=CS)&(Position-P^

(Position-Prof); Salary)

= $158K + $98K - $83K - $158K

- $15K

Clearly, trackers are powerful tools for disclosure. It was shown

that trackers can be discovered using only a few queries and in

addition that there are an abundance of trackers for most databases

[SCHL80, DENN80a] . It is therefore obvious that in order to avoid

disclosures by controlling the query set size, one would have to

severely restrict the range of allowable queries and this could render

the database useless for normal statistical processing.

Controls on the overlap of queries
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It was seen in the discussion of the control of query set size

that equations involving trackers isolate a single record. The

queries in the right hand side of Eqs . (5), (6) and (8) have many

records in common, and these queries are manipulated algebraically to

nullify the effect of these common records.

Davida et al. [DAVI78], Dobkin, Jones and Lipton [DOBK79], and

DeMillo, Dobkin and Lipton [DEMI78] have shown how a set of queries

with large overlap of records could be used to compromise the

database. In some databases, the response to a query is a weighted

sum of the elements in the query set. These weights are usually kept

secret. By a clever overlap of query sets, Schwartz, Denning and

Denning [SCHW79] have shown that the database can be compromised if

the user has sufficient information about the records in the database.

A strategy which would not allow compromise would be to stop the

overlap of records in queries. There are three ways of implementing

this strategy:

(1) Keeping history

(2) Implied queries

(3) Database partitioning

Keeping history

One way to stop overlap is to keep history of all the queries by

a user. The programs that monitor all requests to the system and keep

audit trials are called threat monitoring control programs [HOFF70]

.
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A technique for managing the past history of user's queries was given

by Chin and Ozsoyoglu [CHIN82]

.

A query is not answered if the number of records common to two

queries is more that a specified quantity. An implementation of this

approach is to check the number of records common to two consecutive

queries. If a user decides to intersperse the queries with dummy

queries, this implementation is easily subverted. Another

implementation could be to remember all the queries. The number of

queries to be monitored and compared can increase rapidly. However,

there is no guarantee that a user does not get the answers to the

queries by colluding with some of his/her cohorts. Another problem

could be that this restriction may hinder a genuine user from getting

needed information from the database.

Implied queries

Friedman and Hoffman [FRIE80] introduced the concept of an

implied query. For any query or a set of queries, the queries that

can be deduced are called implied queries. A query is answered only

if the query and its associated implied queries have query set sizes

in the range [k,N-k]
, where k is a given parameter. For example, for

the database of Table 2.1:

a
x

= COUNT (Sex-M) = 7

a
2

= COUNT( (Sex-M) & (Dept=CS)) - 4

One can deduce

:
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a
3
= COUNT ((Sex-M) & (Dept=CS)) - a^^-a. = 3

Therefore, COUNT( (Sex=M)&(Dept=CS) ) is an implied query. Note that if

k was 4, the size of the query sets must be in the range [4,8] for a

query to be answerable. Thus, the query COUNT( (Sex=M)&(Dept=CS) ) is

not answerable. However, by knowing a., and a_ from allowable queries,

a- can be deduced.

In the method proposed by Friedman and Hoffman [FRIE80] , the

query COUNT( (Sex-M)&(Dept-CS) ) would also be restricted and therefore

unanswered, because the associated implied query COUNT ( (Sex=M)&

(Dept-CS)) has a value outside the range [4,8].

This approach avoids the difficulties due to history keeping.

Denning [DENN81] has shown that there is an exponential growth of the

number of implied queries as the number of specified attributes in a

query increases. She has also shown that this control would not

prevent deduction of sensitive statistics.

Database partitioning

Another approach to preventing compromise is to partition the

database into groups [YUCH77, SCHL83c] . A database is partitioned

into mutually exclusive, non- overlapping record sets called "atomic

populations" [SCHL83c]. Each of the atomic populations must have

either no records or more than one record. A query is answered only

if its query set is a union of some of the atomic populations. The
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attributes used in the partitioning of the database must be used as

characteristic formulas in queries.

For example, the database of Table 2.1 could be partitioned into

the groups shown below:

Group Characteristic Members

Cook, Dodd, Irons, Knapp, Flynn1 (Sex-F)
2 (Sex-F)&

(Position-Prof)
3 (Sex=M) &

((Position=Stu) +
(Position-Adm))

Adams, Baker, Engel, Hayes

Grady, Jones, Lord

Only queries involving entire groups are allowed. For the

partitions given above, only queries whose query sets are subsets of

either group 1, 2 or 3 are allowed. Query sets whose members are in

the intersection of the member sets in different groups are not

allowed. Yu and Chin [YUCH77] showed that partitioning could prevent

compromise even when the database is being modified. The partitioning

will often result in either high information loss or serious

distortion of important statistical functions [SCHL83c]

.

Table restrictions

A table is defined by the set of characteristic attributes whose

values occur in a characteristic formula [SCHL83b] . An m-table has m

attributes. A relative table size s
m
/N for an m-table is the ratio of
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the product of the domain sizes of the m- attributes that specify the

table and the total number of records in the database. For the

example of Table 2.1, N=-12 , since there are twelve records. For the

query:

SUM((Sex=F)&(Dept-CS)&(Position-Prof) ; Salary)

the table is a 3 -table because there are three attributes (Sex, Dept

and Position) in the characteristic formula. The absolute table size

is:

s
3
- |Sex| * |Dept| * |Position|

= 2*3*3
= 18

The domain sizes of Sex, Dept and Position are 2 (M and F) , 3 (CS,

Math, Stat) and 3 (Prof, Adm, Stu) respectively. The relative table

size would be s~/N - 1.5.

From empirical investigations, it was determined that for s /N in
nr

the range [0.01,0.1], the risk of identification of an individual from

actual databases were similar for a given table size. Thus, a

criterion of s
m
/N was used to estimate the risks of identification.

