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Network clustering and community detection using modulus of families of loops
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We study the structure of loops in networks using the notion of modulus of loop families. We introduce an
alternate measure of network clustering by quantifying the richness of families of (simple) loops. Modulus tries
to minimize the expected overlap among loops by spreading the expected link usage optimally. We propose
weighting networks using these expected link usages to improve classical community detection algorithms. We
show that the proposed method enhances the performance of certain algorithms, such as spectral partitioning and
modularity maximization heuristics, on standard benchmarks.
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I. INTRODUCTION

Real networks contain closely connected subnetworks with
local structural patterns characterized by their richness of loop
[1]. Loops offer more pathways within them compared to
treelike topologies; thus rich loop structures improve network
robustness [2] and impact propagating and transporting pro-
cesses in networks [3]. Previous approaches on analysis of loop
structures focus on loops with lengths of order 3-5 separately
[4,5] and a few such as Refs. [6,7] emphasize the role of
higher order loops to characterize their overall structures. We
consider assessing loop structures in the network, with any
order and altogether, and apply our tool for analyzing network
transitivity (known as clustering coefficient) and providing
more information for community detection algorithms.

Our goal is to study loop structures in the network using
the concept of modulus of loop families developed in Refs.
[8-10]. Modulus is a way of measuring the richness of certain
families of objects on a network, such as loops, walks, trees,
etc., and is a discrete analog of the classical theory of modulus
of curve families in complex analysis [11]. Although modulus
on networks is not a new concept (see Refs. [12,13]), it is not
as well developed as in the continuum setting. In Ref. [8], the
authors showed that modulus is a standard convex optimization
problem. Continuity and smoothness properties of modulus
on networks were considered in Ref. [9]. A probabilistic
interpretation provided in Ref. [10].

Modulus is a versatile tool to analyze networks. Different
types of families of walks can be used to learn about different
aspects of the network. In Ref. [14], we introduced centrality
measures based on various families of walks that can be
computed on directed or undirected, weighted or unweighted,
and even disconnected networks. These measures do not
necessarily have to consider the whole network. We applied
them to detect influential sections of the network, ranking the
nodes, and we explored applications to improve vaccination
strategies for reducing the risk of epidemics. The applications
to epidemic spreading were further studied in Ref. [15], where
the authors used modulus to analyze the concept of epidemic
hitting time.

Our main contributions in this paper are introducing a
generic approach to analyze loop structures in the network
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that consider local loop topologies with an eye on the entire
network. We quantify richness of loops and introduce a
clustering measure based on that. Moreover, we find the
probablity of usage of each link in important loops and use
it as a measure of affinity between nodes to enhance network
partitioning.

This paper is organized as follows. First, we introduce our
notation and the necessary background on modulus of families
of loops. Then, we define our proposed methods to measure
clustering in the network. Next, we show how to preprocess
a network in order to improve partitioning techniques such
as Fiedler vector bisection and the modularity maximization
heuristics. Finally, we discuss other potential applications.

II. NOTATIONS AND DEFINITIONS

Let G = (V,E) be a network with nodes V and links E. A
walk is a string of nodes y = vgvj ... v, on G with the property
that consecutive nodes v; and v;y; are linked in the network. A
walk y = vivnvs ... v,, is a simple loop if the nodes v; are all
distinct, except that v, = v;. We call £ the family of all loops
in G. Other possible loop families are loop families rooted at
a given node v or link e; we write £ or L in that case.

Given adensity p : E — [0,00), interpreted as a penalty or
cost the walker must pay for traversing link e, we define the p
length of aloop y as

Lo(y) ==Y plo). )

ecy

When po(e) =1, then £, (y) represents the hop length of
y. Likewise, given a family of loops £ we set £,(L) :=
min, ¢z £,(y). We introduce a |£| x |E| matrix A such that
each row corresponds to a loop y € £ and is the indicator
function 1 ¢, .

Let w : E — (0,00) be a positive weight function. Then,
for 1 < p < 00, Mod,, ,, (£) is defined as

&
Mod, , (£) = min pY
pow (£) 101€,(£)>0) £, (L)P

2

where &, ,(p) = Y, w(e)p(e)? is the energy of the density
p. In this paper, we work with an equivalent form of (2) defined
as in Ref. [8]:

Mod,, (L) = {pwigl}(fp,w(p) = Epuw(p®). 3)
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WEe call a density o with N'p > 1 admissible p for a family
of loops L. For example, if G is a tree, Mod, (£) = 0 by
property (d) below; if G is an unweighted complete graph,
then Mod,, (£) = 35 (}).

For a finite network G, the following properties hold (see
Refs. [8,14]):

(a) p monotonicity: The extremal densities satisfy 0 <
p*(e) <1 for all e € E. Thus, for 1 < p < g, we have
Mod, (£) < Mod, (£).

(b) £ monotonicity:If £ C L,
Mod,, (£).

(c) wmonotonicity: If w and w’ are positive link weights
with w < w’ then Mod,, ,,(£) < Mod,, ., (£).

