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CHAPTEB I

Introduction

Recently attention has been directed toward the effect of a

magnetic field on the flow of an electrically conducting fluid,

usually referred to as magnetohydrodynamics (MHD) . Magnetohydro-

dynamlc flow has many engineering applications such as raagneto-

hydrodynamic generators, accelerators, electromagnetic flowmeter,

electromagnetic pumps, and similar devices.

Let us now consider that the electrically conducting fluid

is flowing with a steady state velocity V, and that a magnetic

field with field density B is applied perpendicularly to the

flow (Fig. 1) . Because of the interaction of the flow and the

magnetic fields, an electric field E, . is induced perpendicular

to both V and B .- -ap

This electric field is given by the following equation:

E, , = V x B . (1)—lnd — —ap '

For simplification assume that the electrical conductivity,

a , is constant In spite of the magnetic field. By Ohm's Law the

current density induced in the conducting fluid, and denoted by

iind i3i

=iind = a
e Sind • < 2 >

Simultaneously occurring with the Induced current is the

induced Lorentz force F, . which is given by the following:

^ind = iind x 2^ • (3)
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This force F, . occurs because the conducting fluid cuts the

lines of the magnetic field. Because the vector product of equa-

tion (3) yields a vector perpendicular to both J lnd
and B , the

Induced force is parallel to V but opposite in direction.

For the mora general case, we further consider an eleotrlo

field E perpendicular to both B and V, but opposite in dlrec-
—ap —ap — cr

tlon to J«_d « The current density due to this applied electric

field is «L, orld
» The net current J through the conducting fluid

is then

I = ae
(E
ap

V x B
ap )

The ponderomotive or Lorentz force associated with this

current is then

F = J * S-„ = <JJ E=~ + V x B J x B_ . (5)— — —ap e —ap — —ap —ap "

'

In equation (5), if E > V x B the system is a magneto-

hydrodynamic accelerator (or pump) which may be used as a thrust-

producing device. If E o „ < V x B„ . it is a magnetohydrodynamic~ap ~~ *~ap

generator.

The equations of MHD flow of continuous fluid media are the

ordinary electromagnetic and hydrodynamic equations, modified to

take account of the interaction between the fluid motion and the

magnetic field.

On the assumptions that: (1) the flow is laminar, (2) all

fluid properties, f , , K, ? , are constant, (3) the displacement

current is negligible (as in most electromagnetic problems) I.e. .



no oscillations of very high frequency occur, (H-) the permeabil-

ity. yUe t and conductivity, a , are constant scalar quantities,

and (5) the effect of gravitational force is negligible and the

Lorentz force is the only body force on the fluid, the basic MHD

equation can be written as follows (1, 2)+.

Maxwell's equations in cgs electromagnetic units:

curl H = J+nJ , div J = (6)

curl E = -yU
e || . div H = . {?)

Ohm's law for a moving fluid:

J = >„
e
(E + V x/^H) . (8)

Continuity equations

div V =

The modified Navler-Stokes equation:

^ + (V grad)V = -J grad p + j>v\ + A (J + ê
H) (9)

For steady-two-diraenslonal flow with the usual Prandtl

boundary-layer assumptions that:

s2u a2u
(1) —p is very small compared with —£ so it can be

s* <?y
2

neglected;

* Numbers in parentheses refer to references at the end of the

chapter.



(2) the transverse velocity v is small in comparison

with uj and

(3) consequently the pressure gradient §§ is a function^x

of x alone,

equation (9) is resolved into the following three equations in

the x, y, and z-dlrections, respectively:

ay2»S"8 - -i|f^y*f U/z-W •
<10,

o = -SS*^.wa-W (11)

= ^e
(J

x
H
y

- J
y
H
x ) . (12)

Next, Ohm's law may be written as:

J
x = °e

(E
x */W • I")

J
y = °e

(E
y "^V • U*>

J
z = °e

(E
z ^e^y WV < x 5)

If the magnetic field is steady, j# = 0, and from equation (7),

curl E = 0, that is

•B

(16)

(17)

(18)

Equation (6) becomes:

9Jm
py =

5>Z '

5>X
=

2E
X

S>z '

ax = X
^y '



9H 9H,
rwx

— z

s>y
£

sz

^J
y

=
3H

X
a z s>x

k„J
z

=
5A
ax ay

(19)

(20)

(21)

For the simplification of the foregoing equations further assump-

tions are made as follows: (1) Variations in the z-direotion are

assumed to be zero, (2) the electric field term, E , measured

across the insulated duct walls Is zero, but small local values

may exist in the midstream region; however, these will be con-

sidered negligible and E is taken as zero at all points across

the duct. This implies J Is also zero.

Thus taking E
y

= 0, J = 0, and j^ = 0, In Ohm's law and

Maxwell's equations, it can be shown that

E = constant = E
Q ,

B = constant magnetic field applied = B
Q ,

H
2

= E
x

= J
x

= .

Equations (10), (11), and (12) reduce to

S**8 - -/fi^-^O + uBo-^) . (22)

If = °e
B
x
(E + ^0 " vB

x> • ( 2 3)

= 0. (2*0



Equation (21) may be written as,

W E
o * ^o " VV = " FT • (25)

Unlike the case of the fully developed velocity profile, the

foregoing equations are coupled by the appearance of v, the

transverse-velocity component. Since the applied external mag-

netic field has no x- or z-component, and B = 0, it follows that

the component of the magnetic induction in the x-directlon, B ,x

is induced only by J . It is assumed that B is negligible in

comparison with the applied field B
Q

. These assumptions reduce

the number of the equations to two:

5 u av^ + 7? = ° ' (26)

u £u au _ 1 dj> afu _ fgfa ,

ax T v ay f dx + v 2 /»
Vil

o * ^o' lZ7)

which become the basic governing equations for magnetohydro-

dynamlc channel flow.

In this report we consider a laminar flow of a conducting

fluid with constant properties entering a semi-infinite, non-

conducting flat duct with a normal transverse applied magnetic

field. The initial velocity profile is assumed to be uniform or

a nonmagnetically fully developed parabolic profile, and at a

large distance downstream from the entrance, the velocity profile

is the fully developed Hartmann profile. There is also an exter-

nal variable resistance connecting the two perfectly conducting

end plates (electrodes) which are displaced to infinity (Fig. 2).
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In steady, laminar, non-magnetohydrodynamlc flow In the en-

trance of the channel, boundary layers form at both walls due to

viscous friction. Near the entrance, these boundary layers form

much like those for flow over a flat plate. However, in channel

flow the restriction of the flow near the walls is compensated by

an Increase in the rate of flow in the center of the channel.

The boundary layers then Increase in size as the flow progresses

down the channel, until they merge into each other to asymptotic-

ally form the Poiseuille velocity profile.

In the case of flow of a conducting fluid under the effect

of a transverse magnetic field, i.e. . the magnetohydrodynamlc

flow, the boundary layers will form on both channel walls in a

similar manner, but the force due to the magnetic field adds an

effect to the flow. As in the non-magnetic case, the thickness

of the boundary layers will gradually increase as the velocity

profile asymptotically approaches the Hartmann fully developed

profile.

In many magnetohydrodynamlc applications, e.g. . MHD genera-

tors, liquid metal pumps, plasma engines, etc., the flow of fluid

is seldom fully developed and is of the boundary layer type with

variable longitudinal pressure gradients. For this reason a

study of the velocity fields, boundary layer development, and

friction factors in the entrance region of MHD channel is of

practical Importance and has been a subject of investigation in

recent years.

In this entrance region we wish to obtain expressions for:
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(1) the pressure drop between any two sections, (2) the velocity

distribution at any section, and (3) the value of x at which the

fully developed flow is attained.

The two simultaneous equations, equations (26) and (27) with

appropriate boundary conditions, are sufficient to solve for the

unknowns, u and v. The pressure ceases to be an unknown function

since it can now be evaluated from the potential flow in the

central core by the aid of the Bernoulli equation.

Although equations (26) and (27) are much simpler than the

original equations representing governing equations, their exact

analytical solutions have not been found so far. However, a

number of different approximate solutions has been published in

channel entrance flow problem. Hwang and Fan have published a

bibliography of hydrodynamlc entrance region flow, a thorough re-

view and classification of the literature on the subject which

has appeared in the last hundred years (3).

The approximate solutions may be classified In four general

categories -- the momentum integral method, linearlEatlon method,

matching method, and finite difference method.

In the momentum integral method the flow is divided into a

boundary layer part near the wall and a potential flow part In

the central core. A parabolic velocity profile (or any other

similar velocity profile) is assumed in the boundary layer and is

joined with the center core velocity profile which is assumed to

be a straight line. A momentum integral equation is derived

based on the momentum conservation principle. This approach was
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devised and applied by Schiller C+) for flow in a circular tube

and is similar to the Karman-Pohlhausen momentum integral method

applied to a flat plate. Schiller's method was applied to the

magnetohydrodynamic flow by Maciulaitis and Loeffler (5). by

Moffatt (6) in 1964, and by Tan (7) in 1965.

In the second category of solutions, the inertia terms of

boundary layer equations are linearized. This category of solu-

tions is capable of providing continuous solutions for the veloc-

ity of distribution and pressure drop in the entrance region of

nonmagnetic flow. This class of solutions for circular tubes is

mainly due to the work of Langhaar (8, 9) In 19^0 and Targ (10)

in 1951. This category of solutions was applied to magnetohydro-

dynamic flow in the entrance region by Hsueh (11) in 1963 and by

Snyder (12) in 1965.

The third group of solutions is constructed by matching the

boundary layer solutions which are valid near the entrance with

the perturbations of the fully developed solutions which are

valid for downstream. This class of solution was originally

given by Schlichtlng (13) in 193^ for a flat duct. This matching

method was applied to magnetohydrodynamic flow at the entrance

region by Barsness (14) in i960 and by Roldt and Cess (15) in

1962.

The fourth approach involves reduction of the continuity and

momentum equations to finite difference equations which are

solved numerically on an electronic digital computer. This

method was used by Bodoia and Osterle (16) in 1961. Hwang and
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Fan (1?) in 1963, Shohat et al. (18) in 1962, and Hwang. Li and

Pan (19) in 1966 applied this method to MHD channel flow.