In the table restriction technique, for each query, the size of the

table is determined and the identification risk is extracted from a

look-up table. If the risk exceeds a predetermined (threshold)

quantity, the query is witheld. Table restriction does not eliminate

loss of information and the threshold value must be tuned for each

database

.
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Record based perturbations

There are two categories in this method for avoiding compromise:

(1) Random sample queries :

The records used to find the required statistic is not the

entire query set. There is a probability associated with

selecting any record from the query set. The sample of records

chosen from the query set is used to determine the statistic

[DENN80b] . The implementation is such that the same query will

result in the same statistic because the same records would be

chosen as a sample. If the selection of records were completely

random, the value of the statistic returned would be different

each time a user queries the database with the same query. The

user could then estimate the true value of the statistic by

querying the database several times with the same query.

This method works well for large databases but the cost

could be very high because the method requires checking each

record for inclusion in the sample.

(2) Random perturbation :

In the method proposed by Beck [BECK80] , each data item

used in calculating the statistic is perturbed. The perturbations

to each record could be varied independently. An implementation

which minimized the error involved in determining the statistic

was given. This method is expensive because the data value for

each record must be perturbed.
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Rounding techniques

In these techniques, the true statistic is calculated and then

the final result is perturbed. There are many ways of doing this:

(1) Systematic rounding :

The final statistic is rounded to the closest integer

multiple of a given base. Fellegi and Phillips [FELL74] showed

how rounding to multiples of integers could be subverted in

printed publications.

Another variation of systematic rounding is to report a

range (e.g. 0-5, 5-10, ...). According to Karpinski [KARP70]

,

this is subverted if a user is allowed to add (or delete) records

to the database. A user can add/deleted records with known data

values till there is a change in the reported range. By

arithmetic manipulation, the user can now find the actual response

to the query that he/she was seeking. Even if modification of the

database is not allowed, as is the case in most statistical

databases, the database could still be compromised if a user has

knowledge of some of the data values in the database.

(2) Random rounding :

Fellegi and Phillips [FELL74] suggested random rounding for

published data. They rounded a table value to the nearest integer

multiple of a chosen number. There was a probability associated

with the rounding scheme. The choice of the rounding base was

discussed by Nargundkar and Saveland [NARG72]

.
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Chapter III

A NEW DETERRENT TO COMPROMISE

INTRODUCTION

In the previous chapter, various methods of compromise and the

means to avoid compromise were discussed. All the methods to avoid

compromise were either very expensive to implement or would let the

database be compromised under certain situations/conditions. In the

present study, a new scheme for avoiding compromise is presented.

In this investigation, compromise of an individual's confidential

information is considered. The present study can be extended to

consider the compromise of confidential information about groups of

individuals. In addition, compromise is assumed to occur if a user

can infer the exact value of any field of an individual's record in

the database. In the case of data fields of a record, statistical

compromise may also be defined. This study does not deal with

statistical compromise.

COMPROMISE AVOIDANCE STRATEGY

The proposed method is to report results from a set of records

which is obtained by duplicating/deleting a record from the query set.

The scheme is the following:

1. A query q(C) is answerable if the query set size, |q(C)|, is in

the range [k,N-k]
, where k is a chosen parameter and N is the

total number of records in the database.
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2. If a query, q(C), is answerable, then one of the following three

options is chosen in order to report the results to the user:

a. The query response is calculated from the set of records

obtained after duplicating a record in the query set.

b. The query response is calculated from the set of records

formed by deleting a record from the query set.

c

.

The query response is the true value

.

3. The decision to choose one of the three options is random.

However, it is necessary that the two conditions below be

satisfied:

a. The same option must be chosen for any query with the same

query set.

b. If two queries result in the same query set, and if the

option chosen is to duplicate/delete a record, the same

record must be duplicated/deleted from the two query sets

regardless of the order in which the records are put

together in the query sets.

The reason for these restrictions is that a compromise would

occur if different options are chosen whenever the same query is

posed repeatedly to the database. An accurate estimate of the

true response would be the average of the all the responses

.

EFFECTIVENESS AGAINST INDIVIDUAL TRACKERS

It would be of interest to see how the scheme proposed in the

current investigation responds to the problem of trackers. As
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mentioned earlier, any unanswerable query q(C) , where C identifies an

individual, can be made answerable if the characteristic C can be

split into two characteristics A and B such that q(A) and q(A&B) are

both answerable:

q(C) = q(A) - q(A&B)

The individual tracker is T = A&B.

For a statistical analysis of compromise from individual

trackers, the following assumptions were made:

1. The following probabilities were assumed:

P^ = Probability of choosing the option to duplicate a record in

the query set.

P2 = Probability of choosing the option to delete a record from

the query set.

P
3
" Probability of choosing the option to return the true

response.

2. Should the decision be to duplicate/delete a record, it was

assumed that it is equally likely that any of the records in the

query set be chosen for duplicating the record or for deleting

the record.

3. The data values in any data field for the records in a query set

were assumed to be distinct.
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Since the characteristic C identifies an individual, the query

set sizes |q(A)| and |q(A&B)| satisfy the following formula:

|q(A)| - |q(A&B)| + 1

Given the above assumptions, compromise can occur only if one of

the following conditions hold:

1. True values are returned for both q(A) and q(A&B).

2. The same record is duplicated from the query sets corresponding

to the queries q(A) and q(A&B)

.

3. The same record is deleted from the query sets corresponding to

the queries q(A) and q(A&B).

It is easy to see that should any of the above conditions be

false, the true value is not reported and compromise will not occur

unless the user knows the following:

1. The option taken when the response is given to his/her query.

2. The ordering of the records in the query sets.

3. The data values in the data fields of the records.

In this investigation it is assumed that the user does not have

such a large amount of information regarding the database. Under such

circumstances, the probability that a compromise occurs using the

individual tracker can be determined. Let p , p, and p be defined asa rb r c

follows

:
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p - probability that true values are returned for the queries

q(A) and q(A&B)

.