(d) Empty family: If £ = ¢, then Mod,, (£) =

(e) Countable subadditivity: For any sequence {L', 12, of
families of loops,

then Mod, (L) <

L) <) Mod, (L))

i=1

Modp(U,

The properties above allow quantification of the richness
of various family of loops; i.e., a family with many short
loops has a larger modulus than a family with fewer and
longer loops. In particular, £ monotonocity and subadditivity
often define a notion of capacity on the set of loops in a
network. For the rest of this paper, we consider p = 2 due
to its physical and probabilistic interpretations as well as
computational advantages; for instance, in this case (3) is a
quadratic program.

A. Interpreting loop modulus as a measure
of the richness of a family of loops

In order to measure the richness of a family of loops, we
want to balance the number of different loops with relatively
little overlap vs how many short loops there are in the family.

We demonstrate this in Fig. 1. For the square in Fig. 1(a),
the family £ consists of a single loop; hence Mod, (£) = 0.25.
In Fig. 1(b), the weight of one link is doubled and modulus
increases to Mod, (£) = 0.285, as it must, by w monotonicity
[property (c)]. The network in Fig. 1(c) has more loops than
the one in Fig. 1(a) and modulus increases to Mod, (£) =
0.5, demonstrating £ monotonicity [property (b)]. Comparing
Figs. 1(c) to 1(d), we see that they have the same number of
loops, but in Fig. 1(d) they are longer and thus the modulus
decreases to Mod; (£) = 0.455.

B. Probability interpretation of loop modulus

For p = 2 the modulus problem in (3) is

min ol p. 4
{pINp =1}

We consider the Lagrangian for (4):
Lp.)) = p'p=2"(NTp —1), 5)

where A € Réo is the Lagrange multipliers. It is easy to show
that p = 11is an interior point for the feasible region of (4), and
thus strong duality holds (Slater’s condition [16]). Minimizing
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FIG. 1. Loop modulus for some networks demonstrating how
modulus can quantify the richness of loops. (a) Mod, (£) = 0.25.
(b) Weight of a link is doubled, modulus increase by w monotonicity:
Mod, (£) = 0.285. (c) Increasing number of short loops the modulus
increases by £ monotonicity: Mod, (£) = 0.5. (d) Loops are longer
than in panel (c) and modulus decreases: Mod, (£) = 0.455.

L in p gives
* 1 *
P& =5 M W)leey (6)
yel
and the dual problem
1
max (ATI — —ATCA>, 7
A=0 4

where C is the overlap matrix for L. Namely,

Ciy) =Y NyieN(yj.e) =

ecE

ly: N y;l

measures the overlap of two loops.
We define a probability mass function (pmf) u € P(L) :=
{ne ]R o : #1 = 1} that defines a random loop y € L with

uly) =Pr(y =y). (®)
Writing A = vu for a non-negative scalar v and a pmf u

(7) becomes

2
max (v — — min

T
Cu ). 9
B 3 o u M) ©)

The maximum in (9) occurs when

-1
*=2( min u’C : 10
Y <#2%PL) H M) (10
Substituting (10) in (9), we get that v* = 2 Mod,(£) and

Mody(£)™' = mi TCu=E,ly, Ny;
od,(£) Join wCu=Eelyi Oyl
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Algorithm 1. Approximating densities for Mod,(£) with toler-
ance 0 < ¢ < 1[8]

1. p<0;p <1

2. L«

3:  y < Shortest Loop(po)

4:  while 3y such that £,(y) < 1 — ¢ do
5: L <~ L'U{y}

6: p < argmin{&(p) : Np > 1}

7:  end while

for an optimal p*, where E,<|y; Ny;| is the minimum
expected overlap of two independent, identically distributed
random loops with pmf u* € P(L).

Moreover by (6), the exremal density satisfies

p*(e) = Moda(L)E [N (y,e)],

where E [N (y,e)l =3 N(y,e)u*(y) is the expected
usage of link e in loop y. Therefore, the optimal measures
w* are related to the optimal density p* as follows:

p*(e)

m = ]P)M*(€ (S Z)

(11
We call P,<(e € y) the expected usage of link e.

Moreover, one can always find an optimal measure p* that
is supported on a minimal set of loops of cardinality bounded
above by |E|; see Ref. [10, Theorem 3.5]. We think of these
loops as important loops that play a role in the optimization
problems as active constraints.

C. Approximating the modulus

The numerical results in the examples that follow are
produced by a PYTHON implementation of the simple algorithm
described in Ref. [8]. This algorithm exploits the £ mono-
tonicity [property (b)] of the modulus by building a subset
L' C L so that Mod,(£) = Mod,(£) to a desired accuracy
[8, Theorem 9.1]. In short, the algorithm begins with £ = @,
for which the choice p = 0 is optimal, and a loop is inserted
with the shortest hop length, which then repeatedly adds
violated constraints to £’ and determines the optimal p
each time. The algorithm terminates when all constraints are
satisfied to a given tolerance (tol) (Algorithm 1).

