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Abstract

Exponential and character sums occur frequently in number theory. In most applications
one is only interested in estimating such sums. Explicit evaluations of such sums are rare.
In this thesis we succeed in evaluating three types of mod p™ sums when p is a prime and

m is sufficiently large. The twisted monomial sum,

m

p

S, = Z X(aj,)e%rimvk/pm7

r=1

the binomial character sum,

ZX1 x)X2( A$ + B),

and the generalized Jacobi sum,

p™ p™
SSZJ;D"(XD‘")X/C? Z Xl(ml)Xk(ajk)? m >n,
r1=1 =1

1+ +Tp=p"

where the y are mod p™ Dirichlet characters.

We additionally show that these are all sums which can be expressed in terms of classical

Gauss sums.
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Chapter 1

Introduction

We are concerned here with the explicit evaluations of certain exponential sums modulo p™

where p is a prime, namely the twisted monomial sum,

m

p

S = Si(x,na,p") =) x(@)eym (na),
rx=1
where
eq(x) = emiz/a

the binomial character sum,

pm
Sy = Sa(x1, X2, Az* + B, p™) = ZXl(@)@(AiUk + B),
=1

and the generalized Jacobi sum,

p™ p"
Sz = Jpn(X1,-- s Xk ™) = Z Z x1(x1) - xe(xr), m>n,
r1=1 =1

1+ Frp=p"

(1.1)

(1.2)

(1.3)

(1.4)



where the y are multiplicative characters. We will show all of these sums can be explicitly
evaluated when m is sufficiently large. Cases where exponential sums can be evaluated are
rare, making the sums which can be specifically evaluated standouts. As we shall see in
Chapter 4 these are all sums which can be expressed in terms of classical Gauss sums.

In order to obtain our evaluations we apply the reduction method of T. Cochrane and
Z. Zheng [4], thereby reducing our sums to the consideration of a particular characteristic

equation. In Chapter 5 we reduce the twisted monomial sum,

Sy = pZ)((a:)epm (n:c”pt> :
z=1
with p v, to the equation
c1 + Rt+1n$wt =0 mod p™ ! (1.5)
when t +1 <m < 2t+ 2, and to
¢1 + Ripsranz™ =0 mod pitst!, (1.6)

when 2t +2 < m, where the R; are parameters dependent on our choice of a primitive root
mod p™ and the ¢;’s are parameters depending on the character (these parameters will be
discussed in detail in Chapter 2). Depending on the range, if (1.5) or (1.6) has no solution
the sum is zero; however if there is a solution we are able to directly evaluate the sum as

shown in the following theorem, which appears as Theorem 5.1.1 in Chapter 5.

Theorem 1.0.1. For p an odd prime, t € Z, t > 0, let

f(z) =na™, ptny.

Case I: Suppose that t +1 < m < 2t + 2. If x is a dp'-th power of a primitive character



and the characteristic equation (1.5) has a solution o then

Si(x, f(@),p™) = dp™  x(a)epm (f(a)).

Otherwise, S(x, f(z),p™) = 0.
Case II: Suppose that 2t +2 < m. If x is a dp'-th power power of a primitive character

and (1.6) has a solution then

S10 £(@), ™) = dpFx(@)epm (F(@)) (‘jm) (7)

where a is a solution of (1.6), (,Tm) is the Jacobi symbol, eym is as in (2.29) and d =

(v,p—1).

It should be pointed out that in absolute value this result simplifies to S; = 0 or

dpm™ 1, ift+1<m <2+ 2,
110X f(2),p™)| =
dpztt, if 2t +2 < m.

We get a similar evaluation when p = 2, dependent again on solutions to certain character-
istic equations.

In Chapter 6 we evaluate the pure character sum,

pm
=1

Again using the methods of Cochrane and Zheng we obtain a characteristic equation,

¢'(x) = 0 mod pmin{m*l’[m;n]ﬂ} (1.8)

where ¢'(x) comes from writing y1(z)x2(Az* + B) = x(g(x)) for some mod p™ character y,



leading to the following evaluation; see Theorem 6.1.1.

Theorem 1.0.2. Suppose that p is an odd prime and x1, X2 are mod p™ characters with s
primitive.
If x1 = X%, and (1.8) has a solution xy with pt xo(Axf + B), then

.

pm L ift+n+1<m<2t+n+2,

ZXI 2)Xx2(Az" + B) = dx1(zo)x2(Ax + B) prTt if m>2t+n+2, m—n even,

m—+n th

p 2

€1, ifm>2t+n+2, m—mn odd,

\

where g1 is as in (6.13)
If x1 does not satisfy x1 = x&, or (1.8) has no solution satisfying p 1 vo(Azf + B), then

the sum is zero.

For p = 2 similar results are obtained in Chapter 6; see Theorem 6.2.1.
In order to evaluate the multi-variable general Jacobi sum, (1.4), we use a general result

from Chapter 4, that expresses S7, S and S3 in terms of the classical Gauss sum,

pm
= x(@)epn(2)
r=1
For example, when the characters are primitive,

H =1 (XH m)

G(Xl - Xk> P )

I (X1s ooy Xy D) = (1.9)

In Chapter 3 we use the Cochrane and Zheng reduction method to get the following evalu-

ation of the mod p™ Gauss sum; see Theorem 3.1.

Theorem 1.0.3. Suppose that x is a mod p™ character with m > 2. If x is imprimitive,



then G(x,p™) = 0. If x is primitive, then

. 2e)" o i p£2, and p" £ 3,
GO, p™) =p2 x (—cR; ") epm (—cR;) (p> ’

(%)mwc, if p=2and m > 5,

(1.10)

or any j > [2] when p is odd and any j > [2] + 2 when p = 2. Here x~! denotes the
for any j > [F] yi=>1I%

inverse of © mod p™, and w = e™/*.

Using (1.9) and Theorem 1.0.3 we are then able to evaluate S5 explicitly; see Theorem
7.0.1 (we write all three of our sums in terms of Gauss sums in Chapter 4, however we only

use this for direct evaluation in the case of our multi-variable Jacobi sum).

Theorem 1.0.4. Let p be a prime and m > n + 2. Suppose that x1,...,xr are k > 2
characters mod p™ with at least one of them primitive.
If the x1,...,xx are not all primitive mod p™ or x1...Xxx s not induced by a primitive

mod p™~" character, then J(x1,..., Xk, p") = 0.

If the x1, ..., xr are primitive mod p™ and x1--- Xk 1S primitive mod p™~", then
1 - xa(en) -~ - xuler)
Jon (X1, -+ s Xi, ™) = p2 DA 5 1.11
»bo ) i (V) (1)
for p odd,
5= (—QT)m(k_lHn (g)m_n <C1 - 'Ck>m8k o1
p p p perm
and
vi=p e+t o), wi=emh (1.12)

Evaluations of 1.4 are also given when p = 2 in Chapter 7; see Theorem 7.0.1.



Chapter 2

Preliminaries

Let ¢ be a positive integer. For a multiplicative Dirichlet character x mod ¢ and f(x), g(x) €

Z|z] we define a mixed exponential sum

SO 9(@), f(2),9) =D x(g(x))eq(f(2))

where

eq(x) = e2mir/a

Note it is sometimes useful to use the equivalent notation

x .
e (_) — eQﬂzx/q.
q

(2.1)

(2.2)

(2.3)

We are concerned here with the explicit evaluations of these and closely related sums when

g = p™ with p a prime and f, g are specific polynomials with integer coefficients, namely

(1.1), (1.3) and (1.4). We show in Section 2.2 why it is enough to reduce to the prime power

case, but we first start with some definitions and preliminaries.



2.1 Dirichlet Characters

We begin by defining a special class of multiplicative homomorphisms called group charac-

ters.

Definition 2.1.1. Given a finite group (G, *) a character x is a function x : G — C* such
that for a,b € G, x(a*b) = x(a)x(b).

For the identity element, e, and some a in G we have y(a) = x(e *xa) = x(e)x(a) and
since x is nonzero on G, we have y(e) = 1. Further, x(a)/®l = x(e) = 1, and thus x(a) is a
|G|-th root of unity.

For any finite abelian group, G, we know that G = Z,,, x ... X Z,, where the Z,, are
additive cyclic groups. Let the generators of G be a; = (1,0,...,0), ..., a, = (0,...,0,1).
For a generator a; we have that x(a;)™ = x(n;a;) = x(0) = 1; thus x(a;) is an n;th root
of unity. Since we know x(a;) = e,,(¢;) for some integer 0 < ¢; < n; — 1 we have exactly
n; distinct places to send each a; resulting in [[/_, n; = |G| different characters. We also
note that for finitely generated groups the characters are defined by their actions on the
generators.

In this thesis we let G = Z; where we write Z; for the multiplicative group of units in

Z/qZ. The characters on Z; are then extended to all of Z, by defining the characters to be

zero on elements of Z, not in Z;.

Definition 2.1.2. A Dirichlet character x mod q is a non-identically zero function x : Z, —
C with x(ab) = x(a)x(b) for all a,b € Z, and x(c) =0 if (¢,c) > 1.
One of the most well known examples of a Dirichlet character is the Legendre symbol.

We define the Legendre symbol modulo a prime, p, by

;

1, if (a,p) =1, and a is a square mod p,

a
(2—9) =93 —1, if (a,p) =1, and a is not a square mod p, (2.4)

0, if (a,p) > 1.

\



Alternately we will denote the Legendre symbol as the quadratic character .

For ¢; | ¢ we say that a mod ¢ character x is induced by a mod ¢, character, x,, if

X1 (n)v if (nv Q) =1,
x(n) =
0, otherwise.

We call a character primitive if it cannot be induced by a lower modulus character.

One can examine the structure Dirichlet characters by examining the characters on prime

Qg
i

powers. Letting the prime factorization of ¢ = Hle p;" where p; are primes, we claim that
there exists a corresponding primitive root a; such that Z;?i = (a;) unless p; = 2, with
a; > 3 in which case Zi., = (—1,5) (see Section 2.8 in [18]). The order of each a; mod p"
is exactly ¢(py"), and thus x(a;) is a ¢(p;*) root of unity unless p; = 2 with «; > 3 in which
case 5 has order 2°72 and —1 has order 2 and thus x(—1) is a 2-nd root of unity and x(5)
is a 2%~2-nd root of unity. The characters of Z;?i are defined by their action on the a;’s,

that is

x(ai) = eypon(c), 1< < o(p) (2.5)

unless p; = 2 with a; > 3 when we have
X(=1) =+1, x(5) = ega;2(c;), 1< ¢ < p(272). (2.6)

For any mod p;" character x we can extend x to be a mod ¢ character by defining it to be
0 for all a € Z, with (a,q) > 1. We additionally note that for two mod ¢ characters, x; and
X2, we have that y;xs is also a mod ¢ character.

We claim that every mod ¢ character can be be written as the product k£ mod ¢ characters
induced by mod p}* characters, i = 1,..., k. The number of characters for Z;?i is o(pi);
thus we have Hle o(p') = ¢(q) choices for a mod ¢ character x of the form x = x1...xx

where the y; are mod ¢ characters induced by mod p{" characters. As there are ¢(q)



characters for Z; if each of the choices of y; gives a different mod ¢ character then every
mod ¢ character may be constructed in this way. Let x’ and x” be two mod ¢ characters
with x' = x”, and X' = X} - X X" = X1 ... X}, where the x| and X/ are induced by mod
p;* characters. By the Chinese Remainder Theorem for each a; there exists an A; = a; mod
it with A; = 1 mod p;‘j, for j # 4. When p; = 2 with a; > 3 we also need an A; = 5 mod
2% and Ag = —1 mod 2%, A; = Ay = 1 mod p*, i # j. For 22 4 p7, X'(4;) = X"(4;),
and thus x/(a;) = xj(a;). When p; = 2 with a; > 3 we have that x'(4;) = x"(4;) and
X'(Ao) = x"(Ap), implying that x’:(5) = x7(5) and xj(—1) = x(—1). Since a p;” character
is determined by it action on the generators of Z;iai, X and X7 must be the same character

for each j. Therefore, any mod ¢ character, x can be expressed as

X = X1 Xk (2.7)

where the y; are mod ¢ characters induced by mod p;*

.+ characters.

The character which sends all the elements of the multiplicative group to 1 is called the

principal character, defined by

1, if (¢,b) =1,
Xo(b) =
0 else.

2.2 Reducing to the case of prime modulus

Let ¢ = Hizl p;* with p; prime. For a mod ¢ mixed exponential sum we will use the fact
that any mod ¢ character, x = x1 ... X%, where the x; are mod pj" characters extended to
Z, to break our composite sums up into sums modulo prime powers. Define m; = ¢/p;" and
let h; be integers such that Z§:1 h;m; = 1. Note that Z?Zl zjhim; = x;hym; = z; mod
pit, thus

g(xihimy + - + zphgmy) = g(x;) mod pi.



Further,

(zrhama + -+ + zphgmy)’ = (21hama )’ + - 4 (xrhemy)’ mod g

giving

Thus

We may assume that f(0) = 0, for if not we may write e,(f(x)) = e,(f(z)—f(0))e,(f(0)) and
the e,(f(0)) can be pulled out of the sum straightaway. Additionally x1hymy +- - -+ xhgmy
runs over a complete set of residues modulo ¢ as the z;’s run from 1,...,p. So for the

general mod ¢ mixed exponential sum, (2.1), we have

S(x, g(x Zx ())

= Z Xl 271 6 o1 (hlf 513'1 Z Xk .%'k € ak (hkf(mk»

r1=1 xp=1

- Stote b2

Thus, for the general mixed exponential sum is suffices to deal only with the case ¢ = p®

which includes our Sy, (1.1).

10



Similarly if x’, and x” are mod ¢ characters then our Sy sum,

q
So(x, X", Az* + B.q) = > X'(z)x"(Az" + B)
=1
kPl
=[] D_ xi(@xi(Azf + B)
i=1 x;=1

:HSQ(Xsz’AQ: +B p )7

for x%, x/ induced by mod pj* characters. For Sy it suffices to examine only prime powers.