= P3P3

2= P
3

P^ = Probability that the same record in the query sets q(A) and

q(A&B) was duplicated.

~ P^-~ -V>i
where n is the query set size for the query q(A) .

Pc
= Probability that the same record in the query sets q(A) and

q(A&B) was deleted.

P2'n
' p2 where n is the query set size for the query q(A)

The probability of compromise is:

P = p + p, + pra rb *c

2 12 2
- P

3
+
i cpi + P2>

To get an upper bound on the probability, n-1 has to be at least k for

the query q(A&B) to be answerable. Therefore:

P * p
3

+
kTl (Pi + &

Further, if the probabilities of duplicating/deleting a record are

equal (= p) , then:

P < (l-2p)
2
+ 2p

2
/(k+l)
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or

P < (4 + 2/(k+l))p
2

- 4p + 1

To lessen the possibility of compromise, P must be as small as

2possible. Therefore, the minimum value of the function (4+2/(k+l))p -

4p+l needs to be determined:

^ [(4+2/(k+l))p
2
-4p+l] =

or

k+1
P " 2k73

To check if the value obtained is a minimum, the second derivative of

2
the function (4+2/(k+l))p -4p+l needs to be taken. The second

derivative is positive for all positive values of k, indicating that

the minimum value of the function is when p - (k+l)/(2k+3) . Table 3.1

gives the values of p and the upper bound for P for various values of

k.

Table 3.1. Values of p and upper bounds for P for various values
of k.

k P P

1 0.4000 0.2000
2 0.4286 0.1429
3 . 4444 0.1111
4 0.4545 0.0909
5 0.4762 0.0476
10 0.4878 0.0244
20 0.4884 0.0231
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From Table 3.1, it may be concluded that for large values of k,

the probability of deletion/duplication of a record should be high

(approximately 0.5) to keep the probability of compromise low.

EFFECTIVENESS AGAINST GENERAL TRACKERS

General trackers were discussed in the previous chapter. These

trackers could be used to obtain confidential information about all

individuals in a database. As mentioned earlier, a general tracker T

is a characteristic formula whose query set size is in the range

[2k,N-2k] where N is the number of records in the query set. Any

restricted query q(C) may be calculated from:

q(C) - q(C+T) + q(C+T) - q(T) - q(T) if C0UNT(C)<k

q(C) - q(T) + 2q(f) - q(C+T) - q(C+T) if C0UNT(C)>N-k

In order to obtain bounds on the probability of compromise, any

of the above two equations may be considered. However, for this

analysis, the case when C0UNT(C)<k is considered:

q(C) = q(C+T) + q(C+T) - q(T) - q(f) if C0UNT(C)<k

The same assumptions made in the analysis of the effectiveness of

the proposed method against individual trackers is made in this

analysis also.
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Compromise can occur in many different ways. This is best

summarized in Table 3.2. Each row in Table 3.2 represents the

conditions that must hold for compromise to occur.

Table 3.2. Conditions under which compromise can occur when
general trackers are used to compromise the database.

Group No. q(C+T) q(C+T) q(T) q(T)

A 1 t t t t

B 2 al t al t

B 3 t al al t

B 4 al t t al
B 5 t al t al
C 6 al a2 al a2
C 7 al a2 a2 al
C 8 dl d2 dl d2
C 9 dl d2 d2 dl
D 10 dl t dl t

D 11 t dl dl t

D 12 dl t t dl
D 13 t dl t dl
E 14 al d2 al d2
E 15 al d2 d2 al
E 16 d2 al al d2
E 17 d2 al d2 al
E 18 al dl t t

E 19 dl al t t

In the table, a "t" under a query indicates that a true value is

returned for the query. An "al" indicates that a record is duplicated

(added) and "dl" indicates that a record is deleted. Two al's in a

row indicates that the same record is duplicated in response to the

corresponding queries where the al's appear. The dl's are similar
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except that the same records are deleted. Some examples are given

below:

1. Row 1 in Table 3.2 corresponds to the case where true

responses are returned for all queries.

2. Row 2 in Table 3.2 corresponds to the case where true

responses are returned for queries q(C+T) and q(f ) , and the

same record is added when computing the responses to queries

q(C+T) and q(T)

.

3. Row 14 in Table 3.2 corresponds to the case where the same

record is added when computing the responses to queries

q(C+T) and q(T) , and the same record (possibly different

from the previous one) is deleted when computing the

response to queries q(C+f ) and q(f )

.

There are other ways by which compromise can occur. For example,

records may be duplicated in queries q(C+T) and q(C+T) and a record

having a data value equal to the sum of the data values in the

duplicated records may be duplicated in either q(T) or q(T). It is

assumed that the probabilities of such situations occurring are small

and hence are neglected.

The various conditions given in Table 3.2 are divided into six

groups A, B, C, D, E and F, in order to calculate the probability of

compromise. To write the probabilities for each group, let the query
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set sizes |q(C&T)|, |q(C&f)|, |q(C&T)| and |q(C&T)| be u, v, w and x

respectively. This is shown as a Venn diagram in Fig. 3.1.

Fig. 3.1. Venn diagram showing the query sets q(C&T),

q(C&f), q(C&T) and q(C&f)

w X

Let the probabilities that the conditions in groups A, B, C, D,

E, and F of Table 3.2 hold be p^, pb> p
c> pd> Pg , and pf

respectively.

