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1.0 INTRODUCTION

The possibility of gaining simultaneously energy and new fuel is of
great importance for the economics of power stations, especially in this
day and age of energy shortages. Many feel that the High-Temperature Gas-
Cooled Reactor concept as developed by General Atomic {GA) will be the
major thermal reactor of the future (1,2,3,4). The main reason for this
projection is that the light water reactor (LWR) has essentially reached
the point of diminishing returns with regard to technical and economic
improvement (4). Since it is apparent that the large utilities are starting
to accept the HTGR design as feasible and more economical than LWR, it is
only proper to begin the development of HTGR fuel management techniques.

The major goal of fuel management is the complete administration and
control of technical and economic factors to optimize the use of nuclear
fuel that results in the highest performance at a minimum cost (5). 1Indeed,
the value of the fuel inveolved is usually about twice the capital costs of
the plant (6). Many methods have been developed to optimize the combina-
tions of fuel inputs to meet operational needs (7,8,9,10,11,12). The two
major optimization methods used are usually "dynamic programming' or
"Jinear programming." All of these studies have either used a boiling
water reactor {BWR) or a pressurized water reactor (PWR) as the reference
reactor. To date no studies have been made of the HIGR core using linear
programming (LP) as a means to optimize. Therefore linear programming was
used in this work as the optimization technique to find the optimum combi-
pation of U-233 fuel produced and U-235 fuel used to breed U-233.

The main purpose of this work was to develop a versatile LP code which

has incorporated into it the appropriate burnup equations and operatilonal



constraints to simulate a NTGR core. This code can serve as a preliminary
projector of fuel needs and fuel loading patterns for a nuclear utility
COmMpany.

This paper can be divided into 4 major parts. The first part deals
with the theory of optimization techniques and linear programming. The
second part briefly describes the HTGR. The third part details the model
formulation by presenting the dexrivations of the burnup equations and the
formulation of the model constraints. The fourth major part presents aund

discusses the results,



2,0 INTRODUCTION TO OPTIMIZATION THEORY

According to Webster (13), optimum is defined as the amount or degree
of something that is most favorable to some end. In a broad sense every-
one optimlzes to a certain degree. Many decisions are made in the course
of a day~to-day living routine in order to accomplish specific tasks.

Usually there are numerous ways to complete these tasks. Although some
options will generally be better than others, the final decision should
be the best-or optimal-way to realize the objective.

For example, driving through city traffic presents a problem to most
people. An attempt is usually made to find the shortest possible route
from point A to point B without concern for time required to traverse this
route, Alternatively, one would seek out the quickest, though not necessarily
the shortest, route between A and B. As a compromise, one might attempt to
find the shortest path from A to B subject to the auxiliary condition (con-
straint) that the transit time not exceeds some prescribed value. These are
three similar, but different, optimization problems.

In a classical sense, optimization can be defined as the art of obtaining
best policies to satisfy certain objectives, at the same time satisfying fixed
requirements (14). To apply this definition, the appropriate equations must
be written to establish mathematical cause-and-effect relationships, commonly
known as a mathematical model. The mathematical model which is considered
in this work is one that deals with the quantitative analysis of the HTGR
core system. The system consists of transmutatioq equations (burnup
equations) which predict depletion and formation due to neutron bombard-
ment and radioactive decay of nuclear species in the core of the HTGR.

The best pollecy in this case is to get the most productivity for the



least expense, in other words, an optimum combination between U-235, U-233
and Th-232, and still satisfy all necessary requirements to keep the reactor
operational. In order to attain the best policy in an optimal manner, the
policy must be stated in such a way as to relate certain variables, which
are sometimes referred to as policy variables or decision variables, to a
final objective. The decision vatriables are combined in the proper manner
to meet this objective. The combination of terms may be defined as an
objective function (sometimes called a profit function, performance indek,
or return function) which may represent some quantity, such as profit or
cost, that is to be optimized. More specifically, a particular point is
sought in a closed region (i.e., a domain plus its boundaries) that causes
the objective function to be either a maximum or minimum.

In many instances the objective of an ordinary optimization problem
cannot be stated easily, since it iavolves the minimization or maximization
of some function of dissimilar entities (14,15). To give an example of
dissimilar entities, one may consider a safety feature as opposed to a
plece of metal in the manufacturing of automobiles. 1In determining a re-—
lationship between the two, value theory (l4) may be used by assigning a
weighting factor to the degree of safety incorporated into the automobile
relative to the cost of the metal used. U-235 and U~233 may also be considered
as two dissimilar entities. In analyzing the relationship between U-235 and
U-233, one may note that U-235 may be purchased at a specified cost while
U-233 is produced by a nuclear conversion process where a neutron is cap—-
tured by the Th~232 nucleus and by beta decay is transformed into U-233.
Thus the value of U-233 is normally expressed in terms of its neutronic worth

relative to that of U-235 by the U-233 indifference value (16).



To keep the optimum solution of the objective function within the
physical limits of the system being Investigated, auxiliary conditions,
commonly referred to as constraints, must be formulated. When analyzing
a reactor core the constraints are formulated in such a manner as to insure
that the desired power level is obtained while thermal-hydraulic, power
peaking, and criticality requirements are not violated.

While formulating the constraints there are several important factors
to keep in mind. Notice that one need not distinguish between the two types
of inequality constraints, since a (<) constraint can be converted to a (>)
congtrain by sgimply multiplying both sides of the expression by a minus sign.
By letting % represent the inequality constraints, m represent the equality
constraints, and n represent the number of variables (columns), one may also
observe that the number of equality constraints must be less than the number
of variables; otherwise the variables will be either uniquely determined by
the contraints (if m~L = n) or overspecified (m—-2 > n). It is also important
to point out that the number of inequality constraints is unrestricted.

There are two main techniques of optimization which are frequently used.
These are simultaneous and sequential (14,15). Sequential techniques obtain
the desired optimum by means of a step-by-step procedure (sometimes called
a stagewise procedure). The stages are traversed systematically in such a
manner that information obtained at a given stage is used to determine
further information at the next stage, and so on. Dynamic programming is
a powerful sequential optimization technique (14,15). In sequential opti-
mization techniques the optimal values of certain independent variables are
determined at each stage, in contrast to simultaneous techniques, where all
the optimal independent variables are obtained at once. The simultaneous

optimization technique used in this work is linear programming, which employs



iterative algorithms that gradually converge to the desired optimum conditions.
All the variables are evaluated during each iteration, even though none of
these variables may attain its optimal value. Systematic procedures are

then applied to successive ilterations to move closer to the desired optimum.

2.1 Linear Programming Theory

Detailed LP (Linear Programming) theory and analysis may be found in
many references (14,15,17,18); therefore only a brief description of the
theory and method will be given here.

The general linear programming problem may be stated in many forms,
but the one used here is the most commonly used.

The LP problem is to find a vector (xl,xz,...,xj,...,xn) which minimizes

or maximizes the linear form (i.e., the objective function),

z=c¢; % + ¢, %, + ... cj Xj R e X (2.1.1)
subject to the linear constraints
xj >0 §= LiZyeus et (2.1.2)
and
ayq ¥ + a5 %9 PR alj Xj + oiee + ap, X, (,=, or <) b1
ay, Xy + a2j xJ + i a, % + oo ta, x {z,=, ox 2) b2
(2.1.3)
aj; X tag, x, + ..t A5 By toeeeta o x (>,=, or 2) by

+ a X, + + a i ¥ wuw A

g1 % T Age g T am T Sy 9N i, By @™ 9T 2 by

where 2545 bi’ and Cj are constants which are determined by and depend on

the technology of the problem. The Xj'S are the decision variables; d



represents the number of rows, ice., d = m + &; and n represents the number

of variables.

of the signs (>,=,<) holds.

It i1s also useful to note that for each constraint, only one

Before the appropriate iterative algorithm is applied to the problem,

the Inequalities must be changed to equalities by adding slack variables

for the "less than" constraints (<) and artificial variables for the "greater

than" constraints (>).

For the reader to understand this technigque better

an example is given in the next section.

Assume for the present that Eg.

(2.1.3) are all equalities.

The

result, given in matrix notation, will be a mxn matrix A, where

t >
]

(
411 312

899 Py

\aml am2

ese Ao,

1]

wee d

23

sees A

mj

L alm]

pes d

n

L L a
mnj

(2.1.4)

It will also be helpful to reformulate the remainder of the problem in matrix

notation as fellows: Let
Fxl'\
%2
X = . C =
- X -
h|
x
L 1)

k, *H

and P
0

1

[ (2.1.5)



The LP problem now becomes: -

Extremize z=0C" X,
subject to
AX=PF ,X>0
e ye) ~0 -~

where C' is the transpose of C.

Finally, it is convenient to decompose the mxn matrix A into the

vectors
Pa 3 ra 3 { ) r 4
11 12 213 . %1n
291 492 823 22n
El = L] 22 = 3 eTewy Ej e s e en En = * (2.1-6)
811 312 413 84n
The LP problem may now be written in vector form as:
Extremize 2= CY X% , (2.1.7)
subject to the constraints
+ LR 2 . - LI ] = - -
e | El * *2 22 * XJ EJ ¥ * *n Bn Eo 4 (2.1.8)
and the non—-negative requirements
X -_>_ 0 " . (2o1¢9)

In the above problem, there are m equations and n unknowns. There are
usually many sets of positive values of the n unknowns unless n = m in which
case a unique solution exists. It will be assumed here that m > m; there-

fore to sclve this problem n - m variables are set to zero, and the object



is to find values for the other m variables that satisfy m equations. A
systematic way, i.e., simplex or revised simplex algorithms, is then used
to see whether there are other ways to assign values that will improve
the objective function. The discussion of this process will be made some-
what easier if some new terminology is introduced.

A solution with just as many variables permitted to be nonzero as there
are equations, with all other varialles being forced to be zero, is called

a basic¢c solution. The variables that are permitted to be nonzero are

called basic variables, and the collection of these variables is called a
basis. Thus there must be exactly as many variables in a basis as there
are problem constraint equations., If the values picked for the basic vari-
ables satisfy the constraints and are non-negative, they represent a point

in the feasible region, and a basic feasible solution exists.

Since the digital computer IBM S/370 Model 158 which uses the product
form of the inverse/revised simplex method (19) was used in analyzing the
LP Model formulated in this work, a description of revised simplex algorithm
will be given here.

Suppose that El’ 22, ---» P of Eq. (2.1.8) form a set of basis vectors,

A

and that X,, X.,, «.., X_are the corresponding independent varilables where
1* 72 m
the remaining independent variables are equal to zero., It can be written

Eo =% 51 + X, E + ey X Em (2.1.10)

2

?0 = E %B (2.1.11)

where X is an m—dimensional vector whose components are X,, X.,, eeey X ,
B 1 2 m

and B is an mxm matrix whose columng are the basis vectors Pl’ ?2 Seaey Pm.

If Eq. (2.1.11) is solved for XB as
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e s
§B = E Eo » {2:1412)

The corresponding objective function can be expressed as

BT F {2:2.13)

1

B is an m-dimensional vector whose components are the cost coefficients

where C

corresponding to the variables %y Kps seey X oo Furthermore, an expression .
e

analogous to Eq. (2.1.12) can be written as

- |
X E Ej (2.1.14)

where f. is an m~dimensional, nonbasis vector, and § contains the coefficients
needed to express E in terms of the basis vectors.

Equations (2.1.12), (2.1.13), and (2.1.14) are fundamentzl to the develop-
ment of the revised simplex algorithm. The computational procedure is similar

to the basic simplex algorithw, except that the operations are performed on

the (m+l) x (wt+l) matrix D_l, where

1. OB
-1 "'B"'
D= - (2.1.15)
- o} B

Rather than calculate D—l directly each time the basis is changed, it is

-~

possible to calculate a new inverse from an old inverse by means of the

expression

-1 _ ~1
D, =B Ei:—l »

D, (2.1.16)

~1 = ; ;
where D,” and Dii are the next and old inverse matrices, respectively, and

~1 1
Ei is an (m+l) x (m+l) matrix that is calculated as a part of the ith vector,

transformation procedure., It can be shown that 9;1 (14,15) can be written as
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(2.1.17)

This is known as the product form of the inverse.

The revised simplex method procedure may be summarized in three basie
steps:

Step 1. Determination of the entering vector Ej'

S |

. -c.)=C.B P, -c¢c,
(zJ CJ) by B R, cJ
/ -1 -C .
= (L, Cy B ) [ P3] , (2.1.18)

wd
so, for a maximization problem, that the vector having the most negative

(zj—cj) should enter the solution. Otherwise, if =11 (zj—cj) > 0, the

optimal scolution is attained.

Step 2. Determination of the leaving vector Pl'
Given the entering vector P, and the current basic solution x, = (B-lPo)k
k=1,2,...,m, then

1

od = B By » (2.1.19)
The leaving vector must correspond to
-1
s (B P .
= _min _, Lo’k i
9 - k j » ak > 0 - (2-1-20)
*k

If all ai < 0, the problem has no bounded solution,

Step 3. Determination of the next basic solution.

Let the identity matrix Em = (Sl,sz,...,sm) where e, is a unit colunn-

~

vector with a one-element at the ith place and zero-elements elsewhere.
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Let e, be the unit vector representing the leaving variable x Given x

2° 3

as the entering varlable, then M;:xt can be computed from the formula

"l s 2 "‘1 ’
~hext Ec ~ourrent (2.1.21)
where
1 0 . e 0 = .'—C. Df.j 0 e W 0
(zJ J)/ K
E = 5 (2.1:22)
~0 0 e e n e
ol e w1 o e vee w1l
and
r_ j j\
mlfu£
3,3
et e
azlua
n = ' (2.1.23)
+ l/ui
o
{ am/a%
where the values of uj are given by (B-1 P.)
' - ~current ,j’°
The next basic solution i1s given by
X -1 0
[x ] - gnext [P ] b (2.1.24)
wB w0

Go to Step 1.

2.2 A Linear Programming Example
To help understand the theory presented in the last section a simple

example will be given here in which two types of power plants are to be
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and the number of the other x..

built. Call the number of one t&pe Xy 2

The plants are to be built at the same time and operated for a fixed length
of time. Assume the following relationships between the plants can be
stipulated:
1. No more than eight plants may be bullt. This can be represented
algebrically as

Xy + X, < 8. | (2.2.1)

2. No less than two plants may be bullt, which is, in equation form,

Xy 4 X, > 2., (2.2.2)

3. No more than ten units of materlal may be stored. Type 1 plant uses
one unit of this materilal and type 2 plant produces three units,

therefore,

-x; + 3 x, <10, (2.2.3)

4, Type 2 plant produces twice as much energy as type 1 plant, and the
manager of the two has decided on a policy of maximum energy pro-
duction. So,

Xy + 2 X, = maximum (=2)

5, Implicitly, we are buying plants, therefore,

xy > 0 and Xy > 0.

Now, the linear programming model is formulated. Items 1, 2, and 3
chow how the variables are related, and item 5 demonstrates the non-negativity
requirements. Item 4 states what is to be optimized. The formulation
equations may be given as a formal LP problem statement as Eqs. (2.1.1),

(2.1.2), and (2.1.3) as follows:
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The LP problem is to find a Vcotor (xl, xg) which maximizes

z = %y + 2x2

subject to the linear constraints
i

X1 X > 0
and

xl + %y < 8

xl + X, > 2

This problem may be solved in many different ways, but the method used
here is ;he revised simplex/prodﬁct form of the inverse., It will be helpful
to present the problem in the form of the so called starting tableau. Before
the tableau is presented it is necessary to briefly discuss the transforma-
tion of the inequality equations to equality equations.

As noted earlier in the theory section, the transformations can be made
by introducing dummy variables. The "less than" constraints can be changed
to-equatians by addiﬁg to the left-hand side (LHS) of each such constraint
a non-negative variable, commonly called "slack variable." The "greater
than" conétraints can be changed to equaﬁions by subtracting from the LHS
of each constraint a non-negative variable which represents the surgplus of
the LHS over the right-hand side (RHS). This variable is commonly known
as the "surplus variable." For convenience, the surplus variable is
usually regarded as.a negative "slack variable" (15). Since the negative
"slack variables' cannot provide a starting (feasible) solution, "artifical
variables" must be added so a starting basis may be attained. The "artificlal

variables" are assigned values in the objective function which prevent them



from being in the final solutien. Usually this is

the "artificial variables" a cost coefficient valu

15

accomplished by giving

e of == for maximization

problems and a value of +» for minimization problems.

Now adding the slack and artificial variables

stated as:

the LP problem may be

Maximize
z =% + Z X,
subject to
Xy + %, + X, = 8
% + X, -%, + Xg = 2
-Xy + 3x2 + X, = 10
and
Xj >0 j = 1,2,00685 &
The starting tableau is given as:
Cost coefficients 1 2 0 0 == 0
Basis P, ¢ By B L3 L B X
P3 8 0 | 1 1 0 0 0
P5 2 - 1 X 0 -1 1 0
P6 10 0 -1 3 0 0 0 1

(%3 r 8
§B = |Xg| = 2| .
Lx6 ~10




Since

and

and

=
n

cé = (0, ~», 0)
1 0 0
sLl-1Jo 1 o
~ 0 0 1
s
EI; > == (Oa -0, 0)
CéB_l 1 0 -~
e 0o 1 0
=0 0 1
pl 0 0 0

16

= O OO

According to the prescribed theory, the problem is solved using the

revised simplex method.

First lteratiom:

Step 1.

(e — %

Computations

- )

(4

i

f (zj - cj) for El’ 22’
1 L T
GED g
-1 -2

L, 0, -0 |1 I
-1 3

(_1—m, mzﬁm’ +m)

and £4.

where (1, CéB—l} is obtained directly from the top row of M_l. Hence, P2

enters the solution, since 1t has the most negative z

- G

] 3
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Step 2. Determination of the leaving vector given the entering vector

Py
ro.s r 1( 3
o’ 1 0 0 1] 1
32 - ag % g'lgz =lo 1 oll1] = [1].
aé o o 1[|3 3
\ . JL J
Hence, for k = 3, 5, and 6
-1
. (B "P)
B o= ow w0’k i & o 8 2 10
6 = min { E s o > 0} min {l > T 3} 2
%k

which corresponds to PS' Thus P5 leaves the solutionm.

Step 3. Determination of the new solution.

4 f

2, 2
—a3/u5 -1/1
n= |+ 1/a§ = |+1/1
2,2
k-aﬁlus \—3/1
Then
¢ _ _ j
1 0 (zj cj)/ag 0
E0 =
° S i =11
1 0 2 + @ 0
o 1 -1 0
o 0 1 0
0 0 -3 1

and
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-1 PR 1§

wlex ~0 oClurrent

fl 0 24 0)]f1 © ~= 0O 1 0 2 0
.10 1 -1 ofjo 1 0 o 0o 1 -1 0
0 0 1 o0[{0 0 1 0 {6 0 1 o0
0 0 3 1j{o0 0 0 1 0 0 -3 1

This directly gives ¢zt = (0,2,0)., The new solution is then

B
rxo‘ (1 0 2 0l{o (4)
x x 0 1 -1 0 6
o — 3 == =
Xg X, 0o 0 1 0| 2
Xﬁ 0 0 -3 1ljl10 4
\ F \ F/

Second Iteration:

Step 1. Computatioas of (zj - cj) for El’ 34, and 25' Note that 25 may

be dropped from the iterative procedure since it was inserted as an artificial

varigble.

n

(13 "2} .

'{zj ” cj} = (1, 0, 2, O) [

Therefore P4 should enter the solution.

Step 2. Determination of the leaving vector given the entering vector P4.

ag 1 -1 olfo 1
ob ug =lo 1 oll-1] = |-1].
4
g o -3 1/|o0 3

Hence, for k = 3, 2, and 6,

8 = min {% s — 3 %} =

This corresponds to the leaving vector P6'

b~
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Step 3. Determination of the new sclution.

( ¢ r
~ad/al -1/3 ~1/3
- 4, 41 ol
n = a2/a6 = |[=(=1)/3]| = | 1/3
+ 1/&2 1/3 1/3
and
(1 0 0 ~(=2)/3
o1 o ~1/3 N
Fo "o o 1 1/3 , therefore
0 0 0 1/3
1 0o o0 2/31[L o 2 0O 1 0 o0 2/3
~1 - 0 1 0 -1/3110 1 ~] 0 e 0 1 0 -1/3
next 0 0 1 1/3t|0 0 1 0 0 0 0 1/3
0 0o 0 1/3;0 0 -3 1 0 0 -1 1/3
and
x, 1 o 0o 2/3]{o0 ’2013}
X, x 0 1 0 -=1/31] 8 14/3
Xp - N “lo o 1/3(] 21 7 two/3]
X, 0 0 -1 1/31|10 4/3
. 1 \ J L8 J
Third Iteration:
Step 1. Computation of (zj - cj) for ?1 and €6'
-1 0
{z, —c.}=10,0,0, 2/3) | T 9 = (=573, 2/3)
j j * 3 H 1 O 3
-1 1

and P1 should enter the basis.

Step 2. Determination of the leaving vector given the entering vector Pl'

a; 1 0 -1/3)[ 1 473
o = u% =lo o 173 1| = [~-1/3] .
ai 0 -1 1/3)|-1) |-a/3



Hence, for k = 3, 2, and 4,

-é=min{i%,~,-}=‘];“2‘-

Step 3. Determine the new solution.

r

1)
+ 1/u3 3/4

1, 1
n = -a2/a3 = (174} ,

1,1
N—a4/u3J 1

and

5/4

3/4

i/4
1

t

1=}
OO OM
oORrROoOOo
HOOO

and

5/3
3/4
1/4

5/4

3/4

1/4
1

b
1y
1
I

~next

[
OO K
oHOO
[ B e I
P—

i

it

Ty

w
OO -

O O m=o

and

——,
=2
w
s
P~
(=]
=
S
o~
o
[yl
wn
)
™o

M
= O
|

1l
oM M

™
~ o - O

Fourth Iteration:

Step 1. Computation of (zj - cj) for 23 and fe'

0
0
0
0

Az = e} = (4, 574, 0, 1/4) = (5/4, 1/4)

o O

Since all (zj - ¢,) > 0, the solution is optimal; therefore

!

0
0
0
-1

1/4

-1/4

1/4
0

20
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x, = 14/4, %, = 18/4, x, = 6

4
and
z = 25/2 .

One may observe from the final optimal solution given above that the
optimum number of plants to be bullt is given in terms of fractional values
instead of integer values., An integer optimum would be required in this
particular case; since the plants cannot be functional in fracpional parts.
It may be notéd that the outstanding computation problem of LP has been
that of finding the optimum integer solution to a linear program (17). The
method of finding the optimum integer solution is referred to as "'Integer
Linear Programming" (14,15,17,18). No detailed description is given heré;
since fractional values are permissible in this work. »

A geométrical interpretation of the above solution may help the
reader to better visualize how the solution is obtained in two dimensional
space. The graphical solution to the example problem is shown in Fig.

2.2.1.
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- -x1+x2=s

“X; + 3x2 = 10

Optimal Soluticn
7T (kg = 3.5, %, = 4.5)

Solution Space

-~

First Solution
(xl = 2103 x2 = G)

Second Solution

T (x = 10/3, x, = 0)

Figure 2.2.1 Graphical Solution to the Example Problem
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3.0 DESCRIPTION OF HTGR

3.1 Past and Present HTGR Designs

In any study of a system, one must know the current design basis to
simulate, accurately, the system under investigation. In this presentation
a brief discussion of past HTGR designs will serve as an introduction to
the current design criteria.

The first gas-cooled power reactor was built at Calder Hall in Great
Britain and achieved full-power operation in the fall of 1956 (3). The
Calder Hall plant served as a prototype for the Magnox reactor plants bullt
by the British in their nuclear power program. Interest in gas—cooled
reactors in the United States dates from the design study project of the
Daniels reactor in 1945 (3). Though this plant was never built, many of
its design features are similar to those of contempory advanced gas—cooled
reactors. Beginning in 1956, development work at Oak Ridge National Labor~
atory and at General Atomic (GA) led to the construction of the 30-MWe
Experimental Gas-Cooled Reactor (EGCR) and the 40-MWe Peach Bottom HTGR.
The EGCR was similar to the British AGR (Advanced Gas-Cooled Reactor),
although cooled by helium. Due to technical and programmatic difficulties,
however, construction was ﬁever completed (3). The Peach Bottom Nuclear
Power Plant, the first HTGR in the U.S., achieved criticality in March 1966
and was placed in commercial operation in June 1967 (2,4), The second
HTGR in the U.S. was the 330 MWe Fort St. Vrain Nuclear Generating Station
(2) now in the final stages of construction for the Public Service Company
of Colorado with GA as the prime contractor. A full-power operation license
was granted to Public Service Company of Colorado on December 21, 1973,

and initial criticality was reached on January 31, 1974 (4).
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The current desipgn criteria now being considered by GA is the 1160 MWe
Nuclear Steam Supply System (NSSS) (4) which is patterned after the Fort
St. Vrain design. Some pertinent design characteristics are given in
Table I (2). The 1160 MWe HTGR core shown in Fig. 3.1.1 consists of 493
columns of eight elements, one stacked on top of the other to complete the
core arrangement. The core arrangement 1s shown in an isometric cross
section view in Fig. 3.1.2. The columns of fuel elements are generally
arranged in groups of seven for refueling purposes (2). Each group, called
a refueling region, rests on a single hexagonal graphite support block and
is located directly below a refueling penetration which houses a control rod
drive assembly. Within the center column of each region, two parallel channels
through the individual top reflector and fuel elements are provided for
insertion of the two control rods which comprise a control rod pair that
moves as a unit. A third channel is provided within the center column for
the insertion of reserve shutdown absorber material. The side reflector
elements are also supported and located on graphite blocks which fit together
with the hexagonal blocks under the core (20). Each of these graphite blocks
is, in turn, supported by three graphite posts which have spherical ends to
permit them to rock slightly in accommodating differential expansion between
the parts of the structure. The top ends of the posts are located in
spherical seats in the core support blocks and their bottom ends rest in

spherical seats in carbon basis located on the metal core support floor.

3.2 Fuel Element Design
The fuel element proposed by GA for the HTGR is a graphite prismatic

block containing interspersed coolant channels, fuel holes, and burnable poison
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Power level, MW thermal T T

MW electrical « v v e
Efficiency, % ik b kWA E
Inlet gas temperature, °F Y
Qutlet gas temperature, °F e e e e s

Core configuraticn
Active height, ft. s s 6 o s s s
Equivalent Diameter, ft. T EEEER
Active volume, cc x lO7 P 0w o E s @ W
Reflector thickness, ft. s s s s e e a
Number of control rods v v e e s s
Fuel Management
Fuel lifetime at 80% capacity factor . .
Fraction of core replaced each cycle . .
Number of refueling regions . « « ¢ o «
Fuel elements
Number of elements “ s e e s e
Number of columns e e e s s e s
Element height, in, T
Element width, in. AR R EER
Fuel exposure
Average MWD/MT v 4 e s e e

Peak fast fluence, 1021 nVE ¢ . 4 . e .

2900
1160
40
640

1430

20.8
27.6
35.71

3 to 4

73 pairs

1/4

73

3944
493
31.2

14.2 (across flats)

90000
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Figure 3.1.1 Core Configuration Region and Segment Identification
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holes as shown in Fig. 3.2.1. The fuel holes are filled with rods containing
coated fuel particles bonded together by a carbonaceous matrix (1), The

fuel element structural (and moderator) material is conventional nuclear
grade needle~coke graphite (20).

Pyrolytic carbon coated particles of uranium and thorium carbide are
the bagic fuel materials for the HTGR. The ceramic particle coatings, applied
by pyrolytic techniques (4), are multilayered to ensure a high degree of
fission-product confinement. A porous inner layer ("buffer" zone) accommo-
dates the expansion of the irradiated fuel and provides storage space for
gaseous fission products, thereby minimizing the buildup of internal pressure
due to fuel burnup. The outer layer acts as a fission—-product retention
barrier and provides structural strength. The particle coatings functiocns
as miniature pressure vessels.

There are two principle types of fuel particles in the large HTGR (1,
21,16,2). They are distinguished from one another by the fact that the
fertile thorium particles have only a single pyrolytic carbon outer coating
and the fissile uranium particles have an additional silicon carbide
coating. GA has given these fuel particles names. As shown in Fig. 3.2.2,
the names are TRISO and BISO which are acronyms that denote the type of
coating, i.g., TRISO contains three types of coating layers and BISO contains
two types of coating layers. The design of these particles allows the

2
separation of the discharged uranium particle which contains primarily 35U

and 236U, from the discharged thorium particles which contains primarily bred

233U (1). The important fuel particle parameters are listed in Table II.
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4.0 MODEL FORMULATION

When developing a model to simulate any type system, all of the essential
constituents of the system must be examined. The essentilal components of the
HTGR or any nuclear power producing reactor are the coolant, moderator, and
fuel,

Helium gas is used as the coolant in the HTGR. The Helium gas is cir-
culated threugh the reactor in order to remove the heat released in fission

‘and in the decay of fission products. In this analysis, the coolant is treated
somevhat as a "black box" that is, the coolant's interaction with the rest of
the core system is not treated in detail, but only as a specific thermohydraulic
limit that constraing the fissile loading of the fuel, i.e., total power
requirements.

The moderator that is used in the HTGR core is graphite which also serves
as the structural component for the HIGR (2), i.e., containment for the fuel
and coolant, The main function of the moderator is to slow down the fast
neutrons formed in fission to velocities at which they can be captured more
readily by fertile and fissionable materials. In this paper no detailed
study was made of the moderating material, Only the gross behavioral char-
acteristics of the moderator are approximated by such factors as resonance
egscape probability, fast non—leaskage probability, etc.

Tﬁé reactor fuel consists of a mixture of fissionable and fertile materials.
The fissile materials (U-235, U-233, Pu-239 and Pu-241) create the energy
required to operate the reactor. Most of this energy is potentially created
when the fissile material is split by a slowly moving neutron. The fertile
materials, Th-232 and U-238, consume neutrons in order to produce additional

fissionable material. The major fertile material in the HTIGR is Th-232 while
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U-238 is the minor fertile material. Tt may be noted that the lower the
enrichment of uranium, the more dominant vole U-238 plays as a fertile
material., The production of fissile material by the fertile material is
commonly called conversion, if the conversion ratio (CR), i.e., the formation
of the fissile material divided by the depletion of the fissile material, is
less than unity; or breeding i1f the CR is greater than unity.

The fuel is the main component in any reactor, thus it will be examined
here in some detail. The detailed neutron balance can be found in many
references (24,25,26); so it will not be presented here. It may, however,
serve the reader to briefly define the major properties of the neutron cycle.

Those fast neutrons which have energies greater than about 1 MeV may
cause a limited amount of fertile material to fission. To account for tﬁis
high energy fissioning, the quantity, €, usually called the "fast-fission
factor," is defined as the ratio of the net rate of production of fast neu-
trons to the rate of production of fast neutrons by thermal fission. As
the fast neutrons undergo scattering collisions, they are degraded in energy
and also tend to diffuse toward the outer surface of the reactor where they
can escape. The fraction of the fast neutrons which do not escape from the
reactor as they degrade from fission to the so called resonance energy region
depends upon the size and moderating properties of the reactor (26,24,27).

This fraction can be denoted as P., "fission-to-resonance nonleakage probability.'

12
The resonance neutrons, l.e., those neutrons which have degraded to the
kilovolt energy region, may be captured in fertile material or they may
escape resonance absorption by undergoing elastic collisions with the mod-
erator which degrades them to energies below the resonance energy regiomn.

The quantity p is defined as the fraction of the resonance neutrons which

are not captured but are degraded to lower energies and is called the
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"resonance escape probability." The fraction p is a function of the relative
proportions and physical arrangement of the moderator and fertile material
(26). The resonance absorption is very important in producing new fission-
able material, i.e., Pu~239 from U-238 and U~232 from Th-232. Some neutrons
diffuse to the outer surfaces of the reactor and escape, but the fraction P2
that remailns in the reactor and become thermal neutrons create the necessary
critical chain reaction. The fraction P2 is usually called the "resonance-

' The thermal neutrons are eventually

to~thermal nonleakage probability.'
either ahsorbed in the fissile material, fertile material, or captured by
the parasitic material in the core. This will be discussed more thoroughly
vhen the reactivity equation is developed later in this chapter.

The HTGK has two types of fertile materials, i.e., Th-232 and U-238,
This complexity can be simplified somewhat by putting a very high enrichment
constraint on the uranium input, thus decreasing the importance of U-238,
Since the enrichment is allowed to vary in this analysis, two sets of physical
parameters for each type of fertile material must be established. These
parameters will be specified later iIn fhis chapter.

To help distinguish between the various isotopes and their associated
properties, the subscripting nomenclature used by Pigford and Benedict (26)
is used in this paper. One can derive the subscript for each heavy nuclide
and its associated properties by using the atomic number of the nuclear
species minus 90 as the first digit in the subscript and the last digit in
the subscript can be represented by the last digit of the mass number of the
species being Considéred, B - T N02, Tgo and Pg2 represent the number of atoms
per unit volume of Th-232, absorption cross section of Th-232 and the reson-

ance escape probability of Th-232, respectively.
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In order to achieve an optimum policy of operation for any nuclear
reactor, an adequate representation of the core characteristics must be
formulated. Since the principle products of a power reactor are thermal
energy and isotope production resulting from the drradiation of the fuel,
the main consideration in simulating a nuclear reactor must be given to the
formulation of the eqguations which predict the formation and depletion of
the major nuclides in the core of the reactor. These equatlons are commonly

called transmutation equations or "burnup" equations.