The two key ingredients for implementing this algorithm
are a solver for the convex optimization problem (3) and a
method for finding violated loops, i.e., with p length less than
one. In our implementation, the optimization problem is solved
using an active set quadratic program [17] and the violated
constraint search is performed using a modified version of the
breadth-first search from each node that has a cutoff 1 — tol
and reports the first backward link that forms a loop less than
the cutoff.

Although simple, this algorithm is adequate for com-
puting the modulus in the examples presented here, on
a Linux operating computer with Intel core i7 (and 2.80
GHz base frequency) processor, for example. More ad-
vanced parallel primal-dual algorithms are currently un-
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der development to treat modulus computations on larger
networks.

III. CLUSTERING MEASURE WITH MODULUS
OF FAMILY OF LOOPS

Complex networks exhibit properties such as the
small-world phenomenon [18], scale-free degree distribution
[19], and local clustering of nodes [18]. In social networks,
when two individuals are acquainted it is probable that
they have another friend in common, resulting in properties
of homophily for the network. For example, in friendship
networks people introduce their friends to each other. This
transitivity property makes the real world networks different
from synthetic random networks [20]. However, this clustering
tendency is difficult to quantify.

A proposed measure of clustering for a node v [18] is to
compute the fraction of links between neighbors of v that
actually are in the network, over all possible ones. The authors
in Ref. [21] pointed out the importance of closed paths (loops)
in the cluster and discussed computation of the clustering
coefficient using the density of loops with length 3 (triangles).
Because this measure fails to describe the clustering of gridlike
parts of the network, the authors improved the measure by
counting quadrilaterals—loops with length 4 or mutuality
in Ref. [20]—and proposed a new measure that considers
different types of quadrilaterals. Similarly, Ref. [5] addresses
bipartite networks that lack triangles, and thus the standard
clustering coefficient is not useful. In Refs. [5,22,23] the
authors emphasize the importance of longer loops in the
network. The authors in Ref. [24] showed that clustering
coefficient measures are highly correlated with degree, and
they proposed a measure that preserves the degree sequence
for the maximum possible links among neighbors of node v,
thus avoiding correlation biases. Kim et al. introduced a local
cycling coefficient that quantifies local circle topologies by
averaging the inverse length of loops passing the nodes [7].
They average this coefficient for all nodes to derive the degree
of circulation in the network.

The authors in Ref. [25] introduce a version of clustering
coefficient that considers weighted network, and in Ref. [26]
propose a way to measure a general clustering coefficient for
weighted and directed networks.

Numerous versions of clustering coefficients for different
types of networks expose the need for a generalized measure
that works for a wide range of applications. We apply the
concept of modulus of families of loops as a tool to study
structural properties of network clustering. In this section we
show that analysis of loops using modulus provides a general
approach to the study of network clustering properties. We
also propose an alternate clustering measure that can explain
situations that conventional methods struggle to handle.

A network has a high clustering measure when most of the
links are included in short loops that also visit nearby links. The
standard method of counting triangles considers the smallest
loops, while other methods consider the next shortest loops,
i.e., quadrilaterals. A method must be devised to compare these
loops and evaluate the combined influence to improve cluster-
ing measures [20]. The previous section introduced a way to
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FIG. 2. (a) A grid network with deg = 4 and 100 nodes; (b) a
random regular network with deg = 4 and 100 nodes. The proposed
clustering measures are C(Ggig) = 56.25% and C(Greg) = 34%.
Classical clustering coefficient gives zero for the grid and 2.4% for
the regular network, and average square clustering coefficients are
14.7% for the grid and 0.4% for the regular network.

evaluate a family of loops using a modulus. Therefore, we pro-
pose a comprehensive modulus-based measure of clustering.

The classical clustering coefficients that measure triangle
density are usually normalized by comparing the links in the
networks (that form triangles) with all possible links between
nodes, i.e., all possible triangles in the corresponding complete
graph. Most real networks are far from being complete graphs
(even locally), and therefore classical coefficients usually have
small values that are correlated to the degree of the node [24].

We normalize our clustering measure using the probabilistic
interpretation in (11). Modulus tries to spread expected usage
as much as possible among the links of the network in order to
minimize the expected overlap. However, the expected link
usages are not always uniform. Define a uniform density
ou(e) =1/3 that is always admissible for loop modulus
because it penalizes all loops at least 1. So its energy £:(p,) =
|E|/9 gives an upper bound for Mod,(L).

Therefore, our proposed clustering measure takes the
following form:

9
Cioop(9) 1= 1E| Mod,(£), 12)

where Ciqop is a measure of richness of actual link participation
in important loops over the ideal case that all links participate
equally in triangles. For example, consider a grid as in Fig. 2(a)
with 100 nodes and 200 links. We compare its loop modulus
with that of a random regular network with the same number
of nodes and same degree as shown in Fig. 2—these networks
behave similar to the two extremes of small world networks
[18]. Since the classical methods use the number of triangles in
a network, they give zero clustering coefficient to the grid and
2-3% to the random regular network. The grid has a square
clustering coefficient of 14.7% and the random regular network
square clustering is close to zero (we use square clustering
introduced in Ref. [5]). For each network in Figs. 2(a) and
2(b),

M0d2 Egﬂd =10.8 and MOdz Ereg =17.8.

