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Abstract

Recent work has shown that bidirectional genes (genes located on opposite strands of

DNA, whose transcription start sites are not more than 1000 basepairs apart) are often co-

expressed and have similar biological functions. Identification of such genes can be useful in

the process of constructing gene regulatory networks. Furthermore, analysis of the intergenic

regions corresponding to bidirectional genes can help to identify regulatory elements, such

as transcription factor binding sites. Approximately 2500 bidirectional gene pairs have been

identified in Arabidopsis thaliana and the corresponding intergenic regions have been shown

to be rich in regulatory elements that are essential for the initiation of transcription. Iden-

tifying such elements is especially important, as simply searching for known transcription

factor binding sites in the promoter of a gene can result in many hits that are not always

important for transcription initiation. Encouraged by the findings about the presence of

essential regulatory elements in the intergenic regions corresponding to bidirectional genes,

in this thesis, we explore a motif-based machine learning approach to identify intergenic reg-

ulatory elements. More precisely, we consider the problem of predicting the transcription

pattern for pairs of consecutive genes in Arabidopsis thaliana using motifs from AthaMap1

and PLACE2. We use machine learning algorithms to learn models that can predict the

direction of transcription for pairs of consecutive genes. To identify the most predictive

motifs and, therefore, the most significant regulatory elements, we perform feature selection

based on mutual information and feature abstraction based on family or sequence similarity.

Preliminary results demonstrate the feasibility of our approach.

1http://www.athamap.de/
2http://www.dna.affrc.go.jp/PLACE/
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Chapter 1

Introduction

Characterization of regulatory mechanisms by which plants sense and respond to abiotic

stresses (such as drought, low temperature, high salinity) at the molecular level is crucial

to understanding the responses of organisms to environmental changes. Such stresses are

among the most significant factors involved in plants’ adaptation to environmental changes.

Identifying the genes that respond to environmental stimuli is a research problem in compu-

tational genomics and in order to understand how plants react to abiotic stress, researchers

study genes and gene regulatory networks governing plant responses [Zhang et al., 2005].

In order to better understand gene regulation, researchers need to thoroughly identify and

characterize transcription factor binding sites (TFBS) in genomic sequences. TFBS are sites

where transcription factors, i.e., proteins that control the process of gene transcription, bind.

These binding sites are largely located in the intergenic regions between genes. Analysis

of the intergenic regions can lead to insights into what binding sites are important for

transcription.

Towards this goal, we address the problem of predicting the transcription direction of

pairs of consecutive genes over a genome, using binding sites as predictive features, especially

those sites which are located in the intergenic region between two genes. More precisely,

learning algorithms are provided with examples consisting of pairs of consecutive genes,

represented using binding sites or, equivalently, the corresponding transcription factors.

Class labels are given by the transcription direction for the two genes in the pair. While
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learning to predict the transcription direction is an interesting problem in itself, it can also

help us identify binding sites (a.k.a., motifs) that are important for transcription.

In this chapter, Section 1.1 describes the importance of gene regulatory networks and

transcription patterns in Arabidopsis thaliana and Section 1.2 defines the classification prob-

lem we will address in this thesis.

1.1 Motivation

Gene regulatory networks govern functional development and biological processes of cells

in all living organisms [Needham et al., 2009]. To understand the differences between cells

within a species or between species or between healthy and diseased cells, researchers need to

understand how genes are expressed [Davidson and Levine, 2005]. The importance of study-

ing such networks can be gauged from the fact that discovery of complete gene regulatory

networks in plants would allow the development of stress resistant crops.

Traditionally, the study of abiotic stress was carried out by perturbing optimal growth

conditions and inferring a gene’s function from the observed changes in gene expression.

Collecting necessary data through perturbation experiments (for example, gene switches) is

expensive. Furthermore, regulatory motifs are important for understanding such networks,

but they are hard to find, and as a result the problem becomes more challenging. Hence,

researchers are using computational methods to understand how genes are wired together

to form functional networks.

With high-throughput technologies, it is now feasible to develop new and effective meth-

ods for systematic characterization of regulatory networks in plants, in response to multiple

stresses. Such studies will provide insight for understanding the underlying interactions be-

tween components controlling the activities of genes involved in plants adaptation to abiotic

stresses. Computational methods are now generating a plethora of putative transcription

factor binding sites1 by searching for overrepresented DNA patterns upstream of function-

1transcription factor binding site, motif or regulatory element are synonyms
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ally related genes (i.e., genes with similar expression patterns or functional annotation).

The abundance of both computationally and experimentally derived binding sites and their

growing use in defining gene regulatory networks and deciphering the regulatory mechanism

of individual genes make them important tools for computational biology. Discovering gene

regulatory networks in Arabidopsis thaliana is a complex process.

Motifs have biological significance and provide strong hypotheses about the links in a

regulatory network. For instance, a gene whose promoter consists of well-known regulatory

elements is likely to be regulated by the transcription factors having these elements as their

binding sites. Obviously, the gene being regulated and the genes encoding the transcrip-

tion factors are parts of the same network. Given that regulatory elements in non-coding

regions often control gene expressions and that a gene’s location in a regulatory network is

essential to understand its function, characterization of non-coding regions has become very

important.

Computational work by [Trinklein et al., 2004] have identified approximately 2500 bidi-

rectional genes, i.e., genes located on opposite strands of DNA with their transcription

start sites not more than 1000 base pairs apart. Bidirectional genes are known to be co-

expressed. Intergenic regions between pairs of bidirectional genes are rich in regulatory

elements, which are sometimes shared by the two genes. In this thesis, we will study pairs

of consecutive genes, including genes whose transcription start sites may be more than 1000

base pairs apart. We will refer to such genes as gene pairs (Fig. 1.1). It is important that

we thoroughly study genes pairs and their corresponding intergenic regions to get a better

understanding of regulatory elements.

Wang et al. [2009] have identified several thousand bidirectional gene pairs in Ara-

bidopsis thaliana, with intergenic regions rich in regulatory elements. Simply searching

for known transcription factor binding sites in gene promoters using motif databases such

as AthaMap [Blow et al., 2009; Galuschka et al., 2007; Steffens et al., 2004, 2005] and

PLACE [Higo et al., 1998, 1999] will result in many false positive motifs that are not nec-

3



Figure 1.1: Gene pairs and their corresponding regulatory elements.

essarily important for initiation of transcription. A different approach is required to filter

“relevant motifs” from motifs reported in these and other similar databases. Thus, the ques-

tions that we address are the following: Are all the motifs reported by databases essential

for transcription? How can we identify essential motifs? Is the motif information available

in current databases complete? In other words, do they contain all essential motifs?

1.2 Problem Definition and Overview of the Proposed

Approach

To address the questions above, we will present a motif-based machine learning approach

that can help to identify intergenic regulatory elements important for transcription. Specif-

ically, we consider the problem of predicting the transcription direction for pairs of consec-

utive genes in Arabidopsis thaliana using motifs from AthaMap, PLACE and k-mers (where

k = 3, · · · , 8) (under the assumption that specific motifs are not available). All prediction

experiments will be conducted using Weka’s [Witten and Frank, 1999; Witten et al., 1999]

implementations of machine learning algorithms to learn models that can predict the direc-

4



tion of transcription. We will also perform feature selection (using Weka’s implementation

for information gain criterion (InfoGainAttributeEval) along with Ranker’s search method)

and feature abstraction (based on sequence similarity) to identify and rank most significant

(or predictive) regulatory elements.

We formulate the problems of predicting the direction of transcription for pairs of con-

secutive genes (Fig. 1.2) as a classification problem as follows:

Three-class problem: Given a data set D ={((gi,1, gi,2), ci)}i=1,··· ,n of pairs of consecutive

genes gi,1 and gi,2 over the alphabet Σ of nucleotides, |Σ| = 4, gi,1, gi,2 ∈ Σ∗ along with

their class labels ci that belong to a finite set C, the task is to produce a model that is

able to predict the class label c ∈ C for a novel pair of consecutive genes (g1, g2). The class

label associated with each pair of consecutive genes represents the direction of transcription

for the corresponding pair: forward-reverse (FR) if the direction of transcription of g1 is

forward and of g2 is reverse, reverse-forward (RF ) if the direction of transcription of g1 is

reverse and of g2 is forward, and forward-forward, reverse-reverse (FFRR) if the directions

of transcription of g1 and g2 are either forward-forward or reverse-reverse. Our experiments

will focus on this problem.