Since the probability of returning the true response is p., p may be

written as:

4
Pa " P

3

The probability, pb>
that the conditions in group B of Table 3.2 holds

is:

22 f 1
Pb " PlP 3 [ uTv

Similarly,

P„ =

u V
u+v+w (u+v+x)(u+w) (u+v+w) (v+x) u+v+x

4
uvp

x
uvp,

c
"" (u+v+w) (u+v+x)

L
P
l
+ P

2
+

(v+x) (u+w)
+

(v+x) (u+w)
J
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,221" 1 u v 1 1

Pd ™ ^2^3 [ u+v+w (u+v+x) (u+w) (u+v+w) (v+x) u+v+x
J

2 2

ePQ
" 2p

1P 2

uv
(u+v+w ) (u+v+x ) (u+v+x ) (u+w ) (u+v+w ) (v+x

)

and

3 [ u+v ]
P f ~ ^P 1P 2P 3 [ (u+v+x) (u+v+w) J

The probability that a compromise occurs is:

P = Pa + Pb + P c + Pd + Pe + Pf

or

*-P3 + P3<Pl+P2>[u^v- + y + Y + ~J—
u+v+w (u+v+x) (u+w) (u+v+w) (v+x) u+v+x

uv. 2
+

2 2 r 1
^P l P2'

I (u+v+w) (u+v+x) (u+v+x) (u+w) (u+v+w) (v+x)

o 2 r u+v i
P 1P 2P 3 I (u+v+x) (u+v+w)

In order to find the upper bound for the probability of

disclosure of an individual's confidential information, the following

relation may be written:

u + v - 1

Also, since q(C+T), C+T) " q(T) and q(T)"are answerable and by the

definition of general trackers, the following bounds are obtained:

k < |q(C+T)| < N-k or k < u+v+w < N-k

k <
| q (C+T) | < N-k or k < u+v+x < N-k
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2k < |q(T)| < N-2k or 2k < u+w < N-2k

2k < |q(T)| < N-2k or 2k < v+x < N-2k

If the probabilities for duplicating and deleting a record are equal

(- p) , then an upper bound for the probability of compromise may be

written as:

uv
P < (l-2p)

4
+ 2(l-2p)

2
p
2

f I + -^ + -^ + h] + 4P
4

[ H +
1 K

2k
z

2k
z

kZJ L k
z

4k~

Since u+v=l, u>0, and v>0, either u or v must be 0. Therefore:

P < (l-2p)
4

+ ^ (l-2p)
2
(4k+3) +

^f-
k k

Optimum values for p for given values of k may be found from the above

equation. However, this involves solving the roots of a cubic

equation, which has three roots. To simplify the analysis, the values

of P were calculated for the optimum values of p obtained in the

analysis for individual trackers. The values of P obtained are given

in Table 3.3.

Table 3.3. Values of P for general trackers

k P P

1 0.4000 0.1488
2 0.4286 0.0431
3 . 4444 0.0216
4 0.4545 0.0107
5 0.4762 0.0087
10 0.4878 0.0023
20 0.4884 0.0006
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Comparing the values of P in Tables 3.1 and 3.3, it is clear that

the proposed scheme is very effective in avoiding compromise. It must

be mentioned that these are probabilities that an exact answer may be

computed by algebraically manipulating the query responses. However,

a user trying to obtain confidential information would not know when

the true answer is computed.

EFFECTIVENESS AGAINST DOUBLE TRACKERS

Double trackers were also discussed in the previous chapter.

These trackers were more powerful than general trackers. A double

tracker is a pair of characteristic formulas (T,U) satisfying:

V^
COUNT(T) is in the range [k,N-2k]

COUNT (U) is in the range [2k,N-k]

Any restricted query q(C) is found from:

q(C) - q(U) + q(C+T) - q(T) - q(C&T&U) for COUNT(C)<k

q(C) - q(U) - q(C+T) + q(T) + q(C&T&U) for COUNT(C)>N-k

Without loss of generality, only the the first of the last two

equations may be considered. To obtain the bounds on the probability

of compromise, the same assumptions made in the analysis of the

effectiveness of the proposed method against individual trackers is

made in this analysis also.
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The different ways in which compromise can occur is summarized in

Table 3.4. The format of the table is similar to the format of Table

3.2. The symbols in Tables 3.2 and 3.4 have the same meaning.

Table 3.4. Conditions under which compromise can occur when double
trackers are used to compromise the database

.

Group No. q(C+T) q(U) q(T) q(C&T&U)

A 1 t t t t

B 2 al t al t

B 3 t al al t

B 4 al t t al

B 5 t al t al

C 6 al a2 al a2

C 7 al a2 a2 al
C 8 dl d2 dl d2

C 9 dl d2 d2 dl
D 10 dl t dl t

D 11 t dl dl t

D 12 dl t t dl
D 13 t dl t dl

E 14 al d2 al d2
E 15 al d2 d2 al
E 16 d2 al al d2
E 17 d2 al d2 al
F 18 al dl a2 d2
F 19 dl al a2 d2
F 20 al dl d2 a2
F 21 dl al d2 a2
G 22 al dl t t

G 23 dl al t t

G 24 t t al dl
G 25 t t dl al

Table 3.4 is divided into seven groups A, B, C, D, E, F and G.

In order to write the probabilities of compromise for each group, let

the query set sizes |q(C&T)|, |q(C&U&T)|, |q(C&U)|, |q(C&T)|,
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|q(C&U&f)| and |q(C&U)| be u, v, w, x, y and z respectively. These

query set sizes are shown in Fig. 3.2.

Fig. 3.2. Venn diagram showing the query sets q(C&T)
,
q(C&U&T)

,

q(C&U), q(C&T), q(C&U&T) and q(C&U)

.