(c) (d)

FIG. 3. (a) Jazz musicians network [27] with Ciop = 10.0%,
average triangle density C = 52.0%, and average square clustering
6.66%. (b) Email communication network in University Rovira i
Virgili in Spain with Co, = 13.8%, average triangle density C =
16.6%, and average square clustering 1.46% [28]. (c) An excerpt of
Facebook network with n = 2888 and m = 2981. Edges represent
friendships between nodes [30] with Cioop = 3.7%, average triangle
density 0.03%, and average square clustering 0.07%. (d) Friendship
network of the website hamsterster.com [31], with n = 1858 and
m = 12534. The clustering in the network is Cioop = 6.22%. The
classical clustering coefficient (transitivity) is 9.04% and average
square clustering coefficient is 6.78%.

Therefore, Cioop(Ggria) = 54% which means the network is
highly clustered and Cioop(Greg)=34% is less clustered than
grid.

In some cases, our proposed measure gives different con-
clusions than the classical cluster coefficients. For example,
let us compare the networks (a) and (b) in Fig. 3. Network
(a) is a collaboration network between jazz musicians [27]
and network (b) is an email communication network at
the University Rovira i Virgili in Spain [28]. In the email
communication network a very rich core is balanced by many
stems on the periphery and the loop clustering measure is
slightly higher than for the jazz network. This goes in the
opposite direction of the classical clustering coefficient result
[29]. For the piece of the Facebook network in Fig. 3(c) [30],
the loop clustering value is slightly greater than the classical
case, reflecting a certain amount of tightly knit communities.
Finally, in the friendship network for the website hamsterster
[31], the clustering measure and classical clustering coefficient
give similar results.

Furthermore, we can isolate the contribution of triangles,
squares, and higher order loops by considering modulus of
subfamilies of £. This can be done assuming a hop-length
cutoff for y in Algorithm 1. Moreover, the property of
subadditivity [property (e)] gives an upper bound for the
aggregate effects.
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IV. WEIGHTING TO ENHANCE COMMUNITY
DETECTION ALGORITHMS

Communities in networks are defined as groups of nodes
that are closely knit together relative to the rest of the network.
Real world networks, for example, social networks [32] and
biological networks [33], comprise densely connected parts
that are loosely connected with each other. Finding these
communities is crucial in analyzing the collective behavior
of the network or in order to be able to make assumptions
(meta population). These communities can be disjoint or
overlapping. For a comprehensive review of the literature on
this subject, see Ref. [34].

Radicchi et al. count the number of short loops that pass
each link as a local measure for clustering [35]. To extend
the method in Ref. [35] for low clustered networks, Vragovic
et al. [36] consider general loops (with any length) passing the
nodes to detect cluster nodes; however, compared to standard
clustering methods, its results are not satisfying [34].

The authors in Ref. [37] define a new weighting for the
network to improve modularity maximization methods for
finding communities with sizes smaller than the resolution
limit [38]. The weighting for a link comes from how many
loops with length 3 and 4 it forms with the adjacent links.
They show the effectiveness of their method on Lancichinetti,
Fortunato, and Radicchi (LFR) benchmark networks. Also the
authors in Ref. [39] propose weighting the network with a
combination of link centrality [40] and common neighbor ratio
to enhance community identification. Community detection in
directed networks is a challenging problem [41]. Reference
[42] improved community detection in directed networks by
weighting the network. The authors considered seven different
types of triangles and their respective contributions to the
community structure.

When a pair of nodes are in the same group it is more
likely to have strong flow of communication among each other
together with others in their group, and information tends to
stay within communities. This emphasizes the importance of
having many nonoverlapping short loops.

Analyzing loops in a network provides information about
the cluster structure and emphasizes the importance of links
in these clusters. By (11) the extremal density p*(e) measures
the amount of important loops (see Sec. II B) passing through
link e (expected usage). Assuming members in the community
shares a lot of cycles between themselves, thus p*(e) serves
as a measure of affinity for the nodes connected by e. In other
words, nodes on important loops are well connected to the rest
of the group. In this section, we show that indeed preprocessing
the network using p*(e) can improve network partitioning.

After we compute loop modulus for a network, the extremal
density p*(e) gives generic information about the structure
of communities that contains many short loops and the
importance of links in these clusters that generalize methods in
Refs. [35,36]. We can substantially improve the performance
of some partitioning methods such as spectral partitioning
or modularity maximization heuristics by preprocessing the
network into a weighted network with link weights p*(e). We
can apply our methods to any weighted and directed network.