Figure 1.2: Gene pairs and associated transcription patterns.

Two-class problem: The problem is similar to the three-class problem, the only difference

5



being in the number of class labels used. We create sets of “two classes” based on the one

vs. all rule. Thus, class labels in the two-class problem are (FR+RF, FFRR), (FR+FFRR,

RF) and (RF+FFRR, FR).

The intergenic regions usually evolve faster than the genes of the genome. However,

motifs found in these regions play significant role in deciding the direction of transcription

of adjacent genes and are more conserved. Our work shows how to use these motifs to learn

models that can predict the direction of transcription for pairs of consecutive genes and

identify the most predictive motifs.

Having information about transcription factors and their binding sites, can help mark

directed links from regulating genes to target genes (as nodes) in the network. However, this

approach is difficult and leads to false hits. The idea of identifying transcription patterns

and regulatory motifs that are predictive of such patterns can be a workaround. The latter

problem is relatively simpler and helps to identify important binding sites, possibly true

hits in the former (note that the latter problem is a subproblem of the bigger problem -

constructing gene regulatory networks).

This thesis is organized as follows - Chapter 2 provides biological background, with focus

on motifs, describes various biological databases storing motifs, and types of motifs that can

be collected from these databases. It also describes the characteristics of motifs that can

be used to derive features for machine learning algorithms; and other types of features

used for learning transcription patterns. Chapter 3 presents the approaches used to group

or filter motifs, specifically feature selection and feature abstraction procedures, which are

used to produce motifs that are predictive for the problem stated in Section 1.2. Chapters 4

and 5 describe the experiments performed and discuss the results obtained when predicting

transcription patterns. A discussion of the related work can be found in Chapter 6. Finally,

we conclude our work and present several directions for future work in Chapters 7 and 8.

6



Chapter 2

Background

This chapter presents the background information that will be needed for understanding

the work presented in this thesis. Sections 2.1, 2.2 and 2.3 describe biological background,

characteristics of motifs that we exploit to construct feature vectors and types of motifs

collected from multiple regulatory elements databases, respectively.

2.1 DNA, RNA and Proteins

Central Dogma of molecular biology highlights the transfer of genetic information from DNA

to RNA (through transcription), and from RNA to protein1 (through translation). DNA

can be seen as a long-term copy of genetic material, while RNA is a temporary intermediary

between DNA and proteins. Proteins are physical manifestations of the abstract information

contained within a genome.

DNA contains genes, some of which encode for proteins. Proteins are needed to execute

cell processes. The information in DNA is encoded with four chemical bases: adenine

(A), cytosine (C), guanine (G) and thymine (T). The order of these bases determines the

information needed for building and maintaining an organism. DNA bases pair up with each

other, A with T and C with G, to form units called base pairs (Fig. 2.1 [NLM]). The genetic

code can be seen as a set of rules by which information encoded in genetic material (DNA or

RNA sequence) is translated into proteins (or amino acid sequence). Each three-nucleotide

1Organic compound made of amino acids sequences
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combination (also known as a codon) designates one of the 20 amino acids (note that the

code is redundant, in the sense that several codons can code for the same amino acid). An

organism’s DNA contains regulatory sequences and intergenic segments that contribute to

phenotype, and do not get converted to amino acids during translation. Such regions, which

do not carry genetic information, are involved in regulating genes.

Figure 2.1: Base pairs within DNA structure.

The genome of an organism contains thousands of genes, but not all of these genes are

active at any given moment. A gene is expressed when it is being transcribed into RNA

(which is later translated into a protein). Biological mechanisms control the expression of

genes, meaning that proteins are produced only when needed by the cells. Fig. 2.2 is a

simplified picture of how proteins regulate genes. For transcription to occur, transcription

factors need bind to regulatory regions in the promoter of the gene that they regulate. More

precisely, they need to bind to regulatory elements in DNA. Once the transcription factors

are bound to DNA, RNA polymerase also binds and starts transcribing the coding regions

into mRNA, which is finally translated into a new protein.

Transcription factors bind themselves to the promoter of genes, either promoting (as an

activator) or inhibiting (as a repressor) the transcription of genes. Hence, an associated

adjacent gene is either up-regulated or down-regulated. DNA sequence that a transcription

8



Figure 2.2: Regulation of genes.
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factor binds to, is called as a transcription factor binding site or motif.

Having presented an overview of the central dogma of molecular biology, we define a gene

regulatory network as a collection of genes which interact with each other (indirectly through

their protein expression products), thereby governing the rates at which genes in the network

are transcribed into RNA, which are further converted to proteins. Regulatory proteins are

encoded by genes and therefore we have complex gene regulatory networks, including positive

and negative feedback loops [Schlitt and Brazma, 2007]. Fig. 2.3 [Schlitt and Brazma, 2007]

is a simple representation where genes shown encode transcription factors, that control the

activity of genes encoding transcription factors.

Figure 2.3: A fictional gene regulatory network showing gene regulation mechanism.

2.2 Motif Characteristics

As mentioned above, motifs are regions of DNA that play role in the regulation of gene

expression [Lee and Mahato, 2009]. These elements are often the binding sites of one or

more transcription factors and generally, are found in 5’-untranslated and 3’-untranslated

regions of the gene of interest and, especially, in the intergenic regions. In this thesis, these

regions combined are referred as region of interest (Fig. 2.4).

10



Figure 2.4: A picture showing the “region of interest” between two consecutive genes.

A gene pair (specifically, region of interest) can be represented using binding site infor-

mation (namely the existence of the binding site in the region of interest, or equivalently

the transcription factors corresponding to binding sites or their families, and position spe-

cific scores); and general sequence characteristics (namely sequence length and GC content).

These are features that effectively incorporate the available prior knowledge needed to train

machine learning classifiers. In our work, we provide classifiers with a feature vector of

the form {feature1, feature2, feature3 ... featurek, Class Label} and train them to pre-

dict directions of transcription (or class label) of the consecutive genes encoded in a gene

pair.

Given the large amount of information that exists in biological databases, an effective and

appropriate use of the data to train classifiers and to combine information from multiple

sources to alleviate effects of missing or unknown information is important. We design

experiments so that effective learning from aforementioned features is addressed. We collect

motifs from two databases: AthaMap [Blow et al., 2009; Galuschka et al., 2007; Steffens

et al., 2004, 2005] and PLACE [Higo et al., 1998, 1999]. Note that, different sets of motifs

present different learning information to the classifiers with the goal of identifying the most

predictive motifs.

2.3 Types of Regulatory Motifs

Pattern recognition programs used by biological databases like AthaMap and PLACE iden-

tify different types of putative transcription factor binding sites based on screening param-

eters supplied. Depending on whether positional weight-matrices or experimentally verified

11



single sites based on consensus sequences were used for screening gene sequences, output

patterns can be classified as matrix-based or pattern-based motifs, respectively.

Before describing the two types of output patterns, it is worth discussing the biological

databases that the motif information came from. Section 2.3.1 describes Athamap and

PLACE databases, followed by Sections 2.3.2 and 2.3.3, which describe the the two types

of motifs, respectively.

2.3.1 Biological Databases

This section talks about biological databases from which motifs information were collected.

A number of databases for cis-regulatory elements and gene-expression analysis that

provide data for bioinformatic research are available, including several that contain infor-

mation about Arabidopsis thaliana. We have chosen to use AthaMap and PLACE in this

work, because they are in public domain, and provide online tools to search binding sites in

user-selected genes (Fig. 2.5) or at specific genomic positions [Blow et al., 2009]. Database

specific details are as follows:

• AthaMap provides a genome-wide map of potential transcription factor binding sites

in Arabidopsis. The data in AthaMap is based on published transcription factor bind-

ing specificities available as alignment matrices or experimentally determined binding

sites [Steffens et al., 2005]. Using a pattern search program called Paster, matrix-based

and pattern-based screenings are performed to identify genomic positions of putative

binding sites. A site is reported as a putative binding site by comparing its score

with the threshold and maximum scores determined by Patser. There are 109 tran-

scription factors identified by AthaMap, that are used as features in our classification

experiments. Please note, AthaMap denotes motifs by the transcription factors that

bind to them. Fig. 2.6 shows a partial screenshot of search results from AthaMap for

gene AT1G01050 (Arabidopsis genome identification number). Note that, the binding

site “ggaaaaagcga” and the associated transcription factor “DOF2” that binds to the
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given site can be seen as two equivalent features. We will use these two features in-

terchangeably if the transcription factor corresponding to the binding site is known,

when constructing feature vectors for predicting transcription patterns. For each gene

pair, we use its position coordinates to extract putative motifs spread across the region

of interest. Initial experiments performed (not discussed in the thesis) indicate 0%

restriction to highly conserved binding sites as the best level, while collecting motifs

over a scale of 0− 100% restrictions with 10% step increase.