4.1 Burnup Equaticns

The composition of the fuel will change during irradiation, because of
the depletion of initial fissionable material, buildup of fission products,
and the buildup of nuclides In fissionable and fertile material. The change
in composition of the fuel is proportional to the number of nuclides present,
i.e., concentration per unit volume, and to the concentration of the mneutrons,
i.e., the neutron flux., There are many nuclide chain reactions taking place
in a nueclear reactor, and to simulate them all theoretically would be an
insurmountable task; therefore reactor designers usually only consider the
majox chains which contain the most significant fissile and fertile materials.

The significant parts of the nuclide chains in a thermal neutron spec-
trum associated with Th-232 and U-238 are shown in Fig. 4.1.1. The horizontal
arrows indicate neutron capture events while the verticle arrows indicate beta
decay processes, The numbers on the decay arrows Indicate the half-lives for
radioactive decay. From Fig. 4,1.1, one can see how the various specles from

the two major nuclide chains are related.
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Some major assumptions are made while deriving the transmutation equations
which pertain to Fig. 4.1.1, and it may help the reader to ascertain the
reasoning behind these assumptions by presenting the following explanation.

Through the capture of a neutron (as shown in Fig. 4.1.1), U-238 at
first transmutates into U~239 which is in turn transformed into Pu-239 by
double beta-decay. It may be noted that some of the nuclides produced with
a mass number 239 are lost because Np-239 with an absorption cross-section
of about 60 barns (25) can aiso abserb neutrons, being transformed into
Np-240, Since the latter and its successors are not significantly fissile,
the transmutation into Np-240 represents a genuine loss of neutrons. Since
the conversion of Hp-239 into Np-240 is neglected in this work, the following
gimple example will be given to demonstrate the significance of this conver-
sion,

If the concentration par unit volqme of Np-239 nuclei is denoted by N39,
.A39N39 is the number of nuclel chianged per unit time into Pu-239 by beta-
decay, where 139 represents the decay constant of Np~239. The quantity,
039N39¢, represents the number per unit time changed into Np~240 where U39
is the neutron capture cross section of Np-239 and ¢ represents the neutron

flux. Therefore the fraction of the Np-239 nuclei decaying can be given as

- *39%59 _ 139 .

39N39 ¥ Igglagh  Agq T O340

'I'=A

To gain insight into the magnitude of this loss, consider the flux of the HTGR
as being ¢ = 10t necm Zesec T, 04 = 60 x 10724 cn?, and Agq = 3.5 x 1076 gec™t,
With these values the fraction, r, is found to be .998; only a .2% loss due to
neutron capture in Np-239, which can be neglected in most cases.

Another assumption made in this work is that the portion of neutrons

lost through the capture of a neutron is Pa-233 is not large enough to make
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a significant change in the neutron cycle. In the HTGR, the average neutron

capture cross section, for Pa-233 is 70 b (28). If the capture reaction

13
takes place, Pa-233 changes Into the isotope Pa~234 as shown in Fig. 4.1.1.

Since protactinium 233 has a half-life of 27 days, the capture reaction pro=-
bability is correspondingly high. For the loss in this case Eq. (4.1.1) is

also valid. To illustrate this loss an example can be given similar to the

= 3 x 10—7 sec—l,

one given above. By letting ¢ = 1014 necm *sec

4

’-113

and 0., = 70 x l(Jm2 cmz, the value of Eq. (4.1.1) can be computed as

13
r = ,977

which implies only a 2.37% loss due to neutron capture in Pa-233, It is
interesting to note that the neutron lcss in tha capture of Pa~233 is only
lost to U-233 and not to U-235. It may also be useful to note that for higher
flux levels the loss due to capture in Pa-233 becomes more appreciable.
Assums. a flux Tevel of § x 107 n-cmuz-secnl; therefore Fq. (4.1.1) takes
the value of .896 which represents a 10.47% loss to Pa-234, a sizable loss
which in most cases camnot be neglected. With the above assumptions in mind
the "burnup" equations will first be presented in matrix notation and then
the corresponding equations will be explicitly derived.

The burnup dependent isotopes In a nuclear reactor are transformed, as
stated previously, during the irradiation through neutron capture, fission,
and decay. The burnup equations can be written in matrix notation as

- d

35 Rl =

t el

N(t) (4:.1.2)

where the atomic densities of the burnup dependent nuclides, expressed as

comporients ot the vector N(t), satisfy the initial condition:

N(0) = N° (4.1.3)



39

and A 1s a constant nxn matrix, dependent mainly on the cross sections of
the materials considered where n represents the nunber of state variables

in the system, The solution of Eq. (4.1.2) found after applying the boundary

condition of Eq. (4.1.3) can be written as:

N(t) = B(t) N° (4a1.4)

where B(t) is the state transition matrix, and N° represents the initial
cancentration of the nuclides.

The elements of the state transition matrix are often time~dependent,
end the matrix B(t) must be evaluated by numerical techniques (27,29,9,30).
An analytical solution is possible when both the neutron flux and the micro-
scopic cross sections are constant during the fuel irradiation (30). Siﬁce
this work is somewhat of e survey of the HTGR fuel cycle, the neutron flux
level and the microscopic cross sections are held constant throughout the
life of each cycle.

To evaluate the state tramsition matrix as given in Eq. (4.1.4), it is
necessary to define the species being analyzed. Frem Fig. 4.1.1, the major

nuclides may be given in matrix notation as

[ 3

Ny
Nog

(4.1.5)

Z = = ==

L

where the nomenclature used has been defined previously. Each row in the tran-

sition matrix B(t) represents the coefficients of the burnup aquation for the
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corresponding element in Eg. (4.1.5). To develop an expression for the
transition matrix E(t), the burnup equations for each of the elements in
Eq., (4.1.5) must be derived.

In most derivations of burnup equations, a useful notation commonly
referred to as "flux time" or fluence is used (26,7,8,9,10,30). The fuel
is exposed to a thermal neutron flux ¢(t) which is usually a function of time.
Since the flux is assumed in this analysis to be a constant value throughtout
the 1life of the cycle, the flux will only be a function of the radial distance
in the core, averaged over each region considered; therefore it is represented
as a constant flux, ¢, and the expression for "flux time" can be given by

t
g = JO ¢ dat' (4.1.6)

Therefore Eq. (4.1.4) can be written in terms of "flux time'" as

N(8) = B(8) K’ (4.1.7)

~ -~

With above definitions in mind, the individuval burnup equations can be developed

and solved as follows.

Uranium 233
The rate of change for the number of atoms of U-233 per unit volume can
be given as

dN

23 _
it~ Moz %02 ¢ * N3 093 Np3 © Py pgy)d
Gain due to the ain due to the absorptiony
absorption of of resonance neutrons in }
thermal neutrons Th-232 from U-233 fission.
in Th-232,
* Ny Tpg g & By Urpppd¥ —~ Moy 854 9 (4.1,8)
Gain due to the Loss due to the absorption
absorption of resonance of thermal neutrons in U=233,

neutrons in Th-232 from
U-235 fission.
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where N, ., represents the number of atoms per unit volume, represents the

ij
ahsoroption cross, N,

1]

3 Pij

Gij
represents the number of neutrons produced per number
of neutrons absorbed represents the resonance escape probabillity where
the 1j subscripting pertains to the nuclide being considered, as defined
previously, and ¢ represents the thermal flux., In developing LEq. (4.1.8)
it is assumed that resonance capture by Th-232 from the fission of Pu-239
and Pu-241 can be neglected; since the concentrations of these fissile mat-
erials are generally very low in the HTGR.

In notation defined earlier, Eq., (4.1.8) can be written in terms of

"flux time" as

Ny,

G ok (L,~1) + N (4.1.9)

Moz %p2 T ¥a3 Y33 25 25 Ly
where Ll = Nyq€ Pl(l—poz) and L2 = MNysE Pl(l‘poz)'

From the derivation giver in Appendix A, the solution to Eq. (4.1.9) can
be given as

NZB(B) = X' exp(RlG) + Y! exp(Rzﬁ) + Z' exp(wdzsﬁ) (4.1,10}

where all constants are defined in Appendix A,

To prevent the burnup equations of the nuclides at the end of the nuclide
chain, i.e., Pu-239, Pu-240, and Pu-~241, given in Fig. 4.1.1 from being too
complex, a more approximate form of Eq. (4.1,10) is derived by assuming
that the transformation of Th-232 can be represented by a simple exponential
depletion term; therefore Eq. (4.1.8) can be solved by the use of an inte-
grating factor as given in Appendix B. It was found, by comparing the results
from the two derivations, that the amount of U-233 after burnup was approxi-
mately 5% higher when using Eq. (4.1.10) than found when using Eq. (B~8) as

given in Appendix B. The solution to Eq. (4.1.9) can be given as
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— 0 = Py . :
N,,(0) = N23{an[ 523(1 Ll)o}}

N g
02702 :
+ —— {exp(~0,,0) - expl~o,,(1-L.)68]}
023(1~L1) = 949 02 23 1
o
N o L
02 725 72 :
+ {exp(—azsa} - exp[—023(1~L1)8]} (4.1.11)

995{1-Ly) = 0y

where all constants have previously been defined.

Thorium 232

The rate of change of the number of atoms of Th-232 per unit volume is
glven as

dN02
“dt = No2 Y2 ¢ = Nyq 0yg Nog & Py (1-pyy)é

tof thermal neutrons in Th-232 of resonance neutrons in

fLoss due to the absorption } {Loss due tc the absorption}
Th~232 from U-233 fission

= Nyg Oye Mye € By (1-pg, )0 (4.1.12)

Loss due to absorption
{0f resenance neutrons in }
Th~232 from U-225 fission

Fquation (4.1.12) can be rewritten as

dN02

“a T .

H02 002 + N23 023 Ll = 25 625 . (4:1,13)
The solution to Eq. (4.1.13) was attained in Appendix A and can be given as

NOZ(G) = X exp(Rle) + ¥ exp(Rze) + Z exp(wczse) " (4.1.14)

where all constants are defined in Appendix A.

Uranium 234

The net rate of accumulation of U-234 is given by
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dN Ny Gon Gun @
24 _ 23 o3 %23
Tde T 924 Npg ¥ Y T, (4.1.13)

Loss due to the absorption | Galn due to the capture of |
of thermal neutrons in U~-234 thermal neutrens in U-233
o
e L 23 _ capture cvoss section of U-233
T 23 of fission cross section of U-233 °
23

To4 represents the absorption cross section of U-234 and N24 represents the
nuinber of U-234 atoms per unit volume.

By substituting Eq. (4.1.11) into Eq. (4.1.15) and using the appropriate
integrating factor, the solution to Eq. (4.1.15) at N24(0) = Ng4 can be given

in "flux time" notation as
N.,(8) = N2, exp(-o.,8)
2482 T Aoy SEPATCoy

?Cll{exp[—023(l—Ll)B]—exp(—czae)}

23 | 024 - 023(1~Ll)

o (c11-016 {exp(wcozﬂ)—exp(-czéﬁ) exp[—dzB(l—Ll)ej-exp(~02&8)}}

02 ( C15 o o

2 = %02 094 F Op3(Ly-1)

.y (611-C17 {EXP(_6258)—GXP(_6248) ) exp[czs(Ll—l)e]wexp(—0248)}J

25 { €15 994 = Tos 024 + 023(Ll~1)
(4.1.16)
a
whe Cll = - Cl5 = k,, O T K = e P.(1- ) o
s T gy B R 23 Y23 ¥ K93 = Mag® ST Rgat i
Cl5 - d02 Cl5 - GZS'LZ
16 = 0,,(1=L.) = © 3 Cl7 = 0., (1-1..) -~ o *
23 1 02 23 1 25

Branium 235

The net rate of accumulation of U-235 can be given by
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an,g

3t = Va5 9 ¢ = Hyg Wy ¢ (4.1.17)

neutron capture neutron absorption
in U-234 in U-235

{Gain due to the} {Loss due to the }
where it 1s assumed that the absorptlon cross section is equal to the capture
cross section of U-234, i.e., no fission reaction in U-234.

Equation (4.1.17) can be gilven in terms of "flux time" as

'dN25
7 ik N24 Oyp = N25 Ty (4.1.18)
If Eq. (4.1.16) is substituted into Eq. (4.1.18), the solution to

Eq. (4.1.18) at NZS(O) = Ng can be given by using an integrating factor as

5

e}

N25(ﬂ) = N25 (C91[exp(—0256)—exp(u0248)] - C92{exp[023(Ll—l)G]-exp(—ozse)}
~ C93[exp(-0,,0)-exp (~0,0)] = (C4-1)exp(~0,50)}
+ Ngé-{C81[exp(—0248)—exp(—0256)]}

+ Ny, (C82{exp[-0,,(1-L,)0]-exp(~0,0)} ~ 083[exp(—0240)—exp(—0256)])

02 (684[exp(—dozg)-exp(—GZSS)] - C85[exp(—0258)—exp(—6258)]

- C86{exp[—023(1—Ll)6]—exp(~0259)} + CB?[exp(—Gzéﬁ)—exp(-0258)]]

(4.1.19)
q . + C89 a * C89
where (81 = = Eac ; C82 = = Zf 7 (I-L ); C83 = Egﬂ“:“g““ H
25 24 25 23°7 71 25 24
Upg * C88 ) Ogs * Cc88 Oop = Cc90
C84 = B—-——:'U— H C85 = p = = iy C86 Lo P — o (1"L )
25 02 25 24 25 23 1
a « C90
24 Cll » C16 Cl1
€87 = —St——— ; (88 = ; C89 =
925 ~ %24 €160y, = 99 T4 = 924 (171q)
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Cll - Cl6 ' ¢il « C17
C90 = ; €901 = ;
015[624 -+ 023(L1ml)] C15(025 - 624)
— c1L - c17 . 5 Bl
A — » - - 3
ClS[o24 + 623(Ll ] Oog = Onp
o « C902 o] « £902
24 24
c92 = : : €93 = ————— s (04 = ¢ + C901 » 8 .,
Tys + 023(Llul) Tos = Oy 24

Uranium 236

The net rate of accumulation of U-236 can be given by

e Mas s st . 2.0
dt 1+ o “26 26 e
25
Gain due to the Loss due to neutron
{neutron capture} labsorption in U-236
in U-235
where N26 represents the number of U-236 atoms per unit volume and Uy Tepre-

sents the microscopic absorption cross section for U-236.

o
26

substituting Eq. (4.1.19) into Fq. (4.1.20) and using the appropriate inte-

The solution to Eg. (4.1.20) subject to N26(0) = N__ can be attained by

grating factor. The solution 1s given as

(0]
Nyg(8) = Nyg exp(~0,.6)

+ Ngs (D15[exp(—dzse)—exp(—026e)] + Dl?[exp(—0248)—exp(—0266)]

- DlB(exp{ﬂzg(Ll—l)B]—exp(-UZGG)}]
+ Ngk-{D19[exp(—0248)-exp(-0268)] - D20[expF—ste)—exp(—azﬁe)]}

+ NgB [DZl[exp(—0259)—exp(~6256)] + D22{exp[—023(1—L1)6]—exp(—0266)}

- DZB[exp(—ozaﬂ)—exp(-0268)]} (4.1.21)
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%25 %25
where D11 = if:fa;; ; D12 = Iy = Tog 3 D13 = Ong = To4 3 D14 = a6 + 023(L1~1) -
. 5232~c93+1) . D17 = D11Di30g§ . D1g = Q;;ﬁizggg ;
019 = u11D13cq; - g;;ﬁiaggi N é§§3~caz) ;
no2 = BELEB2 , pyg o DL C83

Uranium 233

Although U-238 will only represent a small percentage of the nuclides
in the initial loading of the 1160 MWe HTGR core, it must be considered in
this analysis since the enrichment was allowed to vary in the LP iterative
schene.

The rate of change of the number of atoms of U-238 per unit volume can
be given as

oarT
o= - Nyg Oyg ¢ = MNyg Opc Tyg € Py (1-pygld

absorption of thermal resonance neutrons in U~238 from

{LOSS due to the } {Loss due to the absorption of }
neutrons in U-238 U~235 fission

- N23 Oyq Ngq € Pl(l—p28)¢ (4.1.22)

Loss due to the absorption of resonance
neutrons in U-238 from U-233 fission

where all terms have been defined earlier in this Chapter.

It may be noted by the reader that Pu-23%9 and Pu-241 were not included
in the development of Eq. (4.1.22)., These two fissile nuclides are neglected
since their concentration in the HTGR is so low. In studies that have been
made concerning proposed cross—progeny fuel cycles (32,31), Pu-239 can be

used as the primary fissile feed material. If cross-progeny fuel cycles
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are considered in future work using this model, another term containing
Pu-239 resonance capture must be added to Egqs. (4.1,12) and (4.1.22).

Equation (4.1.22) can be rewritten using notation defined by Eq. (4.1.65
as

Myg

—E§~'n -NZS 628 - NZS 625 K25 -~ N (4.1.23)

23 %23 *23
where Kok = Nyg € Pl(l—pZB); Koy = Tiyq € Pl(l—ng); NEB represents the number

of U-238 atoms per unit volume, ¢,, represents the microscopic absorption

28
cross section for U-238, and Pog represents resonance escape probability

in U-238. The use of the appropriate integrating factor and the substitution
of Eq. (4.1.19) and (4.1.11) into Eq. (4.1.23) yields the solution to

.0
Eq. (4.1.23) at N28(0) = N28 as

= 0 -
st(e) = N28 exp( 0288)

5 exp(—UZAS)—exp(w0288) exp(—cZSS)—exp(—Uzse)
+ Nyo [C13 « €93 [ — s e pa—— ]
28 24 28 25
exp (-a,.08)-exp(~0,,0)
+C13 [ 55 — 28
' 28 25

exp[023(L1-1)8]—exp(-0286) exp(—UZSB)—exp(-Uzae)
- { 9pg * 9p3 Ig~D) ) %28 ~ %25 }

+ C17

a g

{exp(*0256)—exp(—6286) exp[UZB(Llul)e]—exp(uczae)}]
g

28 = 925 28 =~ %p3{lq~1)

23

exp[—023(1—L1)6}—exp(-6286) ) exp(—czBG)“exp(—czge)}
o

O
+ N [Cl3 + B2 {
2g = 923(1-L) 998 = 925

Ce1s - CBS[exp(-dzqe)—exp(#0288) i exp(-GZSB)—exp(—UQBG)]
928 7 Y24 928 ~ 925




48

exp[~¢,.,(1~L.)8]-exp (-0, 0)
+ clLs { 23V 28 }]
Opg = 9p3(1-Ly)

exp (-0, ,0)~exp (-0, 0) exp (-0, .0)-exp (-0, ,0)
+ N2 {013 . c8l [ e D2 ]}
28 24 28 25

a

o [ exp(—ogze)—exp(—vzge) exp[dza(L1—1)8]~exp(~0280)
+ N [016 T
28 ~ %02 Sug T Coaghle™

(4.1.24)

where Cl3 = 025 K25 and Kyg = n25 £ Pl(lwpza).

Plutonium 239

The net rate of accumulation for Pu-239 can be given as

Llag = N, a., ¢ + N e P, (1-pag)
dt 28 928 25 T25 Ng5 € Fy(I-pygld
Gain from Gain from resonance
{neutron capture} {capture in U-238 from}
in U-238 U--235 fission

* Ny3 9y3 N3 € Pyld-pygdé = Nyg 049 Nyg € Py (1-py0)0

capture in U-238 from

U-233 fission,

Gain from resonance
{ } lin U-238 from Pu-239 fission

[Gain from resonance capture }
= 4
Nyg %49 ¢ (4.1.25)

Loss due to neutron 1
absorption in Pu-239]

where N49 represents the number of atoms of Pu~239 per unit volume, 049 repre-

sents the microscopic absorption cross section for Pu~239, and N4g represents

the number of neutrons produced per number of neutrons absorbed in Pu-249,

It was assumed in the development of Eq. (4.1.25), that the concentration

of U-238 remains constant.
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It may also be noted that the Pu-239 resonance capture term was included
in Eq. (2.1,25)., This can be done since the addition of that term doesn't
complicate the derivation.

Equation (4.1.25) can be written as

dN49 _ 40

4 = NZS 0’28 + N (4.1.26)

25 %25 Ko5 F Ngg O3 Kyg = Nyg Opg ¥

where vy = 1 ~ Kkg.

By substituting Eqs. (4.1.1%) and (4.1.11) into Eq. (4.1.26), the solu-

tion to Eq. (4.1.26) at N49(0) = N29’ can be given as

- o o
Nyg (0) = Nyg exp -y 0,40)

« C18[1 — exp(~y 0498)]

25 {Cl?[exp(-szG)-exp(—y 0496)] - C91{§xp[—023(1-L1)8]~exp(-Y 0496)}
+ C27[exp(-0258)—exp(~y 0498)] - CZS{exp[023(Ll—l)e]—exp(—Y 0498)}
+ C195[exp(—0248)—exp(—y 0498)] - ClQ?[exp(-ozse)—exp(—Y 0498)])

s (czﬁ{exp[—023(1-Ll)e]-exp(—y 0,60} = C241[exp (-0, 0)-exp(~y 0,40)]

- C242[exp(—0248)~exp(~y 0498)] + C243[exp(—6258)~exp(—y 6499)]

+ C.'Zélfft{exp[--Of23(1“Ll)e]“EXP("T U496)})

+ N02 (CZO[exp(—UOZG)-exP('Y 0498)] - CZG{exp[—Uza(l—Ll)6]~exp(—y 0496)})
= (4.1‘2?)
928 c13 c13 - €92
where C18 = Y 04 ; C19 = ?m 3 C191 = —cigh ¢ Cl192 = v I4g = T9y4

Cl93 = v Upg = O Cl94 = vy O4g = 023(1—Ll) ;3 Cl195 = v %9 = Tgg

25 3
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o13 - €93 | . c13 + 93 €13 « CB2 13
YU xS i BV o N ineb L Lo 3 M e : B e e i
145 cigy 3 CL97 cigy 3 024 cios 3 0241 = a3 s
4y o C23 2 083 | o0 o €13 ., D €15 o, o G13 - 081
il cign 3 G243 = gygy 3 C244 = g s G245 cisz 3
- L3 - C8L - 16
G2k = ~Tpygy § C0 = gy
Plutonium 240
The net rate of change for Pu-240 can be given by
Mo %49 Nyg 949 ¢ N o s 4.1.28)
dt 1+ g 40 40 =

Gain from the neutron Loss due to neutron
capture in Pu-239 absorption in Pu-240

Equation (4.1.28) can also be written as

a0

T e > . -
da = 622 * N = 040 Ny

2

49 %149
+ «

where C29 =

49

e

By using the appropriate integrating factor and substituting Eq. (4.1.27)
into Eq. (4.1.28), the solution to Eq. (4.1.28) at NAG(O) = NZO can be given

as

— o -
NAO(H) = N40 exp ( “aoe)
o]
T Nyg C43[exp(-y 0,40)-exp(-0,,0)]
+ Ngs {C44l1-exp(-0, 6)] ~ C44llexp(~y ¢, g0)~exp(~0,,0)]]}

Q .
+ NZB (Céﬁlexp[~023(1~Ll)8]-exp(~0406)} + Chﬁl[exp(—6256)—exp(—dé09)]

- C&GZ{exp(—0248)-exp(~0&08)] + C463[exp (~-y 0498)-exp(—5408)]]
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{Cﬁ64[exp(—0248)~exp(uﬁ&OB)] - CAGS[EXP(wGZSO)—exp(“UAOB)]

+ C466[exp(~y 0498)—Exp(-0408)}}

(0467[exp(wooze)—exp(—UAOO)] - 0468{exp{—023(l«Ll)e]—exp(wcaoﬁ) }
+ C469[exp(~y 0,40)-cxp (—-0406)]) (4.1.29)

where C26 = S +C§6 AW ; C27 = Cl3 - C17 , - C26 - C17 |
T G4y T Yaghey

€30 = €27 + C19 - C197 ; C31 = C28 + C91 ; C32 = C191 + C28 + C197
- Cl9 - C27 - C196 ; €33 = C24 + C244 ; C34 = C243 ~ C241

€35 = C241 - C242 - C24 ~ C243 - C244 3 C36 = C246 - C245 3

C37 = C26 - C20 ; C38 = G40 = ¥ O4g 3 C39 = 90 = %25 3

C40 = 0,0 = 0,,(1-L;) 3 CAL = 0,0 = 0y, 3 Ch2 = 0,4 = 0gy 3

c43 = S22 5 cuh = mczg(j;gcm ol = 28 g5 - 0208
C451 = %ﬂ ; C452 = %_g}_& : C453 = g_g_%é_q;g ;
c45=%€§-§ ; c461=9—2—9—5—;—9§35*-; 0462=E~§-5;7i-@-‘3;

o463 = S ER 0464=§-2—9—C—'@§-2—{*2; 0465=93%—;39-2—@;

CL66 = &2-9-6_;’8—‘33& s C467 = 33-9—0—;2—02—0 s CLE8 = 929"?.76'0—2"6‘ :

C469 = 2&%@?@3}_ . C47 = Chbl - Chb ; C48 = C51 - C45 - CA52 — C453 j

Ch9 = C462 — C4b — C4BL ~ C463 3 C50 = C465 = Ch464 - CL66 ;

€501 = C468 - C467 - C469.



22

Plutonium 241

The net rate of change for Pu-241 can be given by

Ny
“d& - M40 %0 ¢ = Mgy Y Wkl
Gain from the Loss from the
{neutron absorption} {neutron absorption}
in Pu-240 in Pu-241
Equation (4.1.30) can be rewritten as
dN
41 .
T = I‘¢40 640 - qu Gf{.l (4.1.31)

and solved by using the appropriate integrating factor.

The solution to Eq. (4.1.31) at N41(0) = NZ can be given as

1
N,y (8) = Wy, exp(-0,,0)

+ Nzo {CSZIexp(#0408)—exp(—0418)]}

+ Ny {C56[exp(~y 0, g0)-exp(-0,,8)] - C56[exp (-0, 0)exp (-0, ,0)]}

+ N;a {C57{l—exp(—c418)] - C571[exp(~y 0498)—exp(—0418}]

+ CSYZ[exp(—0406)-exp(~0418)]}

+ Ngs [CSB[exp(wczse)—exp(—6418)] + C581[exp(—0248)-exp(—0418)]
+ C582[exp(~y 0498)—exp(—0416)] - C583{exp[—023(1—L1)8]-exp(-0416)}
+ C584[exp(—céoej—exp(—dﬁle)])

+ NZ3 [C59{exp[—023(l—Ll)e]hexp(—0418)} + C591[exp(-0259)-exp(-c418)]

- 0592[exp(—0248)—exp(—0418)] + C593[exp (~y 0496)~exp(~0419)]

+ €594 [exp (-0, (8)-exp(~0,,6) 1)
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vhere (€52

€531

C56

Cc571
C£581
C584
C592

Cce0

C603

C612

o
02

il

23

{C60[exp(-czaﬂ)—exp(;0410)] - CGOl{exp(*UZSG)—exp(—0418)]

+ C602[exp (-y 0496)—exp(—d410)] -+ C603[exp(—0409)-exp(~6418)]}

[Cﬁl[exp(—0028)—exp(—0416)} - C611{exp[-u,4(1-L,)0]-exp (-0, 0)]

+ €612[exp (~y 0, g8)-exp(-0,,8)] + 0613[exp(rcqoﬁ)—exp(—sale)]]

%40

941 = Y Y49

%40

%41 7 Y %p

C52 = C43 ;

C52 + Ch4l ;
C54 » C452 ;
C531 - C48 ;
C54 « C462

C54 « C464

e

C531 « €50 ;

G52 » C469 ;

U il
;€53 = =——— ; 53
41" %25
o]
4
; G54 = ———— ; C55
81 %24
C561 = €531 « C43 ; C57

(4.1.32)

%40

- g, °?

%41

0'40 iy
- s »
941 = T3(1-Ly)

. Ch4

g
941

%40

C572 = €531 + CA7 ; C58 = C53 » C45 ;

C582 = C52 =« €453 3 €583 = C55 + C451 ;

C59 = C55 « C46 ; C591 = C53 +« C461

C593 = €52 = C463 ; C594 = C531 « C49 3

C601 = C53 » C465 ;3 €602 = C52 + C466 ;
040 C467

C6l = = = ; C611 = C55 « C468 ;
41 02

C6l13 = Ch31 - C501 .

Plutonium 242 is not considered in this work since the concentration of

Pu-241 is usually very low in the HTGR when using U-235 or U-233 as the

major fissile materials.

The formation of U~237

and its radioactive-decay

product Np-237 by capture of neutrons in U-236 was also neglected because

of the low cross section of U-236.
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Fission Products

Burnout of fission products by absorption of neutrons will be neglected

in this analysis. The rate of formation of fission products from U-235 can

be given by
Wrps _ Nas Op5 ¢ 1 5
dt 1+ a25
With N25 given by Eq. (4.1.19), the solution of (4,1.33), subject to
— 0 —
NFZS = NFZE at t = 0, is
w0
Npo5(0) = Npos
S 1 - exp(~v,,0) 1 - exp(-cu,.8) 1 -~ exp(~0,.0)
+ N, lEll[— - s ——22 ] + D16 e
24 25 25
1 - exp[—azB(l—Ll)B] 1 - exp(-czse)
-Elz{ 0,011, ) - g H
23 1 25
1~ exp(~0,,0) 1 - exp(-0,.0)
oo, [ TSR 1 ey
%24 25
i 1= exp[—cza(l—Ll)e] 1- exp(-6256)
+ Ny [EIS o (1=L.) - o
" 23 1 25
1 - exp(~0c,,0) 1 - exp(-0,.0)
+ E15 [ - L 22 ]] (4.1.34)
24 25
Y54
where D16 = -————— ; El11 = D16 « €93 ; E12 = D16 « C92 ; E1L3 = D16 « C81 ;
1+ Gog _
EL4 = D16 - €82 ; E15 = D16 - C83 .

The rate of formation of fission products from U-233 is

T
dNpyg Moy Tpg

dt 1+ Uyg

(4.1.35)

With N23 given by Eq. (4.1.10), the solution of Eq. (4.1.35) subject to

— 0 - ot -
NF23 = NFZB at t 0 is:
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_ 0
Npg3(8) = Npy3
2
Gl {[1 - exp(Rle)][R1 + Rl(Pl + P3) + Pl?s]
23 --Rl(Rl - Rz)(Rl + P3)
. [1- exp(Rz{))][Rz(Pé - PlPﬁ) + ByP, - P1P6P5]}
-R2 (RZ - Rl) (R2 + P3)
- aY1[R - P . - F
1. 130 {[1 exp(le)}[Pl(P6 ”lPﬁ) + PlPB P1P6P3]
25 —Rl(Rl - Rz)(Rl =t P3)
. [1 - exp(Rze)][Rz(P6 - PlPB) + P1P6 - P1P6P3]
—RZ(RZ - Rl}(R2 + P3)
. 1 - exp(—P39)][PlP6 - P3P6]}
PB(P3 + Rl)(P3 + Rz)
i E30. {[1 - exp(R8) ][RP, + P P.] X [1 - exp(R,0) ][RPy + P P,]
02 L =R AR, =T (R, +7Fy) R, (R, = B)(R, + Py} |
(4.1.36)
923
where E30 = T o and all other constants are defined in Appendix A.

23

4,2 Conversion Ratio

Since in the large HTGR, the conversion ratio is relatively high due
to the high burnup attained, it may be appropriate at this time to discuss
briefly the conversion ratio and some of its characteristics.

The most significant nuclear advantage of the U-235 (Th-232) U-233 cycle
over the U-235 (U-238) Pu-239 cycle in thermal reactors is the potential of
a higher conversion ratio (32). The importance of a high CR in assuring
good utilization of resources is directly related to the burnup needs. In

a converter reactor, CR units of bred fuel are produced for each unit of fuel
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consumed, and the net consumption of nuclear fuel is, then, proportional to
{1-CR). Hence, other things being equal, a reactor with a conversion ratio
of .6 which 1s a typical CR for the small HIGR 330 MWe Fort St. Vrain
Nuclear Generating Station (20) would consume twice as much fuel per unit
enargy developed as a reactor having a conversion ratio of .8 (32) which
1s the typical CR for the proposed large UTGR with a generating capacity of
1160 MWwe (1,3).

An expression for the CR of the 1160 MWe HTGR may be obtained by con-~
sidering the following equation.

Tormation rate of U=233 + U-~235 4+ Pu-239 + Pu-=241
Destruction rate of U-233 + U-235 + Pu~-239 + Pu-241

CR

I

FR
:Tjﬁ (4.201)

i

The DR of Eq. (4.2.1) can be attained by simple exponential depletion
rates of the fissile materials. The expression for DR can be given as

DR = exp(—0236) + exp(—czsﬂ) + exp(—0496) + exp(ucale) (4.2.2)

The FR of Eq. (4.2.1) is a much more complex expression than the
expression for the destruction rates. The FR for the individual fissile
materials can be extracted from the burnup equations.