!<.__ u --->|<--u-->|
|<-T->|

u v | w

x y z

Let the probabilities that the conditions in groups A, B, C, D,

E, F, and G of Table 3.4 hold be p , p, , p , p,, p . p,., and pa d c d. e r g

respectively. Following the same procedure as in calculating the

probabilities of compromise for general trackers, the following

equations are obtained:

Pa " P3

2 2f 1
" P 1P 3[ u+v+

v+x
u+v+w+x u+v+x+y (u+v+w+x) (v+x+y) u+v+x+y+x+y J

4 4
p l

+p
2

4 4
(p

1
+p 2

Mv+x )

(u+v+w+x ) (u+v+x+y ) (u+v+x+y ) (u+v+w+x ) (v+x+y

)
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2
2f

1 1 v+x 1 1

d P
2
P
3 [ u+v+w+x u+v+x+y (u+v+w+x) (v+x+y) u+v+x+y

J

,22 ,22
2p

1
P
2

2Plp 2
pe (u+v+w+x) (u+v+x+y) (u+v+x+y) (u+v+w+x) (v+x+y)

/ 2 2 r
4PlP 2

u+v+x
(u+v+x+y) (u+v+w+x) (u+x) (x+v+y)

2 f u+v+x
P„ - 2p

Lp 2p 3g ^ly 2K 3
|

(u+v+x+y) (u+v+w+x) (u+x) (x+v+y)

The probability that a compromise occurs is:

P = Pa + Pb + Pc + Pd + Pd + Pe + P f
+ P

g

or

P-p* + (PJ+P2

2
)P^[ ^~. 1 v+x

u+v+w+x ' u+v+x+y (u+v+w+x) (v+x+y)

+
1

"I + / 2 2 2T 1
u+v+x+y

J

^ P l P 2^ (u+v+w+x) (u+v+x+y)

(v+x)
(u+v+w+x) (v+x+y) (u+v+x+y)

4
2 2 I"! (u+v+x )x "I

p lp 2
J

(u+v+x+y ) (u+v+w+x ) (u+x ) (x+v+y

)

2 2 T u+v+x x 1

P
1
P
2
P
3 [ (u+v+x+y) (u+v+w+x) (u+x) (x+v+y)

In addition, the following constraint holds if an individual's

confidential information is sought:
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U + V + w — 1

For the above queries to be answerable:

k < |q(T)| < N-2k or k < u+x < N-2k

2k < |q(U)| < N-k or 2k < u+v+x+y < N-k

k < |q(C+T)| < N-k or k < u+v+w+x < N-k

k < |q(C&f&U)| < N-k or k < v+x+y < N-k

If the probabilities for duplicating and deleting a record are equal

(- p) , then an upper bound for the probability of compromise may be

written as:

2k

or

P < (l-2p)
4

+ I p
2
(l-2p)

2
+ ^ p

4

k
2

Once again, the values of P were calculated for the optimum values of

p obtained in the analysis for individual trackers. The values of P

obtained are given in Table 3.5.

Comparing the values of P in Tables 3.1, 3.3, and 3.5, it is

clear that the proposed scheme is very effective in avoiding

compromise. The value of P obtained for double trackers for k-1 is

higher than that for individual and general trackers. There is no
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specific reason that may be given except that the bounds for P found

are not the least upper bounds and the method of calculating the upper

bounds affects the values of P obtained. In general, the probabality

of compromise is higher for double trackers than for general trackers

because the number of ways by which compromise occurs is higher, as

seen from tables 3.2 and 3.4.

Table 3.5. Values of P for double trackers,

k P P

1 0.4000 0.2128
2 0.4286 0.0679
3 . 4444 0.0335
4 0.4545 0.0199
5 0.4762 0.0133
10 0.4878 0.0035
20 0.4884 0.0009

STATISTICAL CONSEQUENCES

From the above analysis it is clear that the proposed scheme is

effective against the problem of trackers.

With any output perturbation scheme, one must be careful that the

response is not distorted to an extent that the response is not close

enough to the actual or true response to be useful.

A quantification of the loss in precision due to the proposed

strategy is given below.

Let the values of the data fields in n records of a query set be

X
l'
x
2

x
n - For the sake of brevity, the set (X-, X

2
X ) will
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be referred to as the query set. The following are two possibilities

with regard to the query sets:

Case I . The query set could be a random sample from some population

with the same characteristics queried and with a mean of y.

2and a variance of a . An example of this possibility is a

public domain census database.

Case II. The query is the population in which case

ft - &X. - X^ l-l 1

and

»
2
- i &<v*>

2

This corresponds to the case where the database includes the

whole population. This is the more common situation where

the database is for all the employees in an organization.

It is in this situation that compromise is more likely.

With the perturbation strategy y. is estimated as

A A A A

Ji = I
1a«

1
+ l

2
y2

+ I3M3

where

^2 - (^17 (£§l
X
i

• X*>

m, - i Ax.
3 n i=l 1
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X^ is the data value deleted or duplicated in the proposed

method, and

,-{:
with probability p.

otherwise

I,_ + I
2
+ I

3
- 1

where

p, , P2 and p_ are the probabilities of taking the option to

duplicate a record, delete a record or returning the true

A

response. Note that the I.'s and the p.'s are statistically

independent

.

A

The expected value of fi is

E00 = Edj/^) + E(I
2
m
2

) + E(I
3I3 ) .AAA

- E(I
1
)E(/i

1
) + E(I

2
)E(m

2
) + E(I

3
)E(m

3
)AAA

- PjECj^) + p 2
e(m

2
) + p 3

e(m
3
)

For case I

E°° = P
l (n+1) " + P

2 (nTT) MP 3
-/«

= M

For case II,

A -

E(P) = P X
E(— [nAi + XJ) + p 2

E(^y [nM - X# ]) + p
3

E(M )
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Therefore, the estimator n is an unbiased estimator for \i under both

the cases.