• PLACE is a database of motifs found in plants (not limited to Arabidopsis). These

motifs have been reported in previously published papers. In addition to the motifs

originally reported, their variations in other genes or in other plant species are also

compiled [Higo et al., 1998]. The database reports 73 Arabidopsis) specific motifs

to be used as features in classification experiments. A query sequence is searched for

presence of these motifs using a homology search tool called as Signal Scan [Prestridge,

1991]. Fig. 2.7 shows an example of input file supplied to PLACE search engine,

highlighting gene pair name, its transcription pattern and DNA sequence. Fig. 2.8

shows a partial screen shot of search results from PLACE for the given input file.

2.3.2 Matrix-based Motifs

Binding sites determined by matrix-based screenings fall into this category. AthaMap

screens genomic sequences with the matrices (or profiles) of known transcription factors

with a threshold score and reports sites with scores greater than or equal to the thresh-

old. PSSMs predict novel binding sites solely on the basis of nucleotide frequencies at

single matrix positions. Such motifs are associated with a profile, maximum and threshold

scores. Fig. 2.9 shows a transcription factor ZAP1 with WRKY(Zn), 12.26 and 8.48 be-

ing its transcription family, maximum and threshold scores, respectively. AthaMap lists 51

matrix-based motifs (to be used as features in machine learning experiments). On the other

hand, PLACE reports no matrix-based motifs.
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Figure 2.5: Search results from AthaMap showing transcription factors that bind to a gene.

Figure 2.6: A screen shot of AthaMap’s output for gene AT1G01050 at 20% restriction
level.
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Figure 2.7: A sample input given to PLACE in FASTA format.

Figure 2.8: A screen shot of search results from PLACE for gene pair AT1G01010-
AT1G01020.

Figure 2.9: An example of a matrix-based motif ZAP1.
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2.3.3 Pattern-based Motifs

Binding sites determined by pattern-based screenings fall into this category. AthaMap

and PLACE screen genomic sequences with binding sequences (these are experimentally

verified) gathered from known transcription factors. Each pattern-based motif is associated

with a factor and a family name, a verified binding sequences where the factor binds and

corresponding consensus pattern (Fig. 2.10). AthaMap lists 58 and PLACE lists 73 pattern-

based motifs, respectively.

Figure 2.10: An example of a pattern-based motif FUS3.

2.4 Feature Representation

Each example in our data set D is represented as “100bp of gene1, intergenic region, 100bp of

gene2” - together forming the region of interest. We first collected motifs from AthaMap and

PLACE. AthaMap identifies 109 and PLACE identifies 73 motifs for Arabidopsis thaliana

genome (consisting of 30270 gene pairs from all five chromosomes). We then encoded each

gene pair using the bag of motifs representation [McCallum and Nigam, 1998]; i.e. for both

AthaMap and PLACE we construct separate data sets where each instance is a vector of

109 and 73 features, respectively plus one class label. Each position in the vectors is a

feature that represents the number of times the corresponding motif appears in a given

example. By feature (Fig. 2.11) we mean count or score of a characteristic that can be

used to learn statistical models and predict unknown properties. Based on how we deal
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with these features, there are two types of feature representations and each representation

has significant effect on performance of classifiers (Fig. 2.12). The next subsection provides

more insights into two main feature representations.

Figure 2.11: Binding sites found in DNA sequence.

2.4.1 Count Representation

When we count the number of times each motif appears in a given gene pair sequence, we

represent it as a feature using the count. We may consider locations of motifs in the region

of interest. To capture this, we record the presence or absence of a motif in gene1, intergenic

or gene2 regions. Count representation works with both matrix-based and pattern-based

motifs. We will conduct experiments with various permutations and combinations on the

data (AthaMap or PLACE), types of features (matrix-based or pattern-based) and types

of feature representations (count or score) to find efficient ways of training classifiers and

predicting transcription patterns.

2.4.2 Score Representation

If a motif is identified by matrix-based screening, then it has a score associated with it.

We can use this score as a feature. For each motif that is reported in a sequence, we take
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Figure 2.12: An example of feature representations.

an average of its scores at various occurrences and use the same in place of total count

(Fig. 2.12). This approach is not available with pattern-based motifs since no scores are

associated with them.
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Chapter 3

Feature Selection and Abstraction

A prediction problem is defined as the task of inferring a function from training examples

of its input and output [Mitchell, 1997]. The function to be learned is called target concept

(denoted by c), and the set of items over which it is defined is called the set of instances

(denoted by X), i.e. c : X → {class1, class2, class3 ... classk}. For any instance x εX, the

value c(x) is called the class label for x [Mitchell, 1997]. For the three-class problem that

we consider, c(x) is a function of the form c : X → {FFRR,FR,RF}. When learning a

target concept, the learner is presented with a set of training examples, each consisting of

an instance x from X, along with its value c(x). The output of the learner is an estimate

of the function c (called a classifier), which can predict the class label for new unlabeled

instances (called test instances) [Mitchell, 1997].

Each prediction problem is associated with a performance measure P , which is used to

evaluate the learning process. The main goal of our work is to improve the performance of

learning algorithms at the task of predicting transcription patterns.

3.1 Types of Feature Vectors

Several types of feature vectors, described below, can be derived from sequence data and

can be considered to address the prediction problems at hand. Among such vectors, we

consider the following:
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• Binding sites: {site1, site2, site3 ... sitek} or, equivalently, their corresponding tran-

scription factors: {tf1, tf2, tf3 ... tfk}.

• Transcription factor families: {family1, family2, family3 ... familyk}, which corre-

spond to groupings of motifs (or transcription factors) into families.

• Motif (k-mer) clusters: {cluster1, cluster2, cluster3 ... clusterk}, when k-mers obtained

using a sliding window are grouped based upon sequence similarity using a hierarchical

agglomerative clustering (with the goal of reconstructing motif families).

• Gene pair sequence length: {GenePairLength}

• Region specific sequence lengths: {gene1, intergenic, gene2}

• GC content: {GC Content}

To evaluate the predictive power of these feature vectors, we will use them separately and

in combinations (e.g., binding sites together with sequence length, or binding sites together

with GC content) to learn classifiers. In principle, each of the feature vectors could provide

the classifiers with complementary information, and our goal is to find out what features

or combinations of features are the most predictive. Furthermore, we want to investigate

the effect of feature selection and feature abstraction (dimensionality reduction methods)

at identifying the most predictive features.

In what follows, we describe the feature selection and feature abstraction approaches

that we will use to filter out noisy or irrelevant motifs from the feature set and to group

similar features (e.g., motifs) into clusters of more general features (which might capture

better the class information).

3.2 Feature Selection

Witten and Frank [1999] describe feature selection as a method used in machine learning,

for selecting a subset of relevant features in order to generate more efficient learning models.
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There are often two or more features that are similar to each other, and thus are not

providing significantly more information than any of them individually. The idea is to

select features that have high interdependence between feature values and classes. However,

the interdependence among the selected features should be minimized, so that redundancy

is minimized.

The feature selection criterion that we use in our experiments is based on the information

gain criterion (or maximizing the mutual information with the class variable) [McCallum and

Nigam, 1998]. We use Weka’s implementation for information gain (InfoGainAttributeEval

along with Ranker’s search algorithm) to rank a set of features in the decreasing order of

their mutual information with the class variable and we select only features for which the

mutual information is above a predefined threshold.

The advantages of performing feature selection include dimensionality reduction, fast

learning process, enhanced generalization capability, and better model interpretability.

3.3 Feature Abstraction

Clustering can help to find concepts in the data by providing mechanisms for grouping

similar entities. Moreover, algorithms such as hierarchical clustering organize data entities

in a form of hierarchy of concept-clusters providing the ability to explore derived concepts

at various levels of abstraction.