First consider U-233 FR, where from Eq. (4.1.1l1) the gain, i.e., for-
mation, terms can be extracted as |

0
i Ngo ooz(exp{[023(l—Ll) - 002]6} - 1)
23 czs(l—Ll) - %2

FR

o .
. st 025L2{exp(~0238) - exp[-Uzs(lﬁLl)B]}

Ogq(1-Ly) ~ 0yg

o
+ N23 exp(023LlB) (4.2.3)
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The FR for U-235 can be extracted from Eq.. (4.1.19) and given as
o P
FR25 = NZS (C9l[exp{—0258)-exp\wﬁzhﬂ)] - CQZ{exp[cza(Llwl)e]—exp(-0258)}

- CQB[exp(~024G)—exp(-0258)] - C94 exp(—UZSB))
+ N34 {Cﬂl[exp(—cz48)-exp(-6256)]}

+ N§3 [C82{exp[—023(1—L1)6]-exp(—0256)} - CSS[exp(—czl‘E})—exp(-0258)]]

+ Ngz [084[exp(—0026)—exp(wUZSG)} - C85[exp(—ozaﬁ)wexp(-0258)]
- CBG{exp[ﬂ023(1~Ll)8]-exp(—0256)} + C8?[exp(—0249)—exp(—0256)]} .

(4.2.4)
The FR for Pu-239 can be extracted from Eq. (4.1.27) by using the

following simple formula:

FR49 = N49(8) (4.2.5)

where v is redefined as Yrr and Yrr = —K49.
The FR for Pu-241 can be extracted from Eg. (4.1.32) and attained in a

similar manner as Eq. (4.2.3) by using the following formula:
FR41 N&l(ﬂ) N41 exp { 0418) (4.2.6)

where all terms have been defined previocusly.
Now the expression for the conversion ratio for the HTGR system can be
given as

FR23 + FR25 + FRZig + ERﬁl

exp(—0236) -+ exp(—azsﬂ} + exp(—cége) + exp(—c410}

CR = " (4.2.7)
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4.3 Poison Equations

During the operation of a reactor a number of light nuceli (atomic
weight between 60 and 160) arise as fission products from the heavy nuclei
as a result of fission (25,26,29,33). The majority of the fission products
vroduced in the HTGR is attained by the fissioning of U-233 and U-235. The
expressions for the fission products of these two fissile nuclides are
given by Eqs. (4.1.34) and (4.1.36). The fission products influence the
operation of a reactor in many ways (25), but the maiﬁ effect on the reactor's
steady-—-state operation is that wmany of these fission produects have a large
absorption cross section for thermal neutrons and thus severely affect the
neutron economy. This is usually called "poisoning."

The two most important fission product poisons will be treated in an

individual analysis.

Xenon 135

Xe~135 is formed as the result of the decay of I-1353, and also is
produced directly from fission. The I-135 is not formed in fission but
appears as the result of the decay of Te~135 (tellurium-135). These pro-~

cesses and their half-lives are summarized below:

Fission Fissiq&lk
\.135 L35 =" 135 ye(15.3m) 6
Te(< ,5m) =+ 1(6.7h) 1 Cs(2.6 x 10 yr.)
~a 135 ¥
Xe(9.2h)

Since Te-135 decays so rapidly to I-135, it is possible to assume that
I-135 1is produced directly in fission. The concentrations of I-135 and

of Xe~135 in a reactor are given by:
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d1 N 1
dar _ - )
kel AT (4.3.1)
and
v %, LB X —X
L= E T NI = (7 + ¢ o)X (4.3.2)

the concentration (atoms per cubie unit) of the I-135 and Xe-135,
respectively

It

where I, X

¢2f = thermal fission rate (fission per cubic unit per second),

Y" = fission yield of I-135 {actually of Te-135),

YX = direct fission yield of Xe-135,

AI = decay constant of I-135 (decays per second),

AX = decay constant of Xe-135 (decays per second),

Eﬁ = average thermal absorption cross section of Xe-135,

In an operating reactor the quantities, Zf and ¢, are usually functions
of time (24,33), and the solutions to Egs. (4.3.1) and (4.3.2) depend upon the
nature of these functions. Since the thermal flux, ¢, is assumed constant
throughout the life of the reactor, flux can be treated as a constant value
in Egs. (4.3.1) and (4.3.2). The macroscopic fission cross section, Zf, is
actually the product of the microscopic fission cross section and the atom
concentration per cubic unit of fissile materials in the core. The micro-
scopic fission cross section is assumed constant in this analysis; therefore
the only quantity in Egs. (4.3.1) and (4.3.2) that varies with respect to time
is the fissile nuclide concentration, The problem of solving Egs. (4.3.1)
and (4.3.2) using the time dependent expressions of the fissile nuclides in
the HIGR core, i.e., U-235, U-233, Pu~239, and Pu-241, would prove to be a
very difficult task; so it is assumed in this work that the concentrations
of I-135 and Xe-135 quickly rise to their equilibrium values in an operating

reactor (24), i.e., the thermal flux saturates the I-135 and Xe-135 since
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their half lives are so short. This is especially true in the HTGR since
the thermal flux is pgenerally much higher than the conventional light

water reactor. The equilibrium concentrations of I-135 and Xe-135 can be
found by placing the time derivatives in Eq. (4.3.1) and (4.3.2) equal to

zero., Thus from Eq. (4.3.1)

I = — (4.3.3)

and from Eq. (4.3.2)

A+ Y ¢

© X, X
AT+ 4. P

!+ YX)Zf ¢ |
- — . (4.3.4)
A+ oy ¢

The macroscopic fission cross section, Xf, in Eq. (4.3.4) contains the three
major fissile nuclides in the HIGR core, i.e., U-233, U-235, and Pu-239
(Pu-241 is not considered here since it has a very low concentration);
therefore the corresponding fission yield values must be used. The appro-
priate yields are given in Table III and the decay constants and absorption
cross sections are given in Table IV. Eq. (4.3.4) will be expanded into
an appropriate LP expression in the "Constraint Equations" section of this
chapter.

No detailed analysis is made in this work of the end of 1ife (EOL)
characteristics of Xenon-135, where the Xenon concentration initially
increases after shutdown because the EOL concentration of I-135 decays into

Xe-~135 (11). The buildup of Xe-135 creates a negative amount of reactivity,



Table III

Fission Product Yields (Atoms per fission) from

Thermal Fissiona

Fissionable Isotope 233U 235U 239Pu
135

Yield of I (direct) .G51 061 .055

Yield of 135Xe (direct) 003

Yield of 149Pm (indirect) .0066 L0113 .019

Araken from Reference (24).

Table IV
Constants for Fission Product Poisoning
Calculationsb
-1 -

Isotope A (sec ) o, (barns)
A3, 2.87 x 107°

185 e 2.09 x 107° 374, x 10°
148 3,56 x 107°

149Sm (stable) 106, x 102

bDecay constants from Ref. (24) and
cross sections from Ref. (28)
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after shutdown of the reactor, which depends on the magnitude of the flux in

steady state operation. If the flux is large enough, the buildup of Xe-135

can create enough negative reactivity to prevent the reactor from starting

up, i.e., the negative reactivity created by He-135 is greater than the

excess reactivity of the system. Therefore the Xe-=135 must be allowed to

reach its peak concentration (about 12 hrs.), and then decay below the

excess reactivity level of the reactor, before the reactor can be functional.
The post-shutdown bulldup of xenon is of little importance when refueling

a reactor since the time it takes to refuel the reactor i1s usually much

longer than the time it takes the nepgative reactivity created by Xe-135 to

subside,

Samarium—-149

Samarium-149 1s a stable isotope (24,33) arising from beta decay of
promethium-149, which is formed directly from fission, and also from the
beta decay of the fission product Neodymium-149.

_ 149 ;
The decay chain for Sm can bhe written as

Figsion

14 14 149

9Nd(2 hr) -+ 9Pm(54 hr) - Sm (stable) . (4.3.5)
Because the Nd-149 decays comparatively rapidly to Pm-149, the Pm-149 may be
assumed to be produced directly in fission with the yield (cf. Table III).

The time dependent concentration P of the promethium in atoms/cubic unit can

be given by the equation

=Y B4 -~ X P, (4.3.6)
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where AP is the decay constant for Pm-149 and is piven in Table IV. Since
Sm-149 is stable, it disappears only as the result of neutron capture. The

rate equation for Sm-149 can be given as

ds P, =8

where S is the atom density of Sm~149 and Eﬁ ig its average thermal absorption
cross sectlon (cf. Table IV).

Although 1t takes Sm-149 somewhat longer tc reach a steady-state value
than it does for Xe-135 since the absorption cross section of Sm=149 is much
less than that of Xe-135 and the half-1ife of Pm—~149 is longer than those of
I-135 and Xe-135, the concentration of Sm-149 can also be treated as an
equilibrium value in an operating reactor (24).

With the time derivatives of Eqs. (4.3.6) and (4.3.7) equal to zero, the

equilibrium concentrations can be given as

YP Ef ¢
P = - (4.3.8)
A
and
el I,
S ™ TF (4.3.9)
ag
a

where the macroscopic flssion cross section, Ef, is the same as given in
Eq. (4.3.4). The use of Eq. (4.3.9) in the LP scheme will be discussed more

thoroughly in the "Constraint Equations" section of this chapter.

Permanent Poisons

Many other fission products in addition to Xe-135 and Sm-149 are formed
in a reactor, and like these isotopes sowme are stable and some are radioactive.

However, nmo fission products with absorption cross sections comparable to those



64

of Xe-135 and Sm~149 are produced with yields sufficiently large to warrant
individual treatment (24). The majority of these additional fission products
have far smaller cross sectlons, and once they appear in a reactor there is
little probabiliry that they will be removed by neutron absorption during
the lifetime of the reactor (24,33).

The fluence dependent expressions for the fission product production of
the two major fissile nuclides under study in this analysis, i.e., U=235 and
U-233, are given by Eés. (4.1.34) and (4.1.36). The macroscopic‘poison cross

section due to the accumulation of gross fission products can be given as

fp _ Afp

Lyg = 654 Neog (4.3.10)
and

gfP o ofP g (4.3.11)

25 ~ “25 "F25
1 e y h 3 T fp
where NFZB is given by Lq. (4.1.36), N25 is given by Eq. (4.1.34), 623 and
Ggg (cf. Table V) represent the effective cross section of fission products
resulting from one average fission of U-233 and U-235, respectively. The

discussion of inserting Egs. (4.3.10) and (4.3.11) into the LP model will

be given later in this chapter.

Table V

Gross TFission Product Cross Sectionsc

Isctope barn/
fission

ey 16.3

233y 19.3

CTaken from Reference (33).
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4,4 Model Description

The state of the fuel is, in general, defined by the iscotoplc com—
position of the fuel and the spatial distribution of isotopes in each fuel
assembly, To represent this situation In a LP model would mean that each
fuel element would have its isotopic composition and position designated by
its own identification indices. Since the HTGR has 3944 fuel elements, it
would preseni an unreasonable computation problem to identify each element.
Therefore to incorporate a reasonable spatial distribution into the model,
the standard procedure is to divide the core into a number of reglons or
zones (9,10,11). In this work the core is divided into four equal volume
concentric regions with a prescribed average flux level for each region.

One of the main reasons for considering only four regions is that GA
specifies that ome-fourth of the core be remcved at each refueling (16,2,4).
With this specification the matrix generator which is developed later in this
chapter can remove one section, i.e.,, one region, from the core at each
refueling.

Now to give the burnup equations, developed in Sectlon 4.1, spatial
dependency relative to the regions, the state variables in the burnup equations
must be properly indexed, This can be done by defining the state variables,
NM s as the concentration per unit volume of the species p in region q where
M represents the irradiation history of the fuel, i.,e., the "beginning of
life" (BOL) condition on the "end of 1ife" (EOL) condition, Table VI
summarizes the indexing.

It is also convenient to glve a group index in place of the species
index, p, that are listed in Table VI, i.e., the fissile nuclides are repre-
sented by g, the fertile nuclides are represented by £, and the poison

nuclides are represented by j. This indexing is summarized in Table VII,



Table VI

Indexing Used on State Variables
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pecter Toformee | ’
U~233 (4.1.10) 23 1 -+ Region 1 0 + BOL
U-238 (4.1.24) 28 2 »+ Region 2 1 -+ EQL
Th-232 (4.1.14) 02 3 -+ Region 3

U-235 (4.1.19) 25 4 - Region 4

U-236 (2, 121 ) 26

Pu-239 (4.1.27) 49

Pu-240 (4.1.29) 40

Pu~241 (4.1.32) 41

U-234 (4.1.16) 24

(U--235)Fp* (4.1.34) F25

(U-233)Fp* (4.1.36) F23

*FP represents "fission products"

Table VII

Group Indexing

Species

Number

of Nuclides

U-233
U-235
Pu-239
Pu-241

U-238
Th-232
U-234
Pu-240

U-236
(U-233)FP
(U-235) FP

A¥

B*

C*

%A, B, and C represent the total number of
 each group, i.e., A equals 4, B equals 4 and

C equals 3.



67

To conform to some of the op£imum standards set by GA, the fuel
managenent parameters specified by GA for the 1160 MWe HTGR are used in
this model, These parameters represent the lowest fuel cycle costs con-
sistent with the current thermal and metallurgical performance limits (2).
These parameters are given in Table VIII,

The model developed in this work i based on the parameters presented
in Table VIII,

Perhaps the most difficult part of developing any LP model is to make
the appropriate simplifying assumptions which do not severely deter the
modei from reality. Usually, the assumptions are needed to change the
nonlinear relationships into linear relationships. The major assumptions
used in the development of the equations used in this model are listed below:

(1) homogenecus mixture of fuel and moderator in each region,

(2) only the thermal neutron energy group is considered,

(3) the power level is assumed constant throughout life,

(4) the resonance escape, p, and fast fission factor, €, are assumed

constant throughout life,

{(5) the neutron leakape terms are assumed constant throughout life,

(6) the average flux levels for each region are assumed constant

throughout life,

To mzke sure the reactor meets the power producing and material require-
ments while maintaining the operational necessities imperative of a nuclear

reactor, the appropriate "constraint equations" must be developed.



Table VIII

Fuel Mznagement Parameters

Fuel Cycle
Fuel lifetime (nominal)

Replaceable reflector
lifetime (nominal)

Average power denslty
Rafueling interval

Average C/Th ratio

Thoyium/Uranium
4 years at 807% capacity factor

8 years

8.4 w/ce
1 year at 80% capacity factor

250

68
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4.5 Constraint Equations

The constralnts which contain the neutronic and thermal-hydraulic
performance criteria of a linear reactor model are probably the most
difficult constraints to formulate realistically (9). This is generally
true since the behavior of the reactor is the result of the nonlinear
interactions of the neutron population and the core materials. If the
assumptions presented in Sectlon 4.4 are used, the nonlinear equations can
be simplified and put into ﬁhe form of linear expressions.

The major constraints used in this work are listed below:

(1) reactivity constraints,

(2) total power constraints,

(3) power peaking constraints,

(4) volume (nuclei) constraints,

{5) enrichment constraint.

Reactivity Constraints

The reactivity constraints are actually composed of two parts as suggested
by Brown (9). The localized reactivity constraint which keeps the reactivity
distribution, in each region of the core, uniform, i.e., four localized
reactivity constraints for the four individual regions, and the overall
reactivity constraints which keep the reactor critical. The overall reactivity
constraints will be considered first.

The various material parameters which affect the neutronics of a reactor

can be approximately related by the "six-factor formula"™ (24,9);

keff = nfapPle (4.5.1)

where n is the number of fission neutrons produced for every neutron that

is absorbed in the fuel, f (thermal utilization factor) is the ratio of the
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number of neutrons absorbed in the fuel to the total number of neutron
absorptions in fuel, moderator, cladding, ete., and €, p, P1 and P? are
defined in Sectdon 4.0. Since g, p, Pl’ and P2 are assumed constant in

this analysis, a new term can be defined as

R (4.5.2)
and Eq. (4.5.1) can be rewritten as
keff = nf Pall " (4.5:3)

For an operating reactor, the terms n and £ will vary because the composition
of the fuel will change due to interactions with the neutrons. It may help
the reader to analyze each of the terms separately.

As stated previously, n 1is defined as the average number of neutrons
liberated directly by fission for each thermal neutron absorbed in the fuel.
Thus if the fuel consists of the mixture of fissile and fertile isotopes, 7

1s given by

£
n = E (4.5.4)
aF
where v is the average number of neutrons liberated per fission, EfF is the

macroscopic fission cross sectiorn of the fuel, and Ea is the macroscopic

F
absorption cross section of the fuel.

The theimal utilization, f, can be more precisely defined as the fraction
of the thermal neutrons which are absorbed by the fuel in an infinite homo-

geneous mixture of the fuel, moderator, and poisons. It follows from its

definition that £ can be given by

I
f == 4 (4.5.5)
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where Zaﬂ represents the total macroscopic absorption cross section for the
moderator, and EaP represents the total macroscopic absorption cross section
for the polson absorbers in the system, i.e., fission products, U-236, and
burnable poisons., 1t is assumed in this analysis that control rod poisoning
which is used to regulate the reactivity in the system can be separated from
fuel management calculations. The burnable poison, B-10 (2), is treated in
this analysis as though it was smeared uniformly throughout the core. The

gquantity, I can be given as

apP’

I =3I  +

aP acC EaBlO (4.5.6)

where Ea represents the total macroscopic absorption cross section for

c

paragitic poison in the system, and sa?lﬂ is the macroscopic absorption
a1y

cross section of the burnable poison used in the system. The macroscopilc

ahsorption cross scction for the burnable poison can be given as

a

Np10 %B10

AT (4.5.7)

where NBlO is the B-10 concentration per unit volume and 0310 is the microscopic
_absorption cross section for B-10. zaC represents a more complicated ex-
pression; since it contains the macroscopic absorption cross section for

the fission products of U-233 and U-235, and the macroscopic absorption

cross section of Xe~135 and Sm~149, where all of the associated fluence
dependent concentrations have been defined previcusly in Sections 4.1 and

4.3, Since Eqs. (4.3.9) and (4.3.4) are dependent on the fissile concen-

trations they can be rewritten as

IR e —— (4.5.8)
P
a
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and
A
¥ I X
N o Y + Y
N ¢ g 5 B ( g B)
= . = (4.5.9)
A kX + G§ ¢

where Ng is the fissile concentration per unit volume and oz is its associated
microscopic fission cross section. Egs. (4.5.8) and (4.5.9) can be expanded
Into regions, and the total macroscopic absorption cross sections for Xe-135

and S5w-149 can be given as

A
s Y n o @+ Y
Rag 81 8 8 _x
oy =11 X, o, 10, (4.5.10)
q a %
and
A
0 i Mo cg Yg
2 1V B ] B
B = [ =g 1o, (4.5.11)
q T,

respectively, where R represents the number of regions. The fission product
concentrations of U-233 and U-235, and the parasitic poison, U-236, can be

given in a similar manner as

g a

Z N_ g (4.5012)
|

where Nj represents the concentration of the jth group, U? represents the
associated absorption cross section. The indices used in Eq. {(4.5.12) are
defined in Table VIT. The total macroscople absorption parasitic poison

cross section, £ ., can now be given as

aC
2aC = ZTX + LTS + ZTP (4.5.13)

The total macroscoplc absorption cross sectlion for the moderator can

be given as
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R i
z a
B CZ1 Neq %% (4.5.14)

where Ncq represents the concentration of graphite per unit volﬁme in the
qth region, and Uz represents the microscopic absorption creoss section for
the graphite used in the HTGR.

The total macroscople absorption cross section for the fuel can be

given as

a
4!5.15
Pq P ¢ )

where D = A + B, i.e., the total number of fissile and fertile nuclides.
The total macroscopic fission cross section for the system can be

given as

g £

JN o . (4.5.16)
g

By inserting Eqs. (4.5.6), (4.5.14) and (4.5.15) into Eq. (4.5.5), and
inserting Eqs. (4.5.16) and (4.5.15) into Eq. {(4.5.4), the effective multi-

plication factor, k__._., can be given as

eff

R A £
keff = [g g vg Ngq ngPall

f £
+ [) N - + N . ;
¢ 5 opd eq “e T L Tiq
A BT A
5T W 5 R b ] N 7 4T
80 g g X, X gd g g g
g o_% 8
. a
+ N o2 1 (4.5.17)
B10q %B107[ * vt

where Ncq is the concentration of carbon per unit volume in the qth region,

a ., . . .
and o, is the associated microscopic absorption cross section. To sustain
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a criltical reaction in a reactor the RHS of Eq. (4.4.17) must be at least
equal to one.
Te incorporate Eq. (4.5.17) into the LP model, it must represent two
end points in the irrvadiation history of one cycle, i.e., "beglnning of
'
life" (BOL) and "end of life" (EOL).
Since the control rods are assumed to absorb any excess reactivity at

the BOL, the RHS of Eq. (4.5.17) can be greater than one; therefore the

BOL constraint for the model can be given as

kA o £
0 < [z Y i Ngq g]Pall
q8
R .2 Q a 0 a g (o] a
- {Z [} Nog %p ¥ Neq % * ) Ny 9
q P 3
—X
A . ¢« A
+ IR0 AP 22 v of ol
s 8 8 8 X, X, 2'slg 8 8
. a %q
(4] a -
+ NBqu UBlO]} (4.5.17)

To get the maximum performance out of the fuel, the EOL reactivity con-
straint is set equal to zero. Therefore the EQL vreactivity constraint for the

model can be given as

R A i
0= [E By Moo Ug]Pall

q g
R D C
- {z RN c: + Ni ) wo?
q p P9 q A
—X
A ¢ o A
+ ] oot vP s "3?£LT£%——" ¥ . of of + Y9
s 81 8 8 X, SN gq g g

+ a ]} (4.5.18)
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The total reactivity constraints only ceonstrain the overall system to be
critical while the local reactivity in each region may be violated. There-
fore, "localized reactivity" constraints are also required to assure a
reasonable loading pattern.

To have flexibility in the LF model while using the "localized
reactivity" constraints and still prevent severe flux tilting as a result
of an azimuthal reactivity imbalance (20,34) the infinite multiplication
factor is used only to constrain the BOL of each region. The infinite
multiplication factor can be given as (24,5)

k = nfpe . (4.5.19)

o«

Since it is desirable to have the RHS of Eq. (4.5.19) greater than one,
Eq. (4.5.19) can be expanded into a LP constraint by the use of Egqs. (4.5.4)

and (4.5.5), and given as follows:

‘e 8 8
DO a 0 a Co a
- [J N 6T+ N o + ] N, o
R R
P i
—X
A ¢ o A
IR0 ol v B 0 of vl 4 )
56868 \Xixyg 8B & 8
Q a
+Hon UB10} ; (4.5.20)

Total Power Constraints

The power in a reactor 1s proporticnal to the product of the flux and
the macroscopic fission cross seckions. With the assumptions given in

Section 4.4 the total reactor power can be given as
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R A /
TP = v REC N o |F 4.5.21)
[g ¢q q g £ gq EJ PC ¢

where TP represents the total power in megawatts thermal (MWt); A only
Includes the fissile isotopes of U-233, U-235, and Pu-239; ¢q is the
average flux in the qth region; Vq is the active volume in the qth region;
RECg is the recoveréble energy per fission of the gth isotope (MeV/fission);

is the

f
Ug 1s the microscopic fission cross section for the gth species; FPC

factor used to convert MeV per sec Lo megawatts (MW).

Since the power is considered to have an average value throughout the
life of the reactor, total power must be multiplied by an averaging factor,
i.e., load factor, to set a lower limit for the constraints. The "total
power" must be satisfied at BOL and EOL; therefore a constraint must be
formulated for each point in time.

The BOL total power constraint can be given in & linear equation as

R A
fo} f
TPOW » PFAC < |} V REC N~ o [F ko550
[é q ¢q é g &9 gJ rC ( )

where PFAC is the load factor and TPOW is the total power producing require-
ments of the HIGR in MWt.
Similarly, the EOL total power constraint can be given as
TPOW + PFAC < % v ¢ 5 REC N© chF (4.5.23)
g 19 ¢ &8 898 FC B

All factors defined here are given in Table IX,

Power Peaking Constraints

The "power peaking” constraints serve two purposes in this analysis.
This constraint can be used to control the distribution of the macroscopic

fission cross sectlon which, if not constrained, leads to excessive peak-



77

to-average power ratios (9). The "power peaking" constraint is also used
in this work as a "reactivity distribution" constraint to assure a fuel
lcading pattern consistent with the flux shape assumption. This can be
done since the "out-in'" refueling policy is used in this work. When using
the "out-in" refueling policy, the fuel is consistently moved inward te the
higher burnup regions of the core., Since the fission products and U-236
buildup according to exposure to the neutron flux, the highest accumulation
of poisons will be in the center region; therefore the "power peaking"
constraint must have the least restriction in the center region with the
restriction being more severe as the regions extend outward. This method
was used by Howe (34) where the core was divided into zones and the fission
distribution was adjusted by adjusting the power density to conform to the
prescribed flux shape. Prescribed weighting factors are used to vary the
"power peaking' constraint. The choice of the weighting factors is some-
what of an arbitrary one, chosen to accommodate this particular loading and
refueling pattern,

The "power peaking" constraints are established in each region in this
model and at the ROL and EOL time histories. The BOL "power peaking" con-

straint can be given as an inequality by

A
. o f
P Purq Pave [¢q é REC, M. 0, |Fpp (4.5.24)
where Pr is the radial power peaking factor, PWtq 1s the weighting factor for

the gth region, Pavg is the average power density (w/cc), and FPP is the
factor used to convert (MeV/sec) to watts.

The EOL "power peaking' constraint can be given in a similar manner as

A
1 f
P Porq Pavg [¢q g REC, NgLl og]FPP . (4.5.25)
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Volume Constraints

To caleulate the maximum space permissible for the fuel in the HTGR,
one has to consider both sirzes of fuel particles where the TRISOQ contains
the uranium and the BISO contains the thorium., It may be noted that the
fuel volume to particle volume is different for each type fuel particle;
therefore it is necessary to make somewhat of a detailed analysis to obtain
a linear inequality to relate the mixture of the two different types of
fuel particles. This can be done by taking the associated fuel farticles
parameters given in Table II and the dimensions of the fuel element given
in Fig. 3.2.1 and applying the appropriate volume ratios for each type of
fuel particle. It may be noted that the volume constraint equations are
only used for each region at BOL.

The equation for the maximum thorium concentration in terms of fuel

particle spheres can be given as

3
prso [ TG, 1o . b
max BISO—sphere} pThC2 av
NTC =
max ‘AWTThC
2
_ 466 x 10° x 4,72 x 107> x 8.96 x 6.024 x 10
256
= 4630 x 1027 maximun ?h atoms (4.5.26)
region
BISO . , s P
where 5 is the maximum number of BISO sphere in each region, p is the
max ThC2
density of ThC, in grams per cm3, N is Avagadro's Number, and AWT,, is
2 av 1h82

the atomic weight of ThCz.

The equation for the maximum uranlfum concentration in terms of fuel

particle spheres can be given as
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3
0oL Wiy S -
max TRTSO-spheref = “uc, * “av
NUmax = AWT
uc
2
209 x 10™® x 41 x 1077 x 11.28 x 6.024 x 10%*
262
w LGB0 2s 10757 L SE0US (4.5.26)
region
TRISO . . :
where Smax is the maximum number of TRIS0 spheres in each region, Puc is

2

the density of U02 in grams per cm3, and AWTUC is the atomic weipght of UC

2
Now the LP inequality for each region scaled by 10--27 can be gilven by

9

1 o 1 o 1 fe}
Noo t + 1766 M8

L > %630 Yoz * 1160 Vo5 (4.5.27)

For the burnable poison B-10 the equation for maximum B-10 concentration

can be gilven as

NB1O = 550 x 102/ =10 atoms (4.5.28)
max region

The LP constraint scaled by 10-27 can be given as

1 0

T50 N (4.5.29)

1>

where Ng is the initial load of B-10 in each region.

10

Enrichment constraint

GA specifies that the optimum enrichment for the 1160 MWe power reactor
is 93 percent enriched (2,4). In this analysis the enrichment was allowed
to vary to find its own optimum value. Fnrichment can be defined as the
atom percent of U-235 in uranium when it is increased above the abundance
88 found in nature (35). Thus, 93 percent enriched uranium will have 93
percent of its atoms U-235 and 7 percent of them U-238, Therefore, the

maximum enrichment constraint can be given for each region as



80

o
st

Ny 5q * Ny 84 e

where Ngsq iy the Iinitial nuclide concentration of U-235 for the gqth region,
N;Sq is the initial nuclide concentration of U~238 for the qth region, and
EnmaX is the maximum enriclment allewed. Equation (4.5.30) can also be given

in LP form as

o o A
No. (1= En__ ) - N28q R <0 (4.5.31)

25q max “max

where In is .93.
max

4,6 Objective Function

The objective function is formulated on the basis that the U-233
indifference value can be used to equate the cost relationship between
U-233 and U-235. From results based on 20 year levelized fuel cycle cost
calculations, the U-233 indifference value was found to be about $16,7/gm
U-233 (16). The method used to determine the U~233 price or indifference
value in a HTGR can be generally described as follows: Consider first a
power reactor fueled initially with enriched uranium which converts thorium
to U-233. At the end of the year, it is assumed that the reactor operator
may edither (1) sell the U-233 and start again with enriched uranium, or
(2} recycle the U-233 back into the reactor thereby reducing the enriched
uranium requirements. The value of the U-233 as a fuel in HIGRs is then
defined as being esqual to the selling price which would yield equal average
fuel cycle costs for these two cases. Consequently, from an economic view-
point it would make no difference to the reactor operator as to which cycle
to follow, and hence the term "indifference value." Since the price of

highly enriched uranium is approximately $12 per gram of U-235 (16), the
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comparative cost ratio between U~233 and U-235 can be given as 1.39. Using

this cost ratio the objective function for the HTGR can be given as

Minimize:

1

23q) (4.6.1)

R
— 0 -
OB = g (N25q 1.39 N

where N;5q is the initial load concentration in the qth region, and
NéSq is the after burn concentration (EOL) of U-233 in the qth region.
It may be noted by the reader that Eq. (4.6.1) serves two purposes,

i,e., it minimizes the amount of U~235 loaded into the system while it

simultanecusly maximizes the amount of U-233 produced by the system.

4,7 TFuel Cycle Design Parameters

In any core physics design work the physical parameters of the core
must be knownt to do an accurate analysis of the reactor. Many of the HTGR
parameters to date are stilll under investigation and some dimensions that
will be used in the final design are still being analfzed; therefore it is
the purpose of this section to give representative design parameters for
the large HIGR.

As stated previously, the flux is a function of time, but for this work
it is assumed to have a constant average value for each region., Since there
is no data available on maximum to average flux ratios for a four region
reactor core, the appropriate ratios must be attained through an analytical
expression. The procedure to determine the expression for each region is
given in Appendix C. From Appendix C, a general expression for a four

region two-dimensional average flux level can be given by

R

= ¢ (.2918)[r J, (.1452r)] (4.7.1)

Ry

Pk

vhere all factors are defined in Appendix C.
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From Eq. {(4.7.1) the average flux level for each region can be calcu=-
lated and given as

Rl: ¢1 = =88 ®max

RZ: ¢2 = .66 ¢max
RB: ¢)3 = .48 ¢max
R4: ¢4 = .31 ¢max A

The other physical parameters used in this work are listed in Table IX.
Most of the values given in Table IX are considered to be typical values

for the 1160 MWe HTGR.

4.8 TFuel Cycle Technology
The following types of fuel cycles have been considered for the HTGR (21):
(1) Reference thorium cycle with recycle
(U~235 - U-233/Th-232/U-233).
(2) Thorium cycle without recycle
(U-235/Th-232/U-233}.
(3) Plutonium makeup cycle
(Pu~239 - U-233/Th-232/0-233)
(4) Uranium cycle
(U-235/U--238/Pu-239).
With cycles 2 and 4 the spent fuel can be either stored or sold, depending
on the cost and availability of reprocessing énd on the value of the recov-
erable fuel.
In this work only 1 and 2 of the above fuel cycles are investigated in
which the fuel cycles will likely involve at least two and possibly three

modes of operation over the lifetime of the plant;



Table IX

HTGR Cecre Physics Parameters

Microscopic cross sections, barns (Tn = 1634°F)

ca(U~233)

6" (Th-232)
c:(U~238)
Ua(U—235)
ca(U—236)
Ua(U~234)

6% (Pu-239)

o2 (Pu~-240)

o? (Pu-241)

o2 (FP of U-235)
o2 (FP of U-233)
U:(Smw149)
da(XenlBS)
Ua(graphite)
Ua(B-IO)

Capture to fission ratio

225
©23
49

41

Average yield of meutrons per fission

V
25

:23
49

Y41

Miscellaneous

Fast fission factor

Resonance escape probability
(Th-232)

Resonance escape probability
(U-238)

Fission-to~resonance nonleakage

Total nonleakge

¢

max

REC 23
REC 25
REC 49
B (radial power peaking factor)

183

1.59

9,33

156

10.9

26,3

614

508

451
19.3/fission
16,3/fission
1.06 x 10%
3.74 x 10°
5,90 x 107
5,49 x 107

224
+150
. 620
<440

2.43
2.50
2.89
3.03

1.015
.70

.986
.88
.97
2.33 x 101t
n/cem? + sec)

193 MeV/fission
204 MeV/fission
213 MeV/fission

1.6

Reference

(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)
(33)
(33)
(28)
(28)
(28)
(28)

(28)
(28)
(28)
(28)

(28)
(28)
(28)
(28)

(20)
(20)

(20)
(20)
(3)
(3)

(24)
(24)
(24)
(3)

83
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(1) Nonrecycle Operation. Tuel charged to the reactor consists of

hiphly enriched uranium and thorium. The spent fuel removed
from the core is either sold or placed In storage awaiting
reprocessing and recycle,

(2) 1Initial recycle operation. An interim period for the early

HIGR's when the stored U-233 is used exclusively to fuel the
reactor,

(3) Recyele operation. The fuel removed from the core is repro-

cessed and the U-233 is fed back into the reactor along with highly
enriched uranium makeup.
These three modes of operation are schematically represented in Fig. 4.8.1.
These particular modes of operation are considered in this work and the
results will be presented in Section 5.0.