The purpose of this report is to study laminar magnetohydro-

dynamlo flow in the entrance region of a flat duct by presenting

in detail the solutions according to the momentum Integral method

(5), Targ's linearization method (12), and the matching method

(15).
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NOMENCLATURE

a Channel half-height

B Magnetic induction

e Electric field magnitude factor, E
Q

- eu B

E Electric field intensity

H Magnetic field intensity

J Electric current density

M

p Fluid pressure

u x-component of velocity

v y-component of velocity

x,y,z Space coordinate

P Kinematic viscosity

f Fluid density

M Dynamic viscosity

jj Magnetic permeability

a Electric conductivity

Hartmann number, M = Ba(-^r)*
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CHAPTER II

Matching Method (1)

In this analysis we consider the laminar flow of an electri-

cally conductive fluid with constant properties entering a semi-

infinite, nonconducting flat duct with a normal transverse

applied magnetic field. The fluid is assumed to enter the duct

with a uniform velocity profile. There is an external variable

resistance connecting the two perfectly conducting end plates

(electrodes) which are displaced to infinity.

The process of analyzing the velocity field in the entrance

region is patterned after a method developed by Schllchtlng (2)

for non-MHD flow in which the flow Is divided into two sections:

flow near the inlet or upstream section, and a downstream section

which approaches the fully developed flow. In the upstream sec-

tion, the flow is analogous to boundary layer flow over a flat

plate with a pressure gradient; hence, the solution is modeled

after the Blaslus series solution. In the downstream section,

the velocity distribution is assumed to be the sum of the fully

developed profile and a deviation of the profile from its asymp-

totic parabolic distribution. The integration is then performed

in the upstream direction in order to find this deviation veloc-

ity. After obtaining both solutions in the form of series ex-

pansions, they are Joined at the point where both solutions are

valid. In this way an approximate description of the flow field

in the entire magnetohydrodynamic entrance region is obtained.

For the magnetohydrodynamic flow the governing equations are
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(see Chapter I)

:

ax * ay " u u >

and

3 y

Upstream Solution

The upstream section Is divided Into the subreglons of ln-

vlsold potential flow and viscous boundary layer flow. In the

potential flow where u=U, v=0, and U Is only a function of x,

equation (2) becomes

u
dx - f dx / U

f l3J

Solution of equation (3) for g* an(i substitution into equation

(2) yields

9 y

Let the transformation variable J be

? •

and assume the potential flow velocity, U, to be in the follow-

ing form:

U(x) = u (K
Q

+ K
x| + K

25
2
+ K

3^
3 + ...) (5)
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In which K
Q

is equal to one, since U = uQ at ? = 0, and K, , K-.

... are unknown constants to be determined.

Let the other transformation variable f, be

and assume that the stream function, /'(x.y), can be expanded Into

a series In )j In a form similar to that for U(x) . Thus,

where s is the width, and the f are functions of >7 only. To

satisfy continuity equation, equation (1), u and v are given by

37 '
v =

" ax (7)

From equation (5) we have

U 51 = u (1 + K
l? + K2^ + K3*

3
* •••>

(
U (K

1 * 2*K2

35
2
K
3
+ ...)}'£

where

df 1 P
-

1 ^ x /x
2 2 '

V ^UQ

i y
dx " ' 2,2

V s u
Q
x

- 2 x *

Therefore, we have

U
dx" " -2T (1 K

l?
K2^ + •••)(K

1 + 2JK2 + 35
2
K
3

...)

u
2
r

- "^
(
K! + (K

2
+ 2K

2 >5 + 3(K
X
K
2
+ K

3
)$

2
+

.....J.
(8)
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From equations (6) and (?) we have

u(x.y) = §1 = u s(|f.(t ) + &&) + ...)f*.

where

3K 1 ^0 1 f_^0 , _1_
?y

=
2V>»x

=
2 ,/ p x

/s = 2sj *

Therefore, we have

u(x,y) = ^ (f'W) tff'lf) + J
2
f}(?) + ...

j

Similarly, from equations (6) and (?) we obtain

(9)

= -u
Q
s [t

xW * 2Jf2 (t) + 3?
2
f
3 (r)

* -..}
ii
dx

-u s{jq(7) J
2
f$<?) +y>?yi) ...} y

where

dS i 5
dx " 2 x

ax _ 2Vy2 x J_ 2x *

Therefore, the transverse velocity v(x,y) becomes

un5 s

v(x,y) = - -1^- (f^f) 2 f
2 (?)

+ 35
2
f
3
(?) ...]
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From equation (9) we obtain

X

u
o5

(f£(>r) + 2^f
3
(r) + 35

2
f^(?) f ...j

T^-{fj(f) *rf|(f) + f
2
f'3(?) ...)

.

(id

It = iK f
i<*> +5 f

2^ *i
2
q^) * ».}/?

= —£-%{ f^'(f) * jff^'(r) 5
2
f
3
"(r) + ...] . (13)

Substituting equations (5) through (13) into equation (^),

we obtain

2

^ (qtjr)* f^(f)+|
2
f
3
(r) + ...){^(?)*2Jf

3
(?)+35

2
fi(?)-»-...]

2

"Hf( fi(?)+Jf 2^ )
','52f3^ )

-
,-"-){f i (? )

',-f
f
2 ( ? >^2f3^ ) *-"}

2

sf {
f
i

(r>+ ^(r)+|
2f3(n*...){f

1
(r)>2|f

2 (t)+35
2
f
3

(
l
?')+...j
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^ u

~8x~

^ 2

-J^ {% (K
2
+ 2K

2 ) f f 3(^2 + K
3
)|

2
«• . . A

2

^-^{(l+Klfi.K25
2
+K

3
5
3+ ...)- |[q(?) + Jf 2 (Z)

+ ,)if f
i

,^*/f
2
,( ?» +A3 ,(? )t-)

8s
c
f

where

2 2 2
a BAu. a B.a ,
e ° _ (

e wJi) u
f ~ ffi a

2 °

- «
2 <4,)<^) u

Q

2 "J2u

and

Du
-

VU
Q

2
u

8s
2
J
2

8s
2 ^ '

3 U
Q

- ox

Substituting these into the above equations and simplifying, we

obtain
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-{f»(f) +5f«(?) +5

2
f»(^) + ...}(f

1 (^)
+2jf

2 (^)
+3|

2
f
3 (r)+...}

= kf^ + (K
2

+ 2K
2 )f 3(^2 + K

3
)5

2
* ...j

+32M
2
J
2
{(l+K

;
J+K25

2
+K

3f
3+...)- |(fi(t)+Jf2 (f)+5

2
f^(f)...)]

{fi'(?)+Jf2 , (?)+5
2
f3 ,

(?) + ---
}

• (1*0

Equating like powers of ? gives

-0for 5 ,

fj'(?) f f£(?)f(?) = (15)

for f
1

.

for 5

f{(t)^(1T) - 2q(f)f2 (f)
- f^(?)f

1 (^)
- ry(?) = 4K

X
(16)

2

f
2
2
(?)+2q(7)f$(<o - 3f

3
(r)q(ir) - 2f

2(f)fg<r)
- ^(fc^

= 8K
2

i+K
2
+ f»'(?) 16M

2
(2 - fj(?)) (17)

for if
3

.

3q(?)f^(r) 3f
2
(?)f5(?) - wj(t)f^dr) - 3f

3
(f)f^(?)

- 2f,,(?)f»(?) - f
x (f

)fjt(tf)

= 12K
3
+ 12K

X
K
2 + f£'(f) 16M2 (2K - fgif)) (18)

where M = (a
e ^pj?)*

B
Q | is the Hartmarm number. The boundary
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conditions for equations (15) through (18) are determined from

u=0 and v=0 at the wall (y=0), and become

f
x
(0) = f

2
(0) = ... = f

n (0)
=

f£(0) = f£(0) = ... . f£(0) .

At the edge of the boundary layer, % t*> °° and u = U, so that

equating equations (5) and (9) gives

u (K
Q
+ K

xf
+ K

25
2
+ K

3f
3

...)

= -£ f{(t) +jf
2 (?) + f

z

m?) ...

t{(7) *$t ,

z (i) +f
2
r'
3
(?) +j 3f;(r) t ...

= 2 + 2K
1 f

+ 2K
2^

2
2K

3
5
3 ... (19)

Collecting coefficients of like powers of f yields

f{(») = 2

f
2
(») = 2K

X

f
A<»> = 2K

n-l •

For large •?, the foregoing relations may be Integrated to yield

the approximate relations
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f
2
~ 2K^ -f A

2

* • •

• • •

f
n ~ «ft-ll * A

n '

Further, from continuity, one obtains

a
u
Q
a = / udy = [^(x,y)]

y=a

At the center line of the duct, 1 is large and equations (20)

are valid. In addition, at y=a one finds that

*. J- ^

(20)

u
o
s2

Using these relations in the foregoing equation together with

equations (6) and (20) yields

f (x.y) = 2u
Q
a (jffj^) + ^

2
f
2 (f) % *tjft) * . .

.)

1 = 2 &h + A
i»

+
|
2( 27* V *j?

3
<zf* V * •••}

or

or

1 = 1 + 2JA1 K
XJ

+ 2A
25

<:

+ ^K
2 + 2A

35
3 ... ,

and thus,
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K
x

= -2A
1

, K
2

= -2A
2

K
n

= -2A
R .

Substituting these into equations (20), we obtain

K
f
n = 2Kn-l?--F

for large values of ^ . The K -values needed in each equation can

be determined f ronf the solution of the preceding equation of the

set (15) to (18), and the entire upstream flow field is thus

described.

Downstream Solution

After Schlichting, the velocity in the downstream region Is

taken as

u = u
f
(y') + u'U.y') , (22)

In which u
f
(y') and u' (x,y') are the fully developed velocity and

deviation velocity, respectively.

In the region of fully developed flow, the momentum equation

may be written

- 1 dp *
2
u °eB u

°e
B E

f dx + y
37z r r (23)

and the solution by Hartmann (3) is

_ dp/dx + qe
B
Q
E

cosh(My , /a)
f " R2

KL coshM '

°e
B

°e iwhere M = («y) B
Q
a, the Hartmann number.