Clustering is an unsupervised learning task that can be defined as the process of partition-

ing data into groups of similar entities, where each group corresponds to a concept [Berkhin,

2002]. Clustering algorithms are highly dependent on the selection of a distance metric that

assigns a score to every pair of entities that may be grouped together. The distance metric

captures the extent of similarity (or dissimilarity) between candidate pairs. In this work,

we compute the distance between two clusters as the average distance among all distances

between the possible pairs of entities contained in the two clusters. Hence, the clustering

algorithm used is an average-linkage (or group-average) clustering [Manning et al., 2008,
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Chapter 17].

Hierarchical clustering algorithms build a tree of clusters by successively grouping the

closest cluster pairs, until no further grouping is possible. In the resulting tree (often

called dendrogram), each cluster node at an intermediate level is associated with a parent

cluster, one or more child nodes and one or more sibling nodes. This approach allows

exploration of the data at different levels of granularity. Thus, parent nodes represent

abstract notions of the concepts that their children embody [Berkhin, 2002; Manning et al.,

2008]. The agglomerative approach starts by considering each instance as a distinct singleton

cluster, and based on the similarity criterion, successively merges clusters together until

the termination conditions are satisfied [Jain et al., 1999]. Fig. 3.1 show the result of an

agglomerative algorithm which begins with singleton clusters “A”, “B” and “C”, and builds

the hierarchy in a bottom-up fashion. We use CLUTO to group k-mers into concept-clusters.

Figure 3.1: Hierarchical agglomerative clustering.

3.3.1 Clustering Motifs from Biological Databases

AthaMap and PLACE identify motifs and transcription factors that bind to them. Thus,

there is a correspondence between motifs and transcription factors. As transcription factors

can be grouped in families, we can also group motifs into families. We represent sequences as

motifs both at transcription factor level (the motifs themselves) and at transcription family
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level (clusters of motifs that belong to the same family).

1. AthaMap:

For user-specified genes or genomic positions, AthaMap searches for 51 matrix-based

and 58 pattern-based motifs. A simple feature vector in this case consists of 109

features (or motifs) at transcription factor level. However, each motif belongs to a

family. Matrix-based motifs fall into 21 families and pattern-based motifs fall into 15

transcription families. When grouped together, we get 24 unique transcription families.

Hence, the same sequence can be represented using 109 motifs at the transcription

factor level, or 24 abstract motifs at the transcription family level.

2. PLACE:

For user-specified genes, PLACE searches for 73 pattern-based motifs. We grouped

them into 48 abstract features, based upon respective transcription families and bind-

ing sequence similarity.

Factor and family level motifs can be arranged in a hierarchy, as shown in Fig. 3.2. Here,

motifs ARF1 and AtLEC2 are grouped in the ABI3 family. We will train classifiers at both

levels of abstraction and analyze performance of the learned models.

3.3.2 Filtering and Clustering k-mers (Unbiased Approach)

While many motif databases are available for Arabidopsis, this may not be the case for other

less studied organisms. Therefore, we switch our attention to information that is unknown

and yet unavailable in databases. The approach of collecting motifs directly from gene

pairs’ DNA sequences is named the unbiased approach and motifs collected in the process

are termed as k-mers, where k is length of a motif. We want to investigate the ability

of learning algorithms to make use of k-mers in cases where not many known motifs are

available. To identify potentially useful k-mers, we use observations that we made based on

the information found in databases.
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Figure 3.2: Hierarchical organization of motifs collected from AthaMap.

First, motifs collected from AthaMap and PLACE, are of variable lengths between 4-

10 basepairs. In the unbiased approach, we generate features by enumerating k-mers of

variable length k- (k = 3, · · · , 8) using a window-based approach. This will ensure that all

important but unknown motifs will be included (while irrelevant motifs will be filtered out

using feature selection).

Fig. 3.3 shows the way we collect k-mers from gene sequences. For instance, to collect

all possible 5-mers, we scan a window of size equal to 5 basepairs over region of interest.

From this list, we extract unique motifs to form a feature vector of 5-mers. Table 4.2 show

the number of motifs collected for all k-mers that we consider in this work.

As can be seen in Table 4.2, a large number of motifs are obtained for our data. Training

classifiers from examples consisting of a large number of features (Table 4.2) will result in

overfitting and, hence, poor performance. Therefore, we need to perform feature selection in

order to filter top-ranked motifs of variable lengths. Please note, when k-mers are treated as

separate feature sets, we call them as “separate k-mers” and when we combine all possible
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Figure 3.3: Shifting a window of size k=5 over DNA sequence to collect all possible 5-mers.

Table 3.1: Motifs collected for each type of k-mers.

k-mers Number of Motifs
3-mer 64
4-mer 256
5-mer 1024
6-mer 4096
7-mer 16384
8-mer 65536

Total k-mers 87360

motifs of length 3-8 basepairs, we call them as “grouped k-mers”.

Furthermore, based on previous family and factor level concepts, grouping motifs into

more abstract features will result in better classifiers (this is discussed in Chapter 5). Yet,

we cannot group k-mers based upon their families because the information is unknown. It

is logical to cluster them based upon their sequence similarities.

1. Separate k-mers:

In each feature set, motifs are of same length; we used hamming distance [HAMMING,

1950] as the measure of similarity (or dissimilarity) between two motifs, for grouping

purposes.

2. Grouped k-mers:

In this case, motifs are of variable length; we used the end-gap free alignment tool

from EMBOSS [Sarachu and Colet, 2005], to get similarity scores for grouping pur-

poses. Distance matrices consisting of the above calculated scores were provided to

the clustering software CLUTO [Karypis, 2003].
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In Fig. 3.4, CLUTO clusters 4 motifs, we get 4 feature vectors (one for each cut). We

train classifiers on each cut, to find the best performing cut.

Figure 3.4: Levels of abstraction and features at various cuts.
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Chapter 4

Experimental Setup

This chapter describes the experiments conducted to evaluate different types of feature

vectors discussed in Section 3.1. We have conducted a series of experiments designed to

investigate the performance of several classification algorithms at predicting transcription

patterns for pairs of consecutive genes, when presented with different types of feature vectors,

generated from the DNA sequence.

In each experiment, we consider the following classifiers (with default parameters), whose

implementations are provided by the WEKA data mining software [Witten et al., 1999].

• Support Vector Machines (SVM) with build logistic model option enabled,

• Random Forests

• Logistic Regression (Logistic)

We have performed experiments on Arabidopsis thaliana data. Gene pairs from Ara-

bidopsis genome were used to construct training and test data sets for classifiers. Data

statistics are shown in Table 4.1. The data is balanced in terms of number of instances for

each transcription pattern.

The performance of each algorithm is measured by the area under the Receiver Operating

Characteristic (ROC) curve [Fawcett, 2005], i.e. the curve depicting the tradeoff between

the true positive rate vs. false positive rate (Figure 4.1). The area under the ROC curve, or
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Table 4.1: Data statistics for Arabidopsis genome with 5 chromosomes.

Class Label Number of Instances
FFRR 15955

FR 7163
RF 7152

Total Instances 30270

AUC (shaded region in Figure 4.1), is reported on a scale from 0 to 1, 0 being the minimum

value and 1 being the maximum value. Thus, higher values of the AUC indicate better

performances of a classifier at a given prediction task, while lower values indicate otherwise.

Figure 4.1: A sample ROC curve

The experiments in this thesis are designed to address several questions such as: What

motif representation gives better results, a count representation or a score representation?

Do the motifs collected from existing databases give better results than the motifs obtained

by enumerating all k-mers? Do feature selection and feature abstraction approaches improve

the performance? Which one is more effective? More precisely, the following experiments

are performed:

1. AthaMap factor level motifs:

For Experiment 1, we learn classifiers on 109 AthaMap motifs at factor level. Attribute

values in the feature vector refer to count representation of respective motifs. This is

28



the simplest feature vector, that is populated with motifs from one of the databases.

Initially, we do not perform feature selection and abstraction, so the AUC values for

this experiment represents our baseline for motifs derived from AthaMap.

2. AthaMap family level motifs (feature abstraction):

For Experiment 2, we learn classifiers on the 24 AthaMap motifs at family level (the

goal is to capture more general motifs). Attribute values in the feature vector refer to

count representation of the respective motif families.

3. PLACE factor level motifs:

Experiment 3 is similar to Experiment 1, but with motifs from PLACE. We learn

classifiers on 73 PLACE motifs at factor level. Attribute values in the feature vector

refer to count representation of respective motifs. Note that, PLACE does not provide

scores for motifs. The AUC values collected will be the baseline for motifs from

PLACE.