Since tle distribution of nuclear fuel composition in a reactor depends
among other things, on the schedule for loading and unloading fuel and on
the way the fuel is moved through the reactor, the fuel loading schedule
for the reactor must be examined. Some of the possible fuel loading
schemes that can be used by a utility to extend burnup of the fuel are
"patch", rondelay" (scatter load), "continuous", and "out-in". Descriptions
of these fuel loading schemes can be found in the literature (26,10,5,6);
therefore a detailed account will not be given here.

The fuel loading scheme that is used in this analysis is the so called
"out-in" (outside to center loading) fuel shuffling technique. In this
procedure, the fresh fuel is charged near the outer edge and moved progress-

ively toward the center from which it is discharged. Although considerably
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hetter burnup lLs attained than Ip batch irradistion, the neutron utilization

.

is not as officient as in uvsing other possible shuffling schemes because
the highest reactivity, {.e., fresh fuel, is introduced in a regilon of

low neutrou importance, whereas the lowest (o possibly negative) rea—

ctivity occurs where the flux is highest (3). The advantage of outside
to center loading is that Lt leads to a fairly uniform power density

distribution in the radial direction.

4.9 Matrix Generator

A computer program was developed, based on the different fluence lavels
for the four regions considered and nth number of fuel cvcles. The computer
program is used to caleculate all of the coefficients for the burnup and
constraint equations developed in Section 4.0, and to prepave a data set
on magnetic tape in the correct tabular form for MPS5-360. Once the data
set is complete, the MP5-36( will begin execution, i.e., it will start an
lterative scheme similar to the one discussed in Section 2.0 (the product
form of the inverse/revised siwmplex), until an optimum solution is reached.
The matrix generator code is listed in Appendix .

The code is extremely powerful since it can generate the number of
cycles to find the total optimum of the system, il.e., multiple cycle
optimum combination of all state varfables that satisfy the operational
restrictions of all regions and cycles. The computer code has nine sub-
routines which represent segments of the fuel cycle operation., In ovder
to help the reader visualize how the fuel cycles are being simulated by
using these subroutines, it is necessary to explain the purpose of each

subroutine in the matrix generator code.
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Probably the most important part of the code is the BURN subroutine
which is used to calculate the coefficients of the burnup equations derived
in Section 4.0, There are four sets of burnup equations as shown in Fig.
4,9.1 which correspond to the four different flux levels for each region.

" Y"yolume," and

The BOL and EOL "power peaking," "local reactivity,
"enrichment constraints'" are also located in the BURN subroutine. Actually
the BURN subroutine represents the spatiél dependency of the system, i.e.,
all of the coefficients have different values depending on the position

in which they are located in the core. In Fig. 4.9.1, the BURN subroutine
is presented as BURN1, BURNZ, BURN3, and BURN4. The numbersg represent the
position in the core, i.e., number 1 represents the center region, number 2
represents the next region toward the outer edge of the core, etc.

The PART subroutine is used to generate the total core requirements,
i.e., the leocalized requirements are met in the BURN partition and the
"total power" and "total reactivity" constraints are met in the PART
partitions. The PART subroutine generates constant coefficients independent
of the flux level. The matrix generator produces four segments of PART
for each cycle which corresponds to the four regions considered in this
analysis. The four segments are located side by side, as shown in Fig.
4.9.1. Actually, the segments add the effects of the nuclide concentrations
of the four different regions in terms of "total power" requirements and
overall "reactivity" requirements,

The CORST subroutine was developed to look at the individual concen—
trations of the poisons, i.e., Xe-135, Sm-149, gross fission product

accunulation and the total carbon content of the core.



88

103BISUSY XTAIB °Yd JO OTIewaydl T1'g'y 2andig

aaYOLS Cg0LS
_ 1 i
= - S
=T T
Ftike i 1704 i
§
||||| qlllllﬁ e
JSNVEL i “ lsKvaz
i
] i
T
_ e
I ! |
ASKVEL " “ LENVMI
i
S
“ ]
ASKVHL ' “ ISKVAL
j
_ “
B —— S P R o —— - ——— —
149015 “ ! ; Q4015
| | '
ISH0D lava | avda | vd | Suvd
H 1
| ! “
z ! i i
¥ Rang | 1 ]
I { |
| i I
i i
i 1
. : i
£ NEng i |
] 1
| !
I
1
T N¥ng A
1
!
1 Nung
oMl TTIRD 1IN & ENO TTDRD TINS




89

To expand the model into coupled cycles, f.e., concentrations in
cycle 1 are dependent on concentrations in cycle 2, 3, and 4, it was
necessary to develop "transfer" partitions to transfer the nuclide con-
centrations from one cycle to the next cycle and into the appropriate
regions, Since an "out-in" refueling policy is used in this analysis,
the transfers are always made toward the center of the next core (next
cvele), e.g., the ECL concentration of region 2, cycle 1 is transferred
to region 1, cycle 2.. This transfer procedure is depicted for a two cycle
case in Fig. 4.9.1. The TRANST subroutine establishes the necessary unit
coefficignts to take the EOQL concentrations of regions 2, 3, and 4 of the
nth cycle and, by using Lhe subroutine TRANSF, make them available as BOL
concentrations in regions 1, 2, and 3, respectively, of cycle nt+l.

At the EOL of each cycle the fuel is removed from the center region
for storage and eventual reprocessing and recycle operations (2). To
simulate this sterage area in the LP iterative scheme, the subroutine,
STOREQ was developed to remove the EQL concentrations of region 1, as
shown in Fig. 4.9.1. These concentrations are then moved to an accumulative
storage area for possible reprocessing and recycle operations. The sub-
routine STORI was developed to produce the accumulative storage area.

The FULIP subroutine was developed to keep an account of the fresh
fuel loaded into region 4 of the next cycle, while the subroutine FULI actually
transferred the fresh makeup fuel into region 4,

Figure 4.9.1 only represents 2 cycles, although the number of cycles
can be extended to n cycles by changing one input card; i.e., change NCYC

in the matrix generator code to the desirable number.
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5.0 RESULTS AND DISCUSSION

In this analysis the matrix generator that 1s discussed in Section 4.9
was used to simulate three different fuel loading situations which are given

as follows:

Case 1 - Three cycle case with no recycle capabilities, i.e., thorium

cycle without recycle (U-235/Th/U-233),
Case 2 - Six cycle case with no recycle capabilities,

Case 3 - 8ix cycle case with U-233 recycle capabilities in the fourth
refueling event, i.e., for the first three years the cycle
can be given as (U-235/Th/U-233), and for the next three

years the cycle can be given as (U-235 ~ U-233/Th-232/U-233).

The cases described above were solved using IBM Mathematical Programming
System (IBM-MPS) and the optimum mass balance was attained for each case and
presented in Tables X, XI, and XIT for Case 1, Case 2, and Case 3, respectively.
The oﬁtimum power producing characteristics for each case ave also given in
Table XITI.

Before an anaiysis of the results is given, it may help the reader to
have some idea of the magnitude of each problem (Case 1, Case 2, and Case 3)
solved by MPS. Case 1 required the smallest matrix which consisted of 348
rows and 701 variables (including slack variables). The optimum solution
was found after 441 iterations which represented 2,26 minutes of execution
time on the $/370 Model 158 computer. Although Case 1 and 2 required the
same size matrix, i.e., 732 rows and 1442 variables (including slack variables),
each case required a different execution time and number of iterations; since

Lp

Case 3 had to consider U-233 feed after three years of operation. Case 2



Mass Balance, Thorium 3 Cycle Without Recycle

Table X

91

Fueling event

,a
Time , years

Fresh makeup, kg-atoms

Th-235
1U-235

U-238

RBecycele feed, kg—atoms

U-233

Discharge, kp-atoms

Th-232

U-233

U-234

U=-235

J-236

U-238

Pu~239

Pu~240

Pu~241

35500. 36500.
1780. 520.

132, 38,7

8270.
125.
4,64
270.
28.2
24.3
2.76
. 726

.326

10700.
. 152,

1.3

7060,
177.
12.0
193.
41.9
19.5
3.20
1.18

.587

6520.
204,
18.6
155
49.9
16.5
3,32
1.37

. 706

aAt .8 load factor



Mass Halance, Thorium 6

Table XI

Cvecle Without Recycle

Yueling event 1 2
'_Ti.meaI yoars 0 1

Fresh makcup (kp-atoms)

Th-232 24300, 3870.
U-235 1800, 466,
U-238 133. 34.7

Reeycle feed (kp-atoms)

U-233 0. 0.

Discharge (kp-atous)

Th-232 8720.
U-233 126.
U-234 4.67
U—235 " 268,
U-236 26.3
U-238 24,2

Pu-239 2,76

Pu~240 724

Pu-241 324

410,
490.

30.4

10600,
192,
12.9
188,
40.8
18,64
3.20
1.19

«577

4

12800.
486,

36.1

3070,

187,
17.4

161,
52.1
17.8

3.26

. 724

36500,
520,

38.7

768,
191,
21.3
146,
59.4
17.1
3.28
1.46

.794

12100,
187.

13.9

3480,
204,
22.3
141.
57.0
16.0
3.34
1,46

CaTe

49.1
187,
21.0
148.
60.0
17.5
3.27
1.46

. 800

aAt +8 load factor

92



Table XIT

Mass Balance, Thorium 6 cycle With U-233 Recycle

93

Fueling event 1 2 3 4 5 6
Time”, years 0 1 2 3 4 5
Fresh makeup (kp-atoms)

Th=232 24300, 4220, 1010. 237, 1780, 54300,
U-235 1780. 464, 486, o, 0. 0.
U-238 132, 34.5 36.1 1510, 1836. 2590,

Recvele feed (ko-atoms)

U-233 0. 0. 0. 409, 499, 706.

Discharge (kp-atoms)

Th-232 8640, 10600. 3520. 376, 3820,

U-233 ' 125, 192. 189. 189, 206.

U-234 .67 12.9 21.1 21.1 22.5

U-235 269, 188. 160.. 147, 140,

U-236 28.1 40,8 36,2 59.7 56.8

U-238 24,2 18.6 17.6 17.3 15,8

Pu~-239 2,76 3.726 3.27 3.28 3.33

Pu-240 . 724 1.1% 1,37 1.46 1.47

Pu-241 .3235 577 722 . 800 772

641,
190,
2i.2
147,
59.5
17.2
3.28
1,48

. 800

“2r .8 load factor



Table XIII

Optimum Power Producing Characteristics

Case 1

Case 2

Case 3

Cycle I1:
Cycle 2:

Cycle 3:

Cycle 1:

ro

Cycle
Cycle 3:
Cycle 4:
Cycle 5:

Cycle 6:

Cycle 1:
Cycle 2:
Cycle 3:
Cycle 4:
Cycle 5:

Cycle 6:

2320

2400

2320

2320

2320

2260

2260

2369

2320

2320

2320

2260

2260

2408

2810

MWE

MWt

94
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required 1584 iteratlons to achicve an optimum solution with an execution
time of 29.8 minutes while Casc 3 required 1660 iterations with an execution
time of 33.46 minutes to atraln the opiimum solution. Some unusual problems
were encountered while solving Case 2 and Case 3. A discussion of these pro-
blems is given in Appendix E.

The most obvious peculiarity is found when comparing the last cycle mass
balance results of each case. This oddity can be illustrated by comparing
the mass balance results of Case i with the magss balance results of Case 2.
This comparison can be accomplished by only compauing the fresh makeup feed

for the first three cycles of each case as follows:

Lase 1 . Lase 2
(kg-atoms) (kg—~atoms)
Cyele 1
Th~232 35500. 24300,
U=-235 1780. 1800,
U-238 132, 133,
Cyele 2
Th-232 36500, 3870,
U~235 520. 466,
U-238 38.7 34.7
Cycle 3
Th~232 10700. 410,
U-235 152. 490,
U-238 11.3 36.4

It may be noted that the only difference in the two cases given above is

that Case 2 is a coupled 6 cycle situation and Case 1 is a coupled 3 cycle



96

situation, i.e., Case 2 is Case 1. extended by 3 cycles. When comparing
Cases 1 and 2, the initial input concentrations of the first eycle of both
cases 1s approximately the same with the exception of Th~232, The larger
input concentration of Th-232 in Case 1 can be attributed to the less
restrictive overall reactivity requlrements of Case 1. It may be noted

that the fuel loaded into the system of Case 1 has to meet only three
overall reactivity requirements whereas the fuel loaded into the system of
Case 2 has to meet four overall reactivity requirements; therefore a heavier
loading of Th-232 can exist in the initial core of Case 1, i.e., the objec-
tive function is iwmproved by using Th-232 to breed U-233. One can also
deduce from the comparison of Case 1 and Case 2 that less fissile loading
was needed in Case 1, Cycle 3 than was needed in Case 2, Cycle 3. The main
reason for the smaller fissile loading can be ascribed to the larger fertile
{(Th-232) loading of the fuel in the initial two cycles of Case 1. Since a
larger fertile loading was present in Case 1, more U-233 was bred in the
first 3 cycles of Case 1 than was bred in the first 3 cycles of Case 2;
therefore there was less U~235 needed to meet the operational requirements
of the third cycle of Case 1.

It may be noted that the total power constraint had to be lowered in
the third and fourth years of operation to attain a feasible solution for
the 6 cycle cases, i.e., Case 2 and Case 3. The requirement to lower the
power requirements for these two years to reach the feasible reglon can be
explained by the interaction of the shuffling schemes used on this model
with the coupling effects of the system. As stated previously, the "out-in"
shuffling technique was used in the coupling procedure generated by the

"matrix generator" as MPS input data. This shuffling technique is very
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restrictive since the fuel loaded into region 4 (outside region) must
eventually traverse the complete core, region by region, di.e., the fuel
loaded into the initial core has a restrictive cffect on any fuel loaded
into the core within the next four years, or the fuel loaded into the core
at any point in time has a restrictive effect on any fuel loaded four years
hence. If Cycle 3 of Case 2 1s taken as an example, the total power pro-
duced as given by Table XIII is only 2260 MWt. This total power produced
is about 2.5% lower than most of the other power producing cycles. This
low power value may be caused by constraints on either gide of cycle 3,
i.e., to satisfy the "power peaking" and reactivity constraints in Cycle 2
and Cycle 5, the total power requirements for Cycle 3 must be 2260 MWt.

To determine exactly what is causing the lower power requirements of Cycle
3 and 4, a detailed and complex analysis should be made of the interaction
of the state variables with the cycle and regional constraints. This
analysis is beyond the scope of this work.

1t may zlso be pointed out that in analyzing the results it was found
that one of the main restrictive constraints is the "power peaking" con-
straint in region 1 (center region). This constraint actually dictated
the fissile and fertile fuel loaded in the other regions since the fuel
loaded in the outer regions must eventually pass through the center region
and meet its "power peaking'" constraint.

GA predicts that after 8 years the accumulated U-233 would furnish all
of the fissile requirements of the HTGR for 3 more years, resulting in good
neutronics and a high conversilon ratio (3%). This situation was simulated
on a smaller scale with Case 3. In Cagse 3, the U-~233 was held cut of the

system for 3 years and then it was allowed to be used as recycle feed for
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in the 4th refueling event, 409 Kg-atoms was needed to refuel the reactor,
and zero amount of U-235 was taken into the system. It may also be noted
that 409 kg-atoms actually surpasses the amount of U-233 produced in the
first two years of operation, i.e., 317 and 318 kg-atoms produced in the
first two years of operation in Case 3 and in Case 2, respectively. Also
it may be iInteresting to note that 1f the amount produced for 8 years is
extrapolated from Case 2, the total amount of U-233 can be given as 1461
kg-atoms for 8 years of operation. If 450 kg-atoms is taken as the average
amount of U-233 to refuel the reactor each year, i.e., 1350 kg-atoms for
3 years, then from the optimum results given in this work, GA' prediction
of 8 years operation, 3 years independent operation on U-233 recycle can
be assumed theoraetically correct. Actually, after 8 years of operation
the next 3 years of only using U-233 recycle is net entirely independent
of U-235; since U~-235 will be in the system in varied amounts for at least
four more years.

it may be noted from the results given in Table XII of Case 3, that after
3 years of operation, U-233 was allowed to enter the system in unrestricted
amounts. This forced all of the U-235 fresh makeup to zero. This action
can be attributed to two inherent characteristics of U-233 and the objective
function maximizing the EOL concentration of U-233. To get a better repre-
sentation of the interaction of U-233 and U-235 mixture, via, recycle, the
objective function should be changed. This change could quity simply be
accomplished by putting a negative value on the BOL concentration of U-233.

Probably the factor that creates the most inaccuracy in the results is
the assumption of a constant resonance escape probability, p. One may note

that in all three cases, the concentration of Th-232 varies drastically, and
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since the value of p is essentially independent of conecentration of Th-232,
the value of p should change accordingly. A remedy for this inaccuracy
would be to do an iterative updating procedure on p, i.e., after the

optimal solution is reached, the regional value of p can be found by

applying a homogeneous calculation with the concentratlon of Th-232. A

wore detailed description of this procedure will be given in the "Suggestions
for Further Study' chapter of this paper.

In summary, the model attained In this work is a good beginning for
future HIGR fuel management techniques. The two main constraints that
really control the model are the "power peaking'" constraint in region 1
and the EOL overall reactivity constraint. These constraints could lose
their dominant influence on the problem by changing the schuffling tech-
nique, and relaxing the EOL overall reactivity constraint. It may also
be noted that studies which were done by General Atomic (1) and Oak Ridge

National Laboratory (3) are in lose agreement with this work.
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6.0 SUGGLESTIONS FOR FURTHER STUDY

There are several suggestions which may improve this model. It would
be desirable to update such parameters as '"resonance escape probability"

and "fast fission factor,"

since they are concentratlion dependent. One
can update these parameters for the least expense by finding the initial
optimum basis and saving the basis on magnetic tape. Therefore, after
updating the new concentration dependent values, new activity constants
could be inserted, via "matrix Generator", and a new optimum basis could
be attained by updating the old basis in a minimum number of iterations.

The core may also be divided into four axial regions. This method
can serve as a technique to include spatial distribution in the axial
direction. The axial direction should be included into HTGR fuel manage-
ment schemes; since an axial exponential power distribution is inherent
in the HTIGR core design (1,6,20).

More elaborate techniques such as perturbation theory may be used
to update such critical parameters as flux shape and macroscoplc cross
sectlion values. This may be done by simulating a stagewise process at
which EOL concentrations and spatial characteristics of the core can be
taken from the optimum basis by READCOMM (40) which is a subroutine that
enables a user to augment MPS with procedures written in the FORTRAN
language. Before leaving the MPS system, the final basis can be saved
by appropriate JCL (Job Control Language) and MPS control parameters (19).
The pertinent EOL data can be taken by READCOMM and with the use of a
diffusion code such as C2D2G (29), the average thermal and fast flux
values could be determined for each region. This code can also compute

the X-Y power distributions.
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APPENDIX A
Dexdivation of Th~232 and U-233 Transwmutation Equatilons

The net rate of accumulation with respect to time of Th-232 is given by

Mog,

it = " Moo %o2¢ = My 0y5 ¢ Myg € Py (-py,)

Absorption of Absorption of resonance
{thermal neutrcns} {neutrons in Th—-232 from}
in Th-232 J-233 fission

- N € Pl(lép (A-1)

25 %5 ¢ Mos 02’

neutrons in Th-232 from

{Absorption of resonanCE}
U-235 fission

where all notation is defined in Chapter 4.0 of this paper.

The net rate of acecumulation with respect to time of U-233 can be given

by
an, ,
b - o
e - Yoz %02 ¢ + Nyg 0p3 ¢ My3 € Py{l-pgy)
Absorption of thermal Absorption of resonance
neutrons in Th-232 {neutrons in Th-232 from}
' U-233 fission
\ - e -
T Nyg 9y ¢ Ny5 € Py (I-pgy) = Nyg 093 0 (a-2)
Absorption of resonance Absorption of thermal
{neutrons in Th-232 Irom} neutrons in U--233
U-235 fission
In notation defined in Chapter 4.0, Egqs. (A-1) and (A-2) may be written
as
Ny
o~ T Moz %92 T Np3 023 Iy = Ny 9y5 Lg (4-3)
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and

.dN23
a6t Mag Ip3{lLy) - Nyy gy = Ny 0p5 Ly Gt

Noting that Eqs. (A-3) and (A~4) are coupled differential equations,
the equations can be solved using Laplace transform technlques., To simplify
equations (A-3) and (A-4), it is assumed that the net change in nuclide con-
centrations of U-235 can be represented by an exponential decrease due to
neutron capturc, Therefore the fluence dependent concentration of U-235 may
be given as

—0259

(8]
st(e) = N25 e (A-5)

where all terms are defined in Chapter 4,0 of this paper. Substituting
Eq. (A-5) into Eqs. (A-3) and (A-4), and letting Pl = 040 P2 = Ll Oygs

P3 = 025, Pﬁ = 023(1-Ll), P5 = 023 and P6 = L2 025, the Laplace transforms

may be given as

P, N2
& o 0 6 25 )
Nop (8FR)) + Np Py = Nyy = 575 P, (4-6)
and
o]
N (<P,) + H,.(s+2,) = N3, + T6 T2 =)
02F1 o b 2375 e,
where N02 = OQ {NOZ(G)}

Nyy = £ R)5(0))

andcf {NZB(B)} represents the Laplace transform of the original function
NZB(B)'

Noting that Eqs. (A~6) and (A-7) are linear equations, the equations
may be transformed into second order determinants and solved using Cramer's

rule (36) as follows:
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,'D
© 185 .
02 s + P 2
3
P, NS
o 6 25
) Yatsar, T
N —
02
s+P) By
mPl- s+P4

(s+P4)[N82 - (s+P 5‘1(P6N§5)] - P [N° + (s+P3) (P 25)]
(42 ) (s+R,) + P

(a-8)
ik

Rearranging Eq. (A-3), ﬁOZ can be given as

2.0 o} -1
S Nﬁz“(bP6N25)(S+P3) + P4N02 (P4 6 )(s+P ) 2 23 (P2 6 25)(5+P )

+ (P1+P4)s + P1P4 + P1P2

=1
1

0z ~ 2

Ll
The denominator of Eq. (A-9) may be factored using the quadratic equation

(36), and the roots may be given as

- 1/2
R, = 5{-(p +P4) + [(P 4) 4(?1 4+P1P2)] (A-10)

and R S{-(p +P4) [(P 4) 4(P P,+P,P )] / (A-11)

2:
Substituting Eqs. (A-10) and (A-11) into Eq. (A-9), the following

expression is obtained:

2.0 (s} o o
. 8"N, + sllg, (B,40,) = Ny, Pe = WyuP] + o, PoP, = M) B, ~ NO,P.P,

No2 = (R (5K (s+P,)

(A-12)
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Using the Partial fractions method (36), Eq. (A~12) can be written as
A . Aq + B
the sum of rational functions having the form s é where
(astb)’  (as“Fhs+c)’

r=1,2,3,..., as

X Y Z

02 = (S~R1) + (s-Rz) (s+P3) (A-13)

N

Now by determining the inverse Laplace transform of each of the partial
fracticns, the inverse Laplace transform of EO2’ i.e.,J:'"l{ﬁoz}, can be
found. In order to do this, the constants, X,Y,Z must be found by clearing
the fractions and equating like powers of s on both sides of the resulting

equation, This was done as follows: Letting s = Rl’

2.0 o s} o
.. RINg, + Ry [NQ, (B 4P5) = NpcPo = N, o1 + D _—
(R1~R2) (Rl+P3)
. _ _°
where D N02P3P4 N25P6P5 N23P2P3 .
Letiing s = R2 5
2 o o o o
¢ - alop * BplNop (BtPy) = NysFg = MagPpl + P 25
(R,~R;) (Ry*+E,)
Letting s = —P3,
2.0 o] o o
PN®,. - P_[N..(P,4P.) - N..P, - N, .P.] +D
7 = 3702 3024 73 2576 232 . (A-16)

(P3+R1) (P3+R2)
Noting that the inverse Laplace transform of EOZ can be attained by

determining the inverse Laplace transform of each expression in Eq. (A-13),

the inverse Laplace transform can be given as follows:

< e ~
K Mg} = g, (@)

and £ gy “cﬁ_l{é')—iﬁ;} +£—1{_S_%{_5} ﬁﬁul{siye’}
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-1l x 2-1f ¥ -1/ 2
NOZ(U) _Ji {s—Rl}-tj; {S_RZ} tji {5+P3}

R, 0 . R,8 g
) NO 2 {(P4+P3)Pl + R1 + P3P4] . e [(P4+P3)R2 + RZ + P3P4]
02 (Ry-R,) (R H,) (Ry=R) (R,¥P,)
R, 0 R, ~P.0
eV RRAP ) e ? REPAP D) e O (B PP.P)
RO 1665 2665 6536
5 - R
25 | R 7Ry (R#P,) © (R,-K)) (Ry4E,) © (B 4#R)) (PiR,)
R0 R,8

e (R1P2+P2P3) e (R2P2+P2P3)

+ 2
(Rl—Rz) (R1+P3) (Rszlj (R2+13)

(A-17)

N
[¥%}

The value of N23 can be obtained in a similar manner. Using Cramer's

rule,
L8]
PN
_ 5 6 Va5
BHE, Noo =5 %P
3
(4]
o WO, 4 825
) 1 23 VT TP,
Nog =3
s + (P1+P4)S -} P1P4 + Ple

o) o 0
.N23(S+Pl)(S+P3) + N25[5P6 + PlP6 - P1P6(5+P3)] + N02P1(5+P3)

(5-R;) (5-K,) (s+,)

(A-18)
where all constants have been defined previously., Now expanding Eq. (A-18)

in a partial fraction expansion, the following can be attained:
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2.0 0 0 L0 0
s N23 + S[NZS(Pﬁ—PlP6) + P1N02 + N23(P1+P3)] + N23P1P3
o 0 nop L o
+ N25P1P3 + N25(11P6 P1P6P3) + N02P1P3
i t o 1 o 1 — o .
X'(s R2)(3+P3) + Y'(s Rl)(s+P3) + Z' (s Rl)(s RZ) (A-19)

The constant X' can be obtained by letting s = R2 as,

o]
102
(R -R,) (R +P,)

o
RUN_ ., + Rl[NZS(P6—PlP6) + P

0 '
1N53 + N23(P1+P3)] + D

(4-20)

i | S, ;0 ]
where D h23P113

Letting s = R

Q Q
+ N25(P1P6—P1P6P3) + N02P1P3

2
2.0 o 0 e '
. R2H23 + R2[N25(P6—P1P6) + PlND2 4 N23(P1+P3) + D

Yl = . (A—Zl)
(Rz—Rl) (R2+P3)

Letting s = ~P3

2.0 ~ - n 0 X 5 '
PN B[Ny (B =P Pc) + PyNp, + Ny (B 4P0)] + D

zt = 222 @, R) (F43R,) Wi
and since
" ¢ 1 '
Ny3(®) ﬁii l{szl SERZ siP3} ’ (4-23)
the solution may be given as -
RlB 328 —PBB
N23(B) = @ X'+ e Y' + e z' . (A-24)
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APPENDIX B
Derivation of the Approximate Transmutation Equation for U=-233

Equations (A-3) and (A-4) can be decoupled by assuming that the net
change 1n nuclide concentration of Th~232 can be represented by an expon-
ential decrease due to neutron capture in the thermal region; therefore an
expression similar to Eq. (A-5) can be written for Th-232 as

—6029

— 0 —
NOZ(B) = N02 e (B~-1)

where all terms are defined in Chapter 4.0 of this paper. Substituting
Eq. (A-5) and (B-1) into Eq. (A-4), a simplifiedrexpression for the fluence

dependent concentration of U-~233 may be attained and given as

dN ~-0..0 -0, .0
23 o 02 0 25

e - -— —_ w-?
30 + N23023(l Ll) NOZUOZE N25625Lze p (B~-2)

Equation (B-2) is now a first order linear differential equation. One

can see that Eq. (B-2) can be written in the form

Er ey = | (B-3)

Equation (B-3) can be solved using an appropriate "integrating factor"

(37) which is an expression such that the differential equaticn becomes
exact if it is multiplied by that factor. The factor efP ax is said to be
an "integrating factor" of LEq. (B-3).

The method discussed above may be applied to Eq. (B-2) by rearranging

terms as follows:

dNyq =020 =059

e or— a .
“qo t 9p3(-LyINy g = Ngy0g0e + Hpelagli® (B-4)
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Noting the analogy between Eqs. (B-3) and (B-4), the integrating factor
for Eq. (B-4) may be attained by applying the boundary conditions, N23 = N?B
at § = 0; therefore the integrating factor can be given as

6
exp f@ 023(1~L1)d0' = exP[023(1-Ll)e] ¢ (B-5)

Eq. (B-4) is now multiplied by the integrating factor with the following

results:

d{N23 exp[023(1—L1)e]} =(H82002 exp{[UZB(lnLl) - 002]6}

o
+ N25025L2 exp{[UZS(l—Ll) - 025]8})d8 . (B~6)

The solution to Eq. (B-6) may be attained by integrating both sides of the

equation and applying the boundary conditions, N23 = Ng3 at 8 = 0, as

e
. - - w° = o " - ' '
N eAp[Uza(l Ll)G] N, JO Ny2%02 exp{[023(1 Ll) 002]6 }ds

23
b (8] : |
+ J A -, exp{[u23(1 Ll) 025]6 }do

0 2572572

‘Ngzdoz[exﬁ{[ﬂz3(l~Ll) . 00239} = 1]

Op31-1) = g,

s}
N25025L2[exp{[023(1—L1) - 025]8} - 1]

093{1-Ly) = Ty =

By rearranging Eq. (B-7) and multiplying both sides of the expression by

exp[-023(l—Ll)8], the solution to Eq. (B-4) may be given as

N,,(0) = N33{cxp[—623(l—Ll)0]}

0]
. NGZUOZ{exp(—GOZG) - exp[—023(1«L1)8]}

993(1-Ly) = 94y

o
N25025L2{exp(—6258) - exp[-ozB(l—Ll)G]}

T . (B-8)

v \ ——
0y3(-ly) = 0y
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Appendix C

Average Flux Value

Yor the common case of a reflected cylindrical reactor in which the
fuel ig distributed uniformly, the two-~-dimensional flux distribution in

the core can be represented approximately hy (5)

g JO[Z.QOS
max

e c-1
¢ -] @1
where ¢max is the flux at the center of the core where it is assumed to
have its maximum value; Jo is the zero-order Bessel function of the first kind,
r is the radial coordinate, and Rl is the effective radius of the reactor,
including an allowance for the reflector.
The two—~dimensional average flux value can be given as

R
w1 2,405 .
¢ = J - Jo[ ] 2nr dr (c~-2)

WRZ 0 Rl

where R is the actual radius of the core. Since (24)

J J (z) zdz = z J,(z) , (C-3)
o 1

the integration of Eq. (C-2) can be done as follows:
2vR1 o)

max % . (2.405r)(2.4057
= 2 Jo R R dr
R (2.405) '0 1 1

- ZRl CI)max .- 2,405y R
1t R

R% (2.405) 1 ) o
2R, ¢ .

- 1 "max 3 2.4051R ' (C-4)
R (2.405)71 Rl

where J1 1s the first order Bessel function. From Eq. (C~4) the maximum

to average flux ratio can be given as
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Omax _ (R/R, ) (2.405) -
3 2 3 [2.405(R/R,)] )

For a reflected cylindrical reactor, R/Rl may be taken roughly as 5/6 (5);

therefore Eq. (C~5) can be given as

¢max - 1.002
E J1(2.004)
. 1,002
. 576
= 1.74 . (C-6)

The value obtained from Eq. (C-6) 1s in close agreement to the value given

by WASH 1085 (3) which is

¢
Therefore Eq. (C-1) can be used as an approximate radial flux distribution
by assuming Rl = 6R/5. The expression for the radial dependent flux can now

be given as

p(r) = ¢max JO(.145r) (C-8)

where R 1s given in Table I and r is the variable radius In feet.
Since the core is divided into four equal volume regions, Eq. (C-8)
must be integrated over that particular part of the core to get the average

to maximum flux ratio. The radial dimensions of the regions are given belaow.

Rl = 6,88 f¢t. and 0 -+ Rl: 6.88 ft.
R2 = 9,72 ft. and Rl -+ R2: 2.84 ft.
R3 = 11.9 ft. and R2 > R3: 2.18 ft.
R, = 13.8 ft. and R, > R,: 1.90 ft.