(24)
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Integrating equation (24) from zero to a with respect to y'

and remembering the assumptions that dp/dx, a . BQ , and EQ are

constant, we obtain

a dp/dx + oBnE. a
r

cosh(^J-),

n 2 L
y McoshM slmU

a J

J „ae
B °

a( df * cBoV T M - tanhM l ,,,.,

^2 I « J'
< 2 5)

The continuity integral

a
/ u-.dy« = u.a

*
U

can be Introduced into the left hand side of equation (25) to

reduce it to the form

a( df * aeW f H - tanhMlu a = „2 1
" -M-

°e
B

from which we can obtain

5J °e
B E U M

Q2
_

M - tanhM *

°e
B

Substituting the last expression back into equation (24) we

finally obtain
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u.M r cosh(M *-)

I

V y,) " M - tanhM [

1 ' coshM J" (26)

When M is equal to zero, this can be written as

u.M r cosh(M X—)
i

Llm u
f (y) = Llm

M . tanhM [l - co3hM Jn 'm *U 1*1 *u

u.M[ooshM - oosh(M ^-)]
= Lim .

M K> [M - tanhM ][coshM]

This can be evaluated according to L'Hospltal's rule as follows

u-M [coshM - cosh(M ^-)1
Llm -2-= ^-L-
M—*0 [M - tanhM] coshM

u [ooshM-cosh(M 2-)] + u M[slnhM-(^-)sinh(M ^-)]
_ Lim _

M K) (1-sech M)coshM - (M-tanhM) sinhM

Lim
u [sinhM-( il

^-)
2sinh(M ^-)] +u [sinhM-(^-) sinh(M £)] +

M *0 2sechMsechMtanhMcoshM + (1-sech M)slnhM + (1-sech M)

u
Q
M[coshM-(^-) 2cosh(M ^-)]

sinhM + (M-tanhM) coshM

un [coshM-(^-)
2cosh(M £-)] +un [coshM-(^-)

2cosh(M ^)] +
L,im r r, P

M K) 2sechJM-2tanhMsechMtanhM+2sech MtanhMslnhM+( 1-sech M)

un [coshM-( J!^-)
2cosh(M ^1)1 +U.M [sinhM-(^-) 3 sinh(M ^-)1

U L ft S J U ^ 8. & *

coshM*2sech2M 2 tanhMslnhM+(l-sech2M)coshM+(l-sech2M)

coshM+(M-tanhM) sinhM

Lim
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= — -

That is

u
f (y)

= |u [l-<£) 2
] ( 27 )

which is the equation for the velocity profile for non-magnetic,

fully-developed channel flow.

For the deviation velocity u'(x,y'). Schllchtlng assumed a

series of the form

4\ n 1
2

u'(x.y') = u Cie
1

<p'(y'/a)

-*Wi s
2

* u C
2
e

25
dj£(y'/a) + ... (28)

where the constants C and k, the function <f(y' /a) , and the region

over which (28) holds are to be determined. In the downstream

section the deviation velocity is never very large and hence the

higher order terms in (28) may be neglected as an approximation.

Thus,

u'(x.y') = u^e L
(£>'(y'/a) . ( 29 )

Substituting equation (22) into (2), we have



30

, lW 9tt'i ,

du
f sa 1

,(u^U'H^) V^ + jyr)

.2 _

f dx + ^ v" ,2
+ " ,2 J

J dy' ay'

°e
B u

f
aB U * °e

B E
(30)

f ? t

Differentiating equation (30) with respect to y' , the pressure

term vanishes because it is a function of x alone.

da
f an' aul^ul , . n a 2

u'
dy' ax * ffp dt * lu

f
+u

' axay 1

w
d3u

f a 3u-> °e
B
o

du
f 3U-, !a!aifa„n

where ——j- = since EQ is assumed to be a function of z-direction

only.

From equation (22), we have

S - £ • <32>

And according to the continuity equation, ^— —7 = 0, equation

(32) becomes

— - - — (33)py«
_ ax ' Kii >

Substituting equation (33) into equation (31) and simplify-



lng, we obtain

U-fU')
3 2

u- ,

dS- 92u.,

dy* sy'

Prom equation (29), we have

ay'

3X ay' ax

?~ e
ay'- a'

.2

.3_uJ. Vl ""M
,.3

- J

From equation (26), we have

du
f

u
Q
M
2 slnh(^)

31

'&-£S» -=£*»!•

-lA 's

2

-UllJf
2 -^,$ 2

= -IT"W Pi<V> • (35)

-TT e Ji<V (36)

* 2
u«

4Vl G
l^

2

-^l^
2

V'-
ax e *1^> ( 37)

-,2 , un C, -4L5'3 u' 1 ,, l' r „,/y*> /- Q .

~72 = —T e £l 'a 5 (38 >

^ 3d e
~1' ylYjXL,

. (39)
<?y * a a

dy'
=

" a(M-tanhM) * ooshM '
^°^
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d
2
u„ unM

3 oosh(^-)

dy'
2 " a

2
( M-tanhM)

C0ShM '

d\ uV+ sinh(^-)

7^ =
" a3( M-tanhM )

( ooshM }

"

^
From equation (33) we get

V = - Jf^dy.

-4-un X.,C n 5
2

-iJ-X.,?
2

.

4Vi c
i
?2

-^i^
2

, v'

4au X C 5
2 -la,?2

= % e 9i^) • <w >

And from the transformation variable

Vx

V *\

we get

1?= — • (14)

Substituting equations (28) and (3D. and equations (38)

through (4-5) into equation (36) and neglecting the higher order

terms, we obtain, >
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U - tanhM (1 " coshM ) + u C
l
e <Pi^>J

*[-^.«-^W>]

* x
6 *1 (T> L

"
a2 (M _ tanhM)

< cosh R '

+ -

a
2

e Tl * a ;
J

= ~^_ i'a2 (M-ta„hM )

( coshM '

a3
^ (a)J

"
f [~ a(M - tanhW) l oosh M ' a T l

v a '
J

In which, in the last term,

4.*
a

«
2 ^2a2

"c
2

a

H5
2«2
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Thus, the previous equation can be rewritten as follows

ax
e

'Pi
1 a J \«-tanhH L cosh M

J

+ u
l
e Y V a'j

Ifu-X ^C,!
2

-^i?
2
, v , / M 3 cosh(^) -)u?

2
v , \

* *l l 9 * Pi<V»(ii=fegr coshM - v *>!'<*•>}

ax IM - tanhM I oosh M J
u
l il 'a']

i*u
2
S
2
M
2

, 2
f
slnh(S£-)

,
-^

x5
2

„, i

*~^E— (- M- tanhw l coshM J * C
l
e

' *!<¥>}• (45 »

2 2Dividing both sides of the above equation by ^u„5 /ax an<i sim-

plifying yield

HV i^tfnhM I
I" cosh I fe'^l C

l
e $ S^J 'f <¥>

2 M v 1 ?

+ , c e"^ -JSL-f^ftLu (IL,-, A"8^'* (^)-f)-(^)* ^l8 M-tanhML cosh M Jfl 1 a '
X l°l

e Tl l a ' *1 l a'

.2

In the above equation, second order terras of (p can be neglect-

ed. This is the same approximation made by Schlichtlng (2) in

the solution of the non-magnetic problem. Also, dividing both

sides of the above equation by \-,C-,e we finally obtain
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M\,
r

coshf^)
il *

\. M - tanhK L cosh M J / * 1

M - tanhM I cosh » Ju v '

with X-i as Its eigenvalue. The boundary conditions

v = and gu
ay

= at y =

v = and u = at y =

are equivalent to

$ 1
= ££ = at y = C*8)

^Pl
= ^l = ° at y = ± a . (49 )

The other boundary condition is chosen as

$>{ a 1 at y = . (50 )

This is possible because C. is still free. Having these boundary

conditions, equation (4-7) can be solved by a power series method.

Upstream Pressure Distributions

Near the entrance of the duct, the boundary layers are very

thin. Most of the flow is composed of the accelerating potential

flow in the central core of the duct. Therefore, the pressure

distribution can be obtained from equation (3),
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_ 1 d£ dU "A ^ofo
(

.

f dx - u
dx f f ' * 51 '

In the above equation, according to the definitions

^2
a
2
u
Q

and

E
o =

"eu B
'

one can obtain

< „2 2
afl

Q
a

>P

f " r^ " 2
a

= M
2 4

a
2

i|M
2
?
2
u

and

f
=

aB
o
eu

o

f

=

2 2
oB

o
a u

o

f * ' a
2

=
2 * S- VT - .
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Also by definition we have

dx
_

2 x

dx = f df .

Hence, according to equation (5). equation (51) can be rewritten

as:

- j dp = UdU + 8u
2
M
2
f (1+K^ 2

+ K
2^

3 + Kj$
k

+ . ..)dj

- 8^u
2
M
2?d5 .

Integrating the last equation from x = x. at which P = P. and

f = to any section in the upstream, we obtain

p « e

- i / dp = i / d(U
2

) + 8u
2
M
2

/ (1+K
n 5

2
+ K,5 3

•> P
Q

^ u 12
K ^ + ...)df - 8eu

2
M
2

/
$
f d£

J u

P - P
°

f = | "ouo * K
i^ K2^

2
* K3?

3
••• )2

? ? ?
2 ^3 W* e5

3u M ( 2
K
l T K

2 T * K
3 5

+
' '

'

}

3u
2
eM2 (!-) .
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Finally, the pressure drop may be expressed as:

P - P
jS _ m z^ + (2K

2
+ K

2
+ 8M

2
[l-e])?