4. PLACE family level motifs (feature abstraction):

Experiment 4 is similar to Experiment 2, we generate an abstract set of features (as

compared to the vector with 73 attributes), by grouping 73 Arabidopsis specific motifs

reported by PLACE into 48 transcription families.

5. “AthaMap + PLACE” factor level motifs:

For Experiment 5, we combine all factor level motifs from AthaMap and PLACE, to

alleviate the effect of missing information from both the databases. We will combine

109 AthaMap and 469 PLACE (all plant motifs) motifs and perform feature selec-

tion to remove redundant features. AUC values hence produced, are expected to be

comparable and possibly better than the baseline values.

6. Count vs. Score representations with AthaMap matrix-based motifs (factor level):

AthaMap provides two types of motifs namely, matrix-based and pattern-based. For
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the matrix-based motifs, we can consider count or score representations when creating

feature vectors. For Experiments 6 and 7, we are interested to study which of these

representations is more likely to result in better classifier performance while taking

into account motifs at factor and family levels, respectively.

7. Count vs. Score representations with AthaMap matrix-based motifs (family level):

Experiment 7 is similar to Experiment 6, the difference being, classifiers will be trained

over 21 AthaMap matrix-based motifs at family level.

8. Feature selection over AthaMap factor level motifs:

To improve the performance of classifiers over motifs collected from AthaMap, for Ex-

periment 8, we use feature selection to filter the irrelevant features from the complete

feature set. Based on mutual information, we generate a list of motifs in the decreas-

ing order of information gain. Then, we select subsets of top-ranked motifs in an

incremental way such as top 10, 20, 30,... and so on; to study the correlation between

number of features and the AUC value for Random Forest and SVM classifiers.

9. Feature selection over PLACE factor level motifs:

Experiment 9 is similar to the Experiment 8, except that it considers PLACE motifs.

10. AthaMap family level motifs, plus GC content as an extra feature:

For Experiment 10 (as well as Experiments 11 and 12), we combine motifs with features

obtained from the gene pair sequences, to study their contribution of the latter on

performance. Hence, in the current experiment, both AthaMap motifs at family level

and the GC content score of the consecutive gene pair sequence will be used to create

the feature vector.

11. AthaMap factor level motifs and “gene1-intergenic-gene2” lengths as added features:

For Experiment 11, we include both, AthaMap motifs at factor level and lengths of

gene1, intergenic and gene2 sequences, that combine to form region of interest, when

creating feature vectors.
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12. AthaMap family level motifs and “gene1-intergenic-gene2” lengths as added features:

Experiment 12 is similar to Experiment 11, except that the motifs used are at family

level as opposed to factor level.

13. Gene pair vs. region specific motifs (AthaMap):

In previous experiments, while collecting motifs for gene pairs we did not take into

account their locations, i.e. whether motifs occurred in gene promoters or in inter-

genic region. For Experiment 13, we study effects of motif locations on classifiers

performance. When ignoring various genic regions, feature vector lengths for factor

and family level motifs are 109 and 24, respectively. While, when taking care of mo-

tif locations, feature vector lengths with factor and family level motifs are tripled (a

vector for each of the three regions) i.e. 109 ∗ 3 and 24 ∗ 3, respectively. Note that,

gene1, intergenic and gene2 sequences, combine to form region of interest.

Experiments 14-17 are related to the unbiased approach (introduced in Chapter 3).

14. Learning from separate k-mers:

For Experiment 14, we collect k-mers of length 3-8 basepairs and use them to construct

feature vectors. This task is similar to Experiments 1 and 3. Classifiers are trained

over different types of k-mers with number of features in each row being equal to those

mentioned in the Table 4.2.

Table 4.2: Number of features collected for each type of k-mers.

k-mers Number of Motifs
3-mer 64
4-mer 256
5-mer 1024
6-mer 4096
7-mer 16384
8-mer 65536

Total separate k-mers 87360

15. Learning from top-ranked separate k-mers (from feature selection):
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To improve results from previous experiment, in Experiment 15, we do feature selection

on k-mers and discard motifs with information gain score equal to zero. Table 4.2

shows basic sets of separate k-mers, while Table 4.3 shows top-ranked k-mers filtered

using feature selection. This task is similar to Experiments 8 and 9.

Table 4.3: Top-ranked motifs (mutual information > 0.00) in separate k-mers.

k-mers Number of Top-ranked Motifs
3-mer 64
4-mer 256
5-mer 540
6-mer 230
7-mer 160
8-mer 100

Total grouped k-mers 1350

16. Learning from top-ranked grouped k-mers (feature selection):

For Experiment 16, we report performance of classifiers trained over 1350 grouped

k-mers (Table 4.3). Here, we have included all important k-mers in the feature set.

17. Learning from “best cut” clusters of k-mers (feature abstraction over selected motifs):

For Experiment 17, we are interested to group 1350 top-ranked grouped k-mers into

concept-clusters, allowing classifiers to learn from more abstract features. We perform

feature abstraction over variable length k-mers as discussed in Chapter 3.

Since, k-mers are of variable length, they are group based on similarity scores from an

end-gap free alignment tool. In turn, CLUTO clusters them, and outputs 1350 cuts

along the agglomerative hierarchy. The best cut, will provide appropriate number of

clusters required to train classifiers in minimum time and achieve high performance.
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Chapter 5

Results

In this chapter, we will show the results of the experiments described in Chapter 4. The

chapter is organized in two Sections: Section 5.1 presents the results of the experiments

conducted with information collected from biological databases, and Section 5.2 presents

the results of the experiments conducted as part of the unbiased approach. Section 5.3

presents results from experiments based on a new approach called Classifier Confidence

Approach, that we experimented with based on our knowledge gained from the unbiased

approach.

The AUC values that are highlighted in the tables in this chapter show the performance

results of classifiers that were statistically significantly better than their respective baselines.

Each table presents the AUC values for classifiers when predicting FFRR, FR and RF class

labels (please refer to Section 1.2 for reviewing our Problem Definition). In addition, it also

presents the overall performance of the classifier calculated as the weighted average of its

performances for each class label.

5.1 Biological Databases Approach

In what follows, we present results from experiments 1 to 13 (Chapter 4) conducted with

features derived from information available in biological databases.

1. AthaMap factor level motifs:
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Results from this experiment (Table 5.1) show that Simple Logistic classifier has the

best performance in predicting FFRR, FR and RF class labels. The overall perfor-

mance of the classifier is 77%.

Table 5.1: Cross-validation results with AthaMap motifs (factor level) using count repre-
sentation

Classifiers Learned FFRR FR RF Weighted Average
Random Forest 0.685 0.9 0.724 0.745

SVM - PolyKernel 0.513 0.76 0.691 0.614
Simple Logistic 0.703 0.906 0.776 0.769

2. AthaMap family level motifs:

Results from this experiments are shown in Table 5.2. As can be seen from the table,

the Random Forest classifier has the best performance; 85%, 96% and 86% in predict-

ing FFRR, FR and RF class labels, respectively. Besides, the overall performance of

the classifier is 88%.

Table 5.2: Cross-validation results with AthaMap motifs (family level) using count repre-
sentation

Classifiers Learned FFRR FR RF Weighted Average
Random Forest 0.849 0.961 0.864 0.879

SVM - PolyKernel 0.709 0.918 0.784 0.776
Simple Logistic 0.729 0.931 0.787 0.791

By analyzing the AUC values in Tables 5.1 and 5.2, we see that the results of the

classifiers trained on family level motifs are better than those of the classifiers trained

on factor level motifs. Specifically, there is a significant increase in the performance

(approximately 10%) because when we move up in the motif hierarchy the feature

vectors capture more general information (“semantically equivalent” motifs).

3. PLACE factor level motifs:

Table 5.3 presents the results from this experiment. As shown in the table, Simple
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Logistic classifier performs the best in predicting FFRR, FR and RF class labels with

an overall performance 69%

Table 5.3: Cross-validation results with PLACE motifs (factor level) using count represen-
tation

Classifiers Learned FFRR FR RF Weighted Average
Random Forest 0.587 0.746 0.654 0.642

SVM - PolyKernel 0.504 0.715 0.686 0.598
Simple Logistic 0.62 0.802 0.746 0.694

4. PLACE family level motifs:

To study the effect of transition to family level features, we grouped 73 Arabidopsis

motifs into 48 transcription families. The results presented in Table 5.4 show that

Simple Logistic classifier has the best performance; 74%, 92% and 80% in predict-

ing FFRR, FR and RF class labels, respectively. For this experiment, the overall

performance of the classifier is 80%.