As the first example, we consider Zachary’s karate club
[43], a friendships network at a university karate club with
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FIG. 4. (a) Zachary’s karate club network [43] with the groups
split after conflict. (b, c) Fiedler vector values corresponding with the
node labels. (b) Spectral partitioning of Zachary’s karate club network
[43]; node 3 is wrongly partitioned. (c) Spectral partitioning of the
same network weighted by loop modulus where nodes are correctly
partitioned.

34 members; see Fig. 4(a). A conflict between the instructor
and the club’s president split the club into two groups. Finding
the communities in this network is a basic benchmark test for
partitioning algorithms [44, Chapter 9].

To bisect this network, we use Fiedler vector bisection [45]
on both weighted and unweighted networks in Figs. 4(b) and
4(c). In the unweighted case, the bisection method failed to
separate a node correctly and there are two nodes that are
very close to the other cluster. Our weighting method does this
clustering with complete accuracy.

It may be useful to allow for overlapping communi-
ties. For instance, a node can be a member of different
communities, such as family, sport club, workplace, etc.
[46]. Although bisection methods alone are unable to detect
overlapping communities, we see that loop modulus can
augment these methods by distinguishing nested partitions in
networks with overlapping communities in the next example.
Figures 5(a)-5(c) show a network that is partitioned by Palla
et al. [47]. We compute the Fiedler vector in both unweighted
and weighted cases. As shown, the unweighted method failed
to separate C and D overlapping communities, while the
weighted method does distinguish them with the overlapping
part.

To show the effectiveness of the weighting method in a
more standard fashion, we consider two popular heuristics for
modularity maximization: the greedy modularity optimization
method by Clauset, Newman, and Moore (CNM) [48] and
the Louvian method [49] on the LFR benchmarks [50]. The
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FIG. 5. (a) A network partitioned by Palla et al. [47]. Nodes 16,
17, and 18 are shared between C and D groups and node 2 is shared
between D and A groups. (b) Fiedler vector of the network. (c) Fiedler
vector of the weighted network by loop modulus where overlapping
groups can be distinguished.

LFR benchmarks allow the user to specify the community size
distribution along with the degree distribution, offering more
realistic benchmarks than the Girvan-Newman benchmarks
[51]. We show that reweighting the network, using p*(e) from
loop modulus, improves both CNM and Louvian substantially.

In Figs. 6(a)-6(c), three networks are produced by the LFR
benchmark with 400 nodes, mean degree 5, maximum degree
10, and community sizes ranging from 20 to 40 nodes. The
interconnectedness of various communities is measured by
the mixing rate u. We plot the mutual information [52] for
both the derived membership from CNM and Louvian on each
network and the weighted version and compare them to the
ground truth from LFR in Fig. 6. As we observed, both the
CNW and Louvian algorithms perform better on reweighted
networks using modulus.

V. CONCLUSION

In this paper, we use modulus of family of loops to analyze
loop structures in networks. We showed that loop modulus
quantifies the richness of loops in the network and we used
it to measure clustering. The extremal densities found for
loop modulus represent the probability of link participation in
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FIG. 6. (a)-(c) Networks are produced by LFR benchmark with
size 400 nodes, mean degree 5, maximum degree 10, and community
sizes ranging from 20 to 40. The mixing rates u, for adjusting
ratio of intracommunities links over all links, are 0.1, 0.2, and 0.3.
(d) The plot depicts the normalized mutual information for commu-
nity memberships found by greedy modularity optimization (CNM)
and the Louvian method. Both the CNW and Louvian methods
perform better on reweighted networks.

important loops. We showed that performance of community
detection methods such as spectral bisection and modularity
maximization partitioning can be improved by weighting
networks with their extremal densities derived from loop
modulus. Although, we present some applications of loop
modulus, analyzing loop structures on the network can expose
different aspects of the network, such as various dynamics on
the network, e.g., synchronization and propagation [53-55],
as well as analyzing complexity of networks [56].

ACKNOWLEDGMENTS

The authors are thankful to anonymous reviewers for their
insightful comments that improved the initial manuscript and
provided directions for future work. Thanks also go to Michael
Higgins and his research group for their valuable suggestions.
This work is funded by the National Science Foundation under
Grant No. DMS-1515810.

[1] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii,
and U. Alon, Science 298, 824 (2002).
[2] S. Mugisha and H.-J. Zhou, Phys. Rev. E 94, 012305 (2016).

[3] T. Petermann and P. De Los Rios, Phys. Rev. E 69, 066116
(2004).
[4] M. E. Newman, SIAM Rev. 45, 167 (2003).

012316-6


https://doi.org/10.1126/science.298.5594.824
https://doi.org/10.1126/science.298.5594.824
https://doi.org/10.1126/science.298.5594.824
https://doi.org/10.1126/science.298.5594.824
https://doi.org/10.1103/PhysRevE.94.012305
https://doi.org/10.1103/PhysRevE.94.012305
https://doi.org/10.1103/PhysRevE.94.012305
https://doi.org/10.1103/PhysRevE.94.012305
https://doi.org/10.1103/PhysRevE.69.066116
https://doi.org/10.1103/PhysRevE.69.066116
https://doi.org/10.1103/PhysRevE.69.066116
https://doi.org/10.1103/PhysRevE.69.066116
https://doi.org/10.1137/S003614450342480
https://doi.org/10.1137/S003614450342480
https://doi.org/10.1137/S003614450342480
https://doi.org/10.1137/S003614450342480

NETWORK CLUSTERING AND COMMUNITY DETECTION ...