2

J- f •

2 ? U

(2K
3

+ 2K
1
K
2

-t- y A^ 3

+ (2K^ + 2K
X
K
3

K
2

+ ^M
2
!^)^ ... (52)

Downstream Pressure Distribution

At the end of the upstream section, the potential-flow re-

gion is quite small and the acceleration of the remaining core

flow in the downstream section is assumed to be negligible. This

permits the use of the momentum equation for the region of fully

developed flow

o _ .ifc + „_!« . !i!fc . !!ofo
t dx

y
2 F S

in the downstream section. By taking a force summation over a

differential volume of fluid according to the above equation we

can obtain

2

1 dp. £ ,^L\
a
e
B u

°e
B E

" f dx - "a l ay' 'wall * f + f

dp TV . au . „2 D2
dl = " T ^wall * °e

B u " °e
B
O
eu
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-fi = -T^W'^oV 1-) '53)

This is due to the fact that the pressure varies with x only and

rj can be evaluated at the walls, y' = + a. According to the

solution for the downstream velocity profiles equation (53) can

also be written as follows

12/
u
Q
M
2 slnh(^)

]

a \" a(M -tanhM) I cosh M J

Vi -^5 2
1

?l<£>wall} dX

^M
2
f
2
u
2

* (l-e)dx

#,„ m 2 sinhM
liv e 2

2
a

f
coshM ^ „ l'

ti
,„,,12i , f~

I
" H - tanhM C

l
e

iPl (1) JT df

iM 2?
2
u
2
e

j-2- . & (l-e)dj

^u
Q
Wu^2

, w
2 tanhM -**!** ,

"^5 fp I
- M-tanhM * C

l
e H<«)*f

UM
2u^?(l-e)5 d$



IK)

2

- dp = 8fu M . tanhM gdf * 8C
1
fu $»(l)e £ df

+ 8M
2/u2 (l-e)^df (54)

Letting the value of £ at the Jointing point be denoted by ^.,

and integrating equation (54) from ?= ?t at which P = P, , to

|; = 1y at which P = P, one can obtain

£ -^ = 8^0 M^nT '/* *$ * BClfu^»(l) /« e"^
2

r d 5
1 1 *1

8M
2
fu2(l-e) /*£d5

P
l " P

\?<
(M_tanhM_

v M ,,.2l,,2 -2.U - tanhM a "e)M }V "*l>

2C,f?(l) -Wf 2
-"HUT?

* —^j* (e
1

- e *
X

)

'1

as the pressure distribution in the downstream section.

For the complete solution of the pressure distribution, only

C
1

and 3^ remain to be evaluated. These values are determined in

the process of matching the upstream and the downstream solu-

tions.

Matching of the Upstream and the Downstream Solutions

The upstream and the downstream solutions of velocity and

pressure distribution are to be matched at a point where both



solutions are valid. Because there are two undetermined quanti-

ties, C, and 1;, , in the equations to be joined, two conditions

are needed to solve for thera. One condition is based on the fact

that the centerline velocities represented by both solutions are

equal at the Joining point. The other condition Is that the

slopes of the pressure distribution, j^, for the two solutions

match at the Joining point. These two conditions are used to

develop two simultaneous equations from which C. and *f , can .be

determined. It is a reasonable assumption that the upstream

solution is more accurate than the other j hence, this solution is

extended as far downstream as possible before Joining. Kj, is the

highest order coefficient solved for in the potential flow

velocity expansion and it is assumed that when KJ? is equal to

5 per cent of U/U
Q

in equation (5) the ^ term can be safely

neglected. Thus

U = u (l + K-^ + K
2?

2
+ K

3£
3 + K^) . (56)

The downstream centerline velocity, from equations (28) and

(3D is

u u
f
(y*) + u'(x, y 1

)

^
n ?

2

u
f (0)

* u
Q
Ce 1

(J)J(O) .

According to equation (12) and the boundary condition

represented by equation (50), the above equation can be written

as



k2

U = M - tanhM (1 " c7ihM> * Ve
'

^l)

Equating the centerllne velocities represented by equations

(56) and (57) gives

I Kjf K
2f

2
+ K^ 3 + K^4

= M - tanhM (1 " 3oThM ) * C
l
e (58)

The upstream pressure slope equation is

If = " ^ g " °e
B U " °e

B E
'

Substituting the centerllne velocity into the upstream section

and using the definitions

2 2
2

a
e
B a

M = ' «,-.
?i>

and

E =
' " eu B

'

we can obtain

g = -fu2
(l t K

1? + K
25

2 K^ 3 K^)(K
1

2K
2?

t- 3K
3
f
2

t «^3
) ff + M2 ^^ (1 K

x5a

K
2§

2
+ Kjf 3 * K^) M

2^^ .

Since ^ = -*-s— and -r— = pT, the upstream pressure slope
^a uq
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equation can be reduced to

+ 2K
25 + 3K

3
?
2 ^5 3

) - M
2
(l K

xf
+ K

25
2

+ K^ 3 + K^) + M
2
e ]. (59)

On the other hand, from equation (53) t the downstream pressure

drop is

dp fS> ,8U, Q 2 ,, ,S = T 'FnU " a
e
B u (1 -e)

tl i"* »U»,
g
e
B u2 f^ u

,- ,

" a W +
a y' 'wall " j»P * ~^5 l± "e '

= ^{"i^tin^^v"^^)-^-)} Ceo,

Equating equations (59) and (60), we have

jfe (1 + K
x? K

25
2
+ K

3
?
3 + K

/+

5'4

')(K
1
+ 2K

2
5 + Ji.*?

+ *HC^3 ) - M
2
(l + K^ K

25
2

-t- K
3
? 3 + K^)

2 -Ux e^
M tanhM
M - tanhM

-^
n ?

2

+ M
2

- C
1
e

1
<p£(0) = (6L)

Eliminating C^e from equations (58) and (61) gives a

seventh order equation in $
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(1 + K.J + K
2?

2
+ K

3
f
3 + K4r)(Ka + 2K^ + 3K

3
?
2

+ 4K^ 3
)

- 8M
2
(? K,f

2
+ K

2
^3 + v* + ^5) + 8^™ 5

+ 8M^ +
B -TanhM " - cl^h¥> *I (1 >? - 8(1 + K

l*
K2^

+ K^3 K^)£fJ(l)5 =

v / ow ^ 2 8M
2 tanhM g ,

8M ., 1 u „mH *{ ^Z * "-1 * M - tanhW ? + M - tanhM u " coshl-l' $1 VJJ

- 8f!"(l) 5 + 3K
3

+ 31^ + K
1

- 8M
2
K
1

- 8K
2 f^(l))5

2

+ ['4-K
1

+ ^K
1
K
3
+ 2K

2
- 8M

2
K
2

- 8K
2 <^(l))f 3

+ (SK^ + 5K
2
K
3

- 8WK
4

- 8K
3 ^ ( 1 )} 5

^

+ (6^^ + 3K
2

- 8M
2K^ - 8K^<j,£(l)}f5 {7K

3
Kj5 6

+ (<+K
2
}^

7 = (62)

Solving this equation for the various values of M gives f at the

Joining points. Substituting the values of 5 into the equation

for the upstream oenterline velocity gives the values of C. for

each magnetic field strength calculated.



45

NOMENCLATURE

a Channel half-height, a>|
B Magnetic field intensity

e Electric field magnitude factor, E. = - euB.

E Electric field strength

f
n Blasius coefficient, function of ^

J Electric current density

M Hartmann number, M = B
Q

a(^j)*

p Fluid pressure

a Channel height, s = 2a

u x-component of velocity

u
Q

Fluid velocity at inlet

u
f

Fully developed velocity

U Potential flow velocity

v y-component of velocity

w z-component of velocity

y Direction component measured from channel wall

y' Direction component measured from channel center line

1 Transformation variable, 1 = i ,
—

I 2 J i>x

k Eigenvalue

P Kinematic viscosity

? Fluid density

a Electrical conductivity

Y Blasius stream function

(p Deviation velocity function

f*„ Wall shear stress
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^ Transformation variable, f= ( ? )

U S

Subscripts

= constant magnitude

1 = Joining point

2 = entrance length

REFERENCES

M. Roidt and R. D. Cess, "An Approximate Analysis of Laminar
Magnetohydrodynamic Flow in the Entrance Region of a Flat
Duct," Journal of Applied Mechanics, March 1962.

H. Schlichting, "Boundary Layer Theory," McGraw-Hill, New
York, 1960, p. 168, or H. Schlichting, "Laminare Kanalein-
lauf stromung, " Zeitschrift fur angewandte Mathematik und
Mechanik, Band 14 Heft 6, 1934, pp. 368-373.

J. Hartmann, "Hg-Dynamics, I-Theory of the Laminar Flow of
an Electrically Conductive Liquid in a Homogeneous Magnetic
Field," Kgl. Danske Vindenskabernes Selzkab. Mathematisk-
Fysiske Meddelelser, Vol. 15, Copenhagen, Denmark, 1937.



^7

CHAPTER III

Schiller's Method

In the analysis by momentum Integration (1), we also con-

sider a laminar flow of a conducting fluid with constant proper-

ties entering a semi-infinite, nonconducting flat duct with a

normal transverse applied magnetic field. In this case, the

velocity profile is approximated by a curve comprised of two

parabolas and a straight line (see Fig. 1); the vertices of the

parabolas lie on the border of the boundary layer. The parabolic

velocity profile in the boundary layer is assumed to be

§ = !-[<*> "I] 2
- (1)

where U is the velocity of the freestream and is a function of x,

the coordinate along the direction of the flow; 6 is the thick-

ness of the boundary layer.

In this study two different boundary conditions are con-

sidered. One is the uniform velocity distribution across the

entry plane, and the other, the velocity at the entry, is the

fully developed non-MHD one which has a parabolic profile. Both

develop in the entrance region of the channel to the Hartmann

velocity profile which is the fully developed velocity of MHD

flow.

First of all, the momentum integral equation for flow in the

duct is derived. Consider the flow region within the boundary

layer between section ab and cd, which are dx apart (see Fig. 2).

Let the x-axls be in the same direction as the flow, and let the
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y-axis be measured from the wall. Then the mass flow rate Into

the section ab within the boundary layer is

6

M
in

=
J" 2u x 2w x / dy

6

= >+w f S udy .

The mass flow rate out of the region is

6 H 6
M
out = 4w f ; * + *»fst / udy

J
dx '

The difference between M, and M . isin out

H d 6

... -Vt = -^stj udy] d*

which is the mass flow rate into the region from the center core.

Therefore, the momentum flux into the region due to the bulk

flow (or convective flow) is

-tufO^f/ udy] dx + 4w f / u^dy .ax

The momentum flux out of the region due to the bulk flow is

*«f/ u
2
dy +»wfi[J u

2
dyl dx .dx

o

Thus the net momentum flux out of the region is

4w f dx" t ; u
2
dyjdx tlwf U^[/ S

udyjdx . (2)
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For steady-flow, the net momentum flux out of the region Is equal

to the net force acting on the region in the same direction. The

forces exerted on the region are the pressure force, the shear

force of the wall, and the Lorentz force. Hence, when Hall ef-

feots and induoad magnetic fields are assumed to be small enough

to be negligible, we get

SF
x = " 2r

w(2w)dx + l*r(/ JBdy)dx

+ P(26)2w + (P + £ |2 dx) . 2w . 2d6

" (P + df dxH 2 a + 2d6)2w (3)

where < £ < 1. In equation (3), the first term of the right-

hand side represents the shear force of the wall. The second

term is the Lorentz force in which j is the current density; B is

the imposed magnetic field intensity. The third term is the

force acting on the boundary layer at section ab, the fourth

term is the force acting on the boundary layer from the free-

stream, and the last term is the force acting on the boundary

layer at section cd.