Likewise, for the generalized Jacobi sum,

Ta(Xt,- X @) = > > xalwn) - xwlan),

xr1=1 =1
z1++x=B mod ¢q

if the y; are mod rs characters with (r,s) = 1 then, writing x; = x;x7 where X and x/ are

mod r and mod s characters respectively, writing z; = u;rr~! +v;5571, where u; = 1, ..., s,

v;i=1,...,r,and rr~! + 557! =1, gives

Je(X1, -y Xk, TS) = Z Z . Z Z xa(rr g 4 s oy) - xa (e g, 4 85T oy),

ur=1v1=1 up=1v=1
(7’7‘*1u1+ss*1v1)+--~+(7"7"*1uk+35*1vk)=B mod s

Y S S M (55 o) )il

ur=1v1=1 up=1v=1
(rr~Yuy+ss™ vy )4+ (rr " lup+ss~tvg)=B mod s
(rr’1u1+ss*1v1)+--~+(Tr*1uk+ss*1vk)EB mod r

= Z Z X1 (ur) - X (ug) ZZ X1 (v1) - X (vg)-

ur=1 up=1 v1=1 vp=1
u1+-+ur=B mod s v1+-+vr=B mod r

= Je(X1s s X T)IB(XT, -+ s X2 S)-

Hence, it suffices to consider the case of prime power moduli, ¢ = p™, for all three of our

suIs.

11



2.3 The Power-Full Lemma

A most useful result for manipulating mixed and pure exponential sums is the connection
between the degree of the polynomials f, g and the type of character necessary for the sum
to not be zero. For instance in order to write our sums (1.1), (1.3) and (1.4) in terms of
Gauss sums (which will be discussed in Chapter 4) we must first prove the following powerful

lemma

Lemma 2.3.1. For any odd prime p, multiplicative characters x1, x2 mod p™, and fi, fo

p

in Zlx], the sum S = ZXl(x)XQ(fl(xk))epm(fg(xk)) is zero unless x1 = X% for some mod
=1

p™ character xs.

While it should be noted this condition springs up naturally when evaluating the sums,

it is useful to prove it here.

Proof. Taking z = a®@®™)/(E¢(™) q a primitive root mod p™, we have z* = 1 and

S =Y xa(@)xa(fil(x2))epm (fo((22)5) = xa(2)8S.

Hence if S # 0 we must have 1 = x;(z) = x1(a)?®")/*®2(P™) and consequently xi(a) is
a complex ¢(p™)/(k, ¢(p™))-th root of unity and so xi(a) = egpm) (¢'(k, ¢(p™))) for some

integer ¢’. Letting ¢; be any integer satisfying

d(k,o(p™)) = cik mod o(p™),

(¢1 is unique mod ¢(p™)/(k, ¢(p™))) we equivalently have x1 = x4 where x3(a) = egpm)(c1).
[

12



2.4 Definitions and Congruence Relationships

2.4.1 The case p is odd

Let a be a primitive root mod p, the existence of which is an elementary result in number
theory (see Section 2.8 in [18]). Further from Theorem 2.40 in [18] we know if a is a primitive
root mod p? it is a primitive root for all higher powers of p as well. For a mod p primitive
root, a, we must have a is also a primitive root mod p? to get that a is a primitive root mod

p’ for all j. By using that a?~! = 1 + rp for some r we take

(a+ Ap)Pt =a?' + (p — 1)pra?~? mod p?

= (14 7p) — pAa?~? mod p?

=1+ (r — Aa” ?)p mod p?

and take A such that p { (r — Aa?~2) giving us just the primitive root we are looking for.
For this thesis we assume p 17 and A = 0, thus a is a primitive root for all powers of p. We

now define the integers r and R; by
a®® =14 rp, a®(?) =14 Rjp. (2.8)
Note, p t r and for any j > 2

a1 + ijj _ (a¢(pj71))p =1+ Rj_lpi—l)p

=14+ R;_1p’ + (g) R?_po(j_l) mod p*U—1

giving

Rj = Rj_l mod pj_l,

13



and thus for any j > ¢ we have

R; = R; mod p'. (2.9)
For a character xy mod p™ we implicitly define ¢ by

x(a) = egm)(c), (2.10)

with 1 < ¢ < ¢(p™). Note, p 1 ¢ exactly when x is primitive.

Lemma 2.4.1. For the p-adic integer

o0 i(_1Yyi-1
R:=ptlog(l+rp)=p* Z M (2.11)

i=1

we have
R=R; mod p’.
Proof.
o) = (14 rp)” " =1+ Ryp,

SO

log(1 + 7’p)pj_1 = log(1 + ijj).

By taking the Taylor series expansion of log(1 + x) we get

P Uog(1 +rp) = i = 3 LRV DT

- 2
=1

and thus we have

(R~

?

R:

=1

14



If p¥ | i for any ¢, then plainly v < i — 1 for all odd p, giving

R=R; mod p’.

2.4.2 Thecasep=2and m >3

When p is not odd and m > 3 we need two generators —1 and a = 5 for Z},. (again see [18],

Chapter 2, Section 8), and define R;, j > 2, and ¢ by
a7 =14+ R, x(a) = eym2(c), (2.12)
with y a mod 2™ character, primitive exactly when 2 { ¢. Noting that R? = 1 mod 8, we get
Riy1 = R+ 27 'R? = R; + 277! mod 22, (2.13)
For j > 7 + 2 this gives the relationships,
Ri=R=R1+2=(R+27")+2' =R — 27" mod 2" (2.14)

and

Ri=(Ri1+27%)—-2""=R, 1 — 2% mod 2"*". (2.15)

2.5 Gauss Sums

We can now define our first and most well known exponential sum, the Gauss sum
q
G(x,q) = Y x(x)ey(w) (2.16)
=1

15



where x is a mod ¢ character.
Letting ¢ = p™ where p is prime, explicit evaluations of these sums exist for m > 1
(which we will derive in detail in Chapter 3). The cases when the m = 1 sum has exact

evaluation are few, the most famous example being the quadratic Gauss sum

p VP, if p=1mod 4,

z=1 iy/p, if p=3 mod 4,

the evaluation of which is involved (for a nice treatment see Chapter 1.3 of [2]). One can

equivalently write the quadratic Gauss sum in the form (2.16) using the Legendre symbol,

o) =3 (14 (2)) o= e + 32 (2) o
-3 () 0 -Glan

where recall we use xg to denote the mod p character that coincides with the Legendre
symbol. Here we use that > " _ e,(z) = 0, a central notion in the proofs of the main
theorems in this dissertation. It is worth stating that, more generally, summing a linear

exponential sum modulo ¢ over a complete set of residues is either ¢ or 0. That is

2 q, ifqlA,
D e(Az) = (2.17)

z=1 0, otherwise.

Plainly if ¢ divides A each term in the sum is 1 giving the total sum to be ¢, if not then

. € (A) —eq (A>q+1 -
Zeq(Aa:) = =, (4) = 0.

r=1

The bulk of this thesis deals with evaluating mixed sums modulo p* with a@ > 2 using
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methods of T. Cochrane and Z. Zheng as detailed in [4], where we are able to reduce certain

mixed exponential sums and pure character sums to cases similar to (2.17).

2.6 Character Sums and The Duality of Gauss Sums

A pure character sum has the following properties

P o(p™), if x is the principal character,
3 xla) = (2.18)
z=1 0, otherwise.

When Y is the principal character it plain the sum is ¢(p™). To see the sum is zero otherwise

we take a to be a primitive root mod p™ when p is odd and write the sum

™ #(p™) (p™)
D x(@) = x(@) = espm (e7),
r=1 v=1 v=1

giving an exponential sum over a complete set of residues as in (2.17), giving the result.

Similarly for p = 2 we write

D oxt@) =D x5+ x(=1) Y x(B) =D eam2(en) + x(—1) Y eama(cy)

the rest follows from (2.17).
Summing over characters gives a similar result. Letting x1, ..., x¢@m) be all the charac-

ters mod p™ we have that

o) 0, if b % 1 mod p™,
> xilb) = (2.19)
=1 o(p™), if b=1 mod p™.

By the definition of a Dirichlet character if (b, p) > 1, x(b) = 0. Otherwise b = a” for some
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0 < B < ¢(p™) when p is odd, so we can write

d(p™) d(p™)

o(P™)
> xb) = 3 (0’ = 3 eom(eid).

i=1 i=1

Since each character sends the primitive root a to a different 1 < ¢; < ¢(p™) we have a sum
over a complete set of residues. By (2.17) the sum is zero unless ¢(p™) | £, in which case
b=a? = (a?®")? =1 mod p™ for ' such that § = §/¢(p™), and the sum is ¢(p™).

When p=2,m >3, b= (—1)5, with 0 <w < 1and 1 <3 <22 and we can write,

Z xi(b) = Z x;(57) + Z X ((=1)")x;(5%) = Z egm-2(c;3) + Z ea(w)egm-2(c;3).

Since each character sends 5 to a different 1 < ¢; < 2™~ 2 we have a sum over a complete set
of residues. Again by (2.17) the sum is zero unless 22 | 3, and w = 0, giving that b = 1
mod 2™.

This brings us to a rather useful lemma for picking out powers mod p™.

Lemma 2.6.1. For b such that (b,p) =1, if b is a kth power mod p™

D, if pis odd,

x*=xo (2,k)D, ifp=2,m >3,

where

(k,o(p™)),  for p odd,
D= . (2.20)

(k,2m=2),  forp=2, m > 3.

If b is not a kth power mod p™
> x(b)=o.
xF=xo

Using this Lemma and observing that the number of 2’s that give the same value as x*
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is D or (k,2D) if p = 2, we can pick off kth powers in the following manner:

D X(gl@ e (fleh) = Y (ZXl(U)) x(g(u))epm (f(u))

XD*X

Z x(g(u))epm (f(u)),

which will become very useful for writing our sums in terms of Gauss sums in Chapter 4.

Proof. We have seen there are exactly ¢(p™) characters mod p™. We will show that D of
these characters are kth powers. For p odd we have a primitive root a mod p™ and we can

write any character

x(a) = egpmy (¢), 1< c<o(p™).

Thus if x is a kth power of some character ' we have

eoom) (k) = X' ()" = x(a) = egpm) (c)

for some ¢. Thus we are solving for ¢ in the congruence ¢ = ¢k mod ¢(p™) which has

D = (k,¢(p™)) solutions when D | ¢. Therefore there are exactly D characters such that

(namely the characters with ¢ such that ¢ = yo(p™)/D fory = 1,..., D). If b is a kth power

mod p™

> x(b) =D.

xP=xo0

If b is not a kth power mod p™ then b = a” where D { 3, giving

T = Y :g%@m)(m )i(yﬁ) .

xP=xo0 xP=xo0 y=1
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by (2.17).

If p=2, m > 3 we have that the characters are defined by

x(=1) =es(co), 1<c<2, and x(5) =em=(c), 1<c<2m2

Thus we have kth power characters for the (k,2™2) = D solutions to ¢ = ¢’k mod 2™?2
when D | ¢, along with the (2, k) solutions to ¢y = ¢{k mod 2 when (2,k) | ¢o. If (k,2) =1
then D = 1 and there is only the principal character with x” = o, if (k,2) = 2 there are
2D characters with this property. Thus if b is a kth power mod 2™

2D, if (k,2) > 1

xP=xo 1, if (k,2) =

If b is not a kth power then b = (—1)*5” where (k,2) { w and Dt 3, giving

(k,2)

Z x(b Z x(=1)*x(5)% = 262 Tw Z€2m 2 (yﬁQm 2)
=X0 xk72=)><o i
= Zeg(xw) Ze (%) =
r=1 y=1
by (2.17). O

The Duality of the Gauss Sum is another useful property given in the following lemma.

Lemma 2.6.2. If x is a primitive character mod p’, j > 1, then

Proof. For p{ A this is plain from y — A~ !y. If p | A and j = 1 the sum equals y L X(y) =

0. For j > 2 as y is primitive there exists a z = 1 mod p’~! with x(z) # 1, (there must be
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some a = b mod p’~! with x(a) # x(b), and we can take z = ab™!) so, since Az = A mod
P,
Zx Y)ep (Ay) = Zx 2y)epi (Azy) = ZX y)epi (Ay) (2.21)

y=1

and 3, X(y)ep (Ay) = 0.
An alternate way of showing this for 7 > 2 and p odd is writing y = a @ for q a

primitive root mod p™, x(a) = e (c), u=1,...,06(p" 1), v=1,.,p,

P’ o’ ") P
X(v)ey(Ay) = Z x(a")eyi (Aa" )Zep(cv) = 0. (2.22)
1 v=1

y=

2.7 Reduction Method of Cochrane and Zheng

In [4] Cochrane and Zheng establish a reduction method for evaluating exponential sums of

the form

S(x,x, f(x),p™) = Y x(@)epn(f(x)) (2.23)

which was then generalized to sums of the form

S(x, g() Zx ())

in [5] with g, f rational functions over Z. The method for evaluating (2.23) involves finding

the set, A, of all nonzero residues mod p satisfying the congruence

p "(rof'(r) +¢) =0mod p (2.24)
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(with the integers r and ¢ defined in (2.8) and (2.10)), where p™ || r X f'(X) + ¢. We write

p—1
Stz f,p™) ZX p)epn (f(2)) =D Sa,
a=1
where for any integer a with p 1 «,
pm
Soa = SalX,, f,p") = Z x(z f(z)).

mEcx mod p

Theorem 2.7.1 (T. Cochrane, Z. Zheng [4]). Let p be an odd prime, f be any polynomial
over Z and t; be as above and t such that p' || f'. Suppose that m > t; + 2. Then for any

integer a with p { a we have

1 Ifad A, Su(x, f,p™) =

2. If a is a critical point of multiplicity v > 1 then t =t and
[Sa(x, z, £,p™)] < vprTpm-=T), (2.25)

3. If a is a critical point of multiplicity one then

x(a*)epm (f(a*))meH, If m —t is even,
SQ(X7 x, fapm) =

t—1

x(@)epm (£(a")) X2(4)G (xq:p) 0™, if m—t is odd,

where o is the unique lifting of a to a solution of the congruence p~*(Ref'(z)+¢) =0
mod pl V2 and A, = 2ap~t(f'(a) + af”(a)) mod p. In particular, we have
equality in (2.25).