[5] P. G. Lind, M. C. Gonzdlez, and H. J. Herrmann, Phys. Rev. E
72, 056127 (2005).

[6] G. Bianconi and A. Capocci, Phys. Rev. Lett. 90, 078701
(2003).

[7] H.-J. Kim and J. M. Kim, Phys. Rev. E 72, 036109 (2005).

[8] M. Goering, N. Albin, P. Poggi-Corradini, C. Scoglio, and F.
Darabi Sahneh, 2015 49th Asilomar Conference on Signals,
Systems and Computers (IEEE, USA, 2015), pp. 1317-1322.

[9] N. Albin, M. Brunner, R. Perez, P. Poggi-Corradini, and N.
Wiens, Conform. Geom. Dyn. Am. Math. Soc. 19, 298 (2015).

[10] N. Albin and P. Poggi-Corradini, arXiv:1605.08462.

[11] L. V. Ahlfors, Conformal Invariants: Topics in Geometric
Function Theory (McGraw-Hill, New York, 1973), pp. ix+157.

[12] R. J. Duffin, J. Math. Anal. Appl. 5, 200 (1962).

[13] O. Schramm, Isr. J. Math. 84, 97 (1993).

[14] H. Shakeri, P. Poggi-Corradini, C. Scoglio, and N. Albin,
J. Comp. Appl. Math. 307, 307 (2016).

[15] M. Goering, F. D. Sahneh, N. Albin, C. Scoglio, and P. Poggi-
Corradini, arXiv:1511.07893.

[16] S.Boydand L. Vandenberghe, Convex Optimization (Cambridge
University Press, Cambridge, 2004).

[17] D. Goldfarb and A. Idnani, Math. Program. 27, 1 (1983).

[18] D. J. Watts and S. H. Strogatz, Nature (London) 393, 440
(1998).

[19] A. Barabasi and R. Albert, Science 286, 509 (1999).

[20] M. E. Newman, Social Networks 25, 83 (2003).

[21] G. Caldarelli, R. Pastor-Satorras, and A. Vespignani, Eur. Phys.
J. B 38, 183 (2004).

[22] P. G. Lind and H. J. Herrmann, New J. Phys. 9, 228 (2007).

[23] A.Fronczak,J. A. Hotyst, M. Jedynak, and J. Sienkiewicz, Phys.
A (Amsterdam, Neth.) 316, 688 (2002).

[24] S. N. Soffer and A. Vazquez, Phys. Rev. E 71, 057101 (2005).

[25] J. Saramaki, M. Kivela, J.-P. Onnela, K. Kaski, and J. Kertesz,
Phys. Rev. E 75, 027105 (2007).

[26] T. Opsahl and P. Panzarasa, Social Networks 31, 155 (2009).

[27] P. M. Gleiser and L. Danon, Adv. Complex Syst. 6, 565
(2003).

[28] R. Guimera, L. Danon, A. Diaz-Guilera, F. Giralt, and A. Arenas,
Phys. Rev. E 68, 065103 (2003).

[29] J. Kunegis, arXiv:1402.5500.

[30] J.J. McAuley and J. Leskovec, in NIPS 548 (2012).

[31] Hamsterster  friendships KONECT,
http://konect.uni-koblenz.de/networks/petster-friendships-
hamster.

network  dataset,

PHYSICAL REVIEW E 95, 012316 (2017)

[32] G.C.Homans, The Human Group (Routledge, New York, 2013),
Vol. 7.

[33] E. Ravasz, A. L. Somera, D. A. Mongru, Z. N. Oltvai, and A.-L.
Barabasi, Science 297, 1551 (2002).

[34] S. Fortunato, Phys. Rep. 486, 75 (2010).

[35] F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, and D. Parisi,
Proc. Nat. Acad. Sci. USA 101, 2658 (2004).

[36] 1. Vragovi¢ and E. Louis, Phys. Rev. E 74, 016105 (2006).

[37] J. W. Berry, B. Hendrickson, R. A. LaViolette, and C. A. Phillips,
Phys. Rev. E 83, 056119 (2011).

[38] S. Fortunato and M. Barthelemy, Proc. Nat. Acad. Sci. USA
104, 36 (2007).

[39] A. Khadivi, A. Ajdari Rad, and M. Hasler, Phys. Rev. E 83,
046104 (2011).

[40] L. C. Freeman, Sociometry 40, 35 (1977).

[41] F. D. Malliaros and M. Vazirgiannis, Phys. Rep. 533, 95
(2013).

[42] C.Klymko, D. Gleich, and T. G. Kolda, arXiv:1404.5874 (2014).

[43] W. W. Zachary, J. Anthropol. Res. 33, 452 (1977).