Rearranging and neglecting the infinitesimal terms of higher

orders yields

6
SF

x = - /j-wr dx + l*w(/ JBdy)dx

- *»* a£ dx • eo

According to the momentum theorem, equation (2) Is set
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equal to the right-hand side of equation {k) and we oan obtain

the balance of forces and momentum fluxes:

ttffcll u
2
dyjdx + tafU^[/

6

udyjdx

= 4»r, dx + 4w(/ JBdy)dx - 4sw £2 dxax

V« If -
J

Js*y = - f « £ 5
ud* - f&

J
^ (5)

The freestream momentum equation is

6 "" "fi^J (6)

and Ohm's law is

J = <j(E - uB) . (7)

These provide the means for expressing the pressure gradient and

the Lorentz force in terms of velocities and the magnetic field.

That is, a rearrangement of equation (5) and the substitution of

equations (6) and (7) into equation (5) give

?w = " f U & Ady - fA. /

6

u
2dy + ;

6

JBdy . 6 |£

f U £ / (U-u)dy - f U A / Udy
6

r

+
-P d^ / (uU-u)dy - fA / uUdy
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+ / <J(2-uB)Bdy

dUs[-fug+ o(B-UB)B]

- CU^ /
6

(U-u)dy - 6 fug

tf|rJ (uU-u2 )dy - f 4-0 / udy
ax

Q
ax

+ OEB / dy - aB2 6U / 7T d (£>U 5

* 6 U fx " 6EB<J * 6 °Ub2

= f & / (U-u)dy j
3 i / (uU-u

2
)dy

ax
Q

ax
Q

+ 60UB
2

- 50UB
2

/ $ d(£) .
U 6

Introducing the displacement thickness 6* and the momentum thick-

ness 9 defined by

6*U =
6

/ (U*-u)dy

and

2
9U =

6

/ u(U-u)dy ,

respectively, reduces the equation into the form

7W = &oBZU fl-/
X

§d(f>] •fujg^f;
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In order to solve this equation for the boundary layer

thickness, we use the assumed velocity profile expressed in

equation (1). That is, it is assumed that the velocity profile

consists of the parabolic variation

across the boundary layer and a uniform core velocity.

First of all, we can substitute ^(— ) .... for the shear,

which is evaluated from the assumed velocity profile. Thus

1 w ~ ^ l«'.'ay' wall

y=0

2MM
ff-]y=y=0

= f^U .
( 9)

The terms on the right-hand side of equation (8) can also be

evaluated as follows;

/

X
&d(Xj = ?[1 -{(f)

-l)2]d(*)

[(f)
2
-*<f>

3]"
3 V J

c

3 (10)
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;

6

- (i - -)

=
J

6

[^) -
5(f)

2
+ Mf)* - <?>V

" l 6 3
6
2

6
3 57J

= 6 [l.f + l-i]

dx

iLi _ 2a (4i (11)
15 " 15 V l

2a A /A) n 2 )
15 dx V vi^

The core velocity Is allowed to vary In the x-dlrectlon in

order to satisfy the conservation of mass equation applied across

the entire channel cross section. If u is the average velocity,

the principle of conservation of mass gives

6

'J-awu = l+w / udy + 4-wU(a-6)

= ^wlJ / [2(£) - (£)
2
]dy + 4wU(a-ft)

5 6

= »HrtJ [
i- - i **] + i+wU(a-6)
6

"> 6

= ^wU6(|) + ^wU(a-6)

= ifwUa(l - i
|)
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dU _ U JL 1
dx dx

(1 _ 1 A)
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- - i - 4 & nil
U 3a - ll -,;

3 a'

(£) (it)
3(1 -if) 2 dX a

f£(U2
9> = fu2 ff.2fueg.

From equations (11) through (It) this can be valuated as

f-*- (U
2
9) = f li

2
. f| f (4)dx ' 15 dx a

+ 2 fU • — (^) ^ — (£)* *ru 15 V , 1 4>2 dx V
-ni " 3 a'

9oPii2 ^ 4aufU(£) ,

=
J

6

[l-2(f) +
(f)

2]dy

[
6 - 6 + f] = 3 • < l6 >
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Substituting equations (9). (10). (12), (U), (15). and

(16) Into equation (8) we obtain

H - *B
2»a[l-f].| f U

3(i _\^ 2
A

( |)

15 dx V +
45(1 _ 1 k) Z dx laJ *

By multiplying both sides with ^j and noting that (6^/)*Ba = M,

kauf//4 = R
e , and u/(l - i A) = U, the above equation becomes

=>2 lt .2

^aufU(^) 2

3 a'

- d(£)
90(1 - ± £)

Z
/"U

a

aB a V . Jffau
- —2— dx

(*>
2

M ^ -^ d (4) + *Ml
72(1 -li) 2 V -

3 a

ttt d( a ) + ^- •

60(1 -li)
a(*)

2

90(1 - i
f)

2 a '

, A,2 M
2

,
B
e
a <|)

2
„A. a

e
a(|)

,(o) -7- dx + '

1 . ?
d(£ + §

—

a—_ d (£)
72(1 - i A) 2 a

60(1 - £ i) a
3 a'

T
3 a'

H a(i)
e x a'

4.2

90(l-if)
2d(a)

= (i)
2 M*

a- T1*
B
e
a 675(|)

2+810(&)(1- J A)+5»Q(&) 2

18600(1 -ii) 2

3 a'

<)
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= (!)
2 ^dx + R 7(f)

2
+

6(f)

360(1 - i A) 2
d(|)

dx
aH_

7(A) 2 6(A)

• 2
6_
2

2
a

3 6o(i -V^Xl -U)2
(17)

Equation (1?) Is to be integrated from x=0 to x with the boundary

conditions for the uniform entry velocity, when x=0, 6=0 and when

x=x, 6=6. Thus

a
=*- / ^ = /

7(^)
2

+ 6(A)

aH
e

36ofl-(^)(A_)][l-i(f)]
2

d
<a">

(18)

In order to carry out the integration on the right-hand side of

equation (18), an integration by partial fractions is performed.

Let

7(A) 2 6(A)

360[l-^(A) 2j[i.i(A)]
2

"5* v
a' Jl * 3 x a'

A(A) + B

h{36"o

[i-^(f) 2
J

f
1 "!^ 5-1l -i(A)W

35o I

-
:

„ 2 :

~
: Tz
—

[i-¥cMfi.j<i)r

°fr - V d>
2
J
}•
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Then we have

A(f) - § A(£)
2

| A(f)3 + B - § B(f) + i B(£)
2

C

-
J 0(ft)

- Jf 0(A)* ^ .
i

0(A)3 + d - ^^
= 7(f)

2 6(A)
.

Equating coefficients of like powers of (•*) in the above equa-

tion we obtain

B C + D .

A - |b - j C = 6,

2 a+ 1 b _MIg
3

A *9 B
T>

I A + £ C _

2
M

7 .

Solving these simultaneous equations, we obtain

3i\-) [lM 162(^-)]
A = g * ,

2

63 + 891(^3-)
B = 5—^ ,

1^ + 162(^-)
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81 [1-9(4)1
= 2-S- *

[l " 9C$]
2

Hence the Integration of the right-hand 3ide of equation (18)

baoomes (2)

i 7(f)
2

+ 6(f)

° 360[l-(#($»][x -$<A>]"

& 3<g)[n*+ 162(g)] (|)
J 5 = . = d(*)

36o[l-9(V>J [l-(V)<i>
8

]

T
2 ,2 ' . „2 . „. ~*a'

a 63 89KT-)
i a

360[l - 9 (V>] fi " ^)(i)
2

]

& M2

p
a -14U - 162(^-)

+

360 [1-9(4)f [1 -3 ( £>J
d<a>

4 - r _.M 2S_8i[Ll<oj_ 1
+

360[l-9(4)]
2
'f 1 -^ 2 ^

. r ama - 27m
2

en
r _

(
a!)(A) aj]

1-240(1 - I M
2

)

2 L ^ a J
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L
120(1 - i m

2
)

2
m
2 S - «(*) J o

A

[ ^*f^ 2
£n[i-^))]

a

120(1 - | irr ->
a

o

r 2?(1 - | M
2

)

j_

la

"^
10(1 - | M

2
)

2
[l - i(|)]^0

. - U^+27M*) fa[ X .
(^)(f)

2
J

240(1 - | M
2

)

2 L b a

2

63 + 891(4-) 75 + M(f)

120(1 - | M
2

)

2
M
2 & - M(|)

+ _m^4[i-i(f)]
120(1 - | i»rr J a

,

27(1 - I m2)
r jjjj i

40(1 - I M
2

)

2 L
1 - i(|) J '

Finally equation (18) becomes

aR
e 240(1 - | M

2
)

2 6 a-"

r^ M(i)63 89K^-) p/g + M(|)
+

120(1 - | M
2

)

2
M
2

n

V5 - M(£)
2

,2

120(1 - j M
2

)

2 3 a
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x
aR

27(1 - \ M
2

) r |(|)

40(1 - | M
2

)

2 4l - i(|)]

2
2 ;^^ !

{
i£ + M2) ^n (1 . X)

(i - | m
2
)| , yo" M(i)

1 - (^)
3 2VE H JS - M(£)

(§ + ^) ^n [1 - (\) %]). (19)

Thus the velocity distribution in the entrance region for the

case of uniform entry velocity profile is completely defined by

equations (1) and (19).