3 4
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For i1llustration purposes the average flux for region 2 can be found

by integrating Eq. (C-8) from Rl to R2 as

¢

R
b, =-—-1591--J J_(.1452r)2mr dr
R 0

2 i
w(Rl - RZ) 1

R,

= ¢max (-0424)] JO(.1452r)r dr

Ry

9.72 ft
6.88 ft

R

= ¢ (.2918)[r Jl(.l452r)]Ri

ol . (.2918)[9.72 Jl(l.él) - 6,88 Jl(.999)]

= .66 ¢ (¢~9)

max
where the values for the first order Bessel functions are taken from Ref. (38).
A general expression for a four region two-dimensional reactor flux can

be written as

. R

b = bo, (-2918)([r Jl(.1452r)]Rk_l

where k represents the region under investigation. From Eq. (C-10) the

(C-10)

average flux level for each region can be calculated and given as

R, 61 = .88 ¢

1 max

Rz: ¢2 = .66 ¢max

.48 ¢max

[*4)
=
[E%)
L

% ¢4 = wdl ¢max :



Computer Program to Generate a Linear Programming (IBM~-MPS) Input Matrix

APPENDIX D

This program represents all of the burnup equations and constraint

equations presented in Chapter 4.0.

This program ilterates over 4 regions

and "NCYC" cycles to produce the required matrix input for the IBM-MPS.

The following is a list of the input data required by this program.

Card 1

Card 2

Card 3

Card 4

Tl - time in seceonds of cycle duration.

FLUXM

PFAC

ALP25

SIG25

ETAZ5

ALP23
SIG23

ETAZ23

SIG28
SIG24
SIG26
SIG49
ALP49

ETA49

SIG40

i

: ; . %
maximum neutron f£lux, in units neutrons per cm” per

sec,

average load factor for the

capture to

absorption

fissicon ratio of

cross section of

number of neutrons praduced

lost ratio
capture to

absorption

in U-235.

fission ratio of

cross section of

number of neutrons produced

lost fatio
absorption
absorption
absorption
absorption

capture to

in U-233.

cross section of

cross sectlon of

cross section of

cross section of

fisgion ratio of

number of neutrons produced

lost ratio

in Pu-239.

reactor.
U"'?. 35 L]
U-235, in

to number

U-233.

U-233, in

to number

U-238, in

U-234, in

2
cm .

of neutrons

2
cm -

of neutrons

2
cm .

2

cm .

Th-232, in cmz.

Pu~-249, in cmz.

Pu-249.
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to the number of neutrons

absorption cross section for Pu-240 in cmz.



Card 5 :

Card 6 :

Card 7 :

Card 8 :

Card

e

-
.

§

SI1G41
ALP41 -

ETAAL -

i

EPSI

P11 -

FAC -

YIEP23~

YIEP25-

YIEIZ3~

YIEI25-

YIEX23-

YIEX25-

SIGXE -

SIGSA -

SIGC -

SIGBIO-

SIGCR

ENW23

ENW25

ENW49

ENW41

PRKK

ATMP

AIMT

ALMX -

STFr4
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absorption cross section for Pu~241, in sz_

capture to fission ratio of Pu-241.

number of neutrons produced to the numher of neutrons
lost ratio in Pu-241.

fast fission factor for Th-232.

fast-to-resonance non-leakage probability.

- 2
scaling factour used in equation, 10 Q.

fraction yield of Pm-149 (indirecﬁ) from U-233 fission.
fraction yield of Pm-149 (indirect) from U-235 fission.
fraction yield of I-135 (direct) from U-233 fission.
fraction yield of I-135 (direct) from U-235 fission.
fraction yield of Xe-135 (direct) from U-233 fission.
fraction yield of Xe-135 (direct) from U-235 fission.
absorption cross secticn of Xe-135, barns.

absorption cross section of Sm=149, barns.

abgorption cross section of Carbon, barns.

absorption cross section of B-10, barmns.

effective absorption cross section of control rod, barms.
average number of neutrons produced per fission of U-233.
average number of neutrons produced per fission of U-235.
average number of neutrons produced per fission of Pu-239.
average number of neutrons produced per fission of Pu-241.
total neutron leakage (fraction of whole).

decay constant for Pm-149, sec—l.

decay constant for I-135, sec—l.

decay constant for X¥e-135, secﬁl.

fission product cross section for U-235, barns/fission



Card 10:

Card 11:

Card 12:

Card 13:

Card 14:

Card 15:

Card 16:

SIFPL -

TPOW -~
VREG ~
RECZ5 -
REC23 -
REC49 -
REC41 -
COFAC -
YIEP49-
YIEL49-
YIEX49-

FLUF1

$

FLUF2

H

FLUF3

FLUF4

P(1)

I

P(2)

P (k)
P(l) -

P(2) -

-

P‘(?.c-)‘ ‘
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fission product cross section for U-233, barns/fission
maximum enrichment allowed in uranium, fraction.
average pawer produced, watts/cc.

power peaking factor.

total power produced, MWEt.

active volume of core, cc.

recoverable energy from fission of U-235, MeV/fission.
recoverable energy from fission of U-233, MeV/fission.
recoverable energy from fission of Pu-239, MeV/fission.
recoverable energy from fission of Pu~241, MeV/fission.
conversion factor for MeV te watts.

fraction yield of Pm~149 (indirect) from Pu-239 fission.
fraction yield of I-135 (direct) from Pu~239 fissiom.
fraction yield of Xe~135 (direct) from Pu-239 fission.
fraction of maximum flux level in region 1.

fraction of maximum flux level in region 2.

fraction of maximum flux level in region 3.

fraction of maximum flux level in region 4.

resonance escape probability for U-238

in the k-th region.

resonance escape probability for Th~232

in the k-th region.
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YFCsTIMu=34PAGES=40

DIMENSIUN COIF(50).8058)

COMMON/SCY SULALL »SCalZ,STAL3,SCALSG

COMMON/BAUYS 2114224711425 9244233

COMMON/RBD/RTC25,RkFC2E4RECH4I4RECE)Y , COFAC

COMMIN T {70,500 FLUX{4Y oT1eMAXR
1 MaXC,KCly KCZi“NXl'KCJ, AX4 3 MRUOS,MROT, IMUSTLLICOUTE

COMMON /PASYIZPz3,Y1: P¢5,Y1f123 YIeT25,Y1:oX23,YID K25,
1 STIF23,51F25+51F49,y 3IF41 KCH,
2 YILXGDWYIT149,YIP45,

2 FRHIZIZZUNWZE MW 49y HWSY o PKEKK

COMAINSPR/SIG28,531G02 51026,31540,SIG24 251641 ,8516G23,81G253,51649
.I'.’..;I?]J:.Sp 5194520, Pf-\VU’P} s VRZG 513,85 la,51i54516

COMIN /ﬂd/i{nu}yp(ﬁ)gPT(D) GAMAZYKPAZS, [XFPR49,

LCKPAZ3 P L1428 L240L3,C0114012,C13,C144C154C164C174018,C19,C1592,0153,
2019440395, Ciﬂpﬁrl,Cézqﬁ?JgC75 Ceb,C2TyCzByC8G4L824C24,L294065,40691
3 gLV T CTLyCT29CT340T64CT5+ 0764 CTToLTHICED,CBL,CEE,L9D,0901,
AL GO2,L9L,0524293, D;:,CEB CB&L B54CB6s 0BT 02414 024yC243,02454

COMADNIBUIL 265024650196, 0400738191 ,0304031,03245035,0344035,036,037
1,(’3u1C'39,"f%-;.,f“'--|C42 C"‘:ﬁoﬁ"-}lfgr“?[#l,CqS L4J1 CﬁiarLir)J'C"}f}yr#f)l'
304610403, 040430408, La0h 0467404684066 9,C4T7,048,0494050,0501,052,
453,535 54:05340804056L 057305704 0572:058,0081,0582,0583,0584

COMMON/BU/CEF40591,0592,C5934C05944C060,06014L6024L603,L61,C8631,0612
...)CB.&..,,U..(_‘“&E’ Didy Dl)fr'lﬁ D17,018:Di9, ngiDZL D22.02 3:!—)'53. X1i,X12
3Pl P24 03, P4y P5,P6,BLL4R12,B12,014,4B15,816,E174R18,819,E20,B21,
4022 KLP?>’ TTAZ5, ALP23.0TAZ23, A14B,A128,

5 ALPAT, T4 G, LLP%],#{A4I,L9 15PLlyFal

COMMTE JOP/STIGRI ySIGIASIGEBID+SIGURySIFPG,WSIFPLLSIGE

DO I0 I=1,310
CtIl =i.0

FORMAT{DI L5l

RIADTS,61) TL FLUXM,PFAC

READ{E,61) ALP25, 216258 TA2S 4 ALP22,51I683,LTAZ223,51G28,:51G24,

1 STG284SICU2451549,44iP49,4ETRED, SIGLU;SiG4lyHLP4;|LTA@I,Epslt
¢PL14FaC

Runsi{be oLl YIIRZ3 YL ZPESWYICIZ2,YIFTIZ25,YITX22
1 STGXE8IGSALSIGL,SIGEI0,8IGLR,

2 FHNW2Y,DNWGRpINWAL ¢ PREK ALMPALMI s ALMX SIFP4,S81IFP1

RTAGIS, 61} ?NH#K,pﬁVGaPPEAK1793W1VREG,REC£J1F:C23;REC49;R55411

1 LDUFAC o YIoPa9,YITI43,Y1FX49

1MIDE2),1ID(2)

r ALMP g ALMI g ALMX

1 Y1EX25,
ENWZ3,

Z1 = YI17°P23/ (LI1G34 }
2 = Yise2s /0 51GSA )
I11 = Yier4d9 /[ S1GEA
Cowsbdidranoyr 15 THE TUMBER OF FUFL CYCLES (ONSILRERTD,.
C
NUYD = 6
c
CHE¥LA=ERRNLES TS5 OTHD NUMBUR OF REGIDNS (ONSIOD: o
L
NEIG = 4
"
CHre vk EnUMS AR GF FLUX LoVals MUST TQUAL NEEG,.
c
CHadahasmCALCULATE FISSION LANSS SCO0TIONS 1IN BARNS,
STF23 = §162% ic+2a fliv ALPZZ) ' :
SIF2S = 51625 % 17424 f{l+ ALP2S)
31F49 = 1549 4 1r+;} U1+ ALPEY)
SIF4) = SIN&Ll 2 G424 FLL+ ELP4L)
Lo i mnsaa N AVERLGT FLUX NAYT0 FUi 2alH RECICMN.
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RuAD(5462) FLURL 4FLURZ2,FLUF3,FLUFS
FLUXM = FLUXM# PFAC
Chamgre w i lal CULaTi, AVIRAGIZ FLUX LeVel FUR chCH REGIUN.
FLUX(I )=FLUFLRELUXM
FLUX(Z) Flusz = FLUXM
FLUX(3) FLUF3 % FLUXM
FLUX(4) FLUFS = FLUXH

noan

D144 = NWael / {1+ ALP4L)
Tia25 = LnWES f (it alPZ5)
UFa23 o= aaWz3 / (i+ ALPZEY
“1A49 = SNW49 / (L+ ALP49Y)

MOSK = 9
U e aTMAX I3 TH: NUMBEeRK OF " QUALY CONSTRALNTS IN TH= BURK PARTITION.
iMax = 12
[k cetdagMAX I3 THER RUMBIR UF "GRLATER THaN® CONSTRAINTS IN TH: BURN PARTIT UM
KMAX = 1L
Cads wkmeaMAXS T4 THY MAXIMUM NUMABRLDK OF COLUMNS IN LACH RIGIUN.
Chu=ex2unxMa X [5 THT MAXIMUM KNUMBE-R OF ROWS IN [DAUH ®EGIUN
MAXR = 18 .
Lasamaxea kKN TR 1S MUMB-R OF M{QUALY CCHNESTRAINTS IN THZ LCunwsST PEARTITION.
KONTR =31
CadedkmaskaKMTR IS BUMB-R GF YGREATER TFARY COMSTRAINTS N Thi CONLT PARTITIUN.
KHTR '= 3
CERErattErRMoXI0 34 THT NUMBEN OF COLUMNS IN TH: CONSIT PARTITION.
HAXCE = 10
Cava dataaMaXER TS TH: NUMBZR LF ROWS IA THz CINST PACTIVION.
MAXRR = 14
CaxyidizeMitUS 2y PRAOSONTS THE NUMBER OF ROWS IN THZ STORAGT ARLA,
MagE = 8§
CHsat 2y « = MPOT ROPRISTNTS THY KNUMBLER OF ROWS IN THZ TRANSFER PLRILVION.
MREDT = 13
Cax-wdsaaMIbP REPEeSoNTS THE RKUMBER OF ~nOWS IN THO INPUT PARTITIGH.
MINP = &
Cadsdmere NOOLYS BRUYPRESTUNTS THD NUMBER OF CGLUMANS IN THE INPUT PARTITION.
Nools = 4 '
Chestantas MRTS [ PRESLNTS NUMBSR OF CCLUMKRS IN THO IN-STIRAGT AR™A.
MiiIS = 5
FLCT = HEBIG
iMmaxi= IMaXx
MiXC1 Mo XC
Mt XR1 MAX#
KMaXi
MIE'X-E.Q
MAXCQ

&8
b2
>

oo

L L e

J

4148 = 233 4 FaMaX

AL2B = 235 -~ 235 % _NMAX
Cwewamxxr [MTTR SUALING FALTORS.

SCALZ=1 2335

CALs = 1a-0Z

SCALL = 30402

SCALZ = 1403
L avend g p TN Ko S3UNAND - FSGAP: PROBABILITITS FCr U- 238 aNU
CadxensrtlH =253 Fiie -ACH 2610,

{5y 0) (D[K',K:_“G)

£0aD{536%) {PT{K)yK=4n0:G)
K =1

Ched X5 u5rC AL CULAT ) CUNITANTS FOR BURN=dP LQUAT TGN
PRKEKK = PT{K) ¥ =P5t =*PKKK
GaMg = =S TL4G2 PSIvELL*(l-P(K)])
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EKPAZE FYA2S = EPSI * Pl1l%(1-P(K))
LKPASS = TA49 & EPSI ¥ P11% (1- PUK)})
FKPA22 = CTAZ3 & YPSI # PLi¥ (1I-P(K))

L]

EL]l = €TA23 ¥ FEPSI  # P11% (1-PTUK))

EL2 = £7£25 % CPSI % PL1* (1= PT(K))

FL3 = £PSL % P1L+ {1~ P(K))

€1l = SIG23 % ALP23 / (1+4ALP23)

€1z = Cil* SiGO2 * SIG25 # FAC/ ( SIG23-S1G02}
C13 = GKPA25 * SIG25

Clé = C13 % €12/ (51624~ SIGG2)

C15 = £EKPA23 * SIG23

C16 = C15 * 51602 / ( SIG23 * (1-£L1) - S1502)
€17 = C15 * $1625 % EL2 / ( $1GZ3 * (1-FL1) - S1G25}
€18 = $1628 / { GAMA * $1G&9)

Ci9 = C13 / { GAMA * SI1G49 -~ S1625)

€192 = GAMA * S51G49 - S1GZ24

£193 = GAMA * $1G49 ~ 31625

C194 = GAMA* $IG49 — SIG23 *{1-FL1)

C195 = GAMA® $1G49 - SIGD2

€20 =Ci6 / Cl95

€21 = Cl4 / Ul GaMa # SIG49 ~ SI1625 ¥ [SIG25-51G02)#FAC)
C22 = Cl4 / (( $16Gz5=51G24 )% { GAMA*51G49 — S5IG24)*FAC)
€23 = £316 /7 11 51625 — 81624 )* | GAMA % 51G49— S1G25)% FAL)
C25 = Cié /7 | GAMA % S1G49 ~ 51GD2}

€26 = £16 /7 { GAMA * SIG49 + S5I1G23% ( £Li-11))

€27 = €19 * Cl7 / C13

C28 = C26 * C17 / Cl6

£89 = C11/(81G24-51623% (1- ELI M) _

L8z = $1G24 ¥ C89 / { 5I1G25- S1GZ3 % (i~ [Li})

€24 = €13 * €82 / Li%4 ;

C2G = ALP4G *x SIG4S / {1 + ALP49)

C49 = CI7T /(S1G2045YG23%(ELL~1))

ChQ) =-C65 ®* C13 / (17
L712 Ci3 / (51G26-51G25)
CT01 ==£13 / {51628 ~ 31G24)

H

C71 = Ci7? / ( SiG28~ 51IG25)

CT72 = CLl4/7 ((SIG25--S16C2)=(SICG28-8IGZ5)1%FAC)

C73 = £14 / ({SIG25~ S5IG24)* (SIGz8~ SIGZ41*#FAL)
CT4 = Lubs {51628+ 51Gz3% (kLi~1))

L75 = Li& /7 11 S1G25~ SIGO2)1* {SIG28~ SIGO2)1*FAL)
CT6 = C14 /{51625~ SIG24)%(SIG28=-81G25)*FAC)
C77 = C16 / {31G28~ 51G02)

£L78 = £15/7 {51628 = SIG23% (1-T{1}))}

C80 = Cil¥ 816257 (51G24-51G23)

C8l = SIG24s /{ SIG25- SIGZ4 )

CB& = CL1 *C16 JICLI5®(SIG24-51G02))

C90 = Cilx {16 7015 #({SIG24+51G23%(CL1l~-1)1))

£901 = Cll¥ C17/ {Ci5 %{SIG24~S51G25))
£902 = Cii%k CL7 /{CL153(81GL4+ SIGZ3%(ELL-~1)1}

C9} = SEG24 # L90F / (81625 — 51Ge4)

£92 = S1GZ4& * C902 f (51525 $1623% (ELl-1))
€93 = S1G24 = €922/ (5IC25~ &IGZ4)

DLl = ALP2S # $£1G25/ (1l+ ALP235]

€83 = SIG24 * (89 / (31625 - 3iG24)

84 = SIG24 #* {88 / (51625 -~ 516021}

€85 = 31624 * C88 / (51625 ~ S1GZ4)

CB& = SIG2& * [S0 /7 (81625~ S1623 *(1- EL1))
€8T = 51624 * £330y F({SI6G25- 516GZ4)

£241 £12 7 C193

C242 = C13%083/ L.92



C243=
C244
C245=
C246=
Ciloé
Ci97
£iagl
C30
C31
caz
£33
C34
C35
C36
C37
£28
c39
C40
C4l
c42
C43
C44
Ca4l
C45 =
C451
C452
C453
{46
C461
C&62
C463
Chb4
L4658
Ladh
€467
Caed
C469
C47
C48
49
£s0
€501
cs2
53
£521
CH4
C55=
{56 =
Cs56l
C57
C571
C572
£L58
C581
cs82
£583
534
£59 =
£591
C59z2

W o fow W H o HoRoN

W Hou

N

n

Cl3 /7 Cl193
= (15 / Cl94%
C13% (817 Cla9z
Cl3 * CBL/CL93
C13 * (CS3/ C192
Cl3 = (93 / C193
Cla * Cyz/ (194
C27 +C19 - C197
28 + C191

oy

Cigsl +C28 + €197 ~C19-C27 - €195

C24 + C244
6243 ~ C241

Ca4l + (242 =024 - (243-

C246 - G245
Cz6 = C20
SIG40 — GAMA® $1G49
31640 - §1G25
SIG40 — 51623 * {1-EL1})

SIG4D - 51624
S1G40 - &L1IGG2
29 7 L3538

€26 * Cle& 7/ 51640
L29 + Clg 7 C38

€30 = {29 7 C39
C29 #* (31 / C40
25 * C196 /7 C41
gcz2e # (32 f C38

£z9 % €33 S C&0

oAl §

= Le9 % L34 7 €39
= £29 ¥ £z242 / C4&l
= LZ29 % £35 f C38
= £729 % L245 / (&1
= (29 * Lz46 / C39
= (9 * {36 /[ (38
= GZ9 * Czd /1 C42
= (23 ¥ C26 /7 €40
= {g9 % C37 / €38
C441 ~ Ch4

C45% — C45 —C452 - (453

C462 — C46= (461 - L4632
C465 ~ T&64 = C4e6
= £4566 — 467 — (4569

51G40 / (S1G41 —GAMA® S1G49)

$1640 7/ (51641—- 51G25)
= 51640 / (31G&41—- $1G40)
31640 / (51641~ 516G24)

51640 / {SIG41~ SIG23%[ - 1-

Ce2 * £43
531 = C43
SIGYD * C44 / SIG4L
€52 * C441
Ch31 * &7
€53 =% (45
{h4 * C452
C5z * €453
£55 % (€451
C531 % (48
€55 = {46
€53 * {461
C54 % (462

14 0 R 1 n

o

123
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€593 = £52 * C463

£594 = C531 * C49

Coen = C54 % (464

Ce01 = C83 * (465

C602 = £52 * C466

Cé03 = C531 * (50,

Cél = SIG40 * C467 / (SIG41 -~ S51G02)
C6il = C55 * C468

Celz2 = C52 % C469

€613 = C531 % (501

Dl2 = S1IG26 — SIG25

D13 = SIG26 = S1G24%

Dl4 = SIG26 + 51G23% (FEL1-1)
D15 = D11 * (L92-C93 + 1)/ Di2
Dlé6 = D11 / ALP25

D17 = DLi * €93 / D13

Dig = D11 % C92 / Dl4

D19 = D11 * C8L / D13

D20 = D1iI = C81 / D12

D21 = DiI1 = (C83 - C82) / D12
D22 = D11 * C82 / D14

D23 = D11 * C83 / D13

A= 51G02 + SIG23%(1-£Ll)
Bi= SIGQO2 * SIG23 * FaC
X1l= .5 #*(—~A+ SQRT(L¥*Z-(4%B1/FAC)))
X12 = «53(=A-SQRT(A*%2-(4x81/FACI )

Pl = S1GN2

P2 = FL1 * SIGZ23

P3 = S1G25

P4 = 5IG23 # (1- (L1}

P55 = SIGZ3

P& = TLZ % SIGZ5

Bil = P4 + P3

Bl12 = P3 * P4

813 = P6 * P5

Bl = P2 % P3

‘B1S = {(X11i-X12) * [X11+P3)
Bls = {(XiZ2-= Xil) * (X12+ P3)
B17 = (P3+ X11) +« (P3+ X12)
Bl8 = P14+ P2

g8L9 = Pl*x P3

B20 = Pl* P6

B21 = P1lx P6 * P3

B22 = P3 ¥ P&

KCH = MAXR +1

DN 5 L=1,MAXRQ
DO &6 T=1,MAXCQ
COEF(1) = C.0
T{Ly1I) = O,
&6 CONTINUR
5 CONTINUE
MAROW = ICCT * MAXR
MAXAL = MAXR + MAXRR
CH¥¥ikrkxSPECIFY COSY (OEFFICIENTS.
CO%F(2) = =139
CNsr(7) = 1.
DO 7 L= 1,MAXR
B(L} = 0.0
7 CONTIMUSE
3000 FORMAT('MAMEY y10X,'PROBLEMY /VROWSY/Y N PRUOFIT')



801
3001
3003
3004
3310
3012
30.L1
3029
2006

3005

3ING7

125

FORMAT(* v,tE0, 0 ROWY,I3}

FORMAT (Y v,'GY,%  ROW',13)

FORMAT( Y Pyl ¥t ROW',I3Z)

FORMAT( * COLUMNS' )

FORMAT(T1,¢ COL*YyT8yI134T154 " ROW" 3 TIB,134T25,E12453)
FORMAT{*RHS) .

FORMAT(T1," LIMITS Y T15,"ROWY,T18,13,T254f12:5)
FORMAT ( * ENDATATY

FORMAT{TL,.?" COLY 3784134715 "PROFITY 4 T2542312.59T404ROW,T43
14133 75Q0,F12.5)

FORMAT{T1,1 COLY 3 T84I13, 715 "ROW® 3 T18 4139725450245 T40,'ROW"
1¢743,13,750,£12.5)

FORMAY(T1,? LIMITS Y 3 TLS54 ' ROW Yy T1By Y13, T259k1l2454T40,3"ROW, T4
13473,750,612,5)

Cadsaddye (GNSTRUCTION OF ROWS VZCTOR

WRITELMDSK, 3000)
IXMU = 3% MROT + MROS + MINP
NRPP = NREG + 2

NR=]i01

IMUSTY = O

ICCYL = ICCT +1
ICCT2 = ICCT-1
ICLT2 = ICCTL + 1
ICCY4 = JLCT1 + 2

DO 899 K3=1.NCYL

Coepokeadnde JPDATE ALL PARMEITERS,

400

129

800

B850

Cwxi

IMAX = [MAXL

KimAX = KMAXL

MAXR = MaXR1

TMUSTYL = IMUSTLI + 3

DO 802 Ki= 1.NRPP
IFIK1LLELICCT) GO TO 799
IMAX = KONTR

KMAX = KMTR

MAXR = MAXRR
IFIKLLLELICCTLY GO TO 799
IF(IMUSTLLEQaNCYL) GO TC 400

1MAX = TxXMU
MAXR = TXMU
KMAX = 0.
GO TO 799
KMAX = ©
IMAX = MROS
MAXZ = MROS

IF (iMAX.LYse5Y GO TO 850
D0 BOOD K=1,IMAX

WRITEZ (MDSK,B0L INR

NR=NR+1

IFITMAXLEQLMAXRT GO TO 802
IH=IMAX+].

KJI=THAX+KMAX

IF{KJ.LT.s5) GU TL 860
IF{KMAX.LTee5) G T 860
kAt CONSTRUCTION GF G CONTRAINTS
DI6QTK=IH, KJ
HRITE(MUSK 3001 INR

600 MR=NR+1

[ =
860

##% CONSTRUCTION OF L CONTRAINTS
1P=KJ+1s
IF(IP.GT.MAX) GO TN 802



605

BO2
899

OO

DIENESK=TPy MAXR
WILTUIMDSK 3003 )NR
NR=NR+1

CONTINUE

CONTINUE

UPDATE PARAM:ETLRS.
IMAX

MAXR
KMAX

ITMAX]
MAXKL
KMA X1

tonn

CHxax X CONTRUCTION OF THE COLUMN SECTION.

WRITRE(MOSK,3004)

CdedkdnxsxINIALIIC

IMUSTL = 0

NFIL = O

MXK = MAXR + MAXRR

MKK1 = MROT + MAXR

MKZ = MROT + MAXR + MAXER

NC = 1G0

MEZ = MIANP + MAXR + MAXKR

NRPL = NRPP+1

MROWE = (MA&ROW+ MAXRR) # 2+ (ICCTV-1)%MROT +MROS+MINP
02 B33 K3=1,NCYC

COEF(2) = =1.39

COXF{7) = 1.

MAXR = MAXRI

MAXT = MAXCL

1couTt
ICORUL = I0C0T2

it
o

Cosd ik FUPDATE RUFSRENCE POINT.

KFIL = IMUSTY #{ICCT#MANR + MAXRR+ (ICCT=-1} % MROT+ MROS+MIHP)
MUSTI = IMUSTL + 1

MAXSE = 1

KC2 = 0

00 803 K1 =1¢NEP1

ICGuUT: = ICOUTYI + 1
IF(IMUST1.5Q.10 GO YO 925

KC3= O

IF(ICOUTLILLTLICCT) CALL TRANSF
IFICOUTL.TR.ICCTY CALL FULIP
CORTINUE

KCH MAXRL + KC3 +]

KCL MAXRL + MAXRR + KC3 + |}
K£2 = MAXRL + MAXRZ + KL3 + 1

non

Cogaxt ek INTALIZE FOW MUMBER GF  FIRST FOUR REGIDNS.

572

FRIKLGTLICLTY GO 1O B39
IF(IMUSTICR.0Y GUOTO 572

N3 = NFIL + 100 -1CONUl*® MROT=MINP
1C0ONUL = ICONUL -1

G3 TO0 571
MK = MNFIL + 100
NP o= NR -~ MAXH

MNP o+ TCOUTY % MAXR

R

ChetettdkdkGENARATE BURNUP cQUATIONS.

5TL

CALL BURN{KI)

Crukedda v GUNERATE COMS TRAINT CQUATIONS.

CALL PART(MAXFR, KL, TCCT)
TIF{ICOUTIatRal) GIATYY 265

Chatstr 2xGUNFRATE BULK STORAGL AREA,

126
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CALL STORCZOD
MAXAL = MAXR + HMAXRR + MROS
IFIKL3.GT.0) MAXAL=MaXR + MAXRu+ MRUS + MADT
GO TJ 842
665 CONTINUE
IF{IMUSTI.EQ.NCYC) G TO 401
CALL TRANST
MAXAL = MAXR + MAXRR + MROT
IF(KL3.6To0} MaXAL= MAXR + MAXRR + Z#¥MROT

IF{ICOUTL.:QaICCT) MaXal =MAXR+MAXRR+ MROY +M1KNP
GO TO B42

401 MAXAL = MAXR + MAXRR + MRO}
GO TO B42

829 CONTINUC
Claerdrokkx INTALTZE ROW NUMBSR FOR LAST THREE REGIUNS.
IF(ICOUTLILNELICCTY) GUIO 840
MAXR = MAXRR
MAXC = MAXCC

COEF(2) = 0.
COEF{2) = 0.
COEF{S) = 0.0
COFF(T) = 0.0
CALL CTONST

MAXAL = MAXRR
NR = MAROW + NFIL + 100
GO TO €42
840 CONTIHUE

IFLICOUTLNELTICCT3) GO TO 841
MAXHK MROS
MA XC MRIS
MAXSL = 2% MROS

CHF & ks sGeNERATE ACCUMULATIVE BULK STORAGE ARCAS.

non

CALL STORI
CaLt STOKRD
IFCIMUSTIL.UQ.NOYL) MAXAL = MROS
NR = MRROW + MAXRR + NFIL + 100
GO T3 842

841 CONTINUE
TIF(ICOUTL.NTLICCTA) GO TG 842
TF{ITMUSTI.RA.NCYCY G2 TO 833
MAXA. = MINP
Ma XC NCOLS
MAXAL = MINP
sk axsGENTRATE INPUT FULL PARTITIONM.
CALL FULJX
N2 = MAROW + MaXRR + MIUS + 2xMROT +NFIL + 100
842 CONTINUT
DN TZ0 N=l,MAXC

L1

o MM= 1
NG = NC+1
NOD = O
NGW = O

555 DO TL0 M=MMyMAXAL
TF(V (M NILHELOL) GO TO 71k
GO TH 710

711 NTR = NR#M _
IFUICOUTL Q. 100TILORLICIUTLLEQLICCTAY GO TO 550
IFLIMUST1a6Ta1) Gu T 502
IF(ICOUTILNGLL) GO TO 501
IF(H.0TMAXR) NTR= MAROW + NFIL #100+M=MAXR



501

502

507
508

509

510

552

710

120
8n3
833

GO TGO 550

CONTINUE

IF{ICOUT1.GTLICCT) GO TO 502

IF{M.,LE.MAXR) GO TO 5590 .
IF(MeGTe MAXRSAND o Mo LE« MKK} NTR=MAROWH+NFIL+100+M-MAXR

IF{M.GT o MKK) NTR= MAROW+MROS+MAXRR+(K1-2)*MROT+NFIL+100+M-MRK

GO TD 550

CONTINUE

IF{ICOUT1.NE.ICCT3) GO TO 502

IF(M.GT.MROS)Y MNTR= MROW1+ NFIL + 100 + M- MRDS
GO YO 550

IF{ICOUTI.EQ.Y) GO TO 506

IF{ICOUT1L.EQeICCTY GO TO 509

IF(M.LELMROTY GO T2 550

IF{M.GT MROT.ANDMaLELMKK1 ) GOTO 507

IF(MaGTa MKK1aARNDo MaLta MK2) GO 70 508

NTR= NFIL + 100 + MARUW + MAXRR+ MROS+ (K1-2) *MROT+M-MKZ

GO 70 550

NTR = NFIL+ (K1-1)#MAXR+100 + M=-MROT
GO TO 550

NTR = NFIL +100 + MARDW+ M~ MKK1

GO T4 550

IFEMLELMINPY GO TO 550
IF({MeGT.MINPa ANDo Mo Lize MK3)} GO TO 510

NTR = NFIL + 100 + MARUW+ MAXRR+ MROS+ [Ki-2)% MROT +M- MK3

G0 YO 550

HTR = NFIL 4 100 + MAROW=-MAXR+ M-MINP
GO TO 550 '

IF{M LEMROTI GO YD 550

TE({M GF . MROTANDMalca MKK1) GO TO 511
NTR= NFIL+ 100 + MANOW+M=MKKIL

GO Yo 550

NTR = NFIL + 100 % M-MROY

CONTINUF

IFINUOD.GT.0) GO TO 552
WRITE(MDSK s 3005 IRC CURF{N) g NTRsTIMN)
N3D = N3OD + 1

GO TO 70

CONTINUE

NOW = NOWs1

MIDINOWY = M

ID(NOWY = NTR

IF{NOWaLTa2) GO 1O 710

WRITE{MDSKy 3006 MCs IDIT e TIMIDIL) NI LID(2), TIMID{Z) )
NOW = D

CONTINUE

IF{NOW.F0.9) GO TO 720
WITOUIMDSK 3 30L0INC TO(L) s TAMIDIL) o N)
CONTINUE

CONTINUE

CONTINUS

Cadddxey CONSTRUCTION OF RHS VECTOR FOR MPS-36C INPUT

WAITE(MDSEK, 3012}
IMUSTY = 0
DO 625 K3=1,NCYC

Chesdrsk:JPDATE REFERENCE ROW NUMBER.