Table 5.4: Cross-validation results with PLACE motifs (family level) using count represen-
tation

Classifiers Learned FFRR FR RF Weighted Average
Random Forest 0.671 0.877 0.715 0.731

SVM - PolyKernel 0.74 0.922 0.804 0.799
Simple Logistic 0.745 0.922 0.805 0.802

Based on the AUC values in Tables 5.3 and 5.4, we can claim that even for PLACE

database, classifiers trained at family level have better performance than the classifiers

trained at factor level. There is 10-12% increase in the performance of family level

classifiers as compared to their factor level counter parts. Simple Logistic is the best

classifier in both the cases.

Comparing the AUC values in Tables 5.1 and 5.3, we see that for Random Forest clas-

sifier, AthaMap motifs generate better feature vectors as compared to PLACE, with

10-15% rise in model’s performance. Similarly, there is 10% performance difference
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between Simple Logistic classifier trained over AthaMap and PLACE. However, SVM

performance is similar in both cases.

When we compare AUC values in Tables 5.2 and 5.4, for Random Forest, for each class

label, AthaMap features show 10-13% better performance than PLACE. However,

SVM and Simple Logistic perform 2-5% better with PLACE. Overall, AthaMap is

better-suited for our problem relative to PLACE.

5. “AthaMap + PLACE” factor level motifs:

For this experiment, we grouped 109 AthaMap and 469 PLACE motifs to get a feature

vector of 578 factor level motifs. Its results are shown in Table 5.5. Comparing

Tables 5.1, 5.3 and 5.5, it is prominent that classifiers perform significantly better

(5-10% increase) when provided with features from multiple data sources.

Also, feature selection results in classifiers with similar performance but less training

time. Fig. 5.1 shows the dependence of the AUC values on the number of features

selected. The peaks of the graphs highlight the best performance. As can be seen,

less than 100 best features results in best performance. As we increase the number of

features, the performance decreases.

Table 5.5: Cross-validation results with AthaMap and PLACE motifs (factor level) using
count representation

Classifiers Learned FFRR FR RF Weighted Average
Random Forest 0.644 0.841 0.692 0.703

SVM - PolyKernel 0.687 0.894 0.752 0.752
Simple Logistic 0.75 0.925 0.81 0.806

6. Count vs. Score representations with AthaMap matrix-based motifs (factor level):

Tables 5.6 and 5.7 report performance of classifiers trained on 51 AthaMap matrix-

based motifs at factor level, pertaining to count and score representations, respectively.

A closer look at values in these tables identify count representation to be superior.

36



Figure 5.1: The area under the ROC Curve as a function of number of features selected
using AthaMap and PLACE motifs combined. Using a relatively small number of features
(motifs), the classifiers achieve highest performance. As we add more and more features,
the performance of classifiers decreases significantly.
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Table 5.6: Cross-validation results with AthaMap matrix-based motifs (factor level) using
count representation

Classifiers Learned FFRR FR RF Weighted Average
Random Forest 0.714 0.935 0.751 0.775

SVM - PolyKernel 0.709 0.915 0.789 0.777
Simple Logistic 0.741 0.938 0.794 0.8

Table 5.7: Cross-validation results with AthaMap matrix-based motifs (factor level) using
score representation

Classifiers Learned FFRR FR RF Weighted Average
Random Forest 0.689 0.93 0.722 0.754

SVM - PolyKernel 0.691 0.917 0.74 0.756
Simple Logistic 0.741 0.941 0.774 0.796

7. Count vs. Score representations with AthaMap matrix-based motifs (family level):

Tables 5.8 and 5.9 report performance of classifiers trained on 21 AthaMap matrix-

based motifs at family level, pertaining to count and score representations of motifs,

respectively. A closer look at values in these tables identify count representation to

be superior.

Table 5.8: Cross-validation results with AthaMap matrix-based motifs (family level) using
count representation

Classifiers Learned FFRR FR RF Weighted Average
Random Forest 0.726 0.933 0.758 0.783

SVM - PolyKernel 0.708 0.916 0.786 0.776
Simple Logistic 0.736 0.935 0.791 0.796

Thus, our results show that, irrespective of how we deal with motifs found in the region

of interest, whether we learn from motifs at factor level or from motifs at family level,

counting occurrences (count representation) is a better way of training classifiers as

compared to averaging over occurrence scores (score representation).

We also experimented with a binary representation, where attributes in the feature

vector are marked as 0 or 1 indicating the absence or presence of the corresponding

motif, respectively. This representation is even worse. In decreasing order of perfor-
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Table 5.9: Cross-validation results with AthaMap matrix-based motifs (family level) score
representation

Classifiers Learned FFRR FR RF Weighted Average
Random Forest 0.699 0.932 0.731 0.762

SVM - PolyKernel 0.675 0.918 0.722 0.744
Simple Logistic 0.735 0.938 0.766 0.791

mance, count > score > binary representations.

8. Feature selection over AthaMap and PLACE motifs (factor level):

As expected, when a very small number of features are available, the performance of

the classifiers is not very good. However, with increase in the number of features, the

AUC values increase. However, when too many features are added, the performance

of the classifiers decreases or remains constant (Fig. 5.2).

Table 5.10 shows the five most predictive motifs found in AthaMap and PLACE based

on feature selection.

Table 5.10: Five most predictive motifs for both AthaMap and PLACE

AthaMap Motifs PLACE Motifs
CBF GT1CONSENSUS
TBP ARR1AT
GT-3B POLLEN1LELAT52
NTERF2 DOFCOREZM
DOF2 GT1GMSCAM4

9. AthaMap family level motifs with GC content as an added feature:

By comparing Tables 5.2 and 5.11, we can see that including the GC contents as an

extra feature does not improve the performance of the classifier. Instead, it acts as

noise, lowering the classifier performance.

10. AthaMap factor level motifs and “gene1-intergenic-gene2” lengths as extra features:

By comparing Tables 5.1 and 5.12, we can see that motif features together with the ex-

tra features corresponding to the “gene1-intergenic-gene2” lengths result in an increase
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Figure 5.2: The Area Under the ROC Curve as a function of the number of features
selected for both Random Forests (left plots) and Support Vector Machines (right plots)
using AthaMap (upper) and PLACE motifs (lower plots), respectively. Using a relatively
small number of features (motifs), the classifiers achieve the best performance. As we add
more and more features, the performance of the classifiers decreases or remains the same.
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Table 5.11: Cross-validation results with AthaMap motifs (family level) and GC content
as an extra feature

Classifiers Learned FFRR FR RF Weighted Average
Random Forest 0.71 0.914 0.741 0.766

SVM - PolyKernel 0.685 0.894 0.775 0.756
Simple Logistic 0.703 0.907 0.778 0.769

in the classifier’s performance.

Table 5.12: Cross-validation results with AthaMap motifs (factor level) and gene1-
intergenic-gene2 lengths as extra features

Classifiers Learned FFRR FR RF Weighted Average
Random Forest 0.682 0.905 0.738 0.748

SVM - PolyKernel 0.696 0.895 0.804 0.769
Simple Logistic 0.756 0.939 0.813 0.813

11. AthaMap family level motifs and “gene1-intergenic-gene2” lengths as added features:

As has been seen above, including an extra GC content feature to a set of abstract

features (family level motifs) reduces the classifier’s performance. The same is true

when Tables 5.2 and 5.13 are compared.

Table 5.13: Cross-validation results with AthaMap motifs (family level) and gene1-
intergenic-gene2 lengths as added features

Classifiers Learned FFRR FR RF Weighted Average
Random Forest 0.707 0.905 0.799 0.775

SVM - PolyKernel 0.729 0.939 0.773 0.789
Simple Logistic 0.752 0.937 0.807 0.809

12. Gene pair vs. region specific motifs (for AthaMap):

Tables 5.14 and 5.15 present 10-folds cross-validation results with AthaMap factor and

family level region specific motifs, respectively.

Comparing Tables 5.1 & 5.14 (factor level), and 5.2 & 5.15 (family level), we found

that at factor level, for both gene pair and region specific motifs, the performance of

the Random Forest classifier was similar. But in the case of region specific motifs, the
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SVM and Simple Logistic classifiers perform by 15% and 5% better than their gene

pair counterparts, respectively. At family level, the SVM performance was similar

for both types of features. However, Random Forest and Simple Logistic classifiers

showed a 10% increase in AUC values with gene pair features.