Here x¢ is the Legendre symbol (2.4) and so G (xgq,p) is the quadratic Gauss sum
discussed earlier, and R is the p-adic integer R := p~'log(1 + rp).
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When f(x) = na* with p { k we have the twisted gauss sum

pm/
Z x(z)eym (na®) (2.26)
=1
and (2.24) takes the simple form
rka® + ¢ =0 mod p, (2.27)

we have that either (2.26) is zero or a sum of (p — 1, k) S, sums, depending whether there
is a solution to (2.27) or not. When the critical points have multiplicity one the S, can be
evaluated explicitly. For example if f(x) = x then as observed in Cochrane and Zheng [4,
§9] the critical point congruence is simply rx + ¢ = 0 mod p. For p odd and m > 2, if x is
imprimitive there is no critical point and S(x, x,p™) = 0, while if y is primitive there is one

critical point of multiplicity one and

SCu2,5™) = x(@")en (0" )™ (i) . (2.28)

1, if p =1 mod 4,
Epm 1= (2.29)

7, if p™ = 3 mod 4,

and

Ra* = —c mod plm+H/2, (2.30)

(A small adjustment is needed in (2.30) in the case p = m = 3, see (5.15), and more
generally in [4, Theorem 1.1(iii)] when p = m — ¢ = 3). The same formula (2.28) occurs

in Mauclaire [16] with o defined by x(1 4 p™/?) = €,m/2(—*) when m is even and x(1 +
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ptm/2 4 271 = e a2 (—a®) when m is odd. Mauclaire also deals with the case
p = 2 in the second part of [16]. A variation of (2.28) was obtained by Odoni [19] (see also
Berndt, Evans and Williams [2, Theorems 1.6.2-1.6.4]). In Chapter 3 we will evaluate the
f(z) = x sum using the reduction method but replacing p-adic integer R with a slightly
simpler constant, as well as dealing with the case p = 2. In the later chapters we will be

evaluating sums with critical points of multiplicity greater than one and obtaining explicit

evaluations.
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Chapter 3

Evaluation of Gauss Sums

The mod p™ Gauss sum is given as

Gl p™) =Y x(x)epm(x)

In this chapter we will give an explicit evaluation of the Gauss sum for all p, illustrating
the reduction methods of Cochrane and Zheng discussed in 2.7. By using the congruence
relationships in 2.4 we get an evaluation particularly useful for the explicit evaluation of the

general Jacobi sum,

m m

p p

Jpn (X1, -5 Xk, D) = Z Z X1(@1) -+ xwlzn), m>n,

r1=1 xp=1
T1+FTp=p"

in Chapter 7.

3.1 Evaluation of the Gauss Sum

We shall need an explicit evaluation of the mod p™, m > 2, Gauss sums. The form we use

comes from applying the technique of Cochrane & Zheng [4] as formulated in [20]. For odd
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p this is essentially the same as [5, §9] but for p = 2 seems new. Variations can be found in

Odoni [19] and Mauclaire [16] (see also [2, Chapter 1]).

Theorem 3.1.1. Suppose that x is a mod p™ character with m > 2. If x is imprimitive,
then G(x,p™) = 0. If x is primitive, then

m —2re mg ™y pr 7& 27 and pm 7é 337
G, p™) =p2> x (—cR; ") epm (—cR;) ( : ) ’ (3.1)
(%)mwc, ifp=2and m > 5,

for any j > [%] when p is odd and any j > [%] + 2 when p = 2.

For the remaining cases

G(x,27) = 32y (—cR;") es (—10cR; ) (_Qrc)i,

and
.

i, ifm =2,

w[3

GOo2™ = 2% (i, s, (32)

x(—c)eg(—c), if m=4.

\

Here x=1 denotes the inverse of x mod p™, and r, R; and ¢ are as in (2.8) and (2.10) or

(2.12) and w = e™/4.

It is important to note that although we are evaluating the Gauss sum using an arbitrary

R; during the course of the proof we get the evaluation

’

(=22) e, ifp A2 pm £,

G(x.p™) =p? x () epm (@) € 1, if p=2and m > 5 is even, (3.3)

K(i/_{;)>’ it p=2and m > 51is odd,
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where « is a solution to

¢+ Rpmyz =0 mod plzl, (3.4)

unless x is imprimitive in which case there is no solution to (3.4), relatively prime to p and
G(x,p™) = 0. The Gauss sum evaluation of the theorem becomes useful when evaluating

(1.4) in Chapter 7.

Proof. For p odd, let a be a primitive root of p for all powers of p. We can write

p™ d(p™)
= Zx(x)epm () = Z x(a")epm (a?).

For an interval I; of length ¢(p/Z1) it is clear that

vy =0 u+v

with u € I = [1,pL%J}, v € Iy, runs through a complete set of residues mod ¢(p™). Hence,

= 3 () 0 A e (a0

vely u€ls
= 3" x(@) D e iz (cu)epn ((1+ Rpgpl)4a”)
vely u€els

Observing (1 + R(%]p(%)“ =1+ R(%Wp[%wu mod p™ gives

= Z x(a®) Z CNEY (cu)eym ((1 + R[%]p[%1u)a”>

vel; ucls

= X(@)epm (') Y e (cue (R( 101 lua >
vely ucls

= Zx(a”)ep Ze Eg ( c+R[m1a ))
velp u€lr
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Noting that the u sum is over a complete set of residues mod pl=J gives G (x,p™) = 0 unless
¢+ Rrmya” = 0 mod plel, (3.5)

has a solution a = a*. If p | ¢ there is no solution and G(x,p™) = 0. When p { ¢, there
exists a solutions when o = —cR[_é] mod plz). To simplify our result we choose « to be a
2

solution to the stronger congruence
c+ Ryx =0 mod p’, (3.6)
where J := (%W , to satisfy (3.5). Given any two solutions, a* and a", to (3.5) we have
a” = a** mod pl?!

or equivalently

vo = vy mod B(pl2)).

When m is even | %] = [%F] thus there can only be one solution in the range of v. Taking

I; to contain a' gives the result for m even. When m is odd, given a solution a", we have

avotvs @ E) for y =1,...,p are all the solutions in an interval of length ¢(p/z1). Taking I,
to contain these solutions and letting L = | 2] = =1 we get
P
Gl p™) = p- D @ ey (o))
y=1
P L
= plx(a™) Z X(a¥?" Neym (a0 (1 + Rep™)Y)
y=1
p
= p"x(a™) > e g (cy) epm (a*(1 4 Rp")?) .
y=1
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As long as m > 3 we have

(1+RLpL)y=1+yRLpL+(2)R2 m=l 4 (3)1%3 st

(RLP _2 1R2 m— 1)y_|_2 1R2 m— 1y2 mOdpm

G(x.p™) = P x(a”)epm (@)Y e rm1 (cy) epm (a™((Rpp" — 27 Rip™ ')y + 27 Ry p™'y?))
= p"x(a™)epm ()Y e rg (y(c+ Rpa®)) epm (a* (=27 Rip™ 'y + 27" Rip™'y?)) .
(3.7)

We here note that Ry = Ry + 271 R2pl — 371 R3p™~! mod p’ where the last term is zero

unless p = 3, m = 3. This can be seen from

1+ Ryp’ = a®®”?) — ") — 1+ RLpL)p

El+pRLpL—|—<>R2 2L <3>R3 3L

=1+4p’ (R, —27'Rip" +37'Rip™") mod p™',

implying that

R; =R, — 27 'R%pt + 371 RS p™~! mod ptm+H=7,

Using this congruence as well as the fact that a is a solution to the stronger characteristic
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equation (3.6) we have

ep(%W (y(c + RLCLvO)) = ep(%w (y(c + a'o (RJ + 271R%pL . 371R;zpm,1)))

=e,ip (ya™ (27 REp" — 37" Rp™ )

= epm <ya (2 'Ripmt -3 IR%p?’m?_l)) :
Thus the y sum becomes, (when not in the special case p = 3, m = 3)

p
Z R2 m— 1)) epm (avo( 1R2 m— 1y+271R%pm71y2))

hS]

1

- (CL%%P&) yiep ()
() En- (o

Z €p v02 1R2 ))
y=

Here G (xq,p) . is the quadratic gauss sum which famously sums to ,/p or i\/p as p =1 or

3 mod 4. Note that for a solution, a", to the equation
¢+ Ryr =0 mod p’,

by (2.9) we may take a" = —cR;' = —ch_l mod p”’ for any j > J and —ch_l will be a

solution as well. This together with (3.7) gives the result for p odd except when p = m = 3.
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When p = 3, m = 3 we get the y sum
3
Z ear (ya™ (27'R79 — R}9)) ear (a®(—27"R79y + 27" R 9y°))
) 3
= Z es (a"27'R} (y*) — R}a™y)
s )
= > e (@270 + Buy)) = ea (<a27) Y ea (@27 (y + 27 RiP)
y=1 y=1

3
—2
= e3 (Gvo) Zeg (—GUOU}2) = 31/2 (%) €3 <—CR7%1-‘> 1
w=1

completing the p odd case.

For p =2, m > 6 similarly write the sum in terms of the generators —1 and 5 giving,

gm—2
G(x,2") Zx )eam ( Z Z (A57)egm (A57).
Ae{-1,1} =1

We let v = u2!21-2 4 v where v € I, and u € I, where I is an interval of length 2l 1-2

and I, = [1, QL%J]. Thus after simplification similar to the p odd case we have

Ge2M = Y M) Y ey (u)ean (45 (14 Rrgr2%1))

Ae{-11}vely u€ls

= Z Z X(A5Y) Z eyl (cu) egm <A5” + A5”uR[%12[%W>
Ae{-1,1}veh uels

- Z Z X (A5")eam (A5") Z eyl (cu) egm <A5”uR(%12(%W>
Ae{-1,1}vely u€lz

= Z Z X(A5U>€2m (A5v) Z 62L%J (U (C + A5UR[%“>) .
Ae{-1,1}vel u€lz

So G(x,2™) = 0 unless we have a solution to either the A = 1 or —1 characteristic equation

¢+ A5°Rpzy = 0 mod 2121, (3.8)
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Notice that both ¢£5"Rjzy = 0 mod 2L%) cannot be simultaneously satisfied as —5"t % 52

mod 2L21 so —CR[_é] is either 5 or —5" for some v. Clearly we can have no solution to
2

equation (3.8) if 2 | ¢, thus xy must be a primitive character. For the sake of simplification

we take our solutions to be solutions of the stronger characteristic equation

ﬂ
2

¢+ A5"Rrzy =0 mod ol%] (3.9)

For two solutions A5 and Ay5*, we have
5% = 5" mod 2L% .

Thus

vy = v; mod 22172,

which is precisely the length of I; when m is even. Taking I; to contain this solution we get
G(x,2™) = 2"/%x (Ap5™) eqm (Ag5™) . (3.10)
For m odd we take I; to contain the two solutions, A¢5" and A()5”0+2L%J72 giving

G(x,2m) = 2%/ <X< A5 )eam (Ag5™) + X ( AO5UO+QL%J-2> o ( AO5UO+2L%J—2>>
—9ol%] ( (Ap5™)eam (Ag5™) + ( 5UO+QL%J72> oo <A05UO+QL%J—2>>
= 2LE 3 (495" )eam (A95™) (1 4y (52L 31~ >e2m (AOWHL%H B AO5UO)>
— 2L\ (495" )eqm (Ag5™) <1+ (52L7J >e2m <A05UORL%J2L%J>>
)

= 2153 (Ap5™)e, 1 (Ap5™ <1+62rm <c+A05U°RL%J>>.

We know from (2.13) that Rjm| = Rimj — 2l311R2,, mod 2/%1#1. Coupled with the

L3
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solution to the stronger characteristic equation from (3.9) we get

c+ A05UORL%J =c+ Aph™ R[%q — 2L?J71Rf%j>

= —A05UOQL%J_1 mod 2/%
since Rj2- = 1 mod 4 for j > 2. Using this gives

as R; = —1 mod 4 for any j > 3. Thus for p = 2 we have

) 1, if m is even,
G(x, p™) = 2™*x(a)eam (av) (3.11)
(1\;§> , if m is odd,
where « is a solution to
c+ Ryr =0 mod 27, (3.12)

and zero if there is no solution or x is imprimitive. If 24 ¢ and j > J + 2 then (using (2.14)

and R; = —1 mod 4, j > 3) we can take
a=—cR;'=—c(R; +2/7 ) = —c(R;" — 2771 mod 27,

and

v(@)ezn (@) = X(—R; emn (—eR7 )X (L — B2 ean(c2’ ™),

where, checking the four possible ¢ mod 8,
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Now

egm (2771) = egm—2(c277%) = (52‘]73) =x(1+Ry;_i2771),

where, since R; = R;_; — 2772 mod 27+

(1-R27Y) (1+Rymi2” ") =1+ (Rj_1 — R))277' — RjR; 12772

=1+234+ R, 1222=14 Ry; 32%73 mod 2™.

Hence

w¢,  if m is even,

x(1— Rj2j_l)€2m (2”71 =x (522J_5> = eom—2(c2%70) =
w*, if m is odd.

2m72

One can check numerically that the formula still holds for the primitive mod 2™

characters when m = 5. For m = 2,3,4 one has (3.2) instead of 2iw, 22w?, 22y(c)ex (¢)w"
(so our formula (3.1) requires an extra factor w™!, w™'X(=1) or y(—1)w=2¢ respectively).

]
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Chapter 4

Rewriting Sums in Terms of (Gauss
Sums to Obtain Weil and Weil Type

Bounds

For a general mixed exponential sum of the form

SO g(@), f(@),p) = > x(g(x))ep(f(2))

with f, g rational with the poles of g omitted, a rather well known result of Weil [24] is the

upper bound on such sums. If f is a polynomial and the sum is non-degenerate then

[S(x. 9(@), f(2),p)| < (deg(f) +€—1)p'/?, (4.1)

where ¢ denotes the number of zeros and poles of g (see Castro & Moreno [3] or Cochrane
& Pinner [8] for a treatment of the general case). Here we are dealing with special sums
that can be written in terms of Gauss sums which can be used to give the Weil bound in

the mod p case and Weil type bounds for general prime powers, which in certain cases are

35



sharp.

4.1 Gauss Sums and Weil type bounds

For a character y mod p’, j > 1, we let G(x,p’) denote the Gauss sum

v
Gx.P) = ) x(z)ey(x).

=1

Recall (see for example Section 1.6 of Berndt, Evans & Williams [2]) that

(

p/2,if x is primitive mod p7,
|G(X>pj)‘ =31, if y=x0and j =1, (4.2)

0, otherwise.

\

For the classical mod p Gauss sum, letting d = (k,p — 1) we can write

= Y X(A)G(xp)

x4=xo0
X7X0

by Lemma 2.6.2, and Lemma 2.6.1. From (4.2) we get exactly the Weil bound of

p—1

Z ep(Az")

=0

< (d—1)p?.
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In this chapter we show the sums we are considering can all be written in terms of prime

power Gauss sums.

4.2 Twisted monomial sums as Gauss Sums

In this section we write the twisted monomial Gauss
Sl = SI(X7x7nxk7pm) = ZX(x)epm (nxk)

in terms of Gauss sums. Here the Weil bound comes from writing S; as a sum of (k, ¢(p™))

(when p is odd) and (2, k)(k,2™~2) (when p = 2) sums of absolute value ,/p, giving
|S1(x, x,na®, p™)| < Dp™?, (4.3)

when p is odd, and
|51 (x, 2, na®,p™)| < (2,k) D27,

when p = 2, m > 3, where

(k,¢(p™)),  for p odd,

(k,2m=%),  forp=2,m > 3.