A A

The accuracy of n is measured by the standard error of n. The

A

variance of fi is

Var(/0 = Var(I
lMl ) + VarCI^) + Vard^) + ZCovtf^ , 1^)

A A A A

+ 2Cov(I2M2 ,I
3
^
3

) + 2Cov(I
1
/i
1
,I

3
Ai
3

)

Since, Ij+Ij+^-l, for i,j - 1,2 or 3 and i*j

Covd^.IjMj) - E(I. M .IjAtj ) - E(I
iii

)E(I
j
i )

2
" - PiPj M

and

Var(I. M .) = E((I.^.)
2

)
- (Ed.^)) 2

- E(I
2
)E(i

2
) - P?M

2

- p.[Var(i.) + M
2

]
- p

2

^
2

A

Hence, the variance of \i becomes

A /\

Var(M) = P
x
Var(Ml ) + p^

2
- p

2
^
2
+ p

2
Var(M

2
) + p^

2
-

p
2
M
2
+

2 J- 2 o 2 o_ 2 „ 2
"3'P 3

Var(M3 ) + p
3
^ - p3/i - 2Plp2M

^ - 2?^/ - 2p
2
p„,

- p
1
Var(/i

1
) + p2

Var(/i
2

) + p3
Var(/i

3
)

For case I,
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Var(Ml ) = Var( -Jjj (.^X. + X*) )

- —~—Z (na
2

+ a
2

+ 2Cov( £.X. ,X. )

)

(n+1)
2 ^1 V *>>

_ (n+3) 2

2
a

'

(n+ir

VarC^) = Var(^ (^X. - X*) )

- l

2
(na

2
+ a

2
- 2Cov(2&

L
X. ,X#))

(n-1)

2
a

(n-1) '

a In
Var(/i,) - Var( - Ax. )^3' n i=-l l

'

2
g

n

Using the relation p, - 1 - p. - p 2'

Var(i) =
Pl a

2 ^±^r + p ^ + p ^
1

(n+1)
2 2 (n - 1} 3 n

2 \ „ (n+3) A _ 1 p l
+p

;

I
Pi

(n+1)
2
+ P2 (n-1) ' n J

+—
The first term in the above equation is the loss in precision due to

the proposed strategy for Case I.

As assumed previously, if p-,-p
9=p,

2

l (n+1)
2 <n " 1

>
n

J
n

The standard error is
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SE(/0 = (7p(n+3)/(n+l)(n+l) + p/(n-l) - 2p/n + l/n)*a

The term f(n) = r + — - decreases with an increase in
L (n+l)

2 (n ' l) n J

the value of n. The loss in precision decreases as n increases. The

A

quantity of interest is | SE(^) -a/Jn\ . Values of k (substituted for n)

and p from tables 3.1, 3.3, and 3.5 may be used to determine the loss

in precision due to the proposed strategy. The results summarized in

2
Table 3.6 are for a -1.

From Table 3.6, it may be concluded that the loss in precision is

small when the minimum query set size is large. From Tables 3.1, 3.3,

and 3.5, the probability of compromise is also small for larger values

of k. It must be pointed out that this study deals with control for

exact compromise and not statistical compromise. For larger values of

k, or large query set sizes, statistical compromise is very likely.

Table 3.6. Values of n, p, standard error and 1/,/n.

n P

A

SE(/i) l/7n

2 0.4286 0.8591 0.7071
3 . 4444 0.6526 0.5774
4 0.4545 0.5491 0.5000
5 0.4762 0.4841 0.4472
10 0.4878 0.3302 0.3162
20 0.4884 0.2288 0.2236
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For Case II,

n" + X* . a
1

-(.!) - Var(— , =_
n" " X* . a

2

Var(„
2

) = Var( -^y- ) - ^~
K

' (n-lT

Var(M
2

) =

Therefore,

Var(M) » p —2-— + Po
—2-

1
(n+lT ' (n-1)*

The above quantity is the penalty for not returning the true value

X=/i. Again, for the case when p,=p
2
-p, the above equation reduces to:

2 2

Var( M ) = -^-^ + -M
(n+1)

2
(n-1)

2

From the above equation, it is clear, that the penalty is higher for

o
"large" values of p and a and "small" values of n. The precision

estimates reflect the consequences for potentially adding or deleting

records far from the mean. This is ' reflected in a
2

. Also, the

greater the probability of choosing the option to duplicate a record

or delete a record, the chances of distorting the data is larger. The

distortion in the response is greater if a record is duplicated or

deleted for the case when the query set size is "small" than for the

case when the query set size is "large". The above equation
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quantifies the penalty paid when the proposed method is employed to

return query responses.
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Chapter IV

IMPLEMENTATION

STRATEGY

A method was proposed in Chapter III to avoid compromise of an

individual's confidential information. It was shown that the proposed

strategy was effective against trackers. In this chapter, an

implementation of the proposed strategy is given.

It is to be recalled that in the proposed scheme, there were

three options which may be chosen when responding to a query. It was

also pointed out that the same option must be taken for the same query

set regardless of how the query is formed; this is referred to as

condition 1. Also, for all such queries, a second condition is

required. The same record must be duplicated or deleted should the

option to duplicate or delete a record be chosen in condition 1. The

first condition can easily be implemented if a random number is

generated from the same seed from which to select the option. One

such seed is the query set size. This guarantees that the same option

is chosen for query sets having the same number of records.

To satisfy the second condition, an implementation could be to

use the same random number generated above to select the record to be

deleted/duplicated. An obvious strategy would be to delete/duplicate

a record by position in the query set. This would require that the

records come in the same order no matter how the query is created to

retrieve the same query set. The order in which records are retrieved

depends on the implementation of the database system used. Of
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interest were two database systems: INGRES and ORACLE. It seems clear

in [STON76] as to the order in which a standard INGRES implementation

should return the records in a query set; however, little could be

determined about ORACLE'S retrieval and query optimization algorithms.

Consequently, the database given in Table 2.1 was created in both

INGRES and ORACLE. It was established using this database and other

databases that so long as there was only one relation in the database

(as in the example of Table 2.1), the records in the query set were

always retrieved in the same order for a given query set no matter how

the query was formulated (or how the query set was characterized)

.

Thus, the following implementation is proposed:

(1) Determine the query set size, |q(C)|.

(2) If the query set size is not in the range [k,N-k] where k is a

chosen parameter and N is the number of records in the database,

then the query is invalid.

(3) Use the query set size to seed a random number generator.