MAXR = MAXR1
NETL = ITMUSTI#{ICCT*MAXE+#MAXPR+(ICCT=1 1¥MEOT+MRUS+MINP
TMUSTY = IMUSTFYL + 1

Cras¥xxe*INITIALIZE,.

128
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MAXR = MAXRL
NR = 100 +NFIL
MASG = ICCT + 1

NTR=0

B(13) = Q.
B(14}) = Q.
B(15} = Q.
B{17) = O.
B(18) = Q.

DO 804 K1=14NREG
IFIK1.LELICCT) GITD948
MAXR = MAXRR

CHeusk s kxGENERATE RHS TOTAL POWER CONSTRAINTS,

948

B{13) = VPOWHPFAL®SCALZ

B{14) = TPOW=PFAC #SCAL3
IF{IMUST1.LT.3.0R, IMUSTL.GY4) GO TO 958
B(13) = TPOW *PFAC * SCAL3 #.9741

B{14} = TPOW *PFAC * 5{PL3 %.3741

GO TO $58

Bll4) 1. * SCALZ

BL15}) i. * SCALZ

PPZAKL = PPEAK

L 1]

CRiokkadd #GENERATS RHS POWLR PRAKING CUNTRAINT.

958

T30

731

804
625
136

st e oo e o ok R N A RO R o Ok el R R OR SOR R AR R R R T e e AR R R R R

C
C
G
C
C
C

1F{KL.6T.1l}) PPAKL = PPEAKE .87
IF{K1.6GTa2Z) PPLAKL = PPEAKX 77
B{17) = PAVGE: PPIAKI

B{18) = PAVGY PPJAKIY
DAT30M=14MAXR

N = NR +1

IF(BIM)ouRaUe )GOTOTA0
NT®=NTR+1

MID(MTR ) =M

TD(NTR) =NR

IF{NTR.LT.2)GOTOT730

WRITEIMDSK 3007V ID(L ) BOMIDILY) 2 ID(2),BIMIDIZ])
NYR=0

COMTINUE

IF(NTR.EQ.0)G0TOT3L
WRITE(MDSK,30L131I0(1),B8EMIDI1YY
CONTINUE

MTR = O

CONTINU

CONTINUR

WRITE(MDSK 3009}

STaP

END

SUBRDUTING  BUPN(K)
THIS SUBRCUTINE CONTATNS THI BURNUP EQUATIURS FOR THE TH~232

AND U=238 FUSL CYCLLSe THI SUBROUTING ALSD CONTAINS  LOCALIZED
COMSTRAINT FQUATIORS FOR BACH REGIUN.

Bob ok A e Ao s ok ek s o el ot st ek ek ok o A akof ok ol ok e e R ot Rk ok R R ek b ke ko sk ok R AR R

COMMON/SC/ SCALL.SCALZ,SCAL3,SCALS

COMMON TUT70,50), FLUXT4) s T1,MAXR 4

1 MEXC KU1 KOZ 4 MaXi KC3sMaXS o MHOS,MRUT, IMUSTL, ICOUTL
CIIMMON/BAD/ 7192242115234 244133

COMMON /PA/YIEPZ A YIAP2E,YIF 123, YIE125, Y LX23,Y1EXE5,



130

1 SIF23,51F25,51F49,; SIF41,KCH,
2 YIFEX49,YIEI49, YIEP49,
2 TNW23,0NW25, SNWaTyERWEY ) PKKK s ALMP L ALMI , ALMX
COMMON /BSD/REC25yRFC224RECGT, RECSHL, COFAL
COMMON/PB/SIG28,51602451G26,51640,3I624 451641451G23,51G25,51649
1,517,518,51%3520,PAVG,PPEAK,VREG 4513,514,515,516
COMMON JCP/SIGXS 3 SIGSALSIGBLO,SIGCRSIFP4,SIFPL,SIGC
COMMON /BUSCULINY 4P (S )y PT{5)yGAMAEKPAZS)EKPALY,
1EKPAZ2 3 FLI9FL240L3,C114C12,013,401440154016,C17,C18,C19,£192,C193,
2C194,C105, 0204021 ,0224L234025,0264L2T4L28,L8950LB2,C244L2G,069,L691
3 4CT0+CT0LsCTLCT29CT340T744L75,CT64L7T7,C784C80,0814C88,C90,0901,
4C902,091,092,C93,011,083,C844C85,0864L8T9C241,0242,0242,0244
COMMOM/BU/C245,0246,C1964C1i974C1919C30 4051 4032,C334034,(35,L36,037
1,C328,C36,C40,C41,042,C43,C44 30441 ,C45,0451,0452,0453,C046,0461,
3C4629C463,046440465,06664C46T,0468,0469,047,048,049,050,0501,(52,
405340531 40549055,056405619C57yC5T719C57240568,(581,0582,(583,L584
COMMON/RU/CS9,yC591 4059240593 ,0594,06G,C601+C602,C603,C6),0651,C612
29C612,4D124013,D0144,0i5:D164D17+D154D194D20,021 022,023 4A,BLaXI04X12
34,P1,P2,P3,P44P5,P564B11,6812,813,B14,B15,816,817,B818,B19,B20,821,
4B2Z24ALP25,5TA25,ALP23,%TA23, Al4B,A128B,
5 ALP4Y,BTALT, ALPS4L,ETA4L y5PST P11y FAL

$13 = ENW23 * SIrFr23#PKKK~ SIG23%1k+24

514 = CNW25 * S51F25 #PKKK~ S1GEZ5%il+424

S15 = ENWa9 % 5IF4% ® PKKK- SIG49%1E+24

S16 = EMW41 # SIF4L = PKKK-SIG41* 1E+24

233 = (YIZI49+YIXaS)/UIALMX/(FLUX(K) *1E~24))+SIGXE)
23 = { YIEI23+ YIEX23)/ ((ALMX/UFLUX{K)®1E~24) )+ SIGXE)
14 = | YIFEI25 + YIEXZ25) ZU(ALMX/{FLUX{K)I*1c—24) )+ SIGXE)
518 = SIF23 * REC2Z * FLUXIK) * COFAC /VREG
517 = 5IFzZ5 # kiZCZ5 * FLUX(K} * COFAC /VRLG
519 = SIF49 * REC49 * FLUX(K) * COFAC IVREG
$20 = SYF41 * REC4Y * FLUXIK) * COFAC /VREG
BS1 = EXP(-3IGBLO%ic-24%FLUX(K} *7T1])

C54% = SIG40 * C37 = FLUX(K} * Tl

411 = mXP( = 51G25 * FLUXIK]) *T1)

AlZ2 = EXP( — GAMA =* 51649 % FLUX{K} * T1)

AL3 = fIXP ( 51623 *{ ELi~1) * FLUX(K) ¥ T1)
al& = EXP (= SIGO2 * FLUX(K)* T1)

ALlS5 = EXP(= SIG24 ¥ FLUX{K)} * 71}

Alo = GXP(~ SIG23 ¥ FLUX{K) % T1l}

Al7 = C19 * | All~ Al2)

£18 = C27 * (Al1-AL2)

Ale = 028 * (£13- Al2)

£191 = C161 * (Al3- AlZ)

A192 = Ci96% (alS5= ALl2)

AL93 = C19T * (All~ AlZ)

AL94 = C24 * (L13- AlZ)

A195 = Cz4l % (All- Al2)

AZ96 = C242 = (L15~- AlZ)

AL9T = C243% (All- ALZ)

A198 = C244% (A1l3~ AlZ)

AZO = (G20 = [Al4 — AL2)

A2 = C21% (All- R1z2)

A211 = C245 = (A5 - AL2)

A212 = L246 = (All- AY}2Z)

A22 = C22% (AlS- AlZ)
AZ3= C23 * {All- ALZ)
A2G C25 * (Ail4—- ALZ)
A5 C26 ¥ (al3~ AlZ)
Az CXP{= SIG4G % FLUXIK) * T1)

o u



A27 = EXP{=5IG41 * FLUXIK)* T1)
A2B = TXP{- SIGZ2B8*FLUX{K)* Ti)
A30 = EXPIXLYI*FLUXIK)®T])
A3l = EXPOXL12*FLUX(K)* T1}
A32 = EXP(=SIG26%* FLUX(K) #* T1)

C702 =+C70 * C£93 * (Al1- AZS
C703 ==-C70 = { All- A23)
C704

MAXRZ = MAXR + K(G3
DO 5 I=MAX,MAXRZ
DO &6 L= 1,MAXC
T{I4L) = 0.
COMTINUE

CUNTINUE

KC = KC3+1

CakwdixxxBURNUP SQUATION FOR U-233,.

TI{KCs1)= Y18 + Y19
T(KC,2) = -1,

P#CT01%* (ALIS-A28)% (93

+ £92 * CT0 * {Ail~ A2B)+C691%{92% (ALl3~A28)

C705 ==CT71 *{All- A28 ) +C69% (Al3-A28}

C706 = C82 * C691%{Al3~ AZ2B)+CB2XCTU¥(AL1-428)
CT07 = C701 * £L83% (Al5-~ A28)+CT0*CB3*{All~ AZ8)
C708 =-C78 * (A13-A28)

C709 = C701 * (Al5- A28 )¥ CBl +C70 *CEl*(All-AZ8)
C94 = S1G24 *(901* FLUX(K)* Ti*All

£11 = D16 * C93

iz = Dié * £92

13 = D16 ¥ (81

Ei4 = Di6e % (€82

El15 = D16 * C83

Ei8 = (i- ALl )/SIG2S

£16 = ELLI*({{1-Al5)/ SIGZ4)-E18)

E17 = D16 * E18

E19 = EX2 *({({i-A13)/151IG23 * (1- ELI))}- Ei8)
E20 = E13 ¥ (((L=-Al5 ) / 51624 )= {18)

E21 = El4 *(((1-A13 V/(51G23* (1-FL1))1-E18)
€22 = E15 *(((:1-Al5)/ S1G24)-EL8)

30 = 31623 / {1 + ALP23)

¥Yil = A30 #(B1l% X11+ X1l*%2+ BL2) /B15S

Y12 = A31 % (Bil¥ Xi2+ X12%%2 + 81lz) /Bl6.
¥13 = <A30 % {X11l% P& + B13) /815

Yi4 = - A3%1 % (X12%¥ P& + B13) /Bié

¥i5 = ~All ¥ (813 - P3 * Ps) / BIL7

Yié = ~ A30 #*# (Xil% P2+ Bl4) / BiS

Y17 = ~A31% {Xlz* P2+ Bi4) / Bléb

Y18 = A30 % {X11*%2 + X]1l1%Bla+ Bl9) /B15

YL9 = A31 #(Xi2%x2+ X12%B18 + B1l9 ) /Bl6
Y20 = A30 ®» [X{1=(P6-~B2Q)+ R20 -BZl} /BiS
Y21 = A31 #(X1le2*({P&6-0B201+ B20~-BZl) /Blé

Y2z = Alix (B20 - B22) / B17

Y23 = A3Q ¥ {X11# Pl+ B19} / BiS5

Y24 = A3 * (X12% Pl + B19 ) / Blé

£3]1 = ~E30 *{1-A30)%Yi8 /(230% X11)

F32 = =230 #(1=-A31) = Y19 /{A31 * X1Z)

33 = —E30 %{1-A30% YZ0 /. (A30 * X11)

£34 = - E30 * {l- A3L) * Y21 / (AZ1 % X12)
35 = 239 % (1-A11) * Y22/ (All * P3)

£36 = =(30 * {j- A30) # ¥23 / (A30 * X1il)
£37 = = E30 * (1- A31) * Y24 / (A31 ¥ X12)
MAX = KC3 + 1

TIKC,53= {¥23 + Y24) * CU3) /7 C(1)

131



132

TIKT,7)= (Y20+Y21+Y22) * C(4) /7 C(1}
KGC = KC +1 .
Ch¥xkex®xkBUENUP EQUATTION FOR U=-228
TIKCy L)={(CT06 «CTOT» C728)* T(1)/ C(21 ) *SCALL
TIKC:3)= AZ28% SCALL
Ti{KC,4) = =1 * S5CALL
TIKGCy5Y=[{-Cio>{ {AL4 — A2B)/ (51528~ SIGOZY - {Al3 — AZ2B) / (51G28
1 + S5IG23 * {EL1- 1 300} = C43) / C(23) % 3CALY
TIKC, T)={1CT702+ 703 + C704 + CT705) %= C{4)/C(2)} *SCALL
TIKCy1TI=(C709% C{3)/ C(2} )} * SCALL
KC = KC 1
Chaxekp =4 BURNUP EQUATION FOR TH--232
TIKC L2 ={{Y16+ YIT) * C{L) / C(4) } *SCALL
TLKE85Yy=0r11+ Y12 ) *SCALL
T(KLy86) = =1 * S5CALL
TIKD 3 7y=4(Y13+ Y14+ Y15) * C{4)/ C(3) ) *xSCAL
KC = KC +1 !
CHhee#kx+BIRNUP EQUATION FGR U-2325
TIKCeYi=04C082 * (AL3-ALLY = C33%(A1S-ALlY )} * C{l) 7 Cl431)*SCAL2
TIKCyB)={( CB%L * [Al4-pli) ~CBS%(815-Ail)=-( 86k {A13~A1L) +
1 C87 %= (Al5= Al11}3 = C{3) /7 Ci4}) } = S5CALZ
TILC,y TI={4811 +COL1%(AL1I~ALS)— (92 *(A13~-AL1)+ CO93*%{A15-All)+ (94
1 ) #5CAL2
TIKE8) = -1 % SCAL2
TIRCL1Ti={(C31%{A15~-A11)1%C(9) Ff Ci4&b) * SCALZ
KC = KO +1
CH%mxk ¥ RURNUP EQUATION FOR U=235
TIRE,13=((021 * [ALY —-A32)+D22 % [Al3-A32)-D23%{A15-A32)31%C(1)/
i Tis8) ) % SCALZ
TIKCy T)={{D15%(AL11-A32)+¢D17 * [ALS~A3Z2)~DLl8%(AL3-A32))* C{4&)/L(5)
1 )} #=5CaL2
TIKCsS)Y= A32¥ SCAL2
TIKC,10} = =1 % SCAL2
TIKC,L7Y=l{DI9F(ALB=A32) ~D20%(ALL-A3Z)) % C(9}/ C{(57) = SCALZ
KG = KT +1
CEERFReEEBURNUP EQUATION FOR PU-239
TIKCe1)=({A194~A195 =~ AlGa+ ALl97T+ALS8) * C{1)/ C(&6)})*¥STALZ
T(KL,33=(C18 * {i~ Al2 ) % C(2)/ C{6) )} * S5CALZ
TIKL,5)=1{(AZD ~A25)1%C(3})/C(6) ) #SCALZ
TIKC»7)=0(AYT7 + AlB=Al9~ AL1Q1+A152-A193}) % C{4&} /7 C{6))I%SCAL2
TIKC,11}= Al2 % SCAL2

TIKC,12) = = 1 * SCAL2
TIKC,17)=({ A211- A212) # C{9) / L(6) ) #*3CAL2
KC = KC +1

Chuxaiokd%URNUP EQUATION FOR PU-240Q
TIKC,19={{046 * {A13 ~ 526 ) + C461% (ALl- AZ26&6) = CT462% {A15— K26]
1 +# C463 * {(Al2- 426 )} #*= Ci1) /7 C{(7)yi *5CAL2
TUKE,3)=({ Ca4%x {1~ AZ6) = Cagl * {Al2~ A26)) = (C(2}/ C{6))*5CALZ
T(KC,51=0(C467 *(Al4— A26 )} — C468 = (Al13~ Az6) + (469%(A12- AZ6))
1 % Ci{2)/ C(73) % SCALZ
T{KC,TI=1{C45% (All~ A2&6) — 0451 % {AL3- A26)+% C452 * (AL5-A26)
1 + 0452 % {A12- AZ26)Y & C(4)/ C(T) ) % SCAL2
T{kC,1131=0(C43 * {812~ AR26}) * Ci&} / L{7)) * SCALZ
TIRC,130= AZ6% SCALZ
TIKCs16Y = ~1 * SCAL2
TIKC1T71={(C464 % (ALS ~A26 ) = (465 = [A1l= A26)+ C466%{A12-A206)}1
Y % C(9)/ C(T) ) % SCALZ
KC = KU +1
ChrirFatadBURNUP FQUATION FOR PU~241
TIKC,13=01559 % (ALL= AZ2T7) + C9%L % {Ali~ A27) - (592 % {(AlS5- A27)
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1 + 583 ¥ (A1Z2- A27) + C594 = [AZ2& — A27 ¥) =C{1} / ClBY*%S5CALZ
FTIKZ43Y=({CET* (1- A27) = (571 * (AlZ2- AZT}+ CBT72% (A26~A2T1Y%C(2}
1 7 Ci8; )y * SCAL2
TIKCyB)={{C61 * (Al4g~ A27) - C6L11 * {AL3 - A27 )} + CbH12 * {Al12 -
1 A27 ) # C613 % (A26 — AZT)) * C(3) 7 C(BY)Y * SCALZ
TLKE s 7¥=((C58 * (All- A27) + (581 * (Al5~ A27) + {582 #* (AlZ~ A27)
1 - (€583 % (Al3 -~ AZ2T ) + C584% {A26~ A2T)IE * C(4) 7 CU{8Y)%=3CAL2
TIRCLLL)={{C56 % {ALl2- A27) = L£561 * (AZ&e= A27)5 #C(&) / Ci{8)
1 } = SCAL2
TIKC13)={L52 * { k26— 427) % C{7) /7 C(8}I*SLALZ
TUKGCL15Y= 427 SCALZ2
T{KCs16}) = - 1 * S5CALZ
TI{KC1T)=({ Co60 * (414 ~ AZ2T ) -~ C601 * (All- AZT7) + C602 * {Al2~-
1 AZ7) + C603 * (A26=~ A2T)) * C{9) / C(8}) * SCALZ
KL = KC #1
Ckpdrke kB URNUP EQUATION FUR U~234
TIKC,LI=({08F% {213-A15)1% L{(1)/70(9)) % SCALZ
TIKC+S)=({{B8*xlA LG~ AL1S)= CO0%*{213~A15))1% L(3}/C{9))*SCALZ
TIKC, TI={(LS01*{AL]l~A15)~ CO02%{Al13-A15))* C{&4)/C19)3%SCALZ
TIKC,1T7t= ALS%® SCAL2
T(KC,18}) = =1, #% SCALZ
KC = KC +1
CakkxidxxFISSION PRODUCTS PRODUCTION FOR U-235 FISSI0ON.
T{KC,1) ={{g2] - £22 ) # C{1)/ C(lQ)} = SCAL2
TIKC,7)=1{EL6+21T~ k19 ) * C{4) /7 CLLQ)) =5CAL2
TAKCHL7Y ={E20 = C(2) / C(10}) =* SCALZ
TIKCL19) = 1. * SCALZ2
TIKL,20) =~1.% SCALZ
KE = KL +1
Cohxrdedega2FISSION PRDDUﬂTS PRODULCTION FDOR U-233 FISSION.
TIKC,1Y ={£31 + E£32) * 5CALZ2
TIKL:5) =(( £36 + £37 ) %= C{3) / ({10} % 3SCALZ
T{KC7) ={{E33 + E34 + £35) #C{4) /7 C{10}} * SCALZ
T{KCs21) = 1. % SCALZ
FTIKC,22) = —1. ¥ BLALZ

KE = KC+1
CrEpdxkydfl-10 CONTROL POISON EQUATICN.
TIKC:24) = =1. * 3CALY

TiKCe23) = BSL * SCALL
CHixrdrkfl] LCCALIZED RcACTIVITY CONSTRAINT.

KC = KC+1

T{(KC,y11 = 3513 ¥ SCAL3

T{KZ¢3) = —3IG28%* 1E+24 # SCAL3
T{KL45) = =51602 #* 1E+24 % SCALS
T{KC,T7} = S14 * SCALZ

TIKCy2) = ~SIG2Z6* 1E+24 % S5CAL3
TIKC,12) = §195 * ECALZ
T{KC,13) = ~51G40% 1F+24 * SCAL3
T{KC,15) = 516% SCAL3

TIRC17) = =S1G24 % 1liE+24% SCAL3Z
KL = KC+1

CHersftr=NUCLTIDE CONSTYRAINT FQUATIOM( VOLUME CONSTRAINTY.
TIKCs32) =(1./1409 ) % SUALZ
TIKC,5) ={1l. /4634 ) * E£CAL2
TIKC+7) =1, f11359 ) * SCALZ
KC = KL+1
Chxexdniel-10 VOLUME CONSTRAINT,.
TIKCy23) = 1.8i8E~-03 # 5(aLZ
KC = KC+1
CabxpdxhxONR ICHMUEMY CONSTRAINT.
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T{KTs3) =—A14B * SCALSG
. TIKE,TY = &A1:8 # SLaLs
c B3l PDWIR PEAKING CONSTRAINT zQUATICHNS
KC = Ki+ 1} i -
Tk L) = 5L
TIKC,7) = 51
T{xL,11) = S
TIKC,15) = §
C TOL POWER PEZAKING CONSTRAINT ZOQUATIONG
®L = KC+1
T(KLs2) = S18
TIKL,8) = 517

8
T
i9
20

TIKL,12} = 519
TIKC,16) = 8230
RETURN

£ND

SUBROUTING PARTIMAXRRLK4ILCTY

CHEsFErsREErss pedRRtayd iy riavdpwg bt hokbrdnmRrddr s FhRgodkd 4Ryt g R R KRR KRR
¢ ’
C THIS SUBPHROGRAM GINIRATES THE NCCZS34RY TOTAL CYULE CUNSTRALINTS.
C 5
[rafmkddmd &y drk R e sk R RN R R RN E R R TR ERAG R LG AR EFRRREF LR OT RFREE R

COMMDMS SO/ SCALL, SLALZSSCALS 5CALS

COMMIN TITO80G e FLUN{LTY s TLaMAXE

1 MAXL oXCX G KC 24 MAX Lo KO3 Mads ¢ MUDS o HROT 94 MUSTE,, ICUUTS
COMMIN/BANS 22472+ 7: 10234744733
COMMON/BEDIRECZS SRFLU2Z4BELGT,REC4] 4 COFAL
COMMUN FIP/RIGHT 510654, 8IGRLD,3TCCR+5IF P4 5[FP]451IGE
CGHMD“/PQISIGngalfu_|310469“lbﬂJ SIGEG 451641 ,851G43451G25,8164G
145374828516, 5234PAVGE,PPZAKHVREG 1513451 44515,5810
COMMON FPR/YIEDP 3y W PG Y Il 234V IET1ZE YIS X234 YIRXES,

SIF2Z,31FZ5,51F4Fy SIF4L ¢KiHe
YIeR49,YI21a9,Y1xF49,

;_ i_i\.WZBg"'\rd"S,r-muleQ,~‘.‘-Jh":4.,PK K 1AL“‘IP1ALHI'$\LMX
MARL = MAXRE+ MLXRRE +KL3
MAX = MLXRE + KU3 +1
DO 5 L = MEXsMAX]
00 & I=14MAXC
TULsT) = U0

3G e

6 CONY INUE

5 CORNTINUS
5831 = 250
582 = 6000
555= 31FP4
855 = SIFpL
511 = SEGR 0
512 = S5IGLR

CHhasedimxl QUATIDING FOK
T{KLHLBY = 581 %
Caaueiiax 2R LOUATIQNG
KCH = KOH + .
TUIKCH, 23 I3 %= SIFZ3 = SCAL2
_T{XCH. E) Z3% SiF25 % SLCLLZ
TIKOHL2) = 733= S[F&49 % SCAL2
KCH = KIH + 3
ChrwwdreHIL LQUATIONS SAMaRIUM (TRCEATRATILN.
T{KCHy2) = 73 % 31F23 * 5CAL:Z
T{KOH,B) = 72 = SIF25 % S504L2
TERUH,IZY = 713 = S174G% SCAL2

'n L’lﬁ

L&
i ZHNGN CONCENTRATION,

i w



KCH = KCH + 1 .
Chksxsda #ECL TQUATIONS FOR ZENON CONCENTRATION.
TIKCHg1} 73 %= SIF23 =*= SCAL?
TIKCH,T) 16% SIF25% SCAL2
T(KCHs11) = 233% SIF49 +* SCAL2
KCH = KCH + 1 .
ChxxkekdxEGL TOQUATIONS FOR SAMARIUM CONLENTRATICN.
T(KCH,1) 2} % SIFz3 #» SCALZ
TI{KCH,T) 72 % SIF25% SCALZ
TIKCH,11) = Z1Y * SIF49 * SCAL2
KCH = KCH + 1
CHkxkkxxBIL SQUATIONS FOR FISSION PRODUCTS CONCENTRATION.
TIKCHs19) = $55 * SCAL4
TCKCH,21) = §§8&6 #* SCALS
KCH = KCH + 1
Chxkwprd%E0L TOUATIONS FOK FISSICON PRODUCTS CONCONTRATIGH.
T(KCHy20) = 555 * SCAL% .
TIKCHs221 = 556 % SCAL4
KCH = KCH + 1
Ok ¥CONTROL ROD POISON CONSTRAINT.
T{KCH,23) = 1.
KCH = KOH+1

[

CaddxkdRaFQUAT IONS USED TO ZERD QUYT ANY DESIRED CONCENTRATIONS.

IF{IMUSTILGT.1.ANDLICOUTL SNELICCTY GO 70O 20
T{KgHgg.’ = le i

T{KCHy11) = 1.
T{KCH,13) = 1.
TIKCH,15) = 1.
T{KCH,17) = 1,
TIKLH,139Y = 1?
TIKCH,,21) = 1.

IFEIMUST1.G6E.4) GO 7O 20
TIKCH,1} = 1.
20 KCH = KCH+l

c CONTAGL ROD PO{SON.
TIKCHyZ25) = 1.
KCH = KCOH+1

C BOL REACTIVITY CONSTRAINT.
T{KCH,1} = 513

T{KCH3) = =S1G28*1E+24&
TIKCH,5) = ~SIG02*1r+24
TIKCH,7) = S1i4
T{KCH,S) = ~S1G26% 1E+24
T(KCH,11) = 515
T(KCH,13) = ~S5IG40% 1%+24
TIKCH,15) = S16
TIKCH1TY) = ~S51G24% iU+24
TIKCH,23) = =8IGBI0
T{KCH,25) = =81GCK

L . EDL REACTIVITY CONSTHAINT.
KCH = KCH + 1
TIKCH,2) = §13
TOKCH4) = ~SIG28% LE+24
TIKCH,6} = ~81G02% 1:+24
T{KCH,8} = 514

TIKCH, 101 ==31I062&%* 12424

T{KCHs12) = 3515
TIKCHy1&) = = SIG40» 1:+24
TIKCH,16) = 516

TIKCH;18) -51G24% [F424
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T(KCH,24) =-31IGB10

c BOL TOTAL POWER CONSTRAINT.
KCH = KCH + 1
T(KCH, 1) SIB¥VYREGX1IF~06 * SCAL3

TIKCH, T} S17% VRZG*17-36 * SCAL3

T(KCHs1Ll) = 519% VRAFG* 15~-06% S5CAL3

TIKCH,15) = 520 *VREG*IE-06 % 5CAL3
C EGL TOTAL POWER CCNSTRAINT.

KCH = KCH+1

TUKCH,2)= S18% VRUG=*LE-06 * SCAL3

T(KCH,8) = 517 VRUEG #1046 * SCAL3Z

TIKCH,12) = S19%VREG#1:i-06 % SCAL3
TIKCH16) = 520 * YREGHLE~GE * SCAL3Z
RETURN

IND

SURROUTIMT CONST
G b ek o ek ok koK okl ok sl ool sk g0k ok ko ok el oK R o R R ok o s ok oo o ok s e R ok o, o ok e K A R Y
C
C THIS SUBPROGRAM IS5 USED TO FRIENT THC ACCUMULATIVE
G « PRODUCTS OF THE REGIONS.
T
0ok 4o ke s Vel o o SRt ot o A o B Aot o o ok s SR el o st oo o s e ok o o sk ok o ook ok ek ok
COMMON/SLYS SCALYZSCALZ,SCAL3,8LALS
COMMON T{T70:50), FLUXKIL) ,TisMAXR
1 MAXC JKCLleKCZ2 4 MAX1 4 KO3 e MAXSE 3 MROS,MROT, IMUSTLIC0UT]
COMMON /CP/5IGXT 2 SIGSA451GBL0,SIGCRSIFPL,S51FPL,51GC
D3 5 L=1,MAXR
DO & I=1,MAXC
TILyIY = 0.0
65 CONTINUE
5 CONTINUE

£12 = SIGCR
§S3 = SIGSA’
SS4 = SIGXS

511 = SIGB1O

CHkix+s42TOTAL CYCLE ACCUMULATION OF CARBUN.
TiL41) = -1,

CoukkdkaxTOTAL CYCLE ACCUMULATION COF EOL XENON.
T(2,45) = ~1l.% SCAL2

CHwksxexxTOTAL CYCLE ACCUMULATION OF EOL SAMARIUM,
T13,31 = =1+ * SCALZ
K8 = 4

CxaxxraxxTOTAL CYCLE ACCUMULATION OF BUL XENUN.
T(KBs4) = =14 * SCALZ

KB =KB +1
Caurxwgx&TOTAL CYCLE ACCUMULATION OF BOL SAMARTIUM,
T(K3,2)Y = -1 * SCALZ
KB =KE +1
T{KB,.2) 583 %= SCAL4

T{KBy &) 554 % SCAL%
CokkksadTOTAL CYCLE BOL MACROSCOPIC PUISUN CROSS SECTION(1E-O3).
T‘KB,E! = —~}s * STALSL
KB =KB +1
T(KBs3} = 553 * SCAL4

= 3
TIKB,5) = 554 =* SCAL4 t
CamakuredTOTAL CYCLE FOL MACRODSCOPIC POILSON CROSS SPCTION(LIE-03).
T{KB,7) = -1. * S5CAL4
KB =KB +1
CarxxsrsiorTOTAL CYCLE BOL ACCUMULATION OF CONTROL ROD PUISUNING.



Chwkkuxs&7ERT QUT Z0L CONTRIL ROD POISOUMING.

LYCLE BOL ACCUMULATICN OF

T{KBs8) = =]

KB =¥XB +1

TI£B,10) = 1

KB = K8 +1
CkkkRkn Rk ETOTAL

T{K3,3) = -1

KB = Hg+]

TIKByLl) = =5I6GC

T‘KB;E’) = —1-

KB = KR + 1

T(KBy1) = -SiCGL

T(K8:7) = ~1a

RE TURM

END

SUBROUTI™NE STORED

* SCALL

® SCALL

COMMON T170,500y FLUX({4)

1 MAXCoKOLyKC2 MAXL KO3 MAXE o
MAXY + MROS
MA X1

MAYZ =
MAX =

+ 1

o0 5 1 =MAX,MAX2

B3 &
TCI+K)
CONTINUE
CONTINUE

RS R

K= l1y4MAXC
= Qo

T{KC1,2) =1.

KLi =
T{KCLlqe%)

KCl+ 1

= la

KC1 = KCLi+ 1

T{XCis6}
KCL =
T{KCL,8)
KC1 =

=le

KCi+ 1

=1.

KC1+ 1

T{XC1,101 =1.

RETURN
EMD

SUBROUTINE

TRANST

COMMOK T{T70.50),FLUX(4)

1 MANT JKCI KC2,MAXLKC3,MAXS
MAXL + MROT

MAX3 =

MAX= MAXL + 1
DI 5 T=MpX,MAX3
D76 K= 14MAXC

TiI.%1
CONTINUE
CONTINDSE
TIKC24+21%
KL2 =
TIKC2 ¢4}
KLz =

AR LY

= {Ja

=1.

K2 + 1

=1la

KC2 + 1

TIKCZ24H6) =1.
KLé = K£2 + 1

TIKCZ 481
KC2 =

21-

KC2 + 1

TIKC2,13) =1.

K2 = KC

-
&

TIKC2,12)

KCZ =

+ 1
=1s

KC2 + 1

1y TLMAXR o

1T1'HA)<R L ]

E~10 CONTROL POISGN.