[44] A.-L. Barabasi, Philos. Trans. R. Soc. London A 371, 20120375
(2013).

[45] M.E.J. Newman, Networks: An Introduction (Oxford University
Press, Oxford, UK, 2010).

[46] G. Palla, A.-L. Barabasi, and T. Vicsek, Nature (London) 446,
664 (2007).

[47] G. Palla, I. Derényi, I. Farkas, and T. Vicsek, Nature (London)
435, 814 (2005).

[48] A. Clauset, M. E. J. Newman, and C. Moore, Phys. Rev. E 70,
066111 (2004).

[49] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre,
J. Stat. Mech. (2008) P10008.

[50] A. Lancichinetti, S. Fortunato, and F. Radicchi, Phys. Rev. E 78,
046110 (2008).

[51] M. Girvan and M. E. Newman, Proc. Natl. Acad. Sci. USA 99,
7821 (2002).

[52] L. Danon, A. Diaz-Guilera, J. Duch, and A. Arenas, J. Stat.
Mech. (2005) P09008.

[53] Z. Li, Z. Duan, G. Chen, and L. Huang, IEEE Trans. Circuits
Syst. 157, 213 (2010).

[54] Y. Kuramoto, International Symposium on Mathematical Prob-
lems in Theoretical Physics (Springer, New York, 1975),
pp. 420-422.

[55] P. Van Mieghem, Computing 93, 147 (2011).

[56] C. T. Butts, J. Math. Soc. 24, 273 (2000).