(4) The random number generated, r, is used to select one of the

three options below:

(a) Duplicate a record in the query set.

(b) Delete a record from the query set.

(c) Do nothing to the query set.

Let the probabilities of choosing options (a), (b) and (c) be p 1
,

P 2> and p
3

.
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(5) If the option chosen is (a) or (b) , then the same random number

generated in (3) is used to determine the record to be duplicated

or deleted. The query set is then modified by duplicating or

deleting the record chosen. If the option chosen is (c) , the

query set is not modified.

(6) Return the modified query set to the user.

EXAMPLES

A program was written in C using embedded EQUEL statements (see

Appendix A). The database given in Table 2.1 was used as a sample

database. For simplicity, the values of p
1

, p„ and p_ were chosen to

be equal (1/3). This program was used to determine the query

responses to the queries given in Chapter II for illustrating

trackers. It is assumed that the value of k is appropriately chosen.

The examples below show the results obtained.

Example 1 - Individual Trackers

To find the salary of Dodd (identified by the characteristic

Sex-F & Dept=CS & Position=Prof ) using individual trackers, the

formula was

:

SUM((Sex=F)&(Dept-CS)&(Position-Prof); Salary)

= SUM(Sex-F; Salary) -

SUM(((Sex-F)&(Dept-CS)&(PositI6n-Prof)); Salary)
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The option chosen for the query SUM(Sex=F; Salary) was to delete a

record; the record of Flynn was deleted. For the query SUM(((Sex=F) &

(Dept=CS) & (Position-Prof)); Salary), the option to delete a record

was chosen. The response was obtained by deleting the record of

Irons. Thus, an individual trying to calculate Dodd's salary would

get:

SUM((Sex=F)&(Dept=CS)&(Position-Prof) ; Salary)

- 68 - 72

- -4K

Obviously, this is very different from Dodd's actual salary (15K)

.

Example 2 - General Trackers

Dodd's salary using general trackers could be found from the

algebraic manipulation of four queries:

SUM((Sex-F)&(Dept-CS)&(Position-Prof); Salary)

= SUM(((Sex-F)&(Dept=CS)&(Position=Prof)) + (Sex=M) ; Salary) +

SUM(((Sex=F)&(Dept=CS)&(Position=Prof)) + (Sex=M); Salary) -

SUM((Sex=M); Salary) - SUM((Sex=M) ; Salary)

The following result was obtained; the option taken for each of the

query is written within parenthesis.

SUM((Sex-F)&(Dept=CS)&(Position=Prof); Salary)

= 137 (Record of Engel duplicated) + 68 (Record of Flynn deleted)

- 104 (no change) - 68 (Record of Flynn deleted)

- 33K
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This response is also not Dodd's salary (15K).

Example 3 - Double Trackers

Dodd's salary was calculated using double trackers in chapter 2

from:

SUM((Sex=F)&(Dept-CS)&(Position-Prof) ; Salary)

- SUM( (Position-Prof) ;Salary)+

SUM( ( (Sex-F)&(Dept-CS)&(Position-Prof ) )+(Dept=Math) ; Salary)

- SUM((Dept-Math); Salary)

- SUM((Sex-F)&(Dept=CS)&(Position-Prof)&(Dept=Math)&

(Position-Prof) ; Salary)

The result obtained was:

SUM( (Sex-F)&(Dept-CS)&(Position-Prof ) ; Salary)

- 173 (Record of Dodd duplicated)

+ 65 (Record of Hayes deleted)

- 65 (Record of Hayes deleted)

- 173 (Record of Dodd duplicated)

=

For the above examples, the proposed strategy is effective

against trackers. In examples 1 and 3, a user would think that he/she

has uniquely identified Dodd because if the queries were COUNT queries

instead of SUM queries as written above, the result of the algebraic

manipulation would give a value of one. In the above examples
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however, the user can deduce that the result that is obtained is not

correct because it is not likely that Dodd would earn < dollars. It

must be pointed out that a statistician is still given close estimates

of population means. For example, the average salary of individuals

having the characteristic C = (Dept=Math) is $20.75K. The value

returned using SUM(Dept=Math; Salary)/COUNT(Dept=Math; Salary) , was

$21.67K.

The implementation procedure proposed seems very inexpensive as

compared to the methods of avoiding compromise presented in chapter

II. The procedure requires:

1. Determination of the query set size

2. The generation of the random number r.

3. Modulus procedure used twice.

4. Deletion/duplication.

All these are relatively inexpensive and as shown above, easy to

implement.

60



Chapter V

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH

CONCLUSIONS

Release of confidential information of an individual through

inference control in statistical databases, should be of interest to

many. An analysis of the various methods of compromise and some of

the techniques used to avoid/deter compromise allowed us to discover

that most of the methods were either too expensive to implement or

would allow compromise to occur under certain situations.

An inexpensive method to deter compromise using an output

perturbation technique has been proposed. In the method, the response

to a query is distorted by randomly duplicating a record in the query

set, randomly deleting a record in the query set, or returning the

true response. In the method proposed, the same record must be

deleted/duplicated or subjected to no change to the query set

regardless of how the query request for the query set is formed.

Statistically, it was shown that the proposed strategy was effective

against individual, general and double trackers. A statistical

analysis quantified the loss in precision in the output due to the

proposed strategy. An implementation of the proposed method was also

presented in Chapter IV. The implementation appears to be inexpensive

compared to the methods of avoiding compromise as discussed in Chapter

II.
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RECOMMENDATIONS FOR FUTURE RESEARCH

1. This study proposed a method to thwart the exact disclosure of

confidential information of an individual. Additional work needs

to be done to avoid disclosure of confidential information about

a group of individuals.

2. The implementation proposed, relies on the fact that records are

returned in the same order for a genuine query no matter how a

query set is formed. For databases having single relations, the

database system implementations we examined returned the records

in a fixed order. It was found that when there was more than one

relation involved in the satisfaction of a query, the order in

which records of individuals returned for a query set varied for

different queries describing the query set. Additional work

needs to be done to optimize the queries so that the records are

retrieved faster and in the same order for a query set.