Table 5.14: Cross-validation results with AthaMap motifs (factor level) pertaining to dif-
ferent regions (gene1-intergenic-gene2)

Classifiers Learned FFRR FR RF Weighted Average
Random Forest 0.682 0.905 0.738 0.748

SVM - PolyKernel 0.696 0.895 0.804 0.769
Simple Logistic 0.756 0.939 0.813 0.813

Table 5.15: Cross-validation results with AthaMap motifs (family level) pertaining to dif-
ferent regions (gene1-intergenic-gene2)

Classifiers Learned FFRR FR RF Weighted Average
Random Forest 0.729 0.936 0.773 0.789

SVM - PolyKernel 0.707 0.905 0.799 0.775
Simple Logistic 0.752 0.937 0.807 0.809

5.2 The Unbiased Approach

In the previous set of experiments, we collect motifs from biological databases and learn

classifiers to solve prediction problems. In the unbiased approach, we assume that no motifs

are available, and we use a sliding window approach to enumerate all possible k-mers (or

motifs). Given the large number of features generated (Table 4.2) and, consequently, the

increased amount of training time needed for each classifier, we will only report experimental

results for the Random Forest classifier.

1. Cross-validation results when learning from separate k-mers:

Table 5.16 reports the performance of the classifier trained over different k-mers, with

number of features in each row being equal to those mentioned in the Table 4.2. As can
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be seen, even when learning from all possible different k-mers, the classifier’s perfor-

mance is poor (55-65%) as compared to 88% with features from biological databases.

Moreover, the best performance is obtained when the classifier is trained with 3-mers.

Table 5.16: Cross-validation results when learning from different k-mers as separate data
sets. Results shown for the random forest classifier.

k-mers FFRR FR RF Weighted Average
3-mer 0.567 0.68 0.596 0.601
4-mer 0.559 0.667 0.591 0.592
5-mer 0.556 0.659 0.575 0.585
6-mer 0.552 0.654 0.574 0.581
7-mer 0.543 0.636 0.565 0.57
8-mer 0.545 0.638 0.558 0.57

2. Cross-validation results when learning from top-ranked separate k-mers (feature selec-

tion):

To improve the results from the previous experiment, we do feature selection on k-

mers. Table 5.17 shows AUC values as reported by the classifier. We see that, after

removing irrelevant motifs using feature selection, the improvement in performance

is not significant. In various k-mers, the performance was either similar or marked

decimal increase in the AUC value. Instead of treating each set of k-mers separately,

we should try combining all k-mers into one set, as biological databases usually consist

of motifs of variable length.

Table 5.17: Cross-validation results when learning from top-ranked separate k-mers. Re-
sults shown for the random forest classifier.

k-mers FFRR FR RF Weighted Average
3-mer 0.567 0.68 0.596 0.601
4-mer 0.559 0.667 0.591 0.592
5-mer 0.562 0.661 0.58 0.59
6-mer 0.553 0.653 0.568 0.58
7-mer 0.541 0.633 0.571 0.57
8-mer 0.528 0.615 0.56 0.556
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3. Cross-validation results when learning from top-ranked grouped k-mers (feature selec-

tion):

Table 5.18 reports the performance of classifiers trained over 1350 grouped k-mers (see

Table 4.3). Comparing Tables 5.17 and 5.18, it is clear that Simple Logistic shows

improved performance. Including all k-mers as features definitely provides more infor-

mation to the classifiers for learning. Although, the improvement is not satisfyingly

significant.

On the basis of transcription family level results from biological databases, we try to

capture generalization via feature abstraction over 1350 k-mers, for a similar experi-

ment.

Table 5.18: Cross-validation results with top-ranked separate k-mers.

Classifiers Learned FFRR FR RF Weighted Average
Random Forest 0.564 0.665 0.587 0.593
Simple Logistic 0.548 0.688 0.624 0.599

4. Cross-validation results learning from “best cut” clusters of grouped k-mers (from

feature abstraction over selected motifs):

Fig. 5.3 shows a graph correlating “number of clusters” and “AUC value”. We start

at the root node with one cluster, with the increase in number of clusters, AUC value

increases and the performance reaches maximum at a cut with 1200 clusters. Further

increase in cluster count results in lower AUC value. Hence, instead of 1350 features,

we trained the classifier better with 1200 clusters (Table 5.19) and less training time.

There are significant differences in classifier performance when trained with AthaMap

family level motifs vs. k-mers clustered together based on sequence similarity. We

assumed k-mers are unknown motifs and a way to group them could be to check

similarity between sequences. But, with lower AUC value as compared to known

motifs, it is evident that sequence similarity fails to capture biological significance in

concept clusters. On the other hand, AthaMap motifs were grouped depending on
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transcription families, with motifs sharing similar biological properties in each family.

Figure 5.3: Feature abstraction graph showing correlation between number of clusters (as
features) and AUC value.

5.3 Classifier Confidence Approach

Performance of classifiers in unbiased approach are worse than their respective counterparts

in biological databases approach. We collected k-mers of variable lengths and these k-mers

also include binding sites not yet reported in the databases. The results are poor because the

variable length sites highly overlap. To resolve this issue, we train Random Forest classifier

over top-ranked separate k-mers and build k-mer models for predicting class labels for test

instances. 75% is training data and remaining 25% is test data. For each test instance,
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Table 5.19: Cross-validation results with best cut grouped k-mers clusters as features

Classifiers Learned FFRR FR RF Weighted Average
Random Forest 0.571 0.683 0.597 0.603

k-mers models give class distribution for predicted class label of the given test instance. For

each test instance, we select the class distribution that correctly predicts class label and

has the highest classifier confidence for that label. Fig. 5.4 illustrates this approach. AUC

values reported for this approach, for each class label are: FFRR = 0.775, FR = 0.79

and RF = 0.74. So far, these are the highest performance measures with unbiased k-mers.

We believe the results are better with this approach, as we use one classifier per length and

predict the most “confident” class, in other words, only one length is used, the others are

dropped. This partially takes care of the overlap between motifs (specifically, the case when

one motifs is completely included in another). Thus, no classifier will have fully overlapping

motifs.
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Figure 5.4: Predicting the class label of test instances with the highest confidence k-mer
model.
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Chapter 6

Related Work and Discussion

This chapter provides a review of the research related to the work presented in this thesis.

We briefly discuss different motif finding algorithms other than Paster (used in AthaMap)

and Signal Scan (used in PLACE). We also talk about research work where regulatory

elements have played a key role and comment on the concept outlined in [Liu et al., 2008],

closely related to our “classifier confidence approach”.

Unraveling the mechanisms that regulate gene expression is a major challenge in biology.

An important task in this challenge is to identify regulatory elements in DNA. Technical

advances in genome sequence availability and high-throughput gene expression analysis have

fostered the development of computational methods for motif finding [Das and Dai, 2007].

Current motif finding algorithms use phylogenetic footprinting or promoter sequences of

coregulated genes or integrate both the approaches to find overrepresented binding sites.

Algorithms discussed in this chapter correctly report motifs that were previously detected

through lab experiments, and also find novel motifs. These algorithms work well with lower

organisms DNA sequences (such as Yeast or Arabidopsis), but perform poorly in higher

organisms [Das and Dai, 2007].

Helden et al. [1998] developed the motif finding algorithm Oligo-Analysis based on

string-based exhaustive enumeration of motifs by counting and comparing oligonucleotide

frequencies. String-based methods are well-suited for short motifs and generate huge col-

lection of the same from DNA sequences. However, since motif positions are weakly con-
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strained, some post-processing and clustering is needed to avoid problems arising from many

spurious motifs. We follow a similar approach with k-mers and our results support the ar-

gument that grouping motifs into concept-clusters provides a better learning experience for

classifiers. Another version of Oligo-Analysis algorithm (Dyad-Analysis) searches for spaced

dyad motifs, where the length of spacer is varied between 0 and 16 and a motif is scored

based on combined score of the two conserved parts.

Liu et al. [2004] developed the algorithm FMGA based on the concept of genetic algo-

rithms. In contrast to string-based methods, they use probabilistic sequence model where

motifs are represented by position weight matrix or PSSM - an approach similar to reporting

matrix-based motifs in AthaMap. Probabilistic methods require few search parameters but

rely on probabilistic models of the regulatory regions [Das and Dai, 2007]. These algorithms

are biased to finding longer motifs.