D=

By Lemma 2.3.1 S is zero unless x = x} for some character x; mod p™, thus we can write

ZX )epm na? ZXl ")
—Z?ﬁ ),
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and by Lemma 2.6.2 and Lemma 2.6.1,

P
S = Z ZXle nu) = X1X2(n)X1X2<U)€pm(U>
DP=xo v=1 xP=xo v=1
= Y xam)Gxixe r").
xP=xo0

When p is odd, there are D = (k, ¢(p™)) characters x, where x2 = o, and so one immedi-

ately obtains a Weil type bound
|S(x, =, na®, p™)| < Dp™2. (4.4)

When p = 2, m > 3 an additional factor of (2, k) is needed by the fact that there are (2, k)D

characters with 2 = .

4.3 Binomial Character Sums as Gauss Sums

In this section we write the binomial characters sum
Sy = Sa(X1, X2, Az" + B) = ZXl z)x2(Az* + B)

in terms of Gauss sums. From Lemma 2.3.1 we know that this sum is zero unless y; = x4
for some character x3 mod p™, in which case the sum can be written as a sum of (k, ¢(p™))
mod p™ Jacobi like sums Z _1 X5(2)x2(Az + B) and again be expressed in terms of Gauss

sums.

Theorem 4.3.1. Let p be an odd prime. If x1, x2 are characters mod p™ with xo primitive

and x1 = x§ for some character x3 mod p™, A, B € Z withpt B and n and A’ are given by
A=prA', 0<n<m, ptA, (4.5)
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then

m

p

o G 7 m—n) X2X3X1, m
Y xa@xe(Azt + B)=p" Y XaXa(A)xaxsxa(B) Desx pG<X_)2 p(:f)?XfiX4 L ), (4.6)
r=1 x4€X ’

where X denotes the mod p™ characters x4 with XY = xo, D = (k,¢(p™)), such that x3x4

m—n

1s @ mod p character.

We immediately obtain the Weil type bound
|S(x1, X2, Az* + B,p™)| < (k, ¢(p™))p"™ /2. (4.7)

Before proving the Theorem 4.3.1 we note a number of special cases. For m =1 and p1 A

this gives us the bound

p—1
> x (a'(Aa* + B)")| < dp?,
=1
where
d=(k,p—1). (4.8)

For [ = 0 we can slightly improve this for the complete sum,

p—1

> x(As* + B)

z=0

< (d—1)p?, (4.9)

since, taking x1 = X3 = X0, X2 = X, the x4 = Xo term in Theorem 4.3.1 equals —x(B),
the missing x = 0 term in (4.9). These correspond to the classical Weil bound (4.1) after
an appropriate change of variables to replace k by d. For m > ¢t + 1 the bound (4.7) is
dp™="**, as we shall see in (6.12) we have equality in (4.7) for m > n + 2t 4+ 2, but not for
t+n+1<m<2t+n+2.

Notice that if (k, ¢(p™)) = 1 and x; = X% and, in case p | A for some mod p™~" character,
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X3, then we have the single x4 = x( term and

m

p

D xa(@)xa(Az* + B) = p"X3(A) xaxs(B)

r=1

G(xs3, 0™ ")G(X2x3,p™)
G(xz,p™)

Thus ’Z’x’zl x1(2)x2(AzF + B)| = p™m+™/2 if vy xoxs and x3 are primitive mod p™ and

p™~". Noting that G(X, p™) = x(—1)G(x, p™) this can be written G/(x3, p™ ") Ga(X2,p™)/G(x2x3,P™")

and we plainly recover the form

G(x1,p™)G(x2,0™)

G(x1x2, ™) (4.10)

J(x1, x2,p™) =

in that case.
For the multiplicative analogue of the classical Kloostermann sum, y assumed primitive

and pt A, Theorem 4.3.1 gives a sum of two terms of size p™/2,

m

N *X(Al’—i-xil) — Y3(A)

- Goop™ (Glxs p™)? + xo(A)G (xaxa, 0™)?)

when x = X3 (otherwise the sum is zero), where xg here denotes the mod p™ extension of
the Legendre symbol (taking x2 = x, x1 = X, k¥ = 2 we have D = 2 and x4 = X0 or Xq)-
For m =1 this is Han Di’s [10, Lemma 1]. Cases where we can write the exponential sum
explicitly in terms of Gauss sums are rare. Best known (after the quadratic Gauss sums) are
perhaps the Salié sums, evaluated by Salié [25] for m = 1 (see Williams [27],[28] or Mordell
[17] for a short proof) and Cochrane & Zheng [7, §5] for m > 2; for pt AB

. AV (e (27) + e (—29))G (x@op) s m odd,
Xo(@)epn(Az + Br) = yq(B)

1
v=1 P2 (xo(7)epm (27) + Xo(—7)epm(—27)), m even,

if AB =~? mod p™, and zero if xo(AB) = —1. Cochrane & Zheng’s m > 2 method works
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with a general x as long as their critical point quadratic congruence does not have a repeated
root, but formulae seem lacking when m =1 and x # xq.

For the Jacobsthal sums we get (essentially Theorems 6.1.14 & 6.1.15 of [2])
1

(2) (25 - () Rt
§ (mk;B) = (g) ;X(B)Qj (x Jgé;igjx*,p)y

m=0

p

3
I

when p = 1 mod 2k and p 1 B, where x denotes a mod p character of order 2k (see also
[13]).

Proof of Theorem /.3.1. Observe that if y is a primitive character mod p’, 7 > 1, then by
the duality Lemma 2.6.2,

S xWew (Ay) = XAG(x. p). (1.11)

y=1

Hence if x» is a primitive character mod p™ we have

G(xXz, pP")x2(Az" + B) = ZXz y)epm ((Az* + B)y),

and, since x; = X% and D = (k, #(p™)),

p™ p™
G(xa2,p le D)xa(Az* + B) = 3 xs(a") D Xa(y)epn (Az* + B)y)
=1 y=1

= @)Y xay)em((Ac” + B)y).
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By Lemma 2.6.1 we have

Gz ™) D xa@)xa(Az* + B) = > ) xs(wxa(w) > Xa(y)epm ((Au+ B)y)
= Z ZXz y)epm (By) ZX3X4 m (Auy)

xP=xo ¥=1

= Z ZX2X3X4 y)epm (By) ZX3X4 u)eym (Au).

xP=xo ¥=1

Since p 1 B we have

m

> Xaxaxa(y)epm (By) = xaxsxa(B)G(XaXaxa, p™).
y=1

If x3x4 is a mod p™~ ™ character then

D xsxa(w)em (Au) = p* Y xaxa(w)eymn(A'w) = p"Xaxa(A)G(xsxa, ™).

If y3X4 is a primitive character mod p’ for some m —n < j < m then by Lemma 2.6.2

pm
> xsxa(u)epm (Au) = p™- "ZX3X4 ey (/" Alu) =
u=1

and the result follows.

]

Notice that if m > n+2 then by (4.2) the set X can be further restricted to those x4 with

X3Xa primitive mod p™~". Hence if p'|| k, with m > n+t+2 and we write x3(a) = egpm(cs),

x4(a) = egm)(ca) we have p™ 17 | ¢y, p"|| (¢34 c4), giving p"|| cs. Letting x1 = x' = x4,

for some mod p™ character, x, this yields p" || csk = ¢; = ¢l and p" || 1. If n > 0, letting

X2 = x*, we deduce that p'|| | + wk. Moreover when n = 0 reversing the roles of A and B
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gives pt|| | + wk. Hence when m > n +t + 2 we have S(x1, X2, Az* + B, p™) = 0 unless
L P+ wk, (4.12)

holds. For m = n + ¢ + 1 we similarly still have p"** | [.

4.4 The Generalized Jacobi Sum as Gauss Sums

Finally we show that the generalized Jacobi sum

Jpn (X155 X, P Z Z Xi(@1) - xw(zk), m>n (4.13)

r1=1 Trp=1
1+ +Tp=p"

can be expressed in terms of Gauss sums, a fact that will be central in our proof of Theorem
7.0.1.

It is well known that the classical mod p Jacobi sums,

J(X1, X2, P le z)x2(1 — ), (4.14)

(and their generalization to finite fields) can be written in terms of Gauss sums (see for
example Theorem 2.1.3 of [2] or Theorem 5.21 of [14]). This extends to the mod p™ sums.

For example when x1, x2 and xYX2 are primitive mod p™

G(x1,0™)G(x2,P™)
G(x1Xx2,P™)

J(X17X27pm) - (415)

and |J(x1, x2,p™)| = p"™? (see Lemma 1 of [31] or [32]; the relationship for Jacobi sums
over more general residue rings modulo prime powers can be found in [33]). Writing (4.15)
in terms of Gauss sums is well known for the mod p sums and the corresponding result for

(4.13) when n = 0 can be found, along with many other properties of Jacobi sums, in Berndt,
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R. J. Evans and K. S. Williams [2, Theorem 2.1.3 & Theorem 10.3.1 | or Lidl-Niederreiter
[14, Theorem 5.21]. There the results are stated for sums over finite fields, F,m, so it is
not surprising that such expressions exist in the less studied mod p™ case. When x1,..., X%
and 1 - - -y, are primitive, Zhang & Yao [30, Lemma 3] for £ = 2, and Zhang and Xu [32,
Lemma 1] for general k, showed that

[T, Gl p™)

In Theorem 4.4.1 we obtain a similar expansion for Jyn(x1,. .., Xk p™), with m > n. As
we showed in Theorem 3.1.1 the mod p™ Gauss sums can be evaluated explicitly using the
method of Cochrane and Zheng [4] when m > 2. We shall need the counterpart of (4.16)
for the Jpn(x1,-.., Xk, P™") along with the evaluation of the Gauss sum from Chapter 3 in
order to evaluate Jyn(x1,..., Xk, P™). We state a less symmetrical version to allow weaker

assumptions on the y;:

Theorem 4.4.1. Suppose that x1, ..., X are characters mod p™ with m > n and x prim-

m—"n

itive mod p™. If x1-+- Xk 1S a mod p character, then

k—1

G(x1- Xk, p™™™)
: G(Xk7pm> H

m—n

If X1 Xk is not a mod p character, then Jyn (X1, ..., Xk, P™) = 0.

From the well known property of Gauss sums (see for example Section 1.6 of [2]),

(

p?/2, if y is primitive mod p7,
| GO p') |= 1, if x=1x0and j =1, (4.18)

0, otherwise,

\
when x1--- X% is a primitive mod p™~" character and at least one of the y; is a primitive
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mod p™ character, we immediately obtain the symmetric form

k
m i-1 GOG, p™
Jpr (X155 Xk ™) = Gl(;[(ll)((k pm_)n). (4.19)

In particular we recover (4.16) under the sole assumption that y; - - - xx is a primitive mod

p™ character.

Proof. We first note that if y is a primitive character mod p’, j > 1, then by Lemma 2.6.2

D XW)ew (Ay) = X(A)G(x, p).

Hence if x; is a primitive character mod p™ we have

Xe(=1)G (X p Z Z X1(1) - X1 (@) xe (P — 21— - — 1)

r1=1 Trp_1=1
=% (=D D D xa@) - oxeer (@) D XeWepn (0" — 21— - — 2x1)y)
r1=1 Tp_1=1 y=1
p" p
=Y (e @"y) | D xalz)em(—ay) Z X1 (Tr—1)€pm (—T—1Y)
y=1 z1=1 zp—1=1
Pty
pm
=) Xi---xe(-y lexlep 1) Z Xr—1(Th-1)€pm (T—1)
y=1 z1=1 zp—1=1
ply
P k—1
= Z Xi- Jepn (0"y) [ [ G ™).
i=1
P’fy
If m >n and X7 ...X, is a mod p™~" character, then

pnl

D X X()em (0"y) = le = (y) = PG X P T").
=1

Z;’fy p’(y

45



If X1 ... X} is a primitive character mod p’ with m —n < j < m, then by the same reasoning

as in Lemma 2.6.2

p" p’
S X xWem (") =" XXk Wew (P My)) =0,
y=1 y=1

ply

and the result follows on observing that

G(x,pm) =X(=1)G(X,p").
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Chapter 5

Evaluating the Twisted Monomial

Sums Modulo Prime Powers

We use the Cochrane and Zheng reduction method to show that the sum

m

p
Sl na™ p") = x(x)epm (na?)

r=1

has an explict evaluation for m sufficiently large.

For a multiplicative character y mod ¢ and f(z) € Z[z] we define the twisted Gauss sum

SO F(@),q) =Y x(x)eg(f(x))

where e,(x) = e?™#/4. We are concerned here with evaluating these sums when f(z) = na*

is a monomial and the modulus is a prime power ¢ = p" with m > 2. Obtaining satisfactory
bounds, other than the Weil bound [24], remains a difficult problem when m = 1 (see for
example Heath-Brown and Konyagin [12]). For higher powers though, methods of Cochrane
and Zheng [4] can often be used to reduce the modulus of an exponential sum and sometimes

evaluate the sum exactly.
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When the modulus ¢ is squarefull, i.e. p | ¢ = p? | ¢, and (2nk,q) = 1, Zhang and Liu
[37] consider the fourth power mean value of |S(y,nz",q)|, averaged over the characters x

mod ¢, and obtained

> [Stnat q)]" = a0*(@ [[(k.p — 1), (5.1)

x mod ¢ plg
(their formula contains an additional factor when there are primes p | ¢ with (k,p —1) =1
due to an apparent miscount in their Lemma 5). In the quadratic case, |S(x,nz?, q)|, He
and Zhang [29] obtain similar exact expressions for the sixth and eighth power means when
q is squarefull and coprime to 2n, making the conjecture, subsequently proved by Liu and

Yang [34], that

> 180 na’ g = 4O (g),  w(g) =) 1, (5.2)

x mod g plg
for any integer ¢ > 2. Similarly Guo Xiaoyan and Wang Tingting [26] consider power
means averaged over the parameter n for quadratic and cubic sums, again ¢ squarefull with

(2n,q) = 1 and (6n,q) = 1 respectively, showing that for any real ¢ > 0,

q
D 1S na?, g) = 20Dl (g), (5.3)
n=1

(n,q)=1
when  is the square of a primitive character mod ¢ (and zero otherwise), and

q

> ISt na® @)t = 21D Pg(q),  wilg) = Y 1, (5.4)

n=1 pla
(n,g)=1 3lp—1

when y is the cube of a primitive character mod ¢ (and zero otherwise). These average
results all generalize to arbitrary monomials nz* and arbitrary real power means as we

show in Corollary 5.0.1 below.
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Actually, the methods in Cochrane and Zheng [4] can be used to evaluate the individual
sums S(x, na®, p™) directly when m > 2, (p, 2nk) = 1, with no need to average.