When the entry velocity profile at the channel entry plane

Is the one which Is nonmagnetically fully developed, the same

equation (1?) is integrated. Only In this case, the boundary

conditions are that when x=0, 6=a and that when x=x, 6=6. Thus

1
x » 7(f)

2
+ 6

<a> &^0^ i T J . „r , . o/'l1, (20)

|=1360[l-(^-)(f)
2 ][l-i(f) 2

]

The Integration of the right-hand side of equation (20) can be

performed in the same manner as in the case of uniform entry

velocity profile.
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i
a 7(£)

2
+ 6(i)

1
36o[l-(iV)(|) 2 ][l-i(|)J

4(4)2 uv 5

3
v a'

2

I 3<*fc-)fl4» 162(^)] (A)

; — IFTS ' *-

360 fi - 9 (^)] [l - (^)(|)
2

J

d(A)

+ /

a 63 891(^3-)

1
360 [l - 9(!l-)J [x.** 1

]

4(4)

M

/

a -144 - l62(ir-)

1
360 [l - 9(^)J

2

+ /

a 8l[l - 9<JU]

^
*

i 1(A)

1 36o[l-9(^)J
2

V " *<*>J3
v a'

( -144

' 240(1

•144 - 2?M*

fe[l"*(i) 2
]

2
d
<i>

| M
2 )2 » L* " iT'-i

63 + 891(4-)

"'a'
120(1 -

I M
2

)

2
M
2 L

V5 - M(|) Jl

[
aa t azag A [

a -Wl*
L 120(1 - I M

2
)

2 L 3
V a'J

J
x

1m2
)r 27(l -

f M-) -,a

+
I
40(1 - I M

2
)

2 '
[l - i(£)ri
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»%:?& (
fc fr- fry] -*ci-fe)

120(1 - J. mV M* * & - K(f) ,/°" - M ;

27(1 . I m
2

)

144:

- -2 «tod - | M
2

)

2
[l - 1(A)] 3

240(1 - | M
2

)

2
M
2 J

2 1 - T
2

63 891(4-) , [S + M(A)](V5 - H)

120(1 - | M
2

)

2
M
2 [S - M(A)J (75 + M)

2
. 1 " (A)

2"

3

27(1 - \ M
2

) |[(|) - 1]

40(1 - | M
2

)

2
[l - 1(A)]

120(1 - | M
2

)

2

2 " ' I* " 3*a

Finally equation (20) becomes

4(b z
_x_ 144 - 27M

2
\ n

1 " T ( a } 1

aH
e

=
"

240(1 -^M 2
)

2L ? J)(1 -^M')' L
. m'2 x - T
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or

. 2
63 + 891 (t-) [,/5 + M(^)l (V5 - M)

120(1 - | M
2

)

2
M
2

[,/5 - M(f)] (75 + M)

+ 3M -* 27M
2

^>n
1 " baj

120(1 - | M
2

)

2 |

27(1 - | M
2

) | [(f) -1]
+

koO. - f M
2

)

2 * [l - i(A)J

1 -S-

d~ = —7~5—1

—

t-tt ( - '¥ + m2) ^n -r3*
ail

e 20(2i"T - | - 1 M
4

)
l 3

|

3 [(f)
- l](l - \ M

2
) 11M

2
+ ^

2Tl - ijg)] 2-/E H

U- (f)M](7g-H) g M
2

<n t—; 1
—; •» (? + -Q-) x

[V5 + (f)Mj(V5* M) 3 2

i-(^(4)
fo

a

1 - ("g")

}
• (21)

Thus the velocity distribution for the situation where the

velocity profile at the channel entry plane is nonmagnetlcally

fully developed is completely defined by equations (1) and (21).

In these cases, it should be noted that the nondimensional

length parameter x/afi
e>

familiar from Schlichting's nonmagnetic

solution, is a function of ft/a and the Hartmann number M only.
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The Hartmann number can be viewed as a measure of the magnetic

interaction.

The Length of the Entrance Region

Since the boundary layer grows from zero until it attains

the asymptotic value and joins at the channel center, when the

flow is fully developed (,a or £ = 1. Therefore, for the case of

uniform entry velocity profile, from equation (19) we obtain

f( M £)| _ 2 ( (16 . „2. 2
a

I |=1 20(2M2 - | - 1 « )
l 3 3

3

|(1 - I M
2

) - (]
«2 li.y n , - (HIT + ±?) ij— X

3 2(6) S M

(6) s - M 3 2 6 /

Therefore, the entrance length x for the case of uniform entry

velocity profile Is

aH
e

a

20
- 2

?
2—rnr ( - <¥ m2) ^n I

- 1(1 - I M
2

) - (11M
2
+ % —1 ^n (6)* t «

3 2(6)* M (6)* - M

+ (§ + if, ,n (1 .
£)) (22)

According to Schiller, the entrance length is defined as the

distance required for the friction factor to come within 10# of



67

the final, fully developed value. From equation (1) we know that

the velocity gradient at the wall will be

(2S) _ u[2 _ 2 Z] 2U

In equation (21), the minimum value of (£) is decided by the fact

that the argument of the logarithmic function should not be zero

or a negative value. For instance, the minimum value of (£) for

the Hartmann number, M, of 4 is

' a 'iln
=

~Tt

»--$-». (2 3 )

If the velocity profile corresponding to (£) is assumed to be

the fully developed one, the friction factor at the fully

developed condition for H=k is

<g» - fl = -IT—' Wd
* y=0 at F.D. * 'f.D. (Vo^A)a

Substituting equations (23) and (13) into equation (24) yields

2u 2k

(£ii) m 1 - JE/12 u 12-75
ay

y=0 at F.D. (Vo"A)a
a JS

= |( I
6

) = |(-^~) • (25)a
12V5 - 6

a 2S - 1

The friction factor at any other section is, by virtue of equa-
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tion (13)

ay y=o 6 ad - ^f)

When the Hartmann number, M, equals 4, the value of ^ at the

location of 10^ deviation from the fully developed profile Is

obtained, (by use of equations (25) and (26)),

I (-£*—) x 0.9 ^5-
2VS - 1 6(1 -if)

<*> " 3(|) - " f ' *# = - 1-625 •

Hence

. 3 ± V9 - 6.5

a
=

2

= 1.5 - 0.79

= 0.71 . (27)

Finally substituting equation (27) into equation (21), we obtain

x
e~- = 0.0185884

for the case of the nonmagnetically fully developed entry veloc-

ity profile at M=4.
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The Pressure Drop

Prom the Bernoulli equation, the difference in pressure be-

tween any two locations in the entrance region Is

P
l

" P
2 = ! U

2 "l U
l (2<0

where P^^ and P., are the pressures at x
x

and x
2 , respectively, and

U
x

and U
2

are the velocities at the central core at x, and x_,

respectively.

From equation (13), we have

U, = 5 U _ u

(i - - —

)

(i i _^i11
3 a' a ~

J 1T>

Hence the equation (2^) becomes

pi- p
2 = f»

2
[ hrr h-rJ. (25)

The pressure drop at the entrance region and at the fully

developed region can be obtained as follows.

For x £ f(M,l), the pressure difference between the inlet

edge and any location in the entrance region is obtained from

equation (25) , as

r r ~ 2
iu2

[
1 1 1

(1 . li) (1 . I fOj'
3 a J U " J T'

6
Since -*

a
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P " P = Z^L \ A . 2
- l|

VJ
- "

3 a ;

If x = x = f(M,l), * a 1. Therefore, the total pressure drop Ine -.--.-.. a

the entrance region becomes

p " P = I a2 • < 26 >
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NOMENCLATURE

a Channel half-height

B Magnetic induction

E Electric field strength

J Electric current density

M Hartmann number, M = B a(§) 3

P Fluid pressure

R Reynolds number, B = ka\jf/p<

u x-component of velocity

W Half-width of channel

x.y.z Space coordinate

6 Boundary-layer thickness

6* Displacement thickness

f Fluid density

<j Fluid electric conductivity

8 Momentum thickness

// Fluid viscosity

T~ Wall shear stress
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CHAPTEH IV

Targ's Method

The principal difficulty in analyzing the velocity distribu-

tion in the entrance region Is due to the nonlinear inertia terms

in the equation of motion. Because of this nonlinearlty of the

problem, all solutions obtained to date have been approximate

solutions.

A new method of analysis of entrance region flows, evolved

from ideas proposed by Targ (Slezkin (1)), has recently been de-

scribed by Sparrow, Lin, and Lundgren (Z) . The method involves a

linearization of the inertia terms by introducing a stretched co-

ordinate in the direction of flow. A boundary-layer model is not

necessary in the analysis, and velocity solutions are obtained

which are continuous in the transverse and longitudinal direc-

tions from the channel entrance to the fully developed region.

This new technique is applied by Snyder (3) to the investigation

of MHD flow in the entrance region of a parallel-plate channel.

The geometry of the MHD parallel-plate channel Is the same

as shown in Fig. 1 of Chapter I. A constant magnetic field B. is

applied In the y direction, and the channel is assumed to be

infinite in the x direction. The initial velocity profile Is

also assumed to be uniform and at a great distance downstream

from the entrance the velocity profile Is the fully developed

Hartmann profile. —

As can be seen from Chapter I, the governing equations of
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motion for laminar magnetohydrodynaraic flow are

continuity:

3u sv S— + — = or —
3x ay 3x -

= or f-[S udA ] - , (1)

momentum:

u
<>x * v

ay " ? dx * ~2 + H3^ 'V^o'- (2)
^y

The major assumptions implicit In equations (1) and (2) are the

same as those described in the previous chapters.

According to the new technique, equation (2) is linearized

as follows:

2
2 nB E

eU) ufa = a(x) y^u _^ c
o _ u) (3)

?y^ " u
o

where U is the mean velocity defined as

U = i /

S
udy (k)a

and £(x) is a yet undetermined function of x which weights the

mean velocity U, while /| (x) is a second undetermined function

which includes the pressure gradient as well as the residual of

inertia terms after the linearization.

Integrating equation (3) over the upper half cross-sectional

area of the channel. A, gives



76

2
2 rt B E

£(x)U £- / UdA = M(x)dA * ^J^dAt -V2 / (^ -u)dA3X
A A A 3/ ° A B

where, in accordance with the mass conservation equation (1)

ax / udA - o

Hence

,

>2„ oB* En
= A(x)A + V/ *-* dA * -%£ / (=£ - u)dA. (5)

A gy^ -T A c

By applying the divergence theorem to the integral Involving

2 2
9 u/ay in the above equation we obtain

»/ ^fdA = tfffgd*.
A ay c *"

Substituting this into equation (5) and solving it for (x), we

obtain

mx) - -f # «a d /*ai! (1 .i) (6 )

c s'n ~ UBq

in which the contour c Is the circumstance of the channel half

area, au/gn is the normal derivative of the velocity evaluated

along c, and d is an element of the circumference. For the

parallel-plate channel, the only nonvanlshing contribution to

su/an is C 8U/9y) y=a -

A stretched axial coordinate x* is defined by the relation

dx = e (x)dx* . (7)
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Combining equations (3), (6), and (7) we obtain the linearized

momentum equation:

2 —

at. 31. a an
3y

± r UBq

or

2 —

u^ - P^-^Sr5
J
+ fsT^ (1 --" (8)ax

ay^
a sy y=a

J f U

It is also convenient to introduce dimensionless variables

He . ^ , and M = B
Q
a(^)* .