AlignACE [Roth et al., 1998], ANN-Spec [Workman and Stormo, 2000], GLAM, Impro-

bizer, Gibbs sampling, MEME [Bailey and Elkan, 1995], MotifSampler [Thijs et al., 2002],

Bioprospector, MDScan, and QuickScore are other popular motif finding algorithms used in

the research community. Some of these algorithms are efficient in identifying small motifs

while others report longer motifs. Since little is known about transcription factors and their

binding sites, these tools are designed for the discovery of novel regulatory elements, without

assuming any prior information. Statistically overrepresented motifs in the “region of inter-

est” is the desired output. However, performance of a single tool depends upon the type of

data set used for evaluation, number of runs and various other tool-specific configurations.

Relying on a single tool for our prediction problems is rather naive.

Ensemble algorithm by Hu et al. [2006] is a clustering-based algorithm that combines

multiple predictions from multiple runs of five base component algorithms mentioned above.

It takes advantage of promising predictions of component algorithms. As a result the over-

all performance of nucleotide level prediction is 22.4% more than stand-alone component
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algorithms.

Holloway et al. [2008] target their research in the identification of transcription factors

and the genes they regulate. They use features such as DNA patterns and gene expression

experiments to identify true and false targets of transcription factors. Post-processing of

Support Vector Machines based classifiers results and better feature ranking strategies have

increased the overall performance to 86%. Their positive data set consists of known tran-

scription factor binding sites published in the literature and negative data set consists of

genes not bound by transcription factors, results from ChIP-chip experiments. “Using sev-

eral genomic datasets a classifier is constructed for each transcription factor on a chosen set

of features and then evaluated using a leave-one-out cross validation approach” [Holloway

et al., 2008]. For each transcription factor, 100 classifiers are constructed, each using a ran-

dom sub-sample of the negative set. A classifier built on the training set is evaluated using

leave-one-out cross validation. In each cross-validation split, top 1500 features are selected,

classifier is trained and then tested on the test set. The procedure is repeated 100 times

and the net performance is the average of 100 cross-validation accuracies. For classifying a

new target of a transcription factor, 100 classifiers are applied to the target gene’s feature

vector, and if the average probability of the gene being a target gene is greater than 0.5

then its a positive classification, negative otherwise.

Liu et al. [2008] proposed a time efficient feature extraction method to provide better and

faster online search capabilities especially with image data. To identify correct image type,

a classifier need not extract all features related to an image. For simple images, less features

are adequate for high confidence prediction; however, for complex images more features

are required. As a result, there is a tradeoff between classifier performance and feature

extraction time cost, such that for each image instance, the overall test time cost is reduced

in maximum subject to a condition that the classification performance is still acceptable.

According to the authors, this approach is an upgrade to traditional feature selection that

selects same subset of features for all instances. The confidence of Support Vector Machines
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on a test instance is measured by the distance between the concerned instance and the

decision boundary. The larger the distance, the more confident the classification [Liu et al.,

2008]. For a new test instance, the first feature is extracted and the first classifier is fired.

If the distance is larger than some threshold, the current classification is regarded as the

result; otherwise next feature is extracted and the next classifier is invoked. We use a similar

approach in Section 5.3, the difference being, each test instance is classified using different

classifier models (learned from different k-mers) and the final class label is the one pointed

out by the highest class distribution value of the actual class.

51



Chapter 7

Conclusion

In the recent years there has been enhancements in genome sequencing and high-throughput

gene expression analysis technologies that has led to the availability of tremendous amount

of DNA data. Also, there has been improvements in machine learning algorithms that

can help researchers to quickly analyze nucleotide sequences and extract relevant biological

information. In addition to studying motifs in labs, nowadays computational approaches

are implemented to find solutions to biological problems from different perspectives. One

such problem that has kept researchers occupied is understanding the mechanisms of gene

regulatory networks. Modeling approaches followed by researchers are wide and disparate.

Some gene regulatory networks are modeled entirely using non-parametric approaches such

as Bayesian or neural networks, while some others represent genes in parametric differential

equation formats [Das et al., 2009]. Encouraged by the fact that transcription factors and

their binding sites play significant roles in identifying functions of regulatory networks, in

this thesis we presented a motif-based machine learning approach for the same. A spin-off

from focusing on constructing regulatory network from Arabidopsis thaliana genes, we were

interested to find motifs that are predictive of transcription patterns of consecutive genes

across the genome. Understanding latter would help better understand former, as suggested

by our collaborator Dr. Volker Brendel from Iowa State University.

Motifs collected from biological databases and k-mers have different binding sequences,

they belong to different transcription families. Some are well studied in labs, while other
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are yet unknown. Some are relevant for transcription prediction problems while others act

as noise, as seen from feature selection and abstraction experiments. A careful examination

of putative motifs can offer new insights into genomic research. We collected motifs from

AthaMap, PLACE and unknown k-mers, analyzed them to find out:

• Count representation is more suitable for gene pair transcription pattern prediction

problems.

• Motifs from “AthaMap and PLACE”, generate better feature vectors as compared to

motifs from “AthaMap” or “PLACE”.

• Classifiers learned from AthaMap data, perform better than classifiers learned from

PLACE data. Former being a more comprehensive database pertaining to regulatory

elements found in the region of interest, classifiers performance are approximately

88%.

• Classifiers learn better when provided with family level as compared to factor level

features. Similarly, grouping k-mers into concept-clusters, improves performance. But,

we have to be careful while capturing biological significance of motifs grouped into

clusters. “Sequence similarity” is not an efficient parameter for the same.

• Techniques such as feature selection and abstraction, help discard irrelevant attributes

in the feature vectors, and group features into concept-clusters. In turn, providing

better performing classifiers.
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Chapter 8

Future Work

This chapter showcases several related problems that we would like to address in future

work. They are briefly described in what follows:

• Biological significance of most predictive motifs:

Table 5.10 enumerates most predictive motifs collected from AthaMap and PLACE.

These motifs were filtered from feature selection and abstraction experiments. To

verify our approach and identify biological importance of these motifs, as a future

work, we plan to search published research papers that talk about these motifs with

respect to their presence in gene regulatory networks. Not all motifs are studied in

genetic labs but even if we are able to find some published proofs of important motifs,

then that would suffice. This task may also point towards genes that might be excluded

from regulatory network but in reality they have a role to play. Using gene referrals

from published papers we can also construct a sub-regulatory network that can show

gene-gene regulation links, next task highlights the same.

• Using Textpresso to construct partial gene regulatory networks:

Textpresso is an open-source search tool, that indexes full published papers for multiple

organisms, including Arabidopsis. Given an initial set of genes, using Textpresso,

we will identify a bigger set of genes that have regulator-target relationship among

themselves. Using another tool called Cytoscape, we will view the network in form
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of graph where, nodes of the graph are genes from Arabidopsis. Since researchers

have not yet studied all possible gene-gene regulatory links, the information collected

from published papers might be incomplete. As a result, the networks that will be

constructed will be incomplete. They will help us better understand our current

knowledge in gene regulatory networks. We may even combine this approach with

motif-based machine learning approach in order to combine incomplete networks.

• Collecting motifs from multiple resources:

As per Chapter 5, no database is complete enough to train classifiers such that their

prediction performance is 100% and the approach of combining motifs from multiple

databases is promising. Tompa et al. [2005] and Hu et al. [2005] suggest to use multiple

motif extraction resources (biological databases and motif finding tools) rather than

relying on a single resource. Chapter 6 talks about Ensemble algorithm by Hu et al.

[2006], that clusters motifs collected from different motif reporting tools, the algorithm

could be a decent choice to work with. We plan to combine motifs from multiple

sources, perform feature selection and cluster them in such a way that biological

significance is well captured. Motifs set hence generated, would alleviate effects of

missing information at its best.

• Using advanced clustering mechanisms:

In unbiased approach, we noticed two facts. First, agglomerative clustering based on

sequence similarity fails to captures biological relation between motifs, similar to one

captured by transcription hierarchy while we grouped motifs at family level. We need

to use more advanced clustering mechanisms and distance parameters to solve the

issue. Second, classifier confidence approach has generated best predictive results so

far in case of k-mers. Perhaps, a combination of both these mechanisms will open

doors for yet untouched research prospects.
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