Moreover (due to the straightforward relationship between the « satisfying (2.27)) for
general f(x) = nz®, (2nk,p) =1, m > 2, the >_ S, arising in Cochrane and Zheng’s method
will, with a little work, simplify down to a single term of modulus (k,p — 1)p™/2. A fact
that is just a special case of our main Theorem of this chapter, Theorem 5.1.1. When p | k,
though, the critical points are multiple roots so one has to do more work. However we
show here that Cochrane and Zheng’s method can be adjusted to deal with the case p | k.
Additionally our approach reduces to finding a single solution of a certain characteristic
equation (5.13) or (5.14), avoiding the need to sum as with the original S,,.

Working mod p™ we write

f(x) =na™,  piom, (5.5)

and define
d=(v,p—1). (5.6)

Analogous to the squarefull condition in [26], [29], [34] and [37] we shall assume that
m>t+ 2. (5.7)

Theorem 5.0.2. Let p be an odd prime, x be a character mod p™ and suppose that (5.5)
and (5.7) hold.
If x is the dp'-th power of a primitive character mod p™ and an appropriate characteristic

equation (5.13) or (5.14) has a solution then

Sy (x, na ™, p™)| = dp”
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where

m—1, ift+1<m<2t+42,
mot 22 < m.
Otherwise Sy (x, nz™", p™) = 0.

Theorem 5.0.2 is an immediate consequence of our main Theorem (5.1.1), where we state
an explicit formula for Sy (y, nz??", p™). The corresponding result for p = 2 is given in (5.34).

Averaging over the n or x we immediately obtain:

Corollary 5.0.1. Under the same hypotheses of Theorem 5.0.2, for any real b > 0,

2
toom T p max{m—2t—
S 1S (vna ) = (B etz (5.9)

x mod p™

and when x is a dp'-th power of a primitive character mod p™,

m

p
S 19 ema p) = (dyr ) LB it e (5.10)
(nfpz)zl

The corresponding results for composite moduli (including (5.1-5.4)) then follow im-
mediately from the multiplicativity discussed in Section 2.2. Since Theorem 5.0.2 shows
that the |S;(x, nz",p™)| can assume only one nonzero value, power means are somewhat
artificial here, with (5.9) and (5.10) amounting only to a count on the number of non-zero
cases (we include them for comparison with results in the literature and to emphasize that
the restriction to certain integer power means is unnecessary).

The condition (5.7) is appropriate here. For ¢t > m the exponent reduces by Euler’s
Theorem and as shown in the proof of Theorem 2.1 (see (5.22)) when m =t + 1 the sum is
zero unless x is a mod p character, in which case it reduces to a Heilbronn type mod p sum

p—1
SO na™" " pm) = pm Y x(@)epm (na"

=1

1

).
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For m = 2 and d = 1 these are the classical Heilbronn sums, bounded using the Stepanov
method by Heath-Brown [11] and Heath-Brown and Konyagin [12], extended by Puchta [23]

and improved by Malykhin [35] to deal with d = (v,p — 1) > 1, the latter estimate being

p—1

Z ep2(na’?)

=1

< d\/2 p7/8.

We note that although not stated in their theorems, their methods would allow the inclusion
of a mod p character y. Obtaining exact values seems unlikely for these types of sum. In

[36] Malykhin considers the general case m > 2, obtaining

< C(m)p1*1/32'57n73.

p—1

m—1
E epm <m:p )
x=1

We have assumed here that p t n. If p | n and y is a primitive character mod p™ then
Si(x,nz",p™) = 0 as can be seen from the proof of Theorem 5.1.1 (if p | n and p{ ¢ then

the characteristic equation (5.19) or (5.24) will have no solution). If p | n and y is a mod

p™~! character then plainly we can reduce to a mod p™~! sum.

5.1 Statement of the Main Theorem

Suppose that p is an odd prime and a is a primitive root mod p' for all I. Recall we define
the integers Ry, p1 Ry, by
a®®) =1+ Ry, (5.11)

and the integers r and ¢ by

ri= Ry, x(a) =e(c/o(p™)). (5.12)

Note that x is a primitive character mod p™ if and only if p 1 c.
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We first observe that S;(x, na?', p™) = 0 if x is not a dp’-th power of a character where
d = (v,p—1), by Lemma 2.3.1. An alternative proof of this result will occur during the
proof of Theorem 2.1 below.

If y is the dp'th power of a character y; and ¢; an integer such that

xi(a) = e(e1/od(p™))

then as we shall see, the final characteristic equation for the evaluation of S; will take one
of the two following forms (depending on the size of ¢ relative to m).

Case I: Whent+1<m <2t +2

c1+ Rt+1nx7pt =0 mod p™ 1. (5.13)
Case II: When 2t +2 <m

¢1 + Ripspinz? =0 mod pttt, (5.14)

where
m
- 0,{—}—75—1}.
s max{ 3

Expressions simplify slightly in Case II if we use the stronger congruence
¢+ R[%mxwt =0 mod p(%w, (5.15)

except for p =3, m =3, ¢ =0 when we need ¢; + Rjmna” = —3¢1 R}, mod 9.

Notice that, since zF and z®®®™) run through the same set of values mod p™,

SOk na®, p) = SO g tkee™) pmy, (5.16)
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and so one can always reduce to a monomial nz®" with d | p—1, though we shall not assume

this here.

Theorem 5.1.1. For p an odd prime, t € Z, t > 0, let

f(x) =na™, piny.

Case I: Suppose that t +1 < m < 2t + 2. If x is a dp'-th power of a primitive character

and the characteristic equation (5.13) has a solution o then

S1(x, f(@),p™) = dp™ " x(@)epn (f ().

Otherwise, Sy(x, f(x),p™) = 0.
Case II: Suppose that 2t +2 < m. If x is a dp'-th power power of a primitive character
and (5.14) has a solution then

S106 £(@), ™) = dpEx(@)epm (£(a)) (‘;) (5.17)

where « is a solution of (5.15), and r and eym are as in (2.8) and (2.29). Otherwise

Si(x, f(z),p™) = 0.

Note in Case IT we can use a solution « to the weaker congruence (5.14) if we include in

(5.17) an additional factor

epm—Qt—25—2<—2725171ﬁ22> (518)

. i _
where, writing ¢; + Rypspina = \ipt5tt B = —271R,. . 1c1, B2 := A\ — B1. Here and

throughout #=! denotes the multiplicative inverse of  mod p™.
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5.2 Proof of Theorem 5.1.1

We start by rewriting the sum in terms of our primitive root a

pm $(™)

S0 na™ ") = 3 x(@)epm(na™) = 3 x(aF)epm (nat ).
=1 k=1
ptz

We set v = dv/, where recall d = (,p — 1), and let ¢ be an integer such that

v =< (5m) = (i)

Case I: Suppose that t +1 <m < 2t + 2.

We let u = 1,...,dp™ ! and let v run through an interval I of ;%1 consecutive integers

so that k = u’%l + v sums over ¢(p™) consecutive integers and

o(p™) dp™ 1 )
x(a*)epm ( nakw E E L +v (na(u%%)wt)
k=1 vel u=1

dpm71
= Zx(a”)epm(nawt”) Z e (d cu 1) epm <ncﬂpt” (apt(p_lwu — 1)) .
P

vel u=1

Since 2(t + 1) > m the binomial expansion gives
e (14 Rt+1pt+1)7/u —1=9"uR1p"™" mod p™,

and the inner sum becomes

dpm—1 N ypto
u(c+ Rypapyna?) m—1
Z € dpm—1 = dp

u=1

if v satisfies

¢+ Riciptyna™® = 0 mod dp™ ", (5.19)
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and zero otherwise. We must examine when (5.19) has solutions.
Since d | Rys1ptyna™™ . in order to have a solution we must have d | ¢ . Similarly, since
p 1t Riiyn and ¢ < m — 1, we must have that p’||c. So x is a dp'th power of a primitive

character. Letting ¢ = ¢/p'd and v = dv’ reduces our congruence to
¢ + Rys1y'na®® = 0 mod p™ 1. (5.20)

Hence (5.20) has no solution and Sy (x, nz™",p™) = 0 if there is no solution to the charac-
teristic equation

¢ + Reiy/na™ = 0 mod p™ 1. (5.21)

If this equation has a solution o = a" we take I to be an interval containing vy. Solutions v to
(5.20) must then satisfy a™"* = a7"* mod p™ =1, that is yp'v = yp've mod p™*=2(p —1).

Since t > m — t — 2 this reduces to
v =wvy mod (p—1)/d,

and we have exactly the one solution v = vy in our range for v.

Hence
S1(x, na ™, p™) = dp™ x(a)epm (f(a)).

m—t=1 and so the characteristic

Writing ¢ = p'c; mod ¢(p™) we have ¢ = ¢;7 mod p
equation (5.21) can be written equivalently in the form (5.13).

Note: If m =t + 1 the same analysis gives p™ ! | ¢ and x is a mod p character, and the
sum reduces to

-1

P
10 na?” ™ p™) = pm ST x(@)epm (na?” ). (5.22)
x=1

Case II: Suppose that 2t +2 < m.

We now let s = max{[%] —t—1,0}, u =1,..,dp™ *"! and let v run through an interval
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I of p*(E1) consecutive integers where d := (v,p — 1) as before. Letting k = up®(22) + v

we are still summing over ¢(p™) consecutive terms and

#(p™) pm—s—1
@) = 5 S Oyl
k=1 vel u=1
dpm7571 cu t t+s 1)~/
= Zx(a”)epm(f(a”)) Z e (d—l) epm (naw v (ap (p=1)7'u _ 1)) . (5.23)
pmf —S
vel u=1

Expanding binomially, observing that 3(¢ + s + 1) > m, we obtain

=D ] (1 n Rt+s+1pt+s+l)"/'u -1

= UVIRt+s+1Pt+S+1 + 2_1U7,( )Rt+s+1 2542 mod ™",

and the inner sum becomes

dpm—s—l v / ty, 2t4+s+1
> €< u (¢ + Rypannyna ™ p' + 27 9B () = Dna?p )>
dpm s—1 '

u=1

We now let w = 1,...,dp**** and y = 1, ...,p™ 2725=2 noting that m —2t —25s—2 >0
with equality only when m = 4, t = 0. Hence if u = wp™ %7272 4 y we again sum over
dp™~ 5! consecutive integers and we can split the u sum as a product S;(v)S2(v) of a y sum

and a w sum, where

pm—2t—25=2 ( R wpto,t + 2_1 R2 ( o 1) ~yptv 2t+8+1)
B ylc t+s+1YNa’™ °p YL s 1 \YY na'= -p
El(”) Z € d m—s—1 ’
P

and

d 2t+s+1
g w (C + Riysi1yna™ tvpt)
€ dp2t+s+1 :
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Now Es(v) = dp*+s+1 if
¢+ YRpssiina? 7pt = 0 mod dp* st (5.24)

and Fs(v) = 0 otherwise. So again we must examine when (5.24) has solutions. Right away
we see that in order to have a solution we must have p'||c and d | ¢, so our congruence
reduces to

¢ + 7/ Ryyoina” "’ = 0 mod pttst! (5.25)

where ¢ = ddp', p t ¢ and x is a dp'th power of a primitive character. Thus if the
characteristic equation

¢+~ Rypgrnz™ =0 mod p's+! (5.26)

has no solution we have S (x,nz"", p™) = 0. If it has a solution o = a* we again choose

I to be an interval containing vy. Hence if v is a solution to (5.25) then a?"* = """ mod

pitstl that is yplv = ypluy mod p'™¥(p — 1) reducing to
v = vy mod p*(p —1)/d.

So we have only the solution v = vy in I and so by (5.23)

S1(x, na™", p™) = x(a™)eym (f(a*))S1(vo)Sa(vo)

= dp*t*  y(a)epm (f(@))S1(vo). (5.27)
When m =4, t =0, plainly E;(vy) = 1. Otherwise writing
C/ + 7/Rt_‘_s_’_lnaptﬂyvo — )\pt—&-s—i-l’ 51 = _2_1Rt+s+1’7/da 52 =\ + 2_1Rt+s+10,;

observing that 3t +2s 42 > m — s — 1 and that y; = y + 2718, 10, runs through a complete

o7



set of residues mod pm—2—2s-2

as y does, we can rewrite Fj(vg) in terms of a classical,
readily evaluated (see for example Apostol [1, §9.10 and Exercise 8.16] or Berndt, Evans

and Williams [2, Theorem 1.5.2]), quadratic Gauss sum:

p —1 / /
y(A =27 Ripsni(yy — 1)¢)
Ex(vo) = Z € ( pm—2t—2s-2
y=1
pm72t72572 9
B Z . (5ly + 52?/)
- m—2t—2s—2
y=1 P

m—2t—2s—2

(L 2ICRNT s (i
- pm—2t—2s—2 pm—2t—2s—2

y1=1
2R (B s
=€ pm—2t—2s—2 pm p Epm s

with e,m as given in (2.29).

Thus by (5.27),

S1(x, f(@),p™) = dpE i x(@)epm (f(a) Jepm-2i-20-2(=27251163) (]f—;) Epm (5.28)
if x is a dp'th power power of a primitive character and ¢ 4+ 7' Riysr1nz?’” = 0 mod pttst?
has a solution a, and Si(x, f(z),p™) = 0 otherwise. Replacing ¢ = ¢;7' mod p™ ! we
have A = M7/, 61 = S, 62 = v/ mod p™ 1, with (%) = <%> = (%) . Thus we
obtain (5.17) with the additional factor (5.18). It remains to show that if we use a solution
a to (5.14) satisfying the stronger congruence (5.15) then this additional factor is 1.