MROSy MROT, TMUSTL,IC0UT]

MRSy MROT,, IMUSTL ,100UTL
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T(KC2,14)

=1.
KCZ = KC2 + 1
TIXC2,16) =1.
KC2 = kKC2 + 1
TiKC2+1i8) =l.
KC2 = KC2 + 1
T{KCZ2420) =1.
KC2 = KC2 + 1
T(KCZ2,22) =1l.
RETURN
NG

SURBROUTINC TRANSF

COMMON TIUTO,001» FLUX{4T s TLyMAXR »

1 MAXC,KOE,KC2yMAXT yKC34MAXSG
00 5 I=1,MAXR
DO 6 K=1,4AXC
TII+KY = D
~CONTINUE
CONTINUE
TOLlyl} =~1.
T(2:3) =-1.
Ti345}) =~1i.
Tl4,7) ==1o
T{5s9) ==1.
T{6a11) =-1,
T(7413% =—Ll.
T{8s15}) =-1.
T{9,17) =~1,
TLigs19) =-1.
T{1ls21) =1
KC3 = 11
RETUAN
END

SUBROUT IN=Z FULLP

MROS, MEOT , TMUST1 4 1COUTL

COMMCN T{70,50) FLUX(4) 4 T1sMAXR

1 MAXC4KCIKCZ2,MAXTI KC34MAXG
DN 5 !=l e

DO & K=1,7
T(I+R} = G
CONYINUE
CONTINUE
T(lil} = -il
T(2+3) = =1,
f(3153 = ~1a
T{4,+7) = =1,
KC3 = &
RETURN

£ND

SUBRJUTING FULI

MROS, MROT  IMUSTL ,, ICOUTL

COMMON T{T0.50) FLUX(&)} 2 TLMAXKR

L MAEXC yKCLyKCZ2 3 MAXL s KC3 4 MAXS
D3 5 I=1sMAXR

DO & K=1,MAXC

T{I;K} = Qo

CONTIN =

CONTIMUYE

T{1,1) = 1.

MEOSy MROT s IMUSTT, ICUUTL
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CTE242) = 1.
T(2,3) = 1.
Tl4s4) = 1a
RETURN
FND

SUBROUTINE SYORI

COMMON TIT79,50) FLUXT&H Y +T1MAXR

1 MAXC,KLL,KL2,MAX]L
DEX = =14
IF{MAXL4.GT.2) DEX
D0 % I=MAX4 MAXR
D9 & K=1,MAXC

T{I+K} = Qa
CONTINUE

CONTIMNUT

KD = MAX4

TIKD1) =] .%0EX
“KR o= KO#+ 1
TIKD:+Z) =1. ¥DEX
KD = KD+ 1
TIKD,3) =1l. #DEX
KD = KD# L
T{KDs&Y =%. ®=DEX
KD = KD +]1
TIKDeB) = 1% DEX
MAXG = MAXEK +1
MAXR = MAXR + MAXSG
RETURN

END

= 1.‘
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APPENDIX E

Discussion of Lrror Messages

In finding the optimum solutions to the 6 cyecle cases, i.e., Case 2
and Case 3, several problems were encountered which merit discussion here.
The first problem was an error message reading "Lta Overflow" which indi-
cated that the storage area for the Lta vector had been exceeded. This
error was corrected by controlling the number iterations before invert
demand is activated. Invert demand has two control parameters which are
"Frequency' and "Clock Control." MPS automatically sets these parameters
unless sgpecified differently by the control cards, "Frequency" has assigned
to it 100, i,e., 100 iterations will take place before Invert Demand Is
activated unless a certain duration of executicn time has expired on the
"Cilock Contrel" which alzo demands an invert. Therefore a control card,
XFREGINV = 50, was inserted into the MPS control program compiler to change
the freugueney specified number of iterations before invert to 50.

Another error message which proved the most bothersome was given as
"Non-Zero Basle DJ after Price." This error suggested that the r%g error
was too largz, but after close scrutiny of the MPS output the row error was

found to be sufficiently low; therefore the identical program was resubmitted

and the optimum solution was attained.
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ABSTRACT

Linecar programming was used as the optimization technique to minimize
the amount of U-235 being used in a 1160 MWe HTGR while simultaneously
maximizing the production of U-233., A model was developed which coupled
n number of cycles to produce the optimum combination of input fuels to
produce U-233, The reactor linearization was achieved by the assumption
that the flux spatial distribution was a constant for any given operating
period, The reactor core was divided into four concentric annular zones,
and a "out-in'" fuel movement technique was used while the fissile loading
of the core was held uniform by adjusting the power peaking constraints.

A matrix generator computer program was developed to produce the
necessary input data con magnetic tape for IBM-MPS., Three separate cases
were constructed and the optimum solutions were found., Case 1 was a three
cycle no U-233 recyele, Case 2 was a six cycle no U-233 recycle, and Case 3
was a six cycle with U-233 recycle in the fourth refueling event.

From the results of Case 2 and Case 1, it was found that the U~233
produced from elght years of operation of a 1160 MWe HTGR was enough U-233

to operate the same reactor solely on U-233 recycle for three years hence.
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$J0B
DIMENSIUN

YFC 3T IME=3,!
COYF{30)y 8L 55)

COMMON/SLS SUALL 2SCALZ SCAL3SCAL4A
h1h11133;340233

2B Ca9,RECE] 4 COFAC
1 TLeMAXE

1 MaXl KOLleKE2,MAXTIKEZ MaxXs

COMMOGN/BAGY 11.2
COMMON/BRDIRFCZ2E
L OMMON 1(70;SC’vFLUX(4l

a-,-7J

b L

120

PAGLES=40

sMIDI2Y410(2)

» MROS, MRUT, IMUST1,IC0UT]

COMMON FPA/YIZP 3 Y P28 YIE 23, Y1125, YTEXEDyYIDKZS,

1 SIF22451F25,351F49,
2 YIiX49,¥YI{149,YIMP4AG,

2 ENHZ33 T NW25 3049 3 U NHEL o PREK 4/
COIMHIN/PBR/SE IGZd.:IGOZ,SIu;&,SIP40
SRR VRIG

L1oS5174018951943204FaV0G,

SIFOHY ¢ KL H,

LNP ALMI:ﬂLMX
51Ge S1G41, SIG’B 51G25,51649
bisyélq'ulerIO

COMMIM IPJ/C!iOQ,P{Jl,%r(S},Ga1A,PKPA2:,uuPA49.
ITKPAZS T L 4L 297L3,C010,081240135C144C15,C16,C17,C018,019,C192,C1592,

2C194 CLGE,
3 qCT0WCTOLCTL CT2,L75,0Tay

C204C2 L0220 23¢02550264C274028,0894L629024,L2998694L091

CTSeCT6+LTT4CT8,C0E0,L8L40E8,0080:L901,

QCQQ) COLls0824093,031,083,C8440E5.CBOL8T 0241902440242, 024%
COMMONIBU/L 245, 024640196, 0097y C0191,L30,0214032,03253,4034,4L03540326,037
130384039, C40,041 40424042 40444,C841,045,C45140457,0453,046,0481,

4624046340404y LA55, 04064046740 406840465,04T4048,043,050,(5
L84,055,0564056L 08T 4L5Ti40572,058,0581,058£,0583,(584%
COMMINIBU/CE9,1.59140592,0503 405344080, C8601yCE02¢LE60%,001,061148
s 0i34N1 4,015,006, 007,01284016,0
3yP4Gy PS5y PO, BYL yB12,813,21%, Bl)y%‘b,bl? BiB,BIi9,.B20,821,
1 TTAZS, ! 1LP£3gu?ﬂ247
HPSTLPLlsFAC
|§IGJM1..:IG)’1P SIGF"{[

LUEZLLB21 8
ZoLBLn, L2
34Pl4PELP
LRAZZALP2S
5 ALP4Y9, 0 l&‘fqlﬂLp‘!f‘!-TA'f‘
CoMmnyg JOP/STIGKRD
DO IO I=3430
i3I} =1.0
FURMATISNIG,400)
FUADLIS T} TLLFLUXM, PFAC
REAT{G451)
1 SIGeoS160
£Pi 19 Fal
READ({E,6L) yifhvrz3

10
61

549y ALPLG

h.

2 HWZS,
PIAD{5,61)
1 ZOFAL

YITP23/
Yize2s s
YitEPage / BEG‘A
LHUMBRR

1

22

111 =
ComdrsssrapnLYC 15 THO
C

nofn

c
R EEE T TR
C

EG I% TH:z

MRETL = 4

C

CakrryasANUMBIR OF

¢

CH%amheerCALCULATE FISSTON CRUS3S
S1F23 JTG23 0% (424 /LI
BiFEZS SiGz5 iT+d4 {1+
3EF49 51649 4 1I+Z4 Jf(1+
51F41 SiG4L % 1%+Z24 JULA

CHaddkgrr=dd 200 AYVFRAGE FLUX BATIO

FLUX LEVELSD

*

oo

=2

s YI P25, ¥IE]
1 SIGXE ¢5I68A,SI6BCsSI0310s8i0LK,

TRNWLEG TR LY S PRy ALMPALMT y ALMX
FENMAX s FPAVG s FPF ;‘“‘\,TF’_}N'VRrGgRLLS gz L23:ReC49, Ri C‘él]
s YIEP49, YISl 49, Y10 X409

NUMBLE [OF REG

MERTY

CisU32,

Lolz
20eNZ214D72,02%,8,B e X11eX12

A148,41 28

I1FP4,5IFPL,51IGC

ﬁLofJ,uzszgyL{Ag‘1ﬂLp231SlGh$QL1&d3f51628 51624,

56948510640, 51G419aLP4Ll TTAGLEPSE,

233 YITI25,YIZR224Y1I0X25,y
ENWZ3 .
1 SIFP4,81FPL

(5IGSA H
SIGis )

OF FUEL CYCGLES CONSICLRECD.

TGNS CONSID:ZRTD,

FRULL NREG.

ZCTIGNRS I BARNE,
WLRZE)
L )
L

T UM

QO T L
KA e

b= = XS
J

15G)
ALPLLY
Fut cACH

REGIDN.
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AD{S,65) FLUF: oFLUF2 yFLUF3,FLUF4
FLUXM = FLUXY% PFAC
Chus et =20ALCULAT:. AVO2AGL FLUX LEVEL FOR =fACH 1.GION.
FLUX(T Y =FLUF) 8FLUXM
FLUXLZ) FLLF2 * FLUXM
FLUXE3) ELUFS % FLUXM
FLUX(&) FLUFS ® FLUXA
SV AGL JHWAYL /7 {1+ ALP&4E)
f7L25 W25 / {L+ ALPZS)
CTa23 = CaWZ3 4 (v ALP23)
21 AG9 INWG9 / (1+ ALP4S)
MDSK = 9
CHnaieits @ IMAX 15 THE NUMBeKR OF "oQUAL™ CONSTRAINTS IN TH= BURN PARTITION.
IMAY = 12
Cadeweah s KMAX 15 THI NUMRLER OF "GREATER THAN" CUNSTRAINTS IN YTH BURN PARTITiuN.
KMAX = 4
Casewxn st sMAXS I8 THE MAXIMUM RUMBLK OF COLUMNS IN {ACH-RLGION.
MAXC = 25 :
Chs=sriadMaXf IS THE MAXIMUM NUMBER OF ROWS IN TACH HeGIOUN.
MAXR = 18
CAEwas*INTR IS NUMBER OF "{QUALY CONSTRAINTS  IN THZ  CUNST PARTITION.
KOMTR =11
CagaEakEAKMIR IS NUMBHR GF “GREATER THAR™ CONSTRAINTS IN THE CUGNST PARTIVION.
KMTR = 3
CodwgassiMe X006 15 THS NUMBISG OF COLUMNS IN THD CONSIT PARTITION.
BAXCE = 10
Cokn ddkaxMaX ik 15 THi NUMBYR OF ROWS I THu CONST PactiTiUN.
MAXRR = 14
CHarsiis eMP0S R PRESINTS TH: NUMBER OF REOWS IN THi STORAGD ARLA.
ML = 5
Casdass v MROT RUPROSINTS THE NUMBUR OF ROWS I THE TRANSFeR PAKTITION.
MEOT = 11 :
(asweitd s MINP PUPReSENES THD NUMBER OF ROWS IM THE INPUT PARTITION.
IR = 4 y b
Cwrezztat HOOLS RYPROSINTS THD NUMBER OF COLUMNS IN THS INPUY PARTITION
NLOLS = & ;
Crmaksi bk {MEFTS RePRASENTS NUMBER OF COLUMNS IN THD IN-STORAGH AR%A.
Mils = 5 '
ILET. = HEG
PMAXI= IMAX
HAXCL Ma X(
M4 XR L MAXR
KMaXi KMaA X
MaX20 70
MAXCO = 5O
AL4B = 238 % FrMaX
AuZB = 235 = 235 & CNMAX
Cwagddkgtiy |y
SCAL2=Y
STALS =
GUALL = 1v+02
9]

nogn

wounowon

LL O I I L T

CROSCALING FACTURS.

SCALZ Lo 403D :
CAdA Ewacke B 00 In RoaONANCE FSCAPY PRUBABILITICS FCOR U238 AND
C¥vww skxreH =257 FUR -AlH A GLI0ON.

el syood (PIE) K=l gk G

Fra{by6l) (PTIK)K=1lx0:6)

Ko= 1

SRtw At EOALCULATY CUNMITANITS FOD PURN=JP (OUAT TUN
PKKK = Pi{K) % =P51 *PKKK
Guslg, = L= ad9s PS1¥F v {l~P{K]))
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EKPAZ25 FTA25 * FPST * PL11#%(1-P(K})
EKPA4S = CTA49 * =PSI * P11% (1- P{K))
EKPAZ3 = ETA23 % EPSI  * P11% {1-P(K)}

ELY = ETAZ3 #* FPSI * P11* (1-PT(K))

ELZ = ET£25 % ([PS] * P1l% (1- PTIK))

EL3 = EPSI % P11#% (1- P(K})

Cil = SIG23 * ALP23 / {1+ALP23)

Ci2 = Cilx SIGD2 * SIG2% # FAC/ ( SI1G23-516G02)
C13 = CKPA25 * SIG25

€14 = €13 = (C12/ (5IGZ24~ 51G0O2)

C15 = pgKPA23 * 51622

Cie = Ci5 * 51602 / ( SIG23 * (1-&L1) - S5IG0OZ)
€17 = Ci5 * 51625 * =Lz / ( S5IG23 # (I-FLi1) - S51G25)
Cl8 = 51G28 / ( GAMA * 51649}

Ci9 = C13 / ( GAMA * SIG49 - 51G25)

Cl92 = GAMA * SIG49 -~ 51624

C193 = GAMA * S5I1G4% -~ 51G25

Ci94 = GAMA* S1G49 - SIG23 *(i-FLI)

C19% = GAMA% 51G49 - $IGO2

€20 =Cl6 /7 Ci95

€C21 = C14 / ({ GAMA % 51G49 - SIGZS )* (S1GZ25-5S1IG02)*FAC)
€2z = €14 / (( S1GZ5-S1G24 )% { GCAMAXSIG4Y9 = SIG24)*FAL]
C23 = Ci& / (0 51625 — 51624 )* { GAMA * STG49- SIGEZS5Y* FAC)
£C23 = Cl&6 /7 { GAMA % 51G49 - S5I5G02)

C26 = C16 / 4 GAMA * SIG49 + S5IG23» { ZL1-1))

€z7 = C19 * Ci7 / C13

Cz8 = C26 * C17 / Clé6

€89 = C1i/(51G24-51G23> {1~ EL1))

C82 = SIG24 *» (89 / ( 51625~ 51623 * (i~ CLi))

C24 = C1i3 *x €82 / C1lS4

C29 = ALP49 * S1G49 / (1 + ALP49)

C69 = CIT /(SIG23+51623%{EL1-1))

€691 =-L69 * C13 / C17
C7o €13 / 151628~51G25)
C701 =-C13 / (51528 ~ 51G24)

f

€71 = C17 / { 5iG28- S1IG25)

C72 = Cl&/ ((S1G25-51G02)%({SIG28~51G25)*FAC)
C73 = Cl4 / ({31525~ 851G24)% [531Gz8«~ SIG24)+FAL)
CT4 = Ci6/s (SIG23+ SIGZ3* (HLi-1)1}

C75 = Ci4% / (( SIG25- SI1G02)#* (SIG28- LIGOZ2)*FAC)
CTé = C14& JU(SYG25~ SIG24)*{SIG2ZB-S5IG2E)*FAC)
C77 = Cl6 / (51628~ 351G02)

C78 = €15/ (51623 - 51I623% (i~-7L1))}

CBY = Cil¥ 3IG25/ 151G24-516G23)

CBL = SI1G24 /( S1G25- 31G24 )

£B8 = CIL =Cl6 A(CLIS¥(S51G24-SIGHE])

€93 = Cilx (16 /(CL5 =(STG24+51G23%(2L1-10))
C901 = Cll% C1l7/ (CL5 *(51624-S1G25))

G902 = C1li* C17 F{C15%(810Gz4+ SIG23#(&L1-1)01)
C91 = 51624 + C£301 / (87G25 — SIGE4)

£92 = SIG24 * 902 / (51G25+ SiGz3+ (¢ii-1))
£93 = §1624 = 902/ (5iG25~ S1624)

Dil = ALPzS * G257 (1+ ALP25)

€83 = SIG24 * C£39 / (81625 ~ 51624)

(B84 = SIG24 * LB8 / (L1625 — 51G02)

Ca5 = SI1G24 + (88 / (5IG25 — 5iG24)

CB6 = SIG24 * €36 / (51625- S1623 *{1- EL1))
CB7 = SiG24 * L90 /{SIGi5~ §$1G24)

Cz4l C12 / C193

non

Cza2 C13*La3/ Cl92
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C243= €13 / C193
C244 = C15 / (194
C245= C13* (8l/ Cl92
C246= (13 * C81/8193

Cl9s = C13 * (S3/ €192

C197 = €13 %*%%3 7 C193

Ci9l = C13 * (92/ (194

C30 = C27 +C19 - C197

€31 = €28 + C191

£32 =C191 +C28 + C197 =Cl9-C27 - Ci%e
€33 = C24 + (244

C34 = €243 - €241 :

€35 = C241 + (242 ~(24 - (243= L244
C36 = C246 - (245

€37 = £26 - C20

C3B = SIG4D —~ GAMA% $16G49
€39 = 51640 ~ S1G25

C40 = SIG&D — 51623 % {(1-£L1)
C4l = S1G40 - 51624

C42 = S1G40 - SIGO2

C43 = L£29 / €38

C&44 = £29 % C18 / SIG4D

Ca41 = £29 % C18 / £38

£45 = €30 * C29 /7 C39

C451 = €29 % C31 / C40

C452 = (29 x 0196 / €41

T453 = C29 ® €32 / C38

C&6 = Lp9 * €33 / £40

C46l = €29 % C24 / 39

C462 = £29 * Cz42 / C4&l

C463 = €29 * €35 / {38

Chod = €29 % C245 / C4&1

C46% = 29 * (246 / (39

Case = C29 % £36 / (38

C467 = C29 * C20 [/ C42

C4e8 = €29 % €26 / C&D

C465 = £29 % L37 / C38

€47 = Ca4l - C44

C48 = C451 — £45 ~C452 - (453
C4G = 462 - C46~ (461 - L4563
£50 = C465 = C464 - (466

CE01 = (468 — (467 — C489

cs2 SI1G40 / (51641 ~GANMA® §1649)
€53 $1G40 / 151G41- 51625}

€521 = 51640 / (»1G4l- $1G40Y

C54 SIG40 / (351G41- 51624)

C55= S1G4G /7 {51G4l- siG23#{ 1- EL1})
£56 = C52 * {43

€561 Ce31 & C43

CST = SIG40 * C4&4 / SIG4A1L

B

It

i

CS87L = C£S2 * (441
€572 = C531 * C4&4t
C58 = €53 * (45

£C581 = C&54 * (452
€582 = C5z * C453
(562 = (55 % (451
€584 = C531 * (48

C5% = £55 * (46
C591 €53 * L4686l
€592 CB4 * (462

It



124

€593 = (52 % (463

€594 = (531 * C49

C60 = C54 * ([464

Cs01 = €53 * C465

€602 = €52 ¥ C466

C603 = £531 * €50,

Cé61 = SIGA0 ¥ C467 / {51G41 - S1G02)
C61l = C55 * (468

€612 = C52 * C469

C613 = (€531 % C501

Dl2 = §1G26 - SIGZ25

D13 = 51626 - S51G2%

Dl4 = $1G26 + 8IG23% (IiL]1-1])
D15 = D1t * {C%2-C93 & 1}/ Di2
Dl6 = D11 / ALP2ZS

D17 = D11 * C93 / D13

plg = D11 * €92 / Dl4

D19 = D11 %= C61 / D13

D20 = D11 * C81 / D12

D2 = D11 * (C83 -~ (82) / D12
D22 = D11 * C82 / D14

P23 = DL1 * (83 / D13

A= SIGO2 + SIG23*(1-£L1)

Bi= 5IG02 * S1G23 ¥ Fal

Xil= .5 ®{-A+ SQRT(L*%2~(4%BLl/FAL)})} )
X12 = o5%(«A~SQRT(A%*¥2-(4%B1/FAC)})

P1I = §1G02

Pz = ELLI * 51GZ23

P3 = S§1G25

P4 = 851623 * {1~ [L1)

pP5 = SIG23

P& = FL2 * SIGZ5

BLll = P4 + P3

Bl12 = P3 *% P4

Bi3 = P& * P5

Bl& = P2 # P3

B1s = {X11-X12) % (X11+P3)
Bls = {(X12=- XIi1l) * (X12+ P3)
B17 = (P3s Xil) * (P3+ Xi2)
B18 = Pl+ P3

Big = Pi% P3

R20 = Pl* P&

B21L = Pl® P& * P3

B22 = P23 % P6

KCH = MAXR +1

D3 5 L=1,MAXRQ
DO 6 I=14MAXCQ
COrF({1) = 0.0
T(LyI} = O
CONTINUE
CONTINUE
MAROW = ICCT * MAXR
MAXAL = MAXR + MAXRR
CHauwkdakkSPLLTFY COSY COSFFICIENTS.
CORF(2) = -1.39
COF(T) = 1.
D3 7 L= 14MAXR
BIL) = 0.0
7 CONTINUE .
3000 FORMAT('NAME! 10X, *PROBLEM /PROKST/Y N PROFITY)

e



BO1 FORMAT(Y ",9F%,' ROW',I3)
300% FGRMATI(® ','G',' ROW',13)
3003 FORMAT(Y ', 'L ", ROW'.I3)
‘3004 FOAMAT(PCOLUMNEY )

3010 FORMAT(T1l,? COL'yT84134T15¢ " ROW®* 4 TIB,4134T25,E12.51

3012 FORMAT(*RHS') ’ ’

301 FORMATHTL,? LIMITEY s TI5,'ROW Y +T18,12:T254[125)

3009 FORMAT(YTENDATA')

3005 FORMAT(TLiq? COLY 3TB+I134T1Sy ' PRUFIT ¢ T25+E12.59T40+"ROUY 4143
}4135T50451265})

3006 FORMATI{T1,! COLY s TBe1341154 ROWY 4 7184134725521 2453T40,"ROWY
19T43,13,750,4E12.5)

3007 FORMAY(T1,.1 LIMITSY s TIC 4 RIWY s T184134T259L1259T40,4REW!, T4

134134750,4F12.51)

CH*dmtkx CONSTRUCTION OF ROWS VECTOR
WRITZELMDSK 2000)
I1X¥U = 3% MEOT + MROS + MINP
NRPP = NRzG + 2

NR=101

IMUSTYL = O

ICCTY = ICCT +1
1CET2 = ICCT-1
ICCT3 = ICCTL + 1
ICCT4 = ICETL + 2

DO 839 K3=1,NCYC
Crkmthsx{PDATE ALL PARMETERS.

MAX = IMAXY
KMAX = KMAXL
MAXR = MAXRL

THUSTY = IMUSTL + 1
DO 802 Ki= I,NRPP
1F(K1eLELICCT) GO TO 799

IMAX = KONTH
KMAX = KMTR
MAXR = MAXRR

IF(RLLLELICCTLY GO TG 799
IF(IMUSTI.EQ.NLYL) GU YO 400

IMAX = IXMU
MAXR = IXMU
KMAX = D
GO TO 799
400 KMAX = D
IMAX = MROS
MAXR = MROS

799 IF (IMAX.LY..5) GO 7O 850
DO 8U0 K=1,IMAX
BRITe {MDSK 801 INR
BOD NR=MNR+1
IF{IMAX E0.MAXRY GO TOQ 802
B850 IH=TMAX+1l.
Kd=THMAX+EMAX
ITFIKILTa5) GU TO 860
IF{KMAX.LT2c5) GO T2 BGO
CHFekvst CONSTRUCTIGN UF G CONTRAINTS
DO600K=TH, KJ
WRITHIMDEK ,, 3001 INR
600 NR=MA+]
Cadxetszs CONSTRUCTION OF L CONTRAINTS
860 IP=KJ+l.
IFLIPLGT.MAXRY GO TO 652

125



DIEOSK=TP, MAXR
WRITE(MDSK43003)NR
605 NRI=NR+1
802 CONTINUZ
899 CONTINUE

C
c UPDATE PARAMZ=TERS.
c

IMAX = IMAX]

MAXR = MAXK]

KMAX = KMAX1

CHkxxtkk CONTRUCTION OF THE COLUMN SECTIUN.
WIITE(MNSK,3004)
CHFExktxxxTHNIALIZE
IMUSTI = ©
NFIL = 0
MKK = MAXR 4+ MAXRKR
MKK1 = MROT + MAXR
MKZ = MROT + MAXR + MAXRR
NC = 100
MK3 = MINP + MAX + MAXKR
NRPL1 = NRPP+1
MROWL = (M&RIOwW+ MAXRR]) * 2+ {ICCT-13*MROT +MRUS+MINP
0D 8332 K3=1,4HCYC
COEF{2) = =1,.39
CO=F{7) = 1.
MAXR = MAXHRIL
MAXC = MAXCL
ICoUTYI = 0
1CONDY = ICCT2
CadbyeneaskxJPUAT i REFoRENCE POINT.
NFIL = TMUSTY #*(ICCTHMAXR + MAXRR+ {YICCT-1) % MROT+ MROS+MINP)
IMUSTI = IMUSTL + 1
MAX4 = 1
KC2 =0
DO B0O3 K1 =14NRP1
ICOUTYL = JCOUTY + 1
IF(IXMUSTI.EQ. 1) GD 10 925
KC3= 0
IF(ICOUTILLTLICCT) CALL TRANSF
IF{ICOUT1.T0.YCCT) CALL FULIP
925 CONTINUEL

KCH = MAXRL + KC3 +1
KCY1 = MAXRI + MAXRR + K03 + 1
KC2 = MAXRY 4+ MAXRR + KC3 + 1

ChsaranexINIALYIZE POW NUMBER GF FIRST FOUR REGIONS.
IF(KLi«GTICCTY GO TG B39
IF(IMUSTR 0.1 ) GOTT 572
N2 = NFIL + 100 —1CoHULlE MROT-MINP
ICONUL = ICONUL -1
60 7O 571

572 HNR NEIL + 100
NP NR — MAXK
: KR = NP + TCOUT1 & MAXH
ChrervnusssGENIRATL BURNUP zOQUATTONS.
571 CALL BURN{KI)

Caoksiod % GENTRATE CONSFRAINMT vQUATIONS.
CALL FPART(MAXI Ry K1, ICCT)
IFIICCUTL1aNR.1) GOTN 965

Chird v FGTNERATE BULK STORAGE AREA,

it
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965

401

839

127

CALL STORCO

MAXAL = MAXR + MAXRR + MROS

IFIKC3.6TLG) MAXAL=MAXR + MAXRA+ MROS + MROY
GD T3 842

CONTINUE

IF(IMUSTLILEQ.NCYC) GO TO 401

CALL TRANST

MAXAL = MAXR + MAXRR + MROT

IFIKC3.GT.0) MaXAL= MAXR + MAXRR + ZE*MRAOY

IF(ICOUTLLEQ.ICCT) MAXAL =MAXR+MAXRR+ = MROTH+MINP
GO YO 842

MAXAL = MAXR + MAXRR + MROT

GO TO 842 :

CONTINUE

ChexesrkxINTALTZE ROW NUMBER FOR LAST THREE REGIONS.

840

IFUICOUTLLNELICCTLY GOUTO 840
MAXR = MAXRR
MAXC = MAXCC

COEF(2) = 0.
COEF{3) = O
COEF(E) = 0.0
COEF(T) = 0.0

CALL CONST

MAXAL = MAXRR

NR = MARUW + NFIL + 100

GO TO 842

CONTINUE

IF{ICCUTINCICCT3) GO TO 841
MaXR MROS

Ma XC MEIS

MAXAL = 2% MHOS

Cxdxxdx2GuNERATE ACCUMULATIVE BULK STORAGE AREAS.

B41

CALL STORI

CalLt STORI

IF(IRUSTIEQaNLYL) MaXAL = MROS
NR = HAROW + MAXRR + NFIL + 1C0
GO 10 g42

CONT INURE

IF{ICDUTINELICCTS) GO TO 842
IF{IMUSTILZQ.NCYC) GO TD 833
MAXR. = MINP

MAXC HCOLS

MAXAL = MINP

CherakaxsGENERATE INPUT FUEL PARTITION.

842

5565

711

CaLt FULI

NR = MAROW + MAXER + MROS + 2#MROT +NFIL + 100
CONTIMUT

DO T72C N=1,MAXC

MM= 1 :

NC = NC+1

NOD = 0

NOW = 0

DO 710 M=MM;MAXAL

CIF T {My N NELDLY GO TO 71

GO TO 710

NTR = NR+M
IFIICOUTIZQ.ICCTL . ORICOUTLLERLICLTSY GO TC 530
IFIIMUST1.GT1) G TQ 502

IF(ICOUTE NS G TD 501

TF{M.GT JMAXRY NTR= MARCOW + NFIL +100+M=MAXR



501

502

503

507
508

509

510

506

511
550

552

710

120
803
833

GO T0 &850

CONTINUE

TFTICGUTYLGTLICCTY GO TO 502

IF{M.LEMAXRY GO TO 550

IF(MeGTaMAXRG AND oMo LE o ¥KK) NTR=MARDWNFIL+100#M~MAXR

IF{MaGT o MKK]) NTR= MAROWHMASS+MAXRA+(KI~2 )¥MROTENFIL+1004+M=-MKK

GO T0 450

CONTINUE

IF{ICCUTI.NELICCT3) GO TO 502

TF{M.GT.MROS) NiVA= MROWI+ NFIL + 100 + M- MROS
GO 7O 55¢C

IF{ICOUTL.E0.1) GO TJ 506

IF{ICOUTLC0 ICCTY GD TO 509

TF(MeLZMROTY 6T TO 550
TF{MLGT.MEDTLAND WMo LESMKKT ) GOTD 507
IF(MaGToMRKIJARDoMalca MR2Y G0 TO 548

NTR= NFIL 4 100 + MAROW + MAXRR+ MROS+ {(K1-2) *MROT+M-MKZ

GO TD 550 :

NTR = NFIL+ (Ki-1}+MaXR+100 + M—MROT
GG 70 550

NTYR = NFIL 4100 + MAROW+ M- MKK1

GO TO 550

TF{M.tE.MINP) GO TO 250
IF{MaGTaHINP.AND o Me L MK3) GO TO 510

NT® = NFIL + 100 + MAROW+ MAXRR+ MROS+ (KI-2)}* MAOT +M-~

GO TG 550

NTR = KNFIL + 100 ¢ MAROW-MEXR+® M~MINP

GO 702 550 '

IF{ ML« MROTY GO T 550

IF{MaGT o MADTLANDMaLa ¥KKL) GO TO 511
CNTR= NEILE 100 + MAROW+M—~MKKI

GO YO 550

NTR = WKFIL + 100 % M-—MROY

CONTINUE

IF(RIC6T.0) GG 79 552

WRITE(MOSKy 3005 INCyCORE{NY +NTRyT(MyN)

NOD = NJOD + 1

GO YD 710

CONTINUE

NOW = NOW+1

MIDINDW) = M

ID{NUW) = NTK

IFINOYaLTe2) GO TO 710

WRITE{MOSKyZ006INCe IDL 1) TIMIDIL) N)ID{Z21.TIMID(Z)N)

NOW = O

CONTINUE

IF(NDV.E2.0) GO TO 720

WRITE(MDSK 301 0I NG, IO 1), T{MID(L],)

CONTINUEZ ;

CONTINUZE

CONTIMLU

Cadskoik COMSTRUCTICH OF RHS VECTOR FOUR MPS-240 INPUT

WRITH(MUSK 320121}
IMUsSTI = 0
00 625 K3=] «NCYC

Chmradpm |JPRATE REFZELNCY ROW NUMBLR.

MAXR = MAXRL
NFIL = ITMUSTYIA{ICCTHMAXRHALADNRHIICCT-E VEMRDTHMAUS +MINP
IMUSTL = THMUSTL + 1

CohaethaneINYTIALIZE .

128
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MAXR = MAXR1
MR = 100 +NFIL
NKREG = ICCT + 1

NTR=0

B(13) = Q.
B{14) = Q.
B(15) = Q.
B(17) = 0.
B(18) = Q.