Hence,

(9)

au u , u . u /aa,
ax*

=
x* v

fle a'
=

He a 'gg'
9 He a

u

su
= .f_u ,g. u ga

ay " jl « * »1!
a

2 — — — 2
g U U _£_ £& U 3 3a U g q

ay
2 a »y 9l

" a a v. ^ -
fl
2 3?2

'

Substitution of these gives the dimensionless form of
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equation (8) as follows:

2 —

Re a S^ "
a
2L ^2 V*„1J J>

U „'

or

Sp - % ' (^7=1
+ w2(1 "a)

•
(10)

The boundary conditions are

7=1 t a = ,

7=0 : ^ = . (11)

3 = : a = 1 .

That is, equation (10) is to be solved subject to the no-slip

boundary condition that u=0 on the duct wall. In addition, the

velocity profile at the inlet will be assumed to be uniform

across the section, I.e. , u = U.

Although the relationship between the actual axial coordi-

nate x and the stretched coordinate x* is not yet determined, it

will be convenient to set this question aside until later and

proceed with the solution of equation (10).

Equation (10) is a linear equation with constant co-

efficients and is thus amenable to solution by means of the

Laplace transform. Defining the transform of a as

a = / ae"*
S|3

dg



79

then we get

L(a') - sa - a(0)

= sa - 1

in which

a(3=0) = 1 ;

L(a) = a ; and

L(K2 ) = | M
2

.

Hence, equation (10) is then transformed into the form

or

«£§ - (M
2

+ 8)5 = (ft - ^
2
t 3

>
. (12)

d^r d
7 7=1

s

To solve this linear differential equation of second order, we

first find by observation the complementary function

ac
= C^W^^-UW ,

Then the general solution is found to be

5 _ „ .(M2*s)*7^ „ -(M2+s)*2

fr[#> -^j. d3)
r+s) L *" 7=1(M"+s) L T 7=

The boundary conditions (11) can be transformed as follows:
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7=1 : a = (/ ae
-8

** dg) = (Ik)
7=1

- /*" 2S e
"se da

= o (15)

With these transformed boundary conditions (\k) and (15) . the

constants In the solution (13) are to be found.

From (14) i we have

c.e"^* o-e-^
2
*8 )* - -£-[(£) - *&* 1=0.

1 * (mSs) l a
7 ?=i

s J

From (15) we have

c^M^s)* - c
2
(M

2+s)^ =

°1 = C
2

•

Solving these two simultaneous equations for c, and c
? , we obtain

_ 2

r
e
(M

2+s)i
+ e

-(M
2
+s)^ 1 [

( df^=i " s j
1

l J '

(M
2
+s)

r,da, _ («%s)
]

l
v d7 ; 7=l " s J

C, = C-
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Substitution of these constants into equation (13) gives

jjdSj _ (M
2
+s) jMM2+s)^-M2+s)^ j-.(M

2
fs)^

|C
-(M

2+3)M
a = _

(M
2
*s) [ e

«^>* .-<«
2
«>*J

[(g) ycl
- i^][oosh( MW? - ooshuW]

(M
2
+s) [cosh(M

2+s)*]

From this we get

da _ [(^^-^JCA.)*^^,)*^
d? (M

2
+s) [cosh(M

2
+s)*]

d?
?=1 (M

2
+s) [ cosh(M

2
+s)*J

Solving for (f^)» ii we obtain

,da>
m

(M
2
+s) slnh(M2+s)^

** Y=l s [slnh(M2+s)^ - (K
2
+s)* cosh(M

2
+s)^J

As a result the general solution of equation (12) becomes

[
(M

2
+s) 8lnh(M

2+s)* . i«f±ai][008h(II2+8) * r
L s[slnh(M>s)* - (M>3) soosh(M +s)*3 3 xs[slnh(MSa)» - (M +s) gcosh(

(M
2
+s) cosh(M2+s)*

- cosh(M2->-s)^]

i[(M
2+s)* sinh(M2+s)* - (M

2
+s) cosh(M2+s)*]

[(M
2+s)][cosh(M

2-s)^ - cosh(M2+s)^]
(l6

.
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Carrying out the Inverse transform C+) , gives a in the following

two equivalent forms:

1 r
r* 1 °°

e
s& (M

2
+s) rcosh(M

2+s)^f-cosh(M
2-fs)k]ds

2TTi
Y-1-

6

s [(M
2+s)5sinh(M 2+s)*-(M2+s)oosh(M

2
+s)*]

(17)

or

. ^9+1- 2x
2
eU -M \» (ooshrt-oo8hx)<U

2TT1
9-1°° U 2

-M
2
)(sinhA. - XcoshA.)

(18)

in which

X = (M
2
+s)* , s = \

2
-M

2
. and ds = 2\dA. .

The integrals of equations (1?) and (18) can be evaluated by-

residue theorem (5) which states that if f(s) is a single-valued

function that is analytic inside a simple closed path c and on c,

except for a finite number of singular points a^, a*,,.,,, am

interior to the region bounded by c, we have

m
/ f(s)ds = 2TT1 2 Res f(s)
c J=l,s=a

where Res f(s) denotes the residue of f(s) at a and where the

integration is in the counterclockwise sense around c.

From equation (17) it is clear that a simple pole occurs at

s=0 with a residue
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Hes f(s) = Res H\
s=0 s=0 qv '

P(0)
= qMOl

I e
SB

(M
2+s)^ [cosh(M

2+s)H
\ slnh(M2t-s)* - (M

2+s)*oosh(M2
+s) i

§ (M
2+s)*

- cosh(M
2
t-s)

g
] _1

oosh(MSs) 3 -(M +s)~scosh(M + s) 5-sinh(f

MtooshM? - coshM) i-,q\
- (sinhM - McoshM) '

From equation (18), if k is pure imaginary, say X = iy where y is

real, it is clear that poles will occur where

sinh k - k cosh k =

3inh(ly)
soshdyJ
Sl
7)t'( = iYCOS 1"'

I.e. .

tan Y . (20)

The roots of equation (20) give an infinite set of eigenvalues at

which poles occur in the integrand of equation (18). If Y is

the nth root of equation (20), the residue corresponding to this

root is

-(Y
2
+M

2
)g

2e (cos y„7 - cos Y„)
H_ = 5—5 Ei S_

( 2i)
(Yn

+M ) COS Yn
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The solution for a obtained as the sum of all residues of the

integrand in the inversion integral becomes

>shM - coshM)M(co
" "TilinhW - McoshW

-( Yn>M
2
)3

a, e (cos y 1 - cos y„)22 2—2 S
' (22)

n=l ( Yn
+M

*
oos Yn

The first term of equation (22) is recognized as the Hartmann

profile and represents the fully developed solution, and the

series corresponds to the difference between the actual velocity

profile and the fully developed profile. The limiting form of

equation (22) for M

—

*0 can be written as

-

,

T , M( coshM f - coshM)

"i,
tt = J^L (sinhM - McoshM

S

M—*0

-lyWlp
e

n
(cos Yn f

- cos Yn )

Llm 2M - —j
—=—

M—*0 (y„*M ) COS Yn

in which, the first term in the right side can be evaluated

according to L'Hospltal's rule. Thus

M(cog
(sir
^oshMY - coshM)

M_ n (sinhM - McoshM)

(coshM 1- coshM) + M(?slnhM?- slnhM)
„

m
Q

coshM - MslnhM - coshM

L , (yslnhMy-slnhM)-)-yslnhM -slnhM+M(g 2ooshMy-ooshM)

M__Zn -McoshM - sinhM



T
. H. coshM? - coshM + t coshMfr - coshM + I coshM?

„ „ -MslnhM - coshM - coshM
M

-coshM - M(y 3slnhMy- sinhM)

Hence,

yS*
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•, o » e (cos Y.f- oos Y-)
Llm a • \ (l-f) + 2 z o

M—»>0 n=l Yn
oos Yn

which Is identical to the velocity profile for the case of zero

magnetic field dealt with in (2).
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Stretched Axial Coordinate

(Evaluation of £ )

The solution given by equation (22) is in terms of the

stretched coordinate 9 and the relation between 9 and the physi-

oal coordinate (tfe*)(x/a) requires a knowledge of the relationship

between £ and 3. This relationship will be found by imposing an

additional physical constraint, namely, that the local pressure

gradient s p/sx calculated from momentum considerations be the

same as that calculated from mechanical energy considerations.

For an exact velocity solution, a unique value of the pressure

gradient would be derived no matter whether one employs momentum

or mechanical-energy considerations. However, since entrance-

region analyses are necessarily approximate, the local pressure

gradients calculated on these different bases need not necessar-

ily be the same.

An expression for the pressure gradient will be derived

first from momentum considerations. The momentum equation will

be Integrated across the channel half section. The integration

of the Inertia term is facilitated by combining the inertia term

and the continuity equation:

suu
+
guv

u
^u +u 2U£U5Vgx 9y ax ax ?y sy

2x sy' &x 9f

where

9U av .

£7* i7 " ° •
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Hence,

U 2H +V 2B _ »uu auv
(23)

ax sy 9x ay

Substituting this into the momentum equation (2) and integrating

the same aquation over the upper half of the channel gives

n a „ a Z a o Bn
= " \ ! H dy » ' ^ iy * / -V (E - uB ,dy

" 9X
ay -r

^ / u
2dy + (uv)| - (uv)|

** 'y=a 'y=0

- " JS » <T> l y=a
" *® l y=0^ (E

o " UV
In which (uv) [ and (uv) J are zero, because u and v are all zero

a ,

at the wall and v is zero at y=0; and (— ) is also zero because
»y '

u is symmetric at the center line. It is also to be noted that
a _

/ ud = Ua. Hence,

1*E „ I ^/a
u
2
dy - (£«», . !a!^ (^--D. (2U)

f 0X a 9X a ay y=a / UB

Next, a mechanical -energy equation may be constructed by multi-

plying through the momentum equation (2) by the velocity u. The

mechanical-energy equation may then be integrated over the upper

half of the channel.
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a i a

J u -dytj uv - dy

a n _ a
S2V

a a„Bn

2
ay

In which

t
a a ,2 a a B.