Plainly we can assume that 2(s +¢+1) <m < 3(s+¢+1) and [2] < 2(s+ ¢+ 1) with

equality only when s =¢ =0 and m = 3. We first note that

Rrmy = Revgpr — 27 RE o qp™ 7 4+ 37 RE 7Y mod pl %1
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where the last term vanishes unless p = 3, m = 3 and t = 0. To see this, observe that

%“ —s—t—1

I+ R(%]p(%—l = (1+ RHSHP‘S”H)M
=1+ 11—‘)Jt+s+1p[%1 + %thﬂﬂp(ﬂ Fetttl <pf%1 st 1)

+ éR?ﬂHP[mH(SHH) (p(%w_s_t_l — 1) (p(%}s_t_l — 2) mod pie+t+D)

=1+ pf%1 (Rt+s+1 _oIRE | L 3—1R§,+8Hp2(s+t+1)) mod pQ[%]

In particular, Rjm; = Ry s mod p*T Hence if « is a solution to (5.14), which also

satisfies (5.15),
1+ Rt+s+1n0ﬂpt =Mp L o+ R(%Woﬂpt = —013_1R?+s+1p2(5+t+1) mod P[%l
and so
c1(Rrmy — Ryysy1) = P (Ripsi i + 137 Ry, p™ ) mod p(%w»

and

—27'¢1 Ry i1 = A mod ]9(%1 e

Hence 5 = 0 mod p[%W —s=t=1 and €pm—2t—25—2 (—2—251*%22) —1.

Finally we need to verify that a solution a" to (5.14) guarantees a solution a” of (5.15).

Since Rpmy = Ryy o1 mod p*t,

e+ R[%mavowt _ )\ps+t+1
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for some integer . Taking v = vy + he (p**1) we have

¢+ Rgyna™ = + Rf%ma”owtahw(ps““)

— )\ps+t+1 + R[%_Inafuo'ypt ((1 + Rt+s+1p8+t+1)’yh o 1)

p (A + R[gmaWWRmHh) mod p*¢ Y,

and choosing h with A\ + R? . ,na™"? yh = —¢;37'R2, _,p****! mod pl B177"1 gives the

required solution.

5.3 Proof of Corollary 5.0.1

From Theorem 2.1 we know that if S (x, na p™) is non zero then y must be a dp'th power
of a primitive character mod p™, and there must be a solution to a characteristic equation
(5.21) or (5.26),

d+r'ynz =0 mod p~, (5.29)

where ¢ = ddp' < ¢(p™), (nd,p) = 1, and r" and x depend on the range of . If such is the
case then |S;(x, n:pwt,pmﬂ = dp”. Thus to prove Corollary 1.1 we simply count the x (i.e.
count the ) or n that give us solutions. Writing in terms of our primitive root z = a",

—r'y'n = a, ¢ = a", (5.29) becomes,

t _
(av)vp ="' % 1od pn’

which is equivalent to

p'v = v1 —vg  mod ¢(p~).
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This linear congruence in v has a solution when

(th, (b(pn)) — d(pt,pnil) — dpmin{mftfzt}

o(p")

P T values of ¢ mod p” (or likewise values of n mod p~)

divides v; — vg. So we have

that yield solutions.

Note that ¢’ ranges from 1 to ¢g:) = pﬁpm’“’td*l(p—l)’ giving

¢(p") PP = 1) L () max(m-21-2.0)
dpmin{m—t—z,t} d T2 p

s that will allow a solution to our characteristic equation, and (5.9) is clear.

Similarly n ranges over the terms relatively prime to p from 1 to p™ = p"(p™ ")

Y

(b(pﬁ) m—Kk __ ¢(p)pmax{m—t—1,t+1}

dpmin{mfth,t}p d

giving (5.10).

54 When p=2, m>6

We now examine the case when p = 2 and m > 6, giving sums of the form

2m
Si(x,na™,27) = x(x)eam (na™)
=1

where y is a character mod 2™, n and v are odd, and ¢ > 0. Since z2"° = 1 mod 2™ for
any odd x we shall assume that

t<m—2.

When dealing with these sums the methods are nearly the same except that we need two
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generators, a = 5 and —1, to generate all of Z}.. Even so, this case is actually simpler
computation-wise. As for odd p we can also immediately say that So(x, na®,2™) = 0 unless
x = x} for some character x; mod 2™. The proof of this is almost the same the proof of
Lemma 2.1 (we get the same relation for x(a) and, when m > 2 and the second generator
—1 is needed, taking z = —1 in the same argument gives x(—1) = 1 if k is even).

Here we write

x(a) =e (2:_2)

and define the odd integer Rj=) and when ¢ > 1 the odd integer Riio by

ol F1-2

=1+ R 2l21 0¥ =1+ Ry p2"2 (5.30)

We will have Sy (x, na?, 2™) = 0 unless ¢ = 2'¢’ with ¢ odd, and our characteristic equation

will take the form

¢ +nRrmyya® " = 0 mod 2177, (5.31)
We first evaluate the sums
2m—2
S(n) = Z Y(a)egm (na™?").
k=1

Lemma 5.4.1. Suppose that ¢ = 2'c’ with ¢ odd. If 0 <t < [2] —2 and (5.31) has a
solution o = a®™ then

S(n) = 2151y (a)egn (na™ )y,

where

1, if m is even,
W = (5.32)

1+ (_1)(%1“) dY 0 ifm s odd,

with A defined by
d +nRpmpya® = A28, (5.33)
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If [2] —2<t<m—2and d 4+ nRiyy =0 mod 227" then

Otherwise S(n) = 0.

Proof.

Ift+2> [2] then
na*? = n (1+ Rt+22t+2)k’y =n (14 Ry42k72"?) mod 2™,

and

m—2

S(n) = ¢ (2%> T (k(c+;ft2+ﬂ2t)) ‘

k=1

The sum is 2™ 2 if c+nRy2y2" = 0 mod 2™2 (and zero otherwise). This only occurs when
c =2, ¢ odd, with ¢ +nRy oy = 0 mod 2™ 12,

Suppose now that t < (%W — 2. We write k = u2/Z172 4 ¢ where v runs through an
interval I of length 212172 and u = 1, ..., 2l51+*. Using (5.30) and expanding binomially

gives

m [31-t—2 t
(w25 17172 4 y)c na(v? 2 T2
S(n) = e ( =2 e S

A cu nav? ((1 + R[%]Q[%Uu’y — 1)
; ( ) ;
1

o[+ o

I
(o4
M
~
>
—~
IS
<
S~—
I
VR
2
)
3| S
[\]
~__—
)
T[]

nat"? ol F I+t U <c + nR[%thaWQt)
olg ]+t

So as in our previous cases we end up with a sum over a full set of residues and the inner
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sum is zero unless

¢+ nR[%WQta”ﬂt =0 mod 2L21*,

In order to have a solution plainly ¢ = 2!¢’ for some odd ¢/, reducing our congruence to
d + nR(%waW?t =0 mod 2L/

Thus S(n) = 0 unless we have a solution o = " to our characteristic equation (5.31). We

take I to be the interval [vo, vo + 2f%1_t‘2}. If av is another solution then plainly
vy2t = 192! mod 217172

and

v = vg mod olzl=t=2,

When m is even |7] = [%] and we only have the solution vy in our range for v, and

When m is odd we note that 2l2177=2 is half the range of v and we have two solutions
1% )

w2l B 112

a = a" and a . Plugging these in, using that a2 *’ =1+ RL%JQL%J for some

odd R|=m| when m > 6, and expanding binomially, we get

S(n) = 2157 ((@)eam (n(a™)2) + x(@t2H T epn(n(at2H )

— 2Ly () egm (na™) (1 (@ o (o ((1 + Rym 2By - 1))

= QL%JHX(a)eQm(na’VQt) <1 +e < =
2(7]

. _ ¢+ nR m ~va"?
— 22y (@) () <1+<—1>”216< T >>

2m

e
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We note that a2’ * =1+ Rrmi2l2 1 = (1+ Rjm2l20)2 = (a?L%J_Q)2 giving us that
RL% = R[%} - (RL%J)22L7J71 = R[%] —2l5 )1 mod 21% 1,

Plugging this in for B = we get

. c + nRL%ﬂa”‘W?t _. c+ TLR[%T)/CLWU’V? . _nfyavo’ﬂt
oTE = N %
NWAELE
=el=)e
2 4 ’

(using the characteristic equation and that L%J > 2) and the claimed result follows.

]

Theorem 5.4.1. Suppose that x is a 2'th power of a primitive character mod 2™. If 0 <

t < [%] -2 and (5.31) has a solution a then, with ¢ as in (5.32),

t m + O, th - 0,
Sl(X,mﬂ2 ,2M) = 2L7J+t+6X(C¥>€2m(nC(72 Y, §=

1, ift>0.
If [2] —2<t<m—2and d 4+ nRi»y =0 mod 227" then
Sl(x,nx'ﬂt, 2y = 2" e (%) .

Otherwise Sy (x, nz?*,2™) = 0.
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Thus for m > 6 the non-zero values satisfy

(

m if t =0,
Si(una™®,2")| =27, T=qmy41 ifo<t<[2] -2 (5.34)
m—1, if (%W—2§t<m—2.

*

Proof. We start by writing the sum in terms of the generators, —1 and a, of Z3..,

2m
Si(x:na"®,2") = Y x(@)ean (na?”)
x=1

1 2m—2

= 3 3 (-t (1) a) )

w=0 k=1

= 5(n) + x(~1)S((=1)*n).

If t = 0 then
Si(x,na™,2™) = S(n) + x(~1)S(—n).

By the lemma each S(£n) is zero unless (5.31) has a solution a. A solution will be either
of the form a = a" or —a" (since m > 6 we can not have solutions of both forms). By

Lemma 5.4.1, in the first case S(—n) = 0 and
81, na™,2™) = S(n) = 2%y (a)egn (na)y.
In the second case S(n) = 0 and
Si(xna?®,27) = x(=1)S(=n) = x(=1)2F x(—a)en (—n(—a)).

Ift>0
Si(x,nz™,2™) = S(n) + x(~1)S(n)
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Thus if x(—1) = —1 our sum is zero. Otherwise
Sy (x,nz?,2™) = 25(n)

and the result follows from the lemma.

67



Chapter 6

Evaluating the Binomial Character

Sums Modulo Prime Powers

In this section we show that the multiplicative character sums,

S*(x, 2 (AzF + B)" ZX (Az* + B)Y) (6.1)
Mm

have a simple evaluation for large enough m. In particular, if p t+ ABk, we can evaluate (6.1)

for m > 2. Equivalently, for characters y; and ys mod p™ we define

ngS(Xl,Xz,Axk—i-B,p le x)xa( Ax + B). (6.2)

These include the mod p™ generalizations of the classical Jacobi sums

J X1 X2,P ZXl X2 1 —x) (6-3)

We note that the classical Jacobi Sum is zero if p = 2. However, for the general case (6.2)

the sum may be nonzero for p = 2, e.g. if A is off and B is even. In Chapter 7 we consider
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multi variable Jacobi sums. See [2] or [14] for an extensive treatment of mod p Jacobi sums
and their generalizations over [Fym.

These sums have been evaluated exactly by Zhang Wenpeng & Weili Yao [30] when y1,
X2 and x1x2 are primitive and m > 2 is even (some generalizations are considered in [32]).

Writing
xi=x" x2=x" xi(z)x2(Az* + B) = x(z!(Az" + B)"), (6.4)

with x1 = Xo the principal character if [ = 0, the correspondence between (6.1) and (6.2)
is clear. Of course the restriction p { z in (6.1) only differs from " when [ = 0. We shall
assume throughout that x, is a primitive character mod p™ (equivalently x is primitive and
p 1 w); if xo is not primitive but y; is primitive then S(x1, x2, Az® + B,p™) = 0 (since
Zzzl Xi(z + yp™ 1) = 0), if both are not primitive we can reduce to a lower modulus
S(x1, X2, Az* + B, p™) = pS(x1, X2, Az* + B,p™1).

It is interesting that the sum (6.1) can be written explicitly in terms of classical Gauss
sums for any m > 1. In particular one can trivially recover the Weil bound in these cases.
We explore this in Section 2.

We assume, noting the correspondence (6.4) between (6.1) and (6.2), that
g(x) = 2'(Az* + B)", ptw (6.5)
where k, [ are integers with k > 0 (else z — 27') and A, B non-zero integers with
A=prA', 0<n<m, ptAB. (6.6)
We define the integers d > 1 and ¢t > 0 by
d=(k,p—1), p'|lk (6.7)
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For m > n+t+1 by Lemma 2.3.1 it transpires that the sum in (6.1) or (6.2) is zero unless

for some mod p™ character, y3 (i.e. x is the (k, ¢(p™))/(k, 1, p(p™))-th power of a character).
This condition will also arise naturally in our proof. In order for the sum to be nonzero we

must also have a solution, g, to a characteristic equation of the form,

¢ (r) =0 mod prin{m=t [+ (6.9)

with
p{xo(Azk + B). (6.10)

Notice that in order to have a solution to (6.9) we must have

P Pt |+ wk, (6.11)

M=t character and xpxY

if m > t+n+1 (equivalently x; is induced by a primitive mod p

is a primitive mod p™~* character) and p"** |l if m =t +n+ 1.
When (6.8) holds, (6.9) has a solution zq satisfying (6.10) and m > n + t 4+ 1, Theorem

6.1.1 below gives an explicit evaluation of the sum (6.2). From this we see that for any odd

prime p,

i . dp™1, ift+n+1<m<2t+n+2,
> xi(@)x2(Azk + B)| = (6.12)
z=1 dp™a T, i 2%t +n+2<m.

The condition m > ¢t +n+ 1 is natural here; if ¢ > m — n then one can of course use Euler’s
Theorem to reduce the power of pin ktot =m —n —1. If t = m —n — 1 and the sum is

non-zero then, as in a Heilbronn sum, we obtain a mod p sum, p™~' 3771 y(z!(Az* + B)®),
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where one does not expect a nice evaluation. For ¢ = 0 the result (6.12) can be obtained
from [6] by showing equality in their S, evaluated at the d critical points o. For t > 0 the
a will not have multiplicity one as needed in [6].

Finally, recalling Section 2.2, if x is a mod rs character with (r,s) = 1, then x = x1x2

for a mod r character y; and mod s character xs, and for any g(z) in Z[x]

D x(g@) => xi(9(@) D xa(g(x)).

Thus it is enough to work modulo prime powers.

6.1 Evaluation of the Sums for p Odd

Theorem 6.1.1. Suppose that p is an odd prime and x1, X2 are mod p™ characters with o
primative.
If x1 satisfies (6.8), and (6.9) has a solution xq satisfying (6.10), then

;

pm ift+n+1<m<2t+n+2,

m

p
ZXI@))@(AJC}C + B) = dx(g(z0)) pm;n”, ifm>2t+n+2, m—n even,
r=1

€1, ifm>2t+n+2, m—n odd,

\

where n, d, t and g are as defined in (6.6), (6.7) and (6.5), with

o 1 p=1modA4,
€1 = <5> ep (-2 ) e, e= (6.13)

1 p=3 mod4,

where a and [ are integers defined in (6.21) below and < ) 15 the Legendre symbol.