012316-7


https://doi.org/10.1103/PhysRevE.72.056127
https://doi.org/10.1103/PhysRevE.72.056127
https://doi.org/10.1103/PhysRevE.72.056127
https://doi.org/10.1103/PhysRevE.72.056127
https://doi.org/10.1103/PhysRevLett.90.078701
https://doi.org/10.1103/PhysRevLett.90.078701
https://doi.org/10.1103/PhysRevLett.90.078701
https://doi.org/10.1103/PhysRevLett.90.078701
https://doi.org/10.1103/PhysRevE.72.036109
https://doi.org/10.1103/PhysRevE.72.036109
https://doi.org/10.1103/PhysRevE.72.036109
https://doi.org/10.1103/PhysRevE.72.036109
https://doi.org/10.1090/ecgd/287
https://doi.org/10.1090/ecgd/287
https://doi.org/10.1090/ecgd/287
https://doi.org/10.1090/ecgd/287
http://arxiv.org/abs/arXiv:1605.08462
https://doi.org/10.1016/S0022-247X(62)80004-3
https://doi.org/10.1016/S0022-247X(62)80004-3
https://doi.org/10.1016/S0022-247X(62)80004-3
https://doi.org/10.1016/S0022-247X(62)80004-3
https://doi.org/10.1007/BF02761693
https://doi.org/10.1007/BF02761693
https://doi.org/10.1007/BF02761693
https://doi.org/10.1007/BF02761693
https://doi.org/10.1016/j.cam.2016.01.027
https://doi.org/10.1016/j.cam.2016.01.027
https://doi.org/10.1016/j.cam.2016.01.027
https://doi.org/10.1016/j.cam.2016.01.027
http://arxiv.org/abs/arXiv:1511.07893
https://doi.org/10.1007/BF02591962
https://doi.org/10.1007/BF02591962
https://doi.org/10.1007/BF02591962
https://doi.org/10.1007/BF02591962
https://doi.org/10.1038/30918
https://doi.org/10.1038/30918
https://doi.org/10.1038/30918
https://doi.org/10.1038/30918
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1016/S0378-8733(02)00039-4
https://doi.org/10.1016/S0378-8733(02)00039-4
https://doi.org/10.1016/S0378-8733(02)00039-4
https://doi.org/10.1016/S0378-8733(02)00039-4
https://doi.org/10.1140/epjb/e2004-00020-6
https://doi.org/10.1140/epjb/e2004-00020-6
https://doi.org/10.1140/epjb/e2004-00020-6
https://doi.org/10.1140/epjb/e2004-00020-6
https://doi.org/10.1088/1367-2630/9/7/228
https://doi.org/10.1088/1367-2630/9/7/228
https://doi.org/10.1088/1367-2630/9/7/228
https://doi.org/10.1088/1367-2630/9/7/228
https://doi.org/10.1016/S0378-4371(02)01336-5
https://doi.org/10.1016/S0378-4371(02)01336-5
https://doi.org/10.1016/S0378-4371(02)01336-5
https://doi.org/10.1016/S0378-4371(02)01336-5
https://doi.org/10.1103/PhysRevE.71.057101
https://doi.org/10.1103/PhysRevE.71.057101
https://doi.org/10.1103/PhysRevE.71.057101
https://doi.org/10.1103/PhysRevE.71.057101
https://doi.org/10.1103/PhysRevE.75.027105
https://doi.org/10.1103/PhysRevE.75.027105
https://doi.org/10.1103/PhysRevE.75.027105
https://doi.org/10.1103/PhysRevE.75.027105
https://doi.org/10.1016/j.socnet.2009.02.002
https://doi.org/10.1016/j.socnet.2009.02.002
https://doi.org/10.1016/j.socnet.2009.02.002
https://doi.org/10.1016/j.socnet.2009.02.002
https://doi.org/10.1142/S0219525903001067
https://doi.org/10.1142/S0219525903001067
https://doi.org/10.1142/S0219525903001067
https://doi.org/10.1142/S0219525903001067
https://doi.org/10.1103/PhysRevE.68.065103
https://doi.org/10.1103/PhysRevE.68.065103
https://doi.org/10.1103/PhysRevE.68.065103
https://doi.org/10.1103/PhysRevE.68.065103
http://arxiv.org/abs/arXiv:1402.5500
http://konect.uni-koblenz.de/networks/petster-friendships-hamster
https://doi.org/10.1126/science.1073374
https://doi.org/10.1126/science.1073374
https://doi.org/10.1126/science.1073374
https://doi.org/10.1126/science.1073374
https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1073/pnas.0400054101
https://doi.org/10.1073/pnas.0400054101
https://doi.org/10.1073/pnas.0400054101
https://doi.org/10.1073/pnas.0400054101
https://doi.org/10.1103/PhysRevE.74.016105
https://doi.org/10.1103/PhysRevE.74.016105
https://doi.org/10.1103/PhysRevE.74.016105
https://doi.org/10.1103/PhysRevE.74.016105
https://doi.org/10.1103/PhysRevE.83.056119
https://doi.org/10.1103/PhysRevE.83.056119
https://doi.org/10.1103/PhysRevE.83.056119
https://doi.org/10.1103/PhysRevE.83.056119
https://doi.org/10.1073/pnas.0605965104
https://doi.org/10.1073/pnas.0605965104
https://doi.org/10.1073/pnas.0605965104
https://doi.org/10.1073/pnas.0605965104
https://doi.org/10.1103/PhysRevE.83.046104
https://doi.org/10.1103/PhysRevE.83.046104
https://doi.org/10.1103/PhysRevE.83.046104
https://doi.org/10.1103/PhysRevE.83.046104
https://doi.org/10.2307/3033543
https://doi.org/10.2307/3033543
https://doi.org/10.2307/3033543
https://doi.org/10.2307/3033543
https://doi.org/10.1016/j.physrep.2013.08.002
https://doi.org/10.1016/j.physrep.2013.08.002
https://doi.org/10.1016/j.physrep.2013.08.002
https://doi.org/10.1016/j.physrep.2013.08.002
http://arxiv.org/abs/arXiv:1404.5874
https://doi.org/10.1086/jar.33.4.3629752
https://doi.org/10.1086/jar.33.4.3629752
https://doi.org/10.1086/jar.33.4.3629752
https://doi.org/10.1086/jar.33.4.3629752
https://doi.org/10.1098/rsta.2012.0375
https://doi.org/10.1098/rsta.2012.0375
https://doi.org/10.1098/rsta.2012.0375
https://doi.org/10.1098/rsta.2012.0375
https://doi.org/10.1038/nature05670
https://doi.org/10.1038/nature05670
https://doi.org/10.1038/nature05670
https://doi.org/10.1038/nature05670
https://doi.org/10.1038/nature03607
https://doi.org/10.1038/nature03607
https://doi.org/10.1038/nature03607
https://doi.org/10.1038/nature03607
https://doi.org/10.1103/PhysRevE.70.066111
https://doi.org/10.1103/PhysRevE.70.066111
https://doi.org/10.1103/PhysRevE.70.066111
https://doi.org/10.1103/PhysRevE.70.066111
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1103/PhysRevE.78.046110
https://doi.org/10.1103/PhysRevE.78.046110
https://doi.org/10.1103/PhysRevE.78.046110
https://doi.org/10.1103/PhysRevE.78.046110
https://doi.org/10.1073/pnas.122653799
https://doi.org/10.1073/pnas.122653799
https://doi.org/10.1073/pnas.122653799
https://doi.org/10.1073/pnas.122653799
https://doi.org/10.1088/1742-5468/2005/09/P09008
https://doi.org/10.1088/1742-5468/2005/09/P09008
https://doi.org/10.1088/1742-5468/2005/09/P09008
https://doi.org/10.1109/TCSI.2009.2023937
https://doi.org/10.1109/TCSI.2009.2023937
https://doi.org/10.1109/TCSI.2009.2023937
https://doi.org/10.1109/TCSI.2009.2023937
https://doi.org/10.1007/s00607-011-0155-y
https://doi.org/10.1007/s00607-011-0155-y
https://doi.org/10.1007/s00607-011-0155-y
https://doi.org/10.1007/s00607-011-0155-y
https://doi.org/10.1080/0022250X.2000.9990239
https://doi.org/10.1080/0022250X.2000.9990239
https://doi.org/10.1080/0022250X.2000.9990239
https://doi.org/10.1080/0022250X.2000.9990239