? / u |f dy *J u 2-4 dy J -a-2 (E -uB )udy
f 9X

ay J u u

jVgdy = ;

a

|^ dy ./
a

u^ dy
" x s *

3 , 3. ." S\X~
= - J u^dy - / u -sv dy

a ^2
3X

r 3U , f ?U V j r SUV .

; vu -^ dy = / -ff-
dy - / u —- dy

q 93 y y

-i i
a a

2 p <9 uv „

= u v - ; u T7 dy

J
»•»

Hence,

r 2 8 U J , au .

/ u rr dy + / uv -^ dy

= £ /

S
u^dy - /" u f£ dy . /* u 222 dy

_ a ., a 2
3 f 3j t /9U suv> .

- a~ ' u dy " ' u(^r + 77)dy

— / u3dy - / u(u-+v —)dypi
J

'
q

v ax ay' '

?y
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& p XL j

. I
;

a
u ££ dy = . i ££.

/

a
udy

because (u) = and (|^) y=0
= 0.

2
a J fl. a B.E. a aB. a „

/ -VA (E - uB )udy = S-2S. J udy . -A J u
2
dy0-T uu JO r

oBnEn _ OBn a .

= -P (Ua) - -£ I u
2
dy

J JO

CTB
2

U EAa" ,"0" l f
" 2. .

° D
o u o

Substituting this back we may obtain the pressure gradient from

the mechanical energy equation as

.
a „3 # .a „„ 2

"pJx = w Sx * -5- dy — / (§-) dy
J ,9X Ua 3X ^ Ua ay



90

aB
2

U E,

£— (r5 h? I u
2
dy) • (25)"

UB
Q

alT

The pressure gradients given by equations (2^) and (25) may now

be equated to give

I ± r

S
„2. ,i>3u, °e

B " ,

E
.,

2

Ua a Ua *

aB
I ,

E
1 ;

a
2, .5~ (" T? J u dy) .

J UB
Q

aU

Replacing (d/dx) by (—)(d/dx*) and rearranging, we get
e

in* <£***-$($«>
e = *-§-— 3-5 (26)

,-> n a 2 a B„ U a B„ U a 2
/* u

i
"

f i
au

\ a„ e e f u .

(r ~7) v-a * ~ J (»v J dy P + Fa— J ^2 dy
y y a Ua y J fa 0U

in which, from equation (9), we have

_£_ 9 1 _1 3_

<9 x*
=

x* " B a
=

H a a •

Ha e e
e

U
2

= a
2

U
2

.

U3 = a3 P .

dy = ad 7
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u~ — —
£u u u u ffa

sy
3

j I a
=

a a^ •

and

a
e
B U J

e
B a2 UP M 2 ff )>

T
= ^ ' a

2
a
2 *

Substituting these into equation (26) we obtain the expression

for 6 in terms of dlmensionless variables.

1 L "•
1

2 -2
,, „ 1 f

X
a3 U 3

2 <?x«
(/ a

2
U
2 ad? - 1 / SLjL. ad^)

B a " A U
f(M,3) = r—2 -» . =

(r-S^l + — ' -p • a / (jzO d 7*-2 M / (a -i)d7a a <?7 7=1 Ua aT 0*7 eT

=
r
5—g j . (27)

(f#> * / <57> d? + M
2

/ (a
2
-l)d>Z

l 7=1 o '" o

The right side of equation (27) is a known function of 9 from

equation (22), and thus the variation of £ with @ is specified.

It is clear that the (£-3) relationship will also depend on the

Hartmann number M. The physical Coordinate x is related to the

dimensionless stretched coordinate 3 by the following inte-

gration:

From equation (7),

dx = £ dx*



92

where

Hence,

dx* = Ha dg .

X
/ dx = Ha / e dg

e

8
Ha / 6 dp . (28)

Equation (28) can be evaluated numerically.

Equations (22), (27), and (28) thus give the solution for

the velocity profile in the entrance region. From this basic

solution, the calculation of other physical quantities of inter-

est is possible.
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Pressure Drop

The pressure distribution may be obtained by integrating

either the momentum equation (2*0 or the mechanical-energy

equation (25). The momentum equation has a somewhat simpler form

and will be employed in the following development. The pressure

drop between the duct inlet (pressure P_) and any axial location

(pressure P) may be determined by Integrating equation (24) from

x=0 to x=x.

2 7T E,i x a(u-u-) x a Bn U
- / (- *—) dx + / S-§— (-*- - l)dx
a " y=a / UB

Q

P _P *' 1 * -
a

' 1 >> -
X .»">

a i s1 y y=a" ' '— J UB
Q

where the identity

u = u. + (u-u.)

has been used in evaluating (au/ay) . Employing the dimension-

less variables expressed by equations (9) we have



/

X

i {= ^ u
2
dy dx

ax
1 / aU2 a

2 d7

U
2

/ a
2

d 7 ,

i> ,
x 3U

f

Ij<77>y=a d*

= J»
(
_JL) S . x

a i y=a a

a
2 *7 ?

=1

i7
2

tc 3 af

x a(u-\xr )

r / (- ) , . dx
p y y=a

|/ (
-JL-JL-l « ad9

3(f)'
y=a e

o B 3(a-a )

9^

and
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f UB
Q

a' UB
Q

H
e

a
UB

Q

Substituting these into equation (29) . we can obtain the pressure

distribution in dimenslonless form:

p
q :

F
_ i. (*)/ M

2
(

_ ^o_
}

_
(

^f
}

\ +

f
i o e (o-ou) >

+ 2(/a8*?- J 6 i-sf-)tml dp) (30)

where the first bracket term represents the pressure drop that

would result from a fully developed flow and the second bracket

term represents the correction due to the entrance flow.

Since, from equation (22),

MfcoshM? - coshM)
af " (sinhM - McoshM)

("?3")„ i
can t>e evaluated as

l

90t \ M2 sinhM
v

«?f 'i=l ~ McoshM - sinhM '

And by defining

UB
1 = r^

" B
o

and
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It { 1 3 3 •?(a-af.) ,

Ku.ifj = 2 (; .v-^iy-'tJ 1' •

Equation (30) can be written as

£s_l4 _ Mi(*jf(i.rf) 4 jiaia _)
1 (>jj2 H

e
k a ;

\
* x v > * MooshM - slnhM /

The coefficient of (-^-) (J ) In equation (31) Is seen to be aK
e

a

function of M and and may be defined as the fully developed

friction factor. Thus we may write

IT^ f t ( i> * K(w
' t •* (29)k?v

where

2

f = 2M' {(1-0)
slnhM

McoshM - slnhM

From this it can be observed that it is the fully developed

friction factor, f, not K, that is influenced by the electric

field. The term K may be considered as a correction term to be

added to the fully developed pressure drop to account for the

entrance effects.
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NOMENCLATURE

Hartmann number, M = B- a(^)*

A One-half the channel cross-sectional area

a Channel half -height

B Magnetic field intensity

E Electric field strength

K Pressure correction term

M

P Fluid pressure

H Reynold's number, R = fUa/^

s Laplace transform variable

u x-component of velocity

v y-component of velocity

U Mean velocity

x,y,z Space coordinates

x* Stretched axial coordinate

a 3 = x»/R
e
a

v Eigenvalues of tan v = vn n 'n

£(x) Scalar factor

7 Dimensionless transverse coordinate, 7= *
' a

a Dimensionless x-component of velocity, a = —
U

aQ 0- evaluated at y=0

a. Laplace transform of a

A A, = (M
2+s)*

A (i) Defined by equation (3)

M Viscosity

V Kinematic viscosity
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Density

o Electrical conductivity

= E /UB
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Recently attention has been directed toward the effect of a

magnetic field on the flow of an electrically conductive fluid,

usually referred to as magnetohydrodynamics (MHD) . MHD is im-

portant because it finds many applications in engineering, such

as an MHD generator, the pumping of conducting fluids, plasma

confinement for the fusion reaction, propulsion and flight con-

trol for rocket and hypersonic aerodynamic vehicles.

In many MHD applications, the flow of the extremely high

temperature fluids is seldom fully developed. For this reason, a

study of the velocity fields, boundary layer development, and

friction factors in the entrance region of MHD channel is of

practical importance and has been a subject of investigation in

recent years. Although the exact analytical solution is not

available, many approximate solutions have been presented. The

approximation methods of solution can be classified into four

different categories: the momentum integral method, the linear-

ization method, the matching method, and the finite difference

method.

The purpose of this report is to study laminar MHD flow in

the entrance region of a flat duct by presenting in detail the

solutions according to the momentum integral method, the linear-

ization method, and the matching method.

A brief introduction of basic governing equations of MHD

flow — Maxwell's equations, the continuity equation, and the

modified Navier-Stokes equation — is given in Chapter 1.



In Chapter 2, Schlichting ' s matching method applied by Roidt

and Cess to MHD entrance region flow is presented in detail. The

flow field is divided into two sections and an appropriate analy-

sis utilized in each. In the section near the inlet a boundary-

layer formulation of the equation is used and a solution developed

in a series stream function with Blasius' function as coefficients.

When this solution becomes unwieldy, an exponential velocity

deviation from the fully developed flow is assumed and this is

joined to the boundary-layer solution to complete the descrip-

tion of the flow.

Chapter 3 contains a detailed account of Schiller's integral

method applied by Maciulaitis and Loeffler to the problem. A

momentum integral equation is derived first. Then by applying

the assumed velocity profile, which involves the boundary layer

thickness, to the momentum integral equation, a relation between

the boundary layer thickness is obtained. The solution is com-

pleted after carrying out the integration. Two cases, the de-

veloping of velocity from a uniform profile at the entry to

Hartmann velocity and the developing of velocity from a parabolic

one at the entry to the Hartmann one, are considered.

In Chapter 4, the linearization method evolved from ideas

proposed by Targ and applied by Snyder is presented in detail.

The nonlinear partial differential equation of motion is linear-

ized by the assumption that the convective terms are a function

only of the direction of flow. A stretched axial coordinate is

introduced in the linearization of the convective terms is the

key point of the method.