24
p

If x1 does not satisfy (6.8), or (6.9) has no solution satisfying (6.10), then the sum is
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Z€ero.

Note e, (—2723%a~!) = 1 if the solution to (6.9) satisfies the stronger congruence, mod
p[mT”}thH‘
For the mod p™ Jacobi sums, x1 = X', x2 = x*, x primitive mod p™ with p { lw(l + w),
we have g = I(l +w)~! and

X1 (1) xz2(w) n L, if m is even,

pm

d @)l —z) = S22 —5p
z

= xaxa(l +w) (=22) (") e, ifm> 3 is odd,

p p

with r and ¢ as in (2.8) and (2.10).

Proof. Recall that a is a primitive root for all powers of p and we define the integers R,

p*Rlv by
a(i)(pl) =1 + Rlpl7

so that r = Ry. Since (1 + Rey1p*™) = (1 + Ryp®)P, for any s > 1 we recall

Rsi1 = R, mod p°. (6.14)
We define the integers ¢, ¢; = cl, c; = cw, by
x(a) = espmy(c),  xa(a) = espm(cr), xa(a) = eopm)(ca)- (6.15)

Since x3 is assumed primitive we have p 1 cs.

We write

L 1 itm<n+2t+2,
—u—gb( )—i-v, L=

[ =t ifm>n+2t+2,
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and observe that if u = 1, ...,dp™ ¥ and v runs through an interval I of length ¢(p”)/d then
v runs through a complete set of residues mod ¢(p™). Hence setting h(z) = Az* + B and

writing x = a” we have

:Z;X1($)X2(h($)) = ;M(a”) Z (@) xs <h (>)> |

Since 2(L +t) + n > m we can write

_k_
{3

e u
h (a“qh(szHU) = A (Cfﬂp“t)) @) a* +B=A (14 Rpp™™) () a"* + B

k
= h(a") + A'u (d_pt) a"* Ry 1 p" ™" mod p™.

This is zero mod p if p | h(a”) and consequently any such v give no contribution to the sum.

If pt h(a®) then, since Ry, = Ry syn mod pltt,

o k
h (a“‘ﬁ(d)”) = h(a") (1 + Alu (d_pt) h(a”)_la”kRL+t+an+t+") mod p™

= h((l”)aA’u<d%ﬁ)h(a”)*lavkd)(pLHJrn)

mod p™.

Thus,

ixl(x)X2(h($)) = > xl(a’“)xg(h(av))d%L u (au¢<§L>> o (au@Akavkh(av)l) |

vel u=1
pth(a®)
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dp'me
where the inner sum Z €dpm—L (u (01 + C2Ah(av)—1kavk)) is dpm=L if

u=1

k

1 + coh(a®) "t A'avk (m) dp™ = 0 mod dp™* (6.16)
p

and zero otherwise. Thus our sum will be zero unless (6.16) has a solution with p { h(a’).

For m > n+t¢+ 1 we have m — L > t +n and a solution to (6.16) necessitates dp™*" | ¢;

(giving us condition (6.8)) with p**™ || [ for m > n+ ¢+ 1. Hence for m > n+t¢+ 1 we can

simplify the congruence to

k
h(a) (d;tin) + ey A'at* (d_pt) =0 mod pm E 7t (6.17)

and for a solution we must have p' || ¢; + kcy. Equivalently,

=0 mod p" "k (6.18)

and the characteristic equation (6.9) must have a solution satisfying (6.10). Suppose that
(6.9) has a solution zy = a™ with p t h(zo) and that m > n+t+1. Rewriting the congruence

(6.18) in terms of the primitive root, a, gives

avk = ab mod pm—t—n—L

for some integer b. Thus two solutions to (6.18), a** and a"? must satisfy
vk = vk mod G(p™ L),

That is v; = v mod@%‘ll)ifmgn+2t+23ndifm>n+2t+2

qb(pmfanth)
d

V1 = vy mod
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where m —n—2t —L=Lifm—nisevenand L —1if m —nisodd. Thusifn+t+4+1<
m<n+2t+2orm >n+2t+2 and m — n is even our interval I contains exactly one

solution v. Choosing I to contain vy we get that

Suppose that m > n+2t+2 with m —n odd and set s := m’;’l. In this case I will have

p solutions and we pick our interval I to contain the p solutions vy + yp*~ ! (7%1) where
y=0,..,p— 1. Since dp' | ¢; and dp" | k we can write, with g defined as in (6.5),

g1(z) == g(x)° = 2 (Aa" + B)* = H (xdpt> .

Thus, setting x = x§, where x4 is the mod p™ character with x4(a) = egpm)(1),

pm -
Z X1 (x)X2(h($)) = dpm+2"*1 +t Z X <g (av0+yp57t’1(%)>)
rx=1 yzo
p—1
= dpm+;71+t Z X4 (H (xgptay¢(ps))> 7
y=0
where
xgptaycﬁ(ps) = xgpt (1+ Rp°)! = CEo ‘|‘ YR QUO p mod p™~ n—1 (6.19)
Since

dpt—l—n

/
pan/<xdpf> _ <.17g1($)> xfdp’/ = Z[ZE],
H®) (mo )
we have p" | ———=%, for all k > 1. As zg{(z) = (c1 + keg)g1(x) — cokBgi () /h(x),

. k k B g (x) E g1(x)
nH// 2dp? — i . ___1 1 —_ A/B k—.
@) (dptmdpt 2dp' h(z) apr ) T\  h(a)?
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Plainly a solution zo to (6.9) satisfying (6.10) also has ¢} (o) = 0 mod p™2— * and

m+4n—1
2 Y

.Togi(l'(ﬁ m—n—1 H/( dp) fdp )\p

pre g (6.20)

for some integer A\, and

t k 2 _9dnt (33 )

—n dpty _ k—2dpt 91\T0

D H//(xop ) =y (d_pt> AIB:L‘O P h(xo)z mod p

Hence by the Taylor expansion, using (6.19) and that Ry = R,,,_1 = mod p,

H (xgptaW(pS)) = H(z! ) + H' (2 )yR ™ ey 2_1H”(xgpt)y2R§$(2)dptpm_”_1 mod p"
= g1(z0) (14 (By + aw®) Rn—1p™ ") mod p™

= g1 ()N mod p,

with
k’ 2
b= gl(gpo)—l)\, o= 2—102h(:r0)—2rA’B (_t) :L’IS, (621)

and

v (H (2 @0)) ) = x(gwo))es(ay® + By).

Since plainly p { a, completing the square then gives the result claimed

le = dp™ T X (g(20))ep(—4 a7 ) Y ep(ar?)

y=0

= dp™ (g0 ey (—4 0 ) (p) eph

where € is 1 or ¢ as pis 1 or 3 mod 4. Notice that if z( is a solution to the stronger congruence

g (r9) =0 mod p[ 2141 then B =0 and the e,(—4"'a~'3?) can be omitted. O
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6.2 Evaluating the Binomial Character Sum for p =2

Suppose that y; and ys are mod 2" multiplicative characters with ys primitive mod 2™,
m > 3. This section represents joint work with Chris Pinner and Joe Sheppard [22] in which

we evaluate the complete character sum

Plainly S, = 0 if A and B are not of opposite parity (otherwise z or Az* + B will be
even and the individual terms will all be zero). We assume here that A is even and B is

odd and write

A= 2”141, n > 0, k= thl, 2 )f All{?lB
If B is even and A odd we can use z — x~! to write S, in the form
277L

va@ )x2(Bz" + A).

Since Zjm =< —1,5 >, the characters xi, x2 are completely determined by their values on

—1 and 5. Since 5 has order 2™2 mod 2™ we can define integers c;, ¢, with
Xi(5) = eam-2(c;), 1< <2m72

where e, (1) := e2™@/"_ Since Y, is primitive we have 2 { c,. We define the odd integers R;,
1> 2, by
5277 = 14 R;2'. (6.23)

Defining

[f(m—n)], ifm—n>2t+4,
N =

t+ 2, ift+2<m-—n<2t+4,
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and

C(z) == c1(Az" + B) + c;Aka" Ry Ry, (6.24)

(here and throughout this section y~! denotes the inverse of y mod 2™) it transpires that

the sum S, will be zero unless there is a solution x( to the characteristic equation
C(z9) = 0 mod 2la(m+ml+t, (6.25)

with 2t 2o(Azf + B), when m —n > 2t +4, and a solution to C(1) or C(—1) = 0 mod 2™~2
when t +2 <m —n <2t + 4.

Theorem 6.2.1. Suppose that m —n >t +2. The sum Sy = 0 unless ¢; = 2" ey, with
2 {1 c3, and x1(—1) = 1 when k is even, and the characteristic equation (6.25) has an odd
solution o when m —n > 2t + 4. Assume these conditions do hold.

When m —n > 2t 4+ 4,

1 (m+n)+t+min{1,t} k L, if m—mn is even,
Sy = 22 i (wo)x2(Azg + B)

wh (%) . ifm—mn s odd,

where (%) is the Jacobi symbol, w = e™/*, C(x¢) = A2Lz (mtm)]+t for some integer A\ and
Whent+3<m—n<2t+4,

¢

2", (A + B), if k is even and C(1) =0 mod 2™2,

2" 2x2(A + B), if k is odd and C(1) =0 mod 2™ 2,
Sy =

221 (=1)xa(—A+ B), ifk is odd and C(—1) =0 mod 2™ 2,

0, otherwise.
\
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When m —n =t + 3,

(
2" x2(A+ B), if ks even and x1(5) = £1, x1(—1) =1,

S2= 92" 2 (xo(A+ B) + x1(=1)xa(=A+ B)), if k is odd and x1(5) = =1,

0, otherwise.

\

When m —n =t + 2,

2™ vy (A+ B), ifk is even and x1 = xo or k is odd and x1 = X,

0, otherwise,

where xo s the principal character mod 2™ and x4 is the mod 2™ character induced by the

non-trivial character mod 4 (i.e. x4(x) = £1 as x = +1 mod 4 respectively).

Note that the restriction m —n > t 4 2 is quite natural; for m —n < t+ 2 the odd x have
Az¥ + B = A+ B mod 2™ and Sy = x2(A + B) 2:2::11 X1(z) = 2™ xo (A + B) if x1 = xo
and zero otherwise.

Our original assumption that y, is primitive is also reasonable; if y; and xs are both
imprimitive then one should reduce the modulus, while if y; is primitive and y, imprimitive
then Sy = 0 (if x; is primitive then u = 142™~! must have x;(u) = —1, since z+2™"! = ux

mod 2™ for any odd z, and = — zu gives Sy = x1(u)Sy when x3 is imprimitive).

6.3 Proof of Theorem 6.2.1
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6.3.1 Initial decomposition

Observing that 57, v =1,...,2™ 2, gives a reduced residue system mod 2™ and writing
2m—2
S(A) =) xa(5")xa(A5" + B),
y=1

if k is even we have

Sy = (1+xa(=1))5(A) = (6.26)

and if k is odd
Sy = S(A) + x1(=1)S(=A). (6.27)

6.3.2 Large m values: m >n+2t+4

If I, is an interval of length 20"z 172 then plainly

y=w2"T T vely, uel, = [1,2Lm2+nj+t} ,

runs through a complete set of residues mod 2™~2. Hence, writing h(z) := Az* + B and

noting that 2 1 h(5Y),

S(A) =Y ) Y (5"2“'15””) X2 (A5“’f5’f“2“”5"“2 T B>

vely ucls
v v U [yt —t=2
= k) Y (5 o1 ) (W)
vel] u€ls
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where

W = h(5°)" A5t <5k“2f%“2 - 1) Tl

Since n + 2[5

> m and 2[™] > m we have

m n uky
W = A5%h(50)12n (( + Rpmony2 ) 1) +1

=1+ A15vkh(5v)71Uk1Rl’%-|2l—mT+n-‘ mod 2™

[m Loy I—m+n

[=32]

A15YFh(5Y) " uk1 R R7}
) I mod 2™

m—+n
A15%R(5Y) " Luk R pmp R 2l 72172
_51 () ul[ZW’rg-nw

vk v)y—1 -1 [m_nq_¢—2
ARG T kR B, 2T

We can write

S v (5“2%%“2) xeW) =" min ., (u ( <61 + o A5 h(5") kR s n1R[m+n1))

u€ls u€ls

which equals 2L™3" )+t for the v with
c1h(5°) + 2 A5k Rpm_n n]R[W = 0 mod 2L+ (6.28)

and zero otherwise. Since m > n + 2 equation (6.28) has no solution (and hence Sy = 0)

unless ¢; = 2"*'¢g with 2 1 ¢3, in which case (6.28) becomes

(CgA + CQAlklR"m an(_ern.|> 5'uk = —CgB mod ZL%J (629)

81



If no v satisfies (6.28) then plainly Sy = 0. Assume that (6.28) has a solution v = vy and

m—n

take I = [vg, vo + 2/72 17172). Now any other v solving (6.29) must have

5% = 5U0F mod 21777 = vk = vok mod 21777172 = v = vy mod 277742,
So if m — n is even, I; contains only the solution vy and
S(A) = 2L 1+ (50) yo(A5YF + B). (6.30)

Observe that a solution xy = 5" or zqg = —5" of (6.25) corresponds to a solution vy to
(6.28) when k is even and a solution vy to (6.28) for A or —A respectively (both can not
have solutions) if k£ is odd. The evaluation for Sy follows at once from (6.30) and (6.26) or

[ |2

(6.27). When m — n is odd, I; contains two solutions vy and vy + 2 and

m

S(A) = 25 H1y, (5™) (XQ(h(5UO)) + X1(52L%J_t_Z)Xg(A5”°k5k2L%J_H + B))

m+n

= 2L ¥ (5%0) xa (R(5™)) <1 + X1(52L¥J_t_2)X2(§))

m

where, since 3| 252 | +n > m for m > n + 3,

)
£ = ApUok <5’“2Lﬂrm_2 -~ 1> h(5)7" +1

m—n

— A5vkp(5%0)~1 ((1 + Rymen 215 1) +1

m—n k
= A5%0Fp(5v0) (lﬁRLanJQL o) 4 (21)Rfm2_nj2m—”—1) + 1 mod 2™

1 m—n m-+n
= [ A5 h(5%) k1 Ry mn R A + = (k1 — 122} B min 287270 41 mod 27
L5 P g T L#5)
= (1 + meJQLm;nJ>A15v0kh(5v0)lklRLm_nJRLignﬁé(kl_mLmnJ mod 2™
2
» o\ — _ m—n m—4n | _
_ <A15 0k R(5%0) lklRngnJRL,}L;nJJr%(qu)zl 2 J)zL z 172
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Hence, setting