DO 804 K1=1,KREG
IF(KL.Lz.ICCT) GOTD948
MAXR = MAXRR
CHdkpk bk GENERATE RH3 TOTAL POWER CONSTRATINTS.
B(13) = TPOW®PFACUXSCAL3
B{14) = TPOW=PFAC #S5CAL3
JF{IMUSTLIL.LT 3. 0RIMUSTL.GT4) GO TO 958
B(13) = TPOW *PFAL * SCAL3 #.,9741
BlL4) = TPOW *PFAC * SCAL3 *,9741
GO TO 958
.948 Bll4) = 1. * SCALZ
B(15) 1. * SCALZ
PPEAKL = PPRAK
Crkselok R 2GENERATE RHS POWER PPFAKING CONIRAINT.
IF({KLiGT.2) PP:-AKL = PPrAK®: .87
IF{KL.GTn2) PPJAKL = PPFAK® .77
B{17) = PAVGH PPEAKL
CBULBY = PALVGE¥ PPAKY
958 DAT30M=1,M4XR
HA = HE 3]
IFLE{MI Qa0 1GUTOT3C
MTE=NTR+]
MIDNTR) =M
IDINTR) =MR
IFINTRLTL2)IGOTLT3D
WARITZ(MOSK s 3007V IDCL I, BIMIDII))ID(2),4BIMIDIZ))
NTR=D
730 CONTINUE
IF(NTR.E0.0)GCTDT3E
WRITTIMDSK,3GL1) ID(1),B(NMIDI1IN
731 COHTINUE
NTR = 0
804 CONTIMUFR
625 CONTINUZE
736 WRITE(MDSK,3G09)
Syop
IND

SUBRTDUTING BUSNI{K)
G shoste e ok feope sl i 2 0 e oo ok 09 N e s e ol R ool st ok o o o s kot o o sk sk St ot s e o) ool ok ek ok ok 3 R R R R R R ke

C

c THIS SUBROUTIANE CONTAINS THE BURNUP EQUATIONS FOR THD TH-Z32

C AND U-238 FULL CYuLiS. THE SUBRGUTINE ALSO LINTALNS  LOCALIITOD
c CONSTRAINT TQUATIONS FOR EACH PEGIUNS
<
c

o o e s e B ke o R st et ol ol v v e st sl o oo b bt oo o e o e o ool o o ol oK o R ol R Sk R K R e
COMMON/SC/S SCALL ¢SCALZ SCRAL3SCALG
COMMON T{T70:50) s FLUX(4) S TL,MAXR
1 MAXC KU KROZ o MAXL gKE24MAXSG o MROS¢MRUET, IMUSTI ICCUTL
COmMMaNBanys T1,22¢21347342441233
COMMON JPAIYIEPZ 3, YIEP2h YIFTI 25, YIU 120, YTLX23,Y1EX25,



‘1l SIF23,51F25,51F49,
YIEX43,YIET49,YIEP49,

2

SIF41 4KCH,

2 TRH2I s ENWN25 s ENWEGG  EHWal 4 PRKKK 9 ALMP L ALMI 4 ALMX
COMMON /BBL/RECZ34REC234RECAY,REC41,COUFAL

COMMON/PB/SIG28,51G02,516264516G40,5IG24 +8S1G4L,51G23,516G25,51649

1451755184519 45204PAVGyFPEAK,VREG 4513453149815,518
COMMON JCP/GIGXE s SIGSAL,SIGBLUSSIGCRSTIFP4L,SIFPL,5IGC
COMMON /BU/CIEDY4PIS )y PY (S )y CAMATKPAZS EKPALD,y

16KPAZ34ELLILFL2yEL3,011,012,0134C14,C15,C164017,018,40194C192,C193,

130

2C194,0195,0204021)C22,023,C25,0264027,028,089,082,C24,0294069,0691

3 1CTO0CTOLsCTL4CT729CT540T44CT5,CTECTT,CT78,080,081,088,C90+(%01,

4€902,C51,092,093,011,083,084,085,086,087,0241,L242,0243,0244
COMMON/BUICZ245 4024690316690 29T 9033140304031 ,C32,035,0344035,036,L37
19C284C39,C40,Ca1,042,043,054,0441404540451,0452,C453, 04640461,

3C4624C4639046490%65,C40G9T40T74C408,04694L47,C45¢049,050,0501,052,

405340531 4L 54,055,056 40561 +L374C8T719C5724C58,L58140582,0583,(584
COMMON/BU/CE94C591,05924L593405%%,C604C00) 060240603, 062,0841,0612
Z23CB13,0124D13,014,015,0164017+40318,01%,D204021,022,0234A4B14X11,.X12
34PLyP24yP3,P44P5,PO,b11,B12,B]13,814,815,816,817,818,819,820,821,

4B224 ALP25, ETAZS  RIP2345TAZ3,
5 ALP4S,ETALT,ALPALyFTHLGL yPST4P11sFAL
STF23%PKKK= SIG23%1ib+24
SIF25 =PRKK- SIGz5=}C+24
31F49 % PRKKK— SIG49*10+24
PRKK-51G41® 1E+24

512
514
515
Sie
233
13

1%

si8
517
s51i¢
520
Bs1
{54%
All
AL 2Z
AL

Al%

[ TSN I | N |

o6 oo nR

A2:2
AZ22Z
L23=
Azg
25
A2 &

it non

[N TS O ST I R |

C

ENWZ2D =
ENWRE *
ENWGS *

ENW41 * SIF4L =

At4B,n128,

(YIC149+YIEXaO ) /L {ALMX/TFLUXIK) *1b=24)) ¢51GXE})

{ YIZTI23+ YIER23)/
= { YIFI25 + YIEXZS)
SIF23 » REC23 ELUXiK) =
SIFZ5 % KEC2S FLUX{K) *
SiF49 ¥ AZC49 FLUX{K) *
SIF4l = REC4] FLUX{K} =*
EXPI-SYGRLOI o248 FLUXIK)
SIGHG = L3237 x FLUX{K} * T1
EX0L = SIG25 * FLUX(K) =T1)

#*

a4
£

#*

*71)

CCALMXZ{FLUX IR I*1E-25) )+
FULALMX/Z{FLUX{KI® c~248) 1+ SIGXE)
COFAC
COFAC
COFAC

Carac

SIGXE)

FVRES

FVAREG
FVEEG

CIVREG

EXP( — GAMA =® SI1G49 = FLUX(X) * T1)

EXP { SIGR23 =*{ ELI-L} » FLUXIK)
EXP {= SIGOZ % FLUX(K)* T1)
EXP{~ 51624 % FLUX{K) * T1)
EXP{- SIG23 * FLUXIKY % Ti}

Cig %= [ ali— Al2)

Cz7T # {Ali=al2)

{28 = (413~ AlZ})

Cl9i * (al3-~ alz)
Ci96% [Al5— ALZ)
21397 % (All~ AlZ)

C24 ¥ {Li3—~ ALZ)
C241 * (411~ AlZ)
Cz42 = (a15- &1z2)
Ca43% (All- AlZ2)
C244% (413~ ALZ}
20 % [ALg - AlZ}
2% (All- R1Z)
L2645 % {4415 — AL2)
L2646 » (all- 412}
czz* (al5- AlZ)

23 * (All-— Al2}

C25 % {AL4= AL12])
C26 % (Al3- ALZ2)
CXP{-~ 51640 % FLUXIK) * T1)

¥ T1)
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EXP(~-SIG4L * FLUX(K)*® T1)

A27 =

A28 = FTXP{—~ LIG2B*FLUX(K)* T1}
A30 = EXPIXLL*FLUXIKI%*TL)

A3l = EXP{XLI2¥FLUX(K)I* T1)

A32 = EXP{-81G26%* FLUX(K) * T1)

C702 =+C70 * C93 * {All- AZ8
C703 =-C70 * { All- A28)
€104

}+C701% (A15-A281% (C93

+ €92 * CT70 * (ALll- A28)+C69L%CS2% (Al3- A28)

C705 ==L71 *(All- A28 ) +C69% {(Al3-A28)

C706 = C82 * Co691*(Al3~ AZ28)+C824CTO*(ALl1-A28)
C707 = L7001 * C£B83% (AlS- A28)+L7Q3CB3*(AYl~ AZ8)
C708 =-C78 % (Al3-A28)

C709 = L7901 * (A15- A28 )* (81 +C70 *CBI#*(Ali-A28)
L94 = 51624 *C901% FLUX{K)#* Ti=xAll

Ell = D16 % C93

12 = Dié * £92

El3 = D16 * C81

£El4 = D16 % CB2

E15 = D16 * €83

£18 = (1- All )/S51IG25

£16 = ELI*{({1-AL5)/ SI624)-718)

£L17 = D16 * €18

£16 = FE12 *({{i-AR3) /(81623 * (1~ ELi)}}- EiB}
E20 = ¥E13 * ({(1-A5 )} / SiG24& )~ £18)

E21 = D14 #{((3~413 )/(51G23%* (1—FL1111-5183
t22 = ”?5 *{({1-Al5)/ SIG24)-£i8

E30 = 51623 / {1 + ALP23)

¥Yil = A30 #{B11%x X111+ XIlx**2+ B12) /BiS5

Y12 = A31 % (BIl% X12+ X12%%2 + Biz) /Blé
Y13 = ~A30 % {X1l* P6 + (313} /Bl5

¥i4 = — A3 % (X12¥ P& + BLi3} /BLé

Yis5 = ~All % (Bl3 = P3 * P5s) [/ BLY

Yi6é = = A30 % (Xilx P2+ B1l4) [/ 815

Y17 = —A31% {X1z% P2+ Bl4) J Bis

YI8 = A30 * {X1i%%2 + X11*818+ B19) /fB15

Y19 = A3L *(X12*%2+ X12*B18 + B19 )} /BLl6

Y23 = 330 * (Xii*(P6~B20)+ B2D -B21) /B15
Y21 = A31 #(X1lex(P6~R20)+ D20-BZ21) /Blo

YZzz = Allx (B20 -~ B22} / B17

Y23 = A30 * {X11l+ Pi+ B19) / Bl5

Y24 = A31 * (X12% Pl + B19 ) / Blé

E31 = =E30 ®*{1-A30)%Y18 /{A30% X11)

532 = =F30 #{1-A31) % Y19 /[A31 % X1Z)

£33 = —k30 ®{1-A301% Y20 / (A30 %= X11)

534 = - E30 % {(1- A3L)} ¥ Y21 / (A3} * X12)
F35 = %30 * {1-A11) * Y22/ (All %= P3)

£36 = =830 4 {1- A30) * Y23 s (A30 * X1i1)
E37 = = E30 = (1— A31) * Y24 / (A3l * X12])
MAX = KC3 + 1

MAXRZ = MAXR + KC3
00 5 I=MAXsMAXRZ
00 6 L= 1,MAXC
TiIsL) = O
CONTINUE

CONTINUF

KC = KC3+1
Cdkxdx¥2BURNUP SQUATION FIOR U-233,

TIKC,1)= Y18 + Y19

TIKC2) = ~1,

T{RC,5)=

(Y23 + Y24) * C{3)} /7 C(1)
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TUIKCTl= {¥204¢Y214Y22) * C(4} / L{1)
G = KOG +31
CHedxpakkBURNUP EQUATION FUOR U=-238
TIKCI¥=({C706 «CT07+ CT081% L{1)/ C(2) } #=3CALlL
TI{KL,3)= A28% SCALl
TIKCy4) = ~L % SCALL _
TIKCyS)=A{{-Clo*{{AlL -~ A28}/F {S1IG28~- SIG02) - (Al3 - A2B) / (SIG28
1 +# SIG23 * (gL1l- 1 1)3) * C{3) / C{23) * SCALL
TIKC, 71={(CT02+ C703 + CT704 + LTG5} %= C{4)/C(2)) %SCAL1
T{KCsI7)={CT709% CI9)F C(2) } * SCAL1L
KC = KL +1
CHikrdxs%BIRNUP SQUATION FOR TH-232
T(KC,1=({Yi6+ Y17} * C(1} / Cl4) ¥ *SCAL1
TIKC5)=4{YL1l+ Y12 ) =*S{ALL
TY(KCy6i = -1 % SCALL )
TIKC,7)={{YLl3+ Y14+ ¥i5) * L(4)/ C(3) ) =*SCAL1
KC = KE€ +1
Chvkerxd*xBURNUP ZQUATION FOR U-235
TIKC,1)=0{082 * (AL3~£L1) ~ C83*{A15--A11 }) * {(1) /7 Ci4)*3CAL:
TIHCy5) =10 84 * {Al4~nll) —-C85*(A15-A11)}-C86%{A13~-A11) +
1 C87 * {A15= Al%i13 = C{3) / C(4) ) * S5Cal2
TIKCy TI={A1) #091*{ALI-AL15)~ (92 *{Al3-All)+ CO3*(Al15-Al1l}+ C94%
1 ) *=8CaLz
T{KXC,B) = =1 & SCALZ
TIKC, 17 =((C81%{ A15-A11)0%C(2) / CL{4)) * SCALZ
KC = ¥Ki£ +}
Ca¥assesBURNIPE ZQUATION FUOR U-236
TIKC ) =1iD21 * (AY1 =A32)+4022 * {(A13~-A32)1-D23%(A15-A3Z2) ixC{2)/
i {5} )} % ZCAL2
FTIKC, T)={{D15*%(A11=-A321+D17 % {(A15~A32)-D18%{A13-A32)})%* C{&4)/C(5)
T} %5¢a8L2
TivCyG)= A32% SCAL2
TIKC,10) = =1 *= S5CAL2
TEKC»17)={{019%{215-A32) ~D20*(ALLI~A32)} * C(9)/ C(5}) * SCALZ
KL = KL +1
Cajokaid k% BURNUP EQUATION FOR PU-239
TIRC:1)1={(A194~A195 - ALQ&+ AL9T+ALI9R) = C{1)/ Cl&6)}*3CALZ
T{KC,3)=(C1B # (1~ Al2z ) * C{(z)/ Cls} ) * SCAL2
T{KCs5)={{A20 -A25)%C{A)/0(6)) *504L2
TIKC+Ty=1{A1l7 + AlB-AIG— AIS1+A192-A193) * C{4&) / C(6))%SCAL2Z
TIKC,1Y )= Al2 * SCAL?Z

T{KC,12} = = 1 % SCALZ
TIKCy1T7)={{ AZ211- AZ2]12) * C19) /7 Cié6) ) *5CALZ
KC = KC #1

ChrdxekxsxBURNUP EQUATION FOR PU-240
TIKC,1)={{C46 % {213 = A28 } + C461% {ALl- A426) ~ Ca&b2% [ALl5~ A26H)
1+ U463 % (AYZ~ A25 1) * CLL) 7 C(7)) #SCALZ
TIKCy 3= C44% (1 A26) - Ca41l % (Al2~ AZ6)) = {{2)/ C(6})%5CAL2
TIRCe51={(C46T #{Al4— 426 ) — C468 * (Al3~ AZ6) + C469*%{AL2- AZH)}
1 % L{2)7 CU7)y) » SCALZ
TOKC e 7)=0(045% {811~ AZ&) = L4531 % (AL3~ A26)+ L4452 % (A15-A20)
1 + 0453 % (Al2- A26)) # C(a)s CILT7) ) #* SCALZ
TIKCy13 =043 % [&12- A26})) % C(&6y 7 C(T§) * SCALZ
TIKC,13)= A26% SCAL2
T{kCels) = ~1 * 3CALZ
TIKC,1TI=L 04858 # {A1lS ~A26 ) =~ (4865 * {All— A26)+ (C466%1A12-A26})
1% L9y CUTY ) # SCAL2
KC = KL +#1
Caied k% BURNUP TQUATION FOR PU~241
TIRC11=0({0559 % (ALli- AZT) 4 €591 * {All~ A27) =~ €592 = (ALl5- A27}
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1 # €592 % {Al2~ A27) + (594 * {A26 ~ A27 1)) #C(1} / Cl8i1*3CaLz
T{KCy3)={{L5T* {1~ A27) = U571 * {Al2- A27)+ C572% {A26-A2T)1%012)
1/ CiB) ) = 5CALZ :
T(KC,5)=(1C6l % (Ala- &27) - C611 * {Al3 ~ A27 ) + C612 * (AlZ -
L A27 ) + CL&13 * L4256 = AZT)) % C{3)] /7 Cla}) * SCALZ
TIRC,7I=4(C58 * (All~ A27) + C581 ¥ (A15- A27) + 582 # (Al2~ AZT}
1 - €583 % (AX3 — A2T7 3 + (C584% {AZ6~ A27)) % C{4) / C{8)I%SCAL2
TLEL 121 =( (056 * (812~ AZ7T) ~ L5661 * (Aa26= A27)) *#0{&) / Ct8)
1 } * 5CAL2
TL{KC,131={0C52 * ( AZ2é4~ R27) * CU{T} 7 C(BII*ICALZ
TOKC,15Y= A2T* SCAL2 ’
TiKLy16Y = = 1 ¥ 5CalZ :
TIKC,1T)=0¢ Co60 # {al4 ~ AZ27 ) -~ €601 * {All- A27) + C&02 * (Al2-
1 AZ7) + C&03 % (a26= A2TI) # C{9) / Ci8BY) * SCAL2
KC = KC +1

CHFsrpkxtwBURNUP EQUATIUN FOR U-234
TIKC,1Y=0(089% {413-A25Y)% C{11/7C{91} * SCAL2
T{KC S)=1{CB8*{aLa~ ALS)~ CO0#{A13-A151)% CI3}/C(3}1%5CAL2
TIKCy Ty =({CO0* (AL1~AT5)~ COC2*(AL13~A1D3)* Cl4)7C19) I%5CAL2
TIEC,17)= A1S* SCAL2
T{KC,18} = =1, * 5CALZ
KL = KC +1

CHe*:h%x*FISSION PROODUCTS PRODUCTION FOR U-235 FISSION.
TIKC.1) =0(£2} - E22 ) * L{1})/ C(10}) » SCLALZ
TIKC, 7i={{ELS6+£LT- £19 }ow C{4d f CLID)) *5CaLZ

TIKC,17) =1820 #= C{9}) / C{10)) * ECaL2
TiC419} = 1, % SCALZ
TIKC,20) =-~1.% SCALZ
KC = KI 41
Chasdhxacr F1SSION PRAODUCTS PRODUCTION FOR U-233 FISSION.
TIKC,13 =1£31 + E32) % SCALZ
TIKC;8) ={{ E36 + 237 ) * C{3) /7 C{LO}) * SCaAL2
TIKCy7Y =1EE33 + £34 + £35) %L{4) ¢ C{10}) * SCALZ

TIKC,21) = 1. * SCALZ
TIKL,22) = =1. * SCaLZz
KC = KL+1
réwdrkkrRB-3 0 CONTROL POISON EQUATION.
TIKC+24) = =1, % SCALL

T{KC423) = BS1 * SCALL
CHdaxkaarpOl LOCALIZED REACYIVITY CCHSTRAINT.

KC = KC+1

TIKCs1Y = S13 # SCAL3

TI(KC.3) = =51628% lE+24 * SCAL3
TIKC5) = —851G02 % 1E+24 * 5CAL3
TIKS: 7Y = 514 # SCAL3Z

TI{KL,9) = =51G26% 1F+24 * SCALS
TI{KCe31) = 8§15 # SCAL3
TIKC,13) = =51G40% L1De24 #® SCALZ
T(KC,15) = S16% SCAL3

TIKC,17) = =51G24 * 1E+24% SCAL3
KC = KC+1 '

ChbaadrrxxNUCLYDE CONSTRAINT FQUATION! VOLUME CCNSTRAINT).
TIKCy2) =(1a/71159 ) * SCAL2Z
TIKC,5) ={1l. /40634 ) *» SCALZ
T{KC,7) =(1l. f1159 Y * SCALZ
KC = K{+1
CHwiskarR-10 VOLUME CONSTRAINT.
TIKC,23} = 1.818F=03 % SCALR
KL = KC+1
Corkretd NG [OHMUMY CONSTRAINT .
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TIKC+3) =~A14B *® SCALS
TIKCe 7)Y = mich * SLals
L 8L POWIR PEAKING CONSTRAINT wQUATIUN.
R = KC+ 1
T(KCyLl) = 518 e
TIKC 7Y = 517
TIKL,11) = 519
T{KC415) = 520
i EGL POWRR PIAKING CONSTRAINT ZQUATIUN,
KL = K{O+1%
TIKL .2} = 318
TIKLs &) = 3517
T{KT412} = 519
T{KC,16} = 823
RETURN
<ND
SUBRDUTTN“ PART{MAXKR4#, [CCT)
CoAdoF R R o Ak SR don gl Rk bk kT R R Kok R ok R R E R Rk R Rk kR R R AT R Rk w Rk AR Rk
-
C THIS SUBPROGRAM GUN<RATES THL NZCESSARY TOTaL CYCLL CONSTRAINTS,
i
e o kol el kb ookt e g e o g et ool st ool op ROl oK 3 ok A 0o o o 3 e o o o ool A e o o e o e

COMMON/Z S/ SCALL,SCALZ,SCALZ,SCALY

COMMON T (70,50, FLUXI4] 4 TL4MAXK o
1 MAXU sKELKUZ2yMAXLoKC3eMaXs 4 MROS,MROT L IMUSTLI EC0OUT L
COMMION/SADS 2354724280 4703424,233

COMMOMN/BED/RECZS JRRUZS4RECH94REC4Ty COFAC

COAMON /TR /SIGKE 131(}5-&1.}1@810,31{3(-1‘:553FP{’I'SI Pi:-JI()u
COMMON/PB/SIG25,3I602,51526+510643251G24 51621 +51623,51GE9451649
1517981 8,319,0203,PAVGPPEAKZVREG 4513451 44515,81¢
COMMON FPA/YIE023,,¥InP2E, YIEI 23, YIREIZE Y1 X234 YIHXES,y
SIF22,531F25481IF4%, SIFG1L4KCH,

YIe a9, Y Ici&aS,y ¥YIP4d,

TREZ23pLNW25, NWE9 y ENHAL o PEKKK ;ALMPALME,ALMX
MAX] = MAXR+ MAXRR +KC3 -

MAX = MAXR + KC3 +1

00 5 L = MAXyMAXL

00 & 1=1M8XC
TILI) = Ua0
6 CONTINUE
5 CRONT INDE

3 Ty 6

1953
e
o
i
%
B
U'l

IrlR

QbA1I945 FUR CaRBUN  CURCENTRATIONM,
TIKCH, 3 = 551 % SCAtLa

DuwkdsrdnxBOL DQUATIONS FIOR ZFNON CONCENITRATION,
KZH = KOH + o '
TIKCH p2) Z3 % 3IF23 % SCALZ
T{KIH,8) 24% S1F25 & SCabc
T{RCH,L2F = Z33% S7F49 % S(AL2
Kok o= KIH + 3

W on

Cwbtredsd eR 50 QUAT TSNS JASRIUM COMC S MNTwAT UGN
TEACH,2) = Zi % SIF23 % SUALR
TUHCH,SY = 72 % SIFZS % SLALY
TIKLHIZ) = 711 = SIF45%% SCAL2
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KCH = KCH + 1
Co¥apxXa kL “QUATIONS FOR ZENON CONCENTRATION.
T{KCH,11? 23 % S3IF23 % SCAL2
T(HCH, T} 24x STF25% SCaL2
TIKCH,1LY) = Z33% SIF49 * SCAL2?
KCH = KCH #+ L .
ChdgkkkdXxsf “QUATIONS FOR SAMARTIUM CONCENTRATIONMN,
TI®CH,L1) 21 % SIFz3 #* SCALZ
TUKCHL7) = 72 % SIF25% SCAL:Z
TIRCH, 113 = Z11 * STF49 *® SCALZ
KCH = KCH + 1
Chdorkde® ¢ 801 SQUATIONS FOR FISSION PRODUCTS CONLCENTRATION,.
T!Hp y19) = 555 *x SCAL4
TiTH,21) = §S6 ¥ SCAL4
CH = XKCH + 1
CHvkakse®xlNl TQUATIONS FOK FISSIGN PRODUCTS CONCENTRATION,

0o

H

TLKCH,20) = 835 # SCAL4
TIKCH, 221 = 856 * SCAL4
KCri = KCH + 1

CoawkpeaxxCONTROL ROD POISON CUNSTRAINT.
T(KCH,23) = 1.
KOCH = KOH+1
Crdenmxd ek ZQUAT TONS USED TO ZERD 0OUT ANY DESIREL CONCENTRATIDMS.
TFLIMUSTL.GT L ANDLICOUTILNELICCT)Y GO TO 20
TIKCH; 91 = 1o '

TIKCH 113 = 1.
TIKCH,130 = 1.
T(KCHs1E) = 1.
TIKCH,IT7) = Y
TIKIH19) = 1.
T{KCH,21) = la
IF{IMUSTI.GEL4) GO TO 20
T(KCH,]_ = 1!
20 KCH = KOH+]
L CONTROL ROD POISUN.

TULKLH,25) = 1,
KCH = KCH+L

c BOL REACYIVITY CONSTRAINT.
TIKLH,1Y = S13
T{KCH,3}) = ~SICeg#iCl+24
TIKCHS) = =81G02%1k+24
TIKCH,T7) = 5i4
T{KLH:9) = ~51G26% 1E+24
T{KCH,11) = 513
TIKCH,13) = ~851G40% 18424
TIKCH415) = §1&
TIKCH1TY = —SIGZ24% 1E+24
T{KCH,23} = =5IGBID
TURCH,25) = ~5IGCR

C ENL REACTIVITY CONSTRAINT.
KCH = KCH + 1 '
T{KCH,2) = 813
TIKCHea) = -51G28* 1E+24
T(KCH48) = =S1G02* 15+24
TLKCHyB) = 514

TIKCH,LI0) ==-5J026% 1u+24

T{KCH,12) = S5
T{KCH,24) = = SIGH0¥ 1h+24
T{KCH,16) = §16

TORCH ZE) =SIG26% IR+24
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TIKCH.24) =~SIGBLO
c 80L TOTAL POWER CONSTRAINT.
KCH = KCH + 1
TIKCHe 1) S18%VREC*Ir—-0s * SCAL3
TiKCH, 7] S17% VREG*1F=-06 * SCAL3
T{KCHy11l) = S16% VREG#* 1£-06% SCAL3
TIKCHs15) = S20 *VREG*IE~06 #* SLALS
C FOL TOTAL POWZR CCONSTRAINT.
KCH = KCH+1
T{KCHy2)= S18% VREGHIE~-G6 * SCAL3
TIKCH8} = 517% VREG *1E~06 * SCAL3

LI |

TIKCH,12) = S19%VREG=*]1Z-06 # SCAL3
TI{KCH,15) = 520 #* VRFG*1E-06 % SCAL3
RETURN

IND

SUBROUTIND CONST
Cokkok dakdonbok & ok bk dok ook bR kb bRk ok Sk R bk R Rk Rk dktok R Rk kR gk ok ok
c
c THIS SURPROGRAM IS USED TO PRSENT THE ACCUMULATIVE
c - PRODUCTS OF THE REGIONSa
C
o

ek e ok etk ook g R b sk e ek st skl bk ook o ek ks kot sk ok ok kR ROk OB ok sk R Sl
COMMON/SC/ SCALL.SCALZ2,5CAL3,5CALS
COMMON T{7C,50),FLUX{&) sT14MAXR
1 MAXT sKCE L KCZ2 g MAXL KC3 o MAXS 4 MROSy MRDT 4 IMUSTIHICOUTL
COMMON FCP/SIGXE s SIGSA,SIGBLI0SIGCR,SIFP4,SIFPL,31GC
DO 5 L=31,MAXR
DO & I=1.MAXC
T(LsI) = 0.0
6 CONTINUE
5  CONTINUE

£12 = SIGCH
583 = S1IGSA°
584 = SiGXF
Lii = S51IGB1O

CokwidesxT0TAL CYCLE ACCUMULATION OF CARBCN.
Tils1) = =1
Otk sxxVOTAL CYCLE ACCUMULATION OF EOL XENUGN.

T{2y5) = =1l.% SCALZ

Cowdsska&TOTAL CYCLE ACCUMULATION OF £0L SAMARIUM,
TU3,3) = —1. ¥ SCAL2
K8 = &4

CrsresxxTOTAL CYCLE ACCUMULATION OF BOL XENON.
T{uBy4&) = =1l % SCAL2Z

KB =¥B +1

ChkdkuxdxTGTAL CYCLE ACCUMULATION OF BOL SAMARTIUM.
TI{KBs2) = =1, * 5CAL2
KR =KB +1

T{KB,2) = 553 * SCALS
T{¥Rs&) = 8554 % SCALS
CEeskkx4%TOTAL CYCLE BOL MAURQSCGPIC PUISON CHOSS SECTION(LE-03).
T(KB¢b) = -1 * STLLL
KE =KB +1
T(KBs2) = 582 ¥ SCAL4
T{Ke,5) = 854 = 5CAL4 ‘
CasxdkiiksTOTAL CYOLF FOL MECROSCORPIC POISON CROSS SFECTIONILIE~-03).
TIKR,T) = =i, * SCALG
KB =KB +1
CHxss3xs=TOVAL CYCLE BOL ACCUMULATION OF CONYROL ROD PUOISONING.
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T{KB+8} = =1
KB =KB +]1

Crek*xex2ER0 QUT ECL CONTROL ROD POISONING.
TI{KBs10) = 1

KB = KB +1
CrsdxxaTOTAL CYCLE BOL AZCUMULATION QOF B-10 CONTROL POISON.

T(KB,Q! = =1

KB = KB+1

T(KByl) = «8IGC % SCALL

Ti{KBy6) = =1,

KB = KB + 1

T(KBy1) = -SIGC % SCALYL

T{KB,7} = ~1.

RETURN

END

SUBROUTINE STORED
COMMON T{TO,50),FLUX{4) +T1,MAXR
1 MAXCKU1,KC2,MAXL,KC3,MAXS 3 MROS,MROT,IMUSYL ,TCOUTL
MAXZ = MAXL + MRGS
MAX = MaAXi + 1

o0 5 1 =MAX1MAX2
DO 6 K= lyMAXC
T(IOKI = Q.

-] CONTINUE
S CONTINUE

T{KC14+42) =1,

KCL = KCi1+ 1
TI{KCl,4) = 1.

KE1 = ®xC1i+ 1
TIKCIsH) =1.

KLL = KC1+ 1
TIKC1+8) =la

KCi = KO1+ 1
TIRZ1410} =1,
RETURN

END

SURBROUTINE TRANST
COMMAON THLTD,50) s FLUX(4)Y s TLMAXR
1 MAXC KL1,KL2,MAX1 K03, MAXS 4 MROS, MROT, IMUSTL LICAUTL
MAXZ = MAX1 + MROY
MaX= HAX1 + 1

03 5 I=MaX,MAX3

DO &6 K= 1«MAXC
T(I?K, = (e

] CONTINUE
5 CONTINUE

Ti{KC2+2) =1.

KLZ = KLZ2 + 1
TI{KLZ,4) =1.

KCZ2 = KC2 + }
TI(KCZ46) =1la

KCZ = KG2 + 1
T(KCZ4BF =1,

KL2 = KL2 + 1
TIKC2,101 =1.

KC2 = KL2 + 1%
TIXC2412) =1.

KC2 = KC2 + 1
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TIRC2414)
KC2 = KC2
TIKC2416)
KL2 = KC2
T(KL2,18)
KC2 = KC2Z
TIKLE,2D)
KL2 = KC2
TiKC2,221
RETURN
END

PR
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SUBROUTINT TRANSF
COMMON TI{7G,500, FLUX{4)
1 MAXCyKC1aKC2 yMAXL K3, MAKS 5 MROS.MROT, IMUSTLLICOUTL

DD 5 I=1.M4%R
DO & K=3+MAXC
T{1,K} = Oa

~CONTINUT

CONTINUE
Tilsl} =—1ls
T(2,3) =-l1.
T{3,8) ==l
T(‘Q—,T’ 3“10
T1549) =-1.
FiBy11) ==1.
TYi7.13}) =-1.
T{8,15) =-1.
TIS417) =-1.
Ti10419) =-1.

Tiili—:”\l} mely

K£C3 = k1
RETURN

LHD

SUBRDUT IME FULIP
COMMON T{TD,50)s FLUX{4)

s T3 e MAXR

P T1 s MEXR o

1 MAXC  KCL K2y MAXL s KE2 ¢ MAKS MRDS,NRGT,]HUSTl;ICBUTl

1

DO B J=1+4%
DO 6 ¥=1,7
T{I:%} = O
COMNT IMi:
CONTINUG
T(ls1) = -1
T{Z243) = =1,
Tl295) = =1.
T4y T} = ~1a
KC3 = 4
RETURN

oND

SUBRJUTINE FULI
CMMOnN T{T7D,50), FLUXI4)

P Ty MAKR

MEKD gKCTyKCZ 2 MAXL ¢ KO3y Mkt g MROSMROT L INUSTL L ICOUTL

D3 5 I=1,MAXR
D0 6 K=1l,aMAXC
TL{T¥) = Ol_
CONT T MU

CONT TN
TE1:13 = 1o

138
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T1242) = 1.
Ti343) = 1.
Tl4s4) = 1.
RETURN

END

SUBRDUTINE SYORI
COMMON TI(T70450), FLUX{4) 4T1yMAXR
1 MAXCaKCLeKC24MAXL W KE3yMAXSE 4 MROS,MROT,IMUSTL,IC0UTL
DEX = "1! :
IFIMAX4.GTe2) DX = 14
DO 5 I=MAX4,MAXR

0. &6 K=14MAXC

T{I’K) = Qe

CONTINUE

CONTINUE

KD = MAX4

TIKDRyY) =1.%DEX

KD = KD+ 1

TiKD,2) =1, *DLX

KD = KD+ 1

TIKD,31 =le #DEX

KD = KD+ 1

T{KDs&) =1a *FDEX

KD = KD +1

TI{KDy8) = 1.%¥ DEX

MAXS4 = MAXR +1

MAXR = MAXR + MAX4
RETURNMN

£ND