3. Control of compromise by inferential methods is only one aspect

of the broader issue of information dissemination control. There

is a need to quantify (or measure) the security of computer

systems. There may be levels of security, and some may be

considered acceptable while others may not.
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APPENDIX A

A PROGRAM TO IMPLEMENT DISCLOSURE AVOIDANCE

/******************************************************************
This program is written to respond to queries by modifying

the query sets so that a person will not be able to get an
individual's confidential information.
*******************************************************
#define TRUE 1

#define FALSE
#include <string.h>
#include <math.h>
main()

{

char
int
int
int

##
##
##

##
##

name [11]

;

sal;
KOUNT;
number of records

:

/*
/*

the

char
float

float

float
float

int

Name of individual
Salary of individual

/* Query set size
/* Number of records in

scrambled version
Sex of individual
Actual total salary of
individuals in the query
set

scram_total_sal=0.000;/* Scrambled version of
the total salary

/* Average salary
/* Scrambled version of

sex[2];
total sal=0.000;

avg_sal

;

scram_avg_sal

;

/*
/*

index;

int
int

random

;

choice

;

int
char

i;

name_changed[ll]

;

int salary_changed=0

;

*/

*/
*/

*/
*/

*/

V
*/

*/

/* Initialization
strcpy(name_changed

,

" ");
ingres denning
range of p is pay_relation
/* Include the query

#include "wanted. c"

/* Find the query set size
/* The query set is stored in dummy

the average salary
/* Index into the query set

to duplicate/delete a
record

/* Random number generated
/* Option to delete (-2) or

duplicate(=l) or return
true value (=0)

/* Index to scan query set
/* Name of person whose

record is deleted/added
/* Salary of the person whose

record is deleted/added

*/
*/

*/
*/

*/

*/

V
*/
*/
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## range of d is dummy
## retrieve (KOUNT=count (d . salary)

)

/* Find a random number and decide which option to choose */
srand( (unsigned) KOUNT)

;

random = rand()

;

choice = random%3;
if (choice—2)
(

/* delete a record */
index - random% (KOUNT- 1) ; /* Index into query set */
number_of_records = KOUNT- 1; /* No. of records in the

modified query */
/* Delete the record whose index was calculated above */
i = 0;

## retrieve (name=d.#name, sal=d. salary)
## (

total_sal = total_sal + sal;
if (i!=index)

scram_total_sa'l = scram_total_sal + sal;
else

{

strcpy(name_changed, name);
salary_changed - sal;

)

i++;
## }

}

else
if (choice—1)
{

/* add a record */
index - random% (KOUNT- 1) ; /* Index of record to

be added */
number_of_records = KOUNT+1; /* No. of records in

the modified query
set */

/* Duplicate the record given by index */
i = 0;

## retrieve (name=d.#name, sal=d. salary)
##

{

total_sal = total_sal + sal;
if (i!=index)

scram_total_sal = scram_total_sal + sal;
else

{

strcpy(name_changed, name);
salary_changed = sal;
scram_total_sal - scram total sal + sal*2 0-

}

'

i++;
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##

}

else

/* Report true response */
number_of_records = KOUNT;

## retrieve (name=d.#name, sal-d. salary)
##

(

total_sal - total_sal + sal;
##

}

scram_total_sal = total_sal;
}

## destroy dummy
/* Calculate the average values (true value) for the salary */
if (KOUNT != 0)

avg_sal = (float) total_sal/(float) KOUNT;
else

avg_sal =
;

/* Calculate the average values (scrambled) for the salary */
if (number_of_records != 0)

scram_avg_sal = (float) scram_total_sal/(float)
number_of_records

;

else
scram_avg_sal - 0;

/* Print the results */
printf(" TRUE VERSION \n");
printf(" Number of records = %d\n" , KOUNT)

;

printf(" Average salary = %f\n" ,avg_sal)

;

printf(" Total salary - %f\n", total sal);
printf("\n");
printf(" SCRAMBLED VERSION - DELETE / ADD / NO CHANGE \n");
printf(" Number of records = %d\n" ,number_of_records)

;

printf(" Average salary = %f\n" , scram_avg_sal)

;

printf(" Total salary = %f\n", scram total sal)

•

printf("\n");
if (choice-=2)
{

printf(" Record corresponding to %s was DELETED. Salary was
%d\n"

,

name_changed, salary_changed)

;

printf("\n");
}

else
if (choice=l)
{

printf(" Record corresponding to %s was ADDED. Salary
was %d\n"

,

J

name_changed, salary_changed)

;
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printf("\n")
;

}

else
printf(" NO CHANGE in reporting the query

.
\n\n" )

;

printf("\n")

;

printf ( "********************************************\n" )

j

printf("\n\n");
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A NEW DETERRENT TO COMPROMISE OF CONFIDENTIAL INFORMATION FROM

STATISTICAL DATABASES

ABSTRACT

Release of confidential information of an individual through

inference control in statistical databases should be of interest to

many. An analysis of the various methods of compromise and some of

the techniques used to avoid/deter compromise allowed us to discover

that most of the methods were either too expensive to implement or

would allow compromise to occur under certain situations.

An inexpensive method to deter compromise using an output

perturbation technique has been proposed. In the method, the response

to a query is distorted by randomly duplicating a record in the query

set, randomly deleting a record in the query set, or returning the

true response. In the method proposed, the same record must be

deleted/duplicated or subjected to no change to the query set

regardless of how the query request for the query set is formed.

Statistically, it was shown that the proposed strategy was effective

against individual, general and double trackers. A statistical

analysis quantified the loss in precision in the output due to the

proposed strategy. An implementation of the proposed method was also

presented. The implementation appears to be inexpensive compared to

the methods of avoiding compromise presented in the literature.