TYL—TLJ

C3+02A15U0kh(5v0) lk'lR[m n}R )\2\' 2

=31

(only the parity of A will be used) and recalling that ¢, is odd, we have

) _2)X2(£) = ez(mfn (CS + 02A15U0kh(5v0) 1k’1RLm nJR m+nJ> (—1)%(k1_1)02

gy (€205 (5™) ey (o R = Rpmag Rk ) ) (—1) 30700,
Since 1+ R; 112" = (1 + R;2")? we have

Riy1 = R + 2" 'R? = R; + 2! mod 22,
giving R; = 3 mod 4 for ¢+ > 3, and

-1 -1
Bimze) Bimgn ) = Rpmgay By

m—n m—n

2 H”_2)> mod 23

_ . |’m2—n'|_
Ry <<Rf%1 2

m—n

=(1 —2")2"7" 172 mod 2=

—RW"J

2
JRpmgo) = Rpmon (R =2

From (6.28) we have ¢y A15"%h(5%) k) = —c3 mod 4 and

m+4n

S(A) =2%

J+tX1(5vo)X2(h(5vo>> (1 + Z~(2n_1)63(_1)%(k1_1)+>\> ‘

The result follows on writing
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6.3.3 Small m values: t+2<m-—n<2t+4

Since n + 2(t +2) > m we have

A5+ B = A;2"(1 4 R,.,22)" 4 B
=(A+ B) (1 + vk1 A1 Ry 0(A + B)*12t+"+2) mod 2™
=(A+ B) (1 + llﬂt+n+22t+n+2)WAI(AJFB)71Rt+2Rt_+"+2 mod 2™

= (A+ B)5’)/Ak(A+B)_1Rt+2R;+1n+2‘
Hence x1(57)x2(A5" + B) equals
XQ(A + B>€2m—2 (’)/ (Cl (A + B) + CQAk’RH_QR;:nJrQ) (A + B)il)

and S(A) = 2™ 2x9(A + B) if C(1) = 0 mod 2™ 2 and 0 otherwise. Since m —n > ¢ + 2
the congruence C'(1) = 0 mod 2™~2 implies ¢; = 2/"¢c3 (with ¢z odd if m —n >t +2) and
becomes

C3 (A + B) + CQAlkflRt+2R;_~_1n+2 = 0 mod 2m—n—t—2' (631)

For m —n =t+ 2 or t 4+ 3 this will automatically hold (for both A and —A when k is odd)
and Sy = 2™ 'y (A + B) for k even and y;(—1) =1, and

Sy = 2" (x2(A + B) + xa(—1)x2(—A + B))

for k odd. Further for & odd and m —n = 2 we have —A + B = (1 + 2™ 1)(A + B) mod
2™ with xo(1 +2™71) = —1 and Sy = 2™ 2x9(A + B)(1 — x1(—1)) = 2™ 1xy(A + B) if
x1(—1) = —1 and zero otherwise. Note when m—n = t+2 we have ¢; = 2" 2 and x;(5) = 1
and when m —n =t + 3 we have ¢; = 2™72 or 273 and x;(5) = £1.

Since ¢3B is odd (6.31) can not hold for both A and —A for m —n >t + 3 and thus at

most one of S(A) or S(—A) is non-zero. When k£ is odd the congruence condition for —A
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becomes C'(—1) = 0 mod 2™ 2.
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Chapter 7

Evaluating Jacobi Sums

For multiplicative characters y; and x2 mod ¢ one defines the classical Jacobi sum by

J(x1, X2, 4 Z)ﬁ z)x2(1 — ). (7.1)

More generally for k£ characters 1, ..., xx mod ¢ one can define

T X)) =Y Y xa(@) - xal(an), (7.2)

r1=1 =1
1+ Fxp=1

If the x; are mod rs characters with (r,s) = 1 then, writing x; = x;x7 where x} and x/ are

mod 7 and mod s characters respectively, as we have discussed in Section 2.2

J(Xl;---anarS) = J(X&,,X;,T)J(XY,,X%,S)

Hence, it suffices to consider the case of prime power moduli ¢ = p™.

Zhang & Yao [30] showed that the sums (7.1) can in fact be evaluated explicitly when m
is even (and xi, x2 and xiX2 are primitive mod p™). Working with a slightly more general

binomial character sum the authors [21] showed that techniques of Cochrane & Zheng [4]
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can be used to obtain an evaluation of (7.1) for any m > 1 (p an odd prime). Zhang and

Xu [32] considered the general case, (7.2), obtaining (assuming that x, x™,...,x™, and

X"t are primitive characters modulo p™)

(k—1)m

L n
JOX™ - X p™) = p? Y(w)x (), w =g 4+

when m is even, and when the m, k,nq,...,n; are all odd

k—1 [ uni..n : .
€p <%> 3 lfp 7£ 27

L NYm—r u n N
JOM, XM ™) :pz(k K X(u)x (it ..omt)

where (Z) is the Jacobi symbol and (defined more generally for later use)

1, if p™ = 1mod 4,
€pm =

i, if p =3 mod 4.

(7.4)

(7.5)

In this Chapter, representing joint work with M. Long and C. Pinner [15], we give an

evaluation for all m > 1 (i.e. irrespective of the parity of k& and the n;). In fact, we evaluate

the slightly more general sum

p p
T(Xt X P™) = Y e > xal@n) - xe(a),
r1=1 =1
z1++zp =8

Of course when B = p"B’, pt B’ the simple change of variables x; — B'z; gives

Je(X1s- - X P™) = X1 Xe(B') Jpn (X15 - -+, X0, P™).

For example Jg(x1,.--, Xk 2") = X1 xx(B)J(x1,---, Xk, ™) when p t B. From the
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change of variables x; — —xx;, 1 <17 < k one also sees that

n (" )xk(=1)J (X155 xa—1,P™), I X1 Xk = Xo,
me(Xl) 5 Xk P ) -

0, if X1 Xr 7# Xo

where Yo denotes the principal character, so we assume that B = p™ with n < m.

Theorem 7.0.1. Let p be a prime and m > n + 2. Suppose that x1,...,xr are k > 2
characters mod p™ with at least one of them primitive.

If the x1,...,xx are not all primitive mod p"™ or x1...Xx 1S not induced by a primitive
mod p™~" character, then J(x1,..., Xk, p") = 0.

If the x1, ..., Xk are primitive mod p™ and x1--- Xk 1S primitive mod p™~", then

(m(e-1)+m X1(€1) - X(ek) < (76)
X1 Xk(V)

m 1
‘]p"(le"'anap ) = pz

where for p odd

5 9 m(k—1)+n o\ R m A
- - - g, mE m—ny
p p p e

and forp =2 and m —n > 5,

s=(2) 2 W' (7.7)
v Cl . e ck ’

with eym as defined in (7.5), the r and ¢; as in (2.8) and (2.10) or (2.12), and

vi=p Mer ot eg), wi= e™i/4, (7.8)
Of course it is natural to assume that at least one of the x4, ..., x is primitive, otherwise
we can reduce the sum to a mod p™~! sum. For n = 0 and x1,...,x% and y;---x all
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primitive mod p™ our result simplifies to

me=1) X1(c1) -+ Xk (cr) 5

J(Xl’-.-,Xk?pm):p y U:CI+"’+Ck,

Xl .. Xk(/U)
with
)
1, if m is even,
4] 1 are \ ¥ ko
—= vC1-Ck —2rc — . .
( » )(p) € if m is odd and p # 2,
(UCI?..C,) ; if m > 5 is odd and p = 2.
\
In the remaining n = 0 case, p = 2, m = 3 we have J(x1, ..., s, 2°) = 2:*=D(=1)2) where

¢ denotes the number of characters 1 < i < k with y;(—1) = —1.
When the y; = x™ for some primitive mod p™ character y we can write ¢; = n;c (where

¢ is determined by x(a) as in (2.10) or (2.12)) and we recover the form (7.3) and (7.4) with

k-1
the addition of a factor (‘i’"c> for p # 2, m odd, which of course can be ignored when
k is odd as assumed in [32].

For completeness we observe that in the few remaining m > n + 2 cases (7.6) becomes

(
— ikl ifm=23n=1,

(m(k=1)+n)

1
Jpn (X5 -+, X, D) = 22 wXtxk(=1)—1-v Hle Xi(—¢), ifm=4n=1,

i Hle xi(ci), iftm=4,n=2.

\

For m = n + 1 (with at least one y; primitive) the Jacobi sum is still zero unless all
the y; are primitive mod p™ and xi---xx is @ mod p character. Then we can say that

mk=1) otherwise, but an explicit

1 . 1
|‘]p"(X17"'7X/€7pm>| = pimk_l if X1 Xk = Xo and p2(
evaluation in the latter case is equivalent to an explicit evaluation of the mod p Gauss sum

G(x1- - Xk, p) when m > 2. We saw in Section 4.4 that if xy is a primitive mod p™ character
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and i1 --- Xk i1s a mod p™~" character we can write

k—1

G(x1 X, p™™)
J”(le"'7Xkapm) :pn — G(X“pm)
g G(xk, ™) 11

We will use this and the explicit evaluation of the Gauss sums in Theorem 3.1.1 to evaluate

the sum.

7.1 Proof of Theorem 7.0.1

We assume that i, ..., xx are all primitive mod p™ characters and x; - - - xx is a primitive
mod p™~" character, since otherwise from Theorem 4.4.1 and (4.18), Jyn(x1, .- ., X, p™) = 0.
In particular we have (4.19).

Writing R = Rjm.5 then by (4.19) and the evaluation of Gauss sums in Theorem 3.1.1

we have

I, Glxi.p™)
G(X1--- Xk, ™)

Hizl pm/2X ( CZR71>6PW (_CiR71>5i

Jp”(Xla"'anap ) =

TPy (_UR—1>epm,n<_vR—1)5S
_ o L(m(k—1)+n) Hz 1Xz(0z)5 5
=p2 LLi=1 AL A7 s 7.9
X1 Xk( ) H ( )

where p"v =c; + - - - + ¢,

(’2“") gpm, if pisodd, p# 2,

P
) w, if p=2and m > 5,
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and

<%) ) gpm-n, if pis odd,
O
(%)m_nw”, ifp=2and m—n>25,

and the result is plain when p is odd or p =2, m —n > 5.
The remaining cases p = 2, m > 5 and m — n = 2,3,4, follows similarly using the

adjustment to d; observed at the end of the proof of Theorem 3.1.1 .

7.2 A more direct approach

We should note that the Cochrane & Zheng reduction technique [4] can be applied to directly
evaluate the Jacobi sums when p is odd and m > n + 2 instead of using the Gauss sum

evaluation. For example if b = p"b’ with p 1 ¥/, then from [21, Theorem 3.1] we have

Iy (X1, X2, P ZXI Ix2(b—x) = ZXlXQ )x2(bx — 1)

min —2corblzg\" "
=p 2 XiXa(Zo)xa(bzo — 1) (#) Epm—n,

where x is a solution to the characteristic equation

1+ ¢y — bz = 0 mod pl“T It pta(br —1). (7.10)

If (7.10) has no solution mod pl™3") then Jp(x1, x2,p™) = 0. In particular we see that:
L. pr'fcl and p | C2, then Jb(XlaXQupm) = 0.

ii. Ifpteiea(er + co) then

Jo(x1, X2, 2™) = xax2(b)x1(c1) xa(c2)Xaxz (1 + c2)p® 6.
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where

5, = (—_27“)m <0102(01 +02))m€pm.
b p

iii. if pteyand b=p"b, ptb withn < m—1 then Jy(x1, x2,p™) = 0 unless p" || (¢1 + ¢2)

in which case writing w = (¢; + ¢2)/p",

c co) min [ —=2r\""" [creow\ "
Jb(leXzypm) = X1X2(b’)wp7+ (—) ( 12 ) Epm—n.
Xle(w) p p

To see (ii) observe that if p | b, then Jy(x1, x2,p™) = 0, and if p t b, then we can take
70 = (c1+¢)e; b mod p™ (and hence bxg — 1 = cocy ). Similarly for (iii) if p™ || (c1 + c2)
we can take zo = p~"(c1 + co)e; ()7 mod p™.

Of course we can write the generalized sum in the form

pm pm pTYL
Jpn (X1, -5 Xk) = D xslws) x> xalm)xa(b— )
xr3=1 xp=1 r1=1
bi=p" —x3——T}
p" p"
= : Z X3(xs) - - xu(@e) Jo(Xx1, x2,0™),
xr3=1 xp=1

Hence assuming that at least one of the x; is primitive mod p™ (and reordering the characters
as necessary) we see from (i) that Jy(x1,...,xx,p™) = 0 unless all the characters are
primitive mod p™. Also when k = 2, x1, x2 primitive, we see from (iii) that Jyn (x1, x2,p™) =

0 unless x1x2 is induced by a primitive mod p™~" character, in which case we recover the

2
P

even, for n odd observe that (%) — <(01+C2)2;(c1—c2)2> = (‘71)’ (since p | (c1 +¢2) as x1X2

n
formula in Theorem 7.0.1 on observing that <%> RA— 5%,; this is plain when n is

is imprimitive). We show that a simple induction recovers the formula for all £ > 3. We
assume that all the x; are primitive mod p™ and observe that when k£ > 3 we can further
assume (reordering as necessary) that xix» is also primitive mod p™, since if x1x3, x2X3 are

not primitive then p | (¢; + ¢3) and p | (c2 + ¢3) and (¢; + ¢2) = —2¢3 Z 0 mod p and x1x2
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is primitive. Hence from (ii) we can write

pm
X1(C1 Xz Cz
Tom(x1. ... my = AUAZVR) § b
o (X15 -+ Xk D) X1X2(Cl+02 E xs(@s) - - xe(@r)x1x2(D)

3=1 rEp=1

= X1(61)X2(C2)X1X2(C1 + C2)p%52<]pn(X1X2, X35 .- ;lepm)-

Assuming the result for k—1 characters we have Jyn (x1x2, X3, - - - X, P™) = O unless x7 - - -

is induced by a primitive mod p™~" character in which case

k
m m(k—2)+n
Ty (X1X2: X3 - - X P™) = xaxaler + o) [ [ xale) X xa(v)dsp 2
=3

5 (_zr)m“”)*" (v)m (<c1+c2)03...ck)m e 1
3 - - - f‘:pm 8 m n-*
p D p

Our formula for k characters then follows on observing that 203 = 9.

with
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